WorldWideScience

Sample records for ground based infrastructure

  1. Space and Ground-Based Infrastructures

    Science.gov (United States)

    Weems, Jon; Zell, Martin

    This chapter deals first with the main characteristics of the space environment, outside and inside a spacecraft. Then the space and space-related (ground-based) infrastructures are described. The most important infrastructure is the International Space Station, which holds many European facilities (for instance the European Columbus Laboratory). Some of them, such as the Columbus External Payload Facility, are located outside the ISS to benefit from external space conditions. There is only one other example of orbital platforms, the Russian Foton/Bion Recoverable Orbital Capsule. In contrast, non-orbital weightless research platforms, although limited in experimental time, are more numerous: sounding rockets, parabolic flight aircraft, drop towers and high-altitude balloons. In addition to these facilities, there are a number of ground-based facilities and space simulators, for both life sciences (for instance: bed rest, clinostats) and physical sciences (for instance: magnetic compensation of gravity). Hypergravity can also be provided by human and non-human centrifuges.

  2. Intelligent algorithms for persistent and pervasive sensing in systems comprised of wireless ad hoc networks of ground-based sensors and mobile infrastructures

    Science.gov (United States)

    Hortos, William S.

    2007-04-01

    With the development of low-cost, durable unmanned aerial vehicles (UAVs), it is now practical to perform persistent sensing and target tracking autonomously over broad surveillance areas. These vehicles can sense the environment directly through onboard active sensors, or indirectly when aimed toward ground targets in a mission environment by ground-based passive sensors operating wirelessly as an ad hoc network in the environment. The combination of the swarm intelligence of the airborne infrastructure comprised of UAVs with the ant-like collaborative behavior of the unattended ground sensors creates a system capable of both persistent and pervasive sensing of mission environment, such that, the continuous collection, analysis and tracking of targets from sensor data received from the ground can be achieved. Mobile software agents are used to implement intelligent algorithms for the communications, formation control and sensor data processing in this composite configuration. The enabling mobile agents are organized in a hierarchy for the three stages of processing in the distributed system: target detection, location and recognition from the collaborative data processing among active ground-sensor nodes; transfer of the target information processed on the ground to the UAV swarm overhead; and formation control and sensor activation of the UAV swarm for sustained ground-target surveillance and tracking. Intelligent algorithms are presented that can adapt to the operation of the composite system to target dynamics and system resources. Established routines, appropriate to the processing needs of each stage, are selected as preferred based on their published use in similar scenarios, ability to be distributively implemented over the set of processors at system nodes, and ability to conserve the limited resources at the ground nodes to extend the lifetime of the pervasive network. In this paper, the performance of this distributed, collaborative system concept for

  3. IT Infrastructure Construction: Based on Competitive Advantage

    Institute of Scientific and Technical Information of China (English)

    J(U) Qing-jiang

    2006-01-01

    Information technology (IT) infrastructure is the foundation of information sharing, storage, and processing upon which the entire business depends and it changes not only inner organizational structures but also outer competitive conditions. An IT infrastructure that possesses elements unique to a particular organization and difficult to duplicate can produce competitive advantage. To achieve this advantage, not only the inner integration of technology,personnel and business process in a firm is needed, but also a platform for electronic commerce is required. The purpose of this study is to establish the whole concept framework for IT infrastructure, based on competitive advantage, and to propose ideas about the construction of IT infrastructure system.

  4. Scenario Based Network Infrastructure Planning

    DEFF Research Database (Denmark)

    Knudsen, Thomas Phillip; Pedersen, Jens Myrup; Madsen, Ole Brun

    2005-01-01

    The paper presents a method for IT infrastructure planning that take into account very long term developments in usages. The method creates a scenario for a final, time independent stage in the planning process. The method abstracts relevant modelling factors from available information...

  5. Scenario Based Network Infrastructure Planning

    DEFF Research Database (Denmark)

    Knudsen, Thomas Phillip; Pedersen, Jens Myrup; Madsen, Ole Brun

    2005-01-01

    The paper presents a method for IT infrastructure planning that take into account very long term developments in usages. The method creates a scenario for a final, time independent stage in the planning process. The method abstracts relevant modelling factors from available information...

  6. Algorithms and semantic infrastructure for mutation impact extraction and grounding.

    Science.gov (United States)

    Laurila, Jonas B; Naderi, Nona; Witte, René; Riazanov, Alexandre; Kouznetsov, Alexandre; Baker, Christopher J O

    2010-12-02

    Mutation impact extraction is a hitherto unaccomplished task in state of the art mutation extraction systems. Protein mutations and their impacts on protein properties are hidden in scientific literature, making them poorly accessible for protein engineers and inaccessible for phenotype-prediction systems that currently depend on manually curated genomic variation databases. We present the first rule-based approach for the extraction of mutation impacts on protein properties, categorizing their directionality as positive, negative or neutral. Furthermore protein and mutation mentions are grounded to their respective UniProtKB IDs and selected protein properties, namely protein functions to concepts found in the Gene Ontology. The extracted entities are populated to an OWL-DL Mutation Impact ontology facilitating complex querying for mutation impacts using SPARQL. We illustrate retrieval of proteins and mutant sequences for a given direction of impact on specific protein properties. Moreover we provide programmatic access to the data through semantic web services using the SADI (Semantic Automated Discovery and Integration) framework. We address the problem of access to legacy mutation data in unstructured form through the creation of novel mutation impact extraction methods which are evaluated on a corpus of full-text articles on haloalkane dehalogenases, tagged by domain experts. Our approaches show state of the art levels of precision and recall for Mutation Grounding and respectable level of precision but lower recall for the task of Mutant-Impact relation extraction. The system is deployed using text mining and semantic web technologies with the goal of publishing to a broad spectrum of consumers.

  7. Algorithms and semantic infrastructure for mutation impact extraction and grounding

    Directory of Open Access Journals (Sweden)

    Kouznetsov Alexandre

    2010-12-01

    Full Text Available Abstract Background Mutation impact extraction is a hitherto unaccomplished task in state of the art mutation extraction systems. Protein mutations and their impacts on protein properties are hidden in scientific literature, making them poorly accessible for protein engineers and inaccessible for phenotype-prediction systems that currently depend on manually curated genomic variation databases. Results We present the first rule-based approach for the extraction of mutation impacts on protein properties, categorizing their directionality as positive, negative or neutral. Furthermore protein and mutation mentions are grounded to their respective UniProtKB IDs and selected protein properties, namely protein functions to concepts found in the Gene Ontology. The extracted entities are populated to an OWL-DL Mutation Impact ontology facilitating complex querying for mutation impacts using SPARQL. We illustrate retrieval of proteins and mutant sequences for a given direction of impact on specific protein properties. Moreover we provide programmatic access to the data through semantic web services using the SADI (Semantic Automated Discovery and Integration framework. Conclusion We address the problem of access to legacy mutation data in unstructured form through the creation of novel mutation impact extraction methods which are evaluated on a corpus of full-text articles on haloalkane dehalogenases, tagged by domain experts. Our approaches show state of the art levels of precision and recall for Mutation Grounding and respectable level of precision but lower recall for the task of Mutant-Impact relation extraction. The system is deployed using text mining and semantic web technologies with the goal of publishing to a broad spectrum of consumers.

  8. Adaptive SOA Infrastructure Based on Variability Management

    OpenAIRE

    Graubmann, Peter; Roshchin, Mikhail

    2008-01-01

    In order to exploit the adaptability of a SOA infrastructure, it becomes necessary to provide platform mechanisms that support a mapping of the variability in the applications to the variability provided by the infrastructure. The approach focuses on the configuration of the needed infrastructure mechanisms including support for the derivation of the infrastructure variability model.

  9. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi and P. Tropea

    2012-01-01

    The CMS Infrastructures teams are preparing for the LS1 activities. A long list of maintenance, consolidation and upgrade projects for CMS Infrastructures is on the table and is being discussed among Technical Coordination and sub-detector representatives. Apart from the activities concerning the cooling infrastructures (see below), two main projects have started: the refurbishment of the SX5 building, from storage area to RP storage and Muon stations laboratory; and the procurement of a new dry-gas (nitrogen and dry air) plant for inner detector flushing. We briefly present here the work done on the first item, leaving the second one for the next CMS Bulletin issue. The SX5 building is entering its third era, from main assembly building for CMS from 2000 to 2007, to storage building from 2008 to 2012, to RP storage and Muon laboratory during LS1 and beyond. A wall of concrete blocks has been erected to limit the RP zone, while the rest of the surface has been split between the ME1/1 and the CSC/DT laborat...

  10. INFRASTRUCTURE

    CERN Multimedia

    A.Gaddi

    2011-01-01

    Between the end of March to June 2011, there has been no detector downtime during proton fills due to CMS Infrastructures failures. This exceptional performance is a clear sign of the high quality work done by the CMS Infrastructures unit and its supporting teams. Powering infrastructure At the end of March, the EN/EL group observed a problem with the CMS 48 V system. The problem was a lack of isolation between the negative (return) terminal and earth. Although at that moment we were not seeing any loss of functionality, in the long term it would have led to severe disruption to the CMS power system. The 48 V system is critical to the operation of CMS: in addition to feeding the anti-panic lights, essential for the safety of the underground areas, it powers all the PLCs (Twidos) that control AC power to the racks and front-end electronics of CMS. A failure of the 48 V system would bring down the whole detector and lead to evacuation of the cavern. EN/EL technicians have made an accurate search of the fault, ...

  11. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi and P. Tropea

    2011-01-01

    Most of the work relating to Infrastructure has been concentrated in the new CSC and RPC manufactory at building 904, on the Prevessin site. Brand new gas distribution, powering and HVAC infrastructures are being deployed and the production of the first CSC chambers has started. Other activities at the CMS site concern the installation of a new small crane bridge in the Cooling technical room in USC55, in order to facilitate the intervention of the maintenance team in case of major failures of the chilled water pumping units. The laser barrack in USC55 has been also the object of a study, requested by the ECAL community, for the new laser system that shall be delivered in few months. In addition, ordinary maintenance works have been performed during the short machine stops on all the main infrastructures at Point 5 and in preparation to the Year-End Technical Stop (YETS), when most of the systems will be carefully inspected in order to ensure a smooth running through the crucial year 2012. After the incide...

  12. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi

    2012-01-01

    The CMS Infrastructures teams are constantly ensuring the smooth operation of the different services during this critical period when the detector is taking data at full speed. A single failure would spoil hours of high luminosity beam and everything is put in place to avoid such an eventuality. In the meantime however, the fast approaching LS1 requires that we take a look at the various activities to take place from the end of the year onwards. The list of infrastructures consolidation and upgrade tasks is already long and will touch all the services (cooling, gas, inertion, powering, etc.). The definitive list will be available just before the LS1 start. One activity performed by the CMS cooling team that is worth mentioning is the maintenance of the cooling circuits at the CMS Electronics Integration Centre (EIC) at building 904. The old chiller has been replaced by a three-units cooling plant that also serves the HVAC system for the new CSC and RPC factories. The commissioning of this new plant has tak...

  13. INFRASTRUCTURE

    CERN Multimedia

    Andrea Gaddi

    2010-01-01

    In addition to the intense campaign of replacement of the leaky bushing on the Endcap circuits, other important activities have also been completed, with the aim of enhancing the overall reliability of the cooling infrastructures at CMS. Remaining with the Endcap circuit, the regulating valve that supplies cold water to the primary side of the circuit heat-exchanger, is not well adapted in flow capability and a new part has been ordered, to be installed during a stop of LHC. The instrumentation monitoring of the refilling rate of the circuits has been enhanced and we can now detect leaks as small as 0.5 cc/sec, on circuits that have nominal flow rates of some 20 litres/sec. Another activity starting now that the technical stop is over is the collection of spare parts that are difficult to find on the market. These will be stored at P5 with the aim of reducing down-time in case of component failure. Concerning the ventilation infrastructures, it has been noticed that in winter time the relative humidity leve...

  14. ECONOMIC AND LEGAL GROUNDS FOR INVESTMENT IN DEVELOPMENT OF TRANSPORT INFRASTRUCTURE

    Directory of Open Access Journals (Sweden)

    V. V. Zhelezniak

    2017-02-01

    Full Text Available Purpose. In Ukraine, as in many countries of the world, transport is one of the most fundamental sectors of the national economy, important part of the industrial and social spheres. But in the conditions of industry reforming there are problems of investing in development of rail transport. So the work is devoted to the grounds of potentially available sources of investment in infrastructure of railway transport of Ukraine. The work stresses the importance of the problem of attracting foreign investment in the economy, highlights the proposals to solve this problem. Methodology. To solve the problems of this class the work presents the proposed methods of analysis, synthesis and comparison, deduction, induction, logic and abstraction. It becomes necessary to search for and study of new conceptual approaches to organization of investment processes at railway transport enterprises, appropriate management and financial decisions and schemes of railway infrastructure development. Findings. The paper shows ways to optimize investment for modernization and technical re-equipment of the transport complex of Ukraine. It proposes the ways of attracting capital of investors for development of transport infrastructure: compliance with European laws and regulations; reforming of the tax system of Ukraine; combating corruption in the country; implementation of public-private partnership tools into the mechanism of state regulation of investment processes; creating a favourable investment climate for implementation of rail transport infrastructure projects; creating a system of compensation to investors; guarantees of transport infrastructure investment protection. Originality. The work offers the sources of investment for development of railway infrastructure in Ukraine, which should include: state budget funds, use of targeted loans and leasing. The main direction of the state policy concerning infrastructure should be a gradual transition of activity in

  15. Atmospheric effects on infrared measurements at ground level: Application to monitoring of transport infrastructures

    Science.gov (United States)

    Boucher, Vincent; Dumoulin, Jean

    2014-05-01

    Being able to perform easily non-invasive diagnostics for surveillance and monitoring of critical transport infrastructures is a major preoccupation of many technical offices. Among all the existing electromagnetic methods [1], long term thermal monitoring by uncooled infrared camera [2] is a promising technique due to its dissemination potential according to its low cost on the market. Nevertheless, Knowledge of environmental parameters during measurement in outdoor applications is required to carry out accurate measurement corrections induced by atmospheric effects at ground level. Particularly considering atmospheric effects and measurements in foggy conditions close as possible to those that can be encountered around transport infrastructures, both in visible and infrared spectra. In the present study, atmospheric effects are first addressed by using data base available in literature and modelling. Atmospheric attenuation by particles depends greatly of aerosols density, but when relative humidity increases, water vapor condenses onto the particulates suspended in the atmosphere. This condensed water increases the size of the aerosols and changes their composition and their effective refractive index. The resulting effect of the aerosols on the absorption and scattering of radiation will correspondingly be modified. In a first approach, we used aerosols size distributions derived from Shettle and Fenn [3] for urban area which could match some of experimental conditions encountered during trials on transport infrastructures opened to traffic. In order to calculate the influence of relative humidity on refractive index, the Hänel's model [4] could be used. The change in the particulate size is first related to relative humidity through dry particle radius, particle density and water activity. Once the wet aerosol particle size is found, the effective complex refractive index is the volume weighted average of the refractive indexes of the dry aerosol substance

  16. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi

    2011-01-01

    During the last winter technical stop, a number of corrective maintenance activities and infrastructure consolidation work-packages were completed. On the surface, the site cooling facility has passed the annual maintenance process that includes the cleaning of the two evaporative cooling towers, the maintenance of the chiller units and the safety checks on the software controls. In parallel, CMS teams, reinforced by PH-DT group personnel, have worked to shield the cooling gauges for TOTEM and CASTOR against the magnetic stray field in the CMS Forward region, to add labels to almost all the valves underground and to clean all the filters in UXC55, USC55 and SCX5. Following the insertion of TOTEM T1 detector, the cooling circuit has been branched off and commissioned. The demineraliser cartridges have been replaced as well, as they were shown to be almost saturated. New instrumentation has been installed in the SCX5 PC farm cooling and ventilation network, in order to monitor the performance of the HVAC system...

  17. INFRASTRUCTURE

    CERN Multimedia

    Andrea Gaddi

    2010-01-01

    During the last six months, the main activity on the cooling circuit has essentially been preventive maintenance. At each short machine technical stop, a water sample is extracted out of every cooling circuit to measure the induced radioactivity. Soon after, a visual check of the whole detector cooling network is done, looking for water leaks in sensitive locations. Depending on sub-system availability, the main water filters are replaced; the old ones are inspected and sent to the CERN metallurgical lab in case of suspicious sediments. For the coming winter technical stop, a number of corrective maintenance activities and infrastructure consolidation work-packages are foreseen. A few faulty valves, found on the muon system cooling circuit, will be replaced; the cooling gauges for TOTEM and CASTOR, in the CMS Forward region, will be either changed or shielded against the magnetic stray field. The demineralizer cartridges will be replaced as well. New instrumentation will also be installed in the SCX5 PC farm ...

  18. INFRASTRUCTURE

    CERN Multimedia

    Andrea Gaddi.

    The various water-cooling circuits ran smoothly over the summer. The overall performance of the cooling system is satisfactory, even if some improvements are possible, concerning the endcap water-cooling and the C6F14 circuits. In particular for the endcap cooling circuit, we aim to lower the water temperature, to provide more margin for RPC detectors. An expert-on-call piquet has been established during the summer global run, assuring the continuous supervision of the installations. An effort has been made to collect and harmonize the existing documentation on the cooling infrastructures at P5. The last six months have seen minor modifications to the electrical power network at P5. Among these, the racks in USC55 for the Tracker and Sniffer systems, which are backed up by the diesel generator in case of power outage, have been equipped with new control boxes to allow a remote restart. Other interventions have concerned the supply of assured power to those installations that are essential for CMS to run eff...

  19. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi and P. Tropea

    2013-01-01

      Most of the CMS infrastructures at P5 will go through a heavy consolidation-work period during LS1. All systems, from the cryogenic plant of the superconducting magnet to the rack powering in the USC55 counting rooms, from the cooling circuits to the gas distribution, will undergo consolidation work. As announced in the last issue of the CMS Bulletin, we present here one of the consolidation projects of LS1: the installation of a new dry-gas plant for inner detectors inertion. So far the oxygen and humidity suppression inside the CMS Tracker and Pixel volumes were assured by flushing dry nitrogen gas evaporated from a large liquid nitrogen tank. For technical reasons, the maximum flow is limited to less than 100 m3/h and the cost of refilling the tank every two weeks with liquid nitrogen is quite substantial. The new dry-gas plant will supply up to 400 m3/h of dry nitrogen (or the same flow of dry air, during shut-downs) with a comparatively minimal operation cost. It has been evaluated that the...

  20. INFRASTRUCTURE

    CERN Multimedia

    Andrea Gaddi

    With all the technical services running, the attention has moved toward the next shutdown that will be spent to perform those modifications needed to enhance the reliability of CMS Infrastructures. Just to give an example for the cooling circuit, a set of re-circulating bypasses will be installed into the TS/CV area to limit the pressure surge when a circuit is partially shut-off. This problem has affected especially the Endcap Muon cooling circuit in the past. Also the ventilation of the UXC55 has to be revisited, allowing the automatic switching to full extraction in case of magnet quench. (Normally 90% of the cavern air is re-circulated by the ventilation system.) Minor modifications will concern the gas distribution, while the DSS action-matrix has to be refined according to the experience gained with operating the detector for a while. On the powering side, some LV power lines have been doubled and the final schematics of the UPS coverage for the counting rooms have been released. The most relevant inte...

  1. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi

    The long winter shut-down allows for modifications that will improve the reliability of the detector infrastructures at P5. The annual maintenance of detector services is taking place as well. This means a full stop of water-cooling circuits from November 24th with a gradual restart from mid January 09. The annual maintenance service includes the cleaning of the two SF5 cooling towers, service of the chiller plants on the surface, and the cryogenic plant serving the CMS Magnet. In addition, the overall site power is reduced from 8MW to 2MW, compatible with the switchover to the Swiss power network in winter. Full power will be available again from end of January. Among the modification works planned, the Low Voltage cabinets are being refurbished; doubling the cable sections and replacing the 40A circuit breakers with 60A types. This will reduce the overheating that has been experienced. Moreover, two new LV transformers will be bought and pre-cabled in order to assure a quick swap in case of failure of any...

  2. Base Information Transport Infrastructure Wired (BITI Wired)

    Science.gov (United States)

    2016-03-01

    network and IT infrastructure area. During the Network Centric Solutions (NETCENTS) I Bid and Proposal process, Then ITS Inc 1 used a "Blue Sky Air Force...spares). Will meet Objective Net -Ready Comply with the NR-KPP as defined in CJCSI 6212.01E to include the development of architecture products in...compliance with the Global Information Grid (GIG) Architecture, Net -Centric Data/Services, GIG TechnicalStandards/Interfaces, and Information

  3. An agent-based microsimulation of critical infrastructure systems

    Energy Technology Data Exchange (ETDEWEB)

    BARTON,DIANNE C.; STAMBER,KEVIN L.

    2000-03-29

    US infrastructures provide essential services that support the economic prosperity and quality of life. Today, the latest threat to these infrastructures is the increasing complexity and interconnectedness of the system. On balance, added connectivity will improve economic efficiency; however, increased coupling could also result in situations where a disturbance in an isolated infrastructure unexpectedly cascades across diverse infrastructures. An understanding of the behavior of complex systems can be critical to understanding and predicting infrastructure responses to unexpected perturbation. Sandia National Laboratories has developed an agent-based model of critical US infrastructures using time-dependent Monte Carlo methods and a genetic algorithm learning classifier system to control decision making. The model is currently under development and contains agents that represent the several areas within the interconnected infrastructures, including electric power and fuel supply. Previous work shows that agent-based simulations models have the potential to improve the accuracy of complex system forecasting and to provide new insights into the factors that are the primary drivers of emergent behaviors in interdependent systems. Simulation results can be examined both computationally and analytically, offering new ways of theorizing about the impact of perturbations to an infrastructure network.

  4. Effect of mobility models on infrastructure based wireless networks ...

    African Journals Online (AJOL)

    Effect of mobility models on infrastructure based wireless networks. ... In this paper, the effect of handoff procedure on the performance of random mobile nodes in wireless networks was investigated. Mobility of node is defined ... Article Metrics.

  5. Cloud Based Big Data Infrastructure: Architectural Components and Automated Provisioning

    OpenAIRE

    Demchenko, Yuri; Turkmen, Fatih; Blanchet, Christophe; Loomis, Charles; Laat, Caees de

    2016-01-01

    This paper describes the general architecture and functional components of the cloud based Big Data Infrastructure (BDI). The proposed BDI architecture is based on the analysis of the emerging Big Data and data intensive technologies and supported by the definition of the Big Data Architecture Framework (BDAF) that defines the following components of the Big Data technologies: Big Data definition, Data Management including data lifecycle and data structures, Big Data Infrastructure (generical...

  6. A Study to Compare the Failure Rates of Current Space Shuttle Ground Support Equipment with the New Pathfinder Equipment and Investigate the Effect that the Proposed GSE Infrastructure Upgrade Might Have to Reduce GSE Infrastructure Failures

    Science.gov (United States)

    Kennedy, Barbara J.

    2004-01-01

    The purposes of this study are to compare the current Space Shuttle Ground Support Equipment (GSE) infrastructure with the proposed GSE infrastructure upgrade modification. The methodology will include analyzing the first prototype installation equipment at Launch PAD B called the "Pathfinder". This study will begin by comparing the failure rate of the current components associated with the "Hardware interface module (HIM)" at the Kennedy Space Center to the failure rate of the neW Pathfinder components. Quantitative data will be gathered specifically on HIM components and the PAD B Hypergolic Fuel facility and Hypergolic Oxidizer facility areas which has the upgraded pathfinder equipment installed. The proposed upgrades include utilizing industrial controlled modules, software, and a fiber optic network. The results of this study provide evidence that there is a significant difference in the failure rates of the two studied infrastructure equipment components. There is also evidence that the support staff for each infrastructure system is not equal. A recommendation to continue with future upgrades is based on a significant reduction of failures in the new' installed ground system components.

