WorldWideScience

Sample records for ground based radio

  1. New advanced netted ground based and topside radio diagnostics for Space Weather Program

    Science.gov (United States)

    Rothkaehl, Hanna; Krankowski, Andrzej; Morawski, Marek; Atamaniuk, Barbara; Zakharenkova, Irina; Cherniak, Iurii

    2014-05-01

    To give a more detailed and complete understanding of physical plasma processes that govern the solar-terrestrial space, and to develop qualitative and quantitative models of the magnetosphere-ionosphere-thermosphere coupling, it is necessary to design and build the next generation of instruments for space diagnostics and monitoring. Novel ground- based wide-area sensor networks, such as the LOFAR (Low Frequency Array) radar facility, comprising wide band, and vector-sensing radio receivers and multi-spacecraft plasma diagnostics should help solve outstanding problems of space physics and describe long-term environmental changes. The LOw Frequency ARray - LOFAR - is a new fully digital radio telescope designed for frequencies between 30 MHz and 240 MHz located in Europe. The three new LOFAR stations will be installed until summer 2015 in Poland. The LOFAR facilities in Poland will be distributed among three sites: Lazy (East of Krakow), Borowiec near Poznan and Baldy near Olsztyn. All they will be connected via PIONIER dedicated links to Poznan. Each site will host one LOFAR station (96 high-band+96 low-band antennas). They will most time work as a part of European network, however, when less charged, they can operate as a national network The new digital radio frequency analyzer (RFA) on board the low-orbiting RELEC satellite was designed to monitor and investigate the ionospheric plasma properties. This two-point ground-based and topside ionosphere-located space plasma diagnostic can be a useful new tool for monitoring and diagnosing turbulent plasma properties. The RFA on board the RELEC satellite is the first in a series of experiments which is planned to be launched into the near-Earth environment. In order to improve and validate the large scales and small scales ionospheric structures we will used the GPS observations collected at IGS/EPN network employed to reconstruct diurnal variations of TEC using all satellite passes over individual GPS stations and the

  2. Polarimetric mountain based radio-occultation for rain detection: The ROHP-PAZ ground campaign

    Science.gov (United States)

    Padulles, Ramon; Cardellach, Estel; Tomas, Sergio; de la Torre, Manuel; Turk, Joe

    2014-05-01

    The Radio Occultation and Heavy Precipitation experiment aboard the PAZ Low Earth Orbiter (ROHP-PAZ) is a mission of opportunity: The Spanish Ministry of Science and Innovation (MICINN) approved in 2009 a proposal to include a polarimetric Global Navigation Satellite System (GNSS) Radio-Occultation (RO) payload on board of the Spanish Earth Observation satellite PAZ. This will be a new technique that has never been tested before, that aims to improve the knowledge of precipitation through simultaneous thermodynamic and vertical rain profiles. Prior to the launch of the satellite, expected for 2014, a ground experimental campaign is being conducted with the goal of starting the process of identifying and understanding all the factors that might affect the polarimetric RO observables. The campaign is being carried out at the top of Puig Sesolles, a 1667m peak in the Natural Park of Montseny (41º46'24 N, 2º26'17 E), 50 km N-NE from Barcelona, with clear views over the horizon to the South (East to West) direction, an area in which intense precipitation events tend to occur a few times per year. The campaign uses a ICE-CSIC/IEEC's GOLD-RTR open-loop receiver initially designed for collecting GNSS signals reflected off the sea surface. The receiver has been adjusted to track occulting GNSS radio-links. A double polarization (H and V) GNSS antenna has been designed and manufactured by the Polytechnic University of Barcelona (UPC) team for this particular ground-based experiment. The antenna is a phase-array made of 7 elements, each of them being a square patch built using a Rogers 4003 substrate, and symmetrically fed by four probes. It provides a pattern of 12.9 dB peak gain, 45 degrees half-power beam-width, and <-35 dB cross-polar isolation at the peak (better than -30 dB in the main lobe). The preliminary results show that not only precipitation, but also other factors are affecting the GNSS signal, wich means that the polarimetric signal is richer than expected

  3. Ground-based solar radio observations of the August 1972 events

    International Nuclear Information System (INIS)

    Bhonsle, R.V.; Degaonkar, S.S.; Alurkar, S.K.

    1976-01-01

    Ground-based observations of the variable solar radio emission ranging from few millimetres to decametres have been used here as a diagnostic tool to gain coherent phenomenological understanding of the great 2, 4 and 7 August, 1972 solar events in terms of dominant physical processes like generation and propagation of shock waves in the solar atmosphere, particle acceleration and trapping. Four major flares are selected for detailed analysis on the basis of their ability to produce energetic protons, shock waves, polar cap absorptions (PCA) and sudden commencement (SC) geomagnetic storms. A comparative study of their radio characteristics is made. Evidence is seen for the pulsations during microwave bursts by the mechanism similar to that proposed by McLean et al. (1971), to explain the pulsations in the metre wavelength continuum radiation. It is suggested that the multiple peaks observed in some microwave bursts may be attributable to individual flares occurring sequentially due to a single initiating flare. Attempts have been made to establish identification of Type II bursts with the interplanetary shock waves and SC geomagnetic storms. Furthermore, it is suggested that it is the mass behind the shock front which is the deciding factor for the detection of shock waves in the interplantary space. It appears that more work is necessary in order to identify which of the three moving Type IV bursts (Wild and Smerd, 1972), namely, advancing shock front, expanding magnetic arch and ejected plasma blob serves as the piston-driver behind the interplanetary shocks. The existing criteria for proton flare prediction have been summarized and two new criteria have been proposed. (Auth.)

  4. Reliability-centered maintenance for ground-based large optical telescopes and radio antenna arrays

    Science.gov (United States)

    Marchiori, G.; Formentin, F.; Rampini, F.

    2014-07-01

    In the last years, EIE GROUP has been more and more involved in large optical telescopes and radio antennas array projects. In this frame, the paper describes a fundamental aspect of the Logistic Support Analysis (LSA) process, that is the application of the Reliability-Centered Maintenance (RCM) methodology for the generation of maintenance plans for ground-based large optical telescopes and radio antennas arrays. This helps maintenance engineers to make sure that the telescopes continue to work properly, doing what their users require them to do in their present operating conditions. The main objective of the RCM process is to establish the complete maintenance regime, with the safe minimum required maintenance, carried out without any risk to personnel, telescope and subsystems. At the same time, a correct application of the RCM allows to increase the cost effectiveness, telescope uptime and items availability, and to provide greater understanding of the level of risk that the organization is managing. At the same time, engineers shall make a great effort since the initial phase of the project to obtain a telescope requiring easy maintenance activities and simple replacement of the major assemblies, taking special care on the accesses design and items location, implementation and design of special lifting equipment and handling devices for the heavy items. This maintenance engineering framework is based on seven points, which lead to the main steps of the RCM program. The initial steps of the RCM process consist of: system selection and data collection (MTBF, MTTR, etc.), definition of system boundaries and operating context, telescope description with the use of functional block diagrams, and the running of a FMECA to address the dominant causes of equipment failure and to lay down the Critical Items List. In the second part of the process the RCM logic is applied, which helps to determine the appropriate maintenance tasks for each identified failure mode. Once

  5. Lightning current distribution to ground at a power line tower carrying a radio base station

    NARCIS (Netherlands)

    Grcev, L.; Deursen, van A.P.J.; Waes, van J.B.M.

    2005-01-01

    Radio base stations are often mounted on towers of power transmission lines. They are usually powered from the low-voltage network through an isolating transformer, to separate the high- and low-voltage networks. The isolating transformer ensures security at customers' premises in the case of nearby

  6. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle.

    Science.gov (United States)

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-11-11

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality.

  7. Global Three-Dimensional Ionospheric Data Assimilation Model Using Ground-based GPS and Radio Occultation Total Electron Content

    Science.gov (United States)

    Jann-Yenq Liu, Tiger; Lin, Chi-Yen; Matsuo, Tomoko; Lin, Charles C. H.; Tsai, Ho-Fang; Chen, Chao-Yen

    2017-04-01

    An ionospheric data assimilation approach presented here is based on the Gauss-Markov Kalman filter with International Reference Ionosphere (IRI) as the background model and designed to assimilate the total electron content (TEC) observed from ground-based GPS receivers and space-based radio occultation (RO) of FORMOSAT-3/COSMIC (F3/C) or FORMOSAT-7/COSMIC-2 (F7/C2). The Kalman filter consists of the forecast step according to Gauss-Markov process and measurement update step. Observing System Simulation Experiments (OSSEs) show that the Gauss-Markov Kalman filter procedure can increase the accuracy of the data assimilation analysis over the procedure consisting of the measurement update step alone. Moreover, in comparing to F3/C, the dense F7/C2 RO observation can further increase the model accuracy significantly. Validating the data assimilation results with the vertical TEC in Global Ionosphere Maps and that derived from ground-based GPS measurements, as well as the ionospheric F2-peak height and electron density sounded by ionosondes is also carried out. Both the OSSE results and the observation validations confirm that the developed data assimilation model can be used to reconstruct the three-dimensional electron density in the ionosphere satisfactorily.

  8. Single-channel ground airborne radio system (SINCGARS) based remote control for the M1 Abrahms

    Science.gov (United States)

    Urda, Joseph R.

    1995-04-01

    Remote control of the Ml Abrahms Main Battle Tank through a minefield breach operation will remove the vehicle crew from the inherent hazard. A successful remote control system will provide automotive control yet not impair normal operation. This requires a minimum of physical parts, and an unobtrusive installation. Most importantly, a system failure must not impair the regular operation as a manned system. The system itself need not be complex. A minefield breach only requires simple control of automotive function and a mine plow interface. Control hardware for the Ml-Al can be reduced to two linear actuators, an electrical interface for the engine control unit, an interface for the mine plow, and the associated cables. Communication between vehicle control and operator control takes place over the vehicles organic radio (typically SINCGARS). This helps reduce the number of special purpose components for the remote control device. The device is currently awaiting an automotive safety test to prepare for its safety release. Because of the specific nature of the MDL-STD 1553-B data bus the device will not control an M1-A2 Main Battle Tank. The architecture will allow control of the M1-A2 through the 1553-B data bus however the physical hardware has not been constructed. The control scheme will not change. The communication interface will provide greater flexibility when interfacing to the vehicle tactical radio. Operational utility will be determined by U.S. Army Training and Doctrine Command personnel. The obvious benefit is that if a remote tank is lost during a minefield breach the crew is saved.

  9. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 1

    Science.gov (United States)

    Gnanalingam, S.; Kane, J. A.

    1973-01-01

    An extensive set of ground-based measurements of the diurnal variation of medium frequency radio wave adsorption and virtual height is analyzed in terms of current understanding of the D- and lower E-region ion production and loss process. When this is done a gross discrepancy arises, the source of which is not known.

  10. A FPGA-based Fast Converging Digital Adaptive Filter for Real-time RFI Mitigation on Ground Based Radio Telescopes

    Science.gov (United States)

    Finger, R.; Curotto, F.; Fuentes, R.; Duan, R.; Bronfman, L.; Li, D.

    2018-02-01

    Radio Frequency Interference (RFI) is a growing concern in the radio astronomy community. Single-dish telescopes are particularly susceptible to RFI. Several methods have been developed to cope with RF-polluted environments, based on flagging, excision, and real-time blanking, among others. All these methods produce some degree of data loss or require assumptions to be made on the astronomical signal. We report the development of a real-time, digital adaptive filter implemented on a Field Programmable Gate Array (FPGA) capable of processing 4096 spectral channels in a 1 GHz of instantaneous bandwidth. The filter is able to cancel a broad range of interference signals and quickly adapt to changes on the RFI source, minimizing the data loss without any assumption on the astronomical or interfering signal properties. The speed of convergence (for a decrease to a 1%) was measured to be 208.1 μs for a broadband noise-like RFI signal and 125.5 μs for a multiple-carrier RFI signal recorded at the FAST radio telescope.

  11. The Composition and Chemistry of the Deep Tropospheres of Saturn and Uranus from Ground-Based Radio Observations

    Science.gov (United States)

    Hofstadter, M. D.; Adumitroaie, V.; Atreya, S. K.; Butler, B.

    2017-12-01

    Ground-based radio observations of the giant planets at wavelengths from 1 millimeter to 1 meter have long been the primary means to study the deep tropospheres of both gas- and ice-giant planets (e.g. de Pater and Massie 1985, Icarus 62; Hofstadter and Butler 2003, Icarus 165). Most recently, radiometers aboard the Cassini and Juno spacecraft at Saturn and Jupiter, respectively, have demonstrated the ability of spaceborne systems to study composition and weather beneath the visible cloud tops with high spatial resolution (Janssen et al. 2013, Icarus 226; Bolton et al. 2016, this meeting). Ground-based observations remain, however, an excellent way to study the tropospheres of the ice giants, particularly the temporal and spatial distribution of condensible species, and to study the deep troposphere of Saturn in the region of the water cloud. This presentation focuses on two ground-based data sets, one for Uranus and one for Saturn. The Uranus data were all collected near the 2007 equinox, and span wavelengths from 0.1 to 20 cm. These data provide a snapshot of atmospheric composition at a single season. The Saturn observations were recently made with the EVLA observatory at wavelengths from 3 to 90 cm, augmented by published observations at shorter and longer wavelengths. It is expected that these data will allow us to constrain conditions in the water cloud region on Saturn. At the time of this writing, both data sets are being analyzed using an optimal estimation retrieval algorithm fed with the latest published information on the chemical and electrical properties of relevant atmospheric species (primarily H2O, NH3, H2S, PH3, and free electrons). At Uranus, we find that—consistent with previously published work—ammonia in the 1 to 50-bar range is strongly depleted from solar values. The relative volume mixing ratios of the above species satisfy PH3 < NH3 < H2S < H2O, which is interesting because based on cosmic abundances one would expect H2S < NH3. At the

  12. Low-cost approach for a software-defined radio based ground station receiver for CCSDS standard compliant S-band satellite communications

    Science.gov (United States)

    Boettcher, M. A.; Butt, B. M.; Klinkner, S.

    2016-10-01

    A major concern of a university satellite mission is to download the payload and the telemetry data from a satellite. While the ground station antennas are in general easy and with limited afford to procure, the receiving unit is most certainly not. The flexible and low-cost software-defined radio (SDR) transceiver "BladeRF" is used to receive the QPSK modulated and CCSDS compliant coded data of a satellite in the HAM radio S-band. The control software is based on the Open Source program GNU Radio, which also is used to perform CCSDS post processing of the binary bit stream. The test results show a good performance of the receiving system.

  13. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations

    Science.gov (United States)

    Bolen, Steve; Chandrasekar, V.

    2002-01-01

    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for

  14. radio frequency based radio frequency based water level monitor

    African Journals Online (AJOL)

    eobe

    ABSTRACT. This paper elucidates a radio frequency (RF) based transmission and reception system used to remotely monitor and .... range the wireless can cover but in this prototype, it ... power supply to the system, the sensed water level is.

  15. The ground based plan

    International Nuclear Information System (INIS)

    1989-01-01

    The paper presents a report of ''The Ground Based Plan'' of the United Kingdom Science and Engineering Research Council. The ground based plan is a plan for research in astronomy and planetary science by ground based techniques. The contents of the report contains a description of:- the scientific objectives and technical requirements (the basis for the Plan), the present organisation and funding for the ground based programme, the Plan, the main scientific features and the further objectives of the Plan. (U.K.)

  16. Ground and space observations of medium frequency auroral radio emissions

    Science.gov (United States)

    Broughton, Matthew C.

    The auroral zone is a rich source of natural radio emissions that can be observed in space and at ground-level. By studying these waves, scientists can gain insight into the plasma processes that generate them and use the near-Earth space environment as a large-scale plasma physics laboratory. This thesis uses both ground-level and in situ observations to study two kinds of natural radio emissions. First, we report observations of a new kind of auroral radio emission. The waves have frequencies ranging from 1.3-2.2 MHz, bandwidths ranging from 90-272 kHz, and durations ranging from 16-355 s. Spectral analysis of the waveform data has revealed that the emission has a complex combination of at least three kinds of fine structures. For model auroral electron distributions, calculations indicate that Langmuir waves could be excited at frequencies consistent with observations. The remainder of the thesis discusses auroral medium frequency (MF) burst, an impulsive, broadband natural radio emission observed at ground-level within a few minutes of local substorm onset. LaBelle [2011] proposed that MF burst originates as Langmuir/Z-mode waves on the topside of the ionosphere that subsequently mode convert to L-mode waves and propagate to ground-level. Using continuous waveform measurements and combined observations with the Sondrestrom Incoherent Scatter Radar, we have performed two tests of this mechanism. The results of these tests are consistent with the mechanism described in LaBelle [2011]. A survey of 8,624 half-orbits of the DEMETER spacecraft has revealed 68 observations of bursty MF waves. We have compared the wave properties of these waves to those of MF burst and have found that although it is uncertain, the balance of the evidence suggests that the bursty MF waves observed with DEMETER are the same phenomenon as the ground-level MF burst. Finally, we have used numerical simulations to model both the fine structure of MF burst and to estimate the attenuation the

  17. X-36 on Ground after Radio and Telemetry Tests

    Science.gov (United States)

    1996-01-01

    A UH-1 helicopter lowers the X-36 Tailless Fighter Agility Research Aircraft to the ground after radio frequency and telemetry tests above Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, in November 1996. The purpose of taking the X-36 aloft for the radio and telemetry system checkouts was to test the systems more realistically while airborne. More taxi and radio frequency tests were conducted before the aircraft's first flight in early 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and

  18. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 2

    Science.gov (United States)

    Gnanalingam, S.; Kane, J. A.

    1975-01-01

    The D-region ion production functions are used to calculate the relationship between radio wave absorption and the flux level of X-rays in the 1-8A wavelength band. In order to bring this calculation into agreement with the empirically established relationship, it was found necessary to reduce by, a factor of about 5, the Meira nitric oxide densities below 90 km.

  19. The extreme blazar AO 0235+164 as seen by extensive ground and space radio observations

    Science.gov (United States)

    Kutkin, A. M.; Pashchenko, I. N.; Lisakov, M. M.; Voytsik, P. A.; Sokolovsky, K. V.; Kovalev, Y. Y.; Lobanov, A. P.; Ipatov, A. V.; Aller, M. F.; Aller, H. D.; Lahteenmaki, A.; Tornikoski, M.; Gurvits, L. I.

    2018-04-01

    Clues to the physical conditions in radio cores of blazars come from measurements of brightness temperatures as well as effects produced by intrinsic opacity. We study the properties of the ultra-compact blazar AO 0235+164 with RadioAstron ground-space radio interferometer, multifrequency VLBA, EVN, and single-dish radio observations. We employ visibility modelling and image stacking for deriving structure and kinematics of the source, and use Gaussian process regression to find the relative multiband time delays of the flares. The multifrequency core size and time lags support prevailing synchrotron self-absorption. The intrinsic brightness temperature of the core derived from ground-based very long baseline interferometry (VLBI) is close to the equipartition regime value. In the same time, there is evidence for ultra-compact features of the size of less than 10 μas in the source, which might be responsible for the extreme apparent brightness temperatures of up to 1014 K as measured by RadioAstron. In 2007-2016 the VLBI components in the source at 43 GHz are found predominantly in two directions, suggesting a bend of the outflow from southern to northern direction. The apparent opening angle of the jet seen in the stacked image at 43 GHz is two times wider than that at 15 GHz, indicating a collimation of the flow within the central 1.5 mas. We estimate the Lorentz factor Γ = 14, the Doppler factor δ = 21, and the viewing angle θ = 1.7° of the apparent jet base, derive the gradients of magnetic field strength and electron density in the outflow, and the distance between jet apex and the core at each frequency.

  20. Excitation of a magnetospheric maser through modification of the Earth’s ionosphere by high-power HF radio emission from a ground-based transmitter

    International Nuclear Information System (INIS)

    Markov, G. A.; Belov, A. S.; Frolov, V. L.; Rapoport, V. O.; Parrot, M.

    2010-01-01

    A method for controlled excitation of a magnetospheric maser through the production of artificial density ducts by high-power HF radio emission from the Earth’s surface has been proposed and implemented in an in-situ experiment. Artificial density ducts allow one to affect the maser resonator system and the excitation and propagation of low-frequency electromagnetic waves in a disturbed magnetic flux tube. The experimental data presented here were obtained at the mid-latitude Sura heating facility. The characteristics of electromagnetic and plasma disturbances at outer-ionosphere altitudes were measured using the onboard equipment of the DEMETER satellite as it passed through the magnetic flux tube rested on the region of intense generation of artificial ionospheric turbulence.

  1. Analysis of the Relationship Between the Solar X-Ray Radiation Intensity and the D-Region Electron Density Using Satellite and Ground-Based Radio Data

    Science.gov (United States)

    Nina, Aleksandra; Čadež, Vladimir M.; Bajčetić, Jovan; Mitrović, Srdjan T.; Popović, Luka Č.

    2018-04-01

    Increases in the X-ray radiation that is emitted during a solar X-ray flare induce significant changes in the ionospheric D region. Because of the numerous complex processes in the ionosphere and the characteristics of the radiation and plasma, the causal-consequential relationship between the X-ray radiation and ionospheric parameters is not easily determined. In addition, modeling the ionospheric D-region plasma parameters is very difficult because of the lack of data for numerous time- and space-dependent physical quantities. In this article we first give a qualitative analysis of the relationship between the electron density and the recorded solar X-ray intensity. After this, we analyze the differences in the relationships between the D-region response and various X-ray radiation properties. The quantitative study is performed for data observed on 5 May 2010 in the time period between 11:40 UT - 12:40 UT when the GOES 14 satellite detected a considerable X-ray intensity increase. Modeling the electron density is based on characteristics of the 23.4 kHz signal emitted in Germany and recorded by the receiver in Serbia.

  2. Ground-based photo monitoring

    Science.gov (United States)

    Frederick C. Hall

    2000-01-01

    Ground-based photo monitoring is repeat photography using ground-based cameras to document change in vegetation or soil. Assume those installing the photo location will not be the ones re-photographing it. This requires a protocol that includes: (1) a map to locate the monitoring area, (2) another map diagramming the photographic layout, (3) type and make of film such...

  3. Ground Radio Operator Career Ladder AFSC 293X3.

    Science.gov (United States)

    1981-07-01

    formal resident training, OJT, and ,her Air Force management decisions . The structure of jobs within the Ground ! odio Operatoi career ladder was...33 ADJUST ANTENNA TUNING UNITS 33 TYPE RECORDS, REPORTS, OR FORMS :33 OPERATE AUXILLARY GENERATORS 33 A8 ’iT’ TASKS PERFORMED BY SUPERVISORS AND

  4. Space weather effects on ground based technology

    Science.gov (United States)

    Clark, T.

    Space weather can affect a variety of forms of ground-based technology, usually as a result of either the direct effects of the varying geomagnetic field, or as a result of the induced electric field that accompanies such variations. Technologies affected directly by geomagnetic variations include magnetic measurements made d ringu geophysical surveys, and navigation relying on the geomagnetic field as a direction reference, a method that is particularly common in the surveying of well-bores in the oil industry. The most obvious technology affected by induced electric fields during magnetic storms is electric power transmission, where the example of the blackout in Quebec during the March 1989 magnetic storm is widely known. Additionally, space weather effects must be taken into account in the design of active cathodic protection systems on pipelines to protect them against corrosion. Long-distance telecommunication cables may also have to be designed to cope with space weather related effects. This paper reviews the effects of space weather in these different areas of ground-based technology, and provides examples of how mitigation against hazards may be achieved. (The paper does not include the effects of space weather on radio communication or satellite navigation systems).

  5. SCIENTIFIC EFFICIENCY OF GROUND-BASED TELESCOPES

    International Nuclear Information System (INIS)

    Abt, Helmut A.

    2012-01-01

    I scanned the six major astronomical journals of 2008 for all 1589 papers that are based on new data obtained from ground-based optical/IR telescopes worldwide. Then I collected data on numbers of papers, citations to them in 3+ years, the most-cited papers, and annual operating costs. These data are assigned to four groups by telescope aperture. For instance, while the papers from telescopes with an aperture >7 m average 1.29 more citations than those with an aperture of 2 to 7 m) telescopes. I wonder why the large telescopes do so relatively poorly and suggest possible reasons. I also found that papers based on archival data, such as the Sloan Digital Sky Survey, produce 10.6% as many papers and 20.6% as many citations as those based on new data. Also, the 577.2 papers based on radio data produced 36.3% as many papers and 33.6% as many citations as the 1589 papers based on optical/IR telescopes.

  6. Novel measurement-based indoor cellular radio system design

    OpenAIRE

    Aragón-Zavala, A

    2008-01-01

    A scaleable, measurement-based radio methodology has been created to use for the design, planing and optimisation of in door cellular radio systems. The development of this measurement-based methodology was performed having in mind that measurements are of ten required to valiate radio coverage in a building. Therefore, the concept of using care fully calibrated measurements to design and optimise a system is feasible since these measurements can easily be obtained prior to system deployment ...

  7. Antenna unit and radio base station therewith

    Science.gov (United States)

    Kuwahara, Mikio; Doi, Nobukazu; Suzuki, Toshiro; Ishida, Yuji; Inoue, Takashi; Niida, Sumaru

    2007-04-10

    Phase and amplitude deviations, which are generated, for example, by cables connecting an array antenna of a CDMA base station and the base station, are calibrated in the baseband. The base station comprises: an antenna apparatus 1; couplers 2; an RF unit 3 that converts a receive signal to a baseband signal, converts a transmit signal to a radio frequency, and performs power control; an A/D converter 4 for converting a receive signal to a digital signal; a receive beam form unit 6 that multiplies the receive signal by semi-fixed weight; a despreader 7 for this signal input; a time-space demodulator 8 for demodulating user data; a despreader 9 for probe signal; a space modulator 14 for user data; a spreader 13 for user signal; a channel combiner 12; a Tx calibrater 11 for controlling calibration of a signal; a D/A converter 10; a unit 16 for calculation of correlation matrix for generating a probe signal used for controlling an Rx calibration system and a TX calibration system; a spreader 17 for probe signal; a power control unit 18; a D/A converter 19; an RF unit 20 for probe signal; an A/D converter 21 for signal from the couplers 2; and a despreader 22.

  8. Cognitive radio resource allocation based on coupled chaotic genetic algorithm

    International Nuclear Information System (INIS)

    Zu Yun-Xiao; Zhou Jie; Zeng Chang-Chang

    2010-01-01

    A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed

  9. Jovian decametric radiation seen from Juno, Cassini, STEREO A, WIND, and Earth-based radio observatories

    Science.gov (United States)

    Imai, M.; Kurth, W. S.; Hospodarsky, G. B.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.; Lecacheux, A.; Lamy, L.; Zarka, P.; Clarke, T. E.; Higgins, C. A.

    2017-09-01

    Jupiter's decametric (DAM) radiation is generated very close to the local gyrofrequency by the electron cyclotron maser instability (CMI). The first two-point common detections of Jovian DAM radiation were made using the Voyager spacecraft and ground-based radio observatories in early 1979, but, due to geometrical constraints and limited flyby duration, a full understanding of the latitudinal beaming of Jovian DAM radiation remains elusive. The stereoscopic DAM radiation viewed from Juno, Cassini, STEREO A, WIND, and Earth-based radio observatories provides a unique opportunity to analyze the CMI emission mechanism and beaming properties.

  10. RF System description for the ground test accelerator radio-frequency quadrupole

    International Nuclear Information System (INIS)

    Regan, A.H.; Brittain, D.; Rees, D.E.; Ziomek, D.

    1992-01-01

    This paper describes the RF system being used to provide RF power and to control the cavity field for the ground test accelerator (GTA) radio-frequency quadrupole (RFQ). The RF system consists of a low-level RF (LLRF) control system, and RF Reference generation subsystem, and a tetrode as a high-power amplifier (HPA) that can deliver up to 300 kW of peak power to the RFQ cavity at a 2% duty factor. The LLRF control system implements in-phase and quadrature (I and Q) control to maintain the cavity field within tolerances of 0.5% in amplitude and 0.5 degrees in phase in the presence of beam-induced instabilities

  11. Rf system description for the ground test accelerator radio-frequency quadrupole

    International Nuclear Information System (INIS)

    Regan, A.H.; Brittain, D.; Rees, D.E.; Ziomek, D.

    1992-01-01

    This paper describes the RF system being used to provide RF power and to control the cavity field used for the ground test accelerator (GTA) radio-frequency quadrupole (RFQ). The RF system consists of a low-level RF (LLRF) control system that uses a tetrode as a high-power amplifier (HPA) as part of its plant to deliver up to 300 kW of peak power to the RFQ at a 2% duty factor. The LLRF control system implements in-phase and quadrature (I ampersand Q) control to maintain the cavity field within tolerances of 0.5% in amplitude and 0.5 degrees in phase in the presence of beam-induced instabilities. This paper describes the identified components and presents measured performance data. The user interface with the systems is described, and cavity field measurements are included

  12. Utilization-Based Modeling and Optimization for Cognitive Radio Networks

    Science.gov (United States)

    Liu, Yanbing; Huang, Jun; Liu, Zhangxiong

    The cognitive radio technique promises to manage and allocate the scarce radio spectrum in the highly varying and disparate modern environments. This paper considers a cognitive radio scenario composed of two queues for the primary (licensed) users and cognitive (unlicensed) users. According to the Markov process, the system state equations are derived and an optimization model for the system is proposed. Next, the system performance is evaluated by calculations which show the rationality of our system model. Furthermore, discussions among different parameters for the system are presented based on the experimental results.

  13. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  14. COMPARATIVE RESEARCH OF VARIOUS METHODS FOR DETERMINING THE CHARACTERISTICS OF AN ELECTROMAGNETIC WAVE REFLECTED FROM A SCATTERING DIFFRACTION SCREEN IN THE PROPAGATION OF A RADIO SIGNAL IN THE EARTH-IONOSPHERE CHANNEL IN THE SHORT-WAVE RANGE OF RADIO WAVES WITH USE OF THE EXPERIMENTAL EQUIPMENT OF COHERENT RECEPTION OF A GROUND-BASED MEASURING COMPLEX

    Directory of Open Access Journals (Sweden)

    S.Yu. Belov

    2017-12-01

    Full Text Available Monitoring of the earth’s surface by remote sensing in the short-wave band can provide quick identification of some characteristics of natural systems. This band range allows one to diagnose subsurface aspects of the earth, as the scattering parameter is affected by irregularities in the dielectric permittivity of subsurface structures. The new method is suggested. This method based on the organization of the monitoring probe may detect changes in these environments, for example, to assess seismic hazard, hazardous natural phenomena, changes ecosystems, as well as some man-made hazards and etc. The problem of measuring and accounting for the scattering power of the earth’s surface in the short-range of radio waves is important for a number of purposes, such as diagnosing properties of the medium, which is of interest for geological, environmental studies. In this paper, we propose a new method for estimating the parameters of incoherent signal/noise ratio. The paper presents the results of comparison of the measurement method from the point of view of their admissible relative analytical errors. A comparative analysis and shows that the analytical (relative accuracy of the determination of this parameter new method on the order exceeds the widely-used standard method. Analysis of admissible relative analytical error of estimation of this parameter allowed to recommend new method instead of standard method

  15. Performance report on the ground test accelerator radio-frequency quadrupole

    International Nuclear Information System (INIS)

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Cole, R.; Connolly, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.

    1994-01-01

    The Ground Test Accelerator (GTA) uses a radio-frequency quadrupole (RFQ) to bunch and accelerate a 35 keV input beam to a final energy of 2.5 MeV. Most measured parameters of the GTA RFQ agreed with simulated predictions. The relative shape of the transmission versus the vane-voltage relationship and the Courant-Snyder (CS) parameters of the output beam's transverse and longitudinal phase spaces agreed well with predictions. However, the transmission of the RFQ was significantly lower than expected. Improved simulation studies included image charges and multipole effects in the RFQ. Most of the predicted properties of the RFQ, such as input matched-beam conditions and output-beam shapes were unaffected by these additional effects. However, the comparison of measured with predicted absolute values of transmitted beam was much improved by the inclusion of these effects in the simulations. The comparison implied a value for the input emittance that is consistent with measurements

  16. Water based fluidic radio frequency metamaterials

    Science.gov (United States)

    Cai, Xiaobing; Zhao, Shaolin; Hu, Mingjun; Xiao, Junfeng; Zhang, Naibo; Yang, Jun

    2017-11-01

    Electromagnetic metamaterials offer great flexibility for wave manipulation and enable exceptional functionality design, ranging from negative refraction, anomalous reflection, super-resolution imaging, transformation optics to cloaking, etc. However, demonstration of metamaterials with unprecedented functionalities is still challenging and costly due to the structural complexity or special material properties. Here, we demonstrate for the first time the versatile fluidic radio frequency metamaterials with negative refraction using a water-embedded and metal-coated 3D architecture. Effective medium analysis confirms that metallic frames create an evanescent environment while simultaneously water cylinders produce negative permeability under Mie resonance. The water-metal coupled 3D architectures and the accessory devices for measurement are fabricated by 3D printing with post electroless deposition. Our study also reveals the great potential of fluidic metamaterials and versatility of the 3D printing process in rapid prototyping of customized metamaterials.

  17. Towards the Realization of Graphene Based Flexible Radio Frequency Receiver

    Directory of Open Access Journals (Sweden)

    Maruthi N. Yogeesh

    2015-11-01

    Full Text Available We report on our progress and development of high speed flexible graphene field effect transistors (GFETs with high electron and hole mobilities (~3000 cm2/V·s, and intrinsic transit frequency in the microwave GHz regime. We also describe the design and fabrication of flexible graphene based radio frequency system. This RF communication system consists of graphite patch antenna at 2.4 GHz, graphene based frequency translation block (frequency doubler and AM demodulator and graphene speaker. The communication blocks are utilized to demonstrate graphene based amplitude modulated (AM radio receiver operating at 2.4 GHz.

  18. Bases of Radio Direction Finding, Part II

    Science.gov (United States)

    1977-12-22

    interference. As a result of the fact that at reflecting layer has the changing in time -.orizohtal gradient of ionization, the surface of layer...the earth/ground of that which was illuminated is obtained the horizontal gradient of ionization, which appears as a result of illumination change...and short-term. In the existing systems with the mechanical rotation of radiation pattern, the rotacional speed of design considerations does not

  19. A software radio platform based on ARM and FPGA

    Directory of Open Access Journals (Sweden)

    Yang Xin.

    2016-01-01

    Full Text Available The rapid rise in computational performance offered by computer systems has greatly increased the number of practical software radio applications. A scheme presented in this paper is a software radio platform based on ARM and FPGA. FPGA works as the coprocessor together with the ARM, which serves as the core processor. ARM is used for digital signal processing and real-time data transmission, and FPGA is used for synchronous timing control and serial-parallel conversion. A SPI driver for real-time data transmission between ARM and FPGA under ARM-Linux system is provided. By adopting modular design, the software radio platform is capable of implementing wireless communication functions and satisfies the requirements of real-time signal processing platform for high security and broad applicability.

  20. Location-based resource allocation for OFDMA cognitive radio systems

    KAUST Repository

    Nam, Haewoon

    2010-01-01

    In cognitive radio systems, in order for the secondary users to opportunistically share the spectrum without interfering the primary users, an accurate spectrum measurement and a precise estimation of the interference at the primary users are necessary but are challenging tasks. Since it is impractical in cognitive radio systems to assume that the channel state information of the interference link is available at the cognitive transmitter, the interference at the primary users is hard to be estimated accurately. This paper introduces a resource allocation algorithm for OFDMA-based cognitive radio systems, which utilizes location information of the primary and secondary users instead of the channel state information of the interference link. Simulation results show that it is indeed effective to incorporate location information into resource allocation so that a near-optimal capacity is achieved.

  1. A Software Defined Radio Based Airplane Communication Navigation Simulation System

    Science.gov (United States)

    He, L.; Zhong, H. T.; Song, D.

    2018-01-01

    Radio communication and navigation system plays important role in ensuring the safety of civil airplane in flight. Function and performance should be tested before these systems are installed on-board. Conventionally, a set of transmitter and receiver are needed for each system, thus all the equipment occupy a lot of space and are high cost. In this paper, software defined radio technology is applied to design a common hardware communication and navigation ground simulation system, which can host multiple airplane systems with different operating frequency, such as HF, VHF, VOR, ILS, ADF, etc. We use a broadband analog frontend hardware platform, universal software radio peripheral (USRP), to transmit/receive signal of different frequency band. Software is compiled by LabVIEW on computer, which interfaces with USRP through Ethernet, and is responsible for communication and navigation signal processing and system control. An integrated testing system is established to perform functional test and performance verification of the simulation signal, which demonstrate the feasibility of our design. The system is a low-cost and common hardware platform for multiple airplane systems, which provide helpful reference for integrated avionics design.

  2. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  3. Cognitive Radio-based Home Area Networks

    NARCIS (Netherlands)

    Sarijari, M.A.B.

    2016-01-01

    A future home area network (HAN) is envisaged to consist of a large number of devices that support various applications such as smart grid, security and safety systems, voice call, and video streaming. Most of these home devices are communicating based on various wireless networking technologies

  4. College radio as a mechanism for participatory learning: Exploring the scope for online radio based learning among undergraduates

    Directory of Open Access Journals (Sweden)

    Bahaeldin Ibrahim

    2016-03-01

    Full Text Available This paper explores the prospects of online college radio at Sur College of Applied Sciences, its need among students and the possible scope of its contributions to student learning, engagement and community service. It explores the method of developing a holistic mechanism to capture the possibilities of maximizing learning experience by employing college radio as an educational tool to understand the micro-dynamics and localized necessities that deem it necessary or unnecessary. Through this, it attempts to locate an appropriate mechanism, and targeted use of the college radio in contributing to the learning outcomes and educational experience of the students. The study finds considerable scope for radio based learning at Sur College of Applied Sciences across a range of uses and gratification indicators consistent with the primary objectives of the college. The study discusses the theoretical and practical implications of the findings, and the pedagogical significance of the college radio as an alternative.

  5. National surveys of radiofrequency field strengths from radio base stations in Africa

    Science.gov (United States)

    Joyner, Ken H.; Van Wyk, Marthinus J.; Rowley, Jack T.

    2014-01-01

    The authors analysed almost 260 000 measurement points from surveys of radiofrequency (RF) field strengths near radio base stations in seven African countries over two time frames from 2001 to 2003 and 2006 to 2012. The results of the national surveys were compared, chronological trends investigated and potential exposures compared by technology and with frequency modulation (FM) radio. The key findings from thes data are that irrespective of country, the year and mobile technology, RF fields at a ground level were only a small fraction of the international human RF exposure recommendations. Importantly, there has been no significant increase in typical measured levels since the introduction of 3G services. The mean levels in these African countries are similar to the reported levels for countries of Asia, Europe and North America using similar mobile technologies. The median level for the FM services in South Africa was comparable to the individual but generally lower than the combined mobile services. PMID:24044904

  6. National surveys of radiofrequency field strengths from radio base stations in Africa

    International Nuclear Information System (INIS)

    Joyner, K. H.; Van Wyk, M. J.; Rowley, J. T.

    2014-01-01

    The authors analysed almost 260 000 measurement points from surveys of radiofrequency (RF) field strengths near radio base stations in seven African countries over two time frames from 2001 to 2003 and 2006 to 2012. The results of the national surveys were compared, chronological trends investigated and potential exposures compared by technology and with frequency modulation (FM) radio. The key findings from these data are that irrespective of country, the year and mobile technology, RF fields at a ground level were only a small fraction of the international human RF exposure recommendations. Importantly, there has been no significant increase in typical measured levels since the introduction of 3G services. The mean levels in these African countries are similar to the reported levels for countries of Asia, Europe and North America using similar mobile technologies. The median level for the FM services in South Africa was comparable to the individual but generally lower than the combined mobile services. (authors)

  7. Efficient Design of OFDMA-Based Programmable Wireless Radios

    Directory of Open Access Journals (Sweden)

    Shah SFA

    2008-01-01

    Full Text Available With the increasing demand for efficient spectrum management, programmable wireless radios can potentially play a key role in shaping our future spectrum use. In this paper, we consider the design of low-power programmable wireless radios based on orthogonal frequency division multiple access (OFDMA. To meet the demands of higher data rate communications, we split OFDMA symbols carrying multiuser data across several noncontiguous bands of available spectrum. To relax power consumption in analog-to-digital and digital-to-analog converters, we use a programmable narrowband RF front end comprising of programmable synthesizers and fixed low-pass filters. To perform digital baseband signal processing in an energy efficient manner, we propose efficient designs for the fast Fourier transform (FFT and inverse FFT (IFFT modules. Our designs of the FFT/IFFT modules reduce power consumption and chip area, and are capable of handling the dynamic nature of spectrum in programmable radios. To recover data that falls within the transition band of the filters, we propose a combiner similar to maximal ratio combiner. We also present the complete design of programmable wireless radios in accordance with the IEEE 802.22 (draft standard.

  8. Efficient Design of OFDMA-Based Programmable Wireless Radios

    Directory of Open Access Journals (Sweden)

    A. H. Tewfik

    2008-03-01

    Full Text Available With the increasing demand for efficient spectrum management, programmable wireless radios can potentially play a key role in shaping our future spectrum use. In this paper, we consider the design of low-power programmable wireless radios based on orthogonal frequency division multiple access (OFDMA. To meet the demands of higher data rate communications, we split OFDMA symbols carrying multiuser data across several noncontiguous bands of available spectrum. To relax power consumption in analog-to-digital and digital-to-analog converters, we use a programmable narrowband RF front end comprising of programmable synthesizers and fixed low-pass filters. To perform digital baseband signal processing in an energy efficient manner, we propose efficient designs for the fast Fourier transform (FFT and inverse FFT (IFFT modules. Our designs of the FFT/IFFT modules reduce power consumption and chip area, and are capable of handling the dynamic nature of spectrum in programmable radios. To recover data that falls within the transition band of the filters, we propose a combiner similar to maximal ratio combiner. We also present the complete design of programmable wireless radios in accordance with the IEEE 802.22 (draft standard.

  9. Radio frequency electromagnetic field compliance assessment of multi-band and MIMO equipped radio base stations.

    Science.gov (United States)

    Thors, Björn; Thielens, Arno; Fridén, Jonas; Colombi, Davide; Törnevik, Christer; Vermeeren, Günter; Martens, Luc; Joseph, Wout

    2014-05-01

    In this paper, different methods for practical numerical radio frequency exposure compliance assessments of radio base station products were investigated. Both multi-band base station antennas and antennas designed for multiple input multiple output (MIMO) transmission schemes were considered. For the multi-band case, various standardized assessment methods were evaluated in terms of resulting compliance distance with respect to the reference levels and basic restrictions of the International Commission on Non-Ionizing Radiation Protection. Both single frequency and multiple frequency (cumulative) compliance distances were determined using numerical simulations for a mobile communication base station antenna transmitting in four frequency bands between 800 and 2600 MHz. The assessments were conducted in terms of root-mean-squared electromagnetic fields, whole-body averaged specific absorption rate (SAR) and peak 10 g averaged SAR. In general, assessments based on peak field strengths were found to be less computationally intensive, but lead to larger compliance distances than spatial averaging of electromagnetic fields used in combination with localized SAR assessments. For adult exposure, the results indicated that even shorter compliance distances were obtained by using assessments based on localized and whole-body SAR. Numerical simulations, using base station products employing MIMO transmission schemes, were performed as well and were in agreement with reference measurements. The applicability of various field combination methods for correlated exposure was investigated, and best estimate methods were proposed. Our results showed that field combining methods generally considered as conservative could be used to efficiently assess compliance boundary dimensions of single- and dual-polarized multicolumn base station antennas with only minor increases in compliance distances. © 2014 Wiley Periodicals, Inc.

  10. Division B Commission 40: Radio Astronomy

    NARCIS (Netherlands)

    Chapman, Jessica M.; Giovaninni, Gabriele; Taylor, Russell; Carilli, Christopher; Hills, Richard; Hirabayashi, Hisashi; Jonas, Justin L.; Lazio, Joseph; Morganti, Raffaella; Nan, Rendong; Rubio, Monica; Shastri, Prjaval; Kellermann, Ken; Ekers, Ronald; Ohishi, Masatoshi

    2016-01-01

    IAU Commission 40 for Radio Astronomy (hereafter C40) brought together scientists and engineers who carry out observational and theoretical research in radio astronomy and who develop and operate the ground and space-based radio astronomy facilities and instrumentation. As of June 2015, the

  11. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...

  12. Programmable Ultra-Lightweight System Adaptable Radio Satellite Base Station

    Science.gov (United States)

    Varnavas, Kosta; Sims, Herb

    2015-01-01

    With the explosion of the CubeSat, small sat, and nanosat markets, the need for a robust, highly capable, yet affordable satellite base station, capable of telemetry capture and relay, is significant. The Programmable Ultra-Lightweight System Adaptable Radio (PULSAR) is NASA Marshall Space Flight Center's (MSFC's) software-defined digital radio, developed with previous Technology Investment Programs and Technology Transfer Office resources. The current PULSAR will have achieved a Technology Readiness Level-6 by the end of FY 2014. The extensibility of the PULSAR will allow it to be adapted to perform the tasks of a mobile base station capable of commanding, receiving, and processing satellite, rover, or planetary probe data streams with an appropriate antenna.

  13. Strong Sporadic E Occurrence Detected by Ground-Based GNSS

    Science.gov (United States)

    Sun, Wenjie; Ning, Baiqi; Yue, Xinan; Li, Guozhu; Hu, Lianhuan; Chang, Shoumin; Lan, Jiaping; Zhu, Zhengping; Zhao, Biqiang; Lin, Jian

    2018-04-01

    The ionospheric sporadic E (Es) layer has significant impact on radio wave propagation. The traditional techniques employed for Es layer observation, for example, ionosondes, are not dense enough to resolve the morphology and dynamics of Es layer in spatial distribution. The ground-based Global Navigation Satellite Systems (GNSS) technique is expected to shed light on the understanding of regional strong Es occurrence, owing to the facts that the critical frequency (foEs) of strong Es structure is usually high enough to cause pulse-like disturbances in GNSS total electron content (TEC), and a large number of GNSS receivers have been deployed all over the world. Based on the Chinese ground-based GNSS networks, including the Crustal Movement Observation Network of China and the Beidou Ionospheric Observation Network, a large-scale strong Es event was observed in the middle latitude of China. The strong Es shown as a band-like structure in the southwest-northeast direction extended more than 1,000 km. By making a comparative analysis of Es occurrences identified from the simultaneous observations by ionosondes and GNSS TEC receivers over China middle latitude statistically, we found that GNSS TEC can be well employed to observe strong Es occurrence with a threshold value of foEs, 14 MHz.

  14. Space and Ground-Based Infrastructures

    Science.gov (United States)

    Weems, Jon; Zell, Martin

    This chapter deals first with the main characteristics of the space environment, outside and inside a spacecraft. Then the space and space-related (ground-based) infrastructures are described. The most important infrastructure is the International Space Station, which holds many European facilities (for instance the European Columbus Laboratory). Some of them, such as the Columbus External Payload Facility, are located outside the ISS to benefit from external space conditions. There is only one other example of orbital platforms, the Russian Foton/Bion Recoverable Orbital Capsule. In contrast, non-orbital weightless research platforms, although limited in experimental time, are more numerous: sounding rockets, parabolic flight aircraft, drop towers and high-altitude balloons. In addition to these facilities, there are a number of ground-based facilities and space simulators, for both life sciences (for instance: bed rest, clinostats) and physical sciences (for instance: magnetic compensation of gravity). Hypergravity can also be provided by human and non-human centrifuges.

  15. A simulation-based analytic model of radio galaxies

    Science.gov (United States)

    Hardcastle, M. J.

    2018-04-01

    I derive and discuss a simple semi-analytical model of the evolution of powerful radio galaxies which is not based on assumptions of self-similar growth, but rather implements some insights about the dynamics and energetics of these systems derived from numerical simulations, and can be applied to arbitrary pressure/density profiles of the host environment. The model can qualitatively and quantitatively reproduce the source dynamics and synchrotron light curves derived from numerical modelling. Approximate corrections for radiative and adiabatic losses allow it to predict the evolution of radio spectral index and of inverse-Compton emission both for active and `remnant' sources after the jet has turned off. Code to implement the model is publicly available. Using a standard model with a light relativistic (electron-positron) jet, subequipartition magnetic fields, and a range of realistic group/cluster environments, I simulate populations of sources and show that the model can reproduce the range of properties of powerful radio sources as well as observed trends in the relationship between jet power and radio luminosity, and predicts their dependence on redshift and environment. I show that the distribution of source lifetimes has a significant effect on both the source length distribution and the fraction of remnant sources expected in observations, and so can in principle be constrained by observations. The remnant fraction is expected to be low even at low redshift and low observing frequency due to the rapid luminosity evolution of remnants, and to tend rapidly to zero at high redshift due to inverse-Compton losses.

  16. Tracking Solar Type II Bursts with Space Based Radio Interferometers

    Science.gov (United States)

    Hegedus, Alexander M.; Kasper, Justin C.; Manchester, Ward B.

    2018-06-01

    The Earth’s Ionosphere limits radio measurements on its surface, blocking out any radiation below 10 MHz. Valuable insight into many astrophysical processes could be gained by having a radio interferometer in space to image the low frequency window for the first time. One application is observing type II bursts tracking solar energetic particle acceleration in Coronal Mass Ejections (CMEs). In this work we create a simulated data processing pipeline for several space based radio interferometer (SBRI) concepts and evaluate their performance in the task of localizing these type II bursts.Traditional radio astronomy software is hard coded to assume an Earth based array. To circumvent this, we manually calculate the antenna separations and insert them along with the simulated visibilities into a CASA MS file for analysis. To create the realest possible virtual input data, we take a 2-temperature MHD simulation of a CME event, superimpose realistic radio emission models from the CME-driven shock front, and propagate the signal through simulated SBRIs. We consider both probabilistic emission models derived from plasma parameters correlated with type II bursts, and analytical emission models using plasma emission wave interaction theory.One proposed SBRI is the pathfinder mission SunRISE, a 6 CubeSat interferometer to circle the Earth in a GEO graveyard orbit. We test simulated trajectories of SunRISE and image what the array recovers, comparing it to the virtual input. An interferometer on the lunar surface would be a stable alternative that avoids noise sources that affect orbiting arrays, namely the phase noise from positional uncertainty and atmospheric 10s-100s kHz noise. Using Digital Elevation Models from laser altimeter data, we test different sets of locations on the lunar surface to find near optimal configurations for tracking type II bursts far from the sun. Custom software is used to model the response of different array configurations over the lunar year

  17. Ground-Based Telescope Parametric Cost Model

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  18. Atmospheric profiles from active space-based radio measurements

    Science.gov (United States)

    Hardy, Kenneth R.; Hinson, David P.; Tyler, G. L.; Kursinski, E. R.

    1992-01-01

    The paper describes determinations of atmospheric profiles from space-based radio measurements and the retrieval methodology used, with special attention given to the measurement procedure and the characteristics of the soundings. It is speculated that reliable profiles of the terrestrial atmosphere can be obtained by the occultation technique from the surface to a height of about 60 km. With the full complement of 21 the Global Positioning System (GPS) satellites and one GPS receiver in sun synchronous polar orbit, a maximum of 42 soundings could be obtained for each complete orbit or about 670 per day, providing almost uniform global coverage.

  19. Comparative international analysis of radiofrequency exposure surveys of mobile communication radio base stations

    Science.gov (United States)

    Rowley, Jack T; Joyner, Ken H

    2012-01-01

    This paper presents analyses of data from surveys of radio base stations in 23 countries across five continents from the year 2000 onward and includes over 173,000 individual data points. The research compared the results of the national surveys, investigated chronological trends and compared exposures by technology. The key findings from this data are that irrespective of country, the year and cellular technology, exposures to radio signals at ground level were only a small fraction of the relevant human exposure standards. Importantly, there has been no significant increase in exposure levels since the widespread introduction of 3G mobile services, which should be reassuring for policy makers and negate the need for post-installation measurements at ground level for compliance purposes. There may be areas close to antennas where compliance levels could be exceeded. Future potential work includes extending the study to additional countries, development of cumulative exposure distributions and investigating the possibility of linking exposure measurements to population statistics to assess the distribution of exposure levels relative to population percentiles. PMID:22377680

  20. Comparative international analysis of radiofrequency exposure surveys of mobile communication radio base stations.

    Science.gov (United States)

    Rowley, Jack T; Joyner, Ken H

    2012-01-01

    This paper presents analyses of data from surveys of radio base stations in 23 countries across five continents from the year 2000 onward and includes over 173,000 individual data points. The research compared the results of the national surveys, investigated chronological trends and compared exposures by technology. The key findings from this data are that irrespective of country, the year and cellular technology, exposures to radio signals at ground level were only a small fraction of the relevant human exposure standards. Importantly, there has been no significant increase in exposure levels since the widespread introduction of 3G mobile services, which should be reassuring for policy makers and negate the need for post-installation measurements at ground level for compliance purposes. There may be areas close to antennas where compliance levels could be exceeded. Future potential work includes extending the study to additional countries, development of cumulative exposure distributions and investigating the possibility of linking exposure measurements to population statistics to assess the distribution of exposure levels relative to population percentiles.

  1. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  2. Solar maximum mission: Ground support programs at the Harvard Radio Astronomy Station

    Science.gov (United States)

    Maxwell, A.

    1983-01-01

    Observations of the spectral characteristics of solar radio bursts were made with new dynamic spectrum analyzers of high sensitivity and high reliability, over the frequency range 25-580 MHz. The observations also covered the maximum period of the current solar cycle and the period of international cooperative programs designated as the Solar Maximum Year. Radio data on shock waves generated by solar flares were combined with optical data on coronal transients, taken with equipment on the SMM and other satellites, and then incorporated into computer models for the outward passage of fast-mode MHD shocks through the solar corona. The MHD models are non-linear, time-dependent and for the most recent models, quasi-three-dimensional. They examine the global response of the corona for different types of input pulses (thermal, magnetic, etc.) and for different magnetic topologies (for example, open and closed fields). Data on coronal shocks and high-velocity material ejected from solar flares have been interpreted in terms of a model consisting of three main velocity regimes.

  3. Exposure to radio waves near mobile phone base stations

    International Nuclear Information System (INIS)

    Mann, S.M.; Cooper, T.G.; Allen, S.G.; Blackwell, R.P.; Lowe, A.J.

    2000-01-01

    Measurements of power density have been made at 17 sites where people were concerned about their exposure to radio waves from mobile phone base stations and where technical data, including the frequencies and radiated powers, have been obtained from the operators. Based on the technical data, the radiated power from antennas used with macrocellular base stations in the UK appears to range from a few watts to a few tens of watts, with typical maximum powers around 80 W. Calculations based on this power indicate that compliance distances would be expected to be no more than 3.1 m for the NRPB guidelines and no more than 8.4 m for the ICNIRP public guidelines. Microcellular base stations appear to use powers no more than a few watts and would not be expected to require compliance distances in excess of a few tens of centimetres. Power density from the base stations of interest was measured at 118 locations at the 17 sites and these data were compared with calculations assuming an inverse square law dependence of power density upon distance from the antennas. It was found that the calculations overestimated the measured power density by up to four orders of magnitude at locations that were either not exposed to the main beam from antennas, or shielded by building fabric. For all locations and for distances up to 250 m from the base stations, power density at the measurement positions did not show any trend to decrease with increasing distance. The signals from other sources were frequently found to be of similar strength to the signals from the base stations of interest. Spectral measurements were obtained over the 30 MHz to 2.9 GHz range at 73 of the locations so that total exposure to radio signals could be assessed. The geometric mean total exposure arising from all radio signals at the locations considered was 2 millionths of the NRPB investigation level, or 18 millionths of the lower ICNIRP public reference level; however, the data varied over several decades. The

  4. Reliable Location-Based Services from Radio Navigation Systems

    Directory of Open Access Journals (Sweden)

    Per Enge

    2010-12-01

    Full Text Available Loran is a radio-based navigation system originally designed for naval applications. We show that Loran-C’s high-power and high repeatable accuracy are fantastic for security applications. First, we show how to derive a precise location tag—with a sensitivity of about 20 meters—that is difficult to project to an exact location. A device can use our location tag to block or allow certain actions, without knowing its precise location. To ensure that our tag is reproducible we make use of fuzzy extractors, a mechanism originally designed for biometric authentication. We build a fuzzy extractor specifically designed for radio-type errors and give experimental evidence to show its effectiveness. Second, we show that our location tag is difficult to predict from a distance. For example, an observer cannot predict the location tag inside a guarded data center from a few hundreds of meters away. As an application, consider a location-aware disk drive that will only work inside the data center. An attacker who steals the device and is capable of spoofing Loran-C signals, still cannot make the device work since he does not know what location tag to spoof. We provide experimental data supporting our unpredictability claim.