  7. ESTIMATION OF THE INFLUENCE OF FARM INFRASTRUCTURE ON THE POLLUTION OF GROUND WATER

    Directory of Open Access Journals (Sweden)

    Tadeusz Durkowski

    2016-02-01

    Full Text Available In farm areas, evacuations of animal excrements (manure, liquid manure, slurry and domestic sewage are most dangerous for pure groundwater . For betterment sanitary condition villages and pure waters in their area will be a necessity of right infrastructure and good condition (sewers, water treatments and proper animal excrements management. Research conducted in 2001–2011 in six farms located in the area of a few villages in the basin of Miedwie lake. Researches points were placed (piezometer and wells in the area of these farms. High concentration of NH4+, NO3- and PO43- were found in a ground water which are exposed to contact inflow of pollutant from farms areas, and sources which are occurred in outlying from the source of pollutants. Also water from a farm wells, which are periodically used, manifested the presence of large chemical elements concentration, especially NO3- and PO43-, what proves a constant inflow of pollutants. For monitoring ground water in samples we marked the concentration of NH4+, NO3- i PO43- and pH.

  8. ESTIMATION OF THE INFLUENCE OF FARM INFRASTRUCTURE ON THE POLLUTION OF GROUND WATER

    Directory of Open Access Journals (Sweden)

    Tadeusz Durkowski

    2015-11-01

    Full Text Available In farm areas, evacuations of animal excrements (manure, liquid manure, slurry and domestic sewage are most dangerous for pure groundwater. For betterment sanitary condition villages and pure waters in their area will be necessity of right infrastructure and good condition (canalization, water treatments and proper animal excrements management. Researches conducted in 2001–2011 years in six farms located in the area of a few villages in the basin of Miedwie lake. Researches points were put (piezometer and wells in the area of these farms. High concentration of NH4+, NO3- and PO43- were found in ground water which is exposed to contact inflow of pollutant from farms areas, and sources which are occurred in outlying from a source of pollutants. Also water from a farm wells, which are periodically used, showed the presence of large concentrations of chemical elements especially NO3- and PO43- what proves constant inflow of pollutants. For monitoring ground water we marked concentration of NH4+, NO3- i PO43- and pH in the samples.

  9. Detection of infrastructure manipulation with knowledge-based video surveillance

    Science.gov (United States)

    Muench, David; Hilsenbeck, Barbara; Kieritz, Hilke; Becker, Stefan; Grosselfinger, Ann-Kristin; Huebner, Wolfgang; Arens, Michael

    2016-10-01

    We are living in a world dependent on sophisticated technical infrastructure. Malicious manipulation of such critical infrastructure poses an enormous threat for all its users. Thus, running a critical infrastructure needs special attention to log the planned maintenance or to detect suspicious events. Towards this end, we present a knowledge-based surveillance approach capable of logging visual observable events in such an environment. The video surveillance modules are based on appearance-based person detection, which further is used to modulate the outcome of generic processing steps such as change detection or skin detection. A relation between the expected scene behavior and the underlying basic video surveillance modules is established. It will be shown that the combination already provides sufficient expressiveness to describe various everyday situations in indoor video surveillance. The whole approach is qualitatively and quantitatively evaluated on a prototypical scenario in a server room.

  10. Model of Cloud Computing Realisation on the Base of Infrastructure IaaS

    Directory of Open Access Journals (Sweden)

    Peter Peniak

    2016-01-01

    Full Text Available The paper deals with the problems of cloud computing applied for industrial applicationson the ground of practical experiences in certain manufacturing corporation. The main part of paperis orientated to proposal of the numerical model on the base of infrastructure as a service (IaaS and its mathematical description. In addition the model has been extended to include the requirements of mission critical systems with real time behaviour and fail-safe features. The models were realised via virtualisation software Hypervisor which creates a group of available virtual resources through physical infrastructure, which can be offered to customers. Proposal solution enables to create a proper sizeof cloud infrastructure for hardware provisioning according to customer requirements.

  11. Decentralized Autonomous-Agent-Based Infrastructure for Agile Multiparallel Manufacturing

    NARCIS (Netherlands)

    Ing. Erik Puik; Leo van Moergestel; John-Jules Meyer; Daniël Telgen

    2011-01-01

    This paper describes an agent-based software infrastructure for agile industrial production. This production is done on special devices called equiplets. A grid of these equiplets connected by a fast network is capable of producing a variety of different products in parallel. The multi-agent-based

  12. Integrated Train Ground Radio Communication System Based TD-LTE

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hongli; CAO Yuan; ZHU Li; XU Wei

    2016-01-01

    In existing metro systems, the train ground radio communication system for different applications are deployed independently. Investing and constructing the communication infrastructures repeatedly wastes substan-tial social resources, and it brings difficulties to maintain all these infrastructures. We present the communication Quality of service (QoS) requirement for different train ground radio applications. An integrated TD-LTE based train ground radio communication system for the metro system (LTE-M) is designed next. In order to test the LTE-M system performance, an indoor testing environment is set up. The channel simulator and programmable attenua-tors are used to simulate the real metro environment. Ex-tensive test results show that the designed LTE-M system performance satisfies metro communication requirements.

  13. The Earth Observing System (EOS) Ground System: Leveraging an Existing Operational Ground System Infrastructure to Support New Missions

    Science.gov (United States)

    Hardison, David; Medina, Johnny; Dell, Greg

    2016-01-01

    The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.

  14. Location-Based Critical Infrastructure Interdependency (LBCII)

    Science.gov (United States)

    2010-04-01

    exigences d’accès, de saisie et de traitement des données. ii DRDC Toronto TR 2009-130 Executive summary Location-Based Critical...management); 7. Transportation (air, rail, marine and surface transport); 8. Safety (chemical, biological, radiological and nuclear safety, hazardous...MMIS)[25], a subduction earthquake in the Strait of Georgia (Latitude 49.45 degrees, Longitude 123.941 degrees) with no surface rupture. At this

  15. On infrastructure network design with agent-based modelling

    NARCIS (Netherlands)

    Chappin, E.J.L.; Heijnen, P.W.

    2014-01-01

    We have developed an agent-based model to optimize green-field network design in an industrial area. We aim to capture some of the deep uncertainties surrounding infrastructure design by modelling it developing specific ant colony optimizations. Hence, we propose a variety of extensions to our

  16. On infrastructure network design with agent-based modelling

    NARCIS (Netherlands)

    Chappin, E.J.L.; Heijnen, P.W.

    2014-01-01

    We have developed an agent-based model to optimize green-field network design in an industrial area. We aim to capture some of the deep uncertainties surrounding infrastructure design by modelling it developing specific ant colony optimizations. Hence, we propose a variety of extensions to our exist

  17. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  18. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  19. Stochastic Coloured Petrinet Based Healthcare Infrastructure Interdependency Model

    Science.gov (United States)

    Nukavarapu, Nivedita; Durbha, Surya

    2016-06-01

    The Healthcare Critical Infrastructure (HCI) protects all sectors of the society from hazards such as terrorism, infectious disease outbreaks, and natural disasters. HCI plays a significant role in response and recovery across all other sectors in the event of a natural or manmade disaster. However, for its continuity of operations and service delivery HCI is dependent on other interdependent Critical Infrastructures (CI) such as Communications, Electric Supply, Emergency Services, Transportation Systems, and Water Supply System. During a mass casualty due to disasters such as floods, a major challenge that arises for the HCI is to respond to the crisis in a timely manner in an uncertain and variable environment. To address this issue the HCI should be disaster prepared, by fully understanding the complexities and interdependencies that exist in a hospital, emergency department or emergency response event. Modelling and simulation of a disaster scenario with these complexities would help in training and providing an opportunity for all the stakeholders to work together in a coordinated response to a disaster. The paper would present interdependencies related to HCI based on Stochastic Coloured Petri Nets (SCPN) modelling and simulation approach, given a flood scenario as the disaster which would disrupt the infrastructure nodes. The entire model would be integrated with Geographic information based decision support system to visualize the dynamic behaviour of the interdependency of the Healthcare and related CI network in a geographically based environment.

  20. A power beaming based infrastructure for space power

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, J.A.

    1991-08-01

    At present all space mission power requirements are met by integral, on-board, self-contained power systems. To provide needed flexibility for space exploration and colonization, an additional approach to on-board, self-contained power systems is needed. Power beaming, an alternative approach to providing power, has the potential to provide increased mission flexibility while reducing total mass launched into space. Laser-power beaming technology provides a viable power and communication infrastructure that can be developed sequentially as it is applied to power satellite constellations in Earth orbit and to orbital transport vehicles transferring satellites and cargos to geosynchronous orbit and beyond. Coupled with nuclear electric propulsion systems for cargo transport, the technology can be used to provide global power to the Lunar surface and to Mars' surface and moons. The technology can be developed sequentially as advances in power system and propulsion system technology occur. This paper presents stepwise development of an infrastructure based on power beaming that can support the space development and exploration goals of the Space Exploration Initiative. Power scenarios based on commonality of power systems hardware with cargo transport vehicles are described. Advantages of this infrastructure are described. 12 refs., 4 figs., 1 tab.

  1. Neural Network Based Intrusion Detection System for Critical Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  2. Neural Network Based Intrusion Detection System for Critical Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  3. Engineering uses of physics-based ground motion simulations

    Science.gov (United States)

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  4. Cyber Security Threats to Safety-Critical, Space-Based Infrastructures

    Science.gov (United States)

    Johnson, C. W.; Atencia Yepez, A.

    2012-01-01

    Space-based systems play an important role within national critical infrastructures. They are being integrated into advanced air-traffic management applications, rail signalling systems, energy distribution software etc. Unfortunately, the end users of communications, location sensing and timing applications often fail to understand that these infrastructures are vulnerable to a wide range of security threats. The following pages focus on concerns associated with potential cyber-attacks. These are important because future attacks may invalidate many of the safety assumptions that support the provision of critical space-based services. These safety assumptions are based on standard forms of hazard analysis that ignore cyber-security considerations This is a significant limitation when, for instance, security attacks can simultaneously exploit multiple vulnerabilities in a manner that would never occur without a deliberate enemy seeking to damage space based systems and ground infrastructures. We address this concern through the development of a combined safety and security risk assessment methodology. The aim is to identify attack scenarios that justify the allocation of additional design resources so that safety barriers can be strengthened to increase our resilience against security threats.

  5. Hydrologic Severity-based Forecast System for Road Infrastructure Monitoring

    Science.gov (United States)

    Hernandez, F.; Li, L.; Lochan, S.; Liang, X.; Liang, Y.; Teng, W. L.

    2013-12-01

    The state departments of transportation in the U.S. are responsible for responding to weather- and hydrology-related emergencies affecting the transportation infrastructure, such as heavy rain, flooding, scouring of bridge structures, icing, and fog. These emergency response actions often require significant amount of effort to identify, inspect, and manage, e.g., potentially compromised bridges due to scouring. An online Hydrologic Disaster Forecasting and Response (HDFR) system is being developed for the Pennsylvania Department of Transportation (PennDOT), to provide more accurate estimates on current road infrastructure conditions. The HDFR system can automatically access satellite data from NASA data centers, NOAA radar rainfall measurements, and meteorological and hydrometeorological station observations. The accessed data can be fused, using an extended multi-scale Kalman smoother-based (MKS-based) algorithm to provide enhanced data products. The fused information is then contrasted with historical data, to assess the severity of the weather and hydrological conditions and to provide more accurate estimates of those areas with a high likelihood of being affected by similar emergencies. The real- and near-real-time data, as well as weather forecasts, are input to a multi-scale hydrological simulator. The HDFR system will be able to generate stream flow predictions at road-level scales, allowing for the monitoring of a complex and distributed infrastructure, with less computational resources than those previously required. Preliminary results will be presented that show the advantages of the HDFR system over PennDOT's current methods for identifying bridges in need of inspection.

  6. Performance of pile foundation for the civil infrastructure of high speed rail in severe ground subsidence area

    Science.gov (United States)

    Yang, H. W.

    2015-11-01

    In this study, the performance of pile foundation is assessed for the 30 km long viaduct bridge structure seating in the ground subsidence area in the central part of Taiwan. The focus of this paper is placed on the settlement behaviour of a continuous 3-span R. C. viaduct bridge supported on piles adjacent to highway embankment. Monitoring data accumulated over the last 12 years indicate that the observed pace of the settlement of the viaduct structure in other sections matches that of the ground. However, the bridge piers adjacent to the embankment have been suffering an additional approximately 1 cm settlement every year since the completion of the embankment construction. It was believed that the piers may suffer from enormous negative skin friction owing to the surcharge from the embankment and groundwater depression. This paper first summarizes the settlement analysis results to quantify the settlement of pile due to regional ground subsidence and the combined effects from ground water fluctuation and embankment surcharge loading. Accordingly, a loading path on P'-q stress space is formulated to illustrate the loading variation subject to the combined loading effects that can explain why the combined effect becoming significant on settlement control for civil infrastructure in ground subsidence area.

  7. GEARS: An Enterprise Architecture Based On Common Ground Services

    Science.gov (United States)

    Petersen, S.

    2014-12-01

    Earth observation satellites collect a broad variety of data used in applications that range from weather forecasting to climate monitoring. Within NOAA the National Environmental Satellite Data and Information Service (NESDIS) supports these applications by operating satellites in both geosynchronous and polar orbits. Traditionally NESDIS has acquired and operated its satellites as stand-alone systems with their own command and control, mission management, processing, and distribution systems. As the volume, velocity, veracity, and variety of sensor data and products produced by these systems continues to increase, NESDIS is migrating to a new concept of operation in which it will operate and sustain the ground infrastructure as an integrated Enterprise. Based on a series of common ground services, the Ground Enterprise Architecture System (GEARS) approach promises greater agility, flexibility, and efficiency at reduced cost. This talk describes the new architecture and associated development activities, and presents the results of initial efforts to improve product processing and distribution.

  8. An Internet Key Exchange Protocol Based on Public Key Infrastructure

    Institute of Scientific and Technical Information of China (English)

    朱建明; 马建峰

    2004-01-01

    Internet key exchange (IKE) is an automated key exchange mechanism that is used to facilitate the transfer of IPSec security associations (SAs). Public key infrastructure (PKI) is considered as a key element for providing security to new distributed communication networks and services. In this paper, we concentrate on the properties of the protocol of Phase 1 IKE. After investigating IKE protocol and PKI technology, we combine IKE protocol and PKI and present an implementation scheme of the IKE based on PKI. Then, we give a logic analysis of the proposed protocol with the BAN-logic and discuss the security of the protocol. The result indicates that the protocol is correct and satisfies the security requirements of Internet key exchange.

  9. Geo-communication and Web-based Spatial Data Infrastructure

    DEFF Research Database (Denmark)

    Brodersen, Lars; Nielsen, Anders

    2006-01-01

    ! Therefore there is a strong need for theories and models that can describe this complex web in the SDI and geo-communication consisting of active components, passive components, users and information in order to make it possible to handle the complexity and to give the necessary framework.......The purpose of geo-communication is to bridge the gap between reality and data sources on one side and decisions on the other side. This is achieved through several types of activities, where web-services and spatial data infrastructure play an important role. The introduction of web......-services as index-portals based on geo-information has changed the conditions for both content and form of geo-communication. A high number of players and interactions as well as a very high number of all kinds of information and combinations of these characterize geo-communication carried out through web...

  10. Bike Infrastructures

    DEFF Research Database (Denmark)

    Silva, Victor; Harder, Henrik; Jensen, Ole B.;

    Bike Infrastructures aims to identify bicycle infrastructure typologies and design elements that can help promote cycling significantly. It is structured as a case study based research where three cycling infrastructures with distinct typologies were analyzed and compared. The three cases are Ves......, the findings of this research project can also support bike friendly design and planning, and cyclist advocacy....

  11. Space-based monitoring of ground deformation

    Science.gov (United States)

    Nobakht Ersi, Fereydoun; Safari, Abdolreza; Gamse, Sonja

    2016-07-01

    Ground deformation monitoring is valuable to understanding of the behaviour of natural phenomena. Space-Based measurement systems such as Global Positioning System are useful tools for continuous monitoring of ground deformation. Ground deformation analysis based on space geodetic techniques have provided a new, more accurate, and reliable source of information for geodetic positioning which is used to detect deformations of the Ground surface. This type of studies using displacement fields derived from repeated measurments of space-based geodetic networks indicates how crucial role the space geodetic methods play in geodynamics. The main scope of this contribution is to monitor of ground deformation by obtained measurements from GPS sites. We present ground deformation analysis in three steps: a global congruency test on daily coordinates of permanent GPS stations to specify in which epochs deformations occur, the localization of the deformed GPS sites and the determination of deformations.

  12. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  13. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  14. Fresnel zones for ground-based antennas

    DEFF Research Database (Denmark)

    Andersen, J. Bach

    1964-01-01

    The ordinary Fresnel zone concept is modified to include the influence of finite ground conductivity. This is important for ground-based antennas because the influence on the radiation pattern of irregularities near the antenna is determined by the amplitude and phase of the groundwave. A new...

  15. Tailoring Green Infrastructure Implementation Scenarios based on Stormwater Management Objectives

    Science.gov (United States)

    Green infrastructure (GI) refers to stormwater management practices that mimic nature by soaking up, storing, and controlling onsite. GI practices can contribute reckonable benefits towards meeting stormwater management objectives, such as runoff peak shaving, volume reduction, f...

  16. 3D Spatial Data Infrastructures for web-based Visualization

    OpenAIRE

    Schilling, Arne

    2014-01-01

    In this thesis, concepts for developing Spatial Data Infrastructures with an emphasis on visualizing 3D landscape and city models in distributed environments are discussed. Spatial Data Infrastructures are important for public authorities in order to perform tasks on a daily basis, and serve as research topic in geo-informatics. Joint initiatives at national and international level exist for harmonizing procedures and technologies. Interoperability is an important aspect in this context - as ...

  17. Space-based communications infrastructure for developing countries

    Science.gov (United States)

    Barker, Keith; Barnes, Carl; Price, K. M.

    1995-08-01

    This study examines the potential use of satellites to augment the telecommunications infrastructure of developing countries with advanced satellites. The study investigated the potential market for using satellites in developing countries, the role of satellites in national information infrastructures (NII), the technical feasibility of augmenting NIIs with satellites, and a nation's financial conditions necessary for procuring satellite systems. In addition, the study examined several technical areas including onboard processing, intersatellite links, frequency of operation, multibeam and active antennas, and advanced satellite technologies. The marketing portion of this study focused on three case studies: China, Brazil, and Mexico. These cases represent countries in various stages of telecommunication infrastructure development. The study concludes by defining the needs of developing countries for satellites, and recommends steps that both industry and NASA can take to improve the competitiveness of U.S. satellite manufacturing.

  18. Geo-communication and web-based infrastructure

    DEFF Research Database (Denmark)

    Brodersen, Lars; Nielsen, Anders

    2005-01-01

    in the infrastructure. The figure below illustrates the passive elements of geo-communication (plus a user), i.e. geo-information and infrastructure. All processes shown in the illustration can be iterative. The illustration can be seen as a longitudinal section of the overall process. The paper discusses...... the illustration below as well as the accompanying cross-section illustration and the impact thereof. Discussed is also a model for the organization of the passive components of the infrastructure; i.e. legislation, collaboration, standards, models, specifications, web-services and finally the information...... number of all kinds of information and combinations of these) characterize web-services, where maps are only a part of the whole. These new conditions demand new ways of modelling the processes leading to geo-communication. One new aspect is the fact that the service providers have become a part...

  19. Genetic Algorithms for Agent-Based Infrastructure Interdependency Modeling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    May Permann

    2007-03-01

    Today’s society relies greatly upon an array of complex national and international infrastructure networks such as transportation, electric power, telecommunication, and financial networks. This paper describes initial research combining agent-based infrastructure modeling software and genetic algorithms (GAs) to help optimize infrastructure protection and restoration decisions. This research proposes to apply GAs to the problem of infrastructure modeling and analysis in order to determine the optimum assets to restore or protect from attack or other disaster. This research is just commencing and therefore the focus of this paper is the integration of a GA optimization method with a simulation through the simulation’s agents.

  20. Image-Based Fine-Scale Infrastructure Monitoring

    Science.gov (United States)

    Detchev, Ivan Denislavov

    Monitoring the physical health of civil infrastructure systems is an important task that must be performed frequently in order to ensure their serviceability and sustainability. Additionally, laboratory experiments where individual system components are tested on the fine-scale level provide essential information during the structural design process. This type of inspection, i.e., measurements of deflections and/or cracks, has traditionally been performed with instrumentation that requires access to, or contact with, the structural element being tested; performs deformation measurements in only one dimension or direction; and/or provides no permanent visual record. To avoid the downsides of such instrumentation, this dissertation proposes a remote sensing approach based on a photogrammetric system capable of three-dimensional reconstruction. The proposed system is low-cost, consists of off-the-shelf components, and is capable of reconstructing objects or surfaces with homogeneous texture. The scientific contributions of this research work address the drawbacks in currently existing literature. Methods for in-situ multi-camera system calibration and system stability analysis are proposed in addition to methods for deflection/displacement monitoring, and crack detection and characterization in three dimensions. The mathematical model for the system calibration is based on a single or multiple reference camera(s) and built-in relative orientation constraints where the interior orientation and the mounting parameters for all cameras are explicitly estimated. The methods for system stability analysis can be used to comprehensively check for the cumulative impact of any changes in the system parameters. They also provide a quantitative measure of this impact on the reconstruction process in terms of image space units. Deflection/displacement monitoring of dynamic surfaces in three dimensions is achieved with the system by performing an innovative sinusoidal fitting

  1. Hierarchical, model-based risk management of critical infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Baiardi, F. [Polo G.Marconi La Spezia, Universita di Pisa, Pisa (Italy); Dipartimento di Informatica, Universita di Pisa, L.go B.Pontecorvo 3 56127, Pisa (Italy)], E-mail: f.baiardi@unipi.it; Telmon, C.; Sgandurra, D. [Dipartimento di Informatica, Universita di Pisa, L.go B.Pontecorvo 3 56127, Pisa (Italy)

    2009-09-15

    Risk management is a process that includes several steps, from vulnerability analysis to the formulation of a risk mitigation plan that selects countermeasures to be adopted. With reference to an information infrastructure, we present a risk management strategy that considers a sequence of hierarchical models, each describing dependencies among infrastructure components. A dependency exists anytime a security-related attribute of a component depends upon the attributes of other components. We discuss how this notion supports the formal definition of risk mitigation plan and the evaluation of the infrastructure robustness. A hierarchical relation exists among models that are analyzed because each model increases the level of details of some components in a previous one. Since components and dependencies are modeled through a hypergraph, to increase the model detail level, some hypergraph nodes are replaced by more and more detailed hypergraphs. We show how critical information for the assessment can be automatically deduced from the hypergraph and define conditions that determine cases where a hierarchical decomposition simplifies the assessment. In these cases, the assessment has to analyze the hypergraph that replaces the component rather than applying again all the analyses to a more detailed, and hence larger, hypergraph. We also show how the proposed framework supports the definition of a risk mitigation plan and discuss some indicators of the overall infrastructure robustness. Lastly, the development of tools to support the assessment is discussed.