  5. Greening radio access networks using distributed base station architectures

    DEFF Research Database (Denmark)

    Kardaras, Georgios; Soler, José; Dittmann, Lars

    2010-01-01

    Several actions for developing environmentally friendly technologies have been taken in most industrial fields. Significant resources have also been devoted in mobile communications industry. Moving towards eco-friendly alternatives is primarily a social responsibility for network operators....... However besides this, increasing energy efficiency represents a key factor for reducing operating expenses and deploying cost effective mobile networks. This paper presents how distributed base station architectures can contribute in greening radio access networks. More specifically, the advantages...... energy saving. Different subsystems have to be coordinated real-time and intelligent network nodes supporting complicated functionalities are necessary. Distributed base station architectures are ideal for this purpose mainly because of their high degree of configurability and self...

  6. Security management based on trust determination in cognitive radio networks

    Science.gov (United States)

    Li, Jianwu; Feng, Zebing; Wei, Zhiqing; Feng, Zhiyong; Zhang, Ping

    2014-12-01

    Security has played a major role in cognitive radio networks. Numerous researches have mainly focused on attacking detection based on source localization and detection probability. However, few of them took the penalty of attackers into consideration and neglected how to implement effective punitive measures against attackers. To address this issue, this article proposes a novel penalty mechanism based on cognitive trust value. The main feature of this mechanism has been realized by six functions: authentication, interactive, configuration, trust value collection, storage and update, and punishment. Data fusion center (FC) and cluster heads (CHs) have been put forward as a hierarchical architecture to manage trust value of cognitive users. Misbehaving users would be punished by FC by declining their trust value; thus, guaranteeing network security via distinguishing attack users is of great necessity. Simulation results verify the rationality and effectiveness of our proposed mechanism.

  7. An adaptive software defined radio design based on a standard space telecommunication radio system API

    Science.gov (United States)

    Xiong, Wenhao; Tian, Xin; Chen, Genshe; Pham, Khanh; Blasch, Erik

    2017-05-01

    Software defined radio (SDR) has become a popular tool for the implementation and testing for communications performance. The advantage of the SDR approach includes: a re-configurable design, adaptive response to changing conditions, efficient development, and highly versatile implementation. In order to understand the benefits of SDR, the space telecommunication radio system (STRS) was proposed by NASA Glenn research center (GRC) along with the standard application program interface (API) structure. Each component of the system uses a well-defined API to communicate with other components. The benefit of standard API is to relax the platform limitation of each component for addition options. For example, the waveform generating process can support a field programmable gate array (FPGA), personal computer (PC), or an embedded system. As long as the API defines the requirements, the generated waveform selection will work with the complete system. In this paper, we demonstrate the design and development of adaptive SDR following the STRS and standard API protocol. We introduce step by step the SDR testbed system including the controlling graphic user interface (GUI), database, GNU radio hardware control, and universal software radio peripheral (USRP) tranceiving front end. In addition, a performance evaluation in shown on the effectiveness of the SDR approach for space telecommunication.

  8. Current problems in astrophysics needing space-based radio astronomy

    International Nuclear Information System (INIS)

    Norman, C.A.

    1987-01-01

    The potential value of space-based radio observatories and VLBI networks for studies of cosmology, AGN and starburst galaxies, the ISM and the intergalactic medium, and molecular clouds and star formation is discussed. Topics examined include distance estimates for masers in external galaxies, high-resolution 21-cm observations of distant-galaxy kinematics and morphology, searches for LF emission from the neutral ISM at redshifts higher than the QSO turnon, detection of changes in the distribution of dark matter surrounding galaxies at redshifts near 1, and observations of Galactic SNRs and filamentary structures near the Galactic center. Consideration is given to comparative studies of the ISM in the Galaxy, the Magellanic Clouds, and M 31; estimates of the molecular content of external galaxies; emssion-line studies of H 2 O masers; and kinematic investigations of bipolar flows and molecular disks. 19 references

  9. Opportunistic spectrum access in cognitive radio based on channel switching

    KAUST Repository

    Gaaloul, Fakhreddine; Yang, Hongchuan; Radaydeh, Redha Mahmoud Mesleh; Alouini, Mohamed-Slim

    2012-01-01

    This paper investigates the performance of a cognitive radio transceiver that can monitor multiple channels and opportunistically use any one of them should it be available. In our work, we propose and compare two different opportunistic channel access schemes. The first scheme applies when the secondary user (SU) has access to only one channel. The second scheme applies when the SU has access to multiple channels but can at a given time monitor and access only one channel. Two switching strategies, namely the switch and examine and the switch and stay strategies, are proposed. For these proposed access schemes, we investigate their performance by deriving the analytical expression of the novel metric of the average access duration and the average waiting time and based on these two metrics a time average SU throughput formula is proposed to predict the performance of the secondary cognitive system. © 2012 ICST.

  10. TELECONTROL DE GESTIÓN DE ALARMAS EXTERNAS EN UNA RADIO BASE

    OpenAIRE

    Lizano Bravo, Xavier Gonzalo

    2015-01-01

    El “Telecontrol de Gestión de alarmas externas en una radio base” permite administrar y controlar de maneraremota la posición del mástil telescópico de una radio base móvil de telecomunicaciones, además el sistema de la radio base provee la seguridad necesaria de los equipos dentro la misma, aplicando hardware y software libre lo que permitirá disminuir el coste para las empresas de telecomunicaciones. Para poder administrar la posición del mástil telescópico de la radio base móvil...

  11. 47 CFR 90.656 - Responsibilities of base station licensees of Specialized Mobile Radio systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Responsibilities of base station licensees of... Bands § 90.656 Responsibilities of base station licensees of Specialized Mobile Radio systems. (a) The licensees of base stations that provide Specialized Mobile Radio service on a commercial basis of the use of...

  12. European cold season lightning map for wind turbines based on radio soundings

    DEFF Research Database (Denmark)

    Vogel, Stephan; Holbøll, Joachim; Lopez, Javier

    2016-01-01

    conditions for self-triggered upward lightning, as being observed in Japan and Spain, are identified. This map may give an indication if a potential wind power plant or structure has the risk to be affected by frequent lightning attachments in the cold season which are predominantly upward initiated......In this paper, the meteorological data of cold season thunderstorms in Japan and Spain are reviewed to determine the threshold conditions at which cold season lightning was recorded in the past. The variables investigated are the height of the -10°C and 0°C isotherms above ground, the wind velocity......, the precipitable water in the cloud, and the wind direction. Meteorological data of 72 radio sounding stations in Europe is analyzed for a 5 year period (2009-2014) in the months from October until March. Based on this information, a European map has been created indicating areas where the meteorological...

  13. Remote Sensing of the Heliospheric Solar Wind using Radio ...

    Indian Academy of Sciences (India)

    tribpo

    Astr. (2000) 21, 439–444. Remote Sensing of the Heliospheric Solar Wind using Radio. Astronomy Methods and Numerical Simulations. S. Ananthakrishnan, National Center for Radio Astrophysics, Tata Institute of. Fundamental Research, Pune, India. Abstract. The ground-based radio astronomy method of interplanetary.

  14. Net ground speed of downstream migrating radio-tagged Atlantic salmon ( Salmo salar L.) and brown trout ( Salmo trutta L.) smolts in relation to environmental factors

    DEFF Research Database (Denmark)

    Aarestrup, Kim; Nielsen, C.; Koed, Anders

    2002-01-01

    tagged and released in the Danish River Lilleaa. The downstream migration of the different groups of fish was monitored by manual tracking and by three automatic listening stations. The downstream migration of radio tagged smolts of both species occurred concurrently with their untagged counterparts....... The diel migration pattern of the radio tagged smolts was predominantly nocturnal in both species. Wild sea trout smolt migrated significantly faster than both the F1 trout and the introduced salmon. There was no correlation between net ground speed, gill Na+, K+-ATPase activity or fish length in any...

  15. Location-Based Resource Allocation for OFDMA Cognitive Radio Systems

    KAUST Repository

    Ghorbel, Mahdi

    2011-05-01

    Cognitive radio is one of the hot topics for emerging and future wireless communication. It has been proposed as a suitable solution for the spectrum scarcity caused by the increase in frequency demand. The concept is based on allowing unlicensed users, called cognitive or secondary users, to share the unoccupied frequency bands with their owners, called the primary users, under constraints on the interference they cause to them. In order to estimate this interference, the cognitive system usually uses the channel state information to the primary user, which is often impractical to obtain. However, we propose to use location information, which is easier to obtain, to estimate this interference. The purpose of this work is to propose a subchannel and power allocation method which maximizes the secondary users\\' total capacity under the constraints of limited budget power and total interference to the primary under certain threshold. We model the problem as a constrained optimization problem for both downlink and uplink cases. Then, we propose low-complexity resource allocation schemes based on the waterfilling algorithm. The simulation results show the efficiency of the proposed method with comparison to the exhaustive search algorithm.

  16. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    Science.gov (United States)

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  17. Location-based resource allocation for OFDMA cognitive radio systems

    KAUST Repository

    Nam, Haewoon; Ben Ghorbel, Mahdi; Alouini, Mohamed-Slim

    2010-01-01

    In cognitive radio systems, in order for the secondary users to opportunistically share the spectrum without interfering the primary users, an accurate spectrum measurement and a precise estimation of the interference at the primary users

  18. Auction based spectrum management of cognitive radio networks

    DEFF Research Database (Denmark)

    Chang, H. B.; Chen, K.-C.; Prasad, Ramjee

    2009-01-01

    (PS-MSs), and we therefore construct a cognitive radio network (CRN) consisting of a PRN with multiple CR-MSs. We propose a spectrum management policy framework such that CR-MSs can compete in utilization of the PRN spectrum bands available to opportunistic transmission of CR-MSs by Vickrey auction...... to the PRN, the overall spectrum utilization, the profit of the service provider, the spectrum access opportunity of the CR-MSs are increased to achieve cowin situation for every party in cognitive radio networks.......Cognitive radio (CR) technology is considered as an effective solution to enhance overall spectrum efficiency, especially primary radio network (PRN) typically having relatively low spectrum utilization. However, to realize CR concept, it is essential to provide enough incentives to PRN and extra...

  19. Public exposure to radio waves near GSM microcell and picocell base stations

    International Nuclear Information System (INIS)

    Cooper, T G; Mann, S M; Khalid, M; Blackwell, R P

    2006-01-01

    Exposures of the general public to radio waves at locations near 20 randomly selected GSM microcell and picocell base stations in the UK have been assessed in the context of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Compliance distances were calculated for the antennas of the base stations from their reported radiated powers. Under pessimistic assumptions that would maximise exposures, the minimum height at which the general public reference level could potentially be exceeded near any of the base station antennas was calculated to be 2.4 m above ground level. The power densities of the broadcast carriers transmitted by the base stations have been measured and scaled to include all other possible carriers. Exposures were generally in the range 0.002-2% of the ICNIRP general public reference level, and the greatest exposure quotient near any of the base stations was 8.6%. Exposures close to microcell base stations were found to be generally greater than those close to macrocell base stations

  20. A remote laboratory for USRP-based software defined radio

    Science.gov (United States)

    Gandhinagar Ekanthappa, Rudresh; Escobar, Rodrigo; Matevossian, Achot; Akopian, David

    2014-02-01

    Electrical and computer engineering graduates need practical working skills with real-world electronic devices, which are addressed to some extent by hands-on laboratories. Deployment capacity of hands-on laboratories is typically constrained due to insufficient equipment availability, facility shortages, and lack of human resources for in-class support and maintenance. At the same time, at many sites, existing experimental systems are usually underutilized due to class scheduling bottlenecks. Nowadays, online education gains popularity and remote laboratories have been suggested to broaden access to experimentation resources. Remote laboratories resolve many problems as various costs can be shared, and student access to instrumentation is facilitated in terms of access time and locations. Labs are converted to homeworks that can be done without physical presence in laboratories. Even though they are not providing full sense of hands-on experimentation, remote labs are a viable alternatives for underserved educational sites. This paper studies remote modality of USRP-based radio-communication labs offered by National Instruments (NI). The labs are offered to graduate and undergraduate students and tentative assessments support feasibility of remote deployments.

  1. An Efficient FFT For OFDM Based Cognitive Radio On A Reconfigurable Architecture

    NARCIS (Netherlands)

    Zhang, Q.; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2007-01-01

    Cognitive Radio is a promising technology to utilize non-used parts of the spectrum that actually are assigned to licensed services. An adaptive OFDM based Cognitive Radio system has the capacity to nullify individual carriers to avoid interference to the licensed user. Therefore, there could be a

  2. The RFI situation for a space-based low-frequency radio astronomy instrument

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Boonstra, A.J.

    2016-01-01

    Space based ultra-long wavelength radio astronomy has recently gained a lot of interest. Techniques to open the virtually unexplored frequency band below 30 MHz are becoming within reach at this moment. Due to the ionosphere and the radio interference (RFI) on Earth exploring this frequency band

  3. Perturbations of ionosphere-magnetosphere coupling by powerful VLF emissions from ground-based transmitters

    International Nuclear Information System (INIS)

    Belov, A. S.; Markov, G. A.; Ryabov, A. O.; Parrot, M.

    2012-01-01

    The characteristics of the plasma-wave disturbances stimulated in the near-Earth plasma by powerful VLF radiation from ground-based transmitters are investigated. Radio communication VLF transmitters of about 1 MW in power are shown to produce artificial plasma-wave channels (density ducts) in the near-Earth space that originate in the lower ionosphere above the disturbing emission source and extend through the entire ionosphere and magnetosphere of the Earth along the magnetic field lines. Measurements with the onboard equipment of the DEMETER satellite have revealed that under the action of emission from the NWC transmitter, which is one of the most powerful VLF radio transmitters, the generation of quasi-electrostatic (plasma) waves is observed on most of the satellite trajectory along the disturbed magnetic flux tube. This may probably be indicative of stimulated emission of a magnetospheric maser.

  4. Integration of a satellite ground support system based on analysis of the satellite ground support domain

    Science.gov (United States)

    Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.

    1994-11-01

    This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.

  5. High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yu; Che, Yuchi; Zhou, Chongwu, E-mail: chongwuz@usc.edu [Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States); Seo, Jung-Woo T.; Hersam, Mark C. [Department of Materials Science and Engineering and Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States); Gui, Hui [Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 (United States)

    2016-06-06

    In this paper, we report the high-performance radio-frequency transistors based on the single-walled semiconducting carbon nanotubes with a refined average diameter of ∼1.6 nm. These diameter-separated carbon nanotube transistors show excellent transconductance of 55 μS/μm and desirable drain current saturation with an output resistance of ∼100 KΩ μm. An exceptional radio-frequency performance is also achieved with current gain and power gain cut-off frequencies of 23 GHz and 20 GHz (extrinsic) and 65 GHz and 35 GHz (intrinsic), respectively. These radio-frequency metrics are among the highest reported for the carbon nanotube thin-film transistors. This study provides demonstration of radio frequency transistors based on carbon nanotubes with tailored diameter distributions, which will guide the future application of carbon nanotubes in radio-frequency electronics.

  6. A multi-radio, multi-hop ad-hoc radio communication network for Communications-Based Train Control (CBTC)

    DEFF Research Database (Denmark)

    Farooq, Jahanzeb; Bro, Lars; Karstensen, Rasmus Thystrup

    2018-01-01

    Communications-Based Train Control (CBTC) is a modern signalling system that uses radio communication to transfer train control information between train and wayside. The trackside networks in these systems are mostly based on conventional infrastructure Wi-Fi (IEEE 802.11). It means a train has...... to continuously associate (i.e. perform handshake) with the trackside Wi-Fi Access Points (AP) as it moves, which incurs communication delays. Additionally, these APs are connected to the wayside infrastructure via optical fiber cables that incurs huge costs. This paper presents a novel design in which trackside...

  7. Low velocity target detection based on time-frequency image for high frequency ground wave radar

    Institute of Scientific and Technical Information of China (English)

    YAN Songhua; WU Shicai; WEN Biyang

    2007-01-01

    The Doppler spectral broadening resulted from non-stationary movement of target and radio-frequency interference will decrease the veracity of target detection by high frequency ground wave(HEGW)radar.By displaying the change of signal energy on two dimensional time-frequency images based on time-frequency analysis,a new mathematical morphology method to distinguish target from nonlinear time-frequency curves is presented.The analyzed results from the measured data verify that with this new method the target can be detected correctly from wide Doppler spectrum.

  8. Radio-synthesized protein-based nanoparticles for biomedical purposes

    International Nuclear Information System (INIS)

    Varca, Gustavo H.C.; Ferraz, Caroline C.; Lopes, Patricia S.; Mathor, Monica beatriz; Grasselli, Mariano; Lugão, Ademar B.

    2014-01-01

    Protein-crosslinking whether done by enzymatic or chemically induced pathways increases the overall stability of proteins. In the continuous search for alternative routes for protein stabilization we report a novel technique – radio-induced synthesis of protein nanoparticles – to achieve size controlled particles with preserved bioactivity. Papain was used as model enzyme and the samples were irradiated at 10 kGy in a gammacell irradiator in phosphate buffer (pH=7.0) and additives such as ethanol (0–40%) and sodium chloride (0–25%). The structural rearrangement caused by irradiation under defined conditions led to an increase in papain particle size as a function of the additive and its concentration. These changes occur due to intermolecular bindings, of covalent nature, possibly involving the aromatic amino acids. Ethanol held major effects over papain particle size and particle size distribution if compared to sodium chloride. The particles presented relative retained bioactivity and the physic-chemical characterization revealed similar fluorescence spectra indicating preserved conformation. Differences in fluorescence units were observed according to the additive and its concentration, as a result of protein content changes. Therefore, under optimized conditions, the developed technique may be applied for enzyme nanoparticles formation of controllable size and preserved bioactivity. Highlights: • Novel technique for the development of protein nanoparticles using γ-irradiation. • Size control of papain particles with preserved conformation and bioactivity. • Alternative method for controlled protein crosslinking. • Bioactive protein nanoparticles of biotechnological and clinical interest. • Protein-based drug carrier potential of biotechnological and clinical interest

  9. A CORPUS-BASED STYLISTIC ANALYSIS OF SELECTED RADIO ...

    African Journals Online (AJOL)

    NGOZI

    from Pendants of Rhythm: A Selection of Radio Nigeria Network News ... social roles we have to fill in everyday life and where the meaning processes, or discourses .... Antonymy: Some words opposite in meaning are juxtaposed to underscore .... Hyperbole: The ignorant man is greedy and stuffs his mouth with food until his ...

  10. A cellular-based solution for radio communications in MOUT

    NARCIS (Netherlands)

    Overduin, R.

    2005-01-01

    A short-term and potentially cost-effective solution is proposed for tactical radio communications in Military Operations in Urban Terrain (MOUT) for the Royal Netherlands Army (RNLA). Measurements and computer simulations presented show that on average, outdoor ranges in MOUT as attainable with

  11. Biomass burning aerosols characterization from ground based and profiling measurements

    Science.gov (United States)

    Marin, Cristina; Vasilescu, Jeni; Marmureanu, Luminita; Ene, Dragos; Preda, Liliana; Mihailescu, Mona

    2018-04-01

    The study goal is to assess the chemical and optical properties of aerosols present in the lofted layers and at the ground. The biomass burning aerosols were evaluated in low level layers from multi-wavelength lidar measurements, while chemical composition at ground was assessed using an Aerosol Chemical Speciation Monitor (ACSM) and an Aethalometer. Classification of aerosol type and specific organic markers were used to explore the potential to sense the particles from the same origin at ground base and on profiles.

  12. Cognitive radio-based transmission energy management in Wi-Fi nodes

    CSIR Research Space (South Africa)

    Olwal, TO

    2012-10-01

    Full Text Available -services. To solve such problems, in part, this study addresses the transmission energy management in Wi-Fi networks. Figure 1: Internet needs of rural communities PROPOSAL A cognitive radio-based transmission energy management (CR-TEM) solution for Wi... is incorporated into the Wi-Fi device to monitor the operation environments. Based on the environmental data, the transmission energy is adaptively adjusted until optimal conditions are achieved. Figure 2 illustrates the fundamentals of the cognitive radio...

  13. Wavelet Based Characterization of Low Radio Frequency Solar Emissions

    Science.gov (United States)

    Suresh, A.; Sharma, R.; Das, S. B.; Oberoi, D.; Pankratius, V.; Lonsdale, C.

    2016-12-01

    Low-frequency solar radio observations with the Murchison Widefield Array (MWA) have revealed the presence of numerous short-lived, narrow-band weak radio features, even during quiet solar conditions. In their appearance in in the frequency-time plane, they come closest to the solar type III bursts, but with much shorter spectral spans and flux densities, so much so that they are not detectable with the usual swept frequency radio spectrographs. These features occur at rates of many thousand features per hour in the 30.72 MHz MWA bandwidth, and hence necessarily require an automated approach to determine robust statistical estimates of their properties, e.g., distributions of spectral widths, temporal spans, flux densities, slopes in the time-frequency plane and distribution over frequency. To achieve this, a wavelet decomposition approach has been developed for feature recognition and subsequent parameter extraction from the MWA dynamic spectrum. This work builds on earlier work by the members of this team to achieve a reliable flux calibration in a computationally efficient manner. Preliminary results show that the distribution of spectral span of these features peaks around 3 MHz, most of them last for less than two seconds and are characterized by flux densities of about 60% of the background solar emission. In analogy with the solar type III bursts, this non-thermal emission is envisaged to arise via coherent emission processes. There is also an exciting possibility that these features might correspond to radio signatures of nanoflares, hypothesized (Gold, 1964; Parker, 1972) to explain coronal heating.

  14. Ground-based measurements of ionospheric dynamics

    Science.gov (United States)

    Kouba, Daniel; Chum, Jaroslav

    2018-05-01

    Different methods are used to research and monitor the ionospheric dynamics using ground measurements: Digisonde Drift Measurements (DDM) and Continuous Doppler Sounding (CDS). For the first time, we present comparison between both methods on specific examples. Both methods provide information about the vertical drift velocity component. The DDM provides more information about the drift velocity vector and detected reflection points. However, the method is limited by the relatively low time resolution. In contrast, the strength of CDS is its high time resolution. The discussed methods can be used for real-time monitoring of medium scale travelling ionospheric disturbances. We conclude that it is advantageous to use both methods simultaneously if possible. The CDS is then applied for the disturbance detection and analysis, and the DDM is applied for the reflection height control.

  15. Computing angle of arrival of radio signals

    Science.gov (United States)

    Borchardt, John J.; Steele, David K.

    2017-11-07

    Various technologies pertaining to computing angle of arrival of radio signals are described. A system that is configured for computing the angle of arrival of a radio signal includes a cylindrical sheath wrapped around a cylindrical object, where the cylindrical sheath acts as a ground plane. The system further includes a plurality of antennas that are positioned about an exterior surface of the cylindrical sheath, and receivers respectively coupled to the antennas. The receivers output measurements pertaining to the radio signal. A processing circuit receives the measurements and computes the angle of arrival of the radio signal based upon the measurements.

  16. KSC ADVANCED GROUND BASED FIELD MILL V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Ground Based Field Mill (AGBFM) network consists of 34 (31 operational) field mills located at Kennedy Space Center (KSC), Florida. The field mills...

  17. Ground Based Support for Exoplanet Space Missions

    Science.gov (United States)

    Haukka, H.; Hentunen, V.-P.; Salmi, T.; Aartolahti, H.; Juutilainen, J.; Vilokki, H.; Nissinen, M.

    2011-10-01

    Taurus Hill Observatory (THO), observatory code A95, is an amateur observatory located in Varkaus, Finland. The observatory is maintained by the local astronomical association Warkauden Kassiopeia. THO research team has observed and measured various stellar objects and phenomena. Observatory has mainly focused to asteroid [1] and exoplanet light curve measurements, observing the gamma rays burst, supernova discoveries and monitoring [2] and long term monitoring projects [3]. In the early 2011 Europlanet NA1 and NA2 organized "Coordinated Observations of Exoplanets from Ground and Space"-workshop in Graz, Austria. The workshop gathered together proam astronomers who have the equipment to measure the light curves of the exoplanets. Also there were professional scientists working in the exoplanet field who attended to the workshop. The result of the workshop was to organize coordinated observation campaign for follow-up observations of exoplanets (e.g. CoRoT planets). Also coordinated observation campaign to observe stellar CME outbreaks was planned. THO has a lot of experience in field of exoplanet light curve measurements and therefore this campaign is very supported by the research team of the observatory. In next coming observing seasons THO will concentrate its efforts for this kind of campaigns.

  18. Effective Design for Optical CDMA Based on Radio over Fiber (RoF Technique

    Directory of Open Access Journals (Sweden)

    Rashidi C. B. M.

    2017-01-01

    Full Text Available In this paper, the performance of OCDMA coding systems utilizing the radio over fiber (RoF technique is presented. It has been done by means of conventional OptiSystem simulation tools, where the propagation of radio signals up to 50 km using standard single mode fiber (SMF was investigated. The analysis was made based on the performance of eye diagram, bit rate, bit error rate and optical received power.

  19. A precise time synchronization method for 5G based on radio-over-fiber network with SDN controller

    Science.gov (United States)

    He, Linkuan; Wei, Baoguo; Yang, Hui; Yu, Ao; Wang, Zhengyong; Zhang, Jie

    2018-02-01

    There is an increasing demand on accurate time synchronization with the growing bandwidth of network service for 5G. In 5G network, it's necessary for base station to achieve accurate time synchronization to guarantee the quality of communication. In order to keep accuracy time for 5G network, we propose a time synchronization system for satellite ground station based on radio-over-fiber network (RoFN) with software defined optical network (SDON) controller. The advantage of this method is to improve the accuracy of time synchronization of ground station. The IEEE 1588 time synchronization protocol can solve the problems of high cost and lack of precision. However, in the process of time synchronization, distortion exists during the transmission of digital time signal. RoF uses analog optical transmission links and therefore analog transmission can be implemented among ground stations instead of digital transmission, which means distortion and bandwidth waste in the process of digital synchronization can be avoided. Additionally, the thought of SDN, software defined network, can optimize RoFN with centralized control and simplifying base station. Related simulation had been carried out to prove its superiority.

  20. Interference coupling analysis based on a hybrid method: application to a radio telescope system

    Science.gov (United States)

    Xu, Qing-Lin; Qiu, Yang; Tian, Jin; Liu, Qi

    2018-02-01

    Working in a way that passively receives electromagnetic radiation from a celestial body, a radio telescope can be easily disturbed by external radio frequency interference as well as electromagnetic interference generated by electric and electronic components operating at the telescope site. A quantitative analysis of these interferences must be taken into account carefully for further electromagnetic protection of the radio telescope. In this paper, based on electromagnetic topology theory, a hybrid method that combines the Baum-Liu-Tesche (BLT) equation and transfer function is proposed. In this method, the coupling path of the radio telescope is divided into strong coupling and weak coupling sub-paths, and the coupling intensity criterion is proposed by analyzing the conditions in which the BLT equation simplifies to a transfer function. According to the coupling intensity criterion, the topological model of a typical radio telescope system is established. The proposed method is used to solve the interference response of the radio telescope system by analyzing subsystems with different coupling modes separately and then integrating the responses of the subsystems as the response of the entire system. The validity of the proposed method is verified numerically. The results indicate that the proposed method, compared with the direct solving method, reduces the difficulty and improves the efficiency of interference prediction.

  1. Signal Detection for QPSK Based Cognitive Radio Systems using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    M. T. Mushtaq

    2015-04-01

    Full Text Available Cognitive radio based network enables opportunistic dynamic spectrum access by sensing, adopting and utilizing the unused portion of licensed spectrum bands. Cognitive radio is intelligent enough to adapt the communication parameters of the unused licensed spectrum. Spectrum sensing is one of the most important tasks of the cognitive radio cycle. In this paper, the auto-correlation function kernel based Support Vector Machine (SVM classifier along with Welch's Periodogram detector is successfully implemented for the detection of four QPSK (Quadrature Phase Shift Keying based signals propagating through an AWGN (Additive White Gaussian Noise channel. It is shown that the combination of statistical signal processing and machine learning concepts improve the spectrum sensing process and spectrum sensing is possible even at low Signal to Noise Ratio (SNR values up to -50 dB.

  2. Engineering uses of physics-based ground motion simulations

    Science.gov (United States)

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  3. The COROT ground-based archive and access system

    Science.gov (United States)

    Solano, E.; González-Riestra, R.; Catala, C.; Baglin, A.

    2002-01-01

    A prototype of the COROT ground-based archive and access system is presented here. The system has been developed at LAEFF and it is based on the experience gained at Laboratorio de Astrofisica Espacial y Fisica Fundamental (LAEFF) with the INES (IUE Newly Extracted System) Archive.

  4. Wireless Chalcogenide Nanoionic-Based Radio-Frequency Switch

    Science.gov (United States)

    Nessel, James; Miranda, Felix

    2013-01-01

    A new nonvolatile nanoionic switch is powered and controlled through wireless radio-frequency (RF) transmission. A thin layer of chalcogenide glass doped with a metal ion, such as silver, comprises the operational portion of the switch. For the switch to function, an oxidizable electrode is made positive (anode) with respect to an opposing electrode (cathode) when sufficient bias, typically on the order of a few tenths of a volt or more, is applied. This action causes the metal ions to flow toward the cathode through a coordinated hopping mechanism. At the cathode, a reduction reaction occurs to form a metal deposit. This metal deposit creates a conductive path that bridges the gap between electrodes to turn the switch on. Once this conductive path is formed, no further power is required to maintain it. To reverse this process, the metal deposit is made positive with respect to the original oxidizable electrode, causing the dissolution of the metal bridge thereby turning the switch off. Once the metal deposit has been completely dissolved, the process self-terminates. This switching process features the following attributes. It requires very little to change states (i.e., on and off). Furthermore, no power is required to maintain the states; hence, the state of the switch is nonvolatile. Because of these attributes the integration of a rectenna to provide the necessary power and control is unique to this embodiment. A rectenna, or rectifying antenna, generates DC power from an incident RF signal. The low voltages and power required for the nanoionic switch control are easily generated from this system and provide the switch with a novel capability to be operated and powered from an external wireless device. In one realization, an RF signal of a specific frequency can be used to set the switch into an off state, while another frequency can be used to set the switch to an on state. The wireless, miniaturized, and nomoving- part features of this switch make it

  5. DiffServ resource management in IP-based radio access networks

    NARCIS (Netherlands)

    Heijenk, Geert; Karagiannis, Georgios; Rexhepi, Vlora; Westberg, Lars; prof.dr. Prasad, R.; prof.dr. Bach Andersen, J.

    2001-01-01

    The increasing popularity of the Internet, the flexibility of IP, and the wide deployment of IP technologies, as well as the growth of mobile communications have driven the development of IP-based solutions for wireless networking. The introduction of IP-based transport in Radio Access Networks

  6. Spacecraft navigation at Mars using earth-based and in situ radio tracking techniques

    Science.gov (United States)

    Thurman, S. W.; Edwards, C. D.; Kahn, R. D.; Vijayaraghavan, A.; Hastrup, R. C.; Cesarone, R. J.

    1992-08-01

    A survey of earth-based and in situ radiometric data types and results from a number of studies investigating potential radio navigation performance for spacecraft approaching/orbiting Mars and for landed spacecraft and rovers on the surface of Mars are presented. The performance of Doppler, ranging and interferometry earth-based data types involving single or multiple spacecraft is addressed. This evaluation is conducted with that of in situ data types, such as Doppler and ranging measurements between two spacecraft near Mars, or between a spacecraft and one or more surface radio beacons.

  7. Cross layer optimization for cloud-based radio over optical fiber networks

    Science.gov (United States)

    Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong; Yang, Hui; Meng, Luoming

    2016-07-01

    To adapt the 5G communication, the cloud radio access network is a paradigm introduced by operators which aggregates all base stations computational resources into a cloud BBU pool. The interaction between RRH and BBU or resource schedule among BBUs in cloud have become more frequent and complex with the development of system scale and user requirement. It can promote the networking demand among RRHs and BBUs, and force to form elastic optical fiber switching and networking. In such network, multiple stratum resources of radio, optical and BBU processing unit have interweaved with each other. In this paper, we propose a novel multiple stratum optimization (MSO) architecture for cloud-based radio over optical fiber networks (C-RoFN) with software defined networking. Additionally, a global evaluation strategy (GES) is introduced in the proposed architecture. MSO can enhance the responsiveness to end-to-end user demands and globally optimize radio frequency, optical spectrum and BBU processing resources effectively to maximize radio coverage. The feasibility and efficiency of the proposed architecture with GES strategy are experimentally verified on OpenFlow-enabled testbed in terms of resource occupation and path provisioning latency.

  8. Output power distributions of mobile radio base stations based on network measurements

    International Nuclear Information System (INIS)

    Colombi, D; Thors, B; Persson, T; Törnevik, C; Wirén, N; Larsson, L-E

    2013-01-01

    In this work output power distributions of mobile radio base stations have been analyzed for 2G and 3G telecommunication systems. The approach is based on measurements in selected networks using performance surveillance tools part of the network Operational Support System (OSS). For the 3G network considered, direct measurements of output power levels were possible, while for the 2G networks, output power levels were estimated from measurements of traffic volumes. Both voice and data services were included in the investigation. Measurements were conducted for large geographical areas, to ensure good overall statistics, as well as for smaller areas to investigate the impact of different environments. For high traffic hours, the 90th percentile of the averaged output power was found to be below 65% and 45% of the available output power for the 2G and 3G systems, respectively.

  9. Output power distributions of mobile radio base stations based on network measurements

    Science.gov (United States)

    Colombi, D.; Thors, B.; Persson, T.; Wirén, N.; Larsson, L.-E.; Törnevik, C.

    2013-04-01

    In this work output power distributions of mobile radio base stations have been analyzed for 2G and 3G telecommunication systems. The approach is based on measurements in selected networks using performance surveillance tools part of the network Operational Support System (OSS). For the 3G network considered, direct measurements of output power levels were possible, while for the 2G networks, output power levels were estimated from measurements of traffic volumes. Both voice and data services were included in the investigation. Measurements were conducted for large geographical areas, to ensure good overall statistics, as well as for smaller areas to investigate the impact of different environments. For high traffic hours, the 90th percentile of the averaged output power was found to be below 65% and 45% of the available output power for the 2G and 3G systems, respectively.

  10. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    International Nuclear Information System (INIS)

    Zu Yun-Xiao; Zhou Jie

    2012-01-01

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate. (geophysics, astronomy, and astrophysics)

  11. A IF Signal Precessing System Design Based on Software Radio Platform

    Directory of Open Access Journals (Sweden)

    Zhao Jing

    2018-01-01

    Full Text Available Software radio is a definition of a design thought about how to implement flexible functions by using fixed hardware platform. Any platform based on this is characterized to be universal, standardized, modular, open and highly flexible. Due to some realistic reasons, a software radio platform is hard to be realized. So, most signal processing is operated after mixing. According to software radio requirements, a “FPGA+ADC+DAC” structure is designed. Compared with former processors, this module has broad application prospects with the small size, low power, configurable and programmable feathers. It has multifunction, such as generating IF signals, performing digital down conversion and realizing the synchronous demodulation and the other functions. This module also provides the extended host interface to communicate with upper computers. According to the practical test, take MSK signal for example, if the bit rate is 1Mb/s, bit error rate is lower than 10-6.

  12. Modeling ground-based timber harvesting systems using computer simulation

    Science.gov (United States)

    Jingxin Wang; Chris B. LeDoux

    2001-01-01

    Modeling ground-based timber harvesting systems with an object-oriented methodology was investigated. Object-oriented modeling and design promote a better understanding of requirements, cleaner designs, and better maintainability of the harvesting simulation system. The model developed simulates chainsaw felling, drive-to-tree feller-buncher, swing-to-tree single-grip...

  13. Mycological evaluation of a ground cocoa-based beverage ...

    African Journals Online (AJOL)

    Cocoa beans (Theobroma cacao) are processed into cocoa beverage through fermentation, drying, roasting and grounding of the seed to powder. The mycological quality of 39 samples of different brand of these cocoa – based beverage referred to as 'eruku oshodi' collected from 3 different markets in south – west Nigeria ...

  14. Performance Based Criteria for Ship Collision and Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    2009-01-01

    The paper outlines a probabilistic procedure whereby the maritime industry can develop performance based rules to reduce the risk associated with human, environmental and economic costs of collision and grounding events and identify the most economic risk control options associated with prevention...

  15. Adaptive algorithm based on antenna arrays for radio communication systems

    Directory of Open Access Journals (Sweden)

    Fedosov Valentin

    2017-01-01

    always noticeably accelerate traffic at short distances from the access point, but, they are very effective at long distances. The MIMO principle allows reducing the number of errors in radio data interchange (BER without reducing the transmission rate under conditions of multiple signal re-reflections. The work aims at developing an adaptive space-time signal algorithm for a wireless data transmission system designed to improve the efficiency of this system, as well as to study the efficiency of the algorithm to minimizing the error bit probability and maximizing the channel capacity.

  16. Cognitive radio based sensor network in smart grid: Architectures, applications and communication technologies

    CSIR Research Space (South Africa)

    Ogbodo, EU

    2017-09-01

    Full Text Available The cognitive radio-based sensor network (CRSN) is envisioned as a strong driver in the development of modern power system smart grids (SGs). This can address the spectrum limitation in the sensor nodes due to interference cause by other wireless...

  17. Multiple-state based power control for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-01-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in wireless mesh networks (WMNs). In this paper, we present asynchronous multiple-state based power control for MRMC WMNs. First, WMN is represented as a set of disjoint...

  18. Range based power control for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-08-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in Wireless Mesh Networks (WMNs). In this paper, researchers present a range based dynamic power control for MRMC WMNs. First, WMN is represented as a set of disjoint Unified...

  19. In-situ radiation dosimetry based on Radio-Fluorogenic Co-Polymerization

    NARCIS (Netherlands)

    Warman, J.M.; Luthjens, L.H.; De Haas, M.P.

    2009-01-01

    A fluorimetric method of radiation dosimetry is presented for which the intensity of the fluorescence of a (tissue equivalent) medium is linearly dependent on accumulated dose from a few Gray up to kiloGrays. The method is based on radio-fluorogenic co-polymerization (RFCP) in which a normally very

  20. Ground-water contamination at Wurtsmith Air Force Base, Michigan

    Science.gov (United States)

    Stark, J.R.; Cummings, T.R.; Twenter, F.R.

    1983-01-01

    A sand and gravel aquifer of glacial origin underlies Wurtsmith Air Force Base in northeastern lower Michigan. The aquifer overlies a thick clay layer at an average depth of 65 feet. The water table is about 10 feet below land surface in the western part of the Base and about 25 feet below land surface in the eastern part. A ground-water divide cuts diagonally across the Base from northwest to southeast. South of the divide, ground water flows to the Au Sable River; north of the divide, it flows to Van Etten Creek and Van Etten Lake. Mathematical models were used to aid in calculating rates of groundwater flow. Rates range from about 0.8 feet per day in the eastern part of the Base to about 0.3 feet per day in the western part. Models also were used as an aid in making decisions regarding purging of contaminated water from the aquifer. In 1977, trichloroethylene was detected in the Air Force Base water-supply system. It had leaked from a buried storage tank near Building 43 in the southeastern part of the Base and moved northeastward under the influence of the natural ground-water gradient and the pumping of Base water-supply wells. In the most highly contaminated part of the plume, concentrations are greater than 1,000 micrograms per liter. Current purge pumping is removing some of the trichloroethylene, and seems to have arrested its eastward movement. Pumping of additional purge wells could increase the rate of removal. Trichloroethylene has also been detected in ground water in the vicinity of the Base alert apron, where a plume from an unknown source extends northeastward off Base. A smaller, less well-defined area of contamination also occurs just north of the larger plume. Trichloroethylene, identified near the waste-treatment plant, seepage lagoons, and the northern landfill area, is related to activities and operations in these areas. Dichloroethylene and trichloroethylene occur in significant quantities westward of Building 43, upgradient from the major

  1. GEARS: An Enterprise Architecture Based On Common Ground Services

    Science.gov (United States)

    Petersen, S.

    2014-12-01

    Earth observation satellites collect a broad variety of data used in applications that range from weather forecasting to climate monitoring. Within NOAA the National Environmental Satellite Data and Information Service (NESDIS) supports these applications by operating satellites in both geosynchronous and polar orbits. Traditionally NESDIS has acquired and operated its satellites as stand-alone systems with their own command and control, mission management, processing, and distribution systems. As the volume, velocity, veracity, and variety of sensor data and products produced by these systems continues to increase, NESDIS is migrating to a new concept of operation in which it will operate and sustain the ground infrastructure as an integrated Enterprise. Based on a series of common ground services, the Ground Enterprise Architecture System (GEARS) approach promises greater agility, flexibility, and efficiency at reduced cost. This talk describes the new architecture and associated development activities, and presents the results of initial efforts to improve product processing and distribution.

  2. Hanford Ground-Water Data Base management guide

    International Nuclear Information System (INIS)

    Rieger, J.T.; Mitchell, P.J.; Muffett, D.M.; Fruland, R.M.; Moore, S.B.; Marshall, S.M.

    1990-02-01

    This guide describes the Hanford Ground-Water Data Base (HGWDB), a computerized data base used to store hydraulic head, sample analytical, temperature, geologic, and well-structure information for ground-water monitoring wells on the Hanford Site. These data are stored for the purpose of data retrieval for report generation and also for historical purposes. This guide is intended as an aid to the data base manager and the various staff authorized to enter and verify data, maintain the data base, and maintain the supporting software. This guide focuses on the structure of the HGWDB, providing a fairly detailed description of the programs, files, and parameters. Data-retrieval instructions for the general user of the HGWDB will be found in the HGWDB User's Manual. 6 figs

  3. Call Arrival Rate Prediction and Blocking Probability Estimation for Infrastructure based Mobile Cognitive Radio Personal Area Network

    Directory of Open Access Journals (Sweden)

    Neeta Nathani

    2017-08-01

    Full Text Available The Cognitive Radio usage has been estimated as non-emergency service with low volume traffic. Present work proposes an infrastructure based Cognitive Radio network and probability of success of CR traffic in licensed band. The Cognitive Radio nodes will form cluster. The cluster nodes will communicate on Industrial, Scientific and Medical band using IPv6 over Low-Power Wireless Personal Area Network based protocol from sensor to Gateway Cluster Head. For Cognitive Radio-Media Access Control protocol for Gateway to Cognitive Radio-Base Station communication, it will use vacant channels of licensed band. Standalone secondary users of Cognitive Radio Network shall be considered as a Gateway with one user. The Gateway will handle multi-channel multi radio for communication with Base Station. Cognitive Radio Network operators shall define various traffic data accumulation counters at Base Station for storing signal strength, Carrier-to-Interference and Noise Ratio, etc. parameters and record channel occupied/vacant status. The researches has been done so far using hour as interval is too long for parameters like holding time expressed in minutes and hence channel vacant/occupied status time is only probabilistically calculated. In the present work, an infrastructure based architecture has been proposed which polls channel status each minute in contrary to hourly polling of data. The Gateways of the Cognitive Radio Network shall monitor status of each Primary User periodically inside its working range and shall inform to Cognitive Radio- Base Station for preparation of minutewise database. For simulation, the occupancy data for all primary user channels were pulled in one minute interval from a live mobile network. Hourly traffic data and minutewise holding times has been analyzed to optimize the parameters of Seasonal Auto Regressive Integrated Moving Average prediction model. The blocking probability of an incoming Cognitive Radio call has been

  4. Results of geo-radio-monitoring for radioactive waste storage in large diameter boreholes in clayey ground

    International Nuclear Information System (INIS)

    Dmitriev, S.; Litinsky, Y.; Tkachenko, A.

    2010-01-01

    Document available in extended abstract form only. Full text of publication follows: The main purpose of the work carried out at the site of SUE MosSIA 'Radon' is to develop the system of geo-radio-monitoring for new type of storage facility (large diameter borehole) integrated into existing monitoring system of the whole site, check its effectiveness and improve the system, obtain initial results on safety aspects for using large diameter boreholes for RAW storage. Technology of large diameter boreholes (LDB) construction for low- and intermediate-level waste (LILW) isolation in moraine loams is being under development at SUE MosSIA 'Radon' site since the end of the last century. A project for construction of a demonstration unit for LILW storage in large diameter boreholes at the SUE MosSIA 'Radon' site in Sergiev Posad region has been developed taking into account specific site conditions. The main aim of the project is to develop the technology of LDB repository construction, operational procedures such as loading and retrieval, to develop and improve monitoring system for the new repository type, to get practical data on safety of radioactive wastes storage in new repositories, hermeticity of construction, and behavior of waste, waste packages, construction materials and near-field. In the case of LDB applications for LILW storage, the waste are removed from the scope of human activity into a stable geological medium. Waste are placed below the frost zone where damage of engineered barriers due to climatic factors is practically impossible. Two boreholes with 1.5 m internal diameter and 38 m depth have been drilled in 1997, equipped with engineering barriers including bentonite-concrete stone, licensed as storage facilities in 2003 and are in use now for solid and solidified RAW storage. Specific automated system of geo-radio-monitoring has been developed especially for the LDB-type repository, covering both the interior and the

  5. Modal-pushover-based ground-motion scaling procedure

    Science.gov (United States)

    Kalkan, Erol; Chopra, Anil K.

    2011-01-01

    Earthquake engineering is increasingly using nonlinear response history analysis (RHA) to demonstrate the performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. This paper presents a modal-pushover-based scaling (MPS) procedure to scale ground motions for use in a nonlinear RHA of buildings. In the MPS method, the ground motions are scaled to match to a specified tolerance, a target value of the inelastic deformation of the first-mode inelastic single-degree-of-freedom (SDF) system whose properties are determined by the first-mode pushover analysis. Appropriate for first-mode dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-mode SDF systems in selecting a subset of the scaled ground motions. Based on results presented for three actual buildings-4, 6, and 13-story-the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.

  6. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    International Nuclear Information System (INIS)

    Casey, Leslie A.

    2014-01-01

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  7. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  8. Silicon carbide optics for space and ground based astronomical telescopes

    Science.gov (United States)

    Robichaud, Joseph; Sampath, Deepak; Wainer, Chris; Schwartz, Jay; Peton, Craig; Mix, Steve; Heller, Court

    2012-09-01

    Silicon Carbide (SiC) optical materials are being applied widely for both space based and ground based optical telescopes. The material provides a superior weight to stiffness ratio, which is an important metric for the design and fabrication of lightweight space telescopes. The material also has superior thermal properties with a low coefficient of thermal expansion, and a high thermal conductivity. The thermal properties advantages are important for both space based and ground based systems, which typically need to operate under stressing thermal conditions. The paper will review L-3 Integrated Optical Systems - SSG’s (L-3 SSG) work in developing SiC optics and SiC optical systems for astronomical observing systems. L-3 SSG has been fielding SiC optical components and systems for over 25 years. Space systems described will emphasize the recently launched Long Range Reconnaissance Imager (LORRI) developed for JHU-APL and NASA-GSFC. Review of ground based applications of SiC will include supporting L-3 IOS-Brashear’s current contract to provide the 0.65 meter diameter, aspheric SiC secondary mirror for the Advanced Technology Solar Telescope (ATST).

  9. Empowering file-based radio production through media asset management systems

    Science.gov (United States)

    Muylaert, Bjorn; Beckers, Tom

    2006-10-01

    In recent years, IT-based production and archiving of media has matured to a level which enables broadcasters to switch over from tape- or CD-based to file-based workflows for the production of their radio and television programs. This technology is essential for the future of broadcasters as it provides the flexibility and speed of execution the customer demands by enabling, among others, concurrent access and production, faster than real-time ingest, edit during ingest, centrally managed annotation and quality preservation of media. In terms of automation of program production, the radio department is the most advanced within the VRT, the Flemish broadcaster. Since a couple of years ago, the radio department has been working with digital equipment and producing its programs mainly on standard IT equipment. Historically, the shift from analogue to digital based production has been a step by step process initiated and coordinated by each radio station separately, resulting in a multitude of tools and metadata collections, some of them developed in-house, lacking integration. To make matters worse, each of those stations adopted a slightly different production methodology. The planned introduction of a company-wide Media Asset Management System allows a coordinated overhaul to a unified production architecture. Benefits include the centralized ingest and annotation of audio material and the uniform, integrated (in terms of IT infrastructure) workflow model. Needless to say, the ingest strategy, metadata management and integration with radio production systems play a major role in the level of success of any improvement effort. This paper presents a data model for audio-specific concepts relevant to radio production. It includes an investigation of ingest techniques and strategies. Cooperation with external, professional production tools is demonstrated through a use-case scenario: the integration of an existing, multi-track editing tool with a commercially available

  10. Cognitive radio adaptation for power consumption minimization using biogeography-based optimization

    International Nuclear Information System (INIS)

    Qi Pei-Han; Zheng Shi-Lian; Yang Xiao-Niu; Zhao Zhi-Jin

    2016-01-01

    Adaptation is one of the key capabilities of cognitive radio, which focuses on how to adjust the radio parameters to optimize the system performance based on the knowledge of the radio environment and its capability and characteristics. In this paper, we consider the cognitive radio adaptation problem for power consumption minimization. The problem is formulated as a constrained power consumption minimization problem, and the biogeography-based optimization (BBO) is introduced to solve this optimization problem. A novel habitat suitability index (HSI) evaluation mechanism is proposed, in which both the power consumption minimization objective and the quality of services (QoS) constraints are taken into account. The results show that under different QoS requirement settings corresponding to different types of services, the algorithm can minimize power consumption while still maintaining the QoS requirements. Comparison with particle swarm optimization (PSO) and cat swarm optimization (CSO) reveals that BBO works better, especially at the early stage of the search, which means that the BBO is a better choice for real-time applications. (paper)

  11. RADIO SHIELDING PROPERTIES OF CONCRETE BASED ON SHUNGITE NANOMATERIALS

    Directory of Open Access Journals (Sweden)

    BELOUSOVA Elena Sergeevna

    2013-04-01

    Full Text Available Modifications of shielding construction materials based on Portland cement with the addition of powder nanomaterial shungite were developed. Attenuation and re­flection of electromagnetic radiation for obtained materials were studied. Recommen­dations for using are given.

  12. High energy astrophysics with ground-based gamma ray detectors

    International Nuclear Information System (INIS)

    Aharonian, F; Buckley, J; Kifune, T; Sinnis, G

    2008-01-01

    Recent advances in ground-based gamma ray astronomy have led to the discovery of more than 70 sources of very high energy (E γ ≥ 100 GeV) gamma rays, falling into a number of source populations including pulsar wind nebulae, shell type supernova remnants, Wolf-Rayet stars, giant molecular clouds, binary systems, the Galactic Center, active galactic nuclei and 'dark' (yet unidentified) galactic objects. We summarize the history of TeV gamma ray astronomy up to the current status of the field including a description of experimental techniques and highlight recent astrophysical results. We also discuss the potential of ground-based gamma ray astronomy for future discoveries and describe possible directions for future instrumental developments

  13. Reinnervation following catheter-based radio-frequency renal denervation.

    Science.gov (United States)

    Booth, Lindsea C; Nishi, Erika E; Yao, Song T; Ramchandra, Rohit; Lambert, Gavin W; Schlaich, Markus P; May, Clive N

    2015-04-20

    What is the topic of this review? Does catheter-based renal denervation effectively denervate the afferent and efferent renal nerves and does reinnervation occur? What advances does it highlight? Following catheter-based renal denervation, the afferent and efferent responses to electrical stimulation were abolished, renal sympathetic nerve activity was absent, and levels of renal noradrenaline and immunohistochemistry for tyrosine hydroxylase and calcitonin gene-related peptide were significantly reduced. By 11 months after renal denervation, both the functional responses and anatomical markers of afferent and efferent renal nerves had returned to normal, indicating reinnervation. Renal denervation reduces blood pressure in animals with experimental hypertension and, recently, catheter-based renal denervation was shown to cause a prolonged decrease in blood pressure in patients with resistant hypertension. The randomized, sham-controlled Symplicity HTN-3 trial failed to meet its primary efficacy end-point, but there is evidence that renal denervation was incomplete in many patients. Currently, there is little information regarding the effectiveness of catheter-based renal denervation and the extent of reinnervation. We assessed the effectiveness of renal nerve denervation with the Symplicity Flex catheter and the functional and anatomical reinnervation at 5.5 and 11 months postdenervation. In anaesthetized, non-denervated sheep, there was a high level of renal sympathetic nerve activity, and electrical stimulation of the renal nerve increased blood pressure and reduced heart rate (afferent response) and caused renal vasoconstriction and reduced renal blood flow (efferent response). Immediately after renal denervation, renal sympathetic nerve activity and the responses to electrical stimulation were absent, indicating effective denervation. By 11 months after denervation, renal sympathetic nerve activity was present and the responses to electrical stimulation

  14. Automatic Barometric Updates from Ground-Based Navigational Aids

    Science.gov (United States)

    1990-03-12

    ro fAutomatic Barometric Updates US Department from of Transportation Ground-Based Federal Aviation Administration Navigational Aids Office of Safety...tighter vertical spacing controls , particularly for operations near Terminal Control Areas (TCAs), Airport Radar Service Areas (ARSAs), military climb and...E.F., Ruth, J.C., and Williges, B.H. (1987). Speech Controls and Displays. In Salvendy, G., E. Handbook of Human Factors/Ergonomics, New York, John

  15. Wave Optics Based LEO-LEO Radio Occultation Retrieval

    DEFF Research Database (Denmark)

    von Benzon, Hans-Henrik; Høeg, Per

    2016-01-01

    of the atmospheric products such as the correct water vapor content in the atmosphere. These limitations can be overcome when a proper selected range of high frequency waves are used to probe the atmosphere. Probing frequencies close to the absorption line of water vapor have been included, thus allowing...... the retrieval of the water vapor content. Selecting the correct probing frequencies would make it possible to retrieve other information such as the content of ozone. The retrieval is performed through a number of processing steps which are based on the Full Spectrum Inversion (FSI) technique. The retrieval...... optics based retrieval chain is used on a number of examples and the retrieved atmospheric parameters are compared to the parameters from a global ECMWF analysis model. This model is used in a forward propagator that simulates the electromagnetic field amplitudes and phases at the receiver on board...