  2. Simulation-based design for infrastructure system simulation

    NARCIS (Netherlands)

    Fumarola, M.; Huang, Y.; Tekinay, C.; Seck, M.D.

    2010-01-01

    Simulation models are often used to analyze the behavior and performance of infrastructure systems. The use of simulation models in multi-actor design processes is restricted to the analysis phase after conceptual designs have been completed. To use simulation models throughout the design process, s

  3. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There were 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation

  4. 3D mapping of buried underworld infrastructure using dynamic Bayesian network based multi-sensory image data fusion

    Science.gov (United States)

    Dutta, Ritaban; Cohn, Anthony G.; Muggleton, Jen M.

    2013-05-01

    The successful operation of buried infrastructure within urban environments is fundamental to the conservation of modern living standards. In this paper a novel multi-sensor image fusion framework has been proposed and investigated using dynamic Bayesian network for automatic detection of buried underworld infrastructure. Experimental multi-sensors images were acquired for a known buried plastic water pipe using Vibro-acoustic sensor based location methods and Ground Penetrating Radar imaging system. Computationally intelligent conventional image processing techniques were used to process three types of sensory images. Independently extracted depth and location information from different images regarding the target pipe were fused together using dynamic Bayesian network to predict the maximum probable location and depth of the pipe. The outcome from this study was very encouraging as it was able to detect the target pipe with high accuracy compared with the currently existing pipe survey map. The approach was also applied successfully to produce a best probable 3D buried asset map.

  5. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  6. Ground based spectroscopy of hot Jupiters

    Science.gov (United States)

    Waldmann, Ingo

    2010-05-01

    It has been shown in recent years with great success that spectroscopy of exoplanetary atmospheres is feasible using space based observatories such as the HST and Spitzer. However, with the end of the Spitzer cold-phase, space based observations in the near to mid infra-red are limited, which will remain true until the the onset of the JWST. The importance of developing methods of ground based spectroscopic analysis of known hot Jupiters is therefore apparent. In the past, various groups have attempted exoplanetary spectroscopy using ground based facilities and various techniques. Here I will present results using a novel spectral retrieval method for near to mid infra-red emission and transmission spectra of exoplanetary atmospheres taken from the ground and discuss the feasibility of future ground-based spectroscopy in a broader context. My recently commenced PhD project is under the supervision of Giovanna Tinetti (University College London) and in collaboration with J. P. Beaulieu (Institut d'Astrophysique de Paris), Mark Swain and Pieter Deroo (Jet Propulsion Laboratory, Caltech).

  7. Soils Investigation for Infiltration-based Green Infrastructure for Sewershed Management (Omaha NE)

    Science.gov (United States)

    EPA Report Abstract: Infiltration-based green infrastructure and related retrofits for sewershed-level rainfall and stormwater volume capture (e.g., rain gardens, cisterns, etc.) are increasingly being recognized as management options to reduce stormwater volume contribution into...

  8. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  9. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  10. A Cloud-based Infrastructure and Architecture for Environmental System Research

    Science.gov (United States)

    Wang, D.; Wei, Y.; Shankar, M.; Quigley, J.; Wilson, B. E.

    2016-12-01

    The present availability of high-capacity networks, low-cost computers and storage devices, and the widespread adoption of hardware virtualization and service-oriented architecture provide a great opportunity to enable data and computing infrastructure sharing between closely related research activities. By taking advantage of these approaches, along with the world-class high computing and data infrastructure located at Oak Ridge National Laboratory, a cloud-based infrastructure and architecture has been developed to efficiently deliver essential data and informatics service and utilities to the environmental system research community, and will provide unique capabilities that allows terrestrial ecosystem research projects to share their software utilities (tools), data and even data submission workflow in a straightforward fashion. The infrastructure will minimize large disruptions from current project-based data submission workflows for better acceptances from existing projects, since many ecosystem research projects already have their own requirements or preferences for data submission and collection. The infrastructure will eliminate scalability problems with current project silos by provide unified data services and infrastructure. The Infrastructure consists of two key components (1) a collection of configurable virtual computing environments and user management systems that expedite data submission and collection from environmental system research community, and (2) scalable data management services and system, originated and development by ORNL data centers.

  11. Building an Agent-Based Laboratory Infrastructure for Higher Education

    Directory of Open Access Journals (Sweden)

    Muna Saqer

    2009-08-01

    Full Text Available We present an ongoing project at the University of Houston- Downtown (UHD that aims to build a grid as a laboratory environment to support undergraduate education. We intend to use this PC clusters centered grid to allow students to perform laboratory exercises through web interfaces. In order to accommodate lab packages of a growing number of courses, we design the system as a modular system using multi-agent modeling. Students are recruited to implement the units of the system as senior student project topics or research activities sponsored by the Scholar's Academy of UHD. Through these projects, we geared our research toward higher education and provided students with opportunities to participate in building a computational infrastructure for curriculum improvement. This is very important for a minority-serving institution (MSI with limited resources such as UHD.

  12. Research on Methods for Discovering and Selecting Cloud Infrastructure Services Based on Feature Modeling

    Directory of Open Access Journals (Sweden)

    Huamin Zhu

    2016-01-01

    Full Text Available Nowadays more and more cloud infrastructure service providers are providing large numbers of service instances which are a combination of diversified resources, such as computing, storage, and network. However, for cloud infrastructure services, the lack of a description standard and the inadequate research of systematic discovery and selection methods have exposed difficulties in discovering and choosing services for users. First, considering the highly configurable properties of a cloud infrastructure service, the feature model method is used to describe such a service. Second, based on the description of the cloud infrastructure service, a systematic discovery and selection method for cloud infrastructure services are proposed. The automatic analysis techniques of the feature model are introduced to verify the model’s validity and to perform the matching of the service and demand models. Finally, we determine the critical decision metrics and their corresponding measurement methods for cloud infrastructure services, where the subjective and objective weighting results are combined to determine the weights of the decision metrics. The best matching instances from various providers are then ranked by their comprehensive evaluations. Experimental results show that the proposed methods can effectively improve the accuracy and efficiency of cloud infrastructure service discovery and selection.

  13. FGMOS Based Voltage-Controlled Grounded Resistor

    Directory of Open Access Journals (Sweden)

    R. Pandey

    2010-09-01

    Full Text Available This paper proposes a new floating gate MOSFET (FGMOS based voltage-controlled grounded resistor. In the proposed circuit FGMOS operating in the ohmic region is linearized by another conventional MOSFET operating in the saturation region. The major advantages of FGMOS based voltage-controlled grounded resistor (FGVCGR are simplicity, low total harmonic distortion (THD, and low power consumption. A simple application of this FGVCGR as a tunable high-pass filter is also suggested. The proposed circuits operate at the supply voltages of +/-0.75 V. The circuits are designed and simulated using SPICE in 0.25-µm CMOS technology. The simulation results of FGVCGR demonstrate a THD of 0.28% for the input signal 0.32 Vpp at 45 kHz, and a maximum power consumption of 254 µW.

  14. Development of Ground-Based Plant Sentinels

    Science.gov (United States)

    2007-11-02

    plants in response to different strains of Pseudomonas syringae. Planta . 217:767-775. De Moraes CM, Schultz JC, Mescher MC, Tumlinson JH. (2004...09-30-2004 Final Technical _ April 2001 - April 2003 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Developing Plants as Ground-based Sentinels 5b. GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT 9 "Z Plants emit volatile mixes characteristic of exposure to both plant and animal (insect) pathogens (bacteria and fungi). The

  15. Collaborative Privacy - A Community-Based Privacy Infrastructure

    Science.gov (United States)

    Kolter, Jan; Kernchen, Thomas; Pernul, Günther

    The landscape of the World Wide Web with all its versatile services heavily relies on the disclosure of private user information. Service providers collecting more and more of these personal user data pose a growing privacy threat for users. Addressing user concerns privacy-enhancing technologies emerged. One goal of these technologies is to enable users to improve the control over their personal data. A famous representative is the PRIME project that aims for a holistic privacy-enhancing identity management system. However, approaches like the PRIME privacy architecture require service providers to change their server infrastructure and add specific privacy-enhancing components. In the near future, service providers are not expected to alter internal processes. In this paper, we introduce a collaborative privacy community that allows the open exchange of privacy-related information. We lay out the privacy community’s functions and potentials within a user-centric, provider-independent privacy architecture that will help foster the usage and acceptance of privacy-enhancing technologies.

  16. Developing an open source-based spatial data infrastructure for integrated monitoring of mining areas

    Science.gov (United States)

    Lahn, Florian; Knoth, Christian; Prinz, Torsten; Pebesma, Edzer

    2014-05-01

    In all phases of mining campaigns, comprehensive spatial information is an essential requirement in order to ensure economically efficient but also safe mining activities as well as to reduce environmental impacts. Earth observation data acquired from various sources like remote sensing or ground measurements is important e.g. for the exploration of mineral deposits, the monitoring of mining induced impacts on vegetation or the detection of ground subsidence. The GMES4Mining project aims at exploring new remote sensing techniques and developing analysis methods on various types of sensor data to provide comprehensive spatial information during mining campaigns (BENECKE et al. 2013). One important task in this project is the integration of the data gathered (e.g. hyperspectral images, spaceborne radar data and ground measurements) as well as results of the developed analysis methods within a web-accessible data source based on open source software. The main challenges here are to provide various types and formats of data from different sensors and to enable access to analysis and processing techniques without particular software or licensing requirements for users. Furthermore the high volume of the involved data (especially hyperspectral remote sensing images) makes data transfer a major issue in this use case. To engage these problems a spatial data infrastructure (SDI) including a web portal as user frontend is being developed which allows users to access not only the data but also several analysis methods. The Geoserver software is used for publishing the data, which is then accessed and visualized in a JavaScript-based web portal. In order to perform descriptive statistics and some straightforward image processing techniques on the raster data (e.g. band arithmetic or principal component analysis) the statistics software R is implemented on a server and connected via Rserve. The analysis is controlled and executed directly by the user through the web portal and

  17. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  18. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of a test of a ground-based lidar of other type. The test was performed at DTU’s test site for large wind turbines at Høvsøre, Denmark. The result as an establishment of a relation between the reference wind speed measurements with measurement uncertainties provided...... by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The comparison of the lidar measurements of the wind direction with that from the wind vanes is also given....

  19. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  20. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  1. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Georgieva Yankova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  2. Receiver Based Traffic Control Mechanism to Protect Low Capacity Network in Infrastructure Based Wireless Mesh Network

    Science.gov (United States)

    Gilani, Syed Sherjeel Ahmad; Zubair, Muhammad; Khan, Zeeshan Shafi

    Infrastructure-based Wireless Mesh Networks are emerging as an affordable, robust, flexible and scalable technology. With the advent of Wireless Mesh Networks (WMNs) the dream of connecting multiple technology based networks seems to come true. A fully secure WMN is still a challenge for the researchers. In infrastructure-based WMNs almost all types of existing Wireless Networks like Wi-Fi, Cellular, WiMAX, and Sensor etc can be connected through Wireless Mesh Routers (WMRs). This situation can lead to a security problem. Some nodes can be part of the network with high processing power, large memory and least energy issues while others may belong to a network having low processing power, small memory and serious energy limitations. The later type of the nodes is very much vulnerable to targeted attacks. In our research we have suggested to set some rules on the WMR to mitigate these kinds of targeted flooding attacks. The WMR will then share those set of rules with other WMRs for Effective Utilization of Resources.

  3. The Mediated Museum: Computer-Based Technology and Museum Infrastructure.

    Science.gov (United States)

    Sterman, Nanette T.; Allen, Brockenbrough S.

    1991-01-01

    Describes the use of computer-based tools and techniques in museums. The integration of realia with media-based advice and interpretation is described, electronic replicas of ancient Greek vases in the J. Paul Getty Museum are explained, examples of mediated exhibits are presented, and the use of hypermedia is discussed. (five references) (LRW)

  4. Designing a graph-based approach to landscape ecological assessment of linear infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Girardet, Xavier, E-mail: xavier.girardet@univ-fcomte.fr; Foltête, Jean-Christophe, E-mail: jean-christophe.foltete@univ-fcomte.fr; Clauzel, Céline, E-mail: celine.clauzel@univ-fcomte.fr

    2013-09-15

    The development of major linear infrastructures contributes to landscape fragmentation and impacts natural habitats and biodiversity in various ways. To anticipate and minimize such impacts, landscape planning needs to be capable of effective strategic environmental assessment (SEA) and of supporting environmental impact assessment (EIA) decisions. To this end, species distribution models (SDMs) are an effective way of making predictive maps of the presence of a given species. In this paper, we propose to combine SDMs and graph-based representation of landscape networks to integrate the potential long-distance effect of infrastructures on species distribution. A diachronic approach, comparing distribution before and after the linear infrastructure is constructed, leads to the design of a species distribution assessment (SDA), taking into account population isolation. The SDA makes it possible (1) to estimate the local variation in probability of presence and (2) to characterize the impact of the infrastructure in terms of global variation in presence and of distance of disturbance. The method is illustrated by assessing the impact of the construction of a high-speed railway line on the distribution of several virtual species in Franche-Comté (France). The study shows the capacity of the SDA to characterize the impact of a linear infrastructure either as a research concern or as a spatial planning challenge. SDAs could be helpful in deciding among several scenarios for linear infrastructure routes or for the location of mitigation measures. -- Highlights: • Graph connectivity metrics were integrated into a species distribution model. • SDM was performed before and after the implementation of linear infrastructure. • The local variation of presence provides spatial indicators of the impact.

  5. The information infrastructure that supports evidence-based veterinary medicine: a comparison with human medicine.

    Science.gov (United States)

    Toews, Lorraine

    2011-01-01

    In human medicine, the information infrastructure that supports the knowledge translation processes of exchange, synthesis, dissemination, and application of the best clinical intervention research has developed significantly in the past 15 years, facilitating the uptake of research evidence by clinicians as well as the practice of evidence-based medicine. Seven of the key elements of this improved information infrastructure are clinical trial registries, research reporting standards, systematic reviews, organizations that support the production of systematic reviews, the indexing of clinical intervention research in MEDLINE, clinical search filters for MEDLINE, and point-of-care decision support information resources. The objective of this paper is to describe why these elements are important for evidence-based medicine, the key developments and issues related to these seven information infrastructure elements in human medicine, how these 7 elements compare with the corresponding infrastructure elements in veterinary medicine, and how all of these factors affect the translation of clinical intervention research into clinical practice. A focused search of the Ovid MEDLINE database was conducted for English language journal literature published between 2000 and 2010. Two bibliographies were consulted and selected national and international Web sites were searched using Google. The literature reviewed indicates that the information infrastructure supporting evidence-based veterinary medicine practice in all of the 7 elements reviewed is significantly underdeveloped in relation to the corresponding information infrastructure in human medicine. This lack of development creates barriers to the timely translation of veterinary medicine research into clinical practice and also to the conduct of both primary clinical intervention research and synthesis research.

  6. Geo-communication and web-based geospatial infrastructure

    DEFF Research Database (Denmark)

    Brodersen, Lars; Nielsen, Anders

    2005-01-01

    The introduction of web-services as index-portals based on geoinformation has changed the conditions for both content and form of geocommunication. A high number of players and interactions (as well as a very high number of all kinds of information and combinations of these) characterize web-serv...

  7. The Importance of Infrastructure for Support for Community Based Learning

    Science.gov (United States)

    Rosenberg, Helen; Karp, Debra

    2012-01-01

    The Community Based Learning (CBL) Certificate and the Civic Honors Program provide unique opportunities for students to receive college credit for their civic participation. The authors describe these programs and the historical and administrative changes at the University of Wisconsin-Parkside, which created an environment for their development…

  8. SQoS as the Base for Next Generation Global Infrastructure

    DEFF Research Database (Denmark)

    Madsen, Ole Brun; Knudsen, Thomas Phillip; Pedersen, Jens Myrup

    2003-01-01

    of Service (SQoS) has been introduced as an attempt to establish a base for reliability management in complex large-scale communication infrastructures. Two approaches to provide SQoS are introduced, and results for the N2R(p;q;r) family of vertex symmetric graph structures are presented and discussed......The convergence towards a unified global WAN platform, providing both best effort services and guaranteed high quality services, sets the agenda for the design and implementation of the next generation global information infrastructure. The absence of design principles, allowing for smooth and cost...

  9. SQoS as the Base for Next Generation Global Infrastructure

    DEFF Research Database (Denmark)

    Madsen, Ole Brun; Knudsen, Thomas Phillip; Pedersen, Jens Myrup

    of Service (SQoS) has been introduced as an attempt to establish a base for reliability management in complex large-scale communication infrastructures. Two approaches to provide SQoS are introduced, and results for the N2R(p;q;r) family of vertex symmetric graph structures are presented and discussed......The convergence towards a unified global WAN platform, providing both best effort services and guaranteed high quality services, sets the agenda for the design and implementation of the next generation global information infrastructure. The absence of design principles, allowing for smooth and cost...

  10. A Sustainable approach to large ICT Science based infrastructures; the case for Radio Astronomy

    CERN Document Server

    Barbosa, Domingos; Boonstra, Albert-Jan; Aguiar, Rui; van Ardenne, Arnold; de Santander-Vela, Juande; Verdes-Montenegro, Lourdes

    2014-01-01

    Large sensor-based infrastructures for radio astronomy will be among the most intensive data-driven projects in the world, facing very high power demands. The geographically wide distribution of these infrastructures and their associated processing High Performance Computing (HPC) facilities require Green Information and Communications Technologies (ICT). A combination is needed of low power computing, efficient data storage, local data services, Smart Grid power management, and inclusion of Renewable Energies. Here we outline the major characteristics and innovation approaches to address power efficiency and long-term power sustainability for radio astronomy projects, focusing on Green ICT for science.

  11. Intercloud Architecture Framework for Heterogeneous Cloud based Infrastructure Services Provisioning On-Demand

    NARCIS (Netherlands)

    Y. Demchenko; C. Ngo; C. de Laat; J.A. Garcia-Espin; S. Figuerola; J. Rodriguez; L.M. Contreras; G. Landi; N. Ciulli

    2013-01-01

    This paper presents on-going research to develop the Intercloud Architecture Framework (ICAF) that addresses problems in multi-provider multi-domain heterogeneous cloud based infrastructure services and applications integration and interoperability, to allow their on-demand provisioning. The paper r

  12. Eielson Air Force Base Infrastructure Development in Support of RED FLAG-Alaska Environmental Assessment

    Science.gov (United States)

    2007-08-01

    MAAS Colonel, USAF Vice Commander Date EIELSON AIR FORCE BASE INFRASTRUCTURE DEVELOPMENT IN SUPPORT OF RED FLAG-ALASKA...Name Address1 Address2 Address3 City State Zip Governor of Alaska Palin The Honorable Sarah 240 Main St., Ste. 300 Court Plaza Bldg. Juneau AK 99801

  13. The method and index of sustainability assessment of infrastructure projects based on system dynamics in China

    Directory of Open Access Journals (Sweden)

    Jun Zhou

    2015-05-01

    Full Text Available Purpose: As one of the most important overhead capital of urban economics and social development, the sustainable development of urban infrastructure is becoming a key issue of prosperous society growing. The purpose of this paper is to establish a basic model to analysis certain infrastructure project’s sustainable construction and operation. Design/methodology/approach: System dynamics is an effective stimulation method and tool to deal with such complex, dynamics, nonlinear systems, which could be used in analyzing and evaluating all aspects of infrastructure sustainability internally and externally. In this paper, the system is divided into four subsystems and 12 main impact indicators. Through setting the boundary and other basic hypothesis, this paper designs the basic causal loop diagrams and stock & flow diagrams to describe the relationship between variables and establish a quantifiable structure for the system. Findings: Adopting a sewerage treatment in China as a case to test our model, we could conclude that the model of internal sustainable subsystem is reasonable. However, this model is a basic model, and it need to be specific designed for the certain project due to the diversity of infrastructure types and the unique conditions of each projects. Originality/value: System Dynamics (SD is widely used in the study of sustainable development and has plentiful research achievements from macro perspective but few studies in the microcosmic project systems. This paper focuses on the unique characteristics of urban infrastructure in China and selects infrastructure project which is based on micro-system discussion. The model we designed has certain practical significance in policy setting, operation monitoring and adjustment of the urban projects with high rationality and accuracy.

  14. Improving the effectiveness of school infrastructure planning using information systems based on priority scale in Salatiga

    Science.gov (United States)

    Sucipto, Katoningsih, Sri; Ratnaningrum, Anggry

    2017-03-01

    With large number of schools and many components of school infrastructure supporting with limited funds,so, the school infrastructure development cannot be done simultaneously. Implementation of development must be based on priorities according to the needs. Record all existing needs Identify the condition of the school infrastructure, so that all data recorded bias is valid and has covered all the infrastructure needs of the school. SIPIS very helpful in the process of recording all the necessary needs of the school. Make projections of school development, student participants to the HR business. Make the order needs based on their level of importance. Determine the order in accordance with the needs of its importance, the most important first. By using SIPIS can all be arranged correctly so that do not confuse to construct what should be done in advance but be the last because of factors like and dislike. Make the allocation of funds in detail, then when submitting the budget funds provided in accordance with demand.

  15. Key Ground-Based and Space-Based Assets to Disentangle Magnetic Field Sources in the Earth's Environment

    Science.gov (United States)

    Chulliat, A.; Matzka, J.; Masson, A.; Milan, S. E.

    2016-10-01

    The magnetic field measured on the ground or in space is the addition of several sources: from flows within the Earth's core to electric currents in distant regions of the magnetosphere. Properly separating and characterizing these sources requires appropriate observations, both ground-based and space-based. In the present paper, we review the existing observational infrastructure, from magnetic observatories and magnetometer arrays on the ground to satellites in low-Earth (Swarm) and highly elliptical (Cluster) orbits. We also review the capability of SuperDARN to provide polar ionospheric convection patterns supporting magnetic observations. The past two decades have been marked by exciting new developments in all observation types. We review these developments, focusing on how they complement each other and how they have led or could lead in the near future to improved separation and modeling of the geomagnetic sources.

  16. A Cloud-Based Infrastructure for Near-Real-Time Processing and Dissemination of NPP Data

    Science.gov (United States)

    Evans, J. D.; Valente, E. G.; Chettri, S. S.

    2011-12-01

    We are building a scalable cloud-based infrastructure for generating and disseminating near-real-time data products from a variety of geospatial and meteorological data sources, including the new National Polar-Orbiting Environmental Satellite System (NPOESS) Preparatory Project (NPP). Our approach relies on linking Direct Broadcast and other data streams to a suite of scientific algorithms coordinated by NASA's International Polar-Orbiter Processing Package (IPOPP). The resulting data products are directly accessible to a wide variety of end-user applications, via industry-standard protocols such as OGC Web Services, Unidata Local Data Manager, or OPeNDAP, using open source software components. The processing chain employs on-demand computing resources from Amazon.com's Elastic Compute Cloud and NASA's Nebula cloud services. Our current prototype targets short-term weather forecasting, in collaboration with NASA's Short-term Prediction Research and Transition (SPoRT) program and the National Weather Service. Direct Broadcast is especially crucial for NPP, whose current ground segment is unlikely to deliver data quickly enough for short-term weather forecasters and other near-real-time users. Direct Broadcast also allows full local control over data handling, from the receiving antenna to end-user applications: this provides opportunities to streamline processes for data ingest, processing, and dissemination, and thus to make interpreted data products (Environmental Data Records) available to practitioners within minutes of data capture at the sensor. Cloud computing lets us grow and shrink computing resources to meet large and rapid fluctuations in data availability (twice daily for polar orbiters) - and similarly large fluctuations in demand from our target (near-real-time) users. This offers a compelling business case for cloud computing: the processing or dissemination systems can grow arbitrarily large to sustain near-real time data access despite surges in

  17. Current trends in ground based solar magnetometry

    Science.gov (United States)

    Gosain, Sanjay

    2016-07-01

    Continuous observations of the sun, over more than a century, have led to several important discoveries in solar astronomy. These include the discovery of the solar magnetism and its cyclic modulation, active region formation and decay and their role in energetic phenomena such as fares and coronal mass ejections (CMEs), fine structure and dynamics of the sunspots and small-scale organization of the magnetic flux in the form of flux tubes and so forth. In this article we give a brief overview of advancements in solar observational techniques in recent decades and the results obtained from the such observations. These include techniques to achieve high angular resolution, high spectral and polarimetric sensitivity and innovative new detectors. A wide range of spatial, temporal and spectral domains exploited by solar astronomers to understand the solar phenomena are discussed. Many new upcoming telescopes and instruments that are designed to address different aspects of solar physics problems are briefly described. Finally, we discuss the advantages of observing from the ground and how they can complement space-based observations.