  16. Multipath Activity Based Routing Protocol for Mobile ‎Cognitive Radio Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Shereen Omar

    2017-01-01

    Full Text Available Cognitive radio networks improve spectrum utilization by ‎sharing licensed spectrum with cognitive radio devices. In ‎cognitive radio ad hoc networks the routing protocol is one ‎of the most challenging tasks due to the changes in ‎frequency spectrum and the interrupted connectivity ‎caused by the primary user activity. In this paper, a multi‎path activity based routing protocol for cognitive radio ‎network (MACNRP is proposed. The protocol utilizes ‎channel availability and creates multiple node-disjoint ‎routes between the source and destination nodes. The ‎proposed protocol is compared with D2CARP and FTCRP ‎protocols. The performance evaluation is conducted ‎through mathematical analysis and using OPNET ‎simulation. The performance of the proposed protocol ‎achieves an increase in network throughput; besides it ‎decreases the probability of route failure due to node ‎mobility and primary user activity. We have found that the ‎MACNRP scheme results in 50% to 75% reduction in ‎blocking probability and 33% to 78% improvement in ‎network throughput, with a reasonable additional routing ‎overhead and average packet delay. Due to the successful ‎reduction of collision between primary users and ‎cognitive users, the MACNRP scheme results in decreasing ‎the path failure rate by 50% to 87%.‎

  17. Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment

    Directory of Open Access Journals (Sweden)

    Y. G. Rapoport

    2017-01-01

    Full Text Available We develop theoretical basics of active experiments with two beams of acoustic waves, radiated by a ground-based sound generator. These beams are transformed into atmospheric acoustic gravity waves (AGWs, which have parameters that enable them to penetrate to the altitudes of the ionospheric E and F regions where they influence the electron concentration of the ionosphere. Acoustic waves are generated by the ground-based parametric sound generator (PSG at the two close frequencies. The main idea of the experiment is to design the output parameters of the PSG to build a cascade scheme of nonlinear wave frequency downshift transformations to provide the necessary conditions for their vertical propagation and to enable penetration to ionospheric altitudes. The PSG generates sound waves (SWs with frequencies f1 = 600 and f2 = 625 Hz and large amplitudes (100–420 m s−1. Each of these waves is modulated with the frequency of 0.016 Hz. The novelty of the proposed analytical–numerical model is due to simultaneous accounting for nonlinearity, diffraction, losses, and dispersion and inclusion of the two-stage transformation (1 of the initial acoustic waves to the acoustic wave with the difference frequency Δf = f2 − f1 in the altitude ranges 0–0.1 km, in the strongly nonlinear regime, and (2 of the acoustic wave with the difference frequency to atmospheric acoustic gravity waves with the modulational frequency in the altitude ranges 0.1–20 km, which then reach the altitudes of the ionospheric E and F regions, in a practically linear regime. AGWs, nonlinearly transformed from the sound waves, launched by the two-frequency ground-based sound generator can increase the transparency of the ionosphere for the electromagnetic waves in HF (MHz and VLF (kHz ranges. The developed theoretical model can be used for interpreting an active experiment that includes the PSG impact on the atmosphere–ionosphere system

  18. Spectrum sensing algorithm based on autocorrelation energy in cognitive radio networks

    Science.gov (United States)

    Ren, Shengwei; Zhang, Li; Zhang, Shibing

    2016-10-01

    Cognitive radio networks have wide applications in the smart home, personal communications and other wireless communication. Spectrum sensing is the main challenge in cognitive radios. This paper proposes a new spectrum sensing algorithm which is based on the autocorrelation energy of signal received. By taking the autocorrelation energy of the received signal as the statistics of spectrum sensing, the effect of the channel noise on the detection performance is reduced. Simulation results show that the algorithm is effective and performs well in low signal-to-noise ratio. Compared with the maximum generalized eigenvalue detection (MGED) algorithm, function of covariance matrix based detection (FMD) algorithm and autocorrelation-based detection (AD) algorithm, the proposed algorithm has 2 11 dB advantage.

  19. Instrumentation for Kinetic-Inductance-Detector-Based Submillimeter Radio Astronomy

    Science.gov (United States)

    Duan, Ran

    A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes. The number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology. This dissertation presents the development of a KID-based instrument including a portion of the millimeter-wave bandpass filters and all aspects of the readout electronics, which together enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this dissertation has been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a new instrument for the Caltech Submillimeter Observatory (CSO).

  20. Elaborate analysis and design of filter-bank-based sensing for wideband cognitive radios

    Science.gov (United States)

    Maliatsos, Konstantinos; Adamis, Athanasios; Kanatas, Athanasios G.

    2014-12-01

    The successful operation of a cognitive radio system strongly depends on its ability to sense the radio environment. With the use of spectrum sensing algorithms, the cognitive radio is required to detect co-existing licensed primary transmissions and to protect them from interference. This paper focuses on filter-bank-based sensing and provides a solid theoretical background for the design of these detectors. Optimum detectors based on the Neyman-Pearson theorem are developed for uniform discrete Fourier transform (DFT) and modified DFT filter banks with root-Nyquist filters. The proposed sensing framework does not require frequency alignment between the filter bank of the sensor and the primary signal. Each wideband primary channel is spanned and monitored by several sensor subchannels that analyse it in narrowband signals. Filter-bank-based sensing is proved to be robust and efficient under coloured noise. Moreover, the performance of the weighted energy detector as a sensing technique is evaluated. Finally, based on the Locally Most Powerful and the Generalized Likelihood Ratio test, real-world sensing algorithms that do not require a priori knowledge are proposed and tested.

  1. Interference Information Based Power Control for Cognitive Radio with Multi-Hop Cooperative Sensing

    Science.gov (United States)

    Yu, Youngjin; Murata, Hidekazu; Yamamoto, Koji; Yoshida, Susumu

    Reliable detection of other radio systems is crucial for systems that share the same frequency band. In wireless communication channels, there is uncertainty in the received signal level due to multipath fading and shadowing. Cooperative sensing techniques in which radio stations share their sensing information can improve the detection probability of other systems. In this paper, a new cooperative sensing scheme that reduces the false detection probability while maintaining the outage probability of other systems is investigated. In the proposed system, sensing information is collected using multi-hop transmission from all sensing stations that detect other systems, and transmission decisions are based on the received sensing information. The proposed system also controls the transmit power based on the received CINRs from the sensing stations. Simulation results reveal that the proposed system can reduce the outage probability of other systems, or improve its link success probability.

  2. Quorum system and random based asynchronous rendezvous protocol for cognitive radio ad hoc networks

    Directory of Open Access Journals (Sweden)

    Sylwia Romaszko

    2013-12-01

    Full Text Available This paper proposes a rendezvous protocol for cognitive radio ad hoc networks, RAC2E-gQS, which utilizes (1 the asynchronous and randomness properties of the RAC2E protocol, and (2 channel mapping protocol, based on a grid Quorum System (gQS, and taking into account channel heterogeneity and asymmetric channel views. We show that the combination of the RAC2E protocol with the grid-quorum based channel mapping can yield a powerful RAC2E-gQS rendezvous protocol for asynchronous operation in a distributed environment assuring a rapid rendezvous between the cognitive radio nodes having available both symmetric and asymmetric channel views. We also propose an enhancement of the protocol, which uses a torus QS for a slot allocation, dealing with the worst case scenario, a large number of channels with opposite ranking lists.

  3. An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Salim, Shelly; Moh, Sangman

    2016-06-30

    A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead.

  4. An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shelly Salim

    2016-06-01

    Full Text Available A cognitive radio sensor network (CRSN is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead.

  5. Fuzzy-Based Sensor Fusion for Cognitive Radio-Based Vehicular Ad Hoc and Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohammad Jalil Piran

    2015-01-01

    Full Text Available In wireless sensor networks, sensor fusion is employed to integrate the acquired data from diverse sensors to provide a unified interpretation. The best and most salient advantage of sensor fusion is to obtain high-level information in both statistical and definitive aspects, which cannot be attained by a single sensor. In this paper, we propose a novel sensor fusion technique based on fuzzy theory for our earlier proposed Cognitive Radio-based Vehicular Ad Hoc and Sensor Networks (CR-VASNET. In the proposed technique, we considered four input sensor readings (antecedents and one output (consequent. The employed mobile nodes in CR-VASNET are supposed to be equipped with diverse sensors, which cater to our antecedent variables, for example, The Jerk, Collision Intensity, and Temperature and Inclination Degree. Crash_Severity is considered as the consequent variable. The processing and fusion of the diverse sensory signals are carried out by fuzzy logic scenario. Accuracy and reliability of the proposed protocol, demonstrated by the simulation results, introduce it as an applicable system to be employed to reduce the causalities rate of the vehicles’ crashes.

  6. Radio frequency identification and time-driven activity based costing:RFID-TDABC application in warehousing

    OpenAIRE

    Bahr, Witold; Price, Brian J

    2016-01-01

    Purpose: This paper extends the use of Radio Frequency Identification (RFID) data for accounting of warehouse costs and services. Time Driven Activity Based Costing (TDABC) methodology is enhanced with the real-time collected RFID data about duration of warehouse activities. This allows warehouse managers to have accurate and instant calculations of costs. The RFID enhanced TDABC (RFID-TDABC) is proposed as a novel application of the RFID technology. Research Approach: Application of RFID-TDA...

  7. NASH BARGAINING BASED BANDWIDTH ALLOCATION IN COGNITIVE RADIO FOR DELAY CRITICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Kalyani Kulkarni

    2015-11-01

    Full Text Available In order to effectively regulate the existing resources, dynamic spectrum access in cognitive radio needs to adopt the effective resource allocation strategies. Multimedia applications require large bandwidth and have to meet the delay constraints while maintaining the data quality. Game theory is emerging as an effective analytical tool for the analysis of available resources and its allocation. This paper addresses resource allocation schemes employing bargaining game model for Multi-carrier CDMA based Cognitive Radio. Resource allocation scheme is designed for transmission of video over cognitive radio networks and aim to perform bandwidth allocation for different cognitive users. Utility function based on bargaining model is proposed. Primary user utility function includes the pricing factor and an upbeat factor that can be adjusted by observing the delay constraints of the video. Allocated bandwidth to the secondary user can be adjusted by changing the upbeat factor. Throughput in the proposed scheme is increased by 2% as compared to other reported pricing based resource allocation schemes. The edge PSNR of reconstructed video obtained as 32.6dB resulting to optimum decoding of the video at the receiver. The study also shows upbeat factor can be used to enhanced capacity of the network.

  8. Cluster-based spectrum sensing for cognitive radios with imperfect channel to cluster-head

    KAUST Repository

    Ben Ghorbel, Mahdi

    2012-04-01

    Spectrum sensing is considered as the first and main step for cognitive radio systems to achieve an efficient use of spectrum. Cooperation and clustering among cognitive radio users are two techniques that can be employed with spectrum sensing in order to improve the sensing performance by reducing miss-detection and false alarm. In this paper, within the framework of a clustering-based cooperative spectrum sensing scheme, we study the effect of errors in transmitting the local decisions from the secondary users to the cluster heads (or the fusion center), while considering non-identical channel conditions between the secondary users. Closed-form expressions for the global probabilities of detection and false alarm at the cluster head are derived. © 2012 IEEE.

  9. Generalized location-based resource allocation for OFDMA cognitive radio systems

    KAUST Repository

    Ben Ghorbel, Mahdi

    2010-09-01

    Cognitive radio is one of the hot topics for emerging and future wireless communication. Cognitive users can share channels with primary users under the condition of non interference. In order to compute this interference, the cognitive system usually use the channel state information of the primary user which is often impractical to obtain. However, using location information, we can estimate this interference by pathloss computation. In this paper, we introduce a low-complexity resource allocation algorithm for orthogonal frequency division multiple access (OFDMA) based cognitive radio systems, which uses relative location information between primary and secondary users to estimate the interference. This algorithm considers interference with multiple primary users having different thresholds. The simulation results show the efficiency of the proposed algorithm by comparing it with an optimal exhaustive search method. © 2010 IEEE.

  10. Remote Impedance-based Loose Bolt Inspection Using a Radio-Frequency Active Sensing Node

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Hee; Yun, Chung Bang [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Inman, Daniel J. [Virginia Polytechnic Institute and State University, Virginia (United States)

    2007-06-15

    This paper introduces an active sensing node using radio-frequency (RF) telemetry. This device has brought the traditional impedance-based structural health monitoring (SHM) technique to a new paradigm. The RF active sensing node consists of a miniaturized impedance measuring device (AD5933), a microcontroller (ATmega128L), and a radio frequency (RF) transmitter (XBee). A macro-fiber composite (MFC) patch interrogates a host structure by using a self-sensing technique of the miniaturized impedance measuring device. All the process including structural interrogation, data acquisition, signal processing, and damage diagnostic is being performed at the sensor location by the microcontroller. The RF transmitter is used to communicate the current status of the host structure. The feasibility of the proposed SHM strategy is verified through an experimental study inspecting loose bolts in a bolt-jointed aluminum structure

  11. Remote Impedance-based Loose Bolt Inspection Using a Radio-Frequency Active Sensing Node

    International Nuclear Information System (INIS)

    Park, Seung Hee; Yun, Chung Bang; Inman, Daniel J.

    2007-01-01

    This paper introduces an active sensing node using radio-frequency (RF) telemetry. This device has brought the traditional impedance-based structural health monitoring (SHM) technique to a new paradigm. The RF active sensing node consists of a miniaturized impedance measuring device (AD5933), a microcontroller (ATmega128L), and a radio frequency (RF) transmitter (XBee). A macro-fiber composite (MFC) patch interrogates a host structure by using a self-sensing technique of the miniaturized impedance measuring device. All the process including structural interrogation, data acquisition, signal processing, and damage diagnostic is being performed at the sensor location by the microcontroller. The RF transmitter is used to communicate the current status of the host structure. The feasibility of the proposed SHM strategy is verified through an experimental study inspecting loose bolts in a bolt-jointed aluminum structure

  12. Cluster-based spectrum sensing for cognitive radios with imperfect channel to cluster-head

    KAUST Repository

    Ben Ghorbel, Mahdi; Nam, Haewoon; Alouini, Mohamed-Slim

    2012-01-01

    Spectrum sensing is considered as the first and main step for cognitive radio systems to achieve an efficient use of spectrum. Cooperation and clustering among cognitive radio users are two techniques that can be employed with spectrum sensing in order to improve the sensing performance by reducing miss-detection and false alarm. In this paper, within the framework of a clustering-based cooperative spectrum sensing scheme, we study the effect of errors in transmitting the local decisions from the secondary users to the cluster heads (or the fusion center), while considering non-identical channel conditions between the secondary users. Closed-form expressions for the global probabilities of detection and false alarm at the cluster head are derived. © 2012 IEEE.

  13. RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios

    Directory of Open Access Journals (Sweden)

    Zhi-Ling Tang

    2016-06-01

    Full Text Available Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system’s starting oscillation is determined, and the simulation results of the system’s response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured.

  14. Provocative radio transients and base rate bias: A Bayesian argument for conservatism

    Science.gov (United States)

    Hair, Thomas W.

    2013-10-01

    Most searches for alien radio transmissions have focused on finding omni-directional or purposefully earth-directed beams of enduring duration. However, most of the interesting signals so far detected have been transient and non-repeatable in nature. These signals could very well be the first data points in an ever-growing data base of such signals used to construct a probabilistic argument for the existence of extraterrestrial intelligence. This paper looks at the effect base rate bias could have on deciding which signals to include in such an archive based upon the likely assumption that our ability to discern natural from artificial signals will be less than perfect.

  15. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    Science.gov (United States)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  16. Lidar to lidar calibration of Ground-based Lidar

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Courtney, Michael

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  17. Music Radio as a Format Remediated for the Stream-Based Music Use

    DEFF Research Database (Denmark)

    Ægidius, Andreas Lenander

    What do music radio and music streaming have in common? The curated flow of music. Radio is featured in the main section of the Spotify user interface. Apple employs radio host for their streaming service, Apple Music. Music streaming and music radio seem closely related. Even in their use...... this theoretical contribution with reference to several empirical studies of everyday music streaming use and the fact that radio holds a significant position as both a stand-alone medium and as a contributing format within streaming music use. Why else does Spotify provide radio(s) and Apple Music likewise employ...

  18. Performance evaluation of a multi-radio, multi-hop ad-hoc radio communication network for Communications-Based Train Control (CBTC)

    DEFF Research Database (Denmark)

    Farooq, Jahanzeb; Bro, Lars; Karstensen, Rasmus Thystrup

    2017-01-01

    Communications-Based Train Control (CBTC) is a modern signalling system that uses radio communication to transfer train control information between the train and the wayside. A vast majority of CBTC systems worldwide use IEEE 802.11 Wi-Fi as the radio technology mostly due to its costeffectiveness....... The trackside networks in these systems are mostly based on conventional infrastructure Wi-Fi. It means a train has to continuously associate (i.e. perform handshake) with the trackside Wi-Fi Access Points (AP) as it moves. This is a timeconsuming process associated with a certain delay. Additionally, these APs...... are connected to the wayside infrastructure via optical fiber cables that incurs huge costs. This paper presents a novel design in which trackside nodes function in ad-hoc Wi-Fi mode, which means no association has to be performed with them prior to transmitting. A train simply broadcasts packets to any nodes...

  19. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  20. GPU-Based High-performance Imaging for Mingantu Spectral RadioHeliograph

    Science.gov (United States)

    Mei, Ying; Wang, Feng; Wang, Wei; Chen, Linjie; Liu, Yingbo; Deng, Hui; Dai, Wei; Liu, Cuiyin; Yan, Yihua

    2018-01-01

    As a dedicated solar radio interferometer, the MingantU SpEctral RadioHeliograph (MUSER) generates massive observational data in the frequency range of 400 MHz-15 GHz. High-performance imaging forms a significantly important aspect of MUSER’s massive data processing requirements. In this study, we implement a practical high-performance imaging pipeline for MUSER data processing. At first, the specifications of the MUSER are introduced and its imaging requirements are analyzed. Referring to the most commonly used radio astronomy software such as CASA and MIRIAD, we then implement a high-performance imaging pipeline based on the Graphics Processing Unit technology with respect to the current operational status of the MUSER. A series of critical algorithms and their pseudo codes, i.e., detection of the solar disk and sky brightness, automatic centering of the solar disk and estimation of the number of iterations for clean algorithms, are proposed in detail. The preliminary experimental results indicate that the proposed imaging approach significantly increases the processing performance of MUSER and generates images with high-quality, which can meet the requirements of the MUSER data processing. Supported by the National Key Research and Development Program of China (2016YFE0100300), the Joint Research Fund in Astronomy (No. U1531132, U1631129, U1231205) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and the Chinese Academy of Sciences (CAS), the National Natural Science Foundation of China (Nos. 11403009 and 11463003).

  1. MODELING ATMOSPHERIC EMISSION FOR CMB GROUND-BASED OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Errard, J.; Borrill, J. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Ade, P. A. R. [School of Physics and Astronomy, Cardiff University, Cardiff CF10 3XQ (United Kingdom); Akiba, Y.; Chinone, Y. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Arnold, K.; Atlas, M.; Barron, D.; Elleflot, T. [Department of Physics, University of California, San Diego, CA 92093-0424 (United States); Baccigalupi, C.; Fabbian, G. [International School for Advanced Studies (SISSA), Trieste I-34014 (Italy); Boettger, D. [Department of Astronomy, Pontifica Universidad Catolica de Chile (Chile); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, B3H 4R2 (Canada); Cukierman, A. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Delabrouille, J. [AstroParticule et Cosmologie, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cité (France); Dobbs, M.; Gilbert, A. [Physics Department, McGill University, Montreal, QC H3A 0G4 (Canada); Ducout, A.; Feeney, S. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Feng, C. [Department of Physics and Astronomy, University of California, Irvine (United States); and others

    2015-08-10

    Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3D-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the polarbear-i project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.

  2. Reflective electroabsorption modular for compact base station radio-over-fiber systems

    Science.gov (United States)

    Wu, Yang; Chang, Wei-Xi; Yu, Paul K. L.

    2003-07-01

    A Radio-over-Fiber system with simplified Base Station (BS) is proposed in which a single chip DBR Reflective Electro-absorption Modulator (REAM) serves both as an optical transceiver and as a mixer at the BS. It enables full duplex optical transmission for base band and RF band services simultaneously due to good isolation between uplink and downlink at the same chip. Grating structure is incorporated into the EA modulator for the sake of system design. It also improves yield and efficiency of high-speed devices.

  3. Deep ground water microbiology in Swedish granite rock and it's relevance for radio-nuclide migration from a Swedish high level nuclear waste repository

    International Nuclear Information System (INIS)

    Pedersen, Karsten

    1989-03-01

    Data on numbers, species and activity of deep ground water microbial populations in Swedish granite rock have been collected. Specific studies are performed on radio-nuclid uptake on bacteria judge to be probable inhabitants in Swedish nuclear waste repositories. An integrated mobile field laboratory was used for water sampling and for the immediate counting and inoculation of the samples from boreholes at levels between 129 and 860 m. A sampler adapted for the collection of undisturbed samples for gas analysis was used to collect samples for bacterial enumerations and enrichments. The sampler can be opened and closed from the surface at the actual sampling depth. The samples can subsequently be brought to the surface without contact with air and with the pressure at the actual sampling depth. The number of bacteria were determined in samples from the gas sampler when this was possible. Else numbers are determined in the water that is pumped up to the field lab. The average total number of bacteria is 3 x 10 5 bacterial ml -1 . The number of bacteria possible to recover with plate count arrays from 0.10 to 21.9%. (author)

  4. Performance Evaluation of Wireless WIT2410 Radio Frequency Transceiver used in AMIGO (Autonomous Microsystems for Ground Observation)

    National Research Council Canada - National Science Library

    Comeau, D; Laou, P; Durand, L

    2005-01-01

    .... Two of the major components in AMIGO are the RF transceiver and antennas for wireless communication that must provide reliable connectivity between the base station and each remote unit in any battlefield conditions...

  5. Csf Based Non-Ground Points Extraction from LIDAR Data

    Science.gov (United States)

    Shen, A.; Zhang, W.; Shi, H.

    2017-09-01

    Region growing is a classical method of point cloud segmentation. Based on the idea of collecting the pixels with similar properties to form regions, region growing is widely used in many fields such as medicine, forestry and remote sensing. In this algorithm, there are two core problems. One is the selection of seed points, the other is the setting of the growth constraints, in which the selection of the seed points is the foundation. In this paper, we propose a CSF (Cloth Simulation Filtering) based method to extract the non-ground seed points effectively. The experiments have shown that this method can obtain a group of seed spots compared with the traditional methods. It is a new attempt to extract seed points

  6. Monitoring Hydraulic Fracturing Using Ground-Based Controlled Source Electromagnetics

    Science.gov (United States)

    Hickey, M. S.; Trevino, S., III; Everett, M. E.

    2017-12-01

    Hydraulic fracturing allows hydrocarbon production in low permeability formations. Imaging the distribution of fluid used to create a hydraulic fracture can aid in the characterization of fracture properties such as extent of plume penetration as well as fracture azimuth and symmetry. This could contribute to improving the efficiency of an operation, for example, in helping to determine ideal well spacing or the need to refracture a zone. A ground-based controlled-source electromagnetics (CSEM) technique is ideal for imaging the fluid due to the change in field caused by the difference in the conductive properties of the fluid when compared to the background. With advances in high signal to noise recording equipment, coupled with a high-power, broadband transmitter we can show hydraulic fracture extent and azimuth with minimal processing. A 3D finite element code is used to model the complete well casing along with the layered subsurface. This forward model is used to optimize the survey design and isolate the band of frequencies with the best response. In the field, the results of the modeling are also used to create a custom pseudorandom numeric (PRN) code to control the frequencies transmitted through a grounded dipole source. The receivers record the surface voltage across two grounded dipoles, one parallel and one perpendicular to the transmitter. The data are presented as the displays of amplitude ratios across several frequencies with the associated spatial information. In this presentation, we show multiple field results in multiple basins in the United States along with the CSEM theory used to create the survey designs.

  7. Mechanisms of time-based figure-ground segregation.

    Science.gov (United States)

    Kandil, Farid I; Fahle, Manfred

    2003-11-01

    Figure-ground segregation can rely on purely temporal information, that is, on short temporal delays between positional changes of elements in figure and ground (Kandil, F.I. & Fahle, M. (2001) Eur. J. Neurosci., 13, 2004-2008). Here, we investigate the underlying mechanisms by measuring temporal segregation thresholds for various kinds of motion cues. Segregation can rely on monocular first-order motion (based on luminance modulation) and second-order motion cues (contrast modulation) with a high temporal resolution of approximately 20 ms. The mechanism can also use isoluminant motion with a reduced temporal resolution of 60 ms. Figure-ground segregation can be achieved even at presentation frequencies too high for human subjects to inspect successive frames individually. In contrast, when stimuli are presented dichoptically, i.e. separately to both eyes, subjects are unable to perceive any segregation, irrespective of temporal frequency. We propose that segregation in these displays is detected by a mechanism consisting of at least two stages. On the first level, standard motion or flicker detectors signal local positional changes (flips). On the second level, a segregation mechanism combines the local activities of the low-level detectors with high temporal precision. Our findings suggest that the segregation mechanism can rely on monocular detectors but not on binocular mechanisms. Moreover, the results oppose the idea that segregation in these displays is achieved by motion detectors of a higher order (motion-from-motion), but favour mechanisms sensitive to short temporal delays even without activation of higher-order motion detectors.

  8. Radio science investigations with Voyager

    International Nuclear Information System (INIS)

    Eshleman, V.R.; Tyler, G.L.; Croft, T.A.

    1977-01-01

    The planned radio science investigations during the Voyager missions to the outer planets involve: (1) the use of the radio links to and from the spacecraft for occultation measurements of planetary and satellite atmospheres and ionospheres, the rings of Saturn, the solar corona, and the general-relativistic time delay for radiowave propagation through the Sun's gravity field; (2) radio link measurements of true or apparent spacecraft motion caused by the gravity fields of the planets, the masses of their larger satellites, and characteristics of the interplanetary medium; and (3) related measurements which could provide results in other areas, including the possible detection of long-wavelength gravitational radiation propagating through the Solar System. The measurements will be used to study: atmospheric and ionospheric structure, constituents, and dynamics; the sizes, radial distribution, total mass, and other characteristics of the particles in the rings of Saturn; interior models for the major planets and the mean density and bulk composition of a number of their satellites; the plasma density and dynamics of the solar corona and interplanetary medium; and certain fundamental questions involving gravitation and relativity. The instrumentation for these experiments is the same ground-based and spacecraft radio systems as will be used for tracking and communicating with the Voyager spacecraft, although several important features of these systems have been provided primarily for the radio science investigations. (Auth.)

  9. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    International Nuclear Information System (INIS)

    Chiara, P.; Morelli, A.

    2010-01-01

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements.Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken.This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  10. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    Science.gov (United States)

    Chiara, P.; Morelli, A.

    2010-05-01

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements. Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken. This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  11. Ground-based observations coordinated with Viking satellite measurements

    International Nuclear Information System (INIS)

    Opgenoorth, H.J.; Kirkwood, S.

    1989-01-01

    The instrumentation and the orbit of the Viking satellite made this first Swedish satellite mission ideally suited for coordinated observations with the dense network of ground-based stations in northern Scandinavia. Several arrays of complementing instruments such as magnetometers, all-sky cameras, riometers and doppler radars monitored on a routine basis the ionosphere under the magnetospheric region passed by Viking. For a large number of orbits the Viking passages close to Scandinavia were covered by the operation of specially designed programmes at the European incoherent-scatter facility (EISCAT). First results of coordinated observations on the ground and aboard Viking have shed new light on the most spectacular feature of substorm expansion, the westward-travelling surge. The end of a substorm and the associated decay of a westward-travelling surge have been analysed. EISCAT measurements of high spatial and temporal resolution indicate that the conductivities and electric fields associated with westward-travelling surges are not represented correctly by the existing models. (author)

  12. Implementasi Rule Based Expert Systems untuk Realtime Monitoring Penyelesaian Perkara Pidana Menggunakan Teknologi Radio Frequency Identification

    Directory of Open Access Journals (Sweden)

    Mar Fuah

    2017-05-01

    Full Text Available One of the problems in the criminal case completions is that the difficulty of making decision to estimate when the settlement of the case file will be fulfilled. It is caused by the number of case files handled and detention time changing. Therefore, the fast and accurate information is needed. The research aims to develop a monitoring system tracking and tracking of scheduling rules using Rule Based Expert Systems method with 17 rules, and supported by Radio Frequency Identification technology (RFID in the form of computer applications. Based on the output of the system, an analysis is performed in the criminal case settlement process with a set of IF-THEN rules. The RFID reader read the data of case files through radio wave signals emitted by the antenna toward active-Tag attached in the criminal case file. The system is designed to monitor the tracking and tracing of RFID-based scheduling rules in realtime way that was built in the form of computer application in accordance with the system design. This study results in no failure in reading active tags by the RFID reader to detect criminal case files that had been examined. There were many case files handled in three different location, they were the constabulary, prosecutor, and judges of district court and RFID was able to identify them simultaneously. So, RFID supports the implementation of Rule Based Expert Systems very much for realtime monitoring in criminal case accomplishment.

  13. Mean value-based power allocation and ratio selection for MIMO cognitive radio systems

    KAUST Repository

    Tourki, Kamel; Qaraqe, Khalid A.; Alouini, Mohamed-Slim

    2013-01-01

    In this paper, we consider a spectrum sharing cognitive radio system with ratio selection using a mean value-based power allocation strategy. We first provide the exact statistics in terms of probability density function and cumulative density function of the secondary channel gain as well as of the interference channel gain. These statistics are then used to derive exact closed form expression of the secondary outage probability. Furthermore, asymptotical analysis is derived and generalized diversity gain is deduced. We validate our analysis with simulation results in a Rayleigh fading environment. © 2013 IEEE.

  14. In-situ radiation dosimetry based on radio-fluorogenic co-polymerization

    International Nuclear Information System (INIS)

    Warman, John M; Luthjens, Leonard H; Haas, Matthijs P de

    2009-01-01

    A fluorimetric method of radiation dosimetry is presented for which the intensity of the fluorescence of a (tissue equivalent) medium is linearly dependent on accumulated dose from a few Gray up to kiloGrays. The method is based on radio-fluorogenic co-polymerization (RFCP) in which a normally very weakly fluorescent molecule becomes highly fluorescent when incorporated into a (radiation-initiated) growing polymer chain. The method is illustrated with results of in-situ measurements within the chamber of a cobalt-60 irradiator. It is proposed that RFCP could form the basis for fluorimetric multi-dimensional dose imaging.

  15. Mean value-based power allocation and ratio selection for MIMO cognitive radio systems

    KAUST Repository

    Tourki, Kamel

    2013-06-01

    In this paper, we consider a spectrum sharing cognitive radio system with ratio selection using a mean value-based power allocation strategy. We first provide the exact statistics in terms of probability density function and cumulative density function of the secondary channel gain as well as of the interference channel gain. These statistics are then used to derive exact closed form expression of the secondary outage probability. Furthermore, asymptotical analysis is derived and generalized diversity gain is deduced. We validate our analysis with simulation results in a Rayleigh fading environment. © 2013 IEEE.

  16. Design of Meander-Line Antennas for Radio Frequency Identification Based on Multiobjective Optimization

    Directory of Open Access Journals (Sweden)

    X. L. Travassos

    2012-01-01

    Full Text Available This paper presents optimization problem formulations to design meander-line antennas for passive UHF radio frequency identification tags based on given specifications of input impedance, frequency range, and geometric constraints. In this application, there is a need for directive transponders to select properly the target tag, which in turn must be ideally isotropic. The design of an effective meander-line antenna for RFID purposes requires balancing geometrical characteristics with the microchip impedance. Therefore, there is an issue of optimization in determining the antenna parameters for best performance. The antenna is analyzed by a method of moments. Some results using a deterministic optimization algorithm are shown.

  17. Multiuser Radio Resource Allocation for Multiservice Transmission in OFDMA-Based Cooperative Relay Networks

    Directory of Open Access Journals (Sweden)

    Zhang Xing

    2009-01-01

    Full Text Available Abstract The problem of multiservice transmission in OFDMA-based cooperative relay networks is studied comprehensively. We propose a framework to adaptively allocate power, subcarriers, and data rate in OFDMA system to maximize spectral efficiency under the constraints of satisfying multiuser multiservices' QoS requirements. Specifically, first we concentrate on the single-user scenario which considers multiservice transmission in point-to-point cooperative relay network. Based on the analysis of single-user scenario, we extend the multiservice transmission to multiuser point-to-multipoint scenario. Next, based on the framework, we propose several suboptimal radio resource allocation algorithms for multiservice transmissions in OFDMA-based cooperative relay networks to further reduce the computational complexity. Simulation results show that the proposed algorithms yield much higher spectral efficiency and much lower outage probability, which are flexible and efficient for the OFDMA-based cooperative relay system.

  18. Reconstruction of Sky Illumination Domes from Ground-Based Panoramas

    Science.gov (United States)

    Coubard, F.; Lelégard, L.; Brédif, M.; Paparoditis, N.; Briottet, X.

    2012-07-01

    The knowledge of the sky illumination is important for radiometric corrections and for computer graphics applications such as relighting or augmented reality. We propose an approach to compute environment maps, representing the sky radiance, from a set of ground-based images acquired by a panoramic acquisition system, for instance a mobile-mapping system. These images can be affected by important radiometric artifacts, such as bloom or overexposure. A Perez radiance model is estimated with the blue sky pixels of the images, and used to compute additive corrections in order to reduce these radiometric artifacts. The sky pixels are then aggregated in an environment map, which still suffers from discontinuities on stitching edges. The influence of the quality of estimated sky radiance on the simulated light signal is measured quantitatively on a simple synthetic urban scene; in our case, the maximal error for the total sensor radiance is about 10%.

  19. Ground-based transmission line conductor motion sensor

    International Nuclear Information System (INIS)

    Jacobs, M.L.; Milano, U.

    1988-01-01

    A ground-based-conductor motion-sensing apparatus is provided for remotely sensing movement of electric-power transmission lines, particularly as would occur during the wind-induced condition known as galloping. The apparatus is comprised of a motion sensor and signal-generating means which are placed underneath a transmission line and will sense changes in the electric field around the line due to excessive line motion. The detector then signals a remote station when a conditioning of galloping is sensed. The apparatus of the present invention is advantageous over the line-mounted sensors of the prior art in that it is easier and less hazardous to install. The system can also be modified so that a signal will only be given when particular conditions, such as specific temperature range, large-amplitude line motion, or excessive duration of the line motion, are occurring

  20. RECONSTRUCTION OF SKY ILLUMINATION DOMES FROM GROUND-BASED PANORAMAS

    Directory of Open Access Journals (Sweden)

    F. Coubard

    2012-07-01

    Full Text Available The knowledge of the sky illumination is important for radiometric corrections and for computer graphics applications such as relighting or augmented reality. We propose an approach to compute environment maps, representing the sky radiance, from a set of ground-based images acquired by a panoramic acquisition system, for instance a mobile-mapping system. These images can be affected by important radiometric artifacts, such as bloom or overexposure. A Perez radiance model is estimated with the blue sky pixels of the images, and used to compute additive corrections in order to reduce these radiometric artifacts. The sky pixels are then aggregated in an environment map, which still suffers from discontinuities on stitching edges. The influence of the quality of estimated sky radiance on the simulated light signal is measured quantitatively on a simple synthetic urban scene; in our case, the maximal error for the total sensor radiance is about 10%.

  1. Wavelet-based ground vehicle recognition using acoustic signals

    Science.gov (United States)

    Choe, Howard C.; Karlsen, Robert E.; Gerhart, Grant R.; Meitzler, Thomas J.

    1996-03-01

    We present, in this paper, a wavelet-based acoustic signal analysis to remotely recognize military vehicles using their sound intercepted by acoustic sensors. Since expedited signal recognition is imperative in many military and industrial situations, we developed an algorithm that provides an automated, fast signal recognition once implemented in a real-time hardware system. This algorithm consists of wavelet preprocessing, feature extraction and compact signal representation, and a simple but effective statistical pattern matching. The current status of the algorithm does not require any training. The training is replaced by human selection of reference signals (e.g., squeak or engine exhaust sound) distinctive to each individual vehicle based on human perception. This allows a fast archiving of any new vehicle type in the database once the signal is collected. The wavelet preprocessing provides time-frequency multiresolution analysis using discrete wavelet transform (DWT). Within each resolution level, feature vectors are generated from statistical parameters and energy content of the wavelet coefficients. After applying our algorithm on the intercepted acoustic signals, the resultant feature vectors are compared with the reference vehicle feature vectors in the database using statistical pattern matching to determine the type of vehicle from where the signal originated. Certainly, statistical pattern matching can be replaced by an artificial neural network (ANN); however, the ANN would require training data sets and time to train the net. Unfortunately, this is not always possible for many real world situations, especially collecting data sets from unfriendly ground vehicles to train the ANN. Our methodology using wavelet preprocessing and statistical pattern matching provides robust acoustic signal recognition. We also present an example of vehicle recognition using acoustic signals collected from two different military ground vehicles. In this paper, we will

  2. Satellite and Ground Based Monitoring of Aerosol Plumes

    International Nuclear Information System (INIS)

    Doyle, Martin; Dorling, Stephen

    2002-01-01

    Plumes of atmospheric aerosol have been studied using a range of satellite and ground-based techniques. The Sea-viewing WideField-of-view Sensor (SeaWiFS) has been used to observe plumes of sulphate aerosol and Saharan dust around the coast of the United Kingdom. Aerosol Optical Thickness (AOT) was retrieved from SeaWiFS for two events; a plume of Saharan dust transported over the United Kingdom from Western Africa and a period of elevated sulphate experienced over the Easternregion of the UK. Patterns of AOT are discussed and related to the synoptic and mesoscale weather conditions. Further observation of the sulphate aerosol event was undertaken using the Advanced Very High Resolution Radiometer instrument(AVHRR). Atmospheric back trajectories and weather conditions were studied in order to identify the meteorological conditions which led to this event. Co-located ground-based measurements of PM 10 and PM 2.5 were obtained for 4sites within the UK and PM 2.5/10 ratios were calculated in order to identify any unusually high or low ratios(indicating the dominant size fraction within the plume)during either of these events. Calculated percentiles ofPM 2.5/10 ratios during the 2 events examined show that these events were notable within the record, but were in noway unique or unusual in the context of a 3 yr monitoring record. Visibility measurements for both episodes have been examined and show that visibility degradation occurred during both the sulphate aerosol and Saharan dust episodes

  3. Radio-Agriculture - Ground and Space-Based Determination of Agricultural Productivity

    Science.gov (United States)

    Cockell, C. S.

    The decision to sow seeds in a field, either on a local level (such as on an individual plot) or on vast agricultural complexes, is irreversible. Once the seed is sown, provided there is liquid water, tem- perature conditions are adequate and in some cases light is available, it will germinate. The timing of seed sowing has important effects on subsequent agricultural productivity [1-4]. The correlation between time of sowing and productivity causes several problems. Firstly, sowing seed depends absolutely upon a correct judgement on weather conditions, sometimes to the day. Secondly, not all crops need to be sown at the same time and so resources in manpower and equipment must be available for sowing different crops at different times. Great im- provements in resource allocation could be made if all seeds could be sown at the same time. Thirdly, there is no flexibility once resources to sowing have been committed. For example, in large agricultural areas manpower and machinery might be committed at particular times of the year to sowing, but if the weather conditions are not correct either they must be re-scheduled or productivity is lost. Local factors such as irrigation system availability might also impose upon a farmer a wish to be able to regulate the germination of particular fields, particularly in developing countries.

  4. A Spectrum Handoff Scheme for Optimal Network Selection in NEMO Based Cognitive Radio Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Krishan Kumar

    2017-01-01

    Full Text Available When a mobile network changes its point of attachments in Cognitive Radio (CR vehicular networks, the Mobile Router (MR requires spectrum handoff. Network Mobility (NEMO in CR vehicular networks is concerned with the management of this movement. In future NEMO based CR vehicular networks deployment, multiple radio access networks may coexist in the overlapping areas having different characteristics in terms of multiple attributes. The CR vehicular node may have the capability to make call for two or more types of nonsafety services such as voice, video, and best effort simultaneously. Hence, it becomes difficult for MR to select optimal network for the spectrum handoff. This can be done by performing spectrum handoff using Multiple Attributes Decision Making (MADM methods which is the objective of the paper. The MADM methods such as grey relational analysis and cost based methods are used. The application of MADM methods provides wider and optimum choice among the available networks with quality of service. Numerical results reveal that the proposed scheme is effective for spectrum handoff decision for optimal network selection with reduced complexity in NEMO based CR vehicular networks.

  5. Radio astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Nagnibeda, V.G.

    1981-01-01

    The history of radio astronomical observations at the Astronomical Observatory of Leningrad State University is reviewed. Various facilities are described, and methods and instruments used are discussed. Some results are summarized for radio observations of the sun, including observations of local sources of solar radio emission, the absolute solar radio flux, and radio emission from filaments and prominences.

  6. Ukrainian Topics in the Radio Liberty Programs (1950s-1970s (Based on M. Demkovych-Dobrianskyi’s archive

    Directory of Open Access Journals (Sweden)

    D. M. Kravets

    2017-12-01

    Full Text Available The paper deals with Radio Liberty programs devoted to Ukrainian topics: history, culture, policy etc. Presented paper is based on the Mykhaylo Demkovych-Dobrianskyi personal archive. M. Dobrianskyi (1905–2004 was one of the first chief-editors of the Ukrainian edition of Radio Liberty in Munich. The paper describes his biography and intellectual heritage. He studied jurisprudence in Lviv, Vienna and Berlin. Worked as an editor in different Ukrainian newspapers and journals. During 1956–1972 M. Dobrianskyi was professionally affiliated with Radio Liberty. After retirement, he lived in London. M. Dobrianskyi was an author of hundreds of radio programs dedicated to: Ukrainian-Russian relations (especially huge influence of Ukrainian scholars on Russian history, problems of Ukrainian culture in the Soviet Union (russification, lack of dictionaries and audio types with Ukrainian songs etc., role of Ukrainian dissidents in the USSR (series of programs devoted to V. Chornovil, I. Dziuba etc., situation in Ukrainian Catholic Church.

  7. Cross stratum resources protection in fog-computing-based radio over fiber networks for 5G services

    Science.gov (United States)

    Guo, Shaoyong; Shao, Sujie; Wang, Yao; Yang, Hui

    2017-09-01

    In order to meet the requirement of internet of things (IoT) and 5G, the cloud radio access network is a paradigm which converges all base stations computational resources into a cloud baseband unit (BBU) pool, while the distributed radio frequency signals are collected by remote radio head (RRH). A precondition for centralized processing in the BBU pool is an interconnection fronthaul network with high capacity and low delay. However, it has become more complex and frequent in the interaction between RRH and BBU and resource scheduling among BBUs in cloud. Cloud radio over fiber network has been proposed in our previous work already. In order to overcome the complexity and latency, in this paper, we first present a novel cross stratum resources protection (CSRP) architecture in fog-computing-based radio over fiber networks (F-RoFN) for 5G services. Additionally, a cross stratum protection (CSP) scheme considering the network survivability is introduced in the proposed architecture. The CSRP with CSP scheme can effectively pull the remote processing resource locally to implement the cooperative radio resource management, enhance the responsiveness and resilience to the dynamic end-to-end 5G service demands, and globally optimize optical network, wireless and fog resources. The feasibility and efficiency of the proposed architecture with CSP scheme are verified on our software defined networking testbed in terms of service latency, transmission success rate, resource occupation rate and blocking probability.

  8. Spectrum Handoffs Based on Preemptive Repeat Priority Queue in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Xiaolong Yang

    2016-07-01

    Full Text Available Cognitive radio can significantly improve the spectrum efficiency, and spectrum handoff is considered as an important functionality to guarantee the quality of service (QoS of primary users (PUs and the continuity of data transmission of secondary users (SUs. In this paper, we propose an analytical framework based on a preemptive repeat identical (PRI M/G/1 queuing network model to characterize spectrum handoff behaviors with general service time distribution of both primary and secondary connections, multiple interruptions and transmission delay resulting from the appearance of primary connections. Then, we derive the close-expression of the extended data delivery and the system sojourn time in both staying and changing scenarios. In addition, based on analysis of spectrum handoff behaviors resulting from multiple interruptions caused by the appearance of the primary connections, we investigate the traffic-adaptive policy, by which the considered SU will optimally adjust its handoff spectrum policy. Moreover, we investigate the admissible region and provide the reference for designing the admission control rule for the arriving secondary connection requests. Finally, simulation results verify that our proposed analytical framework is reasonable and can provide the reference for executing the optimal spectrum handoff strategy and designing the admission control rule for the SU in cognitive radio networks.

  9. Distributed Schemes for Crowdsourcing-Based Sensing Task Assignment in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Linbo Zhai

    2017-01-01

    Full Text Available Spectrum sensing is an important issue in cognitive radio networks. The unlicensed users can access the licensed wireless spectrum only when the licensed wireless spectrum is sensed to be idle. Since mobile terminals such as smartphones and tablets are popular among people, spectrum sensing can be assigned to these mobile intelligent terminals, which is called crowdsourcing method. Based on the crowdsourcing method, this paper studies the distributed scheme to assign spectrum sensing task to mobile terminals such as smartphones and tablets. Considering the fact that mobile terminals’ positions may influence the sensing results, a precise sensing effect function is designed for the crowdsourcing-based sensing task assignment. We aim to maximize the sensing effect function and cast this optimization problem to address crowdsensing task assignment in cognitive radio networks. This problem is difficult to be solved because the complexity of this problem increases exponentially with the growth in mobile terminals. To assign crowdsensing task, we propose four distributed algorithms with different transition probabilities and use a Markov chain to analyze the approximation gap of our proposed schemes. Simulation results evaluate the average performance of our proposed algorithms and validate the algorithm’s convergence.

  10. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  11. Vision-based Ground Test for Active Debris Removal

    Directory of Open Access Journals (Sweden)

    Seong-Min Lim

    2013-12-01

    Full Text Available Due to the continuous space development by mankind, the number of space objects including space debris in orbits around the Earth has increased, and accordingly, difficulties of space development and activities are expected in the near future. In this study, among the stages for space debris removal, the implementation of a vision-based approach technique for approaching space debris from a far-range rendezvous state to a proximity state, and the ground test performance results were described. For the vision-based object tracking, the CAM-shift algorithm with high speed and strong performance, and the Kalman filter were combined and utilized. For measuring the distance to a tracking object, a stereo camera was used. For the construction of a low-cost space environment simulation test bed, a sun simulator was used, and in the case of the platform for approaching, a two-dimensional mobile robot was used. The tracking status was examined while changing the position of the sun simulator, and the results indicated that the CAM-shift showed a tracking rate of about 87% and the relative distance could be measured down to 0.9 m. In addition, considerations for future space environment simulation tests were proposed.

  12. Satellite- and ground-based observations of atmospheric water vapor absorption in the 940 nm region

    International Nuclear Information System (INIS)

    Albert, P.; Smith, K.M.; Bennartz, R.; Newnham, D.A.; Fischer, J.

    2004-01-01

    Ground-based measurements of direct absorption of solar radiation between 9000 and 13,000 cm -1 (770-1100 nm) with a spectral resolution of 0.05 cm -1 are compared with line-by-line simulations of atmospheric absorption based on different molecular databases (HITRAN 2000, HITRAN 99, HITRAN 96 and ESA-WVR). Differences between measurements and simulations can be reduced to a great amount by scaling the individual line intensities with spectral and database dependent scaling factors. Scaling factors are calculated for the selected databases using a Marquardt non-linear least-squares fit together with a forward model for 100 cm -1 wide intervals between 10,150 and 11,250 cm -1 as well as for the water vapor absorption channels of the Medium Resolution Imaging Spectrometer (MERIS) onboard the European Space Agency's (ESA) ENVISAT platform and the Modular Optoelectronic Scanner (MOS) on the Indian IRSP-3 platform, developed by the German Aerospace Centre (DLR). For the latter, the scaling coefficients are converted into correction factors for retrieved total columnar water vapor content and used for a comparison of MOS-based retrievals of total columnar atmospheric water vapor above cloud-free land surfaces with radio soundings. The scaling factors determined for 100 cm -1 wide intervals range from 0.85 for the ESA-WVR molecular database to 1.15 for HITRAN 96. The best agreement between measurements and simulations is achieved with HITRAN 99 and HITRAN 2000, respectively, using scaling factors between 0.9 and 1. The effects on the satellite-based retrievals of columnar atmospheric water vapor range from 2% (HITRAN 2000) to 12% (ESA-WVR)

  13. Long term landslide monitoring with Ground Based SAR

    Science.gov (United States)

    Monserrat, Oriol; Crosetto, Michele; Luzi, Guido; Gili, Josep; Moya, Jose; Corominas, Jordi

    2014-05-01

    In the last decade, Ground-Based (GBSAR) has proven to be a reliable microwave Remote Sensing technique in several application fields, especially for unstable slopes monitoring. GBSAR can provide displacement measurements over few squared kilometres areas and with a very high spatial and temporal resolution. This work is focused on the use of GBSAR technique for long term landslide monitoring based on a particular data acquisition configuration, which is called discontinuous GBSAR (D-GBSAR). In the most commonly used GBSAR configuration, the radar is left installed in situ, acquiring data periodically, e.g. every few minutes. Deformations are estimated by processing sets of GBSAR images acquired during several weeks or months, without moving the system. By contrast, in the D-GBSAR the radar is installed and dismounted at each measurement campaign, revisiting a given site periodically. This configuration is useful to monitor slow deformation phenomena. In this work, two alternative ways for exploiting the D-GBSAR technique will be presented: the DInSAR technique and the Amplitude based Technique. The former is based on the exploitation of the phase component of the acquired SAR images and it allows providing millimetric precision on the deformation estimates. However, this technique presents several limitations like the reduction of measurable points with an increase in the period of observation, the ambiguous nature of the phase measurements, and the influence of the atmospheric phase component that can make it non applicable in some cases, specially when working in natural environments. The second approach, that is based on the use of the amplitude component of GB-SAR images combined with a image matching technique, will allow the estimation of the displacements over specific targets avoiding two of the limitations commented above: the phase unwrapping and atmosphere contribution but reducing the deformation measurement precision. Two successful examples of D

  14. Control Method of Single-phase Inverter Based Grounding System in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, L.; Zeng, X.

    2016-01-01

    of neutral-to-ground voltage is critical for the safety of distribution networks. An active grounding system based on single-phase inverter is proposed to achieve this objective. Relationship between output current of the system and neutral-to-ground voltage is derived to explain the principle of neutral......The asymmetry of the inherent distributed capacitances causes the rise of neutral-to-ground voltage in ungrounded system or high resistance grounded system. Overvoltage may occur in resonant grounded system if Petersen coil is resonant with the distributed capacitances. Thus, the restraint...

  15. Power allocation, bit loading and sub-carrier bandwidth sizing for OFDM-based cognitive radio

    Directory of Open Access Journals (Sweden)

    Desai Uday

    2011-01-01

    Full Text Available Abstract The function of the Radio Resource Management module of a Cognitive Radio (CR system is to evaluate the available resources and assign them to meet the Quality of Service (QoS objectives of the Secondary User (SU, within some constraints on factors which limit the performance of the Primary User (PU. While interference mitigation to the PU spectral band from the SU's transmission has received a lot of attention in recent literature; the novelty of our work is in considering a more realistic and effective approach of dividing the PU into sub-bands, and ensuring that the interference to each of them is below a specified threshold. With this objective, and within a power budget, we execute the tasks of power allocation, bit loading and sizing the sub-carrier bandwidth for an orthogonal frequency division multiplexing (OFDM-based SU. After extensively analyzing the solution form of the optimization problems posed for the resource allocation, we suggest iterative algorithms to meet the aforementioned objectives. The algorithm for sub-carrier bandwidth sizing is novel, and not previously presented in literature. A multiple SU scenario is also considered, which entails assigning sub-carriers to the users, besides the resource allocation. Simulation results are provided, for both single and multi-user cases, which indicate the effectiveness of the proposed algorithms in a CR environment.

  16. Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery.

    Science.gov (United States)

    Fong, Jeffrey; Xiao, Zhiming; Takahata, Kenichi

    2015-02-21

    We demonstrate an active, implantable drug delivery device embedded with a microfluidic pump that is driven by a radio-controlled actuator for temporal drug delivery. The polyimide-packaged 10 × 10 × 2 mm(3) chip contains a micromachined pump chamber and check valves of Parylene C to force the release of the drug from a 76 μL reservoir by wirelessly activating the actuator using external radio-frequency (RF) electromagnetic fields. The rectangular-shaped spiral-coil actuator based on nitinol, a biocompatible shape-memory alloy, is developed to perform cantilever-like actuation for pumping operation. The nitinol-coil actuator itself forms a passive 185 MHz resonant circuit that serves as a self-heat source activated via RF power transfer to enable frequency-selective actuation and pumping. Experimental wireless operation of fabricated prototypes shows successful release of test agents from the devices placed in liquid and excited by radiating tuned RF fields with an output power of 1.1 W. These tests reveal a single release volume of 219 nL, suggesting a device's capacity of ~350 individual ejections of drug from its reservoir. The thermal behavior of the activated device is also reported in detail. This proof-of-concept prototype validates the effectiveness of wireless RF pumping for fully controlled, long-lasting drug delivery, a key step towards enabling patient-tailored, targeted local drug delivery through highly miniaturized implants.

  17. A single-board NMR spectrometer based on a software defined radio architecture

    International Nuclear Information System (INIS)

    Tang, Weinan; Wang, Weimin

    2011-01-01

    A single-board software defined radio (SDR) spectrometer for nuclear magnetic resonance (NMR) is presented. The SDR-based architecture, realized by combining a single field programmable gate array (FPGA) and a digital signal processor (DSP) with peripheral radio frequency (RF) front-end circuits, makes the spectrometer compact and reconfigurable. The DSP, working as a pulse programmer, communicates with a personal computer via a USB interface and controls the FPGA through a parallel port. The FPGA accomplishes digital processing tasks such as a numerically controlled oscillator (NCO), digital down converter (DDC) and gradient waveform generator. The NCO, with agile control of phase, frequency and amplitude, is part of a direct digital synthesizer that is used to generate an RF pulse. The DDC performs quadrature demodulation, multistage low-pass filtering and gain adjustment to produce a bandpass signal (receiver bandwidth from 3.9 kHz to 10 MHz). The gradient waveform generator is capable of outputting shaped gradient pulse waveforms and supports eddy-current compensation. The spectrometer directly acquires an NMR signal up to 30 MHz in the case of baseband sampling and is suitable for low-field (<0.7 T) application. Due to the featured SDR architecture, this prototype has flexible add-on ability and is expected to be suitable for portable NMR systems

  18. vNet Zero Energy for Radio Base Stations- Balearic Scenario

    DEFF Research Database (Denmark)

    Sabater, Pere; Mihovska, Albena Dimitrova; Pol, Andreu Moia

    2016-01-01

    The Balearic Islands have one of the best telecommunications infrastructures in Spain, with more than 1500 Radio Base Stations (RBS) covering a total surface of 4.991,66 km². This archipelago has high energy consumption, with high CO2 emissions, due to an electrical energy production system mainly...... based on coal and fossil fuels which is not an environmentally sustainable scenario. The aim of this study is to identify the processes that would reduce the energy consumption and greenhouse gas emissions, designing a target scenario featuring "zero CO2 emissions" and "100% renewable energies" in RBS....... The energy costs, CO2 emissions and data traffic data used for the study are generated by a sample of RBS from the Balearic Islands. The results are shown in terms of energy performance for a normal and net zero emissions scenarios....