  18. E-Visas Verification Schemes Based on Public-Key Infrastructure and Identity Based Encryption

    Directory of Open Access Journals (Sweden)

    Najlaa A. Abuadhmah

    2010-01-01

    Full Text Available Problem statement: Visa is a very important travelling document, which is an essential need at the point of entry of any country we are visiting. However an important document such as visa is still handled manually which affects the accuracy and efficiency of processing the visa. Work on e-visa is almost unexplored. Approach: This study provided a detailed description of a newly proposed e-visa verification system prototyped based on RFID technology. The core technology of the proposed e-visa verification system is based on Identity Based Encryption (IBE and Public Key Infrastructure (PKI. This research provided comparison between both methods in terms of processing time and application usability. Results: The result showed the e-visa verification system is highly flexible when implemented with IBE and on the other hand produces better processing speed when implemented with PKI. Conclusion: Therefore, it is believed that the proposed e-visa verification schemes are valuable security protocol for future study on e-visa.

  19. Mapping green infrastructure based on ecosystem services and ecological networks. A Pan-European case study

    OpenAIRE

    LIQUETE GARCIA MARIA DEL CAMINO; KLEESCHULTE Stefan; DIGE Gorm; MAES JOACHIM; Grizzetti, Bruna; Olah, Branislav; ZULIAN GRAZIA

    2014-01-01

    Identifying, promoting and preserving a strategically planned green infrastructure (GI) network can provide ecological, economic and social benefits. It has also become a priority for the planning and decision-making process in sectors such as conservation, (land) resource efficiency, agriculture, forestry or urban development. In this paper we propose a methodology that can be used to identify and map GI elements at landscape level based on the notions of ecological connectivity, multi-fu...

  20. Enabling Sustainability: Hierarchical Need-Based Framework for Promoting Sustainable Data Infrastructure in Developing Countries

    OpenAIRE

    David O. Yawson; Armah, Frederick A.; Alex N. M. Pappoe

    2009-01-01

    The paper presents thoughts on Sustainable Data Infrastructure (SDI) development, and its user requirements bases. It brings Maslow's motivational theory to the fore, and proposes it as a rationalization mechanism for entities (mostly governmental) that aim at realizing SDI. Maslow's theory, though well-known, is somewhat new in geospatial circles; this is where the novelty of the paper resides. SDI has been shown to enable and aid development in diverse ways. However, stimulating developing ...

  1. A Provenance-Based Infrastructure to Support the Life Cycle of Executable Papers

    DEFF Research Database (Denmark)

    Bonnet, Philippe

    2011-01-01

    and extending results. We present an infrastructure for creating, disseminating, and maintaining executable papers. Our approach is rooted in provenance, the documentation of exactly how data, experiments, and results were generated. We seek to improve the experience for everyone involved in the life cycle......As publishers establish a greater online presence as well as infrastructure to support the distribution of more varied information, the idea of an executable paper that enables greater interaction has developed. An executable paper provides more information for computational experiments and results...... of an executable paper. The automated capture of provenance information allows authors to easily integrate and update results into papers as they write, and also helps reviewers better evaluate approaches by enabling them to explore experimental results by varying parameters or data. With a provenance-based system...

  2. Tool-based risk assessment of cloud infrastructures as socio-technical systems

    NARCIS (Netherlands)

    Nidd, Michael; Ivanova, Marieta Georgieva; Probst, Christian W.; Tanner, Axel; Ko, Ryan; Choo, Raymond

    2015-01-01

    Assessing risk in cloud infrastructures is difficult. Typical cloud infrastructures contain potentially thousands of nodes that are highly interconnected and dynamic. Another important component is the set of human actors who get access to data and computing infrastructure. The cloud infrastructure

  3. Tool-based Risk Assessment of Cloud Infrastructures as Socio-Technical Systems

    NARCIS (Netherlands)

    Nidd, Michael; Ivanova, Marieta Georgieva; Probst, Christian W.; Tanner, Axel; Ko, Ryan; Choo, Raymond

    2015-01-01

    Assessing risk in cloud infrastructures is difficult. Typical cloud infrastructures contain potentially thousands of nodes that are highly interconnected and dynamic. Another important component is the set of human actors who get access to data and computing infrastructure. The cloud infrastructure

  4. A scenario-based MCDA framework for wastewater infrastructure planning under uncertainty.

    Science.gov (United States)

    Zheng, Jun; Egger, Christoph; Lienert, Judit

    2016-12-01

    Wastewater infrastructure management is increasingly important because of urbanization, environmental pollutants, aging infrastructures, and climate change. We propose a scenario-based multi-criteria decision analysis (MCDA) framework to compare different infrastructure alternatives in terms of their sustainability. These range from the current centralized system to semi- and fully decentralized options. Various sources of uncertainty are considered, including external socio-economic uncertainty captured by future scenarios, uncertainty in predicting outcomes of alternatives, and incomplete preferences of stakeholders. Stochastic Multi-criteria Acceptability Analysis (SMAA) with Monte Carlo simulation is performed, and rank acceptability indices help identify robust alternatives. We propose step-wise local sensitivity analysis, which is useful for practitioners to effectively elicit preferences and identify major sources of uncertainty. The approach is demonstrated in a Swiss case study where ten stakeholders are involved throughout. Their preferences are quantitatively elicited by combining an online questionnaire with face-to-face interviews. The trade-off questions reveal a high concern about environmental and an unexpectedly low importance of economic criteria. This results in a surprisingly good ranking of high-tech decentralized wastewater alternatives using urine source separation for most stakeholders in all scenarios. Combining scenario planning and MCDA proves useful, as the performance of wastewater infrastructure systems is indeed sensitive to socio-economic boundary conditions and the other sources of uncertainty. The proposed sensitivity analysis suggests that a simplified elicitation procedure is sufficient in many cases. Elicitation of more information such as detailed marginal value functions should only follow if the sensitivity analysis finds this necessary. Moreover, the uncertainty of rankings can be considerably reduced by better predictions

  5. Tool-based Risk Assessment of Cloud Infrastructures as Socio-Technical Systems

    DEFF Research Database (Denmark)

    Nidd, Michael; Ivanova, Marieta Georgieva; Probst, Christian W.

    2015-01-01

    Assessing risk in cloud infrastructures is difficult. Typical cloud infrastructures contain potentially thousands of nodes that are highly interconnected and dynamic. Another important component is the set of human actors who get access to data and computing infrastructure. The cloud infrastructure...... is extracted automatically from the configuration of the cloud infrastructure, which is especially important for systems so dynamic and complex....... exercise for cloud infrastructures using the socio-technical model developed in the TRESPASS project; after showing how to model typical components of a cloud infrastructure, we show how attacks are identified on this model and discuss their connection to risk assessment. The technical part of the model...

  6. Ground-based observations of Kepler asteroseismic targets

    DEFF Research Database (Denmark)

    Uyttterhoeven , K.; Karoff, Christoffer

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising...

  7. Power Gating Based Ground Bounce Noise Reduction

    Directory of Open Access Journals (Sweden)

    M. Uma Maheswari

    2014-08-01

    Full Text Available As low power circuits are most popular the decrease in supply voltage leads to increase in leakage power with respect to the technology scaling. So for removing this kind of leakages and to provide a better power efficiency many power gating techniques are used. But the leakage due to ground connection to the active part of the circuit is very high rather than all other leakages. As it is mainly due to the back EMF of the ground connection it was called it as ground bounce noise. To reduce this noise different methodologies are designed. In this paper the design of such an efficient technique related to ground bounce noise reduction using power gating circuits and comparing the results using DSCH and Microwind low power tools. In this paper the analysis of adders such as full adders using different types of power gated circuits using low power VLSI design techniques and to present the comparison results between different power gating methods.

  8. GOMMA: a component-based infrastructure for managing and analyzing life science ontologies and their evolution

    Science.gov (United States)

    2011-01-01

    Background Ontologies are increasingly used to structure and semantically describe entities of domains, such as genes and proteins in life sciences. Their increasing size and the high frequency of updates resulting in a large set of ontology versions necessitates efficient management and analysis of this data. Results We present GOMMA, a generic infrastructure for managing and analyzing life science ontologies and their evolution. GOMMA utilizes a generic repository to uniformly and efficiently manage ontology versions and different kinds of mappings. Furthermore, it provides components for ontology matching, and determining evolutionary ontology changes. These components are used by analysis tools, such as the Ontology Evolution Explorer (OnEX) and the detection of unstable ontology regions. We introduce the component-based infrastructure and show analysis results for selected components and life science applications. GOMMA is available at http://dbs.uni-leipzig.de/GOMMA. Conclusions GOMMA provides a comprehensive and scalable infrastructure to manage large life science ontologies and analyze their evolution. Key functions include a generic storage of ontology versions and mappings, support for ontology matching and determining ontology changes. The supported features for analyzing ontology changes are helpful to assess their impact on ontology-dependent applications such as for term enrichment. GOMMA complements OnEX by providing functionalities to manage various versions of mappings between two ontologies and allows combining different match approaches. PMID:21914205

  9. GOMMA: a component-based infrastructure for managing and analyzing life science ontologies and their evolution

    Directory of Open Access Journals (Sweden)

    Kirsten Toralf

    2011-09-01

    Full Text Available Abstract Background Ontologies are increasingly used to structure and semantically describe entities of domains, such as genes and proteins in life sciences. Their increasing size and the high frequency of updates resulting in a large set of ontology versions necessitates efficient management and analysis of this data. Results We present GOMMA, a generic infrastructure for managing and analyzing life science ontologies and their evolution. GOMMA utilizes a generic repository to uniformly and efficiently manage ontology versions and different kinds of mappings. Furthermore, it provides components for ontology matching, and determining evolutionary ontology changes. These components are used by analysis tools, such as the Ontology Evolution Explorer (OnEX and the detection of unstable ontology regions. We introduce the component-based infrastructure and show analysis results for selected components and life science applications. GOMMA is available at http://dbs.uni-leipzig.de/GOMMA. Conclusions GOMMA provides a comprehensive and scalable infrastructure to manage large life science ontologies and analyze their evolution. Key functions include a generic storage of ontology versions and mappings, support for ontology matching and determining ontology changes. The supported features for analyzing ontology changes are helpful to assess their impact on ontology-dependent applications such as for term enrichment. GOMMA complements OnEX by providing functionalities to manage various versions of mappings between two ontologies and allows combining different match approaches.

  10. Promoting community based approaches to social infrastructure provision in urban areas in Nigeria.

    Science.gov (United States)

    Uduku, N O

    1994-10-01

    Inadequate social infrastructure provision--in terms of education, health care facilities, and water and sanitation--has become a critical issue in Nigeria's urban areas. The decline of the Nigerian economy and the introduction of economic structural adjustment have curtailed drastically government spending on these services. Recommended is a return to the regional community-based approaches that prevailed in earlier periods. In precolonial Nigeria, the community help ethic ensured that all societies had adequate social infrastructure. With colonization and the emergence of an urban cash economy, the government took control of service provision in urban areas; in rural areas, neglected by government, self-help efforts continued to flourish. The trend in recent decades has been toward the privatization of urban services, deregulation, and growing inequities between affluent urban dwellers and the urban and rural poor. The recommended localization strategy would involve the creation of regional bodies to provide public utilities and regulate social infrastructure provision. Responsibility for the organization and provision of these services would rest with democratically elected community associations in rural areas and municipal councils in urban areas. The needs of poor communities could be funded by cross-subsidizing utility costs among affluent communities. Such a strategy, although unlikely to be supported by government and urban elites, would revitalize the community responsibility ethos that was lost in the urbanization process.

  11. Design of a Mobile Agent-Based Adaptive Communication Middleware for Federations of Critical Infrastructure Simulations

    Science.gov (United States)

    Görbil, Gökçe; Gelenbe, Erol

    The simulation of critical infrastructures (CI) can involve the use of diverse domain specific simulators that run on geographically distant sites. These diverse simulators must then be coordinated to run concurrently in order to evaluate the performance of critical infrastructures which influence each other, especially in emergency or resource-critical situations. We therefore describe the design of an adaptive communication middleware that provides reliable and real-time one-to-one and group communications for federations of CI simulators over a wide-area network (WAN). The proposed middleware is composed of mobile agent-based peer-to-peer (P2P) overlays, called virtual networks (VNets), to enable resilient, adaptive and real-time communications over unreliable and dynamic physical networks (PNets). The autonomous software agents comprising the communication middleware monitor their performance and the underlying PNet, and dynamically adapt the P2P overlay and migrate over the PNet in order to optimize communications according to the requirements of the federation and the current conditions of the PNet. Reliable communications is provided via redundancy within the communication middleware and intelligent migration of agents over the PNet. The proposed middleware integrates security methods in order to protect the communication infrastructure against attacks and provide privacy and anonymity to the participants of the federation. Experiments with an initial version of the communication middleware over a real-life networking testbed show that promising improvements can be obtained for unicast and group communications via the agent migration capability of our middleware.

  12. Designing Green Stormwater Infrastructure for Hydrologic and Human Benefits: An Image Based Machine Learning Approach

    Science.gov (United States)

    Rai, A.; Minsker, B. S.

    2014-12-01

    Urbanization over the last century has degraded our natural water resources by increasing storm-water runoff, reducing nutrient retention, and creating poor ecosystem health downstream. The loss of tree canopy and expansion of impervious area and storm sewer systems have significantly decreased infiltration and evapotranspiration, increased stream-flow velocities, and increased flood risk. These problems have brought increasing attention to catchment-wide implementation of green infrastructure (e.g., decentralized green storm water management practices such as bioswales, rain gardens, permeable pavements, tree box filters, cisterns, urban wetlands, urban forests, stream buffers, and green roofs) to replace or supplement conventional storm water management practices and create more sustainable urban water systems. Current green infrastructure (GI) practice aims at mitigating the negative effects of urbanization by restoring pre-development hydrology and ultimately addressing water quality issues at an urban catchment scale. The benefits of green infrastructure extend well beyond local storm water management, as urban green spaces are also major contributors to human health. Considerable research in the psychological sciences have shown significant human health benefits from appropriately designed green spaces, yet impacts on human wellbeing have not yet been formally considered in GI design frameworks. This research is developing a novel computational green infrastructure (GI) design framework that integrates hydrologic requirements with criteria for human wellbeing. A supervised machine learning model is created to identify specific patterns in urban green spaces that promote human wellbeing; the model is linked to RHESSYS model to evaluate GI designs in terms of both hydrologic and human health benefits. An application of the models to Dead Run Watershed in Baltimore showed that image mining methods were able to capture key elements of human preferences that could

  13. Movable Ground Based Recovery System for Reuseable Space Flight Hardware

    Science.gov (United States)

    Sarver, George L. (Inventor)

    2013-01-01

    A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.

  14. Heterogeneous access and processing of EO-Data on a Cloud based Infrastructure delivering operational Products

    Science.gov (United States)

    Niggemann, F.; Appel, F.; Bach, H.; de la Mar, J.; Schirpke, B.; Dutting, K.; Rucker, G.; Leimbach, D.

    2015-04-01

    To address the challenges of effective data handling faced by Small and Medium Sized Enterprises (SMEs) a cloud-based infrastructure for accessing and processing of Earth Observation(EO)-data has been developed within the project APPS4GMES(www.apps4gmes.de). To gain homogenous multi mission data access an Input Data Portal (IDP) been implemented on this infrastructure. The IDP consists of an Open Geospatial Consortium (OGC) conformant catalogue, a consolidation module for format conversion and an OGC-conformant ordering framework. Metadata of various EO-sources and with different standards is harvested and transferred to an OGC conformant Earth Observation Product standard and inserted into the catalogue by a Metadata Harvester. The IDP can be accessed for search and ordering of the harvested datasets by the services implemented on the cloud infrastructure. Different land-surface services have been realised by the project partners, using the implemented IDP and cloud infrastructure. Results of these are customer ready products, as well as pre-products (e.g. atmospheric corrected EO data), serving as a basis for other services. Within the IDP an automated access to ESA's Sentinel-1 Scientific Data Hub has been implemented. Searching and downloading of the SAR data can be performed in an automated way. With the implementation of the Sentinel-1 Toolbox and own software, for processing of the datasets for further use, for example for Vista's snow monitoring, delivering input for the flood forecast services, can also be performed in an automated way. For performance tests of the cloud environment a sophisticated model based atmospheric correction and pre-classification service has been implemented. Tests conducted an automated synchronised processing of one entire Landsat 8 (LS-8) coverage for Germany and performance comparisons to standard desktop systems. Results of these tests, showing a performance improvement by the factor of six, proved the high flexibility and

  15. Estimation of above ground biomass in boreal forest using ground-based Lidar

    Science.gov (United States)

    Taheriazad, L.; Moghadas, H.; Sanchez-Azofeifa, A.

    2017-05-01

    Assessing above ground biomass of forest is important for carbon storage monitoring in boreal forest. In this study, a new model is developed to estimate the above ground biomass using ground based Lidar data. 21 trees were measured and scanned across the plot area study in boreal forests of Alberta, Canada. The study area was scanned in the summer season 2014 to quantify the green biomass. The average of total crown biomass and green biomass in this study was 377 kg (standard deviation, S.D. = 243 kg) and 6.42 kg (S.D. = 2.69 m), respectively.

  16. Albert Luthuli Municipality community-based labour-intensive IRMA infrastructure provision: Findings of an impact study

    CSIR Research Space (South Africa)

    Mashiri, M

    2010-08-01

    Full Text Available This paper briefly describes the community-based labour-intensive construction of the Integrated Rural Mobility and Access (IRMA) transportation infrastructure projects using selected beneficiary villages in Albert Luthuli local municipality as case...

  17. A reference model for model-based design of critical infrastructure protection systems

    Science.gov (United States)

    Shin, Young Don; Park, Cheol Young; Lee, Jae-Chon

    2015-05-01

    Today's war field environment is getting versatile as the activities of unconventional wars such as terrorist attacks and cyber-attacks have noticeably increased lately. The damage caused by such unconventional wars has also turned out to be serious particularly if targets are critical infrastructures that are constructed in support of banking and finance, transportation, power, information and communication, government, and so on. The critical infrastructures are usually interconnected to each other and thus are very vulnerable to attack. As such, to ensure the security of critical infrastructures is very important and thus the concept of critical infrastructure protection (CIP) has come. The program to realize the CIP at national level becomes the form of statute in each country. On the other hand, it is also needed to protect each individual critical infrastructure. The objective of this paper is to study on an effort to do so, which can be called the CIP system (CIPS). There could be a variety of ways to design CIPS's. Instead of considering the design of each individual CIPS, a reference model-based approach is taken in this paper. The reference model represents the design of all the CIPS's that have many design elements in common. In addition, the development of the reference model is also carried out using a variety of model diagrams. The modeling language used therein is the systems modeling language (SysML), which was developed and is managed by Object Management Group (OMG) and a de facto standard. Using SysML, the structure and operational concept of the reference model are designed to fulfil the goal of CIPS's, resulting in the block definition and activity diagrams. As a case study, the operational scenario of the nuclear power plant while being attacked by terrorists is studied using the reference model. The effectiveness of the results is also analyzed using multiple analysis models. It is thus expected that the approach taken here has some merits

  18. A prototype Infrastructure for Cloud-based distributed services in High Availability over WAN

    Science.gov (United States)

    Bulfon, C.; Carlino, G.; De Salvo, A.; Doria, A.; Graziosi, C.; Pardi, S.; Sanchez, A.; Carboni, M.; Bolletta, P.; Puccio, L.; Capone, V.; Merola, L.

    2015-12-01

    In this work we present the architectural and performance studies concerning a prototype of a distributed Tier2 infrastructure for HEP, instantiated between the two Italian sites of INFN-Romal and INFN-Napoli. The network infrastructure is based on a Layer-2 geographical link, provided by the Italian NREN (GARR), directly connecting the two remote LANs of the named sites. By exploiting the possibilities offered by the new distributed file systems, a shared storage area with synchronous copy has been set up. The computing infrastructure, based on an OpenStack facility, is using a set of distributed Hypervisors installed in both sites. The main parameter to be taken into account when managing two remote sites with a single framework is the effect of the latency, due to the distance and the end-to-end service overhead. In order to understand the capabilities and limits of our setup, the impact of latency has been investigated by means of a set of stress tests, including data I/O throughput, metadata access performance evaluation and network occupancy, during the life cycle of a Virtual Machine. A set of resilience tests has also been performed, in order to verify the stability of the system on the event of hardware or software faults. The results of this work show that the reliability and robustness of the chosen architecture are effective enough to build a production system and to provide common services. This prototype can also be extended to multiple sites with small changes of the network topology, thus creating a National Network of Cloud-based distributed services, in HA over WAN.

  19. Designing ETL Tools to Feed a Data Warehouse Based on Electronic Healthcare Record Infrastructure.

    Science.gov (United States)

    Pecoraro, Fabrizio; Luzi, Daniela; Ricci, Fabrizio L

    2015-01-01

    Aim of this paper is to propose a methodology to design Extract, Transform and Load (ETL) tools in a clinical data warehouse architecture based on the Electronic Healthcare Record (EHR). This approach takes advantages on the use of this infrastructure as one of the main source of information to feed the data warehouse, taking also into account that clinical documents produced by heterogeneous legacy systems are structured using the HL7 CDA standard. This paper describes the main activities to be performed to map the information collected in the different types of document with the dimensional model primitives.

  20. A scalable infrastructure for CMS data analysis based on OpenStack Cloud and Gluster file system

    Science.gov (United States)

    Toor, S.; Osmani, L.; Eerola, P.; Kraemer, O.; Lindén, T.; Tarkoma, S.; White, J.

    2014-06-01

    The challenge of providing a resilient and scalable computational and data management solution for massive scale research environments requires continuous exploration of new technologies and techniques. In this project the aim has been to design a scalable and resilient infrastructure for CERN HEP data analysis. The infrastructure is based on OpenStack components for structuring a private Cloud with the Gluster File System. We integrate the state-of-the-art Cloud technologies with the traditional Grid middleware infrastructure. Our test results show that the adopted approach provides a scalable and resilient solution for managing resources without compromising on performance and high availability.

  1. Landslides affecting critical infrastructures: the use of a GB-InSAR based warning system in Calatabiano (Southern Italy).