  19. Rule Based System for Medicine Inventory Control Using Radio Frequency Identification (RFID

    Directory of Open Access Journals (Sweden)

    Ardhyanti Mita Nugraha Joanna

    2018-01-01

    Full Text Available Rule based system is very efficient to ensure stock of drug to remain available by utilizing Radio Frequency Identification (RFID as input means automatically. This method can ensure the stock of drugs to remain available by analyzing the needs of drug users. The research data was the amount of drug usage in hospital for 1 year. The data was processed by using ABC classification to determine the drug with fast, medium and slow movement. In each classification result, rule based algorithm was given for determination of safety stock and Reorder Point (ROP. This research yielded safety stock and ROP values that vary depending on the class of each drug. Validation is done by comparing the calculation of safety stock and reorder point both manually and by system, then, it was found that the mean deviation value at safety stock was 0,03 and and ROP was 0,08.

  20. Rule Based System for Medicine Inventory Control Using Radio Frequency Identification (RFID)

    Science.gov (United States)

    Nugraha, Joanna Ardhyanti Mita; Suryono; Suseno, dan Jatmiko Endro

    2018-02-01

    Rule based system is very efficient to ensure stock of drug to remain available by utilizing Radio Frequency Identification (RFID) as input means automatically. This method can ensure the stock of drugs to remain available by analyzing the needs of drug users. The research data was the amount of drug usage in hospital for 1 year. The data was processed by using ABC classification to determine the drug with fast, medium and slow movement. In each classification result, rule based algorithm was given for determination of safety stock and Reorder Point (ROP). This research yielded safety stock and ROP values that vary depending on the class of each drug. Validation is done by comparing the calculation of safety stock and reorder point both manually and by system, then, it was found that the mean deviation value at safety stock was 0,03 and and ROP was 0,08.

  1. Space- and Ground-based Coronal Spectro-Polarimetry

    Science.gov (United States)

    Fineschi, Silvano; Bemporad, Alessandro; Rybak, Jan; Capobianco, Gerardo

    This presentation gives an overview of the near-future perspectives of ultraviolet and visible-light spectro-polarimetric instrumentation for probing coronal magnetism from space-based and ground-based observatories. Spectro-polarimetric imaging of coronal emission-lines in the visible-light wavelength-band provides an important diagnostics tool of the coronal magnetism. The interpretation in terms of Hanle and Zeeman effect of the line-polarization in forbidden emission-lines yields information on the direction and strength of the coronal magnetic field. As study case, this presentation will describe the Torino Coronal Magnetograph (CorMag) for the spectro-polarimetric observation of the FeXIV, 530.3 nm, forbidden emission-line. CorMag - consisting of a Liquid Crystal (LC) Lyot filter and a LC linear polarimeter - has been recently installed on the Lomnicky Peak Observatory 20cm Zeiss coronagraph. The preliminary results from CorMag will be presented. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV)can be modified by magnetic fields through the Hanle effect. Space-based UV spectro-polarimeters would provide an additional tool for the disgnostics of coronal magnetism. As a case study of space-borne UV spectro-polarimeters, this presentation will describe the future upgrade of the Sounding-rocket Coronagraphic Experiment (SCORE) to include the capability of imaging polarimetry of the HI Lyman-alpha, 121.6 nm. SCORE is a multi-wavelength imager for the emission-lines, HeII 30.4 nm and HI 121.6 nm, and visible-light broad-band emission of the polarized K-corona. SCORE has flown successfully in 2009. This presentation will describe how in future re-flights SCORE could observe the expected Hanle effect in corona with a HI Lyman-alpha polarimeter.

  2. VME-based remote instrument control without ground loops

    CERN Document Server

    Belleman, J; González, J L

    1997-01-01

    New electronics has been developed for the remote control of the pick-up electrodes at the CERN Proton Synchrotron (PS). Communication between VME-based control computers and remote equipment is via full duplex point-to-point digital data links. Data are sent and received in serial format over simple twisted pairs at a rate of 1 Mbit/s, for distances of up to 300 m. Coupling transformers are used to avoid ground loops. The link hardware consists of a general-purpose VME-module, the 'TRX' (transceiver), containing four FIFO-buffered communication channels, and a dedicated control card for each remote station. Remote transceiver electronics is simple enough not to require micro-controllers or processors. Currently, some sixty pick-up stations of various types, all over the PS Complex (accelerators and associated beam transfer lines) are equipped with the new system. Even though the TRX was designed primarily for communication with pick-up electronics, it could also be used for other purposes, for example to for...

  3. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  4. A design for a ground-based data management system

    Science.gov (United States)

    Lambird, Barbara A.; Lavine, David

    1988-01-01

    An initial design for a ground-based data management system which includes intelligent data abstraction and cataloging is described. The large quantity of data on some current and future NASA missions leads to significant problems in providing scientists with quick access to relevant data. Human screening of data for potential relevance to a particular study is time-consuming and costly. Intelligent databases can provide automatic screening when given relevent scientific parameters and constraints. The data management system would provide, at a minimum, information of availability of the range of data, the type available, specific time periods covered together with data quality information, and related sources of data. The system would inform the user about the primary types of screening, analysis, and methods of presentation available to the user. The system would then aid the user with performing the desired tasks, in such a way that the user need only specify the scientific parameters and objectives, and not worry about specific details for running a particular program. The design contains modules for data abstraction, catalog plan abstraction, a user-friendly interface, and expert systems for data handling, data evaluation, and application analysis. The emphasis is on developing general facilities for data representation, description, analysis, and presentation that will be easily used by scientists directly, thus bypassing the knowledge acquisition bottleneck. Expert system technology is used for many different aspects of the data management system, including the direct user interface, the interface to the data analysis routines, and the analysis of instrument status.

  5. Ground-Based Correction of Remote-Sensing Spectral Imagery

    Science.gov (United States)

    Alder-Golden, Steven M.; Rochford, Peter; Matthew, Michael; Berk, Alexander

    2007-01-01

    Software has been developed for an improved method of correcting for the atmospheric optical effects (primarily, effects of aerosols and water vapor) in spectral images of the surface of the Earth acquired by airborne and spaceborne remote-sensing instruments. In this method, the variables needed for the corrections are extracted from the readings of a radiometer located on the ground in the vicinity of the scene of interest. The software includes algorithms that analyze measurement data acquired from a shadow-band radiometer. These algorithms are based on a prior radiation transport software model, called MODTRAN, that has been developed through several versions up to what are now known as MODTRAN4 and MODTRAN5 . These components have been integrated with a user-friendly Interactive Data Language (IDL) front end and an advanced version of MODTRAN4. Software tools for handling general data formats, performing a Langley-type calibration, and generating an output file of retrieved atmospheric parameters for use in another atmospheric-correction computer program known as FLAASH have also been incorporated into the present soft-ware. Concomitantly with the soft-ware described thus far, there has been developed a version of FLAASH that utilizes the retrieved atmospheric parameters to process spectral image data.

  6. Use of ground-based wind profiles in mesoscale forecasting

    Science.gov (United States)

    Schlatter, Thomas W.

    1985-01-01

    A brief review is presented of recent uses of ground-based wind profile data in mesoscale forecasting. Some of the applications are in real time, and some are after the fact. Not all of the work mentioned here has been published yet, but references are given wherever possible. As Gage and Balsley (1978) point out, sensitive Doppler radars have been used to examine tropospheric wind profiles since the 1970's. It was not until the early 1980's, however, that the potential contribution of these instruments to operational forecasting and numerical weather prediction became apparent. Profiler winds and radiosonde winds compare favorably, usually within a few m/s in speed and 10 degrees in direction (see Hogg et al., 1983), but the obvious advantage of the profiler is its frequent (hourly or more often) sampling of the same volume. The rawinsonde balloon is launched only twice a day and drifts with the wind. In this paper, I will: (1) mention two operational uses of data from a wind profiling system developed jointly by the Wave Propagation and Aeronomy Laboratories of NOAA; (2) describe a number of displays of these same data on a workstation for mesoscale forecasting developed by the Program for Regional Observing and Forecasting Services (PROFS); and (3) explain some interesting diagnostic calculations performed by meteorologists of the Wave Propagation Laboratory.

  7. Tissue Engineering of Cartilage on Ground-Based Facilities

    Science.gov (United States)

    Aleshcheva, Ganna; Bauer, Johann; Hemmersbach, Ruth; Egli, Marcel; Wehland, Markus; Grimm, Daniela

    2016-06-01

    Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free three-dimensional (3D) tissue formation. To investigate the short-term influence, human chondrocytes were cultivated for 2 h, 4 h, 16 h, and 24 h on a 2D Fast-Rotating Clinostat (FRC) in DMEM/F-12 medium supplemented with 10 % FCS. We detected holes in the vimentin network, perinuclear accumulations of vimentin after 2 h, and changes in the chondrocytes shape visualised by F-actin staining after 4 h of FRC-exposure. Scaffold-free cultivation of chondrocytes for 7 d on the Random Positioning Machine (RPM), the FRC and the Rotating Wall Vessel (RWV) resulted in spheroid formation, a phenomenon already known from spaceflight experiments with chondrocytes (MIR Space Station) and thyroid cancer cells (SimBox/Shenzhou-8 space mission). The experiments enabled by the ESA-CORA-GBF programme gave us an optimal opportunity to study gravity-related cellular processes, validate ground-based facilities for our chosen cell system, and prepare long-term experiments under real microgravity conditions in space

  8. Ground-based detection of G star superflares with NGTS

    Science.gov (United States)

    Jackman, James A. G.; Wheatley, Peter J.; Pugh, Chloe E.; Gänsicke, Boris T.; Gillen, Edward; Broomhall, Anne-Marie; Armstrong, David J.; Burleigh, Matthew R.; Chaushev, Alexander; Eigmüller, Philipp; Erikson, Anders; Goad, Michael R.; Grange, Andrew; Günther, Maximilian N.; Jenkins, James S.; McCormac, James; Raynard, Liam; Thompson, Andrew P. G.; Udry, Stéphane; Walker, Simon; Watson, Christopher A.; West, Richard G.

    2018-04-01

    We present high cadence detections of two superflares from a bright G8 star (V = 11.56) with the Next Generation Transit Survey (NGTS). We improve upon previous superflare detections by resolving the flare rise and peak, allowing us to fit a solar flare inspired model without the need for arbitrary break points between rise and decay. Our data also enables us to identify substructure in the flares. From changing starspot modulation in the NGTS data we detect a stellar rotation period of 59 hours, along with evidence for differential rotation. We combine this rotation period with the observed ROSAT X-ray flux to determine that the star's X-ray activity is saturated. We calculate the flare bolometric energies as 5.4^{+0.8}_{-0.7}× 10^{34}and 2.6^{+0.4}_{-0.3}× 10^{34}erg and compare our detections with G star superflares detected in the Kepler survey. We find our main flare to be one of the largest amplitude superflares detected from a bright G star. With energies more than 100 times greater than the Carrington event, our flare detections demonstrate the role that ground-based instruments such as NGTS can have in assessing the habitability of Earth-like exoplanets, particularly in the era of PLATO.

  9. Preliminary Data Pipeline for SunRISE: Assessing the Performance of Space Based Radio Arrays

    Science.gov (United States)

    Hegedus, A. M.; Kasper, J. C.; Lazio, J.; Amiri, N.; Stuart, J.

    2017-12-01

    The Sun Radio Interferometer Space Experiment (SunRISE) is a NASA Heliophysics Explorer Mission of Opportunity that was recently awarded phase A funding. SunRISE's main science goals are to localize the source of particle acceleration in coronal mass ejections to 1/4th of their width, and trace the path of electron beams along magnetic field lines out to 20 solar radii. These processes generate cascading Type II and III bursts that have ever only been detected in low frequencies with single spacecraft antenna. These bursts emit below the ionospheric cutoff of 10 MHz past 2 solar radii, so a synthetic aperture made from multiple space antennae is needed to pinpoint the origin of these bursts. In this work, we create an end to end simulation of the data processing pipeline of SunRISE, which uses 6 small satellites to do this localization. One of the main inputs of the simulation is a ground truth of what we want the array to image. We idealized this as an elliptical Gaussian offset from the sun, which previous modeling suggests is a good approximation of what SunRISE would see in space. Another input is an orbit file describing the positions of all the spacecraft. The simulated orbit determinations are made with GPS sidelobes and have an error associated with the recovered positions. From there we compute the Fourier coefficients every antenna will see, then apply the correct phase lags and multiply each pair of coefficients to simulate the process of correlation. We compute the projected UVW coordinates and put these along with the correlated visibilities into a CASA MS file. The correlated visibilities are compared to CASA's simulated visibilities at the same UVW coordinates, verifying the accuracy of our method. The visibilities are then subjected to realistic thermal noise, as well as phase noise from uncertainties in the spacecraft position. We employ CASA's CLEAN algorithm to image the data, and CASA's imfit algorithm to estimate the parameters of the imaged

  10. Intelligent Cognitive Radio Models for Enhancing Future Radio Astronomy Observations

    Directory of Open Access Journals (Sweden)

    Ayodele Abiola Periola

    2016-01-01

    Full Text Available Radio astronomy organisations desire to optimise the terrestrial radio astronomy observations by mitigating against interference and enhancing angular resolution. Ground telescopes (GTs experience interference from intersatellite links (ISLs. Astronomy source radio signals received by GTs are analysed at the high performance computing (HPC infrastructure. Furthermore, observation limitation conditions prevent GTs from conducting radio astronomy observations all the time, thereby causing low HPC utilisation. This paper proposes mechanisms that protect GTs from ISL interference without permanent prevention of ISL data transmission and enhance angular resolution. The ISL transmits data by taking advantage of similarities in the sequence of observed astronomy sources to increase ISL connection duration. In addition, the paper proposes a mechanism that enhances angular resolution by using reconfigurable earth stations. Furthermore, the paper presents the opportunistic computing scheme (OCS to enhance HPC utilisation. OCS enables the underutilised HPC to be used to train learning algorithms of a cognitive base station. The performances of the three mechanisms are evaluated. Simulations show that the proposed mechanisms protect GTs from ISL interference, enhance angular resolution, and improve HPC utilisation.

  11. Investigating Ground Swarm Robotics Using Agent Based Simulation

    National Research Council Canada - National Science Library

    Ho, Sze-Tek T

    2006-01-01

    The concept of employing ground swarm robotics to accomplish tasks has been proposed for future use in humanitarian de-mining, plume monitoring, searching for survivors in a disaster site, and other hazardous activities...

  12. System of gait analysis based on ground reaction force assessment

    Directory of Open Access Journals (Sweden)

    František Vaverka

    2015-12-01

    Full Text Available Background: Biomechanical analysis of gait employs various methods used in kinematic and kinetic analysis, EMG, and others. One of the most frequently used methods is kinetic analysis based on the assessment of the ground reaction forces (GRF recorded on two force plates. Objective: The aim of the study was to present a method of gait analysis based on the assessment of the GRF recorded during the stance phase of two steps. Methods: The GRF recorded with a force plate on one leg during stance phase has three components acting in directions: Fx - mediolateral, Fy - anteroposterior, and Fz - vertical. A custom-written MATLAB script was used for gait analysis in this study. This software displays instantaneous force data for both legs as Fx(t, Fy(t and Fz(t curves, automatically determines the extremes of functions and sets the visual markers defining the individual points of interest. Positions of these markers can be easily adjusted by the rater, which may be necessary if the GRF has an atypical pattern. The analysis is fully automated and analyzing one trial takes only 1-2 minutes. Results: The method allows quantification of temporal variables of the extremes of the Fx(t, Fy(t, Fz(t functions, durations of the braking and propulsive phase, duration of the double support phase, the magnitudes of reaction forces in extremes of measured functions, impulses of force, and indices of symmetry. The analysis results in a standardized set of 78 variables (temporal, force, indices of symmetry which can serve as a basis for further research and diagnostics. Conclusions: The resulting set of variable offers a wide choice for selecting a specific group of variables with consideration to a particular research topic. The advantage of this method is the standardization of the GRF analysis, low time requirements allowing rapid analysis of a large number of trials in a short time, and comparability of the variables obtained during different research measurements.

  13. Wave propagation simulation of radio occultations based on ECMWF refractivity profiles

    DEFF Research Database (Denmark)

    von Benzon, Hans-Henrik; Høeg, Per

    2015-01-01

    This paper describes a complete radio occultation simulation environment, including realistic refractivity profiles, wave propagation modeling, instrument modeling, and bending angle retrieval. The wave propagator is used to simulate radio occultation measurements. The radio waves are propagated...... of radio occultations. The output from the wave propagator simulator is used as input to a Full Spectrum Inversion retrieval module which calculates geophysical parameters. These parameters can be compared to the ECMWF atmospheric profiles. The comparison can be used to reveal system errors and get...... a better understanding of the physics. The wave propagation simulations will in this paper also be compared to real measurements. These radio occultations have been exposed to the same atmospheric conditions as the radio occultations simulated by the wave propagator. This comparison reveals that precise...

  14. Spectrum Sharing Based on a Bertrand Game in Cognitive Radio Sensor Networks

    Directory of Open Access Journals (Sweden)

    Biqing Zeng

    2017-01-01

    Full Text Available In the study of power control and allocation based on pricing, the utility of secondary users is usually studied from the perspective of the signal to noise ratio. The study of secondary user utility from the perspective of communication demand can not only promote the secondary users to meet the maximum communication needs, but also to maximize the utilization of spectrum resources, however, research in this area is lacking, so from the viewpoint of meeting the demand of network communication, this paper designs a two stage model to solve spectrum leasing and allocation problem in cognitive radio sensor networks (CRSNs. In the first stage, the secondary base station collects the secondary network communication requirements, and rents spectrum resources from several primary base stations using the Bertrand game to model the transaction behavior of the primary base station and secondary base station. The second stage, the subcarriers and power allocation problem of secondary base stations is defined as a nonlinear programming problem to be solved based on Nash bargaining. The simulation results show that the proposed model can satisfy the communication requirements of each user in a fair and efficient way compared to other spectrum sharing schemes.

  15. SDN based millimetre wave radio over fiber (RoF) network

    Science.gov (United States)

    Amate, Ahmed; Milosavljevic, Milos; Kourtessis, Pandelis; Robinson, Matthew; Senior, John M.

    2015-01-01

    This paper introduces software-defined, millimeter Wave (mm-Wave) networks with Radio over Fiber (RoF) for the delivery of gigabit connectivity required to develop fifth generation (5G) mobile. This network will enable an effective open access system allowing providers to manage and lease the infrastructure to service providers through unbundling new business models. Exploiting the inherited benefits of RoF, complete base station functionalities are centralized at the edges of the metro and aggregation network, leaving remote radio heads (RRHs) with only tunable filtering and amplification. A Software Defined Network (SDN) Central Controller (SCC) is responsible for managing the resource across several mm-Wave Radio Access Networks (RANs) providing a global view of the several network segments. This ensures flexible resource allocation for reduced overall latency and increased throughput. The SDN based mm-Wave RAN also allows for inter edge node communication. Therefore, certain packets can be routed between different RANs supported by the same edge node, reducing latency. System level simulations of the complete network have shown significant improvement of the overall throughput and SINR for wireless users by providing effective resource allocation and coordination among interfering cells. A new Coordinated Multipoint (CoMP) algorithm exploiting the benefits of the SCC global network view for reduced delay in control message exchange is presented, accounting for a minimum packet delay and limited Channel State Information (CSI) in a Long Term Evolution-Advanced (LTE-A), Cloud RAN (CRAN) configuration. The algorithm does not require detailed CSI feedback from UEs but it rather considers UE location (determined by the eNB) as the required parameter. UE throughput in the target sector is represented using a Cumulative Distributive Function (CDF). The drawn characteristics suggest that there is a significant 60% improvement in UE cell edge throughput following the

  16. Foundation Investigation for Ground Based Radar Project-Kwajalein Island, Marshall Islands

    Science.gov (United States)

    1990-04-01

    iL_ COPY MISCELLANEOUS PAPER GL-90-5 i iFOUNDATION INVESTIGATION FOR GROUND BASED RADAR PROJECT--KWAJALEIN ISLAND, MARSHALL ISLANDS by Donald E...C!assification) Foundatioa Investigation for Ground Based Radar Project -- Kwajalein Island, Marshall Islands 12. PERSONAL AUTHOR(S) Yule, Donald E...investigation for the Ground Based Radar Project -- Kwajalein Island, Marshall Islands , are presented.- eophysical tests comprised of surface refrac- tion

  17. Radio-over-fiber using an optical antenna based on Rydberg states of atoms

    Science.gov (United States)

    Deb, A. B.; Kjærgaard, N.

    2018-05-01

    We provide an experimental demonstration of a direct fiber-optic link for RF transmission ("radio-over-fiber") using a sensitive optical antenna based on a rubidium vapor cell. The scheme relies on measuring the transmission of laser light at an electromagnetically induced transparency resonance that involves highly excited Rydberg states. By dressing pairs of Rydberg states using microwave fields that act as local oscillators, we encoded RF signals in the optical frequency domain. The light carrying the information is linked via a virtually lossless optical fiber to a photodetector where the signal is retrieved. We demonstrate a signal bandwidth in excess of 1 MHz limited by the available coupling laser power and atomic optical density. Our sensitive, non-metallic and readily scalable optical antenna for microwaves allows extremely low-levels of optical power (˜1 μW) throughput in the fiber-optic link. It offers a promising future platform for emerging wireless network infrastructures.

  18. A Spectrum Allocation Mechanism Based on HJ-DQPSO for Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Zhu Jiang

    2015-11-01

    Full Text Available In cognitive radio network model consisting of secondary users and primary users, in order to solve the difficult multi-objective spectrum allocation issue about maximizing network efficiency and users’ fairness to access network, this paper proposes a new discrete multi-objective combinatorial optimization mechanism—HJ-DQPSO based on Hooke Jeeves (HJ and Quantum Particle Swarm Optimization (QPSO algorithm. The mechanism adopts HJ algorithm to local search to prevent falling into the local optimum, and proposes a discrete QPSO algorithm to match the discrete spectrum assignment model. The mechanism has the advantages of approximating optimal solution, rapid convergence, less parameters, avoiding falling into local optimum. Compared with existing spectrum assignment algorithms, the simulation results show that according to different optimization objectives, the HJ-DQPSO optimization mechanism for multi-objective optimization can better approximate optimal solution and converge fast. We can obtain a reasonable spectrum allocation scheme in the case of satisfying multiple optimization objectives.

  19. Design of an Ultra-wideband Pseudo Random Coded MIMO Radar Based on Radio Frequency Switches

    Directory of Open Access Journals (Sweden)

    Su Hai

    2017-02-01

    Full Text Available A Multiple-Input Multiple-Output (MIMO ultra-wideband radar can detect the range and azimuth information of targets in real time. It is widely used for geological surveys, life rescue, through-wall tracking, and other military or civil fields. This paper presents the design of an ultra-wideband pseudo random coded MIMO radar that is based on Radio Frequency (RF switches and implements a MIMO radar system. RF switches are employed to reduce cost and complexity of the system. As the switch pressure value is limited, the peak power of the transmitting signal is 18 dBm. The ultra-wideband radar echo is obtained by hybrid sampling, and pulse compression is computed by Digital Signal Processors (DSPs embedded in an Field-Programmable Gate Array (FPGA to simplify the signal process. The experiment illustrates that the radar system can detect the range and azimuth information of targets in real time.

  20. Cryocooled wideband digital channelizing radio-frequency receiver based on low-pass ADC

    International Nuclear Information System (INIS)

    Vernik, Igor V; Kirichenko, Dmitri E; Dotsenko, Vladimir V; Miller, Robert; Webber, Robert J; Shevchenko, Pavel; Talalaevskii, Andrei; Gupta, Deepnarayan; Mukhanov, Oleg A

    2007-01-01

    We have demonstrated a digital receiver performing direct digitization of radio-frequency signals over a wide frequency range from kilohertz to gigahertz. The complete system, consisting of a cryopackaged superconductor all-digital receiver (ADR) chip followed by room-temperature interface electronics and a field programmable gate array (FPGA) based post-processing module, has been developed. The ADR chip comprises a low-pass analog-to-digital converter (ADC) delta modulator with phase modulation-demodulation architecture together with digital in-phase and quadrature mixer and a pair of digital decimation filters. The chip is fabricated using a 4.5 kA cm -2 process and is cryopackaged using a commercial-off-the-shelf cryocooler. Experimental results in HF, VHF, UHF and L bands and their analysis, proving consistent operation of the cryopackaged ADR chip up to 24.32 GHz clock frequency, are presented and discussed

  1. Low-cost extrapolation method for maximal LTE radio base station exposure estimation: test and validation.

    Science.gov (United States)

    Verloock, Leen; Joseph, Wout; Gati, Azeddine; Varsier, Nadège; Flach, Björn; Wiart, Joe; Martens, Luc

    2013-06-01

    An experimental validation of a low-cost method for extrapolation and estimation of the maximal electromagnetic-field exposure from long-term evolution (LTE) radio base station installations are presented. No knowledge on downlink band occupation or service characteristics is required for the low-cost method. The method is applicable in situ. It only requires a basic spectrum analyser with appropriate field probes without the need of expensive dedicated LTE decoders. The method is validated both in laboratory and in situ, for a single-input single-output antenna LTE system and a 2×2 multiple-input multiple-output system, with low deviations in comparison with signals measured using dedicated LTE decoders.

  2. Low-cost extrapolation method for maximal lte radio base station exposure estimation: Test and validation

    International Nuclear Information System (INIS)

    Verloock, L.; Joseph, W.; Gati, A.; Varsier, N.; Flach, B.; Wiart, J.; Martens, L.

    2013-01-01

    An experimental validation of a low-cost method for extrapolation and estimation of the maximal electromagnetic-field exposure from long-term evolution (LTE) radio base station installations are presented. No knowledge on down-link band occupation or service characteristics is required for the low-cost method. The method is applicable in situ. It only requires a basic spectrum analyser with appropriate field probes without the need of expensive dedicated LTE decoders. The method is validated both in laboratory and in situ, for a single-input single-output antenna LTE system and a 2x2 multiple-input multiple-output system, with low deviations in comparison with signals measured using dedicated LTE decoders. (authors)

  3. Characterization of subarctic vegetation using ground based remote sensing methods

    Science.gov (United States)

    Finnell, D.; Garnello, A.; Palace, M. W.; Sullivan, F.; Herrick, C.; Anderson, S. M.; Crill, P. M.; Varner, R. K.

    2014-12-01

    Stordalen mire is located at 68°21'N and 19°02'E in the Swedish subarctic. Climate monitoring has revealed a warming trend spanning the past 150 years affecting the mires ability to hold stable palsa/hummock mounds. The micro-topography of the landscape has begun to degrade into thaw ponds changing the vegetation cover from ombrothrophic to minerotrophic. Hummocks are ecologically important due to their ability to act as a carbon sinks. Thaw ponds and sphagnum rich transitional zones have been documented as sources of atmospheric CH4. An objective of this project is to determine if a high resolution three band camera (RGB) and a RGNIR camera could detect differences in vegetation over five different site types. Species composition was collected for 50 plots with ten repetitions for each site type: palsa/hummock, tall shrub, semi-wet, tall graminoid, and wet. Sites were differentiated based on dominating species and features consisting of open water presence, sphagnum spp. cover, graminoid spp. cover, or the presence of dry raised plateaus/mounds. A pole based camera mount was used to collect images at a height of ~2.44m from the ground. The images were cropped in post-processing to fit a one-square meter quadrat. Texture analysis was performed on all images, including entropy, lacunarity, and angular second momentum. Preliminary results suggested that site type influences the number of species present. The p-values for the ability to predict site type using a t-test range from use of a stepwise regression of texture variables, actual vs. predicted percent of vegetation coverage provided R squared values of 0.73, 0.71, 0.67, and 0.89 for C. bigelowii, R. chamaemorus, Sphagnum spp., and open water respectively. These data have provided some support to the notion that texture analyses can be used for classification of mire site types. Future work will involve scaling up from the 50 plots through the use of data collected from two unmanned aerial systems (UAS), as

  4. OBSERVATIONAL SELECTION EFFECTS WITH GROUND-BASED GRAVITATIONAL WAVE DETECTORS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsin-Yu; Holz, Daniel E. [University of Chicago, Chicago, Illinois 60637 (United States); Essick, Reed; Vitale, Salvatore; Katsavounidis, Erik [LIGO, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2017-01-20

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world; though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  5. Project management for complex ground-based instruments: MEGARA plan

    Science.gov (United States)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  6. OBSERVATIONAL SELECTION EFFECTS WITH GROUND-BASED GRAVITATIONAL WAVE DETECTORS

    International Nuclear Information System (INIS)

    Chen, Hsin-Yu; Holz, Daniel E.; Essick, Reed; Vitale, Salvatore; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world; though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  7. Simulating the Performance of Ground-Based Optical Asteroid Surveys

    Science.gov (United States)

    Christensen, Eric J.; Shelly, Frank C.; Gibbs, Alex R.; Grauer, Albert D.; Hill, Richard E.; Johnson, Jess A.; Kowalski, Richard A.; Larson, Stephen M.

    2014-11-01

    We are developing a set of asteroid survey simulation tools in order to estimate the capability of existing and planned ground-based optical surveys, and to test a variety of possible survey cadences and strategies. The survey simulator is composed of several layers, including a model population of solar system objects and an orbital integrator, a site-specific atmospheric model (including inputs for seeing, haze and seasonal cloud cover), a model telescope (with a complete optical path to estimate throughput), a model camera (including FOV, pixel scale, and focal plane fill factor) and model source extraction and moving object detection layers with tunable detection requirements. We have also developed a flexible survey cadence planning tool to automatically generate nightly survey plans. Inputs to the cadence planner include camera properties (FOV, readout time), telescope limits (horizon, declination, hour angle, lunar and zenithal avoidance), preferred and restricted survey regions in RA/Dec, ecliptic, and Galactic coordinate systems, and recent coverage by other asteroid surveys. Simulated surveys are created for a subset of current and previous NEO surveys (LINEAR, Pan-STARRS and the three Catalina Sky Survey telescopes), and compared against the actual performance of these surveys in order to validate the model’s performance. The simulator tracks objects within the FOV of any pointing that were not discovered (e.g. too few observations, too trailed, focal plane array gaps, too fast or slow), thus dividing the population into “discoverable” and “discovered” subsets, to inform possible survey design changes. Ongoing and future work includes generating a realistic “known” subset of the model NEO population, running multiple independent simulated surveys in coordinated and uncoordinated modes, and testing various cadences to find optimal strategies for detecting NEO sub-populations. These tools can also assist in quantifying the efficiency of novel

  8. Space-Based Reconfigurable Software Defined Radio Test Bed Aboard International Space Station

    Science.gov (United States)

    Reinhart, Richard C.; Lux, James P.

    2014-01-01

    The National Aeronautical and Space Administration (NASA) recently launched a new software defined radio research test bed to the International Space Station. The test bed, sponsored by the Space Communications and Navigation (SCaN) Office within NASA is referred to as the SCaN Testbed. The SCaN Testbed is a highly capable communications system, composed of three software defined radios, integrated into a flight system, and mounted to the truss of the International Space Station. Software defined radios offer the future promise of in-flight reconfigurability, autonomy, and eventually cognitive operation. The adoption of software defined radios offers space missions a new way to develop and operate space transceivers for communications and navigation. Reconfigurable or software defined radios with communications and navigation functions implemented in software or VHDL (Very High Speed Hardware Description Language) provide the capability to change the functionality of the radio during development or after launch. The ability to change the operating characteristics of a radio through software once deployed to space offers the flexibility to adapt to new science opportunities, recover from anomalies within the science payload or communication system, and potentially reduce development cost and risk by adapting generic space platforms to meet specific mission requirements. The software defined radios on the SCaN Testbed are each compliant to NASA's Space Telecommunications Radio System (STRS) Architecture. The STRS Architecture is an open, non-proprietary architecture that defines interfaces for the connections between radio components. It provides an operating environment to abstract the communication waveform application from the underlying platform specific hardware such as digital-to-analog converters, analog-to-digital converters, oscillators, RF attenuators, automatic gain control circuits, FPGAs, general-purpose processors, etc. and the interconnections among

  9. Principle and Design of a Single-phase Inverter-Based Grounding System for Neutral-to-ground Voltage Compensation in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, Lingjie; Zeng, Xiangjun

    2017-01-01

    Neutral-to-ground overvoltage may occur in non-effectively grounded power systems because of the distributed parameters asymmetry and resonance between Petersen coil and distributed capacitances. Thus, the constraint of neutral-to-ground voltage is critical for the safety of distribution networks....... In this paper, an active grounding system based on single-phase inverter and its control parameter design method is proposed to achieve this objective. Relationship between its output current and neutral-to-ground voltage is derived to explain the principle of neutral-to-ground voltage compensation. Then...

  10. A Dynamic Spectrum Allocation Algorithm for a Maritime Cognitive Radio Communication System Based on a Queuing Model

    Directory of Open Access Journals (Sweden)

    Jingbo Zhang

    2017-09-01

    Full Text Available With the rapid development of maritime digital communication, the demand for spectrum resources is increasing, and building a maritime cognitive radio communication system is an effective solution. In this paper, the problem of how to effectively allocate the spectrum for secondary users (SUs with different priorities in a maritime cognitive radio communication system is studied. According to the characteristics of a maritime cognitive radio and existing research about cognitive radio systems, this paper establishes a centralized maritime cognitive radio communication model and creates a simplified queuing model with two queues for the communication model. In the view of the behaviors of SUs and primary users (PUs, we propose a dynamic spectrum allocation (DSA algorithm based on the system status, and analyze it with a two-dimensional Markov chain. Simulation results show that, when different types of SUs have similar arrival rates, the algorithm can vary the priority factor according to the change of users’ status in the system, so as to adjust the channel allocation, decreasing system congestion. The improvement of the algorithm is about 7–26%, and the specific improvement is negatively correlated with the SU arrival rate.

  11. EPICS based low-level radio frequency control system in LIPAc

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Julio, E-mail: julio.calvo@ciemat.es [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Ciemat (Spain); Rivers, Mark L. [Department of Geophysical Sciences and Center for Advanced Radiation Sources, The University of Chicago (United States); Patricio, Miguel A. [Departamento de Informatica, Universidad Carlos III de Madrid (Spain); Ibarra, Angel [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Ciemat (Spain)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The system proposed can control amplitude and phase of each cavity. Black-Right-Pointing-Pointer Rapid diagnostics are refreshed in milliseconds. Black-Right-Pointing-Pointer Increasing control parameters will not increase consumed time neither complexity. Black-Right-Pointing-Pointer IQ demodulation can be achieved thanks to the transformed values at driver level. - Abstract: The IFMIF-EVEDA (International Fusion Materials Irradiation Facility - Engineering Validation and Engineering Design Activity) linear accelerator, known as Linear IFMIF Prototype Accelerator (LIPAc), will be a 9 MeV, 125 mA continuous wave (CW) deuteron accelerator prototype to validate the technical options of the accelerator design for IFMIF. The primary mission of such facility is to test and verify materials performance when subjected to extensive neutron irradiation of the type encountered in a fusion reactor to prepare for the design, construction, licensing and safe operation of a fusion demonstration reactor (DEMO). The radio frequency (RF) power system of IFMIF-EVEDA consists of 18 RF chains working at 175 MHz with three amplification stages each. The low-level radio frequency (LLRF) controls the amplitude and phase of the signal to be synchronized with the beam and it also controls the resonance frequency of the cavities. The system is based on a commercial compact peripheral component interconnect (cPCI) field programmable gate array (FPGA) board, provided by Lyrtech and controlled by a Windows host PC. For this purpose, it is mandatory to communicate the cPCI FPGA board from EPICS Channel Access [1]. A software architecture on EPICS framework in order to control and monitor the LLRF system is presented.

  12. Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission.

    Science.gov (United States)

    Falk, Magnus; Alcalde, Miguel; Bartlett, Philip N; De Lacey, Antonio L; Gorton, Lo; Gutierrez-Sanchez, Cristina; Haddad, Raoudha; Kilburn, Jeremy; Leech, Dónal; Ludwig, Roland; Magner, Edmond; Mate, Diana M; Conghaile, Peter Ó; Ortiz, Roberto; Pita, Marcos; Pöller, Sascha; Ruzgas, Tautgirdas; Salaj-Kosla, Urszula; Schuhmann, Wolfgang; Sebelius, Fredrik; Shao, Minling; Stoica, Leonard; Sygmund, Cristoph; Tilly, Jonas; Toscano, Miguel D; Vivekananthan, Jeevanthi; Wright, Emma; Shleev, Sergey

    2014-01-01

    Here for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply.

  13. Threshold Based Opportunistic Scheduling of Secondary Users in Underlay Cognitive Radio Networks

    KAUST Repository

    Song, Yao

    2011-12-01

    In underlay cognitive radio networks, secondary users can share the spectrum with primary users as long as the interference caused by the secondary users to primary users is below a certain predetermined threshold. It is reasonable to assume that there is always a large pool of secondary users trying to access the channel, which can be occupied by only one secondary user at a given time. As a result, a multi-user scheduling problem arises among the secondary users. In this thesis, by manipulating basic schemes based on selective multi-user diversity, normalized thresholding, transmission power control, and opportunistic round robin, we propose and analyze eight scheduling schemes of secondary users in an underlay cognitive radio set-up. The system performance of these schemes is quantified by using various performance metrics such as the average system capacity, normalized average feedback load, scheduling outage probability, and system fairness of access. In our proposed schemes, the best user out of all the secondary users in the system is picked to transmit at each given time slot in order to maximize the average system capacity. Two thresholds are used in the two rounds of the selection process to determine the best user. The first threshold is raised by the power constraint from the primary user. The second threshold, which can be adjusted by us, is introduced to reduce the feedback load. The overall system performance is therefore dependent on the choice of these two thresholds and the number of users in the system given the channel conditions for all the users. In this thesis, by deriving analytical formulas and presenting numerical examples, we try to provide insights of the relationship between the performance metrics and the involved parameters including two selection thresholds and the number of active users in the system, in an effort to maximize the average system capacity as well as satisfy the requirements of scheduling outage probability and

  14. Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission.

    Directory of Open Access Journals (Sweden)

    Magnus Falk

    Full Text Available Here for the first time, we detail self-contained (wireless and self-powered biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor, and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply.

  15. Is a Multi-Hop Relay Scheme Gainful in an IEEE 802.22-Based Cognitive Radio System?

    Science.gov (United States)

    Shin, Jungchae; Lee, Dong-Kyu; Cho, Ho-Shin

    In this paper, we formulate a plan to operate multi-hop relays in IEEE 802.22-based cognitive radio (CR) systems and evaluate system performance to consider the propriety of a multi-hop relay scheme in CR systems. A centralized radio resource management and a simple deployment of relay stations (RSs) are assessed to make relay operations feasible under CR conditions. Simulation results show that the proposed multi-hop relay scheme significantly increases system throughput compared to a no-relay CR system as the incumbent user (IU) traffic gets heavier. Furthermore, the optimal number of hops can be determined given the traffic conditions.

  16. An approach involving dynamic group search optimization for allocating resources in OFDM-based cognitive radio system

    Directory of Open Access Journals (Sweden)

    Sameer Suresh Nanivadekar

    2018-03-01

    Full Text Available Allocation of channel resources in a cognitive radio system for achieving minimized transmission energy at an increased transmission rate is a challenging research. This paper proposes a resource allocation algorithm based on the meta-heuristic search principle. The proposed algorithm is an improved version of the Group Search Optimizer (GSO, which is a currently developed optimization algorithm that works through imitating the searching behaviour of the animals. The improvement is accomplished through introducing dynamics in the maximum pursuit angle of the GSO members. A cognitive radio system, relying on Orthogonal Frequency Division Multiplexing (OFDM for its operation, is simulated and the experimentations are carried out for sub-channel allocation. The proposed algorithm is experimentally compared with five renowned optimization algorithms, namely, conventional GSO, Particle Swarm Optimization, Genetic Algorithm, Firefly Algorithm and Artificial Bee Colony algorithm. The obtained results assert the competing performance of the proposed algorithm over the other algorithms. Keywords: Cognitive radio, OFDM, Resource, Allocation, Optimization, GSO

  17. Wavelet-based compression with ROI coding support for mobile access to DICOM images over heterogeneous radio networks.

    Science.gov (United States)

    Maglogiannis, Ilias; Doukas, Charalampos; Kormentzas, George; Pliakas, Thomas

    2009-07-01

    Most of the commercial medical image viewers do not provide scalability in image compression and/or region of interest (ROI) encoding/decoding. Furthermore, these viewers do not take into consideration the special requirements and needs of a heterogeneous radio setting that is constituted by different access technologies [e.g., general packet radio services (GPRS)/ universal mobile telecommunications system (UMTS), wireless local area network (WLAN), and digital video broadcasting (DVB-H)]. This paper discusses a medical application that contains a viewer for digital imaging and communications in medicine (DICOM) images as a core module. The proposed application enables scalable wavelet-based compression, retrieval, and decompression of DICOM medical images and also supports ROI coding/decoding. Furthermore, the presented application is appropriate for use by mobile devices activating in heterogeneous radio settings. In this context, performance issues regarding the usage of the proposed application in the case of a prototype heterogeneous system setup are also discussed.

  18. Rule Based Reasoning Untuk Monitoring Distribusi Bahan Bakar Minyak Secara Online dan Realtime menggunakan Radio Frequency Identification

    Directory of Open Access Journals (Sweden)

    Mokhamad Iklil Mustofa

    2017-05-01

    Full Text Available The scarcity of fuel oil in Indonesia often occurs due to delays in delivery caused by natural factors or transportation constraints. Theaim of this  research is to develop systems of fuel distribution monitoring online and realtime using rule base reasoning method and radio frequency identification technology. The rule-based reasoning method is used as a rule-based reasoning model used for monitoring distribution and determine rule-based safety stock. The monitoring system program is run with a web-based computer application. Radio frequency identification technology is used by utilizing radio waves as an media identification. This technology is used as a system of tracking and gathering information from objects automatically. The research data uses data of delayed distribution of fuel from fuel terminal to consumer. The monitoring technique uses the time of departure, the estimated time to arrive, the route / route passed by a fuel tanker attached to the radio frequency Identification tag. This monitoring system is carried out by the radio frequency identification reader connected online at any gas station or specified position that has been designed with study case in Semarang. The results of the research covering  the status of rule based reasoning that sends status, that is timely and appropriate paths, timely and truncated pathways, late and on track, late and cut off, and tank lost. The monitoring system is also used in determining the safety stock warehouse, with the safety stock value determined based on the condition of the stock warehouse rules.

  19. Iron Oxide Nanoparticle-Based Magnetic Ink Development for Fully Printed Tunable Radio-Frequency Devices

    KAUST Repository

    Vaseem, Mohammad

    2018-01-30

    The field of printed electronics is still in its infancy and most of the reported work is based on commercially available nanoparticle-based metallic inks. Although fully printed devices that employ dielectric/semiconductor inks have recently been reported, there is a dearth of functional inks that can demonstrate controllable devices. The lack of availability of functional inks is a barrier to the widespread use of fully printed devices. For radio-frequency electronics, magnetic materials have many uses in reconfigurable components but rely on expensive and rigid ferrite materials. A suitable magnetic ink can facilitate the realization of fully printed, magnetically controlled, tunable devices. This report presents the development of an iron oxide nanoparticle-based magnetic ink. First, a tunable inductor is fully printed using iron oxide nanoparticle-based magnetic ink. Furthermore, iron oxide nanoparticles are functionalized with oleic acid to make them compatible with a UV-curable SU8 solution. Functionalized iron oxide nanoparticles are successfully embedded in the SU8 matrix to make a magnetic substrate. The as-fabricated substrate is characterized for its magnetostatic and microwave properties. A frequency tunable printed patch antenna is demonstrated using the magnetic and in-house silver-organo-complex inks. This is a step toward low-cost, fully printed, controllable electronic components.

  20. Space weather impact on radio device operation

    Directory of Open Access Journals (Sweden)

    Berngardt O.I.

    2017-09-01

    Full Text Available This paper reviews the space weather impact on operation of radio devices. The review is based on recently published papers, books, and strategic scientific plans of space weather investigations. The main attention is paid to ionospheric effects on propagation of radiowaves, basically short ones. Some examples of such effects are based on 2012–2016 ISTP SB RAS EKB radar data: attenuation of ground backscatter signals during solar flares, effects of traveling ionospheric disturbances of different scales in ground backscatter signals, effects of magnetospheric waves in ionospheric scatter signals.

  1. Space weather impact on radio device operation

    Science.gov (United States)

    Berngardt, Oleg

    2017-09-01

    This paper reviews the space weather impact on operation of radio devices. The review is based on recently published papers, books, and strategic scientific plans of space weather investigations. The main attention is paid to ionospheric effects on propagation of radiowaves, basically short ones. Some examples of such effects are based on 2012–2016 ISTP SB RAS EKB radar data: attenuation of ground backscatter signals during solar flares, effects of traveling ionospheric disturbances of different scales in ground backscatter signals, effects of magnetospheric waves in ionospheric scatter signals.

  2. Système multiprocesseur à base de réseau sur puce destiné au traitement de la radio logicielle et la radio cognitive

    OpenAIRE

    Taj , Muhammad Imran

    2011-01-01

    Software Defined Radio (SDR) and Cognitive Radio (CR) are entering mainstream. These high performance and high adaptability requiring devices with agile frequency operations hold promise to :1. address the inconsistency between hardware and software advancements, 2. real time mode switching from one radio configuration to another and3. efficient spectrum management in under-utilized spectrum bands. Framed within this statement, in this thesis we have implemented a SDR waveform on 16 Processin...

  3. Review of commonly used remote sensing and ground-based ...

    African Journals Online (AJOL)

    This review provides an overview of the use of remote sensing data, the development of spectral reflectance indices for detecting plant water stress, and the usefulness of field measurements for ground-truthing purposes. Reliable measurements of plant water stress over large areas are often required for management ...

  4. Imaging of Ground Ice with Surface-Based Geophysics

    Science.gov (United States)

    2015-10-01

    terrains. Electrical Resistivity Tomography (ERT), in particular, has been effective for imaging ground ice. ERT measures the ability of materials to...13 2.2.1 Electrical resistivity tomography (ERT...Engineer Research and Development Center ERT Electrical Resistivity Tomography GPS Global Positioning System LiDAR Light Detection and Ranging SIPRE

  5. Large antennas for ground-based astronomy above 1 THz

    NARCIS (Netherlands)

    Wild, Wolfgang; Guesten, R.; Holland, W. S.; Ivison, R.; Stacey, G. J.

    2006-01-01

    In its history astronomy has continuously expanded access to new wavelength regions both from space and on the ground. Today, one of the few unexplored regimes is the terahertz (THz) frequency range, more specifically above 1 THz (< lambda 300 mum). Astronomical observations above 1 THz are

  6. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  7. Mathematical modeling of a radio-frequency path for IEEE 802.11ah based wireless sensor networks

    Science.gov (United States)

    Tyshchenko, Igor; Cherepanov, Alexander; Dmitrii, Vakhnin; Popova, Mariia

    2017-09-01

    This article discusses the process of creating the mathematical model of a radio-frequency path for an IEEE 802.11ah based wireless sensor networks using M atLab Simulink CAD tools. In addition, it describes occurring perturbing effects and determining the presence of a useful signal in the received mixture.

  8. Automatic DGD and GVD compensation at 640 Gb/s based on scalar radio-frequency spectrum measurement

    DEFF Research Database (Denmark)

    Paquot, Yvan; Schröder, Jochen; Palushani, Evarist

    2013-01-01

    of separate GVD and DGD compensators using an impairment monitor based on an integrated all-optical radio-frequency (RF) spectrum analyzer. We show that low-bandwidth measurement of only a single tone in the RF spectrum is sufficient for automatic compensation for multiple degrees of freedom using...

  9. Scaling earthquake ground motions for performance-based assessment of buildings

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.; Hamburger, R.O.

    2011-01-01

    The impact of alternate ground-motion scaling procedures on the distribution of displacement responses in simplified structural systems is investigated. Recommendations are provided for selecting and scaling ground motions for performance-based assessment of buildings. Four scaling methods are studied, namely, (1)geometric-mean scaling of pairs of ground motions, (2)spectrum matching of ground motions, (3)first-mode-period scaling to a target spectral acceleration, and (4)scaling of ground motions per the distribution of spectral demands. Data were developed by nonlinear response-history analysis of a large family of nonlinear single degree-of-freedom (SDOF) oscillators that could represent fixed-base and base-isolated structures. The advantages and disadvantages of each scaling method are discussed. The relationship between spectral shape and a ground-motion randomness parameter, is presented. A scaling procedure that explicitly considers spectral shape is proposed. ?? 2011 American Society of Civil Engineers.

  10. A detrimental soil disturbance prediction model for ground-based timber harvesting

    Science.gov (United States)

    Derrick A. Reeves; Matthew C. Reeves; Ann M. Abbott; Deborah S. Page-Dumroese; Mark D. Coleman

    2012-01-01

    Soil properties and forest productivity can be affected during ground-based harvest operations and site preparation. The degree of impact varies widely depending on topographic features and soil properties. Forest managers who understand site-specific limits to ground-based harvesting can alter harvest method or season to limit soil disturbance. To determine the...

  11. NO2 DOAS measurements from ground and space: comparison of ground based measurements and OMI data in Mexico City

    Science.gov (United States)

    Rivera, C.; Stremme, W.; Grutter, M.

    2012-04-01

    The combination of satellite data and ground based measurements can provide valuable information about atmospheric chemistry and air quality. In this work we present a comparison between measured ground based NO2 differential columns at the Universidad Nacional Autónoma de México (UNAM) in Mexico City, using the Differential Optical Absorption Spectroscopy (DOAS) technique and NO2 total columns measured by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite using the same measurement technique. From these data, distribution maps of average NO2 above the Mexico basin were constructed and hot spots inside the city could be identified. In addition, a clear footprint was detected from the Tula industrial area, ~50 km northwest of Mexico City, where a refinery, a power plant and other industries are located. A less defined footprint was identified in the Cuernavaca basin, South of Mexico City, and the nearby cities of Toluca and Puebla do not present strong enhancements in the NO2 total columns. With this study we expect to cross-validate space and ground measurements and provide useful information for future studies.

  12. Radio communication for Communications-Based Train Control (CBTC): A tutorial and survey

    DEFF Research Database (Denmark)

    Farooq, Jahanzeb; Soler, José

    2017-01-01

    communication technology used. IEEE 802.11 Wi-Fi, despite being originally developed for stationary users within a limited area, has prevailed as the de-facto radio technology for CBTC. Unfortunately, very limited literature is publicly available on this topic due to the highly competitive nature of the railway...... of the communication technologies used for modern railway signalling is presented. The benefits and drawbacks of using a radio communication technology, particularly Wi-Fi, and the challenges it introduces, are discussed. Best practices in the design of a CBTC radio network and the measures to optimize its...

  13. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.

    1976-01-01

    Any discussion of the radio emission from stars should begin by emphasizing certain unique problems. First of all, one must clarify a semantic confusion introduced into radio astronomy in the late 1950's when most new radio sources were described as radio stars. All of these early 'radio stars' were eventually identified with other galactic and extra-galactic objects. The study of true radio stars, where the radio emission is produced in the atmosphere of a star, began only in the 1960's. Most of the work on the subject has, in fact, been carried out in only the last few years. Because the real information about radio stars is quite new, it is not surprising that major aspects of the subject are not at all understood. For this reason this paper is organized mainly around three questions: what is the available observational information; what physical processes seem to be involved; and what working hypotheses look potentially fruitful. (Auth.)

  14. Computationally Efficient Power Allocation Algorithm in Multicarrier-Based Cognitive Radio Networks: OFDM and FBMC Systems

    Directory of Open Access Journals (Sweden)

    Shaat Musbah

    2010-01-01

    Full Text Available Cognitive Radio (CR systems have been proposed to increase the spectrum utilization by opportunistically access the unused spectrum. Multicarrier communication systems are promising candidates for CR systems. Due to its high spectral efficiency, filter bank multicarrier (FBMC can be considered as an alternative to conventional orthogonal frequency division multiplexing (OFDM for transmission over the CR networks. This paper addresses the problem of resource allocation in multicarrier-based CR networks. The objective is to maximize the downlink capacity of the network under both total power and interference introduced to the primary users (PUs constraints. The optimal solution has high computational complexity which makes it unsuitable for practical applications and hence a low complexity suboptimal solution is proposed. The proposed algorithm utilizes the spectrum holes in PUs bands as well as active PU bands. The performance of the proposed algorithm is investigated for OFDM and FBMC based CR systems. Simulation results illustrate that the proposed resource allocation algorithm with low computational complexity achieves near optimal performance and proves the efficiency of using FBMC in CR context.

  15. Wireless Hydrogen Smart Sensor Based on Pt/Graphene-Immobilized Radio-Frequency Identification Tag.

    Science.gov (United States)

    Lee, Jun Seop; Oh, Jungkyun; Jun, Jaemoon; Jang, Jyongsik

    2015-08-25

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus, appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen-gas leak detection and surveillance systems are needed; additionally, the ability to monitor large areas (e.g., cities) via wireless networks is becoming increasingly important. In this report, we introduce a radio frequency identification (RFID)-based wireless smart-sensor system, composed of a Pt-decorated reduced graphene oxide (Pt_rGO)-immobilized RFID sensor tag and an RFID-reader antenna-connected network analyzer to detect hydrogen gas. The Pt_rGOs, produced using a simple chemical reduction process, were immobilized on an antenna pattern in the sensor tag through spin coating. The resulting Pt_rGO-based RFID sensor tag exhibited a high sensitivity to hydrogen gas at unprecedentedly low concentrations (1 ppm), with wireless communication between the sensor tag and RFID-reader antenna. The wireless sensor tag demonstrated flexibility and a long lifetime due to the strong immobilization of Pt_rGOs on the substrate and battery-independent operation during hydrogen sensing, respectively.

  16. Elementary study of encapsulation of radioisotope battery prototype based on 63Ni radio-voltaic effect

    International Nuclear Information System (INIS)

    Gao Hui; Zhang Huaming; Luo Shunzhong; Wang Heyi; Fu Zhonghua

    2012-01-01

    For isotope battery application, it is necessary to encapsulate in a certain method. After having accomplished selection of material composing and proportion, procedure and encapsulating process based on GD3217Y detector. the different types of device come from untouched, loaded by slip of stainless steel with or without 63 Ni isotope were encapsulated respectively. Despite necessary reliability of package has been evaluated in the previous work. in view of specialty due to the incorporation of radioactive isotopes into device, the reliability issue must be further taken into account for actual application. Hence, we emphasize on the comparison about electrical capability of types of devices under the different situations, namely, before and after encapsulation, the natural aging and artificial accelerated aging. The results of the comparison indicate that the adoption of the method of the encapsulation supply effectively stable electrical capability at the condition of ensuring safety of radioactive source besides improving environmental adaptability for device. Further, it offers technological support for the encapsulation of radioisotope battery based on β radio-voltaic effect. (authors)

  17. A Novel Dynamic Spectrum Access Framework Based on Reinforcement Learning for Cognitive Radio Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yun Lin

    2016-10-01

    Full Text Available Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel.

  18. Q-Learning and p-persistent CSMA based rendezvous protocol for cognitive radio networks operating with shared spectrum activity

    Science.gov (United States)

    Watson, Clifton L.; Biswas, Subir

    2014-06-01

    With an increasing demand for spectrum, dynamic spectrum access (DSA) has been proposed as viable means for providing the flexibility and greater access to spectrum necessary to meet this demand. Within the DSA concept, unlicensed secondary users temporarily "borrow" or access licensed spectrum, while respecting the licensed primary user's rights to that spectrum. As key enablers for DSA, cognitive radios (CRs) are based on software-defined radios which allow them to sense, learn, and adapt to the spectrum environment. These radios can operate independently and rapidly switch channels. Thus, the initial setup and maintenance of cognitive radio networks are dependent upon the ability of CR nodes to find each other, in a process known as rendezvous, and create a link on a common channel for the exchange of data and control information. In this paper, we propose a novel rendezvous protocol, known as QLP, which is based on Q-learning and the p-persistent CSMA protocol. With the QLP protocol, CR nodes learn which channels are best for rendezvous and thus adapt their behavior to visit those channels more frequently. We demonstrate through simulation that the QLP protocol provides a rendevous capability for DSA environments with different dynamics of PU activity, while attempting to achieve the following performance goals: (1) minimize the average time-to-rendezvous, (2) maximize system throughput, (3) minimize primary user interference, and (4) minimize collisions among CR nodes.