    Science.gov (United States)

    Nolesini, Teresa; Frodella, William; Bardi, Federica; Intrieri, Emanuele; Carlà, Tommaso; Solari, Lorenzo; Dotta, Giulia; Ferrigno, Federica; Casagli, Nicola

    2017-04-01

    Landslides represent one of the most frequent geo-hazard, not only causing a serious threat to human lives, but also determining socio-economic losses, countable in billions of Euros and expressed in terms of damage to property, infrastructures and environmental degradation. Recent events show a significant increase in the number of disasters with natural and/or technological causes, which could have potentially serious consequences for Critical Infrastructures (CI). Where these infrastructures tend to fail or to be destroyed, the resulting cascade effect (chain of accidents) could lead to catastrophic damage and affect people, the environment and the economy. In the field of landslide detection, mapping, monitoring and management, the availability of advanced remote sensing technologies, which allow systematic and easily updatable acquisitions of data, may enhance the implementation of near real time monitoring activity and the production of landslide maps, optimizing field work. This work aims at presenting an example of the advantages given by the combined use of advanced remote sensing techniques, such as Ground-Based Interferometric Synthetic Aperture Radar (GB-InSAR), Terrestrial Laser Scanning (TLS) and Infrared Thermography (IRT), in order to monitor and map the Calatabiano landslide, located in the Catania Province (Sicily Island, Southern Italy). The landslide occurred on October 24th 2015, after a period of heavy rainfall, causing the rupture of a water pipeline transect of the aqueduct supplying water to the city of Messina. As a consequence of this event a considerable lack in water resources occurred for a large number of the city inhabitants. A provisional by-pass, consisting of three 350 m long pipes passing through the landslide area, was implemented in order to restore the city water supplies during the emergency management phase. In this framework an integrated monitoring network was implemented, in order to assess the residual risk by analyzing

  2. Parallel digital forensics infrastructure.

    Energy Technology Data Exchange (ETDEWEB)

    Liebrock, Lorie M. (New Mexico Tech, Socorro, NM); Duggan, David Patrick

    2009-10-01

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexico Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.

  3. ISRU-Based Robotic Construction Technologies For Lunar And Martian Infrastructures

    Science.gov (United States)

    Khoshnevis, Behrokh; Carlson, Anders; Thangavelu, Madhu

    2017-01-01

    Economically viable and reliable building systems and tool sets are being sought, examined and tested for extraterrestrial infrastructure buildup. This project utilizes a unique architecture weaving the robotic building construction technology with designs for assisting rapid buildup of initial operational capability Lunar and Martian bases. The project intends to develop and test methodologies to construct certain crucial infrastructure elements in order to evaluate the merits, limitations and feasibility of adapting and using such technologies for extraterrestrial application. High priority infrastructure elements suggested by our NASA advisors to be considered include landing pads and aprons, roads, blast walls and shade walls, thermal and micrometeorite protection shields and dust-free platforms utilizing the well-known insitu resource utilization (ISRU) strategy. Current extraterrestrial settlement buildup philosophy holds that in order to minimize the materials needed to be flown in, at great transportation costs, strategies that maximize the use of locally available resources must be adopted. Tools and heavy equipment flown as cargo from Earth are proposed to build required infrastructure to support future missions and settlements on the Moon and Mars. Several unique systems including the Lunar Electric Rover, the unpressurized Chariot rover, the versatile light-weight crane and Tri-Athlete cargo transporter as well as the habitat module mockups and a new generation of spacesuits are undergoing coordinated tests at NASAs D-RATS. This project intends to draw up a detailed synergetic plan to utilize these maturing systems coupled with modern robotic fabrication technologies based primarily on 3D Printing, tailored for swift and reliable Lunar and Martian infrastructure development. This project also intends to increase astronaut safety, improve buildup performance, ameliorate dust interference and concerns, and reduce time-to-commission, all in an economic

  4. A Cache Considering Role-Based Access Control and Trust in Privilege Management Infrastructure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shaomin; WANG Baoyi; ZHOU Lihua

    2006-01-01

    PMI(privilege management infrastructure) is used to perform access control to resource in an E-commerce or E-government system. With the ever-increasing need for secure transaction, the need for systems that offer a wide variety of QoS (quality-of-service) features is also growing. In order to improve the QoS of PMI system, a cache based on RBAC(Role-based Access Control) and trust is proposed. Our system is realized based on Web service. How to design the cache based on RBAC and trust in the access control model is described in detail. The algorithm to query role permission in cache and to add records in cache is dealt with. The policy to update cache is introduced also.

  5. Fast tracking ICT infrastructure requirements and design, based on Enterprise Reference Architecture and matching Reference Models

    DEFF Research Database (Denmark)

    Bernus, Peter; Baltrusch, Rob; Vesterager, Johan;

    2002-01-01

    The Globemen Consortium has developed the virtual enterprise reference architecture and methodology (VERAM), based on GERAM and developed reference models for virtual enterprise management and joint mission delivery. The planned virtual enterprise capability includes the areas of sales and market......The Globemen Consortium has developed the virtual enterprise reference architecture and methodology (VERAM), based on GERAM and developed reference models for virtual enterprise management and joint mission delivery. The planned virtual enterprise capability includes the areas of sales...... and marketing, global engineering, and customer relationship management. The reference models are the basis for the development of ICT infrastructure requirements. These in turn can be used for ICT infrastructure specification (sometimes referred to as 'ICT architecture').Part of the ICT architecture...... is industry-wide, part of it is industry-specific and a part is specific to the domains of the joint activity that characterises the given Virtual Enterprise Network at hand. The article advocates a step by step approach to building virtual enterprise capability....

  6. Running WRF on various distributed computing infrastructures through a standard-based Science Gateway

    Science.gov (United States)

    Barbera, Roberto; Bruno, Riccardo; La Rocca, Giuseppe; Markussen Lunde, Torleif; Pehrson, Bjorn

    2014-05-01

    The Weather Research and Forecasting (WRF) modelling system is a widely used meso-scale numerical weather prediction system designed to serve both atmospheric research and operational forecasting needs. WRF has a large worldwide community counting more than 20,000 users in 130 countries and it has been specifically designed to be the state-of-the-art atmospheric simulation system being portable and running efficiently on available parallel computing platforms. Although WRF can be executed in many different environments ranging form the single core inside a stand-alone machine up to the most sophisticated HPC platforms, there are no solutions yet to match the e-Science paradigm where software, data and users are "linked" together by the network as components of distributed computing infrastructures. The topmost component of the typical e-Science model consists of Science Gateways, defined as community-developed sets of tools, applications, and data collections that normally are integrated via a portal to get access to a distributed infrastructure. One of the many available Science Gateway solutions is the Catania Science Gateway Framework (CSGF - www.catania-science-gateways.it) whose most descriptive keywords are: standard adoption, interoperability and standard adoption. The support of standards such as SAGA and SAML allows any CSGF user to seamlessly access and use both Grid and Cloud-based resources. In this work we present the CSGF and how it has been used in the context of the eI4frica project (www.ei4africa.eu) to implement the Africa Grid Science Gateway (http://sgw.africa-grid.org), which allows to execute WRF simulations on various kinds of distributed computing infrastructures at the same time, including the EGI Federated Cloud.

  7. Requirements for a systems-based research and development management process in transport infrastructure engineering

    Directory of Open Access Journals (Sweden)

    Rust, Frederik Christoffel

    2015-05-01

    Full Text Available The management of research and development (R&D in the transport infrastructure field is complex due to the multidisciplinary nature of the work. The literature shows that linear R&D models that progress from idea through to consumer product are not suitable for the management of such multi-disciplinary projects. This study focuses on determining the key characteristics required for a systems-based approach to the management of R&D projects. The information and data was compiled from literature reviews, interviews, and an e-mail survey with responses from 42 significant international R&D programmes. The findings confirmed the need for a systems-based approach to R&D management. The study formulated twelve principles or tenets for a new, systems-based approach.

  8. Migrating EO/IR sensors to cloud-based infrastructure as service architectures

    Science.gov (United States)

    Berglie, Stephen T.; Webster, Steven; May, Christopher M.

    2014-06-01

    The Night Vision Image Generator (NVIG), a product of US Army RDECOM CERDEC NVESD, is a visualization tool used widely throughout Army simulation environments to provide fully attributed synthesized, full motion video using physics-based sensor and environmental effects. The NVIG relies heavily on contemporary hardware-based acceleration and GPU processing techniques, which push the envelope of both enterprise and commodity-level hypervisor support for providing virtual machines with direct access to hardware resources. The NVIG has successfully been integrated into fully virtual environments where system architectures leverage cloudbased technologies to various extents in order to streamline infrastructure and service management. This paper details the challenges presented to engineers seeking to migrate GPU-bound processes, such as the NVIG, to virtual machines and, ultimately, Cloud-Based IAS architectures. In addition, it presents the path that led to success for the NVIG. A brief overview of Cloud-Based infrastructure management tool sets is provided, and several virtual desktop solutions are outlined. A discrimination is made between general purpose virtual desktop technologies compared to technologies that expose GPU-specific capabilities, including direct rendering and hard ware-based video encoding. Candidate hypervisor/virtual machine configurations that nominally satisfy the virtualized hardware-level GPU requirements of the NVIG are presented , and each is subsequently reviewed in light of its implications on higher-level Cloud management techniques. Implementation details are included from the hardware level, through the operating system, to the 3D graphics APls required by the NVIG and similar GPU-bound tools.

  9. ActivitySim: large-scale agent based activity generation for infrastructure simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gali, Emmanuel [Los Alamos National Laboratory; Eidenbenz, Stephan [Los Alamos National Laboratory; Mniszewski, Sue [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory; Teuscher, Christof [PORTLAND STATE UNIV

    2008-01-01

    The United States' Department of Homeland Security aims to model, simulate, and analyze critical infrastructure and their interdependencies across multiple sectors such as electric power, telecommunications, water distribution, transportation, etc. We introduce ActivitySim, an activity simulator for a population of millions of individual agents each characterized by a set of demographic attributes that is based on US census data. ActivitySim generates daily schedules for each agent that consists of a sequence of activities, such as sleeping, shopping, working etc., each being scheduled at a geographic location, such as businesses or private residences that is appropriate for the activity type and for the personal situation of the agent. ActivitySim has been developed as part of a larger effort to understand the interdependencies among national infrastructure networks and their demand profiles that emerge from the different activities of individuals in baseline scenarios as well as emergency scenarios, such as hurricane evacuations. We present the scalable software engineering principles underlying ActivitySim, the socia-technical modeling paradigms that drive the activity generation, and proof-of-principle results for a scenario in the Twin Cities, MN area of 2.6 M agents.

  10. One4All Cooperative Media Access Strategy in Infrastructure Based Distributed Wireless Networks

    DEFF Research Database (Denmark)

    Zhang, Qi; Fitzek, Frank H.P.; Iversen, Villy Bæk

    2008-01-01

    In this paper we propose the one4all cooperative access strategy to introduce a more efficient media access strategy for wireless networks. The one4all scheme is designed for the infrastructure based distributed wireless network architecture. The basic idea is that mobile devices can form...... a cooperative cluster using their short-range air interface and one device contends the channel for all the devices within the cluster. This strategy reduces the number of mobile devices involved in the collision process for the wireless medium resulting in larger throughput, smaller access delay, and less...... energy consumption. Based on an analytical model, the proposed strategy is compared with the two existing strategies RTS/CTS (request to send/ clear to send) and packet aggregation. The results show that the proposed cooperative scheme has similar throughput performance as packet aggregation and it has...

  11. The Nomad Explorer assembly assist vehicle: An architecture for rapid global extraterrestrial base infrastructure establishment

    Science.gov (United States)

    Thangavelu, Madhu

    1994-01-01

    Traditional concepts of lunar bases describe scenarios where components of the bases are landed on the lunar surface, one at a time, and then put together to form a complete stationary lunar habitat. Recently, some concepts have described the advantages of operating a mobile or 'roving' lunar base. Such a base vastly improves the exploration range from a primary lunar base. Roving bases would also allow the crew to first deploy, test, operationally certify, and then regularly maintain, service, and evolve long life-cycle facilities like observatories or other science payload platforms that are operated far apart from each other across the extraterrestrial surface. The Nomad Explorer is such a mobile lunar base. This paper describes the architectural program of the Nomad Explorer, its advantages over a stationary lunar base, and some of the embedded system concepts which help the roving base to speedily establish a global extraterrestrial infrastructure. A number of modular autonomous logistics landers will carry deployable or erectable payloads, service, and logistically resupply the Nomad Explorer at regular intercepts along the traverse. Starting with the deployment of science experiments and telecommunication networks, and the manned emplacement of a variety of remote outposts using a unique EVA Bell system that enhances manned EVA, the Nomad Explorer architecture suggests the capability for a rapid global development of the extraterrestrial body. The Moon and Mars are candidates for this 'mission oriented' strategy. The lunar case is emphasized in this paper.

  12. A Quarter Active Suspension System Based Ground-Hook Controller

    OpenAIRE

    Turnip Arjon

    2016-01-01

    An alternative design technique for active suspension system of vehicle using a developved ground-hook damping system as a reference is proposed. The controller parameters are determined using Lyapunov method and can be tuned to precisely achieve the type of desired response which given by reference model. The simulation result show that the designed active suspension system based ground-hook reference model is able to significantly improve the ride comfort and the road holding compared with ...

  13. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [Wendy; Minnick, Matthew; Geza, Mengistu; Murray, Kyle; Mattson, Earl

    2012-09-30

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings from the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and

  14. Infrastructure sensing.

    Science.gov (United States)

    Soga, Kenichi; Schooling, Jennifer

    2016-08-01

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors.

  15. Dynamic Model of Urban Sports Infrastructure Supply and Demand Based on GDP Growth

    Directory of Open Access Journals (Sweden)

    Wenjing Zhang

    2014-01-01

    Full Text Available For different city, the change rate of the supply and demand of the sports infrastructure is not the same and is subject to regional GDP growth constraints. Taking GDP growth as control variables, a dynamic model of multi-city sports infrastructure supply and demand system was established. According to Lyapunov stability theory, the system asymptotically stable condition was obtained. Using the linear matrix inequality method, the paper gets a control method that cities with different development level can be unified use for making their sports infrastructure system asymptotically stable and supply-demand equilibrium. The method can reduce the cities’ sports infrastructure construction control complexity.

  16. Secure Mechanism for Handling Targeted Attacks in Infrastructure Based Wireless Mesh Networks

    Science.gov (United States)

    Shafi, Rehan; Rahim, Aneel; Bin Muhaya, Fahad; Ashraf, Shehzad; Sher, Muhammad

    Infrastructure based Wireless mesh networks allow heterogeneous types of networks to be connected at a time through wireless mesh routers. Since the nodes of every network have different processing power, bandwidth, amount of energy etc. so this situation can lead to targeted attacks. An Internet connected node can easily generate flood over a node of sensor network. So to handle these types of attacks we in this paper introduced a new secure authentication mechanism that works when a potential of attack is detected. Moreover we also authorized the nodes of the wireless mesh network to demand data according to their capacity by using pull data traffic control mechanism. We applied this solution first on mesh routers to discourage targeted attacks and secondly we applied the solution on an individual node that lies in between a node and mesh router.

  17. A Security Monitoring Framework For Virtualization Based HEP Infrastructures arXiv

    CERN Document Server

    INSPIRE-00416173; Martinez Pedreira, M.; Grigoras, C.; Betev, L.; Lara, C.; Kebschull, U.

    High Energy Physics (HEP) distributed computing infrastructures require automatic tools to monitor, analyze and react to potential security incidents. These tools should collect and inspect data such as resource consumption, logs and sequence of system calls for detecting anomalies that indicate the presence of a malicious agent. They should also be able to perform automated reactions to attacks without administrator intervention. We describe a novel framework that accomplishes these requirements, with a proof of concept implementation for the ALICE experiment at CERN. We show how we achieve a fully virtualized environment that improves the security by isolating services and Jobs without a significant performance impact. We also describe a collected dataset for Machine Learning based Intrusion Prevention and Detection Systems on Grid computing. This dataset is composed of resource consumption measurements (such as CPU, RAM and network traffic), logfiles from operating system services, and system call data col...

  18. Sustainability of evidence-based healthcare: research agenda, methodological advances, and infrastructure support.

    Science.gov (United States)

    Proctor, Enola; Luke, Douglas; Calhoun, Annaliese; McMillen, Curtis; Brownson, Ross; McCrary, Stacey; Padek, Margaret

    2015-06-11

    Little is known about how well or under what conditions health innovations are sustained and their gains maintained once they are put into practice. Implementation science typically focuses on uptake by early adopters of one healthcare innovation at a time. The later-stage challenges of scaling up and sustaining evidence-supported interventions receive too little attention. This project identifies the challenges associated with sustainability research and generates recommendations for accelerating and strengthening this work. A multi-method, multi-stage approach, was used: (1) identifying and recruiting experts in sustainability as participants, (2) conducting research on sustainability using concept mapping, (3) action planning during an intensive working conference of sustainability experts to expand the concept mapping quantitative results, and (4) consolidating results into a set of recommendations for research, methodological advances, and infrastructure building to advance understanding of sustainability. Participants comprised researchers, funders, and leaders in health, mental health, and public health with shared interest in the sustainability of evidence-based health care. Prompted to identify important issues for sustainability research, participants generated 91 distinct statements, for which a concept mapping process produced 11 conceptually distinct clusters. During the conference, participants built upon the concept mapping clusters to generate recommendations for sustainability research. The recommendations fell into three domains: (1) pursue high priority research questions as a unified agenda on sustainability; (2) advance methods for sustainability research; (3) advance infrastructure to support sustainability research. Implementation science needs to pursue later-stage translation research questions required for population impact. Priorities include conceptual consistency and operational clarity for measuring sustainability, developing evidence

  19. Developing the information infrastructure based on LADM – the case of Poland

    NARCIS (Netherlands)

    Gozdz, K.J.; Van Oosterom, P.J.M.

    2015-01-01

    In this paper, the possibilities of developing the national information infrastructure by applying the Land Administration Domain Model (LADM) are discussed. Confirmation of the legitimacy of using the LADM within the (Spatial) Information Infrastructure (SII) context is illustrated with the case of

  20. Developing the information infrastructure based on LADM – the case of Poland

    NARCIS (Netherlands)

    Gozdz, K.J.; Van Oosterom, P.J.M.

    2015-01-01

    In this paper, the possibilities of developing the national information infrastructure by applying the Land Administration Domain Model (LADM) are discussed. Confirmation of the legitimacy of using the LADM within the (Spatial) Information Infrastructure (SII) context is illustrated with the case of

  1. On-demand provisioning of Cloud and Grid based infrastructure services for collaborative projects and groups

    NARCIS (Netherlands)

    Demchenko, Y.; van der Ham, J.; Yakovenko, V.; de Laat, C.; Ghijsen, M.; Cristea, M.; Smari, W.W.; Fox, G.C.

    2011-01-01

    Effective use of existing network and IT infrastructure can be achieved by providing combined network and IT resources on-demand as infrastructure services that are capable of supporting complex technological processes, scientific experiments, and collaborative groups of researchers and applications

  2. Laser based bi-directional Gbit ground links with the Tesat transportable adaptive optical ground station

    Science.gov (United States)

    Heine, Frank; Saucke, Karen; Troendle, Daniel; Motzigemba, Matthias; Bischl, Hermann; Elser, Dominique; Marquardt, Christoph; Henninger, Hennes; Meyer, Rolf; Richter, Ines; Sodnik, Zoran

    2017-02-01

    Optical ground stations can be an alternative to radio frequency based transmit (forward) and receive (return) systems for data relay services and other applications including direct to earth optical communications from low earth orbit spacecrafts, deep space receivers, space based quantum key distribution systems and Tbps capacity feeder links to geostationary spacecrafts. The Tesat Transportable Adaptive Optical Ground Station is operational since September 2015 at the European Space Agency site in Tenerife, Spain.. This paper reports about the results of the 2016 experimental campaigns including the characterization of the optical channel from Tenerife for an optimized coding scheme, the performance of the T-AOGS under different atmospheric conditions and the first successful measurements of the suitability of the Alphasat LCT optical downlink performance for future continuous variable quantum key distribution systems.

  3. Ground-based Space Weather Monitoring with LOFAR

    Science.gov (United States)

    Wise, Michael; van Haarlem, Michiel; Lawrence, Gareth; Reid, Simon; Bos, Andre; Rawlings, Steve; Salvini, Stef; Mitchell, Cathryn; Soleimani, Manuch; Amado, Sergio; Teresa, Vital

    As one of the first of a new generation of radio instruments, the International LOFAR Telescope (ILT) will provide a number of unique and novel capabilities for the astronomical community. These include remote configuration and operation, dynamic real-time processing and system response, and the ability to provide multiple simultaneous streams of data to a community whose scientific interests run the gamut from lighting in the atmospheres of distant planets to the origins of the universe itself. The LOFAR (LOw Frequency ARray) system is optimized for a frequency range from 30-240 MHz and consists of multiple antenna fields spread across Europe. In the Netherlands, a total 36 LOFAR stations are nearing completion with an initial 8 international stations currently being deployed in Germany, France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR has the potential to achieve unparalleled sensitivity and spatial resolution in the low frequency radio regime. LOFAR will also be one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. As we discuss in this presentation, the same capabilities that make LOFAR a powerful tool for radio astronomy also provide an excellent platform upon which to build a ground-based monitoring system for space weather events. For example, the ability to monitor Solar activity in near real-time is one of the key scientific capabilities being developed for LOFAR. With only a fraction of its total observing capacity, LOFAR will be able to provide continuous monitoring of the Solar spectrum over the entire 10-240 MHz band down to microsecond timescales. Autonomous routines will scan these incoming spectral data for evidence of Solar flares and be

  4. Effective collaborative learning in biomedical education using a web-based infrastructure.

    Science.gov (United States)

    Wu, Yunfeng; Zheng, Fang; Cai, Suxian; Xiang, Ning; Zhong, Zhangting; He, Jia; Xu, Fang

    2012-01-01

    This paper presents a feature-rich web-based system used for biomedical education at the undergraduate level. With the powerful groupware features provided by the wiki system, the instructors are able to establish a community-centered mentoring environment that capitalizes on local expertise to create a sense of online collaborative learning among students. The web-based infrastructure can help the instructors effectively organize and coordinate student research projects, and the groupware features may support the interactive activities, such as interpersonal communications and data sharing. The groupware features also provide the web-based system with a wide range of additional ways of organizing collaboratively developed materials, which makes it become an effective tool for online active learning. Students are able to learn the ability to work effectively in teams, with an improvement of project management, design collaboration, and technical writing skills. With the fruitful outcomes in recent years, it is positively thought that the web-based collaborative learning environment can perform an excellent shift away from the conventional instructor-centered teaching to community- centered collaborative learning in the undergraduate education.

  5. Ground point filtering of UAV-based photogrammetric point clouds

    Science.gov (United States)

    Anders, Niels; Seijmonsbergen, Arie; Masselink, Rens; Keesstra, Saskia

    2016-04-01

    Unmanned Aerial Vehicles (UAVs) have proved invaluable for generating high-resolution and multi-temporal imagery. Based on photographic surveys, 3D surface reconstructions can be derived photogrammetrically so producing point clouds, orthophotos and surface models. For geomorphological or ecological applications it may be necessary to separate ground points from vegetation points. Existing filtering methods are designed for point clouds derived using other methods, e.g. laser scanning. The purpose of this paper is to test three filtering algorithms for the extraction of ground points from point clouds derived from low-altitude aerial photography. Three subareas were selected from a single flight which represent different scenarios: 1) low relief, sparsely vegetated area, 2) low relief, moderately vegetated area, 3) medium relief and moderately vegetated area. The three filtering methods are used to classify ground points in different ways, based on 1) RGB color values from training samples, 2) TIN densification as implemented in LAStools, and 3) an iterative surface lowering algorithm. Ground points are then interpolated into a digital terrain model using inverse distance weighting. The results suggest that different landscapes require different filtering methods for optimal ground point extraction. While iterative surface lowering and TIN densification are fully automated, color-based classification require fine-tuning in order to optimize the filtering results. Finally, we conclude that filtering photogrammetric point clouds could provide a cheap alternative to laser scan surveys for creating digital terrain models in sparsely vegetated areas.