  19. Testing a ground-based canopy model using the wind river canopy crane

    Science.gov (United States)

    Robert Van Pelt; Malcolm P. North

    1999-01-01

    A ground-based canopy model that estimates the volume of occupied space in forest canopies was tested using the Wind River Canopy Crane. A total of 126 trees in a 0.25 ha area were measured from the ground and directly from a gondola suspended from the crane. The trees were located in a low elevation, old-growth forest in the southern Washington Cascades. The ground-...

  20. Generalized location-based resource allocation for OFDMA cognitive radio systems

    KAUST Repository

    Ben Ghorbel, Mahdi; Nam, Haewoon; Alouini, Mohamed-Slim

    2010-01-01

    Cognitive radio is one of the hot topics for emerging and future wireless communication. Cognitive users can share channels with primary users under the condition of non interference. In order to compute this interference, the cognitive system

  1. Planck early results. XIV. ERCSC validation and extreme radio sources

    DEFF Research Database (Denmark)

    Lähteenmäki, A.; Lavonen, N.; León-Tavares, J.

    2011-01-01

    Planck's all-sky surveys at 30-857 GHz provide an unprecedented opportunity to follow the radio spectra of a large sample of extragalactic sources to frequencies 2-20 times higher than allowed by past, large-area, ground-based surveys. We combine the results of the Planck Early Release Compact So...

  2. Assessment of Radio-Frequency Radiation Exposure Level from Selected Mobile Base Stations (MBS) in Lokoja, Kogi State, Nigeria

    OpenAIRE

    Nwankwo, U. J. Victor; Jibiri, N. N.; Dada, S. S.; Onugba, A. A.; Ushie, P.

    2012-01-01

    The acquisition and use of mobile phone is tremendously increasing especially in developing countries, but not without a concern. The greater concern among the public is principally over the proximity of mobile base stations (MBS) to residential areas rather than the use of handsets. In this paper, we present an assessment of Radio-Frequency (RF) radiation exposure level measurements and analysis of radiation power density (in W/sq m) from mobile base stations relative to radial distance (in ...

  3. Valuing commercial radio licences

    NARCIS (Netherlands)

    Kerste, M.; Poort, J.; van Eijk, N.

    2015-01-01

    Within the EU regulatory framework, licensees for commercial radio broadcasting may be charged a fee to ensure optimal allocation of scarce resources but not to maximize public revenues. While radio licence renewal occurs in many EU countries, an objective, model-based approach for setting licence

  4. A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems

    International Nuclear Information System (INIS)

    Qi Pei-Han; Li Zan; Si Jiang-Bo; Gao Rui

    2014-01-01

    Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds. (interdisciplinary physics and related areas of science and technology)

  5. A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems

    Science.gov (United States)

    Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Gao, Rui

    2014-12-01

    Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds.

  6. Radio sounding of the magnetosphere from a lunar-based VLF array

    Science.gov (United States)

    Green, James L.; Fung, Shing F.

    1994-01-01

    Using a lunar-based active radio transmitter and receiver system operating in the 'free space' wave modes, we can obtain much information on the structures and dynamics of remote magnetospheric plasma regions in a way similar to ionosondes. Powerful, narrow-band electromagnetic pulses can be transmitted over a wide frequency range (from 10 kHz to 1 MHz). The signals would be refracted and reflected off magnetospheric structures such as the plasmapause, plasmasheet, magnetopause, and the high and low latitude boundary layers. With a series of long dipole antennas, ranging in size from 400 m to 20 km with an output voltage ranging from 6 kV to less than 0.2 kV, a target plasma region at up to 100 R(sub E) can be explored. We illustrate this remote sensing technique by using the plasmasphere as a remote target, and modeling the propagations of the sounder transmitted and received pulses by ray tracing calculations.

  7. Accidents on board merchant ships. Suggestions based on Centro Internazionale Radio Medico (CIRM) experience.

    Science.gov (United States)

    Napoleone, Paolo

    2016-01-01

    This statistical study was performed to find out the occurrence of accidents on board ships assisted by Centro Internazionale Radio Medico (CIRM) during the years 2010-2015, with the aim of providing suggestions in accident prevention, based on such a wide experience. The case histories of CIRM in the years 2010-2015 were examined. The total number of accidents per year was calculated and compared as a percentage with the total number of cases assisted by CIRM per year. The incidence of accidents on board in these years ranged between 14.4% and 18.4% of total cases assisted per year, which is constantly increasing. The most common injuries on board among cases treated by CIRM were contusions and wounds. Also burns and eye injuries were significantly represented. Multiple injuries and head injuries were found to be the most frequent cause of death on board due to an accident. More information on the occurrence and type of accidents and on the body injured areas should represent the basis for developing strategies and campaigns for their prevention.

  8. Hybrid model based unified scheme for endoscopic Cerenkov and radio-luminescence tomography: Simulation demonstration

    Science.gov (United States)

    Wang, Lin; Cao, Xin; Ren, Qingyun; Chen, Xueli; He, Xiaowei

    2018-05-01

    Cerenkov luminescence imaging (CLI) is an imaging method that uses an optical imaging scheme to probe a radioactive tracer. Application of CLI with clinically approved radioactive tracers has opened an opportunity for translating optical imaging from preclinical to clinical applications. Such translation was further improved by developing an endoscopic CLI system. However, two-dimensional endoscopic imaging cannot identify accurate depth and obtain quantitative information. Here, we present an imaging scheme to retrieve the depth and quantitative information from endoscopic Cerenkov luminescence tomography, which can also be applied for endoscopic radio-luminescence tomography. In the scheme, we first constructed a physical model for image collection, and then a mathematical model for characterizing the luminescent light propagation from tracer to the endoscopic detector. The mathematical model is a hybrid light transport model combined with the 3rd order simplified spherical harmonics approximation, diffusion, and radiosity equations to warrant accuracy and speed. The mathematical model integrates finite element discretization, regularization, and primal-dual interior-point optimization to retrieve the depth and the quantitative information of the tracer. A heterogeneous-geometry-based numerical simulation was used to explore the feasibility of the unified scheme, which demonstrated that it can provide a satisfactory balance between imaging accuracy and computational burden.

  9. Exoplanets -New Results from Space and Ground-based Surveys

    Science.gov (United States)

    Udry, Stephane

    The exploration of the outer solar system and in particular of the giant planets and their environments is an on-going process with the Cassini spacecraft currently around Saturn, the Juno mission to Jupiter preparing to depart and two large future space missions planned to launch in the 2020-2025 time frame for the Jupiter system and its satellites (Europa and Ganymede) on the one hand, and the Saturnian system and Titan on the other hand [1,2]. Titan, Saturn's largest satellite, is the only other object in our Solar system to possess an extensive nitrogen atmosphere, host to an active organic chemistry, based on the interaction of N2 with methane (CH4). Following the Voyager flyby in 1980, Titan has been intensely studied from the ground-based large telescopes (such as the Keck or the VLT) and by artificial satellites (such as the Infrared Space Observatory and the Hubble Space Telescope) for the past three decades. Prior to Cassini-Huygens, Titan's atmospheric composition was thus known to us from the Voyager missions and also through the explorations by the ISO. Our perception of Titan had thus greatly been enhanced accordingly, but many questions remained as to the nature of the haze surrounding the satellite and the composition of the surface. The recent revelations by the Cassini-Huygens mission have managed to surprise us with many discoveries [3-8] and have yet to reveal more of the interesting aspects of the satellite. The Cassini-Huygens mission to the Saturnian system has been an extraordinary success for the planetary community since the Saturn-Orbit-Insertion (SOI) in July 2004 and again the very successful probe descent and landing of Huygens on January 14, 2005. One of its main targets was Titan. Titan was revealed to be a complex world more like the Earth than any other: it has a dense mostly nitrogen atmosphere and active climate and meteorological cycles where the working fluid, methane, behaves under Titan conditions the way that water does on

  10. Space- and ground-based particle physics meet at CERN

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    The fourth international conference on Particle and Fundamental Physics in Space (SpacePart12) will take place at CERN from 5 to 7 November. The conference will bring together scientists working on particle and fundamental physics in space and on ground, as well as space policy makers from around the world.   One hundred years after Victor Hess discovered cosmic rays using hot air balloons, the experimental study of particle and fundamental physics is still being pursued today with extremely sophisticated techniques: on the ground, with state-of-the-art accelerators like the LHC; and in space, with powerful observatories that probe, with amazing accuracy, the various forms of cosmic radiation, charged and neutral, which are messengers of the most extreme conditions of matter and energy. SpacePart12 will be the opportunity for participants to exchange views on the progress of space-related science and technology programmes in the field of particle and fundamental physics in space. SpacePar...

  11. The Sun Radio Imaging Space Experiment (SunRISE) Mission

    Science.gov (United States)

    Kasper, J. C.; Lazio, J.; Alibay, F.; Amiri, N.; Bastian, T.; Cohen, C.; Landi, E.; Hegedus, A. M.; Maksimovic, M.; Manchester, W.; Reinard, A.; Schwadron, N.; Cecconi, B.; Hallinan, G.; Krupar, V.

    2017-12-01

    Radio emission from coronal mass ejections (CMEs) is a direct tracer of particle acceleration in the inner heliosphere and potential magnetic connections from the lower solar corona to the larger heliosphere. Energized electrons excite Langmuir waves, which then convert into intense radio emission at the local plasma frequency, with the most intense acceleration thought to occur within 20 R_S. The radio emission from CMEs is quite strong such that only a relatively small number of antennas is required to detect and map it, but many aspects of this particle acceleration and transport remain poorly constrained. Ground-based arrays would be quite capable of tracking the radio emission associated with CMEs, but absorption by the Earth's ionosphere limits the frequency coverage of ground-based arrays (nu > 15 MHz), which in turn limits the range of solar distances over which they can track the radio emission (concept: A constellation of small spacecraft in a geostationary graveyard orbit designed to localize and track radio emissions in the inner heliosphere. Each spacecraft would carry a receiving system for observations below 25 MHz, and SunRISE would produce the first images of CMEs more than a few solar radii from the Sun. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  12. A novel technique for extracting clouds base height using ground based imaging

    Directory of Open Access Journals (Sweden)

    E. Hirsch

    2011-01-01

    Full Text Available The height of a cloud in the atmospheric column is a key parameter in its characterization. Several remote sensing techniques (passive and active, either ground-based or on space-borne platforms and in-situ measurements are routinely used in order to estimate top and base heights of clouds. In this article we present a novel method that combines thermal imaging from the ground and sounded wind profile in order to derive the cloud base height. This method is independent of cloud types, making it efficient for both low boundary layer and high clouds. In addition, using thermal imaging ensures extraction of clouds' features during daytime as well as at nighttime. The proposed technique was validated by comparison to active sounding by ceilometers (which is a standard ground based method, to lifted condensation level (LCL calculations, and to MODIS products obtained from space. As all passive remote sensing techniques, the proposed method extracts only the height of the lowest cloud layer, thus upper cloud layers are not detected. Nevertheless, the information derived from this method can be complementary to space-borne cloud top measurements when deep-convective clouds are present. Unlike techniques such as LCL, this method is not limited to boundary layer clouds, and can extract the cloud base height at any level, as long as sufficient thermal contrast exists between the radiative temperatures of the cloud and its surrounding air parcel. Another advantage of the proposed method is its simplicity and modest power needs, making it particularly suitable for field measurements and deployment at remote locations. Our method can be further simplified for use with visible CCD or CMOS camera (although nighttime clouds will not be observed.

  13. Investigation of Inter-Node B Macro Diversity for Single-Carrier Based Radio Access in Evolved UTRA Uplink

    Science.gov (United States)

    Kawai, Hiroyuki; Morimoto, Akihito; Higuchi, Kenichi; Sawahashi, Mamoru

    This paper investigates the gain of inter-Node B macro diversity for a scheduled-based shared channel using single-carrier FDMA radio access in the Evolved UTRA (UMTS Terrestrial Radio Access) uplink based on system-level simulations. More specifically, we clarify the gain of inter-Node B soft handover (SHO) with selection combining at the radio frame length level (=10msec) compared to that for hard handover (HHO) for a scheduled-based shared data channel, considering the gains of key packet-specific techniques including channel-dependent scheduling, adaptive modulation and coding (AMC), hybrid automatic repeat request (ARQ) with packet combining, and slow transmission power control (TPC). Simulation results show that the inter-Node B SHO increases the user throughput at the cell edge by approximately 10% for a short cell radius such as 100-300m due to the diversity gain from a sudden change in other-cell interference, which is a feature specific to full scheduled-based packet access. However, it is also shown that the gain of inter-Node B SHO compared to that for HHO is small in a macrocell environment when the cell radius is longer than approximately 500m due to the gains from hybrid ARQ with packet combining, slow TPC, and proportional fairness based channel-dependent scheduling.

  14. Intercomparison of ground based and satellite pictures of the sun

    International Nuclear Information System (INIS)

    Chapman, R.D.; Epstein, G.L.; Hobbs, R.W.; Neupert, W.M.; Thomas, R.J.

    1975-01-01

    Using NASA facilities in space (OSO-7) and on the ground (Goddard Multi-Channel Spectrophotometer at Sacramento Peak, New Mexico) an active region has been mapped and by combining these ultraviolet, X-ray and visible data, a physical picture of this structured region has been constructed from the photosphere to the corona, corresponding to temperature regimes over the range 4500 K to 4 000 000 K. The morphology of the active region was then studied by comparing grey-shaded images in which fine details stand out more clearly than in the contour plots. One result of the study is that gross similarities persist from the low photosphere up to high in the transition region while some changes occur in the corona. (Auth.)

  15. Ground-based spectral measurements of solar radiation, (2)

    International Nuclear Information System (INIS)

    Murai, Keizo; Kobayashi, Masaharu; Goto, Ryozo; Yamauchi, Toyotaro

    1979-01-01

    A newly designed spectro-pyranometer was used for the measurement of the global (direct + diffuse) and the diffuse sky radiation reaching the ground. By the subtraction of the diffuse component from the global radiation, we got the direct radiation component which leads to the spectral distribution of the optical thickness (extinction coefficient) of the turbid atmosphere. The measurement of the diffuse sky radiation reveals the scattering effect of aerosols and that of the global radiation allows the estimation of total attenuation caused by scattering and absorption of aerosols. The effects of the aerosols are represented by the deviation of the real atmosphere measured from the Rayleigh atmosphere. By the combination of the measured values with those obtained by theoretical calculation for the model atmosphere, we estimated the amount of absorption by the aerosols. Very strong absorption in the ultraviolet region was recognized. (author)

  16. Spectrum management and radio resource management considering cognitive radio systems

    NARCIS (Netherlands)

    Haartsen, J.C.; Wieweg, Lasse; Huschke, Jörg

    2005-01-01

    International fora and some national administrations define a cognitive radio (CR) as a pioneering radio communication system that would be capable of altering and adapting its transmitter and receiver parameters based on communication and the exchange of information with related detectable radio

  17. Modelling of Surface Fault Structures Based on Ground Magnetic Survey

    Science.gov (United States)

    Michels, A.; McEnroe, S. A.

    2017-12-01

    The island of Leka confines the exposure of the Leka Ophiolite Complex (LOC) which contains mantle and crustal rocks and provides a rare opportunity to study the magnetic properties and response of these formations. The LOC is comprised of five rock units: (1) harzburgite that is strongly deformed, shifting into an increasingly olivine-rich dunite (2) ultramafic cumulates with layers of olivine, chromite, clinopyroxene and orthopyroxene. These cumulates are overlain by (3) metagabbros, which are cut by (4) metabasaltic dykes and (5) pillow lavas (Furnes et al. 1988). Over the course of three field seasons a detailed ground-magnetic survey was made over the island covering all units of the LOC and collecting samples from 109 sites for magnetic measurements. NRM, susceptibility, density and hysteresis properties were measured. In total 66% of samples with a Q value > 1, suggests that the magnetic anomalies should include both induced and remanent components in the model.This Ophiolite originated from a suprasubduction zone near the coast of Laurentia (497±2 Ma), was obducted onto Laurentia (≈460 Ma) and then transferred to Baltica during the Caledonide Orogeny (≈430 Ma). The LOC was faulted, deformed and serpentinized during these events. The gabbro and ultramafic rocks are separated by a normal fault. The dominant magnetic anomaly that crosses the island correlates with this normal fault. There are a series of smaller scale faults that are parallel to this and some correspond to local highs that can be highlighted by a tilt derivative of the magnetic data. These fault boundaries which are well delineated by the distinct magnetic anomalies in both ground and aeromagnetic survey data are likely caused by increased amount of serpentinization of the ultramafic rocks in the fault areas.

  18. Multisatellite and ground-based observations of transient ULF waves

    International Nuclear Information System (INIS)

    Potemra, T.A.; Zanetti, L.J.; Takahashi, K.; Erlandson, R.E.; Luehr, H.; Marklund, G.T.; Block, L.P.; Blomberg, L.G.; Lepping, R.P.

    1989-01-01

    A unique alignment of the Active Magnetospheric Particle Tracer Explorers (AMPTE) CCE and Viking satellites with respect to the EISCAT Magnetometer Cross has provided an opportunity to study transient ULF pulsations associated with variations in solar wind plasma density observed by the IMP 8 satellite. These observations were acquired during a relatively quiet period on April 24, 1986, during the Polar Region and Outer Magnetosphere International Study (PROMIS) period. An isolated 4-mHz (4-min period) pulsation was detected on the ground which was associated with transverse magnetic field oscillations observed by Viking at a ∼ 2-R E altitude above the auroral zone and by CCE at ∼ 8-R E in the equatorial plane on nearly the same flux tube. CCE detected a compressional oscillation in the magnetic field with twice the period (∼ 10 min) of the transverse waves, and with a waveform nearly identical to an isolated oscillation in the solar wind plasma density measured by IMP 8. The authors conclude that the isolated 10-min oscillation in solar wind plasma density produced magnetic field compression oscillations inside the magnetosphere at the same frequency which also enhanced resonant oscillations at approximately twice the frequency that were already present. The ground magnetic field variations are due to ionospheric Hall currents driven by the electric field of the standing Alfven waves. The time delay between surface and satellite data acquired at different local times supports the conclusion that the periodic solar wind density variation excites a tailward traveling large-scale magnetosphere wave train which excites local field line resonant oscillations. They conclude that these transient magnetic field variations are not associated with magnetic field reconnection or flux transfer events

  19. Ultraviolet radiation modelling from ground-based and satellite measurements on Reunion Island, southern tropics

    Directory of Open Access Journals (Sweden)

    K. Lamy

    2018-01-01

    . Only clear-sky SUR was modelled, so we needed to sort out the clear-sky measurements. We used two methods to detect cloudy conditions: the first was based on an observer's hourly report on the sky cover, while the second was based on applying Long and Ackerman(2000's algorithm to broadband pyranometer data to obtain the cloud fraction and then discriminating clear-sky windows on SUR measurements. Long et al. (2006's algorithm, with the co-located pyranometer data, gave better results for clear-sky filtering than the observer's report. Multiple model inputs were tested to evaluate the model sensitivity to different parameters such as total ozone column, aerosol optical properties, extraterrestrial spectrum or ozone cross section. For total column ozone, we used ground-based measurements from the SAOZ (Système d'Analyse par Observation Zénithale spectrometer and satellite measurements from the OMI and SBUV instruments, while ozone profiles were derived from radio-soundings and the MLS ozone product. Aerosol optical properties came from a local aerosol climatology established using a Cimel photometer. Since the mean difference between various inputs of total ozone column was small, the corresponding response on UVI modelling was also quite small, at about 1 %. The radiative amplification factor of total ozone column on UVI was also compared for observations and the model. Finally, we were able to estimate UVI on Reunion Island with, at best, a mean relative difference of about 0.5 %, compared to clear-sky observations.

  20. Ultraviolet radiation modelling from ground-based and satellite measurements on Reunion Island, southern tropics

    Science.gov (United States)

    Lamy, Kévin; Portafaix, Thierry; Brogniez, Colette; Godin-Beekmann, Sophie; Bencherif, Hassan; Morel, Béatrice; Pazmino, Andrea; Metzger, Jean Marc; Auriol, Frédérique; Deroo, Christine; Duflot, Valentin; Goloub, Philippe; Long, Charles N.

    2018-01-01

    clear-sky SUR was modelled, so we needed to sort out the clear-sky measurements. We used two methods to detect cloudy conditions: the first was based on an observer's hourly report on the sky cover, while the second was based on applying Long and Ackerman (2000)'s algorithm to broadband pyranometer data to obtain the cloud fraction and then discriminating clear-sky windows on SUR measurements. Long et al. (2006)'s algorithm, with the co-located pyranometer data, gave better results for clear-sky filtering than the observer's report. Multiple model inputs were tested to evaluate the model sensitivity to different parameters such as total ozone column, aerosol optical properties, extraterrestrial spectrum or ozone cross section. For total column ozone, we used ground-based measurements from the SAOZ (Système d'Analyse par Observation Zénithale) spectrometer and satellite measurements from the OMI and SBUV instruments, while ozone profiles were derived from radio-soundings and the MLS ozone product. Aerosol optical properties came from a local aerosol climatology established using a Cimel photometer. Since the mean difference between various inputs of total ozone column was small, the corresponding response on UVI modelling was also quite small, at about 1 %. The radiative amplification factor of total ozone column on UVI was also compared for observations and the model. Finally, we were able to estimate UVI on Reunion Island with, at best, a mean relative difference of about 0.5 %, compared to clear-sky observations.

  1. Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations

    Directory of Open Access Journals (Sweden)

    T. Neubert

    2002-06-01

    Full Text Available In the autumn of the year 2000, four radio receivers capable of tracking various beacon satellites were set up along the southwestern coast of Greenland. They are used to reconstruct images of the ionospheric plasma density distribution via the tomographic method. In order to test and validate tomographic imaging under the highly variable conditions often prevailing in the high-latitude ionosphere, a time interval was selected when the Sondrestrom incoherent scatter radar conducted measurements of the ionospheric plasma density while the radio receivers tracked a number of beacon satellites. A comparison between two-dimensional images of the plasma density distribution obtained from the radar and the satellite receivers revealed generally good agreement between radar measurements and tomographic images. Observed discrepancies can be attributed to F region plasma patches moving through the field of view with a speed of several hundred meters per second, thereby smearing out the tomographic image. A notable mismatch occurred around local magnetic midnight when a magnetospheric substorm breakup occurred in the vicinity of southwest Greenland (identified from ground-based magnetometer observations. The breakup was associated with a sudden intensification of the westward auroral electrojet which was centered at about 69 and extended up to some 73 corrected geomagnetic latitude. Ground-based magnetometer data may thus have the potential of indicating when the tomographic method is at risk and may fail. We finally outline the application of tomographic imaging, when combined with magnetic field data, to estimate ionospheric Joule heating rates.

  2. The Research and Test of Fast Radio Burst Real-time Search Algorithm Based on GPU Acceleration

    Science.gov (United States)

    Wang, J.; Chen, M. Z.; Pei, X.; Wang, Z. Q.

    2017-03-01

    In order to satisfy the research needs of Nanshan 25 m radio telescope of Xinjiang Astronomical Observatory (XAO) and study the key technology of the planned QiTai radio Telescope (QTT), the receiver group of XAO studied the GPU (Graphics Processing Unit) based real-time FRB searching algorithm which developed from the original FRB searching algorithm based on CPU (Central Processing Unit), and built the FRB real-time searching system. The comparison of the GPU system and the CPU system shows that: on the basis of ensuring the accuracy of the search, the speed of the GPU accelerated algorithm is improved by 35-45 times compared with the CPU algorithm.

  3. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells.

    Science.gov (United States)

    Kumar, Santosh; Fan, Haoquan; Kübler, Harald; Jahangiri, Akbar J; Shaffer, James P

    2017-04-17

    Rydberg atom-based electrometry enables traceable electric field measurements with high sensitivity over a large frequency range, from gigahertz to terahertz. Such measurements are particularly useful for the calibration of radio frequency and terahertz devices, as well as other applications like near field imaging of electric fields. We utilize frequency modulated spectroscopy with active control of residual amplitude modulation to improve the signal to noise ratio of the optical readout of Rydberg atom-based radio frequency electrometry. Matched filtering of the signal is also implemented. Although we have reached similarly, high sensitivity with other read-out methods, frequency modulated spectroscopy is advantageous because it is well-suited for building a compact, portable sensor. In the current experiment, ∼3 µV cm-1 Hz-1/2 sensitivity is achieved and is found to be photon shot noise limited.

  4. A multi-radio, multi-hop ad-hoc radio communication network for Communications-Based Train Control (CBTC): Introducing frequency separation for train-to-trackside communication

    DEFF Research Database (Denmark)

    Farooq, Jahanzeb; Bro, Lars; Karstensen, Rasmus Thystrup

    2018-01-01

    Communications-Based Train Control (CBTC) is a modern signalling system that uses radio communication to transfer train control information between train and wayside. The trackside networks in these systems are mostly based on conventionalinfrastructureWi-Fi(IEEE802.11).Itmeansatrain has to conti...

  5. A Review on Radio-Over-Fiber Technology-Based Integrated (Optical/Wireless) Networks

    Science.gov (United States)

    Rajpal, Shivika; Goyal, Rakesh

    2017-06-01

    In the present paper, radio-over-fiber (RoF) technology has been proposed, which is the integration of the optical and radio networks. With a high transmission capacity, comparatively low cost and low attenuation, optical fiber provides an ideal solution for accomplishing the interconnections. In addition, a radio system enables the significant mobility, flexibility and easy access. Therefore, the system integration can meet the increasing demands of subscribers for voice, data and multimedia services that require the access network to support high data rates at any time and any place inexpensively. RoF has the potentiality to the backbone of the wireless access network and it has gained significant momentum in the last decade as a potential last-mile access scheme. This paper gives the comprehensive review of RoF technology used in the communication system. Concept, applications, advantages and limitations of RoF technology are also discussed in this paper.

  6. Spectrum sharing in cognitive radio networks medium access control protocol based approach

    CERN Document Server

    Pandit, Shweta

    2017-01-01

    This book discusses the use of the spectrum sharing techniques in cognitive radio technology, in order to address the problem of spectrum scarcity for future wireless communications. The authors describe a cognitive radio medium access control (MAC) protocol, with which throughput maximization has been achieved. The discussion also includes use of this MAC protocol for imperfect sensing scenarios and its effect on the performance of cognitive radio systems. The authors also discuss how energy efficiency has been maximized in this system, by applying a simple algorithm for optimizing the transmit power of the cognitive user. The study about the channel fading in the cognitive user and licensed user and power adaption policy in this scenario under peak transmit power and interference power constraint is also present in this book.

  7. A Cognitive Radio based Solution to Coexistence of FH and OFDM Signals Implemented on USRP N210 Platform

    Directory of Open Access Journals (Sweden)

    M. Janjić

    2017-06-01

    Full Text Available A new concept development and practical implementation of an OFDM based secondary cognitive link are presented in this paper. Coexistence of a secondary user employing Orthogonal Frequency Division Multiplexing (OFDM and a primary user employing Frequency Hopping (FH is achieved. Secondary and primary links are realized using Universal Software Radio Peripheral (USRP N210 platforms. Cognitive features of spectrum sensing and changing transmission parameters are implemented. Some experimental results are presented.

  8. VizieR Online Data Catalog: Blazars equivalent widths and radio luminosity (Landt+, 2004)

    Science.gov (United States)

    Landt, H.; Padovani, P.; Perlman, E. S.; Giommi, P.

    2004-07-01

    Blazars are currently separated into BL Lacertae objects (BL Lacs) and flat spectrum radio quasars based on the strength of their emission lines. This is performed rather arbitrarily by defining a diagonal line in the Ca H&K break value-equivalent width plane, following Marcha et al. (1996MNRAS.281..425M). We readdress this problem and put the classification scheme for blazars on firm physical grounds. We study ~100 blazars and radio galaxies from the Deep X-ray Radio Blazar Survey (DXRBS, Cat. and ) and 2-Jy radio survey and find a significant bimodality for the narrow emission line [OIII]{lambda}5007. This suggests the presence of two physically distinct classes of radio-loud active galactic nuclei (AGN). We show that all radio-loud AGN, blazars and radio galaxies, can be effectively separated into weak- and strong-lined sources using the [OIII]{lambda}5007-[OII]{lambda}3727 equivalent width plane. This plane allows one to disentangle orientation effects from intrinsic variations in radio-loud AGN. Based on DXRBS, the strongly beamed sources of the new class of weak-lined radio-loud AGN are made up of BL Lacs at the ~75 per cent level, whereas those of the strong-lined radio-loud AGN include mostly (~97 per cent) quasars. (4 data files).

  9. Channel Selection Based on Trust and Multiarmed Bandit in Multiuser, Multichannel Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Fanzi Zeng

    2014-01-01

    Full Text Available This paper proposes a channel selection scheme for the multiuser, multichannel cognitive radio networks. This scheme formulates the channel selection as the multiarmed bandit problem, where cognitive radio users are compared to the players and channels to the arms. By simulation negotiation we can achieve the potential reward on each channel after it is selected for transmission; then the channel with the maximum accumulated rewards is formally chosen. To further improve the performance, the trust model is proposed and combined with multi-armed bandit to address the channel selection problem. Simulation results validate the proposed scheme.

  10. Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser.

    Science.gov (United States)

    Ortigosa-Blanch, A; Mora, J; Capmany, J; Ortega, B; Pastor, D

    2006-03-15

    We propose the use of an actively mode-locked fiber laser as a multitap optical source for a microwave photonic filter. The fiber laser provides multiple optical taps with an optical frequency separation equal to the external driving radio-frequency signal of the laser that governs its repetition rate. All the optical taps show equal polarization and an overall Gaussian apodization, which reduces the sidelobes. We demonstrate continuous tunability of the filter by changing the external driving radio-frequency signal of the laser, which shows good fine tunability in the operating range of the laser from 5 to 10 GHz.

  11. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report presents information concerning field procedures employed during the monitoring, well construction, well purging, sampling, and well logging at the Wright-Patterson Air Force Base. Activities were conducted in an effort to evaluate ground water contamination.

  12. Spectral Analysis of the Background in Ground-based, Long-slit ...

    Indian Academy of Sciences (India)

    1996-12-08

    Dec 8, 1996 ... Spectral Analysis of the Background in Ground-based,. Long-slit .... Figure 1 plots spectra from the 2-D array, after instrumental calibration and before correction for ..... which would merit attention and a better understanding.

  13. Ground-Based Global Navigation Satellite System Combined Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Combined Broadcast Ephemeris Data (daily files of all distinct navigation messages...

  14. Chasing Small Exoplanets with Ground-Based Near-Infrared Transit Photometry

    Science.gov (United States)

    Colon, K. D.; Barentsen, G.; Vinicius, Z.; Vanderburg, A.; Coughlin, J.; Thompson, S.; Mullally, F.; Barclay, T.; Quintana, E.

    2017-11-01

    I will present results from a ground-based survey to measure the infrared radius and other properties of small K2 exoplanets and candidates. The survey is preparation for upcoming discoveries from TESS and characterization with JWST.

  15. Tungstate-based glass-ceramics for the immobilization of radio cesium

    Science.gov (United States)

    Drabarek, Elizabeth; McLeod, Terry I.; Hanna, John V.; Griffith, Christopher S.; Luca, Vittorio

    2009-02-01

    The preparation of tungstate-containing glass-ceramic composites (GCC) for the potential immobilization of radio cesium has been considered. The GCC materials were prepared by blending two oxide precursor compositions in various proportions. These included a preformed Cs-containing hexagonal tungsten bronze (HTB) phase (Cs 0.3Ti 0.2W 0.8O 3, P6 3/ mcm) and a blend of silica and other oxides. The use of the HTB phase was motivated on the assumption that a HTB-based adsorbent could be used to remove cesium directly from aqueous high level liquid waste feeds. In the absence of the HTB, glass-ceramics were relatively easily prepared from the Cs-containing glass-forming oxide blend. On melting the mixture a relative complex GCC phase assemblage formed. The principal components of this phase assemblage were determined using X-ray powder diffraction, 133Cs MAS-NMR, and cross-sectional SEM and included glass, various zeolites, scheelite (CaWO 4) and a range of other oxide phases and Cs-containing aluminosilicate. Importantly, under no circumstance was cesium partitioned into the glass phase irrespective of whether or not the composition included the preformed Cs-containing HTB compound. For compositions containing the HTB, cesium was partitioned into one of four major phases including zeolite; Cs-silica-tungstate bronze, pollucite (CsAlSi 2O 6), and an aluminosilicate with an Al/Si ratio close to one. The leach resistance of all materials was evaluated and related to the cesium distribution within the GCC phase assemblages. In general, the GCCs prepared from the HTB had superior durability compared with materials not containing tungsten. Indeed the compositions in many cases had leach resistances comparable to the best ceramics or glass materials.

  16. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.; Gibson, D.M.

    1985-01-01

    Studies of stellar radio emission became an important field of research in the 1970's and have now expanded to become a major area of radio astronomy with the advent of new instruments such as the Very Large Array in New Mexico and transcontinental telescope arrays. This volume contains papers from the workshop on stellar continuum radio astronomy held in Boulder, Colorado, and is the first book on the rapidly expanding field of radio emission from stars and stellar systems. Subjects covered include the observational and theoretical aspects of stellar winds from both hot and cool stars, radio flares from active double star systems and red dwarf stars, bipolar flows from star-forming regions, and the radio emission from X-ray binaries. (orig.)

  17. Analysis of an Interplanetary Coronal Mass Ejection by a Spacecraft Radio Signal: A Case Study

    Science.gov (United States)

    Molera Calvés, G.; Kallio, E.; Cimo, G.; Quick, J.; Duev, D. A.; Bocanegra Bahamón, T.; Nickola, M.; Kharinov, M. A.; Mikhailov, A. G.

    2017-11-01

    Tracking radio communication signals from planetary spacecraft with ground-based telescopes offers the possibility to study the electron density and the interplanetary scintillation of the solar wind. Observations of the telemetry link of planetary spacecraft have been conducted regularly with ground antennae from the European Very Long Baseline Interferometry Network, aiming to study the propagation of radio signals in the solar wind at different solar elongations and distances from the Sun. We have analyzed the Mars Express spacecraft radio signal phase fluctuations while, based on a 3-D heliosphere plasma simulation, an interplanetary coronal mass ejection (ICME) crossed the radio path during one of our observations on 6 April 2015. Our measurements showed that the phase scintillation indices increased by a factor of 4 during the passage of the ICME. The method presented here confirms that the phase scintillation technique based on spacecraft signals provides information of the properties and propagation of the ICMEs in the heliosphere.

  18. The Radio Jove Project

    Science.gov (United States)

    Thieman, J. R.

    2010-01-01

    The Radio love Project is a hands-on education and outreach project in which students, or any other interested individuals or groups build a radio telescope from a kit, operate the radio telescope, transmit the resulting signals through the internet if desired, analyze the results, and share the results with others through archives or general discussions among the observers. Radio love is intended to provide an introduction to radio astronomy for the observer. The equipment allows the user to observe radio signals from Jupiter, the Sun, the galaxy, and Earth-based radiation both natural and man-made. The project was started through a NASA Director's Discretionary Fund grant more than ten years ago. it has continued to be carried out through the dedicated efforts of a group of mainly volunteers. Dearly 1500 kits have been distributed throughout the world. Participation can also be done without building a kit. Pre-built kits are available. Users can also monitor remote radio telescopes through the internet using free downloadable software available through the radiosky.com website. There have been many stories of prize-winning projects, inspirational results, collaborative efforts, etc. We continue to build the community of observers and are always open to new thoughts about how to inspire the observers to still greater involvement in the science and technology associated with Radio Jove.

  19. THE IMPACT OF THE IONOSPHERE ON GROUND-BASED DETECTION OF THE GLOBAL EPOCH OF REIONIZATION SIGNAL

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, Marcin; Wayth, Randall B.; Tremblay, Steven E.; Tingay, Steven J.; Waterson, Mark; Tickner, Jonathan; Emrich, David; Schlagenhaufer, Franz; Kenney, David; Padhi, Shantanu, E-mail: marcin.sokolowski@curtin.edu.au [International Centre for Radio Astronomy Research, Curtin University, G.P.O Box U1987, Perth, WA 6845 (Australia)

    2015-11-01

    The redshifted 21 cm line of neutral hydrogen (H i), potentially observable at low radio frequencies (∼50–200 MHz), is a promising probe of the physical conditions of the intergalactic medium during Cosmic Dawn and the Epoch of Reionization (EoR). The sky-averaged H i signal is expected to be extremely weak (∼100 mK) in comparison to the Galactic foreground emission (∼10{sup 4} K). Moreover, the sky-averaged spectra measured by ground-based instruments are affected by chromatic propagation effects (∼tens of kelvin) originating in the ionosphere. We analyze data collected with the upgraded Broadband Instrument for Global Hydrogen Reionization Signal system deployed at the Murchison Radio-astronomy Observatory to assess the significance of ionospheric effects on the detection of the global EoR signal. The ionospheric effects identified in these data are, particularly during nighttime, dominated by absorption and emission. We measure some properties of the ionosphere, such as the electron temperature (T{sub e} ≈ 470 K at nighttime), magnitude, and variability of optical depth (τ{sub 100} {sub MHz} ≈ 0.01 and δτ ≈ 0.005 at nighttime). According to the results of a statistical test applied on a large data sample, very long integrations (∼100 hr collected over approximately 2 months) lead to increased signal-to-noise ratio even in the presence of ionospheric variability. This is further supported by the structure of the power spectrum of the sky temperature fluctuations, which has flicker noise characteristics at frequencies ≳10{sup −5} Hz, but becomes flat below ≈10{sup −5} Hz. Hence, we conclude that the stochastic error introduced by the chromatic ionospheric effects tends to zero in an average. Therefore, the ionospheric effects and fluctuations are not fundamental impediments preventing ground-based instruments from integrating down to the precision required by global EoR experiments, provided that the ionospheric contribution is

  20. Visibility-based angular power spectrum estimation in low-frequency radio interferometric observations

    NARCIS (Netherlands)

    Choudhuri, Samir; Bharadwaj, Somnath; Ghosh, Abhik; Ali, Sk. Saiyad

    2014-01-01

    We present two estimators to quantify the angular power spectrum of the sky signal directly from the visibilities measured in radio interferometric observations. This is relevant for both the foregrounds and the cosmological 21-cm signal buried therein. The discussion here is restricted to the

  1. On achieving network throughput demand in cognitive radio-based home area networks

    NARCIS (Netherlands)

    Sarijari, M.A.B.; Abdullah, M.S.; Janssen, G.J.M.; Van der Veen, A.J.

    2015-01-01

    The growing number of wireless devices for in-house use is causing a more intense use of the spectrum to satisfy the required quality-of-service such as throughput. This has contributed to spectrum scarcity and interference problems particularly in home area networks (HAN). Cognitive radio (CR) has

  2. Gold Nanoparticle-Based Sensors Activated by External Radio Frequency Fields

    DEFF Research Database (Denmark)

    Della Vedova, Paolo; Ilieva, Mirolyuba; Zhurbenko, Vitaliy

    2015-01-01

    A novel molecular beacon (a nanomachine) is constructed that can be actuated by a radio frequency (RF) field. The nanomachine consists of the following elements arranged in molecular beacon configuration: a gold nanoparticle that acts both as quencher for fluorescence and a localized heat source;...

  3. A relative rate utility based distributed power allocation algorithm for Cognitive Radio Networks

    DEFF Research Database (Denmark)

    Mahmood, Nurul Huda; Øien, G.E.; Lundheim, L.

    2012-01-01

    In an underlay Cognitive Radio Network, multiple secondary users coexist geographically and spectrally with multiple primary users under a constraint on the maximum received interference power at the primary receivers. Given such a setting, one may ask "how to achieve maximum utility benefit...

  4. Developments of FPGA-based digital back-ends for low frequency antenna arrays at Medicina radio telescopes

    Science.gov (United States)

    Naldi, G.; Bartolini, M.; Mattana, A.; Pupillo, G.; Hickish, J.; Foster, G.; Bianchi, G.; Lingua, A.; Monari, J.; Montebugnoli, S.; Perini, F.; Rusticelli, S.; Schiaffino, M.; Virone, G.; Zarb Adami, K.

    In radio astronomy Field Programmable Gate Array (FPGA) technology is largely used for the implementation of digital signal processing techniques applied to antenna arrays. This is mainly due to the good trade-off among computing resources, power consumption and cost offered by FPGA chip compared to other technologies like ASIC, GPU and CPU. In the last years several digital backend systems based on such devices have been developed at the Medicina radio astronomical station (INAF-IRA, Bologna, Italy). Instruments like FX correlator, direct imager, beamformer, multi-beam system have been successfully designed and realized on CASPER (Collaboration for Astronomy Signal Processing and Electronics Research, https://casper.berkeley.edu) processing boards. In this paper we present the gained experience in this kind of applications.

  5. Resource Allocation for OFDMA-Based Cognitive Radio Networks with Application to H.264 Scalable Video Transmission

    Directory of Open Access Journals (Sweden)

    Coon JustinP

    2011-01-01

    Full Text Available Resource allocation schemes for orthogonal frequency division multiple access- (OFDMA- based cognitive radio (CR networks that impose minimum and maximum rate constraints are considered. To demonstrate the practical application of such systems, we consider the transmission of scalable video sequences. An integer programming (IP formulation of the problem is presented, which provides the optimal solution when solved using common discrete programming methods. Due to the computational complexity involved in such an approach and its unsuitability for dynamic cognitive radio environments, we propose to use the method of lift-and-project to obtain a stronger formulation for the resource allocation problem such that the integrality gap between the integer program and its linear relaxation is reduced. A simple branching operation is then performed that eliminates any noninteger values at the output of the linear program solvers. Simulation results demonstrate that this simple technique results in solutions very close to the optimum.

  6. A Comparison of Two Above-Ground Biomass Estimation Techniques Integrating Satellite-Based Remotely Sensed Data and Ground Data for Tropical and Semiarid Forests in Puerto Rico

    Science.gov (United States)

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA)...

  7. Knowledge-Base Application to Ground Moving Target Detection

    National Research Council Canada - National Science Library

    Adve, R

    2001-01-01

    This report summarizes a multi-year in-house effort to apply knowledge-base control techniques and advanced Space-Time Adaptive Processing algorithms to improve detection performance and false alarm...

  8. The Effect of Solar Radiation on Radio Signal for Radio Astronomy Purposes

    International Nuclear Information System (INIS)

    Nor Hazmin Sabri; Atiq Wahidah Azlan; Roslan Umar; Roslan Umar; Shahirah Syafa Sulan; Zainol Abidin Ibrahim; Wan Zul Adli Wan Mokhtar

    2015-01-01

    Radio astronomy is a subfields of astronomy which is discovers the celestial objects at radio frequencies. Observation in radio astronomy is conducted using single antenna or array of antennas, known as radio telescope. Other than that, radio astronomy also holds an advantage over other alternatives to optical astronomy due to its capability of observing from the ground level. In this study, the effect of solar radiation that contributes the Radio Frequency Interferences (RFI) is reviewed. The low RFI level is required to set up the radio telescope for radio astronomy observation. The effect of solar radiation on radio signal was investigated by determining the RFI pattern using spectrum analyzer. The solar radiation data was obtained from weather station located at KUSZA Observatory, East Coast Environmental Research Institute (ESERI), UniSZA. We can conclude that the solar radiation factor give the minimum significant effect to radio signal. (author)

  9. Indexing data cubes for content-based searches in radio astronomy

    Science.gov (United States)

    Araya, M.; Candia, G.; Gregorio, R.; Mendoza, M.; Solar, M.

    2016-01-01

    Methods for observing space have changed profoundly in the past few decades. The methods needed to detect and record astronomical objects have shifted from conventional observations in the optical range to more sophisticated methods which permit the detection of not only the shape of an object but also the velocity and frequency of emissions in the millimeter-scale wavelength range and the chemical substances from which they originate. The consolidation of radio astronomy through a range of global-scale projects such as the Very Long Baseline Array (VLBA) and the Atacama Large Millimeter/submillimeter Array (ALMA) reinforces the need to develop better methods of data processing that can automatically detect regions of interest (ROIs) within data cubes (position-position-velocity), index them and facilitate subsequent searches via methods based on queries using spatial coordinates and/or velocity ranges. In this article, we present the development of an automatic system for indexing ROIs in data cubes that is capable of automatically detecting and recording ROIs while reducing the necessary storage space. The system is able to process data cubes containing megabytes of data in fractions of a second without human supervision, thus allowing it to be incorporated into a production line for displaying objects in a virtual observatory. We conducted a set of comprehensive experiments to illustrate how our system works. As a result, an index of 3% of the input size was stored in a spatial database, representing a compression ratio equal to 33:1 over an input of 20.875 GB, achieving an index of 773 MB approximately. On the other hand, a single query can be evaluated over our system in a fraction of second, showing that the indexing step works as a shock-absorber of the computational time involved in data cube processing. The system forms part of the Chilean Virtual Observatory (ChiVO), an initiative which belongs to the International Virtual Observatory Alliance (IVOA) that

  10. Sequential Ground Motion Effects on the Behavior of a Base-Isolated RCC Building

    Directory of Open Access Journals (Sweden)

    Zhi Zheng

    2017-01-01

    Full Text Available The sequential ground motion effects on the dynamic responses of reinforced concrete containment (RCC buildings with typical isolators are studied in this paper. Although the base isolation technique is developed to guarantee the security and integrity of RCC buildings under single earthquakes, seismic behavior of base-isolated RCC buildings under sequential ground motions is deficient. Hence, an ensemble of as-recorded sequential ground motions is employed to study the effect of including aftershocks on the seismic evaluation of base-isolated RCC buildings. The results indicate that base isolation can significantly attenuate the earthquake shaking of the RCC building under not only single earthquakes but also seismic sequences. It is also found that the adverse aftershock effect on the RCC can be reduced due to the base isolation applied to the RCC. More importantly, the study indicates that disregarding aftershocks can induce significant underestimation of the isolator displacement for base-isolated RCC buildings.

  11. GNSS as a sea ice sensor - detecting coastal freeze states with ground-based GNSS-R

    Science.gov (United States)

    Strandberg, Joakim; Hobiger, Thomas; Haas, Rüdiger

    2017-04-01

    Based on the idea of using freely available signals for remote sensing, ground-based GNSS-reflectometry (GNSS-R) has found more and more applications in hydrology, oceanography, agriculture and other Earth sciences. GNSS-R is based on analysing the elevation dependent SNR patterns of GNSS signals, and traditionally only the oscillation frequency and phase have been studied to retrieve parameters from the reflecting surfaces. However, recently Strandberg et al. (2016) developed an inversion algorithm that has changed the paradigms of ground-based GNSS-R as it enables direct access to the radiometric properties of the reflector. Using the signal envelope and the rate at which the magnitude of the SNR oscillations are damped w.r.t. satellite elevation, the algorithm retrieves the roughness of the reflector surface amongst other parameters. Based on this idea, we demonstrate for the first time that a GNSS installation situated close to the coastline can detect the presence of sea-ice unambiguously. Using data from the GTGU antenna at the Onsala Space Observatory, Sweden, the time series of the derived damping parameter clearly matches the occurrence of ice in the bay where the antenna is situated. Our results were validated against visual inspection logs as well as with the help of ice charts from the Swedish Meteorological and Hydrological Institute. Our method is even sensitive to partial and intermediate ice formation stages, with clear difference in response between frazil ice and both open and solidly frozen water surfaces. As the GTGU installation is entirely built with standard geodetic equipment, the method can be applied directly to any coastal GNSS site, allowing analysis of both new and historical data. One can use the method as an automatic way of retrieving independent ground truth data for ice extent measurements for use in hydrology, cryosphere studies, and even societal interest fields such as sea transportation. Finally, the new method opens up for

  12. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Thein, Pyi Soe, E-mail: pyisoethein@yahoo.com [Geology Department, Yangon University (Myanmar); Pramumijoyo, Subagyo; Wilopo, Wahyu; Setianto, Agung [Geological Engineering Department, Gadjah Mada University (Indonesia); Brotopuspito, Kirbani Sri [Physics Department, Gadjah Mada University (Indonesia); Kiyono, Junji; Putra, Rusnardi Rahmat [Graduate School of Global Environmental Studies, Kyoto University (Japan)

    2015-04-24

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  13. Cost and Performance Comparison of an Earth-Orbiting Optical Communication Relay Transceiver and a Ground-Based Optical Receiver Subnet

    Science.gov (United States)

    Wilson, K. E.; Wright, M.; Cesarone, R.; Ceniceros, J.; Shea, K.

    2003-01-01

    Optical communications can provide high-data-rate telemetry from deep-space probes with subsystems that have lower mass, consume less power, and are smaller than their radio frequency (RF) counterparts. However, because optical communication is more affected by weather than is RF communication, it requires ground station site diversity to mitigate the adverse effects of inclement weather on the link. An optical relay satellite is not affected by weather and can provide 24-hour coverage of deep-space probes. Using such a relay satellite for the deep-space link and an 8.4-GHz (X-band) link to a ground station would support high-data-rate links from small deep-space probes with very little link loss due to inclement weather. We have reviewed past JPL-funded work on RF and optical relay satellites, and on proposed clustered and linearly dispersed optical subnets. Cost comparisons show that the life cycle costs of a 7-m optical relay station based on the heritage of the Next Generation Space Telescope is comparable to that of an 8-station subnet of 10-m optical ground stations. This makes the relay link an attractive option vis-a-vis a ground station network.

  14. A Subcarrier-Pair Based Resource Allocation Scheme Using Proportional Fairness for Cooperative OFDM-Based Cognitive Radio Networks

    Science.gov (United States)

    Ma, Yongtao; Zhou, Liuji; Liu, Kaihua

    2013-01-01

    The paper presents a joint subcarrier-pair based resource allocation algorithm in order to improve the efficiency and fairness of cooperative multiuser orthogonal frequency division multiplexing (MU-OFDM) cognitive radio (CR) systems. A communication model where one source node communicates with one destination node assisted by one half-duplex decode-and-forward (DF) relay is considered in the paper. An interference-limited environment is considered, with the constraint of transmitted sum-power over all channels and aggregate average interference towards multiple primary users (PUs). The proposed resource allocation algorithm is capable of maximizing both the system transmission efficiency and fairness among secondary users (SUs). Besides, the proposed algorithm can also keep the interference introduced to the PU bands below a threshold. A proportional fairness constraint is used to assure that each SU can achieve a required data rate, with quality of service guarantees. Moreover, we extend the analysis to the scenario where each cooperative SU has no channel state information (CSI) about non-adjacent links. We analyzed the throughput and fairness tradeoff in CR system. A detailed analysis of the performance of the proposed algorithm is presented with the simulation results. PMID:23939586

  15. Enhancing Ground Based Telescope Performance with Image Processing

    Science.gov (United States)

    2013-11-13

    called the hybrid diversity algorithm ( HDA ) that is based on the Gerchberg-Saxton algorithm with another process to perform phase-unwraping [36, 45...47]. The HDA requires phase diversity similar to the LM least squares method used for characterizing the HST [32]. The problem of generating...addition, the new phase retrieval algorithm proposed in this chapter has the advantage over NASA’s hybrid diversity algorithm ( HDA ) planned for use on JWST

  16. Ground test of satellite constellation based quantum communication

    OpenAIRE

    Liao, Sheng-Kai; Yong, Hai-Lin; Liu, Chang; Shentu, Guo-Liang; Li, Dong-Dong; Lin, Jin; Dai, Hui; Zhao, Shuang-Qiang; Li, Bo; Guan, Jian-Yu; Chen, Wei; Gong, Yun-Hong; Li, Yang; Lin, Ze-Hong; Pan, Ge-Sheng

    2016-01-01

    Satellite based quantum communication has been proven as a feasible way to achieve global scale quantum communication network. Very recently, a low-Earth-orbit (LEO) satellite has been launched for this purpose. However, with a single satellite, it takes an inefficient 3-day period to provide the worldwide connectivity. On the other hand, similar to how the Iridium system functions in classic communication, satellite constellation (SC) composed of many quantum satellites, could provide global...

  17. Informing hydrological models with ground-based time-lapse relative gravimetry: potential and limitations

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Christiansen, Lars; Rosbjerg, Dan

    2011-01-01

    parameter uncertainty decreased significantly when TLRG data was included in the inversion. The forced infiltration experiment caused changes in unsaturated zone storage, which were monitored using TLRG and ground-penetrating radar. A numerical unsaturated zone model was subsequently conditioned on both......Coupled hydrogeophysical inversion emerges as an attractive option to improve the calibration and predictive capability of hydrological models. Recently, ground-based time-lapse relative gravity (TLRG) measurements have attracted increasing interest because there is a direct relationship between...

  18. Rule Based Expert System for Monitoring Real Time Drug Supply in Hospital Using Radio Frequency Identification Technology

    Science.gov (United States)

    Driandanu, Galih; Surarso, Bayu; Suryono

    2018-02-01

    A radio frequency identification (RFID) has obtained increasing attention with the emergence of various applications. This study aims to examine the implementation of rule based expert system supported by RFID technology into a monitoring information system of drug supply in a hospital. This research facilitates in monitoring the real time drug supply by using data sample from the hospital pharmacy. This system able to identify and count the number of drug and provide warning and report in real time. the conclusion is the rule based expert system and RFID technology can facilitate the performance in monitoring the drug supply quickly and precisely.

  19. Quantitative Estimation of Above Ground Crop Biomass using Ground-based, Airborne and Spaceborne Low Frequency Polarimetric Synthetic Aperture Radar

    Science.gov (United States)

    Koyama, C.; Watanabe, M.; Shimada, M.

    2016-12-01

    Estimation of crop biomass is one of the important challenges in environmental remote sensing related to agricultural as well as hydrological and meteorological applications. Usually passive optical data (photographs, spectral data) operating in the visible and near-infrared bands is used for such purposes. The virtue of optical remote sensing for yield estimation, however, is rather limited as the visible light can only provide information about the chemical characteristics of the canopy surface. Low frequency microwave signals with wavelength longer 20 cm have the potential to penetrate through the canopy and provide information about the whole vertical structure of vegetation from the top of the canopy down to the very soil surface. This phenomenon has been well known and exploited to detect targets under vegetation in the military radar application known as FOPEN (foliage penetration). With the availability of polarimetric interferometric SAR data the use PolInSAR techniques to retrieve vertical vegetation structures has become an attractive tool. However, PolInSAR is still highly experimental and suitable data is not yet widely available. In this study we focus on the use of operational dual-polarization L-band (1.27 GHz) SAR which is since the launch of Japan's Advanced Land Observing Satellite (ALOS, 2006-2011) available worldwide. Since 2014 ALOS-2 continues to deliver such kind of partial polarimetric data for the entire land surface. In addition to these spaceborne data sets we use airborne L-band SAR data acquired by the Japanese Pi-SAR-L2 as well as ultra-wideband (UWB) ground based SAR data operating in the frequency range from 1-4 GHz. By exploiting the complex dual-polarization [C2] Covariance matrix information, the scattering contributions from the canopy can be well separated from the ground reflections allowing for the establishment of semi-empirical relationships between measured radar reflectivity and the amount of fresh-weight above-ground

  20. Unlocking radio broadcasts

    DEFF Research Database (Denmark)

    Skov, Mette; Lykke, Marianne

    2012-01-01

    This poster reports the preliminary results of a user study uncovering the information seeking behaviour of humanities scholars dedicated to radio research. The study is part of an interdisciplinary research project on radio culture and auditory resources. The purpose of the study is to inform...... the design of information architecture and interaction design of a research infrastructure that will enable future radio and audio based research. Results from a questionnaire survey on humanities scholars‟ research interest and information needs, preferred access points, and indexing levels are reported....... Finally, a flexible metadata schema is suggested, that includes both general metadata and highly media and research project specific metadata....

  1. New frontiers in ground-based optical astronomy

    Science.gov (United States)

    Strom, Steve

    1991-07-01

    Technological advances made in telescope designs during 1980's are outlined, including a segmented primary mirror for a 10-m telescope, new mirror-figuring techniques, and control systems based on computers and electronics. A new detector technology employing CCD's and advances in high-resolution telescopes are considered, along with such areas of research ready for major advances given new observing tools as the origin of large-scale structures in the universe, the creation and evolution of galaxies, and the formation of stars and planetary systems. Attention is focused on circumstellar disks, dust veils, jets, and brown dwarfs.

  2. New frontiers in ground-based optical astronomy

    International Nuclear Information System (INIS)

    Strom, S.

    1991-01-01

    Technological advances made in telescope designs during 1980's are outlined, including a segmented primary mirror for a 10-m telescope, new mirror-figuring techniques, and control systems based on computers and electronics. A new detector technology employing CCD's and advances in high-resolution telescopes are considered, along with such areas of research ready for major advances given new observing tools as the origin of large-scale structures in the universe, the creation and evolution of galaxies, and the formation of stars and planetary systems. Attention is focused on circumstellar disks, dust veils, jets, and brown dwarfs

  3. The setting for ground based augmentation system station

    Science.gov (United States)

    Ni, Yude; Liu, Ruihua

    2007-11-01

    Based on the minimum field strength requirement within the whole GBAS service volume, this paper performs nominal link power budget for GBAS VHF data broadcast (VDB) system, and the required power transmitted from VDB system is derived. The paper elaborates the requirement of Desired-to-Undesired (D/U) signal ratio for a specific VHF airborne receiver to ensure the normal operation by the test, and presents the experimental method and results for acquiring the D/U signal ratios. The minimum geographical separations among GBAS, VOR and ILS stations are calculated according to the specifications of these three kinds of navigation systems.

  4. Analytical evaluation of adaptive-modulation-based opportunistic cognitive radio in nakagami-m fading channels

    KAUST Repository

    Chen, Yunfei; Alouini, Mohamed-Slim; Tang, Liang; Khan, Fahdahmed

    2012-01-01

    The performance of adaptive modulation for cognitive radio with opportunistic access is analyzed by considering the effects of spectrum sensing, primary user (PU) traffic, and time delay for Nakagami- m fading channels. Both the adaptive continuous rate scheme and the adaptive discrete rate scheme are considered. Numerical examples are presented to quantify the effects of spectrum sensing, PU traffic, and time delay for different system parameters. © 1967-2012 IEEE.

  5. Analytical evaluation of adaptive-modulation-based opportunistic cognitive radio in nakagami-m fading channels

    KAUST Repository

    Chen, Yunfei

    2012-09-01

    The performance of adaptive modulation for cognitive radio with opportunistic access is analyzed by considering the effects of spectrum sensing, primary user (PU) traffic, and time delay for Nakagami- m fading channels. Both the adaptive continuous rate scheme and the adaptive discrete rate scheme are considered. Numerical examples are presented to quantify the effects of spectrum sensing, PU traffic, and time delay for different system parameters. © 1967-2012 IEEE.

  6. Airborne and Ground-Based Platforms for Data Collection in Small Vineyards: Examples from the UK and Switzerland

    Science.gov (United States)

    Green, David R.; Gómez, Cristina; Fahrentrapp, Johannes

    2015-04-01

    This paper presents an overview of some of the low-cost ground and airborne platforms and technologies now becoming available for data collection in small area vineyards. Low-cost UAV or UAS platforms and cameras are now widely available as the means to collect both vertical and oblique aerial still photography and airborne videography in vineyards. Examples of small aerial platforms include the AR Parrot Drone, the DJI Phantom (1 and 2), and 3D Robotics IRIS+. Both fixed-wing and rotary wings platforms offer numerous advantages for aerial image acquisition including the freedom to obtain high resolution imagery at any time required. Imagery captured can be stored on mobile devices such as an Apple iPad and shared, written directly to a memory stick or card, or saved to the Cloud. The imagery can either be visually interpreted or subjected to semi-automated analysis using digital image processing (DIP) software to extract information about vine status or the vineyard environment. At the ground-level, a radio-controlled 'rugged' model 4x4 vehicle can also be used as a mobile platform to carry a number of sensors (e.g. a Go-Pro camera) around a vineyard, thereby facilitating quick and easy field data collection from both within the vine canopy and rows. For the small vineyard owner/manager with limited financial resources, this technology has a number of distinct advantages to aid in vineyard management practices: it is relatively cheap to purchase; requires a short learning-curve to use and to master; can make use of autonomous ground control units for repetitive coverage enabling reliable monitoring; and information can easily be analysed and integrated within a GIS with minimal expertise. In addition, these platforms make widespread use of familiar and everyday, off-the-shelf technologies such as WiFi, Go-Pro cameras, Cloud computing, and smartphones or tablets as the control interface, all with a large and well established end-user support base. Whilst there are

  7. The Spectrum Sharing in Cognitive Radio Networks Based on Competitive Price Game

    Directory of Open Access Journals (Sweden)

    Y. B. Li

    2012-09-01

    Full Text Available The competitive price game model is used to analyze the spectrum sharing problem in the cognitive radio networks, and the spectrum sharing problem with the constraints of available spectrum resource from primary users is further discussed in this paper. The Rockafeller multiplier method is applied to deal with the constraints of available licensed spectrum resource, and the improved profits function is achieved, which can be used to measure the impact of shared spectrum price strategies on the system profit. However, in the competitive spectrum sharing problem of practical cognitive radio network, primary users have to determine price of the shared spectrum without the acknowledgement of the other primary user’s price strategies. Thus a fast gradient iterative calculation method of equilibrium price is proposed, only with acknowledgement of the price strategies of shared spectrum during last cycle. Through the adaptive iteration at the direction with largest gradient of improved profit function, the equilibrium price strategies can be achieved rapidly. It can also avoid the predefinition of adjustment factor according to the parameters of communication system in conventional linear iteration method. Simulation results show that the proposed competitive price spectrum sharing model can be applied in the cognitive radio networks with constraints of available licensed spectrum, and it has better convergence performance.

  8. ESO Signs Largest-Ever European Industrial Contract For Ground-Based Astronomy Project ALMA

    Science.gov (United States)

    2005-12-01

    ESO, the European Organisation for Astronomical Research in the Southern Hemisphere, announced today that it has signed a contract with the consortium led by Alcatel Alenia Space and composed also of European Industrial Engineering (Italy) and MT Aerospace (Germany), to supply 25 antennas for the Atacama Large Millimeter Array (ALMA) project, along with an option for another seven antennas. The contract, worth 147 million euros, covers the design, manufacture, transport and on-site integration of the antennas. It is the largest contract ever signed in ground-based astronomy in Europe. The ALMA antennas present difficult technical challenges, since the antenna surface accuracy must be within 25 microns, the pointing accuracy within 0.6 arc seconds, and the antennas must be able to be moved between various stations on the ALMA site. This is especially remarkable since the antennas will be located outdoor in all weather conditions, without any protection. Moreover, the ALMA antennas can be pointed directly at the Sun. ALMA will have a collecting area of more than 5,600 square meters, allowing for unprecedented measurements of extremely faint objects. The signing ceremony took place on December 6, 2005 at ESO Headquarters in Garching, Germany. "This contract represents a major milestone. It allows us to move forward, together with our American and Japanese colleagues, in this very ambitious and unique project," said ESO's Director General, Dr. Catherine Cesarsky. "By building ALMA, we are giving European astronomers access to the world's leading submillimetre facility at the beginning of the next decade, thereby fulfilling Europe's desire to play a major role in this field of fundamental research." Pascale Sourisse, Chairman and CEO of Alcatel Alenia Space, said: "We would like to thank ESO for trusting us to take on this new challenge. We are bringing to the table not only our recognized expertise in antenna development, but also our long-standing experience in

  9. Coastal wind study based on Sentinel-1 and ground-based scanning lidar

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Pena Diaz, Alfredo

    Winds in the coastal zone have importance for near-shore wind farm planning. Recently the Danish Energy Agency gave new options for placing offshore wind farms much closer to the coastlines than previously. The new tender areas are located from 3 to 8 km from the coast. Ground-based scanning lidar...... located on land can partly cover this area out to around 15 km. In order to improve wind farm planning for near-shore coastal areas, the project‘Reducing the Uncertainty of Near-shore Energy estimates from meso- and micro-scale wind models’ (RUNE) is established. The measurement campaign starts October....... The various observation types have advantages and limitations; one advantage of both the Sentinel-1 and the scanning lidar is that they both observe wind fields covering a large area and so can be combined for studying the spatial variability of winds. Sentinel-1 are being processed near-real-time at DTU Wind...

  10. Metadata database and data analysis software for the ground-based upper atmospheric data developed by the IUGONET project

    Science.gov (United States)

    Hayashi, H.; Tanaka, Y.; Hori, T.; Koyama, Y.; Shinbori, A.; Abe, S.; Kagitani, M.; Kouno, T.; Yoshida, D.; Ueno, S.; Kaneda, N.; Yoneda, M.; Tadokoro, H.; Motoba, T.; Umemura, N.; Iugonet Project Team

    2011-12-01

    The Inter-university Upper atmosphere Global Observation NETwork (IUGONET) is a Japanese inter-university project by the National Institute of Polar Research (NIPR), Tohoku University, Nagoya University, Kyoto University, and Kyushu University to build a database of metadata for ground-based observations of the upper atmosphere. The IUGONET institutes/universities have been collecting various types of data by radars, magnetometers, photometers, radio telescopes, helioscopes, etc. at various locations all over the world and at various altitude layers from the Earth's surface to the Sun. The metadata database will be of great help to researchers in efficiently finding and obtaining these observational data spread over the institutes/universities. This should also facilitate synthetic analysis of multi-disciplinary data, which will lead to new types of research in the upper atmosphere. The project has also been developing a software to help researchers download, visualize, and analyze the data provided from the IUGONET institutes/universities. The metadata database system is built on the platform of DSpace, which is an open source software for digital repositories. The data analysis software is written in the IDL language with the TDAS (THEMIS Data Analysis Software suite) library. These products have been just released for beta-testing.

  11. Results based on a correlative study of geomagnetic and radio auroral observations

    International Nuclear Information System (INIS)

    Haldoupis, C.

    The results presented here are from a correlative study of ground based magnetometer data from an auroral station, and STARE radar auroral data from a small ionospheric region located exactly above the magnetometer site. The magnetometer data includes both the horizontal X and Y magnetograms and micropulsation components. The STARE data represents time sequencies of both the echo intensity and irregularity drift velocity (or electric field) vector. The observations used in the analysis are from a reasonably disturbed 16-hour period covering the afternoon, midnight and morning sectors of auroral oval. A close relationship was found to exist between the geomagnetic variations and the backscatter amplitude. The results suggest that the conductivity, rather than the electric field, is the prime agent responsible for the long period modulation observed on both the magnetic signatures and the backscatter intensity. In one case, it was found that conductivity modifications cause direct modulation of direction but not the amplitude of the electric field. The rapid ac-fluctuations seen in the electric field most likely play a role in the generation of Pi-pulsations. (Auth.)

  12. Research on Ground Motion Metal Target Based on Rocket Projectile by Using Millimeter Wave Radiometer Technology

    Directory of Open Access Journals (Sweden)

    Zhang Dongyang

    2014-06-01

    Full Text Available How to detect the ground motion metal target effectively is an important guarantee for precision strike in the process of Rocket Projectile flight. Accordingly and in view of the millimeter- wave radiation characteristic of the ground motion metal target, a mathematical model was established based on Rocket Projectile about millimeter-wave detection to the ground motion metal target. Through changing various parameters in the process of Rocket Projectile flight, the detection model was studied by simulation. The parameters variation and effective range of millimeter wave radiometer were obtained in the process of rotation and horizontal flight. So a certain theoretical basis was formed for the precision strike to the ground motion metal target.

  13. Novel identification strategy for ground coffee adulteration based on UPLC-HRMS oligosaccharide profiling.

    Science.gov (United States)

    Cai, Tie; Ting, Hu; Jin-Lan, Zhang

    2016-01-01

    Coffee is one of the most common and most valuable beverages. According to International Coffee Organization (ICO) reports, the adulteration of coffee for financial reasons is regarded as the most serious threat to the sustainable development of the coffee market. In this work, a novel strategy for adulteration identification in ground coffee was developed based on UPLC-HRMS oligosaccharide profiling. Along with integrated statistical analysis, 17 oligosaccharide composition were identified as markers for the identification of soybeans and rice in ground coffee. This strategy, validated by manual mixtures, optimized both the reliability and authority of adulteration identification. Rice and soybean adulterants present in ground coffee in amounts as low as 5% were identified and evaluated. Some commercial ground coffees were also successfully tested using this strategy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Virtual observatory tools and amateur radio observations supporting scientific analysis of Jupiter radio emissions

    Science.gov (United States)

    Cecconi, Baptiste; Hess, Sebastien; Le Sidaner, Pierre; Savalle, Renaud; Stéphane, Erard; Coffre, Andrée; Thétas, Emmanuel; André, Nicolas; Génot, Vincent; Thieman, Jim; Typinski, Dave; Sky, Jim; Higgins, Chuck; Imai, Masafumi

    2016-04-01

    In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol, as well as data from the Iitate Low Frquency Radio Antenna, in Japan. Amateur radio data from the RadioJOVE project is also available. The attached figure shows data from those three providers. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  15. Development of a PC-based ground support system for a small satellite instrument

    Science.gov (United States)

    Deschambault, Robert L.; Gregory, Philip R.; Spenler, Stephen; Whalen, Brian A.

    1993-11-01

    The importance of effective ground support for the remote control and data retrieval of a satellite instrument cannot be understated. Problems with ground support may include the need to base personnel at a ground tracking station for extended periods, and the delay between the instrument observation and the processing of the data by the science team. Flexible solutions to such problems in the case of small satellite systems are provided by using low-cost, powerful personal computers and off-the-shelf software for data acquisition and processing, and by using Internet as a communication pathway to enable scientists to view and manipulate satellite data in real time at any ground location. The personal computer based ground support system is illustrated for the case of the cold plasma analyzer flown on the Freja satellite. Commercial software was used as building blocks for writing the ground support equipment software. Several levels of hardware support, including unit tests and development, functional tests, and integration were provided by portable and desktop personal computers. Satellite stations in Saskatchewan and Sweden were linked to the science team via phone lines and Internet, which provided remote control through a central point. These successful strategies will be used on future small satellite space programs.

  16. High-precision ground-based photometry of exoplanets

    Directory of Open Access Journals (Sweden)

    de Mooij Ernst J.W.

    2013-04-01

    Full Text Available High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana. The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level, this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  17. BigBOSS: The Ground-Based Stage IV BAO Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, David; Bebek, Chris; Heetderks, Henry; Ho, Shirley; Lampton, Michael; Levi, Michael; Mostek, Nick; Padmanabhan, Nikhil; Perlmutter, Saul; Roe, Natalie; Sholl, Michael; Smoot, George; White, Martin; Dey, Arjun; Abraham, Tony; Jannuzi, Buell; Joyce, Dick; Liang, Ming; Merrill, Mike; Olsen, Knut; Salim, Samir

    2009-04-01

    The BigBOSS experiment is a proposed DOE-NSF Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with an all-sky galaxy redshift survey. The project is designed to unlock the mystery of dark energy using existing ground-based facilities operated by NOAO. A new 4000-fiber R=5000 spectrograph covering a 3-degree diameter field will measure BAO and redshift space distortions in the distribution of galaxies and hydrogen gas spanning redshifts from 0.2< z< 3.5. The Dark Energy Task Force figure of merit (DETF FoM) for this experiment is expected to be equal to that of a JDEM mission for BAO with the lower risk and cost typical of a ground-based experiment.

  18. Compact field programmable gate array-based pulse-sequencer and radio-frequency generator for experiments with trapped atoms

    Energy Technology Data Exchange (ETDEWEB)

    Pruttivarasin, Thaned, E-mail: thaned.pruttivarasin@riken.jp [Quantum Metrology Laboratory, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Katori, Hidetoshi [Quantum Metrology Laboratory, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Innovative Space-Time Project, ERATO, JST, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-11-15

    We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.

  19. A Carbon Nanotube-based NEMS Parametric Amplifier for Enhanced Radio Wave Detection and Electronic Signal Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, B J; Sussman, A; Zettl, A [Physics Department, University of California, Berkeley, CA 94720 (United States); Mickelson, W, E-mail: azettl@berkeley.edu [Center of Integrated Nanomechanical Systems, University of California, Berkeley, CA 94720 (United States)

    2011-07-20

    We propose a scheme for a parametric amplifier based on a single suspended carbon nanotube field-emitter. This novel electromechanical nanotube device acts as a phase-sensitive, variable-gain, band-pass-filtering amplifier for electronic signal processing and, at the same time, can operate as a variable-sensitivity, tuneable detector and transducer of radio frequency electromagnetic waves. The amplifier can exhibit infinite gain at pumping voltages much less than 10 Volts. Additionally, the amplifier's low overhead power consumption (10-1000 nW) make it exceptionally attractive for ultra-low-power applications.

  20. A Carbon Nanotube-based NEMS Parametric Amplifier for Enhanced Radio Wave Detection and Electronic Signal Amplification

    International Nuclear Information System (INIS)

    Aleman, B J; Sussman, A; Zettl, A; Mickelson, W

    2011-01-01

    We propose a scheme for a parametric amplifier based on a single suspended carbon nanotube field-emitter. This novel electromechanical nanotube device acts as a phase-sensitive, variable-gain, band-pass-filtering amplifier for electronic signal processing and, at the same time, can operate as a variable-sensitivity, tuneable detector and transducer of radio frequency electromagnetic waves. The amplifier can exhibit infinite gain at pumping voltages much less than 10 Volts. Additionally, the amplifier's low overhead power consumption (10-1000 nW) make it exceptionally attractive for ultra-low-power applications.

  1. Radio-capacity of ecosystems

    International Nuclear Information System (INIS)

    Kultakhmedov, Yu.; Kultakhmedova-Vyshnyakova, V.

    1997-01-01

    This paper consider a universal approach to ecosystems of different types, based on representation of their radio-capacity. The concept of ecosystem includes reproduction of components (bio-productivity) and conditions such as maintaining of environment quality. Radio-capacity in the case of radionuclide pollution appears in accumulation and redistribution of radionuclides in the ecosystem. As a result the radionuclides are redistributed and buried in soil or lake bottom sediments. Estimation models for the radio-capacity of water and terrestrial ecosystems are represented. The calculations of the radio-capacity factor of water ecosystems are performed, and the high radio-capacity of a freshwater reservoir (F=0.6-0.8) and extremely high radio-capacity of a reservoir cascade (F c =0.99) is shown material from the Dnieper's cascade reservoirs. The methods of radio-capacity estimation of agroecosystems, wood and marine ecosystems are developed. (authors)

  2. Solar Radio

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists monitor the structure of the solar corona, the outer most regions of the Sun's atmosphere, using radio waves (100?s of MHz to 10?s of GHz). Variations in...

  3. Subarray Processing for Projection-based RFI Mitigation in Radio Astronomical Interferometers

    Science.gov (United States)

    Burnett, Mitchell C.; Jeffs, Brian D.; Black, Richard A.; Warnick, Karl F.

    2018-04-01

    Radio Frequency Interference (RFI) is a major problem for observations in Radio Astronomy (RA). Adaptive spatial filtering techniques such as subspace projection are promising candidates for RFI mitigation; however, for radio interferometric imaging arrays, these have primarily been used in engineering demonstration experiments rather than mainstream scientific observations. This paper considers one reason that adoption of such algorithms is limited: RFI decorrelates across the interferometric array because of long baseline lengths. This occurs when the relative RFI time delay along a baseline is large compared to the frequency channel inverse bandwidth used in the processing chain. Maximum achievable excision of the RFI is limited by covariance matrix estimation error when identifying interference subspace parameters, and decorrelation of the RFI introduces errors that corrupt the subspace estimate, rendering subspace projection ineffective over the entire array. In this work, we present an algorithm that overcomes this challenge of decorrelation by applying subspace projection via subarray processing (SP-SAP). Each subarray is designed to have a set of elements with high mutual correlation in the interferer for better estimation of subspace parameters. In an RFI simulation scenario for the proposed ngVLA interferometric imaging array with 15 kHz channel bandwidth for correlator processing, we show that compared to the former approach of applying subspace projection on the full array, SP-SAP improves mitigation of the RFI on the order of 9 dB. An example of improved image synthesis and reduced RFI artifacts for a simulated image “phantom” using the SP-SAP algorithm is presented.

  4. Method for Detection of Airborne UEs based on LTE Radio Measurements

    DEFF Research Database (Denmark)

    Wigard, Jeroen; Amorim, Rafhael Medeiros de; Nguyen, Huan Cong

    2017-01-01

    management can be optimized for UAVs separately from terrestrial UEs. In this paper, we present a classification algorithm using existing LTE UE radio measurements to identify whether a UE is airborne or terrestrial. The method is verified with LTE measurements made in a rural area at different heights......, including terrestrial measurements and it is shown that the method in 3 out of the 4 different measurement cases can detect a UE to be airborne with 99% likelihood, while the fourth case still can classify a UE correctly in 95% of the cases. The right classification can further be improved by taking...

  5. Radio astronomy

    International Nuclear Information System (INIS)

    Parijskij, Y.N.; Gossachinskij, I.V.; Zuckerman, B.; Khersonsky, V.K.; Pustilnik, S.; Robinson, B.J.

    1976-01-01

    A critical review of major developments and discoveries in the field of radioastronomy during the period 1973-1975 is presented. The report is presented under the following headings:(1) Continuum radiation from the Galaxy; (2) Neutral hydrogen, 21 cm (galactic and extragalactic) and recombination lines; (3) Radioastronomy investigations of interstellar molecules; (4) Extragalactic radio astronomy and (6) Development in radio astronomy instruments. (B.R.H.)

  6. A transit timing analysis with combined ground- and space-based photometry

    Directory of Open Access Journals (Sweden)

    Raetz St.

    2015-01-01

    The CoRoT satellite looks back on six years of high precision photometry of a very high number of stars. Thousands of transiting events are detected from which 27 were confirmed to be transiting planets so far. In my research I search and analyze TTVs in the CoRoT sample and combine the unprecedented precision of the light curves with ground-based follow-up photometry. Because CoRoT can observe transiting planets only for a maximum duration of 150 days the ground-based follow-up can help to refine the ephemeris. Here we present first examples.

  7. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis......We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler...

  8. Status of advanced ground-based laser interferometers for gravitational-wave detection

    International Nuclear Information System (INIS)

    Dooley, K L; Akutsu, T; Dwyer, S; Puppo, P

    2015-01-01

    Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years’ worth of science data at initial design sensitivities was completed. Upgrades to the initial detectors together with construction of brand new detectors are ongoing and feature advanced technologies to improve the sensitivity to GWs. This conference proceeding provides an overview of the common design features of ground-based laser interferometric GW detectors and establishes the context for the status updates of each of the four gravitational-wave detectors around the world: Advanced LIGO, Advanced Virgo, GEO 600 and KAGRA. (paper)

  9. Status of advanced ground-based laser interferometers for gravitational-wave detection

    Science.gov (United States)

    Dooley, K. L.; Akutsu, T.; Dwyer, S.; Puppo, P.

    2015-05-01

    Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years’ worth of science data at initial design sensitivities was completed. Upgrades to the initial detectors together with construction of brand new detectors are ongoing and feature advanced technologies to improve the sensitivity to GWs. This conference proceeding provides an overview of the common design features of ground-based laser interferometric GW detectors and establishes the context for the status updates of each of the four gravitational-wave detectors around the world: Advanced LIGO, Advanced Virgo, GEO 600 and KAGRA.

  10. A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites.

    Science.gov (United States)

    Karmee, Sanjib Kumar

    2018-02-01

    Spent coffee grounds are composed of lipid, carbohydrates, carbonaceous, and nitrogen containing compounds among others. Using n-hexane and n-hexane/isopropanol mixture highest oil yield was achived during soxhlet extraction of oil from spent coffee grounds. Alternatively, supercritical carbon dioxide can be employed as a green solvent for the extraction of oil. Using advanced chemical and biotechnological methods, spent coffee grounds are converted to various biofuels such as, biodiesel, renewable diesel, bioethanol, bioethers, bio-oil, biochar, and biogas. The in-situ transesterification of spent coffee grounds was carried out in a large scale (4 kg), which led to 80-83% biodiesel yield. In addition, a large number of value added and diversified products viz. polyhydroxyalkanoates, biosorbent, activated carbon, polyol, polyurethane foam, carotenoid, phenolic antioxidants, and green composite are obtained from spent coffee grounds. The principles of circular economy are applied to develop a sustanaible biorefinery based on valorisation of spent coffee grounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Social cognitive radio networks

    CERN Document Server

    Chen, Xu

    2015-01-01

    This brief presents research results on social cognitive radio networks, a transformational and innovative networking paradigm that promotes the nexus between social interactions and cognitive radio networks. Along with a review of the research literature, the text examines the key motivation and challenges of social cognitive radio network design. Three socially inspired distributed spectrum sharing mechanisms are introduced: adaptive channel recommendation mechanism, imitation-based social spectrum sharing mechanism, and evolutionarily stable spectrum access mechanism. The brief concludes with a discussion of future research directions which ascertains that exploiting social interactions for distributed spectrum sharing will advance the state-of-the-art of cognitive radio network design, spur a new line of thinking for future wireless networks, and enable novel wireless service and applications.

  12. Communication grounding facility

    International Nuclear Information System (INIS)

    Lee, Gye Seong

    1998-06-01

    It is about communication grounding facility, which is made up twelve chapters. It includes general grounding with purpose, materials thermal insulating material, construction of grounding, super strength grounding method, grounding facility with grounding way and building of insulating, switched grounding with No. 1A and LCR, grounding facility of transmission line, wireless facility grounding, grounding facility in wireless base station, grounding of power facility, grounding low-tenton interior power wire, communication facility of railroad, install of arrester in apartment and house, install of arrester on introduction and earth conductivity and measurement with introduction and grounding resistance.

  13. Space Telecommunications Radio System (STRS) Architecture Standard. Release 1.02.1

    Science.gov (United States)

    Reinhart, Richard C.; Kacpura, Thomas J.; Handler, Louis M.; Hall, C. Steve; Mortensen, Dale J.; Johnson, Sandra K.; Briones, Janette C.; Nappier, Jennifer M.; Downey, Joseph A.; Lux, James P.

    2012-01-01

    This document contains the NASA architecture standard for software defined radios used in space- and ground-based platforms to enable commonality among radio developments to enhance capability and services while reducing mission and programmatic risk. Transceivers (or transponders) with functionality primarily defined in software (e.g., firmware) have the ability to change their functional behavior through software alone. This radio architecture standard offers value by employing common waveform software interfaces, method of instantiation, operation, and testing among different compliant hardware and software products. These common interfaces within the architecture abstract application software from the underlying hardware to enable technology insertion independently at either the software or hardware layer.

  14. Overview of Boundary Layer Clouds Using Satellite and Ground-Based Measurements

    Science.gov (United States)

    Xi, B.; Dong, X.; Wu, P.; Qiu, S.

    2017-12-01

    A comprehensive summary of boundary layer clouds properties based on our few recently studies will be presented. The analyses include the global cloud fractions and cloud macro/micro- physical properties based on satellite measurements using both CERES-MODIS and CloudSat/Caliposo data products,; the annual/seasonal/diurnal variations of stratocumulus clouds over different climate regions (mid-latitude land, mid-latitude ocean, and Arctic region) using DOE ARM ground-based measurements over Southern great plain (SGP), Azores (GRW), and North slope of Alaska (NSA) sites; the impact of environmental conditions to the formation and dissipation process of marine boundary layer clouds over Azores site; characterizing Arctice mixed-phase cloud structure and favorable environmental conditions for the formation/maintainess of mixed-phase clouds over NSA site. Though the presentation has widely spread topics, we will focus on the representation of the ground-based measurements over different climate regions; evaluation of satellite retrieved cloud properties using these ground-based measurements, and understanding the uncertainties of both satellite and ground-based retrievals and measurements.

  15. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses

    Science.gov (United States)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.

    2004-01-01

    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  16. Compact state-space models for complex superconducting radio-frequency structures based on model order reduction and concatenation methods

    International Nuclear Information System (INIS)

    Flisgen, Thomas

    2015-01-01

    The modeling of large chains of superconducting cavities with couplers is a challenging task in computational electrical engineering. The direct numerical treatment of these structures can easily lead to problems with more than ten million degrees of freedom. Problems of this complexity are typically solved with the help of parallel programs running on supercomputing infrastructures. However, these infrastructures are expensive to purchase, to operate, and to maintain. The aim of this thesis is to introduce and to validate an approach which allows for modeling large structures on a standard workstation. The novel technique is called State-Space Concatenations and is based on the decomposition of the complete structure into individual segments. The radio-frequency properties of the generated segments are described by a set of state-space equations which either emerge from analytical considerations or from numerical discretization schemes. The model order of these equations is reduced using dedicated model order reduction techniques. In a final step, the reduced-order state-space models of the segments are concatenated in accordance with the topology of the complete structure. The concatenation is based on algebraic continuity constraints of electric and magnetic fields on the decomposition planes and results in a compact state-space system of the complete radio-frequency structure. Compared to the original problem, the number of degrees of freedom is drastically reduced, i.e. a problem with more than ten million degrees of freedom can be reduced on a standard workstation to a problem with less than one thousand degrees of freedom. The final state-space system allows for determining frequency-domain transfer functions, field distributions, resonances, and quality factors of the complete structure in a convenient manner. This thesis presents the theory of the state-space concatenation approach and discusses several validation and application examples. The examples

  17. Hanford ground-water data base management guide and user's manual

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Argo, R.S.; Bradymire, S.L.; Newbill, C.A.

    1985-05-01

    This management guide and user's manual is a working document for the computerized Hanford Ground-water Data Base maintained by the Geosciences Research and Engineering Department at Pacific Northwest Laboratory for the Hanford Ground-Water Surveillance Program. The program is managed by the Occupational and Environmental Protection Department for the US Department of Energy. The data base is maintained to provide rapid access to data that are rountinely collected from ground-water monitoring wells at the Hanford site. The data include water levels, sample analyses, geologic descriptions and well construction information of over 3000 existing or destroyed wells. These data are used to monitor water quality and for the evaluation of ground-water flow and pollutant transport problems. The management guide gives instructions for maintenance of the data base on the Digital Equipment Corporation PDP 11/70 Computer using the CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) data base management software developed at Pacific Northwest Laboratory. Maintenance activities include inserting, modifying and deleting data, making back-up copies of the data base, and generating tables for annual monitoring reports. The user's guide includes instructions for running programs to retrieve the data in the form of listings of graphical plots. 3 refs

  18. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    An environmental investigation of ground water conditions has been undertaken at Wright-Patterson Air Force Base (WPAFB), Ohio to obtain data to assist in the evaluation of a potential removal action to prevent, to the extent practicable, migration of the contaminated ground water across Base boundaries. Field investigations were limited to the central section of the southwestern boundary of Area C and the Springfield Pike boundary of Area B. Further, the study was limited to a maximum depth of 150 feet below grade. Three primary activities of the field investigation were: (1) installation of 22 monitoring wells, (2) collection and analysis of ground water from 71 locations, (3) measurement of ground water elevations at 69 locations. Volatile organic compounds including trichloroethylene, perchloroethylene, and/or vinyl chloride were detected in concentrations exceeding Maximum Contaminant Levels (MCL) at three locations within the Area C investigation area. Ground water at the Springfield Pike boundary of Area B occurs in two primary units, separated by a thicker-than-expected clay layers. One well within Area B was determined to exceed the MCL for trichloroethylene.

  19. A Cognitive Radio-Based Energy-Efficient System for Power Transmission Line Monitoring in Smart Grids

    Directory of Open Access Journals (Sweden)

    Saeed Ahmed

    2017-01-01

    Full Text Available The research in industry and academia on smart grids is predominantly focused on the regulation of generated power and management of its consumption. Because transmission of bulk-generated power to the consumer is immensely reliant on secure and efficient transmission grids, comprising huge electrical and mechanical assets spanning a vast geographic area, there is an impending need to focus on the transmission grids as well. Despite the challenges in wireless technologies for SGs, cognitive radio networks are considered promising for provisioning of communications services to SGs. In this paper, first, we present an IEEE 802.22 wireless regional area network cognitive radio-based network model for smart monitoring of transmission lines. Then, for a prolonged lifetime of battery finite monitoring network, we formulate the spectrum resource allocation problem as an energy efficiency maximization problem, which is a nonlinear integer programming problem. To solve this problem in an easier way, we propose an energy-efficient resource-assignment scheme based on the Hungarian method. Performance analysis shows that, compared to a pure opportunistic assignment scheme with a throughput maximization objective and compared to a random scheme, the proposed scheme results in an enhanced lifetime while consuming less battery energy without compromising throughput performance.

  20. Ground Control Point - Wireless System Network for UAV-based environmental monitoring applications

    Science.gov (United States)

    Mejia-Aguilar, Abraham

    2016-04-01

    In recent years, Unmanned Aerial Vehicles (UAV) have seen widespread civil applications including usage for survey and monitoring services in areas such as agriculture, construction and civil engineering, private surveillance and reconnaissance services and cultural heritage management. Most aerial monitoring services require the integration of information acquired during the flight (such as imagery) with ground-based information (such as GPS information or others) for improved ground truth validation. For example, to obtain an accurate 3D and Digital Elevation Model based on aerial imagery, it is necessary to include ground-based information of coordinate points, which are normally acquired with surveying methods based on Global Position Systems (GPS). However, GPS surveys are very time consuming and especially for longer time series of monitoring data repeated GPS surveys are necessary. In order to improve speed of data collection and integration, this work presents an autonomous system based on Waspmote technologies build on single nodes interlinked in a Wireless Sensor Network (WSN) star-topology for ground based information collection and later integration with surveying data obtained by UAV. Nodes are designed to be visible from the air, to resist extreme weather conditions with low-power consumption. Besides, nodes are equipped with GPS as well as Inertial Measurement Unit (IMU), accelerometer, temperature and soil moisture sensors and thus provide significant advantages in a broad range of applications for environmental monitoring. For our purpose, the WSN transmits the environmental data with 3G/GPRS to a database on a regular time basis. This project provides a detailed case study and implementation of a Ground Control Point System Network for UAV-based vegetation monitoring of dry mountain grassland in the Matsch valley, Italy.

  1. Throughput Maximization Using an SVM for Multi-Class Hypothesis-Based Spectrum Sensing in Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Sana Ullah Jan

    2018-03-01

    Full Text Available A framework of spectrum sensing with a multi-class hypothesis is proposed to maximize the achievable throughput in cognitive radio networks. The energy range of a sensing signal under the hypothesis that the primary user is absent (in a conventional two-class hypothesis is further divided into quantized regions, whereas the hypothesis that the primary user is present is conserved. The non-radio frequency energy harvesting-equiped secondary user transmits, when the primary user is absent, with transmission power based on the hypothesis result (the energy level of the sensed signal and the residual energy in the battery: the lower the energy of the received signal, the higher the transmission power, and vice versa. Conversely, the lower is the residual energy in the node, the lower is the transmission power. This technique increases the throughput of a secondary link by providing a higher number of transmission events, compared to the conventional two-class hypothesis. Furthermore, transmission with low power for higher energy levels in the sensed signal reduces the probability of interference with primary users if, for instance, detection was missed. The familiar machine learning algorithm known as a support vector machine (SVM is used in a one-versus-rest approach to classify the input signal into predefined classes. The input signal to the SVM is composed of three statistical features extracted from the sensed signal and a number ranging from 0 to 100 representing the percentage of residual energy in the node’s battery. To increase the generalization of the classifier, k-fold cross-validation is utilized in the training phase. The experimental results show that an SVM with the given features performs satisfactorily for all kernels, but an SVM with a polynomial kernel outperforms linear and radial-basis function kernels in terms of accuracy. Furthermore, the proposed multi-class hypothesis achieves higher throughput compared to the

  2. FAST RADIO BURSTS AND RADIO TRANSIENTS FROM BLACK HOLE BATTERIES

    Energy Technology Data Exchange (ETDEWEB)

    Mingarelli, Chiara M. F. [TAPIR, MC 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Levin, Janna [Institute for Strings, Cosmology and Astroparticle Physics (ISCAP), Columbia University, New York, NY 10027 (United States); Lazio, T. Joseph W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2015-12-01

    Most black holes (BHs) will absorb a neutron star (NS) companion fully intact without tidal disruption, suggesting the pair will remain dark to telescopes. Even without tidal disruption, electromagnetic (EM) luminosity is generated from the battery phase of the binary when the BH interacts with the NS magnetic field. Originally, the luminosity was expected to be in high-energy X-rays or gamma-rays, however, we conjecture that some of the battery power is emitted in the radio bandwidth. While the luminosity and timescale are suggestive of fast radio bursts (FRBs; millisecond-scale radio transients) NS–BH coalescence rates are too low to make these a primary FRB source. Instead, we propose that the transients form a FRB sub-population, distinguishable by a double peak with a precursor. The rapid ramp-up in luminosity manifests as a precursor to the burst which is 20%–80% as luminous given 0.5 ms timing resolution. The main burst arises from the peak luminosity before the merger. The post-merger burst follows from the NS magnetic field migration to the BH, causing a shock. NS–BH pairs are especially desirable for ground-based gravitational wave (GW) observatories since the pair might not otherwise be detected, with EM counterparts greatly augmenting the scientific leverage beyond the GW signal. The EM signal’s ability to break degeneracies in the parameters encoded in the GW and probe the NS magnetic field strength is quite valuable, yielding insights into open problems in NS magnetic field decay.

  3. FAST RADIO BURSTS AND RADIO TRANSIENTS FROM BLACK HOLE BATTERIES

    International Nuclear Information System (INIS)

    Mingarelli, Chiara M. F.; Levin, Janna; Lazio, T. Joseph W.

    2015-01-01

    Most black holes (BHs) will absorb a neutron star (NS) companion fully intact without tidal disruption, suggesting the pair will remain dark to telescopes. Even without tidal disruption, electromagnetic (EM) luminosity is generated from the battery phase of the binary when the BH interacts with the NS magnetic field. Originally, the luminosity was expected to be in high-energy X-rays or gamma-rays, however, we conjecture that some of the battery power is emitted in the radio bandwidth. While the luminosity and timescale are suggestive of fast radio bursts (FRBs; millisecond-scale radio transients) NS–BH coalescence rates are too low to make these a primary FRB source. Instead, we propose that the transients form a FRB sub-population, distinguishable by a double peak with a precursor. The rapid ramp-up in luminosity manifests as a precursor to the burst which is 20%–80% as luminous given 0.5 ms timing resolution. The main burst arises from the peak luminosity before the merger. The post-merger burst follows from the NS magnetic field migration to the BH, causing a shock. NS–BH pairs are especially desirable for ground-based gravitational wave (GW) observatories since the pair might not otherwise be detected, with EM counterparts greatly augmenting the scientific leverage beyond the GW signal. The EM signal’s ability to break degeneracies in the parameters encoded in the GW and probe the NS magnetic field strength is quite valuable, yielding insights into open problems in NS magnetic field decay

  4. OGLE-2015-BLG-0196: GROUND-BASED GRAVITATIONAL MICROLENS PARALLAX CONFIRMED BY SPACE-BASED OBSERVATION

    Energy Technology Data Exchange (ETDEWEB)

    Han, C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Udalski, A.; Szymański, M. K.; Soszyński, I.; Skowron, J.; Mróz, P.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Ulaczyk, K.; Pawlak, M. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Gould, A.; Zhu, Wei; Fausnaugh, M.; Gaudi, B. S. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Yee, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Beichman, C. [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Novati, S. Calchi [Dipartimento di Fisica “E. R. Caianiello,” Uńiversitá di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (Italy); Carey, S. [Spitzer Science Center, MS 220-6, California Institute of Technology, Pasadena, CA (United States); Bryden, C. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Collaboration: OGLE Collaboration; Spitzer Microlensing Team; and others

    2017-01-01

    In this paper, we present an analysis of the binary gravitational microlensing event OGLE-2015-BLG-0196. The event lasted for almost a year, and the light curve exhibited significant deviations from the lensing model based on the rectilinear lens-source relative motion, enabling us to measure the microlens parallax. The ground-based microlens parallax is confirmed by the data obtained from space-based microlens observations using the Spitzer telescope. By additionally measuring the angular Einstein radius from the analysis of the resolved caustic crossing, the physical parameters of the lens are determined up to the twofold degeneracy, u {sub 0} < 0 and u {sub 0} > 0, solutions caused by the well-known “ecliptic” degeneracy. It is found that the binary lens is composed of two M dwarf stars with similar masses, M {sub 1} = 0.38 ± 0.04 M {sub ⊙} (0.50 ± 0.05 M {sub ⊙}) and M {sub 2} = 0.38 ± 0.04 M {sub ⊙} (0.55 ± 0.06 M {sub ⊙}), and the distance to the lens is D {sub L} = 2.77 ± 0.23 kpc (3.30 ± 0.29 kpc). Here the physical parameters outside and inside the parentheses are for the u {sub 0} < 0 and u {sub 0} > 0 solutions, respectively.

  5. Take-off and Landing Using Ground Based Power - Landing Simulations Using Multibody Dynamics

    NARCIS (Netherlands)

    Wu, P.; Voskuijl, M.; Van Tooren, M.J.L.

    2014-01-01

    A novel take-off and landing system using ground based power is proposed in the EUFP7 project GABRIEL. The proposed system has the potential benefit to reduce aircraft weight, emissions and noise. A preliminary investigation of the feasibility of the structural design of the connection mechanism

  6. ForestCrowns: a software tool for analyzing ground-based digital photographs of forest canopies

    Science.gov (United States)

    Matthew F. Winn; Sang-Mook Lee; Phillip A. Araman

    2013-01-01

    Canopy coverage is a key variable used to characterize forest structure. In addition, the light transmitted through the canopy is an important ecological indicator of plant and animal habitat and understory climate conditions. A common ground-based method used to document canopy coverage is to take digital photographs from below the canopy. To assist with analyzing...

  7. Identifying Barriers in Implementing Outcomes-Based Assessment Program Review: A Grounded Theory Analysis

    Science.gov (United States)

    Bresciani, Marilee J.

    2011-01-01

    The purpose of this grounded theory study was to identify the typical barriers encountered by faculty and administrators when implementing outcomes-based assessment program review. An analysis of interviews with faculty and administrators at nine institutions revealed a theory that faculty and administrators' promotion, tenure (if applicable),…

  8. Estimating and validating ground-based timber harvesting production through computer simulation

    Science.gov (United States)

    Jingxin Wang; Chris B. LeDoux

    2003-01-01

    Estimating ground-based timber harvesting systems production with an object oriented methodology was investigated. The estimation model developed generates stands of trees, simulates chain saw, drive-to-tree feller-buncher, swing-to-tree single-grip harvester felling, and grapple skidder and forwarder extraction activities, and analyzes costs and productivity. It also...

  9. On reconciling ground-based with spaceborne normalized radar cross section measurements

    DEFF Research Database (Denmark)

    Baumgartner, Francois; Munk, Jens; Jezek, K C

    2002-01-01

    This study examines differences in the normalized radar cross section, derived from ground-based versus spaceborne radar data. A simple homogeneous half-space model, indicates that agreement between the two improves as 1) the distance from the scatterer is increased; and/or 2) the extinction...

  10. Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR

    NARCIS (Netherlands)

    Dammers, E.; Shephard, M.W.; Palm, M.; Cady-Pereira, K.; Capps, S.; Lutsch, E.; Strong, K.; Hannigan, J.W.; Ortega, I.; Toon, G.C.; Stremme, W.; Grutter, M.; Jones, N.; Smale, D.; Siemons, J.; Hrpcek, K.; Tremblay, D.; Schaap, M.; Notholt, J.; Willem Erisman, J.

    2017-01-01

    Presented here is the validation of the CrIS (Cross-track Infrared Sounder) fast physical NH3 retrieval (CFPR) column and profile measurements using ground-based Fourier transform infrared (FTIR) observations. We use the total columns and profiles from seven FTIR sites in the Network for the

  11. A cost-performance model for ground-based optical communications receiving telescopes

    Science.gov (United States)

    Lesh, J. R.; Robinson, D. L.

    1986-01-01

    An analytical cost-performance model for a ground-based optical communications receiving telescope is presented. The model considers costs of existing telescopes as a function of diameter and field of view. This, coupled with communication performance as a function of receiver diameter and field of view, yields the appropriate telescope cost versus communication performance curve.

  12. Retrieval of liquid water cloud properties from ground-based remote sensing observations

    NARCIS (Netherlands)

    Knist, C.L.

    2014-01-01

    Accurate ground-based remotely sensed microphysical and optical properties of liquid water clouds are essential references to validate satellite-observed cloud properties and to improve cloud parameterizations in weather and climate models. This requires the evaluation of algorithms for retrieval of

  13. Modern developments for ground-based monitoring of fire behavior and effects

    Science.gov (United States)

    Colin C. Hardy; Robert Kremens; Matthew B. Dickinson

    2010-01-01

    Advances in electronic technology over the last several decades have been staggering. The cost of electronics continues to decrease while system performance increases seemingly without limit. We have applied modern techniques in sensors, electronics and instrumentation to create a suite of ground based diagnostics that can be used in laboratory (~ 1 m2), field scale...

  14. Submillimetric motion detection with a 94 GHz ground based synthetic aperture radar

    OpenAIRE

    Martinez Cervera, Arturo; Lort Cuenca, Marc; Aguasca Solé, Alberto; Broquetas Ibars, Antoni

    2015-01-01

    The paper presents the validation and experimental assessment of a 94 GHz (W-Band) CW-FM Radar that can be configured as a Ground Based SAR for high resolution imaging and interferometry. Several experimental campaigns have been carried out to assess the capability of the system to remotely observe submillimetric deformation and vibration in infrastructures. Peer Reviewed

  15. The Council of Regional Accrediting Commissions Framework for Competency-Based Education: A Grounded Theory Study

    Science.gov (United States)

    Butland, Mark James

    2017-01-01

    Colleges facing pressures to increase student outcomes while reducing costs have shown an increasing interest in competency-based education (CBE) models. Regional accreditors created a joint policy on CBE evaluation. Two years later, through this grounded theory study, I sought to understand from experts the nature of this policy, its impact, and…

  16. Ground-based forest harvesting effects on soil physical properties and Douglas-fir growth.

    Science.gov (United States)

    Adrian Ares; Thomas A. Terry; Richard E. Miller; Harry W. Anderson; Barry L. Flaming

    2005-01-01

    Soil properties and forest productivity can be affected by heavy equipment used for harvest and site preparation but these impacts vary greatly with site conditions and operational practices. We assessed the effects of ground-based logging on soil physical properties and subsequent Douglas-fir [Pseudotsuga menziesii (Mirb) Franco] growth on a highly...

  17. Hard Decision Fusion based Cooperative Spectrum Sensing in Cognitive Radio System

    Directory of Open Access Journals (Sweden)

    N. Armi N.M. Saad

    2013-09-01

    Full Text Available Cooperative spectrum sensing was proposed to combat fading, noise uncertainty, shadowing, and even hidden node problem due to primary users (PUs activity that is not spatially localized. It improves the probability of detection by collaborating to detect PUs signal in cognitive radio (CR system as well. This paper studies cooperative spectrum sensing and signal detection in CR system by implementing hard decision combining in data fusion centre. Through computer simulation, we evaluate the performances of cooperative spectrum sensing and signal detection by employing OR and AND rules as decision combining. Energy detector is used to observe the presence of primary user (PU signal. Those results are compared to non-cooperative signal detection for evaluation. They show that cooperative technique has better performance than non-cooperative. Moreover, signal to noise ratio (SNR with greater than or equal 10 dB and 15 collaborated users in CR system has optimal value for probability of detection.

  18. New Methods of Stereo Encoding for FM Radio Broadcasting Based on Digital Technology

    Directory of Open Access Journals (Sweden)

    P. Stranak

    2007-12-01

    Full Text Available The article describes new methods of stereo encoding for FM radio broadcasting. Digital signal processing makes possible to construct an encoder with properties that are not attainable using conventional analog solutions. The article describes the mathematical model of the encoder, on the basis of which a specific program code for DSP was developed. The article further deals with a new method of composite clipping which does not cause impurities in the output spectrum, and at the same time preserves high separation between the left and right audio channels. The application of the new method is useful mainly where there are unwanted signal overshoots on the input of the stereo encoder, e.g., in case of signal transmission from the studio to the transmitter site through a route with psychoacoustic lossy compression of data rate.

  19. The Parallel Algorithm Based on Genetic Algorithm for Improving the Performance of Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Liu Miao

    2018-01-01

    Full Text Available The intercarrier interference (ICI problem of cognitive radio (CR is severe. In this paper, the machine learning algorithm is used to obtain the optimal interference subcarriers of an unlicensed user (un-LU. Masking the optimal interference subcarriers can suppress the ICI of CR. Moreover, the parallel ICI suppression algorithm is designed to improve the calculation speed and meet the practical requirement of CR. Simulation results show that the data transmission rate threshold of un-LU can be set, the data transmission quality of un-LU can be ensured, the ICI of a licensed user (LU is suppressed, and the bit error rate (BER performance of LU is improved by implementing the parallel suppression algorithm. The ICI problem of CR is solved well by the new machine learning algorithm. The computing performance of the algorithm is improved by designing a new parallel structure and the communication performance of CR is enhanced.

  20. Compressed sensing based joint-compensation of power amplifier's distortions in OFDMA cognitive radio systems

    KAUST Repository

    Ali, Anum Z.

    2013-12-01

    Linearization of user equipment power amplifiers driven by orthogonal frequency division multiplexing signals is addressed in this paper. Particular attention is paid to the power efficient operation of an orthogonal frequency division multiple access cognitive radio system and realization of such a system using compressed sensing. Specifically, precompensated overdriven amplifiers are employed at the mobile terminal. Over-driven amplifiers result in in-band distortions and out of band interference. Out of band interference mostly occupies the spectrum of inactive users, whereas the in-band distortions are mitigated using compressed sensing at the receiver. It is also shown that the performance of the proposed scheme can be further enhanced using multiple measurements of the distortion signal in single-input multi-output systems. Numerical results verify the ability of the proposed setup to improve error vector magnitude, bit error rate, outage capacity and mean squared error. © 2011 IEEE.

  1. Towards a Cryogen-Free MgB2-Based Superconducting Radio Frequency Accelerating Cavities

    Science.gov (United States)

    Nassiri, Alireza

    Studies on the application of Magnesium diboride (MgB2) superconducting films have shown promise for use with the radio-frequency (SRF) accelerating cavities. MgB2\\ coating is a potential candidate to replace bulk niobium (Nb) SRF cavities. The ultimate goal of our research is to demonstrate MgB2 coating on copper cavities to allow operation at about 20 K or so as a result of the high transition temperature (Tc) of MgB2 and taking advantage of the excellent thermal conductivity of copper. Here, we will report on our recent experimental results of applying hybrid physical-chemical vapor deposition (HPCVD) to grow MgB2 films on 2-inch diameter copper discs as well as on a 2.8 GHz resonator cavity *Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06H11357.

  2. Compressed sensing based joint-compensation of power amplifier's distortions in OFDMA cognitive radio systems

    KAUST Repository

    Ali, Anum Z.; Hammi, Oualid; Al-Naffouri, Tareq Y.

    2013-01-01

    Linearization of user equipment power amplifiers driven by orthogonal frequency division multiplexing signals is addressed in this paper. Particular attention is paid to the power efficient operation of an orthogonal frequency division multiple access cognitive radio system and realization of such a system using compressed sensing. Specifically, precompensated overdriven amplifiers are employed at the mobile terminal. Over-driven amplifiers result in in-band distortions and out of band interference. Out of band interference mostly occupies the spectrum of inactive users, whereas the in-band distortions are mitigated using compressed sensing at the receiver. It is also shown that the performance of the proposed scheme can be further enhanced using multiple measurements of the distortion signal in single-input multi-output systems. Numerical results verify the ability of the proposed setup to improve error vector magnitude, bit error rate, outage capacity and mean squared error. © 2011 IEEE.

  3. ICE-Based Custom Full-Mesh Network for the CHIME High Bandwidth Radio Astronomy Correlator

    Science.gov (United States)

    Bandura, K.; Cliche, J. F.; Dobbs, M. A.; Gilbert, A. J.; Ittah, D.; Mena Parra, J.; Smecher, G.

    2016-03-01

    New generation radio interferometers encode signals from thousands of antenna feeds across large bandwidth. Channelizing and correlating this data requires networking capabilities that can handle unprecedented data rates with reasonable cost. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) correlator processes 8-bits from N=2,048 digitizer inputs across 400MHz of bandwidth. Measured in N2× bandwidth, it is the largest radio correlator that is currently commissioning. Its digital back-end must exchange and reorganize the 6.6terabit/s produced by its 128 digitizing and channelizing nodes, and feed it to the 256 graphics processing unit (GPU) node spatial correlator in a way that each node obtains data from all digitizer inputs but across a small fraction of the bandwidth (i.e. ‘corner-turn’). In order to maximize performance and reliability of the corner-turn system while minimizing cost, a custom networking solution has been implemented. The system makes use of Field Programmable Gate Array (FPGA) transceivers to implement direct, passive copper, full-mesh, high speed serial connections between sixteen circuit boards in a crate, to exchange data between crates, and to offload the data to a cluster of 256 GPU nodes using standard 10Gbit/s Ethernet links. The GPU nodes complete the corner-turn by combining data from all crates and then computing visibilities. Eye diagrams and frame error counters confirm error-free operation of the corner-turn network in both the currently operating CHIME Pathfinder telescope (a prototype for the full CHIME telescope) and a representative fraction of the full CHIME hardware providing an end-to-end system validation. An analysis of an equivalent corner-turn system built with Ethernet switches instead of custom passive data links is provided.

  4. Ground-Based Midcourse Defense (GMD) Initial Defensive Operations Capability (IDOC) at Vandenberg Air Force Base Environmental Assessment

    Science.gov (United States)

    2003-08-28

    Zielinski , EDAW, Inc., concerning utilities supply and demand for Vandenberg Air Force Base, 1 August. Rush, P., 2002. Personal communication between...Pernell W. Rush, Technical Sergeant, Water Utilities/Water Treatment NCO, USAF 30th CES/CEOIU, Vandenberg Air Force Base, and James E. Zielinski ... Dave Savinsky, Environmental Consultant, 30 CES/CEVC, Vandenberg Air Force Base, on the Preliminary Draft Ground-Based Midcourse Defense (GMD

  5. Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence.

    Science.gov (United States)

    Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D; Chait, Maria

    2016-09-01

    To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence-the coincidence of sound elements in and across time-is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals ("stochastic figure-ground": SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as "figures" popping out of a stochastic "ground." Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the "figure" from the randomly varying "ground." Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the "classic" auditory system, is also involved in the early stages of auditory scene analysis." © The Author 2016. Published by Oxford University Press.