  6. Effectiveness of organisational infrastructures to promote evidence-based nursing practice.

    Science.gov (United States)

    Flodgren, Gerd; Rojas-Reyes, Maria Ximena; Cole, Nick; Foxcroft, David R

    2012-02-15

    Nurses and midwives form the bulk of the clinical health workforce and play a central role in all health service delivery. There is potential to improve health care quality if nurses routinely use the best available evidence in their clinical practice. Since many of the factors perceived by nurses as barriers to the implementation of evidence-based practice (EBP) lie at the organisational level, it is of interest to devise and assess the effectiveness of organisational infrastructures designed to promote EBP among nurses. To assess the effectiveness of organisational infrastructures in promoting evidence-based nursing. We searched the Cochrane Effective Practice and Organisation of Care (EPOC) Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CINAHL, LILACS, BIREME, IBECS, NHS Economic Evaluations Database, Social Science Citation Index, Science Citation Index and Conference Proceedings Citation Indexes up to 9 March 2011.We developed a new search strategy for this update as the strategy published in 2003 omitted key terms. Additional search methods included: screening reference lists of relevant studies, contacting authors of relevant papers regarding any further published or unpublished work, and searching websites of selected research groups and organisations.  We considered randomised controlled trials, controlled clinical trials, interrupted times series (ITSs) and controlled before and after studies of an entire or identified component of an organisational infrastructure intervention aimed at promoting EBP in nursing. The participants were all healthcare organisations comprising nurses, midwives and health visitors. Two authors independently extracted data and assessed risk of bias. For the ITS analysis, we reported the change in the slopes of the regression lines, and the change in the level effect of the outcome at 3, 6, 12 and 24 months follow-up. We included one study from the USA (re-analysed as

  7. A Context-Aware Infrastructure for Supporting Applications with Pen-Based Interaction

    Institute of Scientific and Technical Information of China (English)

    LI Yang(栗阳); GUAN ZhiWei(关志伟); DAI GuoZhong(戴国忠); REN XiangShi(任向实); HAN Yong(韩勇)

    2003-01-01

    Pen-based user interfaces which leverage the affordances of the pen provide userswith more flexibility and natural interaction. However, it is difficult to construct usable pen-baseduser interfaces because of the lack of support for their development. Toolkit-level support has beenexploited to solve this problem, but this approach makes it hard to gain platform independence,easy maintenance and easy extension. In this paper a context-aware infrastructure is created,called WEAVER, to provide pen interaction services for both novel pen-based applications andlegacy GUI-based applications. WEAVER aims to support the pen as another standard interactivedevice along with the keyboard and mouse and present a high-level access interface to pen input.It employs application context to tailor its service to different applications. By modeling theapplication context and registering the relevant action adapters, WEAVER can offer services,such as gesture recognition, continuous handwriting and other fundamental ink manipulations, toappropriate applications. One of the distinct features of WEAVER is that off-the-shelf GUI-basedsoftware packages can be easily enhanced with pen interaction without modifying the existing code.In this paper, the architecture and components of WEAVER are described. In addition, examplesand feedbacks of its use are presented.

  8. Real-Time Communication Support for Cooperative, Infrastructure-Based Traffic Safety Applications

    Directory of Open Access Journals (Sweden)

    Annette Böhm

    2011-01-01

    Full Text Available The implementation of ITS (Intelligent Transport Systems services offers great potential to improve the level of safety, efficiency and comfort on our roads. Although cooperative traffic safety applications rely heavily on the support for real-time communication, the Medium Access Control (MAC mechanism proposed for the upcoming IEEE 802.11p standard, intended for ITS applications, does not offer deterministic real-time support, that is, the access delay to the common radio channel is not upper bounded. To address this problem, we present a framework for a vehicle-to-infrastructure-based (V2I communication solution extending IEEE 802.11p by introducing a collision-free MAC phase assigning each vehicle an individual priority based on its geographical position, its proximity to potential hazards and the overall road traffic density. Our solution is able to guarantee the timely treatment of safety-critical data, while minimizing the required length of this real-time MAC phase and freeing bandwidth for best-effort services (targeting improved driving comfort and traffic efficiency. Furthermore, we target fast connection setup, associating a passing vehicle to an RSU (Road Side Unit, and proactive handover between widely spaced RSUs. Our real-time MAC concept is evaluated analytically and by simulation based on a realistic task set from a V2I highway merge assistance scenario.

  9. Building an evaluation infrastructure

    DEFF Research Database (Denmark)

    Brandrup, Morten; Østergaard, Kija Lin

    Infrastructuring does not happen by itself; it must be supported. In this paper, we present a feedback mechanism implemented as a smartphone-based application, inspired by the concept of infrastructure probes, which supports the in situ elicitation of feedback. This is incorporated within an eval...

  10. A Cloud-Based Infrastructure for Feedback-Driven Training and Image Recognition.

    Science.gov (United States)

    Abedini, Mani; von Cavallar, Stefan; Chakravorty, Rajib; Davis, Matthew; Garnavi, Rahil

    2015-01-01

    Advanced techniques in machine learning combined with scalable "cloud" computing infrastructure are driving the creation of new and innovative health diagnostic applications. We describe a service and application for performing image training and recognition, tailored to dermatology and melanoma identification. The system implements new machine learning approaches to provide a feedback-driven training loop. This training sequence enhances classification performance by incrementally retraining the classifier model from expert responses. To easily provide this application and associated web service to clinical practices, we also describe a scalable cloud infrastructure, deployable in public cloud infrastructure and private, on-premise systems.

  11. A Cloud-Based Global Flood Disaster Community Cyber-Infrastructure: Development and Demonstration

    Science.gov (United States)

    Wan, Zhanming; Hong, Yang; Khan, Sadiq; Gourley, Jonathan; Flamig, Zachary; Kirschbaum, Dalia; Tang, Guoqiang

    2014-01-01

    Flood disasters have significant impacts on the development of communities globally. This study describes a public cloud-based flood cyber-infrastructure (CyberFlood) that collects, organizes, visualizes, and manages several global flood databases for authorities and the public in real-time, providing location-based eventful visualization as well as statistical analysis and graphing capabilities. In order to expand and update the existing flood inventory, a crowdsourcing data collection methodology is employed for the public with smartphones or Internet to report new flood events, which is also intended to engage citizen-scientists so that they may become motivated and educated about the latest developments in satellite remote sensing and hydrologic modeling technologies. Our shared vision is to better serve the global water community with comprehensive flood information, aided by the state-of-the- art cloud computing and crowdsourcing technology. The CyberFlood presents an opportunity to eventually modernize the existing paradigm used to collect, manage, analyze, and visualize water-related disasters.

  12. Securing Metering Infrastructure of Smart Grid: A Machine Learning and Localization Based Key Management Approach

    Directory of Open Access Journals (Sweden)

    Imtiaz Parvez

    2016-08-01

    Full Text Available In smart cities, advanced metering infrastructure (AMI of the smart grid facilitates automated metering, control and monitoring of power distribution by employing a wireless network. Due to this wireless nature of communication, there exist potential threats to the data privacy in AMI. Decoding the energy consumption reading, injecting false data/command signals and jamming the networks are some hazardous measures against this technology. Since a smart meter possesses limited memory and computational capability, AMI demands a light, but robust security scheme. In this paper, we propose a localization-based key management system for meter data encryption. Data are encrypted by the key associated with the coordinate of the meter and a random key index. The encryption keys are managed and distributed by a trusted third party (TTP. Localization of the meter is proposed by a method based on received signal strength (RSS using the maximum likelihood estimator (MLE. The received packets are decrypted at the control center with the key mapped with the key index and the meter’s coordinates. Additionally, we propose the k-nearest neighbors (kNN algorithm for node/meter authentication, capitalizing further on data transmission security. Finally, we evaluate the security strength of a data packet numerically for our method.

  13. Integration of Life Cycle Assessment Into Agent-Based Modeling: Toward Informed Decisions on Evolving Infrastructure Systems

    NARCIS (Netherlands)

    Davis, C.B.; Nikolić, I.; Dijkema, G.P.J.

    2009-01-01

    A method is presented that allows for a life cycle assessment (LCA) to provide environmental information on an energy infrastructure system while it evolves. Energy conversion facilities are represented in an agent-based model (ABM) as distinct instances of technologies with owners capable of making

  14. International data-sharing for radiotherapy research: an open-source based infrastructure for multicentric clinical data mining.

    Science.gov (United States)

    Roelofs, Erik; Dekker, André; Meldolesi, Elisa; van Stiphout, Ruud G P M; Valentini, Vincenzo; Lambin, Philippe

    2014-02-01

    Extensive, multifactorial data sharing is a crucial prerequisite for current and future (radiotherapy) research. However, the cost, time and effort to achieve this are often a roadblock. We present an open-source based data-sharing infrastructure between two radiotherapy departments, allowing seamless exchange of de-identified, automatically translated clinical and biomedical treatment data.

  15. Benchmarking infrastructure for mutation text mining

    Science.gov (United States)

    2014-01-01

    Background Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. Results We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. Conclusion We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption. PMID:24568600

  16. Evaluative Infrastructures

    DEFF Research Database (Denmark)

    Kornberger, Martin; Pflueger, Dane; Mouritsen, Jan

    BnB or Uber, this paper develops the concept of evaluative infrastructures for a heterarchical modus of accounting. Evaluative infrastructures are decentralized accounting practices that underpin distributed production processes. They are evaluative because they deploy a plethora of interacting devices...

  17. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  18. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  19. Regional study on investment for transmission infrastructure in China based on the State Grid data

    Science.gov (United States)

    Wei, Wendong; Wu, Xudong; Wu, Xiaofang; Xi, Qiangmin; Ji, Xi; Li, Guoping

    2016-06-01

    Transmission infrastructure is an integral component of safeguarding the stability of electricity delivery. However, existing studies of transmission infrastructure mostly rely on a simple review of the network, while the analysis of investments remains rudimentary. This study conducted the first regionally focused analysis of investments in transmission infrastructure in China to help optimize its structure and reduce investment costs. Using State Grid data, the investment costs, under various voltages, for transmission lines and transformer substations are calculated. By analyzing the regional profile of cumulative investment in transmission infrastructure, we assess correlations between investment, population, and economic development across the regions. The recent development of ultra-high-voltage transmission networks will provide policy-makers new options for policy development.

  20. Regional study on investment for transmission infrastructure in China based on the State Grid data

    Science.gov (United States)

    Wei, Wendong; Wu, Xudong; Wu, Xiaofang; Xi, Qiangmin; Ji, Xi; Li, Guoping

    2017-03-01

    Transmission infrastructure is an integral component of safeguarding the stability of electricity delivery. However, existing studies of transmission infrastructure mostly rely on a simple review of the network, while the analysis of investments remains rudimentary. This study conducted the first regionally focused analysis of investments in transmission infrastructure in China to help optimize its structure and reduce investment costs. Using State Grid data, the investment costs, under various voltages, for transmission lines and transformer substations are calculated. By analyzing the regional profile of cumulative investment in transmission infrastructure, we assess correlations between investment, population, and economic development across the regions. The recent development of ultra-high-voltage transmission networks will provide policy-makers new options for policy development.

  1. A Quarter Active Suspension System Based Ground-Hook Controller

    Directory of Open Access Journals (Sweden)

    Turnip Arjon

    2016-01-01

    Full Text Available An alternative design technique for active suspension system of vehicle using a developved ground-hook damping system as a reference is proposed. The controller parameters are determined using Lyapunov method and can be tuned to precisely achieve the type of desired response which given by reference model. The simulation result show that the designed active suspension system based ground-hook reference model is able to significantly improve the ride comfort and the road holding compared with semi-active suspension.

  2. Digging into data using new collaborative infrastructures supporting humanities-based computer science research

    OpenAIRE

    2011-01-01

    This paper explores infrastructure supporting humanities–computer science research in large–scale image data by asking: Why is collaboration a requirement for work within digital humanities projects? What is required for fruitful interdisciplinary collaboration? What are the technical and intellectual approaches to constructing such an infrastructure? What are the challenges associated with digital humanities collaborative work? We reveal that digital humanities collaboration requ...

  3. Ground-based observations of Kepler asteroseismic targets

    CERN Document Server

    Uytterhoeven, K; Southworth, J; Randall, S; Ostensen, R; Molenda-Zakowicz, J; Marconi, M; Kurtz, D W; Kiss, L; Gutierrez-Soto, J; Frandsen, S; De Cat, P; Bruntt, H; Briquet, M; Zhang, X B; Telting, J H; Steslicki, M; Ripepi, V; Pigulski, A; Paparo, M; Oreiro, R; Choong, Ngeow Chow; Niemczura, E; Nemec, J; Narwid, A; Mathias, P; Martin-Ruiz, S; Lehman, H; Kopacki, G; Karoff, C; Jackiewicz, J; Henden, A A; Handler, G; Grigachene, A; Green, E M; Garrido, R; Machado, L Fox; Debosscher, J; Creevey, O L; Catanzaro, G; Bognar, Z; Biazzo, K; Bernabei, S

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising Kepler pulsators. So far, 35 different instruments at 30 telescopes on 22 different observatories in 12 countries are in use, and a total of more than 530 observing nights has been awarded. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observato...

  4. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  5. Ground-based lidar for atmospheric boundary layer ozone measurements.

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  6. The inventions technology on water resources to support environmental engineering based infrastructure

    Science.gov (United States)

    Sunjoto, S.

    2017-03-01

    Since the Stockholm Declaration, declared on the United Nation Conference on the Human Environment in Sweden on 5-16 June 1972 and attended the 113 country delegations, all the infrastructure construction should comply the sustainable development. As a consequence, almost research and studies were directing to the environmental aspect of construction including on water resources engineering. This paper will present the inventions which are very useful for the design of infrastructure, especially on the Groundwater engineering. This field has been rapidly developed since the publication of the well known law of flow through porous materials by Henri Darcy in 1856 on his book "Les fontaine publiques de la ville de Dijon". This law states that the discharge through porous media is proportional to the product of the hydraulic gradient, the cross-sectional area normal to the flow and the coefficient of permeability of the material. Forchheimer in 1930 developed a breakthrough formula by simplifying solution in a steady state flow condition especially in the case of radial flow to compute the permeability coefficient of casing hole or tube test with zero inflow discharge. The outflow discharge on the holes is equal to shape factor of tip of casing (F) multiplied by coefficient of permeability of soils (K) and multiplied by hydraulic head (H). In 1988, Sunjoto derived an equation in unsteady state flow condition based on this formula. In 2002, Sunjoto developed several formulas of shape factor as the parameters of the equation. In the beginning this formula is implemented to compute for the dimension of recharge well as the best method of water conservation for the urban area. After a long research this formula can be implemented to compute the drawdown on pumping or coefficient of permeability of soil by pumping test. This method can substitute the former methods like Theis (1935), Cooper-Jacob (1946), Chow (1952), Glover (1966), Papadopulos-Cooper (1967), Todd (1980

  7. CEMS: Building a Cloud-Based Infrastructure to Support Climate and Environmental Data Services

    Science.gov (United States)

    Kershaw, P. J.; Curtis, M.; Pechorro, E.

    2012-04-01

    CEMS, the facility for Climate and Environmental Monitoring from Space, is a new joint collaboration between academia and industry to bring together their collective expertise to support research into climate change and provide a catalyst for growth in related Earth Observation (EO) technologies and services in the commercial sector. A recent major investment by the UK Space Agency has made possible the development of a dedicated facility at ISIC, the International Space Innovation Centre at Harwell in the UK. CEMS has a number of key elements: the provision of access to large-volume EO and climate datasets co-located with high performance computing facilities; a flexible infrastructure to support the needs of research projects in the academic community and new business opportunities for commercial companies. Expertise and tools for scientific data quality and integrity are another essential component, giving users confidence and transparency in its data, services and products. Central to the development of this infrastructure is the utilisation of cloud-based technology: multi-tenancy and the dynamic provision of resources are key characteristics to exploit in order to support the range of organisations using the facilities and the varied use cases. The hosting of processing services and applications next to the data within the CEMS facility is another important capability. With the expected exponential increase in data volumes within the climate science and EO domains it is becoming increasingly impracticable for organisations to retrieve this data over networks and provide the necessary storage. Consider for example, the factor of o20 increase in data volumes expected for the ESA Sentinel missions over the equivalent Envisat instruments. We explore the options for the provision of a hybrid community/private cloud looking at offerings from the commercial sector and developments in the Open Source community. Building on this virtualisation layer, a further core

  8. Planning Landscape Corridors in Ecological Infrastructure Using Least-Cost Path Methods Based on the Value of Ecosystem Services

    Directory of Open Access Journals (Sweden)

    Jung A Lee

    2014-10-01

    Full Text Available Ecosystem service values have rarely been incorporated in the process of planning ecological infrastructure for urban areas. Urban ecological infrastructure is a network system of natural lands and waters that provides ecosystem services. The purpose of this study was to design landscape corridors that maximize the value of ecosystem services in ecological infrastructure planning. We explored the optimal corridors to enhance the connectivity among landscape elements to design an ecological infrastructure for the city of Gwacheon, South Korea, as an example of a small urban area. We calculated the value of ecosystem services using standardized estimation indices based on an intensive review of the relevant literature and employed the least-cost path method to optimize the connectivity of landscape structural elements. The land use type in the city with the highest estimated value of ecosystem services was the riparian zone (i.e., 2011 US$7,312.16/ha. Given areal coverage of all land use types, the estimated value of developed area open spaces was 2011 US$899,803.25, corresponding to the highest contribution to the total value of ecosystem services. Therefore, the optimal configured dispersal corridors for wildlife were found from the riparian zones (source area to the developed area open spaces (destination area in the city. Several challenges remain for improving the estimation of the value of ecosystem services and incorporating these ecosystems in ecological infrastructure planning. Nonetheless, the approaches taken to estimate the value of ecosystem services and design landscape corridors in this study may be of value to future efforts in urban ecological infrastructure planning.

  9. Enabling Sustainability: Hierarchical Need-Based Framework for Promoting Sustainable Data Infrastructure in Developing Countries

    Directory of Open Access Journals (Sweden)

    David O. Yawson

    2009-11-01

    Full Text Available The paper presents thoughts on Sustainable Data Infrastructure (SDI development, and its user requirements bases. It brings Maslow's motivational theory to the fore, and proposes it as a rationalization mechanism for entities (mostly governmental that aim at realizing SDI. Maslow's theory, though well-known, is somewhat new in geospatial circles; this is where the novelty of the paper resides. SDI has been shown to enable and aid development in diverse ways. However, stimulating developing countries to appreciate the utility of SDI, implement, and use SDI in achieving sustainable development has proven to be an imposing challenge. One of the key reasons for this could be the absence of a widely accepted psychological theory to drive needs assessment and intervention design for the purpose of SDI development. As a result, it is reasonable to explore Maslow’s theory of human motivation as a psychological theory for promoting SDI in developing countries. In this article, we review and adapt Maslow’s hierarchy of needs as a framework for the assessment of the needs of developing nations. The paper concludes with the implications of this framework for policy with the view to stimulating the implementation of SDI in developing nations.

  10. Ground-Based Calibration Of A Microwave Landing System

    Science.gov (United States)

    Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando

    1996-01-01

    System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.

  11. Email based remote access and surveillance system for smart home infrastructure

    Directory of Open Access Journals (Sweden)

    Pooshkar Rajiv

    2016-09-01

    Full Text Available With the rapid rise of Internet of Things in public domain, people expect fast, reliable and on-demand home security via the Internet. However, existing remote home surveillance systems place a very rigid constraint on authentication and require customized hardware and software. In this paper we have proposed an ingenious and reliable internet based, home access system for smart homes that can be easily deployed on generic hardware. The proposed architecture uses popular email service providers to notify and update the user about the home access. It sends an email to the owner with the attached picture of the person who is at the door. It also incorporates a protected mechanism to give access of the door to a remote user by responding to that email. It essentially means that we can view and give access to the person at our door via sending and receiving an email. Furthermore, an image processing based mechanism has also been incorporated to provide access without email, to few selected personnel who are trusted by the owner. It works by capturing and comparing the visitor's image with the stored images in the database. Perceptual hashing or fingerprint matching algorithm is used for comparison purposes. Similarity percentage based on hamming distance was evaluated, and the similarity threshold for providing access was set. The simulations were performed in rigorous environment. The efficiency of the hashing algorithm was found to be 97% at the similarity threshold of 95%. The results validate that the average latency is only 155 ms with low standard deviation. The CPU utilization remained quite low with a minimum value of 10 MHz and a maximum value of 30 MHz when the payload size of the sent mail was increased to 1500 kB. Thus, the proposed system can be used for developing a larger low power infrastructure.

  12. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  13. Using an emergency response infrastructure to help women who experience gender-based violence in Gujarat, India

    OpenAIRE

    Newberry, Jennifer A; Mahadevan, Swaminatha; Gohil, Narendrasinh; Jamshed, Roma; Prajapati, Jashvant; Rao, GV Ramana; Strehlow, Matthew

    2016-01-01

    Abstract Problem Many women who experience gender-based violence may never seek any formal help because they do not feel safe or confident that they will receive help if they try. Approach A public–private-academic partnership in Gujarat, India, established a toll-free telephone helpline – called 181 Abhayam – for women experiencing gender-based violence. The partnership used existing emergency response service infrastructure to link women to phone counselling, nongovernmental organizations (...

  14. The role of nature-based infrastructure (NBI) in coastal resiliency planning: A literature review.

    Science.gov (United States)

    Saleh, Firas; Weinstein, Michael P

    2016-12-01

    The use of nature-based infrastructure (NBI) has attracted increasing attention in the context of protection against coastal flooding. This review is focused on NBI approaches to improve coastal resilience in the face of extreme storm events, including hurricanes. We not only consider the role of NBI as a measure to protect people and property but also in the context of other ecological goods and services provided by tidal wetlands including production of fish and shellfish. Although the results of many studies suggest that populated areas protected by coastal marshes were less likely to experience damage when exposed to the full force of storm surge, it was absolutely critical to place the role of coastal wetlands into perspective by noting that while tidal marshes can reduce wave energy from low-to-moderate-energy storms, their capacity to substantially reduce storm surge remains poorly quantified. Moreover, although tidal marshes can reduce storm surge from fast moving storms, very large expanses of habitat are needed to be most effective, and for most urban settings, there is insufficient space to rely on nature-based risk reduction strategies alone. The success of a given NBI method is also context dependent on local conditions, with potentially confounding influences from substrate characteristics, topography, near shore bathymetry, distance from the shore and other physical factors and human drivers such as development patterns. Furthermore, it is important to better understand the strengths and weaknesses of newly developed NBI projects through rigorous evaluations and characterize the local specificities of the particular built and natural environments surrounding these coastal areas. In order for the relevant science to better inform policy, and assist in land-use challenges, scientists must clearly state the likelihood of success in a particular circumstance and set of conditions. We conclude that "caution is advised" before selecting a particular NBI

  15. Greening infrastructure

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2014-10-01

    Full Text Available ), transport (typically roads, rail and airports), and telecommunications. The focus of this chapter will be on greening bulk services and roads. Despite the importance of infrastructure to economic growth and social wellbeing, many countries struggle to meet...