  6. Performance evaluation of multi-stratum resources optimization with network functions virtualization for cloud-based radio over optical fiber networks.

    Science.gov (United States)

    Yang, Hui; He, Yongqi; Zhang, Jie; Ji, Yuefeng; Bai, Wei; Lee, Young

    2016-04-18

    Cloud radio access network (C-RAN) has become a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing using cloud BBUs. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate the services in optical networks. In view of this, this study extends to consider the multiple dimensional resources optimization of radio, optical and BBU processing in 5G age. We propose a novel multi-stratum resources optimization (MSRO) architecture with network functions virtualization for cloud-based radio over optical fiber networks (C-RoFN) using software defined control. A global evaluation scheme (GES) for MSRO in C-RoFN is introduced based on the proposed architecture. The MSRO can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical and BBU resources effectively to maximize radio coverage. The efficiency and feasibility of the proposed architecture are experimentally demonstrated on OpenFlow-based enhanced SDN testbed. The performance of GES under heavy traffic load scenario is also quantitatively evaluated based on MSRO architecture in terms of resource occupation rate and path provisioning latency, compared with other provisioning scheme.

  7. Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kok-Keong Loo

    2011-05-01

    Full Text Available The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.

  8. Multi-channel multi-radio using 802.11 based media access for sink nodes in wireless sensor networks.

    Science.gov (United States)

    Campbell, Carlene E-A; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong

    2011-01-01

    The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.

  9. A real-time GNSS-R system based on software-defined radio and graphics processing units

    Science.gov (United States)

    Hobiger, Thomas; Amagai, Jun; Aida, Masanori; Narita, Hideki

    2012-04-01

    Reflected signals of the Global Navigation Satellite System (GNSS) from the sea or land surface can be utilized to deduce and monitor physical and geophysical parameters of the reflecting area. Unlike most other remote sensing techniques, GNSS-Reflectometry (GNSS-R) operates as a passive radar that takes advantage from the increasing number of navigation satellites that broadcast their L-band signals. Thereby, most of the GNSS-R receiver architectures are based on dedicated hardware solutions. Software-defined radio (SDR) technology has advanced in the recent years and enabled signal processing in real-time, which makes it an ideal candidate for the realization of a flexible GNSS-R system. Additionally, modern commodity graphic cards, which offer massive parallel computing performances, allow to handle the whole signal processing chain without interfering with the PC's CPU. Thus, this paper describes a GNSS-R system which has been developed on the principles of software-defined radio supported by General Purpose Graphics Processing Units (GPGPUs), and presents results from initial field tests which confirm the anticipated capability of the system.

  10. Design of cognitive engine for cognitive radio based on the rough sets and radial basis function neural network

    Science.gov (United States)

    Yang, Yanchao; Jiang, Hong; Liu, Congbin; Lan, Zhongli

    2013-03-01

    Cognitive radio (CR) is an intelligent wireless communication system which can dynamically adjust the parameters to improve system performance depending on the environmental change and quality of service. The core technology for CR is the design of cognitive engine, which introduces reasoning and learning methods in the field of artificial intelligence, to achieve the perception, adaptation and learning capability. Considering the dynamical wireless environment and demands, this paper proposes a design of cognitive engine based on the rough sets (RS) and radial basis function neural network (RBF_NN). The method uses experienced knowledge and environment information processed by RS module to train the RBF_NN, and then the learning model is used to reconfigure communication parameters to allocate resources rationally and improve system performance. After training learning model, the performance is evaluated according to two benchmark functions. The simulation results demonstrate the effectiveness of the model and the proposed cognitive engine can effectively achieve the goal of learning and reconfiguration in cognitive radio.

  11. A Study of Dispersion Compensation of Polarization Multiplexing-Based OFDM-OCDMA for Radio-over-Fiber Transmissions.

    Science.gov (United States)

    Yen, Chih-Ta; Chen, Wen-Bin

    2016-09-07

    Chromatic dispersion from optical fiber is the most important problem that produces temporal skews and destroys the rectangular structure of code patterns in the spectra-amplitude-coding-based optical code-division multiple-access (SAC-OCDMA) system. Thus, the balance detection scheme does not work perfectly to cancel multiple access interference (MAI) and the system performance will be degraded. Orthogonal frequency-division multiplexing (OFDM) is the fastest developing technology in the academic and industrial fields of wireless transmission. In this study, the radio-over-fiber system is realized by integrating OFDM and OCDMA via polarization multiplexing scheme. The electronic dispersion compensation (EDC) equalizer element of OFDM integrated with the dispersion compensation fiber (DCF) is used in the proposed radio-over-fiber (RoF) system, which can efficiently suppress the chromatic dispersion influence in long-haul transmitted distance. A set of length differences for 10 km-long single-mode fiber (SMF) and 4 km-long DCF is to verify the compensation scheme by relative equalizer algorithms and constellation diagrams. In the simulation result, the proposed dispersion mechanism successfully compensates the dispersion from SMF and the system performance with dispersion equalizer is highly improved.

  12. A Study of Dispersion Compensation of Polarization Multiplexing-Based OFDM-OCDMA for Radio-over-Fiber Transmissions

    Directory of Open Access Journals (Sweden)

    Chih-Ta Yen

    2016-09-01

    Full Text Available Chromatic dispersion from optical fiber is the most important problem that produces temporal skews and destroys the rectangular structure of code patterns in the spectra-amplitude-coding-based optical code-division multiple-access (SAC-OCDMA system. Thus, the balance detection scheme does not work perfectly to cancel multiple access interference (MAI and the system performance will be degraded. Orthogonal frequency-division multiplexing (OFDM is the fastest developing technology in the academic and industrial fields of wireless transmission. In this study, the radio-over-fiber system is realized by integrating OFDM and OCDMA via polarization multiplexing scheme. The electronic dispersion compensation (EDC equalizer element of OFDM integrated with the dispersion compensation fiber (DCF is used in the proposed radio-over-fiber (RoF system, which can efficiently suppress the chromatic dispersion influence in long-haul transmitted distance. A set of length differences for 10 km-long single-mode fiber (SMF and 4 km-long DCF is to verify the compensation scheme by relative equalizer algorithms and constellation diagrams. In the simulation result, the proposed dispersion mechanism successfully compensates the dispersion from SMF and the system performance with dispersion equalizer is highly improved.

  13. Cross-layer design for radio resource allocation based on priority scheduling in OFDMA wireless access network

    Directory of Open Access Journals (Sweden)

    Chen Yen-Wen

    2011-01-01

    Full Text Available Abstract The orthogonal frequency-division multiple access (OFDMA system has the advantages of flexible subcarrier allocation and adaptive modulation with respect to channel conditions. However, transmission overhead is required in each frame to broadcast the arrangement of radio resources to all mobile stations within the coverage of the same base station. This overhead greatly affects the utilization of valuable radio resources. In this paper, a cross layer scheme is proposed to reduce the number of traffic bursts at the downlink of an OFDMA wireless access network so that the overhead of the media access protocol (MAP field can be minimized. The proposed scheme considers the priorities and the channel conditions of quality of service (QoS traffic streams to arrange for them to be sent with minimum bursts in a heuristic manner. In addition, the trade-off between the degradation of the modulation level and the reduction of traffic bursts is investigated. Simulation results show that the proposed scheme can effectively reduce the traffic bursts and, therefore, increase resource utilization.

  14. Ground-Based Global Navigation Satellite System (GNSS) GLONASS Broadcast Ephemeris Data (hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLObal NAvigation Satellite System (GLONASS) Broadcast Ephemeris Data (hourly files)...

  15. The evaluation of a population based diffusion tensor image atlas using a ground truth method

    Science.gov (United States)

    Van Hecke, Wim; Leemans, Alexander; D'Agostino, Emiliano; De Backer, Steve; Vandervliet, Evert; Parizel, Paul M.; Sijbers, Jan

    2008-03-01

    Purpose: Voxel based morphometry (VBM) is increasingly being used to detect diffusion tensor (DT) image abnormalities in patients for different pathologies. An important requisite for these VBM studies is the use of a high-dimensional, non-rigid coregistration technique, which is able to align both the spatial and the orientational information. Recent studies furthermore indicate that high-dimensional DT information should be included during coregistration for an optimal alignment. In this context, a population based DTI atlas is created that preserves the orientational DT information robustly and contains a minimal bias towards any specific individual data set. Methods: A ground truth evaluation method is developed using a single subject DT image that is deformed with 20 deformation fields. Thereafter, an atlas is constructed based on these 20 resulting images. Thereby, the non-rigid coregistration algorithm is based on a viscous fluid model and on mutual information. The fractional anisotropy (FA) maps as well as the DT elements are used as DT image information during the coregistration algorithm, in order to minimize the orientational alignment inaccuracies. Results: The population based DT atlas is compared with the ground truth image using accuracy and precision measures of spatial and orientational dependent metrics. Results indicate that the population based atlas preserves the orientational information in a robust way. Conclusion: A subject independent population based DT atlas is constructed and evaluated with a ground truth method. This atlas contains all available orientational information and can be used in future VBM studies as a reference system.

  16. Enhanced static ground power unit based on flying capacitor based h-bridge hybrid active-neutral-point-clamped converter

    DEFF Research Database (Denmark)

    Abarzadeh, Mostafa; Madadi Kojabadi, Hossein; Deng, Fujin

    2016-01-01

    Static power converters have various applications, such as static ground power units (GPUs) for airplanes. This study proposes a new configuration of a static GPU based on a novel nine-level flying capacitor h-bridge active-neutral-point-clamped (FCHB_ANPC) converter. The main advantages of the p......Static power converters have various applications, such as static ground power units (GPUs) for airplanes. This study proposes a new configuration of a static GPU based on a novel nine-level flying capacitor h-bridge active-neutral-point-clamped (FCHB_ANPC) converter. The main advantages...

  17. Response of base isolated structure during strong ground motions beyond design earthquakes

    International Nuclear Information System (INIS)

    Yabana, Shuichi; Ishida, Katsuhiko; Shiojiri, Hiroo

    1991-01-01

    In Japan, some base isolated structures for fast breeder reactors (FBR) are tried to design. When a base isolated structure are designed, the relative displacement of isolators are generally limited so sa to be remain in linear state of those during design earthquakes. But to estimate safety margin of a base isolated structure, the response of that until the failure must be obtained experimentally to analytically during strong ground motions of beyond design earthquake. The aim of this paper is to investigate the response of a base isolated structure when the stiffness of the isolators hardens and to simulate the response during strong ground motions of beyond design earthquakes. The optimum characteristics of isolators, with which the margin of the structure are increased, are discussed. (author)

  18. Efficient prediction of ground noise from helicopters and parametric studies based on acoustic mapping

    Directory of Open Access Journals (Sweden)

    Fei WANG

    2018-02-01

    Full Text Available Based on the acoustic mapping, a prediction model for the ground noise radiated from an in-flight helicopter is established. For the enhancement of calculation efficiency, a high-efficiency second-level acoustic radiation model capable of taking the influence of atmosphere absorption on noise into account is first developed by the combination of the point-source idea and the rotor noise radiation characteristics. The comparison between the present model and the direct computation method of noise is done and the high efficiency of the model is validated. Rotor free-wake analysis method and Ffowcs Williams-Hawkings (FW-H equation are applied to the aerodynamics and noise prediction in the present model. Secondly, a database of noise spheres with the characteristic parameters of advance ratio and tip-path-plane angle is established by the helicopter trim model together with a parametric modeling approach. Furthermore, based on acoustic mapping, a method of rapid simulation for the ground noise radiated from an in-flight helicopter is developed. The noise footprint for AH-1 rotor is then calculated and the influence of some parameters including advance ratio and flight path angle on ground noise is deeply analyzed using the developed model. The results suggest that with the increase of advance ratio and flight path angle, the peak noise levels on the ground first increase and then decrease, in the meantime, the maximum Sound Exposure Level (SEL noise on the ground shifts toward the advancing side of rotor. Besides, through the analysis of the effects of longitudinal forces on miss-distance and rotor Blade-Vortex Interaction (BVI noise in descent flight, some meaningful results for reducing the BVI noise on the ground are obtained. Keywords: Acoustic mapping, Helicopter, Noise footprint, Rotor noise, Second-level acoustic radiation model

  19. ASCA and Contemporaneous Ground-based Observations of the BL Lacertae Objects 1749+096 and 2200+420 (BL Lac)

    International Nuclear Information System (INIS)

    Sambruna, R.M.; Ghisellini, G.; Hooper, E.; Kollgaard, R.I.; Pesce, J.E.; Urry, C.M.

    1999-01-01

    We present ASCA observations of the radio-selected BL Lacertae objects 1749+096 (z=0.32) and 2200+420 (BL Lac, z=0.069) performed in 1995 September and November, respectively. The ASCA spectra of both sources can be described as a first approximation by a power law with photon index Γ∼2. This is flatter than for most X-ray endash selected BL Lacs observed with ASCA, in agreement with the predictions of current blazar unification models. While 1749+096 exhibits tentative evidence for spectral flattening at low energies, a concave continuum is detected for 2200+420: the steep low-energy component is consistent with the high-energy tail of the synchrotron emission responsible for the longer wavelengths, while the harder tail at higher energies is the onset of the Compton component. The two BL Lacs were observed with ground-based telescopes from radio to TeV energies contemporaneously with ASCA. The spectral energy distributions are consistent with synchrotron self-Compton emission from a single homogeneous region shortward of the IR/optical wavelengths, with a second component in the radio domain related to a more extended emission region. For 2200+420, comparing the 1995 November state with the optical/GeV flare of 1997 July, we find that models requiring inverse Compton scattering of external photons provide a viable mechanism for the production of the highest (GeV) energies during the flare. In particular, an increase of the external radiation density and of the power injected in the jet can reproduce the flat γ-ray continuum observed in 1997 July. A directly testable prediction of this model is that the line luminosity in 2200+420 should vary shortly after (∼1 month) a nonthermal synchrotron flare. copyright copyright 1999. The American Astronomical Society

  20. Radio astronomy

    CERN Document Server

    Alder, Berni

    1975-01-01

    Methods in Computational Physics, Volume 14: Radio Astronomy is devoted to the role of the digital computer both as a control device and as a calculator in addressing problems related to galactic radio noise. This volume contains four chapters and begins with a technical description of the hardware and the special data-handling problems of using radioheliography, with an emphasis on a selection of observational results obtained with the Culgoora radioheliograph and their significance to solar physics and to astrophysics in general. The subsequent chapter examines interstellar dispersion, i

  1. Feature-Based Attention in Early Vision for the Modulation of Figure?Ground Segregation

    OpenAIRE

    Wagatsuma, Nobuhiko; Oki, Megumi; Sakai, Ko

    2013-01-01

    We investigated psychophysically whether feature-based attention modulates the perception of figure–ground (F–G) segregation and, based on the results, we investigated computationally the neural mechanisms underlying attention modulation. In the psychophysical experiments, the attention of participants was drawn to a specific motion direction and they were then asked to judge the side of figure in an ambiguous figure with surfaces consisting of distinct motion directions. The results of these...

  2. Feature-based attention in early vision for the modulation of figure–ground segregation

    OpenAIRE

    Nobuhiko eWagatsuma; Nobuhiko eWagatsuma; Megumi eOki; Ko eSakai

    2013-01-01

    We investigated psychophysically whether feature-based attention modulates the perception of figure–ground (F–G) segregation and, based on the results, we investigated computationally the neural mechanisms underlying attention modulation. In the psychophysical experiments, the attention of participants was drawn to a specific motion direction and they were then asked to judge the side of figure in an ambiguous figure with surfaces consisting of distinct motion directions. The results of these...

  3. Shear wave velocity-based evaluation and design of stone column improved ground for liquefaction mitigation

    Science.gov (United States)

    Zhou, Yanguo; Sun, Zhengbo; Chen, Jie; Chen, Yunmin; Chen, Renpeng

    2017-04-01

    The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice. In this paper, a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity ( V s)-void ratio ( e) of sandy soils, and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available. The detailed procedures of pre- and post-improvement liquefaction evaluations and stone column design are given. According to this approach, the required level of ground improvement will be met once the target V s of soil is raised high enough (i.e., no less than the critical velocity) to resist the given earthquake loading according to the CRR- V s relationship, and then this requirement is transferred to the control of target void ratio (i.e., the critical e) according to the V s- e relationship. As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature, specific considerations of the densification mechanism and effect are given, and the effects of drainage and reinforcement of stone columns are also discussed. A case study of a thermal power plant in Indonesia is introduced, where the effectiveness of stone column improved ground was evaluated by the proposed V s-based method and compared with the SPT-based evaluation. This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.

  4. Introducing the VISAGE project - Visualization for Integrated Satellite, Airborne, and Ground-based data Exploration

    Science.gov (United States)

    Gatlin, P. N.; Conover, H.; Berendes, T.; Maskey, M.; Naeger, A. R.; Wingo, S. M.

    2017-12-01

    A key component of NASA's Earth observation system is its field experiments, for intensive observation of particular weather phenomena, or for ground validation of satellite observations. These experiments collect data from a wide variety of airborne and ground-based instruments, on different spatial and temporal scales, often in unique formats. The field data are often used with high volume satellite observations that have very different spatial and temporal coverage. The challenges inherent in working with such diverse datasets make it difficult for scientists to rapidly collect and analyze the data for physical process studies and validation of satellite algorithms. The newly-funded VISAGE project will address these issues by combining and extending nascent efforts to provide on-line data fusion, exploration, analysis and delivery capabilities. A key building block is the Field Campaign Explorer (FCX), which allows users to examine data collected during field campaigns and simplifies data acquisition for event-based research. VISAGE will extend FCX's capabilities beyond interactive visualization and exploration of coincident datasets, to provide interrogation of data values and basic analyses such as ratios and differences between data fields. The project will also incorporate new, higher level fused and aggregated analysis products from the System for Integrating Multi-platform data to Build the Atmospheric column (SIMBA), which combines satellite and ground-based observations into a common gridded atmospheric column data product; and the Validation Network (VN), which compiles a nationwide database of coincident ground- and satellite-based radar measurements of precipitation for larger scale scientific analysis. The VISAGE proof-of-concept will target "golden cases" from Global Precipitation Measurement Ground Validation campaigns. This presentation will introduce the VISAGE project, initial accomplishments and near term plans.

  5. Reconfigurable radio systems network architectures and standards

    CERN Document Server

    Iacobucci, Maria Stella

    2013-01-01

    This timely book provides a standards-based view of the development, evolution, techniques and potential future scenarios for the deployment of reconfigurable radio systems.  After an introduction to radiomobile and radio systems deployed in the access network, the book describes cognitive radio concepts and capabilities, which are the basis for reconfigurable radio systems.  The self-organizing network features introduced in 3GPP standards are discussed and IEEE 802.22, the first standard based on cognitive radio, is described. Then the ETSI reconfigurable radio systems functional ar

  6. Tropospheric nitrogen dioxide column retrieval based on ground-based zenith-sky DOAS observations

    Science.gov (United States)

    Tack, F. M.; Hendrick, F.; Pinardi, G.; Fayt, C.; Van Roozendael, M.

    2013-12-01

    A retrieval approach has been developed to derive tropospheric NO2 vertical column amounts from ground-based zenith-sky measurements of scattered sunlight. Zenith radiance spectra are observed in the visible range by the BIRA-IASB Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument and analyzed by the DOAS technique, based on a least-squares spectral fitting. In recent years, this technique has shown to be a well-suited remote sensing tool for monitoring atmospheric trace gases. The retrieval algorithm is developed and validated based on a two month dataset acquired from June to July 2009 in the framework of the Cabauw (51.97° N, 4.93° E) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). Once fully operational, the retrieval approach can be applied to observations from stations of the Network for the Detection of Atmospheric Composition Change (NDACC). The obtained tropospheric vertical column amounts are compared with the multi-axis retrieval from the BIRA-IASB MAX-DOAS instrument and the retrieval from a zenith-viewing only SAOZ instrument (Système d'Analyse par Observations Zénithales), owned by Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS). First results show a good agreement for the whole time series with the multi-axis retrieval (R = 0.82; y = 0.88x + 0.30) as well as with the SAOZ retrieval (R = 0.85; y = 0.76x + 0.28 ). Main error sources arise from the uncertainties in the determination of tropospheric and stratospheric air mass factors, the stratospheric NO2 abundances and the residual amount in the reference spectrum. However zenith-sky measurements have been commonly used over the last decades for stratospheric monitoring, this study also illustrates the suitability for retrieval of tropospheric column amounts. As there are long time series of zenith-sky acquisitions available, the developed approach offers new perspectives with regard to the use of observations from the NDACC

  7. Space Telecommunications Radio System (STRS) Architecture. Part 1; Tutorial - Overview

    Science.gov (United States)

    Handler, Louis M.; Briones, Janette C.; Mortensen, Dale J.; Reinhart, Richard C.

    2012-01-01

    Space Telecommunications Radio System (STRS) Architecture Standard provides a NASA standard for software-defined radio. STRS is being demonstrated in the Space Communications and Navigation (SCaN) Testbed formerly known as Communications, Navigation and Networking Configurable Testbed (CoNNeCT). Ground station radios communicating the SCaN testbed are also being written to comply with the STRS architecture. The STRS Architecture Tutorial Overview presents a general introduction to the STRS architecture standard developed at the NASA Glenn Research Center (GRC), addresses frequently asked questions, and clarifies methods of implementing the standard. The STRS architecture should be used as a base for many of NASA s future telecommunications technologies. The presentation will provide a basic understanding of STRS.

  8. Analysis of CPolSK-based FSO system working in space-to-ground channel

    Science.gov (United States)

    Su, Yuwei; Sato, Takuro

    2018-03-01

    In this article, the transmission performance of a circle polarization shift keying (CPolSK)-based free space optical (FSO) system working in space-to-ground channel is analyzed. Formulas describing the optical polarization distortion caused by the atmospheric turbulence and the communication qualities in terms of signal-to-noise-ratio (SNR), bit-error-ratio (BER) and outage probability of the proposed system are derived. Based on the Stokes parameters data measured by a Japanese optical communication satellite, we evaluate the space-to-ground FSO link and simulate the system performance under a varying regime of turbulence strength. The proposed system provides a more efficient way to compensate scintillation effects in a comparison with the on-off-keying (OOK)-based FSO system. These results are useful to the designing and evaluating of a deep space FSO communication system.

  9. Characterization of Nb Superconducting Radio Frequency Cavities Based On In-Situ STEM And EELS

    Science.gov (United States)

    Tao, Runzhe

    Niobium, a 4d transition metal, has the highest superconducting transition temperature (Tc=9.2K) of any elemental superconductor as type II superconductor with coherent length, sigma approximately that of the penetration length, lambda. Pure niobium is grey in color and very soft, which makes this metal easily fabricable into different shapes for superconducting radio- frequency (SRF) cavities. Such cavities are used in some modern accelerators (SNS, CEBAF, XFEL), and are intended for usage in the next generation of particle accelerators, such as ILC. Since the crucial part of the cavities is top 100 nm of Nb near the inner cavity surface, considering the penetration depth is around 40 nm, it has attracted more and more attention in improving the surface process for optimizing the performance of the cavities. Nowadays, the main treatment of the Nb surface includes electro polishing (EP), buffered chemical polishing (BCP), high temperature baking (800 °C, 1000 °C and 1200 °C) and mild baking (120 °C). Firstly, the two half cells are welded together and the weld line is quite rough; there exists a lot of visible pits and defects on the inner shell of cavities. In this Ph.D. thesis, novel techniques in a scanning transmission electron microscope (STEM) that can be used to analyze the atomic scale structure-property relationship, both at room tem- perature and high/LN 2 temperature, are explored. Specifically, by using correlated Z-contrast imaging and electron energy loss spectrum (EELS), the structure, composition and bonding can be characterized directly on the atomic scale, also, light atoms, like H, O and C, are visible in ABF images. For the examining the defect behavior on the cavity surface, heating and cold stages are involved to simulate the baking treatment and low-temperature environments. These studies will serve as an important reference for qualifying different surface treatments to further improve SRF cavities' performance. The experimental results

  10. Improving Agricultural Water Resources Management Using Ground-based Infrared Thermometry

    Science.gov (United States)

    Taghvaeian, S.

    2014-12-01

    Irrigated agriculture is the largest user of freshwater resources in arid/semi-arid parts of the world. Meeting rapidly growing demands in food, feed, fiber, and fuel while minimizing environmental pollution under a changing climate requires significant improvements in agricultural water management and irrigation scheduling. Although recent advances in remote sensing techniques and hydrological modeling has provided valuable information on agricultural water resources and their management, real improvements will only occur if farmers, the decision makers on the ground, are provided with simple, affordable, and practical tools to schedule irrigation events. This presentation reviews efforts in developing methods based on ground-based infrared thermometry and thermography for day-to-day management of irrigation systems. The results of research studies conducted in Colorado and Oklahoma show that ground-based remote sensing methods can be used effectively in quantifying water stress and consequently triggering irrigation events. Crop water use estimates based on stress indices have also showed to be in good agreement with estimates based on other methods (e.g. surface energy balance, root zone soil water balance, etc.). Major challenges toward the adoption of this approach by agricultural producers include the reduced accuracy under cloudy and humid conditions and its inability to forecast irrigation date, which is a critical knowledge since many irrigators need to decide about irrigations a few days in advance.

  11. Toward High Altitude Airship Ground-Based Boresight Calibration of Hyperspectral Pushbroom Imaging Sensors

    Directory of Open Access Journals (Sweden)

    Aiwu Zhang

    2015-12-01

    Full Text Available The complexity of the single linear hyperspectral pushbroom imaging based on a high altitude airship (HAA without a three-axis stabilized platform is much more than that based on the spaceborne and airborne. Due to the effects of air pressure, temperature and airflow, the large pitch and roll angles tend to appear frequently that create pushbroom images highly characterized with severe geometric distortions. Thus, the in-flight calibration procedure is not appropriate to apply to the single linear pushbroom sensors on HAA having no three-axis stabilized platform. In order to address this problem, a new ground-based boresight calibration method is proposed. Firstly, a coordinate’s transformation model is developed for direct georeferencing (DG of the linear imaging sensor, and then the linear error equation is derived from it by using the Taylor expansion formula. Secondly, the boresight misalignments are worked out by using iterative least squares method with few ground control points (GCPs and ground-based side-scanning experiments. The proposed method is demonstrated by three sets of experiments: (i the stability and reliability of the method is verified through simulation-based experiments; (ii the boresight calibration is performed using ground-based experiments; and (iii the validation is done by applying on the orthorectification of the real hyperspectral pushbroom images from a HAA Earth observation payload system developed by our research team—“LanTianHao”. The test results show that the proposed boresight calibration approach significantly improves the quality of georeferencing by reducing the geometric distortions caused by boresight misalignments to the minimum level.

  12. Ground Motion Prediction Trends For Eastern North America Based on the Next Generation Attenuation East Ground Motion Database

    Science.gov (United States)

    Cramer, C. H.; Kutliroff, J.; Dangkua, D.

    2010-12-01

    A five-year Next Generation Attenuation (NGA) East project to develop new ground motion prediction equations for stable continental regions (SCRs), including eastern North America (ENA), has begun at the Pacific Earthquake Engineering Research (PEER) Center funded by the Nuclear Regulatory Commission (NRC), the U.S. Geological Survey (USGS), the Electric Power Research Institute (EPRI), and the Department of Energy (DOE). The initial effort focused on database design and collection of appropriate M>4 ENA broadband and accelerograph records to populate the database. Ongoing work has focused on adding records from smaller ENA earthquakes and from other SCRs such as Europe, Australia, and India. Currently, over 6500 horizontal and vertical component records from 60 ENA earthquakes have been collected and prepared (instrument response removed, filtering to acceptable-signal band, determining peak and spectral parameter values, quality assurance, etc.) for the database. Geologic Survey of Canada (GSC) strong motion recordings, previously not available, have also been added to the NGA East database. The additional earthquakes increase the number of ground motion recordings in the 10 - 100 km range, particularly from the 2008 M5.2 Mt. Carmel, IL event, and the 2005 M4.7 Riviere du Loup and 2010 M5.0 Val des Bois earthquakes in Quebec, Canada. The goal is to complete the ENA database and make it available in 2011 followed by a SCR database in 2012. Comparisons of ground motion observations from four recent M5 ENA earthquakes with current ENA ground motion prediction equations (GMPEs) suggest that current GMPEs, as a group, reasonably agree with M5 observations at short periods, particularly at distances less than 200 km. However, at one second, current GMPEs over predict M5 ground motion observations. The 2001 M7.6 Bhuj, India, earthquake provides some constraint at large magnitudes, as geology and regional attenuation is analogous to ENA. Cramer and Kumar, 2003, have

  13. Design of radio frequency power amplifiers for cellular phones and base stations in modern mobile communication systems

    OpenAIRE

    Wu, Lei

    2009-01-01

    The mobile radio communication has begun with Guglielmo Marconi's and Alexander Popov's experiments with ship-to-shore communication in the 1890's. Land mobile radio telephone systems have been used since the Detroit City Police Department installed the first wireless communication system in 1921. Since that time, radio systems have become more and more important for both voice and data communication. The modern mobile communication systems are mainly designed in high frequency ranges due...

  14. Hydrogen ion sensors based on indium tin oxide thin film using radio frequency sputtering system

    International Nuclear Information System (INIS)

    Chiang, Jung-Lung; Jhan, Syun-Sheng; Hsieh, Shu-Chen; Huang, An-Li

    2009-01-01

    Indium tin oxide (ITO) thin films were deposited onto Si and SiO 2 /Si substrates using a radio frequency sputtering system with a grain size of 30-50 nm and thickness of 270-280 nm. ITO/Si and ITO/SiO 2 /Si sensing structures were achieved and connected to a standard metal-oxide-semiconductor field-effect transistor (MOSFET) as an ITO pH extended-gate field-effect transistor (ITO pH-EGFET). The semiconductor parameter analysis measurement (Keithley 4200) was utilized to measure the current-voltage (I-V) characteristics curves and study the sensing properties of the ITO pH-EGFET. The linear pH voltage sensitivities were about 41.43 and 43.04 mV/pH for the ITO/Si and ITO/SiO 2 /Si sensing structures, respectively. At the same time, both pH current sensitivities were about 49.86 and 51.73 μA/pH, respectively. Consequently, both sensing structures can be applied as extended-gate sensing heads. The separative structure is suitable for application as a disposable pH sensor.

  15. Wavelet-based Characterization of Small-scale Solar Emission Features at Low Radio Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, A. [Indian Institute of Science Education and Research, Pune-411008 (India); Sharma, R.; Oberoi, D. [National Centre for Radio Astrophysics, Tata Institute for Fundamental Research, Pune 411007 (India); Das, S. B. [Indian Institute of Science Education and Research, Kolkata-741249 (India); Pankratius, V.; Lonsdale, C. J.; Cappallo, R. J.; Corey, B. E.; Kratzenberg, E. [MIT Haystack Observatory, Westford, MA 01886 (United States); Timar, B. [California Institute of Technology, Pasadena, CA 91125 (United States); Bowman, J. D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Briggs, F. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Deshpande, A. A. [Raman Research Institute, Bangalore 560080 (India); Emrich, D. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Goeke, R. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Greenhill, L. J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Hazelton, B. J. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand); Kaplan, D. L. [Department of Physics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201 (United States); Kasper, J. C., E-mail: akshay@students.iiserpune.ac.in [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); and others

    2017-07-01

    Low radio frequency solar observations using the Murchison Widefield Array have recently revealed the presence of numerous weak short-lived narrowband emission features, even during moderately quiet solar conditions. These nonthermal features occur at rates of many thousands per hour in the 30.72 MHz observing bandwidth, and hence necessarily require an automated approach for their detection and characterization. Here, we employ continuous wavelet transform using a mother Ricker wavelet for feature detection from the dynamic spectrum. We establish the efficacy of this approach and present the first statistically robust characterization of the properties of these features. In particular, we examine distributions of their peak flux densities, spectral spans, temporal spans, and peak frequencies. We can reliably detect features weaker than 1 SFU, making them, to the best of our knowledge, the weakest bursts reported in literature. The distribution of their peak flux densities follows a power law with an index of −2.23 in the 12–155 SFU range, implying that they can provide an energetically significant contribution to coronal and chromospheric heating. These features typically last for 1–2 s and possess bandwidths of about 4–5 MHz. Their occurrence rate remains fairly flat in the 140–210 MHz frequency range. At the time resolution of the data, they appear as stationary bursts, exhibiting no perceptible frequency drift. These features also appear to ride on a broadband background continuum, hinting at the likelihood of them being weak type-I bursts.

  16. PREDICTION BASED CHANNEL-HOPPING ALGORITHM FOR RENDEZVOUS IN COGNITIVE RADIO NETWORKS

    Directory of Open Access Journals (Sweden)

    Dhananjay Kumar

    2012-12-01

    Full Text Available Most common works for rendezvous in cognitive radio networks deal only with two user scenarios involving two secondary users and variable primary users and aim at reducing the time-to-rendezvous. A common control channel for the establishment of communication is not considered and hence the work comes under the category of ‘Blind Rendezvous’. Our work deal with multi-user scenario and provides a methodology for the users to find each other in the very first time slot spent for rendezvous or otherwise called the firstattempt- rendezvous. The secondary users make use of the history of past communications to enable them to predict the frequency channel that the user expects the rendezvous user to be. Our approach prevents greedy decision making between the users involved by the use of a cut-off time period for attempting rendezvous. Simulation results show that the time-to-rendezvous (TTR is greatly reduced upon comparison with other popular rendezvous algorithms.

  17. Structure and dielectric properties in the radio frequency range of polymer composites based on vanadium dioxide

    Directory of Open Access Journals (Sweden)

    Kolbunov V.R.

    2015-06-01

    Full Text Available Polymer composites with active fillers are recently considered to be promising materials for the design of new functional devices with controllable properties and are intensively investigated. Dielectric studies are one of the most effective methods for studying structural features and mechanisms of conductivity formation for this type of two-component systems. The paper presents research results of the dielectric characteristics in the range of radio frequency of 50 kHz — 10 MHz and temperature range of 30—60°C of polyethylene composites of vanadium dioxide with different volume fractions of filler. Two dispersion areas were found: a high-frequency area caused by the Maxwell charge separation on the boundaries of the polyethylene matrix — conductive filler of VI2 crystallites, and a low frequency area associated with the presence of the transition layer at this boundary. The relative permittivity of the composite has a tendency to a decrease in absolute value with increasing temperature. The analysis of the low-frequency dependence of the dielectric constant of the value of the filler’s volume fraction revealed that the investigated composite belongs to two-component statistical mixtures with a transition layer between the components.

  18. Robust Weighted Sum Harvested Energy Maximization for SWIPT Cognitive Radio Networks Based on Particle Swarm Optimization.

    Science.gov (United States)

    Tuan, Pham Viet; Koo, Insoo

    2017-10-06

    In this paper, we consider multiuser simultaneous wireless information and power transfer (SWIPT) for cognitive radio systems where a secondary transmitter (ST) with an antenna array provides information and energy to multiple single-antenna secondary receivers (SRs) equipped with a power splitting (PS) receiving scheme when multiple primary users (PUs) exist. The main objective of the paper is to maximize weighted sum harvested energy for SRs while satisfying their minimum required signal-to-interference-plus-noise ratio (SINR), the limited transmission power at the ST, and the interference threshold of each PU. For the perfect channel state information (CSI), the optimal beamforming vectors and PS ratios are achieved by the proposed PSO-SDR in which semidefinite relaxation (SDR) and particle swarm optimization (PSO) methods are jointly combined. We prove that SDR always has a rank-1 solution, and is indeed tight. For the imperfect CSI with bounded channel vector errors, the upper bound of weighted sum harvested energy (WSHE) is also obtained through the S-Procedure. Finally, simulation results demonstrate that the proposed PSO-SDR has fast convergence and better performance as compared to the other baseline schemes.

  19. A Radio Frequency Radiation Exposure System for Rodents based on Reverberation Chambers.

    Science.gov (United States)

    Capstick, Myles; Kuster, Niels; Kuehn, Sven; Berdinas-Torres, Veronica; Gong, Yijian; Wilson, Perry; Ladbury, John; Koepke, Galen; McCormick, David L; Gauger, James; Melnick, Ronald L

    2017-08-01

    In this paper we present the novel design features, their technical implementation, and an evaluation of the radio Frequency (RF) exposure systems developed for the National Toxicology Program (NTP) of the National Institute of Environmental Health Sciences (NIEHS) studies on the potential toxicity and carcinogenicity of 2nd and 3rd generation mobile-phone signals. The system requirements for this 2-year NTP cancer bioassay study were the tightly-controlled lifetime exposure of rodents (1568 rats and 1512 mice) to three power levels plus sham simulating typical daily, and higher, exposures of users of GSM and CDMA (IS95) signals. Reverberation chambers and animal housing were designed to allow extended exposure time per day for free-roaming individually-housed animals. The performance of the chamber was characterized in terms of homogeneity, stirred to unstirred energy, efficiency. The achieved homogeneity was 0.59 dB and 0.48 dB at 900 and 1900 MHz respectively. The temporal variation in the electric field strength was optimized to give similar characteristics to that of the power control of a phone in a real network using the two stirrers. Experimental dosimetry was performed to validate the SAR sensitivity and determine the SAR uniformity throughout the exposure volume; SAR uniformities of 0.46 dB and 0.40 dB, respectively, for rats and mice were achieved.

  20. Performance Analysis and Evaluation of Advanced Designs for Radio Communication Systems for Communications-Based Train Control (CBTC)

    DEFF Research Database (Denmark)

    Farooq, Jahanzeb

    -consuming process associated with a certain delay. Additionally, these APs are connected to the wayside infrastructure via optical fiber cables that incurs huge costs. To address these problems, a novel design of the CBTC trackside network was proposed at Siemens. In this design, trackside nodes function in ad......Communications-Based Train Control (CBTC) is a modern signalling system that uses radio communication to enable the exchange of high resolution and real-time train control information between the train and the wayside infrastructure. A vast majority of CBTC systems worldwide use IEEE 802.11 Wi......-hoc Wi-Fi mode, which means no associations have to be performed with them prior to transmitting. A train simply broadcasts packets. A node upon receiving these packets forwards them to the next node and so on, forming a chain of nodes. Following this chain, packets arrive at the destination. To minimize...

  1. A Computational Method based on Radio Frequency Technologies for the Analysis of Accessibility of Disabled People in Sustainable Cities

    Directory of Open Access Journals (Sweden)

    Virgilio Gilart-Iglesias

    2015-11-01

    Full Text Available The sustainability strategy in urban spaces arises from reflecting on how to achieve a more habitable city and is materialized in a series of sustainable transformations aimed at humanizing different environments so that they can be used and enjoyed by everyone without exception and regardless of their ability. Modern communication technologies allow new opportunities to analyze efficiency in the use of urban spaces from several points of view: adequacy of facilities, usability, and social integration capabilities. The research presented in this paper proposes a method to perform an analysis of movement accessibility in sustainable cities based on radio frequency technologies and the ubiquitous computing possibilities of the new Internet of Things paradigm. The proposal can be deployed in both indoor and outdoor environments to check specific locations of a city. Finally, a case study in a controlled context has been simulated to validate the proposal as a pre-deployment step in urban environments.

  2. Predicting Electron Population Characteristics in 2-D Using Multispectral Ground-Based Imaging

    Science.gov (United States)

    Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Jahn, Jorg-Micha

    2018-01-01

    Ground-based imaging and in situ sounding rocket data are compared to electron transport modeling for an active inverted-V type auroral event. The Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission successfully launched from Poker Flat, Alaska, on 3 March 2014 at 11:09:50 UT and reached an apogee of approximately 335 km over the aurora. Multiple ground-based electron-multiplying charge-coupled device (EMCCD) imagers were positioned at Venetie, Alaska, and aimed toward magnetic zenith. The imagers observed the intensity of different auroral emission lines (427.8, 557.7, and 844.6 nm) at the magnetic foot point of the rocket payload. Emission line intensity data are correlated with electron characteristics measured by the GREECE onboard electron spectrometer. A modified version of the GLobal airglOW (GLOW) model is used to estimate precipitating electron characteristics based on optical emissions. GLOW predicted the electron population characteristics with 20% error given the observed spectral intensities within 10° of magnetic zenith. Predictions are within 30% of the actual values within 20° of magnetic zenith for inverted-V-type aurora. Therefore, it is argued that this technique can be used, at least in certain types of aurora, such as the inverted-V type presented here, to derive 2-D maps of electron characteristics. These can then be used to further derive 2-D maps of ionospheric parameters as a function of time, based solely on multispectral optical imaging data.

  3. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio

    International Nuclear Information System (INIS)

    1992-04-01

    This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30 percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size

  4. Ground target geolocation based on digital elevation model for airborne wide-area reconnaissance system

    Science.gov (United States)

    Qiao, Chuan; Ding, Yalin; Xu, Yongsen; Xiu, Jihong

    2018-01-01

    To obtain the geographical position of the ground target accurately, a geolocation algorithm based on the digital elevation model (DEM) is developed for an airborne wide-area reconnaissance system. According to the platform position and attitude information measured by the airborne position and orientation system and the gimbal angles information from the encoder, the line-of-sight pointing vector in the Earth-centered Earth-fixed coordinate frame is solved by the homogeneous coordinate transformation. The target longitude and latitude can be solved with the elliptical Earth model and the global DEM. The influences of the systematic error and measurement error on ground target geolocation calculation accuracy are analyzed by the Monte Carlo method. The simulation results show that this algorithm can improve the geolocation accuracy of ground target in rough terrain area obviously. The geolocation accuracy of moving ground target can be improved by moving average filtering (MAF). The validity of the geolocation algorithm is verified by the flight test in which the plane flies at a geodetic height of 15,000 m and the outer gimbal angle is <47°. The geolocation root mean square error of the target trajectory is <45 and <7 m after MAF.

  5. Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence

    Science.gov (United States)

    Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D.; Chait, Maria

    2016-01-01

    To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence—the coincidence of sound elements in and across time—is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals (“stochastic figure-ground”: SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as “figures” popping out of a stochastic “ground.” Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the “figure” from the randomly varying “ground.” Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the “classic” auditory system, is also involved in the early stages of auditory scene analysis.” PMID:27325682

  6. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar; Thingbaijam, Kiran Kumar; Adhikari, M. D.; Nayak, Avinash; Devaraj, N.; Ghosh, Soumalya K.; Mahajan, Arun K.

    2013-01-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  7. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar

    2013-12-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  8. Ground-and satellite-based evidence of the biophysical mechanisms behind the greening Sahel

    DEFF Research Database (Denmark)

    Brandt, Martin Stefan; Mbow, Cheikh; Diouf, Abdoul A.

    2015-01-01

    After a dry period with prolonged droughts in the 1970s and 1980s, recent scientific outcome suggests that the decades of abnormally dry conditions in the Sahel have been reversed by positive anomalies in rainfall. Various remote sensing studies observed a positive trend in vegetation greenness...... over the last decades which is known as the re-greening of the Sahel. However, little investment has been made in including long-term ground-based data collections to evaluate and better understand the biophysical mechanisms behind these findings. Thus, deductions on a possible increment in biomass...... remain speculative. Our aim is to bridge these gaps and give specifics on the biophysical background factors of the re-greening Sahel. Therefore, a trend analysis was applied on long time series (1987-2013) of satellite-based vegetation and rainfall data, as well as on ground-observations of leaf biomass...

  9. Space debris removal using a high-power ground-based laser

    Energy Technology Data Exchange (ETDEWEB)

    Monroe, D.K.

    1993-12-31

    The feasibility and practicality of using a ground-based laser (GBL) to remove artificial space debris is examined. Physical constraints indicate that a reactor-pumped laser (RPL) may be best suited for this mission, because of its capabilities for multimegawatt output long run-times, and near-diffraction-limited initial beams. Simulations of a laser-powered debris removal system indicate that a 5-MW RPL with a 10-meter-diameter beam director and adaptive optics capabilities can deorbit 1-kg debris from space station altitudes. Larger debris can be deorbited or transferred to safer orbits after multiple laser engagements. A ground-based laser system may be the only realistic way to access and remove some 10,000 separate objects, having velocities in the neighborhood of 7 km/sec, and being spatially distributed over some 10{sup 10} km{sup 3} of space.

  10. Climatological lower thermosphere winds as seen by ground-based and space-based instruments

    Directory of Open Access Journals (Sweden)

    J. M. Forbes

    2004-06-01

    Full Text Available Comparisons are made between climatological dynamic fields obtained from ground-based (GB and space-based (SB instruments with a view towards identifying SB/GB intercalibration issues for TIMED and other future aeronomy satellite missions. SB measurements are made from the High Resolution Doppler Imager (HRDI instrument on the Upper Atmosphere Research Satellite (UARS. The GB data originate from meteor radars at Obninsk, (55° N, 37° E, Shigaraki (35° N, 136° E and Jakarta (6° S, 107° E and MF spaced-antenna radars at Hawaii (22° N, 160° W, Christmas I. (2° N, 158° W and Adelaide (35° S, 138° E. We focus on monthly-mean prevailing, diurnal and semidiurnal wind components at 96km, averaged over the 1991-1999 period. We perform space-based (SB analyses for 90° longitude sectors including the GB sites, as well as for the zonal mean. Taking the monthly prevailing zonal winds from these stations as a whole, on average, SB zonal winds exceed GB determinations by ~63%, whereas meridional winds are in much better agreement. The origin of this discrepancy remains unknown, and should receive high priority in initial GB/SB comparisons during the TIMED mission. We perform detailed comparisons between monthly climatologies from Jakarta and the geographically conjugate sites of Shigaraki and Adelaide, including some analyses of interannual variations. SB prevailing, diurnal and semidiurnal tides exceed those measured over Jakarta by factors, on the average, of the order of 2.0, 1.6, 1.3, respectively, for the eastward wind, although much variability exists. For the meridional component, SB/GB ratios for the diurnal and semidiurnal tide are about 1.6 and 1.7. Prevailing and tidal amplitudes at Adelaide are significantly lower than SB values, whereas similar net differences do not occur at the conjugate Northern Hemisphere location of Shigaraki. Adelaide diurnal phases lag SB phases by several hours, but excellent agreement between the two data

  11. Model-based analysis of digital radio frequency control systems for a heavy-ion synchrotron

    International Nuclear Information System (INIS)

    Spies, Christopher

    2013-12-01

    In this thesis, we investigate the behavior of different radio frequency control systems in a heavy-ion synchrotron, which act on the electrical fields used to accelerate charged particles, along with the longitudinal dynamics of the particles in the beam. Due to the large physical dimensions of the system, the required precision can only be achieved by a distributed control system. Since the plant is highly nonlinear and the overall system is very complex, a purely analytical treatment is not possible without introducing unacceptable simplifications. Instead, we use numerical simulation to investigate the system behavior. This thesis arises from a cooperation between the Institute of Microelectronic Systems at Technische Universitaet Darmstadt and the GSI Helmholtz Center for Heavy-Ion Research. A new heavy-ion synchrotron, the SIS100, is currently being built at GSI; its completion is scheduled for 2016. The starting point for the present thesis was the question whether a control concept previously devised at GSI is feasible - not only in the ideal case, but in the presence of parameter deviations, noise, and other disturbances - and how it can be optimized. In this thesis, we present a system model of a heavy-ion synchrotron. This model comprises the beam dynamics, the relevant components of the accelerator, and the relevant controllers as well as the communication between those controllers. We discuss the simulation techniques as well as several simplifications we applied in order to be able to simulate the model in an acceptable amount of time and show that these simplifications are justified. Using the model, we conducted several case studies in order to demonstrate the practical feasibility of the control concept, analyze the system's sensitivity towards disturbances and explore opportunities for future extensions. We derive specific suggestions for improvements from our results. Finally, we demonstrate that the model represents the physical reality

  12. Evidence for electron-based ion generation in radio-frequency ionization.

    Science.gov (United States)

    Olaitan, Abayomi D; Zekavat, Behrooz; Solouki, Touradj

    2016-01-01

    Radio-frequency ionization (RFI) is a novel ionization method coupled to mass spectrometry (MS) for analysis of semi-volatile and volatile organic compounds (VOCs). Despite the demonstrated capabilities of RFI MS for VOC analysis in both positive- and negative-ion modes, mechanism of RFI is not completely understood. Improved understanding of the ion generation process in RFI should expand its utility in MS. Here, we studied the possibility of electron emission in RFI using both direct charged particle current measurements and indirect electron detection in a 9.4-T Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer. We show that RF-generated electrons can be trapped in the ICR cell and, subsequently, reacted with neutral hexafluorobenzene (C6 F6 ) molecules to generate C6 F6 (●-) . Intensity of observed C6 F6 (●-) species correlated with the number of trapped electrons and decreased as a function of electron quenching period. We also measured the electron attachment rate constant of hexafluorobenzene using a post-RF electron trapping experiment. Measured electron attachment rate constant of hexafluorobenzene (1.19 (±0.53) × 10(-9)  cm(3)  molecule(-1)  s(-1) ) for post-RF FT-ICR MS agreed with the previously reported value (1.60 (±0.30) × 10(-9)  cm(3)  molecule(-1)  s(-1) ) from low-pressure ICR MS measurements. Experimental results from direct and indirect electron measurements suggest that RFI process involves RF-generated electrons under ultrahigh vacuum conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Model-Based Knowing: How Do Students Ground Their Understanding About Climate Systems in Agent-Based Computer Models?

    Science.gov (United States)

    Markauskaite, Lina; Kelly, Nick; Jacobson, Michael J.

    2017-12-01

    This paper gives a grounded cognition account of model-based learning of complex scientific knowledge related to socio-scientific issues, such as climate change. It draws on the results from a study of high school students learning about the carbon cycle through computational agent-based models and investigates two questions: First, how do students ground their understanding about the phenomenon when they learn and solve problems with computer models? Second, what are common sources of mistakes in students' reasoning with computer models? Results show that students ground their understanding in computer models in five ways: direct observation, straight abstraction, generalisation, conceptualisation, and extension. Students also incorporate into their reasoning their knowledge and experiences that extend beyond phenomena represented in the models, such as attitudes about unsustainable carbon emission rates, human agency, external events, and the nature of computational models. The most common difficulties of the students relate to seeing the modelled scientific phenomenon and connecting results from the observations with other experiences and understandings about the phenomenon in the outside world. An important contribution of this study is the constructed coding scheme for establishing different ways of grounding, which helps to understand some challenges that students encounter when they learn about complex phenomena with agent-based computer models.

  14. (DCT-FY08) Target Detection Using Multiple Modality Airborne and Ground Based Sensors

    Science.gov (United States)

    2013-03-01

    resolution SIFT grids in metric-topological SLAM ,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2009. [4] M. Bosse and R...single camera SLAM ,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 1052–1067, 2007. [7] D. Nister, O. Naroditsky, and J. Bergen...segmentation with ground-based and airborne LIDAR range data,” in Proceedings of the Fourth International Symposium on 3D Data Processing

  15. The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

    Science.gov (United States)

    Nedoluha, Gerald E.; Kiefer, Michael; Lossow, Stefan; Gomez, R. Michael; Kämpfer, Niklaus; Lainer, Martin; Forkman, Peter; Christensen, Ole Martin; Oh, Jung Jin; Hartogh, Paul; Anderson, John; Bramstedt, Klaus; Dinelli, Bianca M.; Garcia-Comas, Maya; Hervig, Mark; Murtagh, Donal; Raspollini, Piera; Read, William G.; Rosenlof, Karen; Stiller, Gabriele P.; Walker, Kaley A.

    2017-12-01

    As part of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC) and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H2O and CH4 entering the stratosphere but, because almost all CH4 has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards) and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H2O measured by any two instruments is typically ˜ 1%. Most of the datasets start in or after 2004 and show annual increases in H2O of 0-1 % yr-1. In particular, MLS shows a trend of between 0.5 % yr-1 and 0.7 % yr-1 at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr-1 (at Mauna Loa, Hawaii) and -0.1 % yr-1 (at Lauder, New Zealand).

  16. The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

    Directory of Open Access Journals (Sweden)

    G. E. Nedoluha

    2017-12-01

    Full Text Available As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate water vapor assessment (WAVAS-II, we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H2O and CH4 entering the stratosphere but, because almost all CH4 has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H2O measured by any two instruments is typically  ∼  1%. Most of the datasets start in or after 2004 and show annual increases in H2O of 0–1 % yr−1. In particular, MLS shows a trend of between 0.5 % yr−1 and 0.7 % yr−1 at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr−1 (at Mauna Loa, Hawaii and −0.1 % yr−1 (at Lauder, New Zealand.

  17. Laser Guidestar Satellite for Ground-based Adaptive Optics Imaging of Geosynchronous Satellites and Astronomical Targets

    Science.gov (United States)

    Marlow, W. A.; Cahoy, K.; Males, J.; Carlton, A.; Yoon, H.

    2015-12-01

    Real-time observation and monitoring of geostationary (GEO) satellites with ground-based imaging systems would be an attractive alternative to fielding high cost, long lead, space-based imagers, but ground-based observations are inherently limited by atmospheric turbulence. Adaptive optics (AO) systems are used to help ground telescopes achieve diffraction-limited seeing. AO systems have historically relied on the use of bright natural guide stars or laser guide stars projected on a layer of the upper atmosphere by ground laser systems. There are several challenges with this approach such as the sidereal motion of GEO objects relative to natural guide stars and limitations of ground-based laser guide stars; they cannot be used to correct tip-tilt, they are not point sources, and have finite angular sizes when detected at the receiver. There is a difference between the wavefront error measured using the guide star compared with the target due to cone effect, which also makes it difficult to use a distributed aperture system with a larger baseline to improve resolution. Inspired by previous concepts proposed by A.H. Greenaway, we present using a space-based laser guide starprojected from a satellite orbiting the Earth. We show that a nanosatellite-based guide star system meets the needs for imaging GEO objects using a low power laser even from 36,000 km altitude. Satellite guide star (SGS) systemswould be well above atmospheric turbulence and could provide a small angular size reference source. CubeSatsoffer inexpensive, frequent access to space at a fraction of the cost of traditional systems, and are now being deployed to geostationary orbits and on interplanetary trajectories. The fundamental CubeSat bus unit of 10 cm cubed can be combined in multiple units and offers a common form factor allowing for easy integration as secondary payloads on traditional launches and rapid testing of new technologies on-orbit. We describe a 6U CubeSat SGS measuring 10 cm x 20 cm x

  18. Study of the unknown hemisphere of mercury by ground-based astronomical facilities

    Science.gov (United States)

    Ksanfomality, L. V.

    2011-08-01

    The short exposure method proved to be very productive in ground-based observations of Mercury. Telescopic observations with short exposures, together with computer codes for the processing of data arrays of many thousands of original electronic photos, make it possible to improve the resolution of images from ground-based instruments to almost the diffraction limit. The resulting composite images are comparable with images from spacecrafts approaching from a distance of about 1 million km. This paper presents images of the hemisphere of Mercury in longitude sectors 90°-180°W, 215°-350°W, and 50°-90°W, including, among others, areas not covered by spacecraft cameras. For the first time a giant S basin was discovered in the sector of longitudes 250°-290°W, which is the largest formation of this type on terrestrial planets. Mercury has a strong phase effects. As a result, the view of the surface changes completely with the change in the planetary phase. But the choice of the phase in the study using spacecrafts is limited by orbital characteristics of the mission. Thus, ground-based observations of the planet provide a valuable support.

  19. Intercomparison of ground-based ozone and NO2 measurements during the MANTRA 2004 campaign

    Directory of Open Access Journals (Sweden)

    K. Strong

    2007-11-01

    Full Text Available The MANTRA (Middle Atmosphere Nitrogen TRend Assessment 2004 campaign took place in Vanscoy, Saskatchewan, Canada (52° N, 107° W from 3 August to 15 September, 2004. In support of the main balloon launch, a suite of five zenith-sky and direct-Sun-viewing UV-visible ground-based spectrometers was deployed, primarily measuring ozone and NO2 total columns. Three Fourier transform spectrometers (FTSs that were part of the balloon payload also performed ground-based measurements of several species, including ozone. Ground-based measurements of ozone and NO2 differential slant column densities from the zenith-viewing UV-visible instruments are presented herein. They are found to partially agree within NDACC (Network for the Detection of Atmospheric Composition Change standards for instruments certified for process studies and satellite validation. Vertical column densities of ozone from the zenith-sky UV-visible instruments, the FTSs, a Brewer spectrophotometer, and ozonesondes are compared, and found to agree within the combined error estimates of the instruments (15%. NO2 vertical column densities from two of the UV-visible instruments are compared, and are also found to agree within combined error (15%.

  20. Simulation of Ground-Water Flow and Effects of Ground-Water Irrigation on Base Flow in the Elkhorn and Loup River Basins, Nebraska

    Science.gov (United States)

    Peterson, Steven M.; Stanton, Jennifer S.; Saunders, Amanda T.; Bradley, Jesse R.

    2008-01-01

    Irrigated agriculture is vital to the livelihood of communities in the Elkhorn and Loup River Basins in Nebraska, and ground water is used to irrigate most of the cropland. Concerns about the sustainability of ground-water and surface-water resources have prompted State and regional agencies to evaluate the cumulative effects of ground-water irrigation in this area. To facilitate understanding of the effects of ground-water irrigation, a numerical computer model was developed to simulate ground-water flow and assess the effects of ground-water irrigation (including ground-water withdrawals, hereinafter referred to as pumpage, and enhanced recharge) on stream base flow. The study area covers approximately 30,800 square miles, and includes the Elkhorn River Basin upstream from Norfolk, Nebraska, and the Loup River Basin upstream from Columbus, Nebraska. The water-table aquifer consists of Quaternary-age sands and gravels and Tertiary-age silts, sands, and gravels. The simulation was constructed using one layer with 2-mile by 2-mile cell size. Simulations were constructed to represent the ground-water system before 1940 and from 1940 through 2005, and to simulate hypothetical conditions from 2006 through 2045 or 2055. The first simulation represents steady-state conditions of the system before anthropogenic effects, and then simulates the effects of early surface-water development activities and recharge of water leaking from canals during 1895 to 1940. The first simulation ends at 1940 because before that time, very little pumpage for irrigation occurred, but after that time it became increasingly commonplace. The pre-1940 simulation was calibrated against measured water levels and estimated long-term base flow, and the 1940 through 2005 simulation was calibrated against measured water-level changes and estimated long-term base flow. The calibrated 1940 through 2005 simulation was used as the basis for analyzing hypothetical scenarios to evaluate the effects of

  1. Precision engineering for astronomy: historical origins and the future revolution in ground-based astronomy.

    Science.gov (United States)

    Cunningham, Colin; Russell, Adrian

    2012-08-28

    Since the dawn of civilization, the human race has pushed technology to the limit to study the heavens in ever-increasing detail. As astronomical instruments have evolved from those built by Tycho Brahe in the sixteenth century, through Galileo and Newton in the seventeenth, to the present day, astronomers have made ever more precise measurements. To do this, they have pushed the art and science of precision engineering to extremes. Some of the critical steps are described in the evolution of precision engineering from the first telescopes to the modern generation telescopes and ultra-sensitive instruments that need a combination of precision manufacturing, metrology and accurate positioning systems. In the future, precision-engineered technologies such as those emerging from the photonics industries may enable future progress in enhancing the capabilities of instruments, while potentially reducing the size and cost. In the modern era, there has been a revolution in astronomy leading to ever-increasing light-gathering capability. Today, the European Southern Observatory (ESO) is at the forefront of this revolution, building observatories on the ground that are set to transform our view of the universe. At an elevation of 5000 m in the Atacama Desert of northern Chile, the Atacama Large Millimetre/submillimetre Array (ALMA) is nearing completion. The ALMA is the most powerful radio observatory ever and is being built by a global partnership from Europe, North America and East Asia. In the optical/infrared part of the spectrum, the latest project for ESO is even more ambitious: the European Extremely Large Telescope, a giant 40 m class telescope that will also be located in Chile and which will give the most detailed view of the universe so far.

  2. Astronomers Make First Images With Space Radio Telescope

    Science.gov (United States)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  3. Radio-Frequency-Based NH3-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences

    Directory of Open Access Journals (Sweden)

    Markus Dietrich

    2017-07-01

    Full Text Available The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13 was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.

  4. Radio-Frequency-Based NH₃-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences.

    Science.gov (United States)

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-07-12

    The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH₃ loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH₃ storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH₃ storage control, the influence of the storage degree on the catalyst performance, i.e., on NO x conversion and NH₃ slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH₃ storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.

  5. Radio-Frequency-Based NH3-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences

    Science.gov (United States)

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-01-01

    The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals. PMID:28704929

  6. Methane Emissions from Bangladesh: Bridging the Gap Between Ground-based and Space-borne Estimates

    Science.gov (United States)

    Peters, C.; Bennartz, R.; Hornberger, G. M.

    2015-12-01

    Gaining an understanding of methane (CH4) emission sources and atmospheric dispersion is an essential part of climate change research. Large-scale and global studies often rely on satellite observations of column CH4 mixing ratio whereas high-spatial resolution estimates rely on ground-based measurements. Extrapolation of ground-based measurements on, for example, rice paddies to broad region scales is highly uncertain because of spatio-temporal variability. We explore the use of ground-based river stage measurements and independent satellite observations of flooded area along with satellite measurements of CH4 mixing ratio to estimate the extent of methane emissions. Bangladesh, which comprises most of the Ganges Brahmaputra Meghna (GBM) delta, is a region of particular interest for studying spatio-temporal variation of methane emissions due to (1) broadscale rice cultivation and (2) seasonal flooding and atmospheric convection during the monsoon. Bangladesh and its deltaic landscape exhibit a broad range of environmental, economic, and social circumstances that are relevant to many nations in South and Southeast Asia. We explore the seasonal enhancement of CH4 in Bangladesh using passive remote sensing spectrometer CH4 products from the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) and the Atmospheric Infrared Sounder (AIRS). The seasonal variation of CH4 is compared to independent estimates of seasonal flooding from water gauge stations and space-based passive microwave water-to-land fractions from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM-TMI). Annual cycles in inundation (natural and anthropogenic) and atmospheric CH4 concentrations show highly correlated seasonal signals. NOAA's HYSPLIT model is used to determine atmospheric residence time of ground CH4 fluxes. Using the satellite observations, we can narrow the large uncertainty in extrapolation of ground-based CH4 emission estimates from rice paddies

  7. Mobile phone base stations and adverse health effects: phase 2 of a cross-sectional study with measured radio frequency electromagnetic fields

    DEFF Research Database (Denmark)

    Berg-Beckhoff, Gabriele; Blettner, M; Kowall, B

    2009-01-01

    OBJECTIVE: The aim of the cross-sectional study was to test the hypothesis that exposure to continuous low-level radio frequency electromagnetic fields (RF-EMFs) emitted from mobile phone base stations was related to various health disturbances. METHODS: For the investigation people living mainly...

  8. A propagation-measurement-based evaluation of channel characteristics and models pertinent to the expansion of mobile radio systems to frequencies beyond 2 GHz

    NARCIS (Netherlands)

    Bultitude, R.J.C.; Schenk, T.C.W.; Op de Kamp, N.A.A.; Adnani, N.

    2007-01-01

    64This paper concerns the measurement-based comparison of urban microcellular mobile radio channel characteristics at 1.9 GHz and a higher frequency, i.e., 5.8 GHz, where future wireless systems could operate. Characteristics that are reported include transmission loss, root-mean-square delay

  9. The Radio JOVE Project - Shoestring Radio Astronomy

    Science.gov (United States)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  10. Radio Astronomers Get Their First Glimpse of Powerful Solar Storm

    Science.gov (United States)

    2001-08-01

    expanding set of loops similar to the loops seen at visible wavelengths. The radio loops, astronomers believe, indicate regions where electrons are being accelerated to nearly the speed of light at about the time the ejection process is getting started. The same ejection observed by the radio telescope also was observed by orbiting solar telescopes. Depending on what later radio observations show, the solar studies may reveal new insights into the physics of other astronomical phenomena. For example, shocks in the corona and the interplanetary medium accelerate electrons and ions, a process believed to occur in supernova remnants - the expanding debris from stellar explosions. The electrons also may be accelerated by processes associated with magnetic reconnection, a process that occurs in the Earth's magnetosphere. "The Sun is an excellent physics laboratory, and what it teaches us can then help us understand other astrophysical phenomena in the universe," Bastian said. The radio detection of a coronal mass ejection also means that warning of the potentially dangerous effects of these events could come from ground-based radio telescopes, rather than more-expensive orbiting observatories. "With solar radio telescopes strategically placed at three or four locations around the world, coronal mass ejections could be detected 24 hours a day to provide advance warning," Bastian said. The Nancay station for radio astronomy is a facility of the Paris Observatory. The Nancay Radioheliograph is funded by the French Ministry of Education, the Centre National de la Recherche Scientifique, and by the Region Centre. This research has also been supported by the Centre National d'Etudes Spatiales. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  11. Retrieval and analysis of atmospheric XCO2 using ground-based spectral observation.

    Science.gov (United States)

    Qin, Xiu-Chun; Lei, Li-Ping; Kawasaki, Masahiro; Masafumi, Ohashi; Takahiro, Kuroki; Zeng, Zhao-Cheng; Zhang, Bing

    2014-07-01

    Atmospheric CO2 column concentration (column-averaged dry air mole fractions of atmospheric carbon dioxide) data obtained by ground-based hyperspectral observation is an important source of data for the verification and improvement of the results of CO2 retrieval based on satellite hyperspectral observation. However, few studies have been conducted on atmospheric CO2 column concentration retrieval based on ground-based spectral hyperspectral observation in China. In the present study, we carried out the ground-based hyperspectral observation in Xilingol Grassland, Inner Mongolia of China by using an observation system which is consisted of an optical spectral analyzer, a sun tracker, and some other elements. The atmospheric CO2 column concentration was retrieved using the observed hyperspectral data. The effect of a wavelength shift of the observation spectra and the meteorological parameters on the retrieval precision of the atmospheric CO2 concentration was evaluated and analyzed. The results show that the mean value of atmospheric CO2 concentration was 390.9 microg x mL(-1) in the study area during the observing period from July to September. The shift of wavelength in the range between -0.012 and 0.042 nm will generally lead to 1 microg x mL(-1) deviation in the CO2 retrievals. This study also revealed that the spectral transmittance was sensitive to meteorological parameters in the wavelength range of 6 357-6 358, 6 360-6 361, and 6 363-6 364 cm(-1). By comparing the CO2 retrievals derived from the meteorological parameters observed in synchronous and non-synchronous time, respectively, with the spectral observation, it was showed that the concentration deviation caused by using the non-synchronously observed meteorological parameters is ranged from 0.11 to 4 microg x mL(-1). These results can be used as references for the further improvement of retrieving CO2 column concentration based on spectral observation.

  12. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    Science.gov (United States)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the

  13. PROBABILISTIC SEISMIC ASSESSMENT OF BASE-ISOLATED NPPS SUBJECTED TO STRONG GROUND MOTIONS OF TOHOKU EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    AHMER ALI

    2014-10-01

    Full Text Available The probabilistic seismic performance of a standard Korean nuclear power plant (NPP with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

  14. Nighttime Aerosol Optical Depth Measurements Using a Ground-based Lunar Photometer

    Science.gov (United States)

    Berkoff, Tim; Omar, Ali; Haggard, Charles; Pippin, Margaret; Tasaddaq, Aasam; Stone, Tom; Rodriguez, Jon; Slutsker, Ilya; Eck, Tom; Holben, Brent; hide

    2015-01-01

    In recent years it was proposed to combine AERONET network photometer capabilities with a high precision lunar model used for satellite calibration to retrieve columnar nighttime AODs. The USGS lunar model can continuously provide pre-atmosphere high precision lunar irradiance determinations for multiple wavelengths at ground sensor locations. When combined with measured irradiances from a ground-based AERONET photometer, atmospheric column transmissions can determined yielding nighttime column aerosol AOD and Angstrom coefficients. Additional demonstrations have utilized this approach to further develop calibration methods and to obtain data in polar regions where extended periods of darkness occur. This new capability enables more complete studies of the diurnal behavior of aerosols, and feedback for models and satellite retrievals for the nighttime behavior of aerosols. It is anticipated that the nighttime capability of these sensors will be useful for comparisons with satellite lidars such as CALIOP and CATS in additional to ground-based lidars in MPLNET at night, when the signal-to-noise ratio is higher than daytime and more precise AOD comparisons can be made.

  15. Probabilistic seismic assessment of base-isolated NPPs subjected to strong ground motions of Tohoku earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmer; Hayah, Nadin Abu; Kim, Doo Kie [Dept. of Civil and Environmental Engineering, Kunsan National University, Kunsan (Korea, Republic of); Cho, Sung Gook [R and D Center, JACE KOREA Company, Gyeonggido (Korea, Republic of)

    2014-10-15

    The probabilistic seismic performance of a standard Korean nuclear power plant (NPP) with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA) of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA) as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

  16. Recent successes and emerging challenges for coordinated satellite/ground-based magnetospheric exploration and modeling.

    Science.gov (United States)

    Angelopoulos, Vassilis

    With the availability of a distributed constellation of spacecraft (THEMIS, Geotail, Cluster) and increased capability ground based arrays (SuperDARN, THEMIS/GBOs), it is now pos-sible to infer simply from timing significant information regarding mapping of magnetospheric phenomena. Optical, magnetometer and radar data can pinpoint the location and nature of onset signatures. On the other hand, magnetic field modeling constrained by physical bound-aries (such as the isotropy boundary) the measured magnetic field and total pressure values at a distibuted network of satellites has proven to do a much better job at correlating ionospheric precipitation and diffuse auroral boundaries to magnetospheric phenomena, such as the inward boundary of the dipolarization fronts. It is now possible to routinely compare in-situ measured phase space densities of ion and electron distributions during ionosphere -magnetosphere con-junctions, in the absense of potential drops. It is also possible to not only infer equivalent current systems from the ground, but use reconstruction of the ionospheric current system from space to determine the full electrodynamics evolution of the ionosphere and compare with radars. Assimilation of this emerging ground based and global magnetospheric panoply into a self consistent magnetospheric model will likely be one of the most fruitful endeavors in magnetospheric exploration during the next few years.

  17. Integration between ground based and satellite SAR data in landslide mapping: The San Fratello case study

    Science.gov (United States)

    Bardi, Federica; Frodella, William; Ciampalini, Andrea; Bianchini, Silvia; Del Ventisette, Chiara; Gigli, Giovanni; Fanti, Riccardo; Moretti, Sandro; Basile, Giuseppe; Casagli, Nicola

    2014-10-01

    The potential use of the integration of PSI (Persistent Scatterer Interferometry) and GB-InSAR (Ground-based Synthetic Aperture Radar Interferometry) for landslide hazard mitigation was evaluated for mapping and monitoring activities of the San Fratello landslide (Sicily, Italy). Intense and exceptional rainfall events are the main factors that triggered several slope movements in the study area, which is susceptible to landslides, because of its steep slopes and silty-clayey sedimentary cover. In the last three centuries, the town of San Fratello was affected by three large landslides, developed in different periods: the oldest one occurred in 1754, damaging the northeastern sector of the town; in 1922 a large landslide completely destroyed a wide area in the western hillside of the town. In this paper, the attention is focussed on the most recent landslide that occurred on 14 February 2010: in this case, the phenomenon produced the failure of a large sector of the eastern hillside, causing severe damages to buildings and infrastructures. In particular, several slow-moving rotational and translational slides occurred in the area, making it suitable to monitor ground instability through different InSAR techniques. PS-InSAR™ (permanent scatterers SAR interferometry) techniques, using ERS-1/ERS-2, ENVISAT, RADARSAT-1, and COSMO-SkyMed SAR images, were applied to analyze ground displacements during pre- and post-event phases. Moreover, during the post-event phase in March 2010, a GB-InSAR system, able to acquire data continuously every 14 min, was installed collecting ground displacement maps for a period of about three years, until March 2013. Through the integration of space-borne and ground-based data sets, ground deformation velocity maps were obtained, providing a more accurate delimitation of the February 2010 landslide boundary, with respect to the carried out traditional geomorphological field survey. The integration of GB-InSAR and PSI techniques proved to

  18. A Terminal Guidance Law Based on Motion Camouflage Strategy of Air-to-Ground Missiles

    Directory of Open Access Journals (Sweden)

    Chang-sheng Gao

    2016-01-01

    Full Text Available A guidance law for attacking ground target based on motion camouflage strategy is proposed in this paper. According to the relative position between missile and target, the dual second-order dynamics model is derived. The missile guidance condition is given by analyzing the characteristic of motion camouflage strategy. Then, the terminal guidance law is derived by using the relative motion of missile and target and the guidance condition. In the process of derivation, the three-dimensional guidance law could be designed in a two-dimensional plane and the difficulty of guidance law design is reduced. A two-dimensional guidance law for three-dimensional space is derived by bringing the estimation for target maneuver. Finally, simulation for the proposed guidance law is taken and compared with pure proportional navigation. The simulation results demonstrate that the proposed guidance law can be applied to air-to-ground missiles.

  19. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    Energy Technology Data Exchange (ETDEWEB)

    James A Menart, Professor

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled Finite Volume Based Computer Program for Ground Source Heat Pump Systems. The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The

  20. Finite Volume Based Computer Program for Ground Source Heat Pump System

    Energy Technology Data Exchange (ETDEWEB)

    Menart, James A. [Wright State University

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump

  1. (Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  2. Remote sensing of high-latitude ionization profiles by ground-based and spaceborne instrumentation

    International Nuclear Information System (INIS)

    Vondrak, R.R.

    1981-01-01

    Ionospheric specification and modeling are now largely based on data provided by active remote sensing with radiowave techniques (ionosondes, incoherent-scatter radars, and satellite beacons). More recently, passive remote sensing techniques have been developed that can be used to monitor quantitatively the spatial distribution of high-latitude E-region ionization. These passive methods depend on the measurement, or inference, of the energy distribution of precipitating kilovolt electrons, the principal source of the nighttime E-region at high latitudes. To validate these techniques, coordinated measurements of the auroral ionosphere have been made with the Chatanika incoherent-scatter radar and a variety of ground-based and spaceborne sensors

  3. Plant diversity to support humans in a CELSS ground based demonstrator

    Science.gov (United States)

    Howe, J. M.; Hoff, J. E.

    1981-01-01

    A controlled ecological life support system (CELSS) for human habitation in preparation for future long duration space flights is considered. The success of such a system depends upon the feasibility of revitalization of food resources and the human nutritional needs which are to be met by these food resources. Edible higher plants are prime candidates for the photoautotrophic components of this system if nutritionally adequate diets can be derived from these plant sources to support humans. Human nutritional requirements information based on current knowledge are developed for inhabitants envisioned in the CELSS ground based demonstrator. Groups of plant products that can provide the nutrients are identified.

  4. The laser calibration system for the STACEE ground-based gamma ray detector

    CERN Document Server

    Hanna, D

    2002-01-01

    We describe the design and performance of the laser system used for calibration monitoring of components of the STACEE detector. STACEE is a ground based gamma ray detector which uses the heliostats of a solar power facility to collect and focus Cherenkov light onto a system of secondary optics and photomultiplier tubes. To monitor the gain and check the linearity and timing properties of the phototubes and associated electronics, a system based on a dye laser, neutral density filters and optical fibres has been developed. In this paper we describe the system and present some results from initial tests made with it.

  5. Transmission probability-based dynamic power control for multi-radio mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2008-09-01

    Full Text Available This paper presents an analytical model for the selection of the transmission power based on the bi-directional medium access information. Most of dynamic transmission power control algorithms are based on the single directional channel...

  6. Modelling a reliable wind/PV/storage power system for remote radio base station sites without utility power

    Energy Technology Data Exchange (ETDEWEB)

    Bitterlin, Ian F [Emerson Network Power Ltd., Globe Park, Marlow, SL7 1YG (United Kingdom)

    2006-11-22

    The development of photovoltaic (PV) cells has made steady progress from the early days, when only the USA space program could afford to deploy them, to now, seeing them applied to roadside applications even in our Northern European climes. The manufacturing cost per watt has fallen and the daylight-to-power conversion efficiency increased. At the same time, the perception that the sun has to be directly shining on it for a PV array to work has faded. On some of those roadside applications, particularly for remote emergency telephones or for temporary roadwork signage where a utility electrical power connection is not practical, the keen observer will spot, usually in addition to a PV array, a small wind-turbine and an electrical cabinet quite obviously (by virtue of its volume) containing a storage battery. In the UK, we have the lions share (>40%) of Europe's entire wind power resource although, despite press coverage of the 'anti-wind' lobby to the contrary, we have hardly started to harvest this clean and free energy source. Taking this (established and proven) roadside solution one step further, we will consider higher power applications. A cellular phone system is one where a multitude of remote radio base stations (RBS) are required to provide geographical coverage. With networks developing into the so called '3G' technologies the need for base stations has tripled, as each 3G cell covers only 1/3 the geographical area of its '2G' counterpart. To cover >90% of the UK's topology (>97% population coverage) with 3G cellular technology will requires in excess of 12,000 radio base stations per operator network. In 2001, there were around 25,000 established sites and, with an anticipated degree of collocation by necessity, that figure is forecast to rise to >47,000. Of course, the vast majority of these sites have a convenient grid connection. However, it is easy to see that the combination of wind and PV power generation and an energy storage system may be an

  7. Space Telecommunications Radio System STRS Cognitive Radio

    Science.gov (United States)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  8. Real-time cavity simulator-based low-level radio-frequency test bench and applications for accelerators

    Science.gov (United States)

    Qiu, Feng; Michizono, Shinichiro; Miura, Takako; Matsumoto, Toshihiro; Liu, Na; Wibowo, Sigit Basuki

    2018-03-01

    A Low-level radio-frequency (LLRF) control systems is required to regulate the rf field in the rf cavity used for beam acceleration. As the LLRF system is usually complex, testing of the basic functions or control algorithms of this system in real time and in advance of beam commissioning is strongly recommended. However, the equipment necessary to test the LLRF system, such as superconducting cavities and high-power rf sources, is very expensive; therefore, we have developed a field-programmable gate array (FPGA)-based cavity simulator as a substitute for real rf cavities. Digital models of the cavity and other rf systems are implemented in the FPGA. The main components include cavity baseband models for the fundamental and parasitic modes, a mechanical model of the Lorentz force detuning, and a model of the beam current. Furthermore, in our simulator, the disturbance model used to simulate the power-supply ripples and microphonics is also carefully considered. Based on the presented cavity simulator, we have established an LLRF system test bench that can be applied to different cavity operational conditions. The simulator performance has been verified by comparison with real cavities in KEK accelerators. In this paper, the development and implementation of this cavity simulator is presented first, and the LLRF test bench based on the presented simulator is constructed. The results are then compared with those for KEK accelerators. Finally, several LLRF applications of the cavity simulator are illustrated.

  9. A robust cooperative spectrum sensing scheme based on Dempster-Shafer theory and trustworthiness degree calculation in cognitive radio networks

    Science.gov (United States)

    Wang, Jinlong; Feng, Shuo; Wu, Qihui; Zheng, Xueqiang; Xu, Yuhua; Ding, Guoru

    2014-12-01

    Cognitive radio (CR) is a promising technology that brings about remarkable improvement in spectrum utilization. To tackle the hidden terminal problem, cooperative spectrum sensing (CSS) which benefits from the spatial diversity has been studied extensively. Since CSS is vulnerable to the attacks initiated by malicious secondary users (SUs), several secure CSS schemes based on Dempster-Shafer theory have been proposed. However, the existing works only utilize the current difference of SUs, such as the difference in SNR or similarity degree, to evaluate the trustworthiness of each SU. As the current difference is only one-sided and sometimes inaccurate, the statistical information contained in each SU's historical behavior should not be overlooked. In this article, we propose a robust CSS scheme based on Dempster-Shafer theory and trustworthiness degree calculation. It is carried out in four successive steps, which are basic probability assignment (BPA), trustworthiness degree calculation, selection and adjustment of BPA, and combination by Dempster-Shafer rule, respectively. Our proposed scheme evaluates the trustworthiness degree of SUs from both current difference aspect and historical behavior aspect and exploits Dempster-Shafer theory's potential to establish a `soft update' approach for the reputation value maintenance. It can not only differentiate malicious SUs from honest ones based on their historical behaviors but also reserve the current difference for each SU to achieve a better real-time performance. Abundant simulation results have validated that the proposed scheme outperforms the existing ones under the impact of different attack patterns and different number of malicious SUs.

  10. Conditioning of high voltage radio frequency cavities by using fuzzy logic in connection with rule based programming

    CERN Document Server

    Perréard, S

    1993-01-01

    Many processes are controlled by experts using some kind of mental model to decide actions and make conclusions. This model, based on heuristic knowledge, can often be conveniently represented in rules and has not to be particularly accurate. This is the case for the problem of conditioning high voltage radio-frequency cavities: the expert has to decide, by observing some criteria, if he can increase or if he has to decrease the voltage and by how much. A program has been implemented which can be applied to a class of similar problems. The kernel of the program is a small rule base, which is independent of the kind of cavity. To model a specific cavity, we use fuzzy logic which is implemented as a separate routine called by the rule base. We use fuzzy logic to translate from numeric to symbolic information. The example we chose for applying this kind of technique can be implemented by sequential programming. The two versions exist for comparison. However, we believe that this kind of programming can be powerf...

  11. Real-time cavity simulator-based low-level radio-frequency test bench and applications for accelerators

    Directory of Open Access Journals (Sweden)

    Feng Qiu

    2018-03-01

    Full Text Available A Low-level radio-frequency (LLRF control systems is required to regulate the rf field in the rf cavity used for beam acceleration. As the LLRF system is usually complex, testing of the basic functions or control algorithms of this system in real time and in advance of beam commissioning is strongly recommended. However, the equipment necessary to test the LLRF system, such as superconducting cavities and high-power rf sources, is very expensive; therefore, we have developed a field-programmable gate array (FPGA-based cavity simulator as a substitute for real rf cavities. Digital models of the cavity and other rf systems are implemented in the FPGA. The main components include cavity baseband models for the fundamental and parasitic modes, a mechanical model of the Lorentz force detuning, and a model of the beam current. Furthermore, in our simulator, the disturbance model used to simulate the power-supply ripples and microphonics is also carefully considered. Based on the presented cavity simulator, we have established an LLRF system test bench that can be applied to different cavity operational conditions. The simulator performance has been verified by comparison with real cavities in KEK accelerators. In this paper, the development and implementation of this cavity simulator is presented first, and the LLRF test bench based on the presented simulator is constructed. The results are then compared with those for KEK accelerators. Finally, several LLRF applications of the cavity simulator are illustrated.

  12. Multi-story base-isolated buildings under a harmonic ground motion. Pt. 1

    International Nuclear Information System (INIS)

    Fan Fagung; Ahmadi, G.; Tadjbakhsh, I.G.

    1990-01-01

    The performances of several leading base-isolation devices (Pure-Friction/Sliding-Joint, Rubber Bearing, French System, New Zealand System, and Resilient-Friction) and a newly proposed system (Sliding Resilient-Friction) for a multi-story building subject to a horizontal harmonic ground motion are studied. The governing equations of motion of various systems and the criteria for stick-slip transition are described and a computational algorithm for obtaining their numerical solutions is developed. The responses of the structure with different base-isolation systems under various conditions are analyzed. The peak absolute acceleration, the maximum structural deflection, and the peak base-displacement responses are obtained. The effectiveness of various base isolators are studied and advantages and disadvantages of different systems are discussed. The results show that the base-isolation devices effectively reduce the column stresses and the acceleration transmitted to the superstructure. (orig.)

  13. A Little Knowledge of Ground Motion: Explaining 3-D Physics-Based Modeling to Engineers

    Science.gov (United States)

    Porter, K.

    2014-12-01

    Users of earthquake planning scenarios require the ground-motion map to be credible enough to justify costly planning efforts, but not all ground-motion maps are right for all uses. There are two common ways to create a map of ground motion for a hypothetical earthquake. One approach is to map the median shaking estimated by empirical attenuation relationships. The other uses 3-D physics-based modeling, in which one analyzes a mathematical model of the earth's crust near the fault rupture and calculates the generation and propagation of seismic waves from source to ground surface by first principles. The two approaches produce different-looking maps. The more-familiar median maps smooth out variability and correlation. Using them in a planning scenario can lead to a systematic underestimation of damage and loss, and could leave a community underprepared for realistic shaking. The 3-D maps show variability, including some very high values that can disconcert non-scientists. So when the USGS Science Application for Risk Reduction's (SAFRR) Haywired scenario project selected 3-D maps, it was necessary to explain to scenario users—especially engineers who often use median maps—the differences, advantages, and disadvantages of the two approaches. We used authority, empirical evidence, and theory to support our choice. We prefaced our explanation with SAFRR's policy of using the best available earth science, and cited the credentials of the maps' developers and the reputation of the journal in which they published the maps. We cited recorded examples from past earthquakes of extreme ground motions that are like those in the scenario map. We explained the maps on theoretical grounds as well, explaining well established causes of variability: directivity, basin effects, and source parameters. The largest mapped motions relate to potentially unfamiliar extreme-value theory, so we used analogies to human longevity and the average age of the oldest person in samples of

  14. Extensive Broadband X-Ray Monitoring During the Formation of a Giant Radio Jet Base in Cyg X-3 with AstroSat

    Science.gov (United States)

    Pahari, Mayukh; Yadav, J. S.; Verdhan Chauhan, Jai; Rawat, Divya; Misra, Ranjeev; Agrawal, P. C.; Chandra, Sunil; Bagri, Kalyani; Jain, Pankaj; Manchanda, R. K.; Chitnis, Varsha; Bhattacharyya, Sudip

    2018-01-01

    We present X-ray spectral and timing behavior of Cyg X-3 as observed by AstroSat during the onset of a giant radio flare on 2017 April 1–2. Within a timescale of a few hours, the source shows a transition from the hypersoft state (HPS) to a more luminous state (we termed as the very high state), which coincides with the time of the steep rise in radio flux density by an order of magnitude. Modeling the Soft X-ray Telescope (SXT) and Large Area X-ray Proportional Counter (LAXPC) spectra jointly in 0.5–70.0 keV, we found that the first few hours of the observation is dominated by the HPS with no significant counts above 17 keV. Later, an additional flat power-law component suddenly appeared in the spectra that extends to very high energies with the power-law photon index of {1.49}-0.03+0.04. Such a flat power-law component has never been reported from Cyg X-3. Interestingly the fitted power-law model in 25–70 keV, when extrapolated to the radio frequency, predicts the radio flux density to be consistent with the trend measured from the RATAN-600 telescope at 11.2 GHz. This provides direct evidence of the synchrotron origin of flat X-ray power-law component and the most extensive monitoring of the broadband X-ray behavior at the moment of decoupling the giant radio jet base from the compact object in Cyg X-3. Using SXT and LAXPC observations, we determine the giant flare ejection time as MJD 57845.34 ± 0.08 when 11.2 GHz radio flux density increases from ∼100 to ∼478 mJy.

  15. Summer planetary-scale oscillations: aura MLS temperature compared with ground-based radar wind

    Directory of Open Access Journals (Sweden)

    C. E. Meek

    2009-04-01

    Full Text Available The advent of satellite based sampling brings with it the opportunity to examine virtually any part of the globe. Aura MLS mesospheric temperature data are analysed in a wavelet format for easy identification of possible planetary waves (PW and aliases masquerading as PW. A calendar year, 2005, of eastward, stationary, and westward waves at a selected latitude is shown in separate panels for wave number range −3 to +3 for period range 8 h to 30 days (d. Such a wavelet analysis is made possible by Aura's continuous sampling at all latitudes 82° S–82° N. The data presentation is suitable for examination of years of data. However this paper focuses on the striking feature of a "dish-shaped" upper limit to periods near 2 d in mid-summer, with longer periods appearing towards spring and fall, a feature also commonly seen in radar winds. The most probable cause is suggested to be filtering by the summer jet at 70–80 km, the latter being available from ground based medium frequency radar (MFR. Classically, the phase velocity of a wave must be greater than that of the jet in order to propagate through it. As an attempt to directly relate satellite and ground based sampling, a PW event of period 8d and wave number 2, which appears to be the original rather than an alias, is compared with ground based radar wind data. An appendix discusses characteristics of satellite data aliases with regard to their periods and amplitudes.

  16. SAR Ground Moving Target Indication Based on Relative Residue of DPCA Processing

    Directory of Open Access Journals (Sweden)

    Jia Xu

    2016-10-01

    Full Text Available For modern synthetic aperture radar (SAR, it has much more urgent demands on ground moving target indication (GMTI, which includes not only the point moving targets like cars, truck or tanks but also the distributed moving targets like river or ocean surfaces. Among the existing GMTI methods, displaced phase center antenna (DPCA can effectively cancel the strong ground clutter and has been widely used. However, its detection performance is closely related to the target’s signal-to-clutter ratio (SCR as well as radial velocity, and it cannot effectively detect the weak large-sized river surfaces in strong ground clutter due to their low SCR caused by specular scattering. This paper proposes a novel method called relative residue of DPCA (RR-DPCA, which jointly utilizes the DPCA cancellation outputs and the multi-look images to improve the detection performance of weak river surfaces. Furthermore, based on the statistics analysis of the RR-DPCA outputs on the homogenous background, the cell average (CA method can be well applied for subsequent constant false alarm rate (CFAR detection. The proposed RR-DPCA method can well detect the point moving targets and distributed moving targets simultaneously. Finally, the results of both simulated and real data are provided to demonstrate the effectiveness of the proposed SAR/GMTI method.

  17. A Ground-Based Validation System of Teleoperation for a Space Robot

    Directory of Open Access Journals (Sweden)

    Xueqian Wang

    2012-10-01

    Full Text Available Teleoperation of space robots is very important for future on-orbit service. In order to assure the task is accomplished successfully, ground experiments are required to verify the function and validity of the teleoperation system before a space robot is launched. In this paper, a ground-based validation subsystem is developed as a part of a teleoperation system. The subsystem is mainly composed of four parts: the input verification module, the onboard verification module, the dynamic and image workstation, and the communication simulator. The input verification module, consisting of hardware and software of the master, is used to verify the input ability. The onboard verification module, consisting of the same hardware and software as the onboard processor, is used to verify the processor's computing ability and execution schedule. In addition, the dynamic and image workstation calculates the dynamic response of the space robot and target, and generates emulated camera images, including the hand-eye cameras, global-vision camera and rendezvous camera. The communication simulator provides fidelity communication conditions, i.e., time delays and communication bandwidth. Lastly, we integrated a teleoperation system and conducted many experiments on the system. Experiment results show that the ground system is very useful for verified teleoperation technology.

  18. Removal of lead and fluoride from contaminated water using exhausted coffee grounds based bio-sorbent.

    Science.gov (United States)

    Naga Babu, A; Reddy, D Srinivasa; Kumar, G Suresh; Ravindhranath, K; Krishna Mohan, G V

    2018-07-15

    Water pollution by industrial and anthropogenic actives has become a serious threat to the environment. World Health Organization (WHO) has identified that lead and fluoride amid the environmental pollutants are most poisonous water contaminants with devastating impact on the human race. The present work proposes a study on economical bio-adsorbent based technique using exhausted coffee grounds in the removal of lead and fluoride contaminants from water. The exhausted coffee grounds gathered from industrial wastes have been acid-activated and examined for their adsorption capacity. The surface morphology and elemental characterization of pre-and-post adsorption operations by FESEM, EDX and FTIR spectral analysis confirmed the potential of the exhausted coffee ground as successful bio-sorbent. However, thermodynamic analysis confirmed the adsorption to be spontaneous physisorption with Langmuir mode of homogenous monolayer deposition. The kinetics of adsorption is well defined by pseudo second order model for both lead and fluoride. A significant quantity of lead and fluoride is removed from the synthetic contaminated water by the proposed bio-sorbent with the respective sorption capabilities of 61.6 mg/g and 9.05 mg/g. However, the developed bio-sorbent is also recyclable and is capable of removing the lead and fluoride from the domestic and industrial waste-water sources with an overall removal efficiency of about 90%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Component design challenges for the ground-based SP-100 nuclear assembly test

    International Nuclear Information System (INIS)

    Markley, R.A.; Disney, R.K.; Brown, G.B.

    1989-01-01

    The SP-100 ground engineering system (GES) program involves a ground test of the nuclear subsystems to demonstrate their design. The GES nuclear assembly test (NAT) will be performed in a simulated space environment within a vessel maintained at ultrahigh vacuum. The NAT employs a radiation shielding system that is comprised of both prototypical and nonprototypical shield subsystems to attenuate the reactor radiation leakage and also nonprototypical heat transport subsystems to remove the heat generated by the reactor. The reactor is cooled by liquid lithium, which will operate at temperatures prototypical of the flight system. In designing the components for these systems, a number of design challenges were encountered in meeting the operational requirements of the simulated space environment (and where necessary, prototypical requirements) while also accommodating the restrictions of a ground-based test facility with its limited available space. This paper presents a discussion of the design challenges associated with the radiation shield subsystem components and key components of the heat transport systems

  20. Evaluation of modal pushover-based scaling of one component of ground motion: Tall buildings

    Science.gov (United States)

    Kalkan, Erol; Chopra, Anil K.

    2012-01-01

    Nonlinear response history analysis (RHA) is now increasingly used for performance-based seismic design of tall buildings. Required for nonlinear RHAs is a set of ground motions selected and scaled appropriately so that analysis results would be accurate (unbiased) and efficient (having relatively small dispersion). This paper evaluates accuracy and efficiency of recently developed modal pushover–based scaling (MPS) method to scale ground motions for tall buildings. The procedure presented explicitly considers structural strength and is based on the standard intensity measure (IM) of spectral acceleration in a form convenient for evaluating existing structures or proposed designs for new structures. Based on results presented for two actual buildings (19 and 52 stories, respectively), it is demonstrated that the MPS procedure provided a highly accurate estimate of the engineering demand parameters (EDPs), accompanied by significantly reduced record-to-record variability of the responses. In addition, the MPS procedure is shown to be superior to the scaling procedure specified in the ASCE/SEI 7-05 document.

  1. Radio Capacity Estimation for Millimeter Wave 5G Cellular Networks Using Narrow Beamwidth Antennas at the Base Stations

    Directory of Open Access Journals (Sweden)

    AlMuthanna Turki Nassar

    2015-01-01

    Full Text Available This paper presents radio frequency (RF capacity estimation for millimeter wave (mm-wave based fifth-generation (5G cellular networks using field-level simulations. It is shown that, by reducing antenna beamwidth from 65° to 30°, we can enhance the capacity of mm-wave cellular networks roughly by 3.0 times at a distance of 220 m from the base station (BS. This enhancement is far much higher than the corresponding enhancement of 1.2 times observed for 900 MHz and 2.6 GHz microwave networks at the same distance from the BS. Thus the use of narrow beamwidth transmitting antennas has more pronounced benefits in mm-wave networks. Deployment trials performed on an LTE TDD site operating on 2.6 GHz show that 6-sector site with 27° antenna beamwidth enhances the quality of service (QoS roughly by 40% and more than doubles the overall BS throughput (while enhancing the per sector throughput 1.1 times on average compared to a 3-sector site using 65° antenna beamwidth. This agrees well with our capacity simulations. Since mm-wave 5G networks will use arbitrary number of beams, with beamwidth much less than 30°, the capacity enhancement expected in 5G system when using narrow beamwidth antennas would be much more than three times observed in our simulations.

  2. An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal

    2015-08-13

    It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.

  3. On the capacity of MIMO-OFDM based diversity and spatial multiplexing in Radio-over-Fiber system

    Science.gov (United States)

    El Yahyaoui, Moussa; El Moussati, Ali; El Zein, Ghaïs

    2017-11-01

    This paper proposes a realistic and global simulation to predict the behavior of a Radio over Fiber (RoF) system before its realization. In this work we consider a 2 × 2 Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) RoF system at 60 GHz. This system is based on Spatial Diversity (SD) which increases reliability (decreases probability of error) and Spatial Multiplexing (SMX) which increases data rate, but not necessarily reliability. The 60 GHz MIMO channel model employed in this work based on a lot of measured data and statistical analysis named Triple-S and Valenzuela (TSV) model. To the authors best knowledge; it is the first time that this type of TSV channel model has been employed for 60 GHz MIMO-RoF system. We have evaluated and compared the performance of this system according to the diversity technique, modulation schemes, and channel coding rate for Line-Of-Sight (LOS) desktop environment. The SMX coded is proposed as an intermediate system to improve the Signal to Noise Ratio (SNR) and the data rate. The resulting 2 × 2 MIMO-OFDM SMX system achieves a higher data rate up to 70 Gb/s with 64QAM and Forward Error Correction (FEC) limit of 10-3 over 25-km fiber transmission followed by 3-m wireless transmission using 7 GHz bandwidth of millimeter wave band.

  4. Elementary study on encapsulation reliability of radioisotope battery prototype based on 63Ni Radio-Voltaic effect

    International Nuclear Information System (INIS)

    Gao Hui; Zhang Huaming; Luo Shunzhong; Wang Heyi

    2012-01-01

    For isotope battery application, it is necessary to encapsulate in a certain method. After having accomplished selection of material composing and proportion, procedure and encapsulating process based on GD3217Y detector, the different types of device come from untouched, loaded by slip of stainless steel with or without 63 Ni isotope were encapsulated respectively. Despite necessary reliability of package was evaluated in the previous work, in view of specialty due to the incorporation of radioactive isotopes into device, the reliability issue must be further taken into account for actual application. Hence, we emphasize on the comparison about electrical capability of types of devices under the different situations, namely, before and after encapsulation, the natural aging and artificial accelerated aging. The results of the comparison indicate that the adoption of the method of the encapsulation supplies effectively stable electrical capability at the condition of ensuring safety of radioactive source besides improving environmental adaptability for device. Further, it offers technological support for the encapsulation of radioisotope battery based on β radio-voltaic effect. (authors)

  5. QoS Differential Scheduling in Cognitive-Radio-Based Smart Grid Networks: An Adaptive Dynamic Programming Approach.

    Science.gov (United States)

    Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun

    2016-02-01

    As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid.

  6. Validation of OMI erythemal doses with multi-sensor ground-based measurements in Thessaloniki, Greece

    Science.gov (United States)

    Zempila, Melina Maria; Fountoulakis, Ilias; Taylor, Michael; Kazadzis, Stelios; Arola, Antti; Koukouli, Maria Elissavet; Bais, Alkiviadis; Meleti, Chariklia; Balis, Dimitrios

    2018-06-01

    The aim of this study is to validate the Ozone Monitoring Instrument (OMI) erythemal dose rates using ground-based measurements in Thessaloniki, Greece. In the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, a Yankee Environmental System UVB-1 radiometer measures the erythemal dose rates every minute, and a Norsk Institutt for Luftforskning (NILU) multi-filter radiometer provides multi-filter based irradiances that were used to derive erythemal dose rates for the period 2005-2014. Both these datasets were independently validated against collocated UV irradiance spectra from a Brewer MkIII spectrophotometer. Cloud detection was performed based on measurements of the global horizontal radiation from a Kipp & Zonen pyranometer and from NILU measurements in the visible range. The satellite versus ground observation validation was performed taking into account the effect of temporal averaging, limitations related to OMI quality control criteria, cloud conditions, the solar zenith angle and atmospheric aerosol loading. Aerosol optical depth was also retrieved using a collocated CIMEL sunphotometer in order to assess its impact on the comparisons. The effect of total ozone columns satellite versus ground-based differences on the erythemal dose comparisons was also investigated. Since most of the public awareness alerts are based on UV Index (UVI) classifications, an analysis and assessment of OMI capability for retrieving UVIs was also performed. An overestimation of the OMI erythemal product by 3-6% and 4-8% with respect to ground measurements is observed when examining overpass and noontime estimates respectively. The comparisons revealed a relatively small solar zenith angle dependence, with the OMI data showing a slight dependence on aerosol load, especially at high aerosol optical depth values. A mean underestimation of 2% in OMI total ozone columns under cloud-free conditions was found to lead to an overestimation in OMI erythemal

  7. Ground-based Efforts to Support a Space-based Experiment: the Latest LADEE Results (Abstract)

    Science.gov (United States)

    Cudnik, B.; Rahman, M.

    2014-12-01

    (Abstract only) The much anticipated launch of NASA’s Lunar Atmosphere and Dust Environment Explorer happened flawlessly last October and the satellite has been doing science (and sending a few images) since late Novermber. [The LADEE mission ended with the crash-landing of the spacecraft on the lunar far side on April 17, 2014, capping a successful 140-day mission.] We also have launched our campaign to document lunar meteroid impact flashes from the ground to supply ground truth to inform of any changes in dust concentration encountered by the spacecraft in orbit around the moon. To date I have received six reports of impact flashes or flash candidates from the group I am coordinating; other groups around the world may have more to add when all is said and done. In addition, plans are underway to prepare a program at Prairie View A&M University to involve our physics majors in lunar meteoroid, asteroid occultation, and other astronomical work through our Center for Astronomical Sciences and Technology. This facility will be a control center to not only involve physics majors, but also to include pre-service teachers and members of the outside community to promote pro-am collaborations.

  8. Ground-based Efforts to Support a Space-Based Experiment: the Latest LADEE Results

    Science.gov (United States)

    Cudnik, Brian; Rahman, Mahmudur

    2014-05-01

    The much anticipated launch of the Lunar Atmosphere and Dust Environment Explorer happened flawlessly last October and the satellite has been doing science (and sending a few images) since late November. [the LADEE mission ended with the crash-landing of the spacecraft on the lunar far side on April 17, 2014, capping a successful 140 day mission] .We also have launched our campaign to document lunar meteoroid impact flashes from the ground to supply ground truth to inform of any changes in dust concentration encountered by the spacecraft in orbit around the moon. To date I have received six reports of impact flashes or flash candidates from the group I am coordinating; other groups around the world may have more to add when all is said and done. In addition, plans are underway to prepare a program at Prairie View A&M University to involve our physics majors in lunar meteoroid, asteroid occultation, and other astronomical work through our Center for Astronomical Sciences and Technology. This facility will be a control center to not only involve physics majors, but also to include pre-service teachers and member of the outside community to promote pro-am collaborations.

  9. 49 CFR 220.23 - Publication of radio information.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Publication of radio information. 220.23 Section... § 220.23 Publication of radio information. Each railroad shall designate where radio base stations are.... The publication shall indicate the periods during which base and wayside radio stations are...

  10. Perkembangan dan Problematika Radio Komunitas di Indonesia

    Directory of Open Access Journals (Sweden)

    Masduki .

    2013-12-01

    Full Text Available Abstract: This article is about the development of community radio in Indonesia, it is problems and solutions. Community radio in Indonesia developed as an alternative to both public radio and commercial radio after the fall of Soeharto in 1998. Two important features of community radio are that it provides all community members with equal access to information, enhancing their rights and obligations, access to justice, public accountability and also enables them to participate actively in radio management and production. Both features enhance people’s selfawareness and sense of belonging to a community. The expansion of the progressive, participatory, community ownership, and non-profit model of community radio, has become a third sector of communication beside the commercial or state media. The dynamic development of community radio in Indonesia faced several problems starting from it is definition, implementation of regulation until standards of programmes operation based on the concept of community approach and participation

  11. RF Front End Based on MEMS Components for Miniaturized Digital EVA Radio, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, AlphaSense, Inc. and the Carnegie Mellon University propose to develop a RF receiver front end based on CMOS-MEMS components for miniaturized...

  12. Ground-based SMART-COMMIT Measurements for Studying Aerosol and Cloud Properties

    Science.gov (United States)

    Tsay, Si-Chee

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations cover large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite data sets. The development and deployment of SMARTCOMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile facilities are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instruments fall into three categories: flux radiometer, radiance sensor and in-situ probe. In this paper, we will demonstrate the capability of SMART-COMMIT in recent field campaigns (e.g., CRYSTAL-FACE, UAE 2, BASEASIA, NAMMA) that were designed and executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., biomass-burning smoke, airborne dust) and cirrus clouds. We envision robust approaches in which well-collocated ground-based measurements and space-borne observations will greatly advance our knowledge of extensive aerosols and clouds.

  13. Kepler and Ground-Based Transits of the exo-Neptune HAT-P-11b

    Science.gov (United States)

    Deming, Drake; Sada, Pedro V.; Jackson, Brian; Peterson, Steven W.; Agol, Eric; Knutson, Heather A.; Jennings, Donald E.; Haase, Plynn; Bays, Kevin

    2011-01-01

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B band) and near-IR (J band). Both the planet and host star are smaller than previously believed; our analysis yields Rp = 4.31 R xor 0.06 R xor and Rs = 0.683 R solar mass 0.009 R solar mass, both about 3 sigma smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transit duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ 436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler transit data. We develop and apply a methodology to correct the planetary radius for the presence of both crossed and uncrossed star spots. Star spot crossings are concentrated at phases 0.002 and +0.006. This is consistent with inferences from Rossiter-McLaughlin measurements that the planet transits nearly perpendicular to the stellar equator. We identify the dominant phases of star spot crossings with active latitudes on the star, and infer that the stellar rotational pole is inclined at about 12 deg 5 deg to the plane of the sky. We point out that precise transit measurements over long durations could in principle allow us to construct a stellar Butterfly diagram to probe the cyclic evolution of magnetic activity on this active K-dwarf star.

  14. Automated cloud classification using a ground based infra-red camera and texture analysis techniques

    Science.gov (United States)

    Rumi, Emal; Kerr, David; Coupland, Jeremy M.; Sandford, Andrew P.; Brettle, Mike J.

    2013-10-01

    Clouds play an important role in influencing the dynamics of local and global weather and climate conditions. Continuous monitoring of clouds is vital for weather forecasting and for air-traffic control. Convective clouds such as Towering Cumulus (TCU) and Cumulonimbus clouds (CB) are associated with thunderstorms, turbulence and atmospheric instability. Human observers periodically report the presence of CB and TCU clouds during operational hours at airports and observatories; however such observations are expensive and time limited. Robust, automatic classification of cloud type using infrared ground-based instrumentation offers the advantage of continuous, real-time (24/7) data capture and the representation of cloud structure in the form of a thermal map, which can greatly help to characterise certain cloud formations. The work presented here utilised a ground based infrared (8-14 μm) imaging device mounted on a pan/tilt unit for capturing high spatial resolution sky images. These images were processed to extract 45 separate textural features using statistical and spatial frequency based analytical techniques. These features were used to train a weighted k-nearest neighbour (KNN) classifier in order to determine cloud type. Ground truth data were obtained by inspection of images captured simultaneously from a visible wavelength colour camera at the same installation, with approximately the same field of view as the infrared device. These images were classified by a trained cloud observer. Results from the KNN classifier gave an encouraging success rate. A Probability of Detection (POD) of up to 90% with a Probability of False Alarm (POFA) as low as 16% was achieved.

  15. Development of ground-based wind energy in DOM and Corsica - Joint CGEDD / CGEIET report

    International Nuclear Information System (INIS)

    Joannis de Verclos, Christian de; Albrecht, Patrick; Iselin, Philippe; Legait, Benoit; Vignolles, Denis

    2012-09-01

    Addressing the peculiar cases of the French overseas districts (DOM: Guadeloupe, Martinique, Guyana, Mayotte, La Reunion) and Corsica, this report analyzes four main topics: the objectives and challenges of ground-based wind energy (sustainable development, not-interconnected areas, and public service of electricity supply), the local situations and their cartography, the legal issues and the possible evolution options (energy law, environmental law, urban planning law, local community law), and the modalities of devolution of project. The authors highlight the issues which require a new legal framework, notably governance and the devolution procedure

  16. Tests of the gravitational redshift effect in space-born and ground-based experiments

    Science.gov (United States)

    Vavilova, I. B.

    2018-02-01

    This paper provides a brief overview of experiments as concerns with the tests of the gravitational redshift (GRS) effect in ground-based and space-born experiments. In particular, we consider the GRS effects in the gravitational field of the Earth, the major planets of the Solar system, compact stars (white dwarfs and neutron stars) where this effect is confirmed with a higher accuracy. We discuss availabilities to confirm the GRS effect for galaxies and galaxy clusters in visible and X-ray ranges of the electromagnetic spectrum.

  17. On mean wind and turbulence profile measurements from ground-based wind lidars

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    2009-01-01

    Two types of wind lidar?s have become available for ground-based vertical mean wind and turbulence profiling. A continuous wave (CW) wind lidar, and a pulsed wind lidar. Although they both are build upon the same recent 1.55 μ telecom fibre technology, they possess fundamental differences between...... their temporal and spatial resolution capabilities. A literature review of the two lidar systems spatial and temporal resolution characteristics will be presented, and the implication for the two lidar types vertical profile measurements of mean wind and turbulence in the lower atmospheric boundary layer...

  18. Pulsation of IU Per from the Ground-based and ‘Integral’ Photometry

    Directory of Open Access Journals (Sweden)

    Kundra E.

    2013-06-01

    Full Text Available IU Per is an eclipsing semi-detached binary with a pulsating component. Using our own ground-based, as well as INTEGRAL satellite photometric observations in the B and V passbands, we derived geometrical and physical parameters of this system. We detected the short-term variations of IU Per in the residuals of brightness after the subtraction of synthetic light curves. Analysis of these residuals enabled us to characterize and localize the source of short-term variations as the pulsations of the primary component typical to δ Scuti-type stars.

  19. Liquid Structures and Physical Properties -- Ground Based Studies for ISS Experiments

    Science.gov (United States)

    Kelton, K. F.; Bendert, J. C.; Mauro, N. A.

    2012-01-01

    Studies of electrostatically-levitated supercooled liquids have demonstrated strong short- and medium-range ordering in transition metal and alloy liquids, which can influence phase transitions like crystal nucleation and the glass transition. The structure is also related to the liquid properties. Planned ISS experiments will allow a deeper investigation of these results as well as the first investigations of a new type of coupling in crystal nucleation in primary crystallizing liquids, resulting from a linking of the stochastic processes of diffusion with interfacial-attachment. A brief description of the techniques used for ground-based studies and some results relevant to planned ISS investigations are discussed.

  20. a Universal De-Noising Algorithm for Ground-Based LIDAR Signal

    Science.gov (United States)

    Ma, Xin; Xiang, Chengzhi; Gong, Wei

    2016-06-01

    Ground-based lidar, working as an effective remote sensing tool, plays an irreplaceable role in the study of atmosphere, since it has the ability to provide the atmospheric vertical profile. However, the appearance of noise in a lidar signal is unavoidable, which leads to difficulties and complexities when searching for more information. Every de-noising method has its own characteristic but with a certain limitation, since the lidar signal will vary with the atmosphere changes. In this paper, a universal de-noising algorithm is proposed to enhance the SNR of a ground-based lidar signal, which is based on signal segmentation and reconstruction. The signal segmentation serving as the keystone of the algorithm, segments the lidar signal into three different parts, which are processed by different de-noising method according to their own characteristics. The signal reconstruction is a relatively simple procedure that is to splice the signal sections end to end. Finally, a series of simulation signal tests and real dual field-of-view lidar signal shows the feasibility of the universal de-noising algorithm.