  16. A sustainability model based on cloud infrastructures for core and downstream Copernicus services

    Science.gov (United States)

    Manunta, Michele; Calò, Fabiana; De Luca, Claudio; Elefante, Stefano; Farres, Jordi; Guzzetti, Fausto; Imperatore, Pasquale; Lanari, Riccardo; Lengert, Wolfgang; Zinno, Ivana; Casu, Francesco

    2014-05-01

    The incoming Sentinel missions have been designed to be the first remote sensing satellite system devoted to operational services. In particular, the Synthetic Aperture Radar (SAR) Sentinel-1 sensor, dedicated to globally acquire over land in the interferometric mode, guarantees an unprecedented capability to investigate and monitor the Earth surface deformations related to natural and man-made hazards. Thanks to the global coverage strategy and 12-day revisit time, jointly with the free and open access data policy, such a system will allow an extensive application of Differential Interferometric SAR (DInSAR) techniques. In such a framework, European Commission has been funding several projects through the GMES and Copernicus programs, aimed at preparing the user community to the operational and extensive use of Sentinel-1 products for risk mitigation and management purposes. Among them, the FP7-DORIS, an advanced GMES downstream service coordinated by Italian National Council of Research (CNR), is based on the fully exploitation of advanced DInSAR products in landslides and subsidence contexts. In particular, the DORIS project (www.doris-project.eu) has developed innovative scientific techniques and methodologies to support Civil Protection Authorities (CPA) during the pre-event, event, and post-event phases of the risk management cycle. Nonetheless, the huge data stream expected from the Sentinel-1 satellite may jeopardize the effective use of such data in emergency response and security scenarios. This potential bottleneck can be properly overcome through the development of modern infrastructures, able to efficiently provide computing resources as well as advanced services for big data management, processing and dissemination. In this framework, CNR and ESA have tightened up a cooperation to foster the use of GRID and cloud computing platforms for remote sensing data processing, and to make available to a large audience advanced and innovative tools for DIn

  17. Bike Infrastructures

    OpenAIRE

    2010-01-01

    Bike Infrastructures aims to identify bicycle infrastructuretypologies and design elements that can help promotecycling significantly. It is structured as a case study basedresearch where three cycling infrastructures with distincttypologies were analyzed and compared. The three casesare Vestergade Vest and Mageløs in Odense (sharedusespace in the core of the city); Hans Broges Gade inAarhus (an extension of a bicycle route linking the suburbto Aarhus Central station) and Bryggebro in Copenha...

  18. VM-based infrastructure for simulating different cluster and storage solutions in ATLAS

    CERN Document Server

    KUTOUSKI, M; The ATLAS collaboration; PETROSYAN, A; KADOCHNIKOV, I; BELOV, S; KORENKOV, V

    2012-01-01

    The current ATLAS Tier3 infrastructure consists of a variety of sites of different sizes and with a mix of local resource management systems (LRMS) and mass storage system (MSS) implementations. The Tier3 monitoring suite, having been developed in order to satisfy the needs of Tier3 site administrators and to aggregate Tier3 monitoring information on the global VO level, needs to be validated for various combinations of LRMS and MSS solutions along with the corresponding Ganglia and/or Nagios plugins. For this purpose the Testbed infrastructure, which allows simulation of various computational cluster and storage solutions, had been set up at JINR (Dubna). This infrastructure provides the ability to run testbeds with various LRMS and MSS implementations, and with the capability to quickly redeploy particular testbeds or their components. Performance of specific components is not a critical issue for development and validation, whereas easy management and deployment are crucial. Therefore virtual machines were...

  19. A comparative study of satellite and ground-based phenology.

    Science.gov (United States)

    Studer, S; Stöckli, R; Appenzeller, C; Vidale, P L

    2007-05-01

    Long time series of ground-based plant phenology, as well as more than two decades of satellite-derived phenological metrics, are currently available to assess the impacts of climate variability and trends on terrestrial vegetation. Traditional plant phenology provides very accurate information on individual plant species, but with limited spatial coverage. Satellite phenology allows monitoring of terrestrial vegetation on a global scale and provides an integrative view at the landscape level. Linking the strengths of both methodologies has high potential value for climate impact studies. We compared a multispecies index from ground-observed spring phases with two types (maximum slope and threshold approach) of satellite-derived start-of-season (SOS) metrics. We focus on Switzerland from 1982 to 2001 and show that temporal and spatial variability of the multispecies index correspond well with the satellite-derived metrics. All phenological metrics correlate with temperature anomalies as expected. The slope approach proved to deviate strongly from the temporal development of the ground observations as well as from the threshold-defined SOS satellite measure. The slope spring indicator is considered to indicate a different stage in vegetation development and is therefore less suited as a SOS parameter for comparative studies in relation to ground-observed phenology. Satellite-derived metrics are, however, very susceptible to snow cover, and it is suggested that this snow cover should be better accounted for by the use of newer satellite sensors.

  20. Data Distribution Service-Based Interoperability Framework for Smart Grid Testbed Infrastructure

    Directory of Open Access Journals (Sweden)

    Tarek A. Youssef

    2016-03-01

    Full Text Available This paper presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discovery feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS.

  1. Voltage Harmonics Monitoring in a Microgrid Based on Advanced Metering Infrastructure (AMI)

    DEFF Research Database (Denmark)

    Firoozabadi, Mehdi Savaghebi; Guan, Yajuan; Quintero, Juan Carlos Vasquez

    2015-01-01

    Smart meters are the main part of Advanced Metering Infrastructure (AMI) and are usually able to provide detailed information on customers’ energy consumptions, voltage variations and interruptions. In addition, these meters are potentially able to provide more information about power quality (PQ...

  2. Issues in infrastructure and environmental planning

    NARCIS (Netherlands)

    Linden, Gerardus; Ike, Paul; Voogd, Henk; Linden, Gerard; Voogd, Henk

    2004-01-01

    This chapter focuses on issues of Environmental and Infrastructure planning (EIP). The object of EIP is illustrated with the help of the three layers of the Environmental Layer Concept (ELC) – the Ground Layer, the Infrastructure Layer and the Occupancy Layer. The Ground Layer represents the natural

  3. Ground-based complex for checking the optical system

    Science.gov (United States)

    Grebenyuk, V.; Boreiko, V.; Dmitrotsa, A.; Gorbunov, N.; Khrenov, B.; Klimov, P.; Lavrova, M.; Popescu, E. M.; Sabirov, B.; Tkachenko, A.; Tkachev, L.; Volvach, A.; Yashin, I.

    2016-09-01

    The purpose TUS space experiment is to study cosmic rays of ultrahigh energies produced by extensive air showers from space. The concentrator is located on satellite, made in the form of the Fresnel mirror towards the earth's atmosphere, the focus of which is a photodetector. The angle of view of the mirror is ±4.5° that for a given height of the orbit corresponds to the area 80 × 80 km2 on ground. The ground complex consisting of a number of stations, to check the optical system of the experiment is created, (their location and the amount will be determined after the launch of the satellite based on its actual orbit).

  4. Ground extraction from airborne laser data based on wavelet analysis

    Science.gov (United States)

    Xu, Liang; Yang, Yan; Jiang, Bowen; Li, Jia

    2007-11-01

    With the advantages of high resolution and accuracy, airborne laser scanning data are widely used in topographic mapping. In order to generate a DTM, measurements from object features such as buildings, vehicles and vegetation have to be classified and removed. However, the automatic extraction of bare earth from point clouds acquired by airborne laser scanning equipment remains a problem in LIDAR data filtering nowadays. In this paper, a filter algorithm based on wavelet analysis is proposed. Relying on the capability of detecting discontinuities of continuous wavelet transform and the feature of multi-resolution analysis, the object points can be removed, while ground data are preserved. In order to evaluate the performance of this approach, we applied it to the data set used in the ISPRS filter test in 2003. 15 samples have been tested by the proposed approach. Results showed that it filtered most of the objects like vegetation and buildings, and extracted a well defined ground model.

  5. 3D Spatial Information Infrastructure for the Port of Rotterdam

    NARCIS (Netherlands)

    Zlatanova, S.; Beetz, J.; Boersma, A.J.; Mulder, A.; Goos, J.

    2013-01-01

    The maintenance of the complex infrastructure and facilities of Port of Rotterdam is based on large amounts of heterogeneous information. Almost all activities of the Port require spatial information about features above- and under- ground. Current information systems are department and data oriente

  6. Managing green infrastructures

    OpenAIRE

    Manton, Michael

    2014-01-01

    The term green infrastructure addresses the spatial structure of anthropogenic, semi-natural and natural areas, as well as other environmental features which enable society to benefit from ecosystems’ multiple services. Focusing on two green infrastructures, anthropogenic wet meadows and natural forest successions, this thesis applies a macro-ecological approach based on comparisons of multiple landscapes as complex social-ecological systems. Firstly, the trophic interactions of avian predati...

  7. An Open Computing Infrastructure that Facilitates Integrated Product and Process Development from a Decision-Based Perspective

    Science.gov (United States)

    Hale, Mark A.

    1996-01-01

    Computer applications for design have evolved rapidly over the past several decades, and significant payoffs are being achieved by organizations through reductions in design cycle times. These applications are overwhelmed by the requirements imposed during complex, open engineering systems design. Organizations are faced with a number of different methodologies, numerous legacy disciplinary tools, and a very large amount of data. Yet they are also faced with few interdisciplinary tools for design collaboration or methods for achieving the revolutionary product designs required to maintain a competitive advantage in the future. These organizations are looking for a software infrastructure that integrates current corporate design practices with newer simulation and solution techniques. Such an infrastructure must be robust to changes in both corporate needs and enabling technologies. In addition, this infrastructure must be user-friendly, modular and scalable. This need is the motivation for the research described in this dissertation. The research is focused on the development of an open computing infrastructure that facilitates product and process design. In addition, this research explicitly deals with human interactions during design through a model that focuses on the role of a designer as that of decision-maker. The research perspective here is taken from that of design as a discipline with a focus on Decision-Based Design, Theory of Languages, Information Science, and Integration Technology. Given this background, a Model of IPPD is developed and implemented along the lines of a traditional experimental procedure: with the steps of establishing context, formalizing a theory, building an apparatus, conducting an experiment, reviewing results, and providing recommendations. Based on this Model, Design Processes and Specification can be explored in a structured and implementable architecture. An architecture for exploring design called DREAMS (Developing Robust

  8. A Grid-Based Cyber Infrastructure for High Performance Chemical Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Khadka Prashant

    2008-10-01

    Full Text Available Chemical dynamics simulation is an effective means to study atomic level motions of molecules, collections of molecules, liquids, surfaces, interfaces of materials, and chemical reactions. To make chemical dynamics simulations globally accessible to a broad range of users, recently a cyber infrastructure was developed that provides an online portal to VENUS, a popular chemical dynamics simulation program package, to allow people to submit simulation jobs that will be executed on the web server machine. In this paper, we report new developments of the cyber infrastructure for the improvement of its quality of service by dispatching the submitted simulations jobs from the web server machine onto a cluster of workstations for execution, and by adding an animation tool, which is optimized for animating the simulation results. The separation of the server machine from the simulation-running machine improves the service quality by increasing the capacity to serve more requests simultaneously with even reduced web response time, and allows the execution of large scale, time-consuming simulation jobs on the powerful workstation cluster. With the addition of an animation tool, the cyber infrastructure automatically converts, upon the selection of the user, some simulation results into an animation file that can be viewed on usual web browsers without requiring installation of any special software on the user computer. Since animation is essential for understanding the results of chemical dynamics simulations, this animation capacity provides a better way for understanding simulation details of the chemical dynamics. By combining computing resources at locations under different administrative controls, this cyber infrastructure constitutes a grid environment providing physically and administratively distributed functionalities through a single easy-to-use online portal

  9. GOMMA: a component-based infrastructure for managing and analyzing life science ontologies and their evolution

    OpenAIRE

    Kirsten Toralf; Gross Anika; Hartung Michael; Rahm Erhard

    2011-01-01

    Abstract Background Ontologies are increasingly used to structure and semantically describe entities of domains, such as genes and proteins in life sciences. Their increasing size and the high frequency of updates resulting in a large set of ontology versions necessitates efficient management and analysis of this data. Results We present GOMMA, a generic infrastructure for managing and analyzing life science ontologies and their evolution. GOMMA utilizes a generic repository to uniformly and ...

  10. The Perspectives of Leisure Tourism in Romania Based on Mountain Tourism Infrastructure and Services

    OpenAIRE

    Dridea Catrinel Raluca

    2013-01-01

    The negative effects of the economic crises have also affected the international tourism activity. As a result, many destinations have chosen to underline the importance of tourism components like: food and beverage, accommodation, transport and nevertheless leisure. The leisure services have dramatically changed the notoriety and competitivity degree of destinations by enlarging the touristic offer, by diversifying it and creating new forms of tourism. The mountain tourism infrastructure and...

  11. The Perspectives of Leisure Tourism in Romania Based on Mountain Tourism Infrastructure and Services

    OpenAIRE

    Dridea Catrinel Raluca

    2013-01-01

    The negative effects of the economic crises have also affected the international tourism activity. As a result, many destinations have chosen to underline the importance of tourism components like: food and beverage, accommodation, transport and nevertheless leisure. The leisure services have dramatically changed the notoriety and competitivity degree of destinations by enlarging the touristic offer, by diversifying it and creating new forms of tourism. The mountain tourism infrastructure and...

  12. Growing the Blockchain information infrastructure

    DEFF Research Database (Denmark)

    Jabbar, Karim; Bjørn, Pernille

    2017-01-01

    In this paper, we present ethnographic data that unpacks the everyday work of some of the many infrastructuring agents who contribute to creating, sustaining and growing the Blockchain information infrastructure. We argue that this infrastructuring work takes the form of entrepreneurial actions......, which are self-initiated and primarily directed at sustaining or increasing the initiator’s stake in the emerging information infrastructure. These entrepreneurial actions wrestle against the affordances of the installed base of the Blockchain infrastructure, and take the shape of engaging...... or circumventing activities. These activities purposefully aim at either influencing or working around the enablers and constraints afforded by the Blockchain information infrastructure, as its installed base is gaining inertia. This study contributes to our understanding of the purpose of infrastructuring, seen...

  13. a Holistic Approach for Inspection of Civil Infrastructures Based on Computer Vision Techniques

    Science.gov (United States)

    Stentoumis, C.; Protopapadakis, E.; Doulamis, A.; Doulamis, N.

    2016-06-01

    In this work, it is examined the 2D recognition and 3D modelling of concrete tunnel cracks, through visual cues. At the time being, the structural integrity inspection of large-scale infrastructures is mainly performed through visual observations by human inspectors, who identify structural defects, rate them and, then, categorize their severity. The described approach targets at minimum human intervention, for autonomous inspection of civil infrastructures. The shortfalls of existing approaches in crack assessment are being addressed by proposing a novel detection scheme. Although efforts have been made in the field, synergies among proposed techniques are still missing. The holistic approach of this paper exploits the state of the art techniques of pattern recognition and stereo-matching, in order to build accurate 3D crack models. The innovation lies in the hybrid approach for the CNN detector initialization, and the use of the modified census transformation for stereo matching along with a binary fusion of two state-of-the-art optimization schemes. The described approach manages to deal with images of harsh radiometry, along with severe radiometric differences in the stereo pair. The effectiveness of this workflow is evaluated on a real dataset gathered in highway and railway tunnels. What is promising is that the computer vision workflow described in this work can be transferred, with adaptations of course, to other infrastructure such as pipelines, bridges and large industrial facilities that are in the need of continuous state assessment during their operational life cycle.

  14. Two-Dimensional Key Table-Based Group Key Distribution in Advanced Metering Infrastructure

    Directory of Open Access Journals (Sweden)

    Woong Go

    2014-01-01

    Full Text Available A smart grid provides two-way communication by using the information and communication technology. In order to establish two-way communication, the advanced metering infrastructure (AMI is used in the smart grid as the core infrastructure. This infrastructure consists of smart meters, data collection units, maintenance data management systems, and so on. However, potential security problems of the AMI increase owing to the application of the public network. This is because the transmitted information is electricity consumption data for charging. Thus, in order to establish a secure connection to transmit electricity consumption data, encryption is necessary, for which key distribution is required. Further, a group key is more efficient than a pairwise key in the hierarchical structure of the AMI. Therefore, we propose a group key distribution scheme using a two-dimensional key table through the analysis result of the sensor network group key distribution scheme. The proposed scheme has three phases: group key predistribution, selection of group key generation element, and generation of group key.

  15. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    Science.gov (United States)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  16. Infrastructural Fractals

    DEFF Research Database (Denmark)

    Bruun Jensen, Casper

    2007-01-01

    . Instead, I outline a fractal approach to the study of space, society, and infrastructure. A fractal orientation requires a number of related conceptual reorientations. It has implications for thinking about scale and perspective, and (sociotechnical) relations, and for considering the role of the social...... and a fractal social theory....

  17. The STACEE-32 Ground Based Gamma-ray Detector

    CERN Document Server

    Hanna, D S; Boone, L M; Chantell, M C; Conner, Z; Covault, C E; Dragovan, M; Fortin, P; Gregorich, D T; Hinton, J A; Mukherjee, R; Ong, R A; Oser, S; Ragan, K; Scalzo, R A; Schütte, D R; Theoret, C G; Tümer, T O; Williams, D A; Zweerink, J A

    2002-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment detector in its initial configuration (STACEE-32). STACEE is a new ground-based gamma ray detector using the atmospheric Cherenkov technique. In STACEE, the heliostats of a solar energy research array are used to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous detectors.

  18. The STACEE Ground-Based Gamma-Ray Detector

    CERN Document Server

    Gingrich, D M; Bramel, D; Carson, J; Covault, C E; Fortin, P; Hanna, D S; Hinton, J A; Jarvis, A; Kildea, J; Lindner, T; Müller, C; Mukherjee, R; Ong, R A; Ragan, K; Scalzo, R A; Theoret, C G; Williams, D A; Zweerink, J A

    2005-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) in its complete configuration. STACEE uses the heliostats of a solar energy research facility to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The light is concentrated onto an array of photomultiplier tubes located near the top of a tower. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous ground-based detectors. STACEE is being used to observe pulsars, supernova remnants, active galactic nuclei, and gamma-ray bursts.

  19. Research on target accuracy for ground-based lidar

    Science.gov (United States)

    Zhu, Ling; Shi, Ruoming

    2009-05-01

    In ground based Lidar system, the targets are used in the process of registration, georeferencing for point cloud, and also can be used as check points. Generally, the accuracy of capturing the flat target center is influenced by scanning range and scanning angle. In this research, the experiments are designed to extract accuracy index of the target center with 0-90°scan angles and 100-195 meter scan ranges using a Leica HDS3000 laser scanner. The data of the experiments are listed in detail and the related results are analyzed.

  20. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  1. Applications of FBG-based sensors to ground stability monitoring

    Institute of Scientific and Technical Information of China (English)

    An-Bin Huang; Chien-Chih Wang; Jui-Ting Lee; Yen-Te Ho

    2016-01-01

    Over the past few decades, many optical fiber sensing techniques have been developed. Among these available sensing methods, optical fiber Bragg grating (FBG) is probably the most popular one. With its unique capabilities, FBG-based geotechnical sensors can be used as a sensor array for distributive (profile) measurements, deployed under water (submersible), for localized high resolution and/or dif-ferential measurements. The authors have developed a series of FBG-based transducers that include inclination, linear displacement and gauge/differential pore pressure sensors. Techniques that involve the field deployment of FBG inclination, extension and pore-pressure sensor arrays for automated slope stability and ground subsidence monitoring have been developed. The paper provides a background of FBG and the design concepts behind the FBG-based field monitoring sensors. Cases of field monitoring using the FBG sensor arrays are presented, and their practical implications are discussed.

  2. WindScanner.dk - a new Remote Sensing based Research Infrastructure for on- and offshore Wind Energy Research

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    Recent measurement achievements obtained with new 3D remote sensing based WindScanners will be presented. Our new WindScanner research infrastructure (www.windscanner.dk) development based on remote sensing wind lidars will be presented and first results shown. Wind velocity 3D vector measurements...... and 3-dimensional wind vector scan measurements obtained during various WindScanner boundary-layer field campaigns. A special designed `2D upwind rotor plane scanning SpinnerLidar', mounted in the rotating spinner, and able to provide the wind turbine control systems with detailed upwind feed...

  3. Statistical Studies of Ground-Based Optical Lightning Signatures

    Science.gov (United States)

    Hunt, C. R.; Nemzek, R. J.; Suszcynsky, D. M.

    2005-12-01

    Most extensive optical studies of lightning have been conducted from orbit, and the statistics of events collected from earth are relatively poorly documented. The time signatures of optical power measured in the presence of clouds are inevitably affected by scattering,which can distort the signatures by extending and delaying the amplitude profile in time. We have deployed two all-sky photodiode detectors, one in New Mexico and one in Oklahoma, which are gathering data alongside electric field change monitors as part of the LANL EDOTX Great Plains Array. Preliminary results show that the photodiode is sensitive to approximately 50% or more of RF events detected at ranges of up to 30 km, and still has some sensitivity at ranges in excess of 60 km (distances determined by the EDOTX field-change array). The shapes of events within this range were assessed, with focus on rise time, width, peak power, and their correlation to corresponding electric field signatures, and these are being compared with published on-orbit and ground-based data. Initial findings suggest a mean characteristic width (ratio of total detected optical energy to peak power) of 291 +/- 12 microseconds and a mean delay between the RF signal peak and optical peak of 121 +/- 17 microseconds. These values fall between prior ground-based measurements of direct return stroke emissions, and scattering-dominated on-orbit measurements. This work will promote better understanding of the correspondence between radio and optical measurements of lightning.

  4. Real-time Gaussian Markov random-field-based ground tracking for ground penetrating radar data

    Science.gov (United States)

    Bradbury, Kyle; Torrione, Peter A.; Collins, Leslie

    2009-05-01

    Current ground penetrating radar algorithms for landmine detection require accurate estimates of the location of the air/ground interface to maintain high levels of performance. However, the presence of surface clutter, natural soil roughness, and antenna motion lead to uncertainty in these estimates. Previous work on improving estimates of the location of the air/ground interface have focused on one-dimensional filtering techniques to localize the air/ground interface. In this work, we propose an algorithm for interface localization using a 2- D Gaussian Markov random field (GMRF). The GMRF provides a statistical model of the surface structure, which enables the application of statistical optimization techniques. In this work, the ground location is inferred using iterated conditional modes (ICM) optimization which maximizes the conditional pseudo-likelihood of the GMRF at a point, conditioned on its neighbors. To illustrate the efficacy of the proposed interface localization approach, pre-screener performance with and without the proposed ground localization algorithm is compared. We show that accurate localization of the air/ground interface provides the potential for future performance improvements.

  5. Airborne and Ground-Based Optical Characterization of Legacy Underground Nuclear Test Sites

    Science.gov (United States)

    Vigil, S.; Craven, J.; Anderson, D.; Dzur, R.; Schultz-Fellenz, E. S.; Sussman, A. J.

    2015-12-01

    Detecting, locating, and characterizing suspected underground nuclear test sites is a U.S. security priority. Currently, global underground nuclear explosion monitoring relies on seismic and infrasound sensor networks to provide rapid initial detection of potential underground nuclear tests. While seismic and infrasound might be able to generally locate potential underground nuclear tests, additional sensing methods might be required to further pinpoint test site locations. Optical remote sensing is a robust approach for site location and characterization due to the ability it provides to search large areas relatively quickly, resolve surface features in fine detail, and perform these tasks non-intrusively. Optical remote sensing provides both cultural and surface geological information about a site, for example, operational infrastructure, surface fractures. Surface geological information, when combined with known or estimated subsurface geologic information, could provide clues concerning test parameters. We have characterized two legacy nuclear test sites on the Nevada National Security Site (NNSS), U20ak and U20az using helicopter-, ground- and unmanned aerial system-based RGB imagery and light detection and ranging (lidar) systems. The multi-faceted information garnered from these different sensing modalities has allowed us to build a knowledge base of how a nuclear test site might look when sensed remotely, and the standoff distances required to resolve important site characteristics.

  6. Advanced Refrigerant-Based Cooling Technologies for Information and Communication Infrastructure (ARCTIC)

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, Todd

    2012-12-13

    Faster, more powerful and dense computing hardware generates significant heat and imposes considerable data center cooling requirements. Traditional computer room air conditioning (CRAC) cooling methods are proving increasingly cost-ineffective and inefficient. Studies show that using the volume of room air as a heat exchange medium is wasteful and allows for substantial mixing of hot and cold air. Further, it limits cabinet/frame/rack density because it cannot effectively cool high heat density equipment that is spaced closely together. A more cost-effective, efficient solution for maximizing heat transfer and enabling higher heat density equipment frames can be accomplished by utilizing properly positioned phase change or two-phase pumped refrigerant cooling methods. Pumping low pressure, oil-free phase changing refrigerant through microchannel heat exchangers can provide up to 90% less energy consumption for the primary cooling loop within the room. The primary benefits of such a solution include reduced energy requirements, optimized utilization of data center space, and lower OPEX and CAPEX. Alcatel-Lucent recently developed a modular cooling technology based on a pumped two-phase refrigerant that removes heat directly at the shelf level of equipment racks. The key elements that comprise the modular cooling technology consist of the following. A pump delivers liquid refrigerant to finned microchannel heat exchangers mounted on the back of equipment racks. Fans drive air through the equipment shelf, where the air gains heat dissipated by the electronic components therein. Prior to exiting the rack, the heated air passes through the heat exchangers, where it is cooled back down to the temperature level of the air entering the frame by vaporization of the refrigerant, which is subsequently returned to a condenser where it is liquefied and recirculated by the pump. All the cooling air enters and leaves the shelves/racks at nominally the same temperature. Results

  7. SOA-based RFID public services infrastructure: architecture and its core services

    Institute of Scientific and Technical Information of China (English)

    Zeng Junfang; Li Ran; Luo Jin; Liu Yu

    2009-01-01

    Radio frequency identification (RFID) has prominent advantages compared with other auto-identification technologies. Combining RFID with network technology, physical object tracking and information sharing can possibly be carried out in an innovative way. Regarding open-loop RFID applications, RFID public services infrastructure (PSI) is presented, PSI architecture is designed, and service modules are implemented, and a demonstrative application system, blood management and traceability system, is studied to verify PSI. Experimental results show the feasibility of the proposed architecture and the usability of PSI framework software.

  8. Simulation Study of a Traffic Light Assistant Based on Vehicle-Infrastructure Communication

    CERN Document Server

    Treiber, Martin

    2014-01-01

    Vehicle-infrastructure communication opens up new ways to improve traffic flow efficiency at signalized intersections. In this study, we assume that equipped vehicles can obtain information about switching times of relevant traffic lights in advance, and additionally counting data from upstream detectors. By means of simulation, we investigate, how equipped vehicles can make use of this information to improve traffic flow. Criteria include cycle-averaged capacity, driving comfort, fuel consumption, travel time, and the number of stops. Depending on the overall traffic demand and the penetration rate of equipped vehicles, we generally find several percent of improvement.

  9. Identification of rainy periods from ground based microwave radiometry

    Directory of Open Access Journals (Sweden)

    Ada Vittoria Bosisio

    2012-03-01

    Full Text Available In this paper the authors present the results of a study aiming at detecting rainy data in measurements collected by a dual band ground-based radiometer. The proposed criterion is based on the ratio of the brightness temperatures observed in the 20-30 GHz band without need of any ancillary information. A major result obtained from the probability density of the ratio computed over one month of data is the identification of threshold values between clear sky, cloudy sky and rainy sky, respectively. A linear fit performed by using radiometric data and concurrent rain gauge measurements shows a correlation coefficient equal to 0.56 between the temperature ratio and the observed precipitation.

  10. Unique cell culture systems for ground based research

    Science.gov (United States)

    Lewis, Marian L.

    1990-01-01

    The horizontally rotating fluid-filled, membrane oxygenated bioreactors developed at NASA Johnson for spacecraft applications provide a powerful tool for ground-based research. Three-dimensional aggregates formed by cells cultured on microcarrier beads are useful for study of cell-cell interactions and tissue development. By comparing electron micrographs of plant seedlings germinated during Shuttle flight 61-C and in an earth-based rotating bioreactor it is shown that some effects of microgravity are mimicked. Bioreactors used in the UAH Bioreactor Laboratory will make it possible to determine some of the effects of altered gravity at the cellular level. Bioreactors can be valuable for performing critical, preliminary-to-spaceflight experiments as well as medical investigations such as in vitro tumor cell growth and chemotherapeutic drug response; the enrichment of stem cells from bone marrow; and the effect of altered gravity on bone and muscle cell growth and function and immune response depression.

  11. Spatial-angular modeling of ground-based biaxial lidar

    Science.gov (United States)

    Agishev, Ravil R.

    1997-10-01

    Results of spatial-angular LIDAR modeling based on an efficiency criterion introduced are represented. Their analysis shows that a low spatial-angular efficiency of traditional VIS and NIR systems is a main cause of a low S/BR ratio at the photodetector input. It determines the considerable measurements errors and the following low accuracy of atmospheric optical parameters retrieval. As we have shown, the most effective protection against intensive sky background radiation for ground-based biaxial LIDAR's consist in forming of their angular field according to spatial-angular efficiency criterion G. Some effective approaches to high G-parameter value achievement to achieve the receiving system optimization are discussed.

  12. INFRASTRUCTURING DESIGN

    DEFF Research Database (Denmark)

    Ertner, Sara Marie

    one such project, Project Lev Vel, a public-private and user driven innovation project. The central questions posed by the dissertation are: What is welfare technology? How is it imagined, designed, and developed, and by whom? Who are driving the design processes and how? Who are the elderly users...... sites and infrastructures for project communication plays a central role for design and, ultimately, for what welfare technology comes to be. The chapters explore different processes of what I call infrastructuring design; the ongoing crafting of social, material, and technical arrangements......The fact that the average citizen in Western societies is aging has significant implications for national welfare models. What some call ’the grey tsunami’ has resulted in suggestions for, and experiments in, re-designing healthcare systems and elderly care. In Denmark, one attempted solution...

  13. DDCC-Based Quadrature Oscillator with Grounded Capacitors and Resistors

    Directory of Open Access Journals (Sweden)

    Montree Kumngern

    2009-01-01

    Full Text Available A new voltage-mode quadrature oscillator using two differential difference current conveyors (DDCCs, two grounded capacitors, and three grounded resistors is presented. The proposed oscillator provides the following advantages: the oscillation condition and oscillation frequency are orthogonally controlled; the oscillation frequency is controlled through a single grounded resistor; the use of only grounded capacitors and resistors makes the proposed circuit ideal for IC implementation; low passive and active sensitivities. Simulation results verifying the theoretical analysis are also included.

  14. Using agent based modeling to assess the effect of increased Bus Rapid Transit system infrastructure on walking for transportation.

    Science.gov (United States)

    Lemoine, Pablo D; Cordovez, Juan Manuel; Zambrano, Juan Manuel; Sarmiento, Olga L; Meisel, Jose D; Valdivia, Juan Alejandro; Zarama, Roberto

    2016-07-01

    The effect of transport infrastructure on walking is of interest to researchers because it provides an opportunity, from the public policy point of view, to increase physical activity (PA). We use an agent based model (ABM) to examine the effect of transport infrastructure on walking. Particular relevance is given to assess the effect of the growth of the Bus Rapid Transit (BRT) system in Bogotá on walking. In the ABM agents are assigned a home, work location, and socioeconomic status (SES) based on which they are assigned income for transportation. Individuals must decide between the available modes of transport (i.e., car, taxi, bus, BRT, and walking) as the means of reaching their destination, based on resources and needed travel time. We calibrated the model based on Bogota's 2011 mobility survey. The ABM results are consistent with previous empirical findings, increasing BRT access does indeed increase the number of minutes that individuals walk for transportation, although this effect also depends on the availability of other transport modes. The model indicates a saturation process: as more BRT lanes are added, the increment in minutes walking becomes smaller, and eventually the walking time decreases. Our findings on the potential contribution of the expansion of the BRT system to walking for transportation suggest that ABMs may prove helpful in designing policies to continue promoting walking.

  15. Information Technology Service Management (ITSM) Implementation Methodology Based on Information Technology Infrastructure Library Ver.3 (ITIL V3)

    OpenAIRE

    Mostafa Mohamed AlShamy; Essam Elfakharany; Mostafa Abd ElAziem

    2012-01-01

    This paper is intended to cover the concept of IT Infrastructure Library Version 3 (ITIL) v3 andhow to implement it in order to increase the efficiency of any Egyptian IT corporate and to helpthe corporate employees to do their work easily and its clients to feel the quality of servicesprovided to them. ITIL is considered now as the de facto standard framework for IT ServiceManagement (ITSM) in organizations which operate their business which is based on ITinfrastructure and services.ITIL v3 ...

  16. New infrastructures, new landscapes

    Directory of Open Access Journals (Sweden)

    Chiara Nifosì

    2014-06-01

    Full Text Available New infrastructures, new landscapes AbstractThe paper will discuss one recent Italian project that share a common background: the relevance of the existing maritime landscape as a non negotiable value. The studies will be discussed in details a feasibility study for the new port in Monfalcone. National infrastructural policies emphasize competitiveness and connection as a central issue incultural, economic and political development of communities . Based on networks and system development along passageways that make up the European infrastructural armor; the two are considered at the meantime as cause and effect of "territorialisation”. These two views are obviously mutually dependent. It's hard to think about a strong attractiveness out of the network, and to be part of the latter encourages competitiveness. Nonetheless this has proved to be conflictual when landscape values and the related attractiveness are considered.The presented case study project, is pursuing the ambition to promote a new approach in realizing large infrastructures; its double role is to improve connectivity and to generate lasting and positive impact on the local regions. It deal with issues of inter-modality and the construction of nodes and lines which connects Europe, and its markets.Reverting the usual approach which consider landscape project as as a way to mitigate or to compensate for the infrastructure, the goal is to succeed in realizing large infrastructural works by conceiving them as an occasion to reinterpret a region or, as extraordinary opportunities, to build new landscapes.The strategy proposed consists in achieving structural images based on the reinforcement of the environmental and historical-landscape systems. Starting from the reinterpretation of local maritime context and resources it is possible not just to preserve the attractiveness of a specific landscape but also to conceive infrastructure in a more efficient way. 

  17. Comprehending the multiple 'values' of green infrastructure - Valuing nature-based solutions for urban water management from multiple perspectives.

    Science.gov (United States)

    Wild, T C; Henneberry, J; Gill, L

    2017-10-01

    The valuation of urban water management practices and associated nature-based solutions (NBS) is highly contested, and is becoming increasingly important to cities seeking to increase their resilience to climate change whilst at the same time facing budgetary pressures. Different conceptions of 'values' exist, each being accompanied by a set of potential measures ranging from calculative practices (closely linked to established market valuation techniques) - through to holistic assessments that seek to address wider concerns of sustainability. Each has the potential to offer important insights that often go well beyond questions of balancing the costs and benefits of the schemes concerned. However, the need to address - and go beyond - economic considerations presents policy-makers, practitioners and researchers with difficult methodological, ethical and practical challenges, especially when considered without the benefit of a broader theoretical framework or in the absence of well-established tools (as might apply within more traditional infrastructural planning contexts, such as the analysis of transport interventions). Drawing on empirical studies undertaken in Sheffield over a period of 10 years, and delivered in partnership with several other European cities and regions, we compare and examine different attempts to evaluate the benefits of urban greening options and future development scenarios. Comparing these different approaches to the valuation of nature-based solutions alongside other, more conventional forms of infrastructure - and indeed integrating both 'green and grey' interventions within a broader framework of infrastructures - throws up some surprising results and conclusions, as well as providing important sign-posts for future research in this rapidly emerging field. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. MetaSensing's FastGBSAR: ground based radar for deformation monitoring

    Science.gov (United States)

    Rödelsperger, Sabine; Meta, Adriano

    2014-10-01

    The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early

  19. The STACEE Ground-Based Gamma-ray Observatory

    Science.gov (United States)

    Ragan, Ken

    2002-04-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a ground-based instrument designed to study astrophysical sources of gamma rays in the energy range from 50 to 500 GeV using an array of heliostat mirrors at the National Solar Thermal Test Facility in New Mexico. The mirrors collect Cherenkov light generated by gamma-ray air showers and concentrate it onto cameras composed of photomultiplier tubes. The STACEE instrument is now complete, and uses a total of 64 heliostats. Prototype instruments, using smaller numbers of heliostats, have previously detected gamma emission from both the Crab Nebula and the Active Galactic Nucleus Mrk421. The complete instrument has a lower threshold -- approximately 50 GeV -- than those prototypes due to superior triggering and electronics, including flash ADCs for every channel.We will discuss the performance of the complete instrument in its first full season of operation, and present preliminary results of selected observations.

  20. Atmospheric contamination for CMB ground-based observations

    CERN Document Server

    Errard, J; Akiba, Y; Arnold, K; Atlas, M; Baccigalupi, C; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Cukierman, A; Delabrouille, J; Dobbs, M; Ducout, A; Elleflot, T; Fabbian, G; Feng, C; Feeney, S; Gilbert, A; Goeckner-Wald, N; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Hill, C; Holzapfel, W L; Hori, Y; Inoue, Y; Jaehnig, G C; Jaffe, A H; Jeong, O; Katayama, N; Kaufman, J; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Jeune, M Le; Lee, A T; Leitch, E M; Leon, D; Linder, E; Matsuda, F; Matsumura, T; Miller, N J; Myers, M J; Navaroli, M; Nishino, H; Okamura, T; Paar, H; Peloton, J; Poletti, D; Puglisi, G; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K M; Schenck, D E; Sherwin, B D; Siritanasak, P; Smecher, G; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Tajima, O; Takakura, S; Tikhomirov, A; Tomaru, T; Whitehorn, N; Wilson, B; Yadav, A; Zahn, O

    2015-01-01

    Atmosphere is one of the most important noise sources for ground-based Cosmic Microwave Background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3d-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive an analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the POLARBEAR-I project first season data set. We compare our results to previous st...

  1. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    CERN Document Server

    Chen, Hsin-Yu; Vitale, Salvatore; Holz, Daniel E; Katsavounidis, Erik

    2016-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over $80\\%$ of the localization probability, while mid-latitudes will access closer to $70\\%$. Facilities located near the two LIGO sites can obser...

  2. Progress in the ULTRA 1-m ground-based telescope

    Science.gov (United States)

    Romeo, Robert C.; Martin, Robert N.; Twarog, Bruce; Anthony-Twarog, Barbara; Taghavi, Ray; Hale, Rick; Etzel, Paul; Fesen, Rob; Shawl, Steve

    2006-06-01

    We present the technical status of the Ultra Lightweight Telescope for Research in Astronomy (ULTRA) program. The program is a 3-year Major Research Instrumentation (MRI) program funded by NSF. The MRI is a collaborative effort involving Composite Mirror Applications, Inc. (CMA), University of Kansas, San Diego State University and Dartmouth College. Objectives are to demonstrate the feasibility of carbon fiber reinforced plastic (CFRP) composite mirror technology for ground-based optical telescopes. CMA is spearheading the development of surface replication techniques to produce the optics, fabricating the 1m glass mandrel, and constructing the optical tube assembly (OTA). Presented will be an overview and status of the 1-m mandrel fabrication, optics development, telescope design and CFRP telescope fabrication by CMA for the ULTRA Telescope.

  3. Ground-based optical observation system for LEO objects

    Science.gov (United States)

    Yanagisawa, T.; Kurosaki, H.; Oda, H.; Tagawa, M.

    2015-08-01

    We propose a ground-based optical observation system for monitoring LEO objects, which uses numerous optical sensors to cover a vast region of the sky. Its potential in terms of detection and orbital determination were examined. About 30 cm LEO objects at 1000 km altitude are detectable using an 18 cm telescope, a CCD camera and the analysis software developed. Simulations and a test observation showed that two longitudinally separate observation sites with arrays of optical sensors can identify the same objects from numerous data sets and determine their orbits precisely. The proposed system may complement or replace the current radar observation system for monitoring LEO objects, like space-situation awareness, in the near future.

  4. Optical vortex coronagraphs on ground-based telescopes

    CERN Document Server

    Jenkins, Charles

    2007-01-01

    The optical vortex coronagraph is potentially a remarkably effective device, at least for an ideal unobstructed telescope. Most ground-based telescopes however suffer from central obscuration and also have to operate through the aberrations of the turbulent atmosphere. This note analyzes the performance of the optical vortex in these circumstances and compares to some other designs, showing that it performs similarly in this situation. There is a large class of coronagraphs of this general type, and choosing between them in particular applications depends on details of performance at small off-axis distances and uniformity of response in the focal plane. Issues of manufacturability to the necessary tolerances are also likely to be important.

  5. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. These effects can inform electromagnetic follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  6. Ground-based Measurements of Next Generation Spectroradiometric Standard Stars

    Science.gov (United States)

    McGraw, John T.

    2013-01-01

    Accurate, radiometric standards are essential to the future of ground- and space-based astronomy and astrophysics. While astronomers tend to think of “standard stars” as available calibration sources, progress at NIST to accurately calibrate inexpensive, easy to use photodiode detectors as spectroradiometric standards from 200 nm to 1800 nm allows referencing astronomical measurements to these devices. Direction-, time-, and wavelength-dependent transmission of Earth’s atmosphere is the single largest source of error for ground-based radiometric measurement of astronomical objects. Measurements and impacts of atmospheric extinction - scattering and absorption - on imaging radiometric and spectroradiometric measurements are described. The conclusion is that accurate real-time measurement of extinction in the column of atmosphere through which standard star observations are made, over the spectral region being observed and over the field of view of the telescope are required. New techniques to directly and simultaneously measure extinction in the column of atmosphere through which observations are made are required. Our direct extinction measurement solution employs three small facility-class instruments working in parallel: a lidar to measure rapidly time variable transmission at three wavelengths with uncertainty of 0.25% per airmass, a spectrophotometer to measure rapidly wavelength variable extinction with sub-1% precision per nanometer resolution element from 350 to 1050nm, and a wide-field camera to measure angularly variable extinction over the field of view. These instruments and their operation will be described. We assert that application of atmospheric metadata provided by this instrument suite corrects for a significant fraction of systematic errors currently limiting radiometric precision, and provides a major step towards measurements that are provably dominated by random noise.

  7. Real-Time Performance Analysis of Infrastructure-based IEEE 802.11 Distributed Coordination Function

    CERN Document Server

    Xia, Feng; Wang, Linqiang; Hao, Ruonan

    2012-01-01

    With the increasing popularity of wireless networks, wireless local area networks (WLANs) have attracted significant research interest, which play a critical role in providing anywhere and anytime connectivity. For WLANs the IEEE 802.11 standard is the most mature technology and has been widely adopted for wireless networks. This paper analyzes real-time performance of the IEEE 802.11 standard that adopts the MAC protocol of Distributed Coordination Function (DCF) operating in infrastructure mode. Extensive simulations have been done to examine how the network performance in terms of realtime metrics including effective data rate, latency and packet loss rate will be impacted by some critical parameters (e.g. CWmin and packet payload). The results are presented and analyzed. The analysis of simulation results can provide support for parameter configuration and optimization of WLANs for realtime applications.

  8. Railway infrastructure security

    CERN Document Server

    Sforza, Antonio; Vittorini, Valeria; Pragliola, Concetta

    2015-01-01

    This comprehensive monograph addresses crucial issues in the protection of railway systems, with the objective of enhancing the understanding of railway infrastructure security. Based on analyses by academics, technology providers, and railway operators, it explains how to assess terrorist and criminal threats, design countermeasures, and implement effective security strategies. In so doing, it draws upon a range of experiences from different countries in Europe and beyond. The book is the first to be devoted entirely to this subject. It will serve as a timely reminder of the attractiveness of the railway infrastructure system as a target for criminals and terrorists and, more importantly, as a valuable resource for stakeholders and professionals in the railway security field aiming to develop effective security based on a mix of methodological, technological, and organizational tools. Besides researchers and decision makers in the field, the book will appeal to students interested in critical infrastructur...

  9. Infrastructure Development

    DEFF Research Database (Denmark)

    Williams, Idongesit

    2012-01-01

    It is the quest of every government to achieve universal Access and service of telecommunication services and ICTs. Unfortunately due to the high cost of deploying infrastructure in rural areas of developing countries due to non-significant or no economic activity, this dream of achieving Universal...... access and service of telecommunications/ICTs have been stalled. This paper throws light on a possible Public Private Partnership framework as a development path that will enable affordable network technologies to be deployed in rural areas at a cost that will translate to what the rural dweller...

  10. Infrastructure Development

    DEFF Research Database (Denmark)

    Williams, Idongesit

    2012-01-01

    It is the quest of every government to achieve universal Access and service of telecommunication services and ICTs. Unfortunately due to the high cost of deploying infrastructure in rural areas of developing countries due to non-significant or no economic activity, this dream of achieving Universal...... access and service of telecommunications/ICTs have been stalled. This paper throws light on a possible Public Private Partnership framework as a development path that will enable affordable network technologies to be deployed in rural areas at a cost that will translate to what the rural dweller...

  11. URBAN-NET: A Network-based Infrastructure Monitoring and Analysis System for Emergency Management and Public Safety

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangkeun (Matt) [ORNL; Chen, Liangzhe [ORNL; Duan, Sisi [ORNL; Chinthavali, Supriya [ORNL; Shankar, Mallikarjun (Arjun) [ORNL; Prakash, B. Aditya [Virginia Tech, Blacksburg, VA

    2016-01-01

    Abstract Critical Infrastructures (CIs) such as energy, water, and transportation are complex networks that are crucial for sustaining day-to-day commodity flows vital to national security, economic stability, and public safety. The nature of these CIs is such that failures caused by an extreme weather event or a man-made incident can trigger widespread cascading failures, sending ripple effects at regional or even national scales. To minimize such effects, it is critical for emergency responders to identify existing or potential vulnerabilities within CIs during such stressor events in a systematic and quantifiable manner and take appropriate mitigating actions. We present here a novel critical infrastructure monitoring and analysis system named URBAN-NET. The system includes a software stack and tools for monitoring CIs, pre-processing data, interconnecting multiple CI datasets as a heterogeneous network, identifying vulnerabilities through graph-based topological analysis, and predicting consequences based on what-if simulations along with visualization. As a proof-of-concept, we present several case studies to show the capabilities of our system. We also discuss remaining challenges and future work.

  12. KLIMA 2050: a research-based innovation centre for risk reduction through climate adaptation of infrastructure and buildings

    Science.gov (United States)

    Solheim, Anders; Time, Berit; Kvande, Tore; Sivertsen, Edvard; Cepeda, Jose; Lappegard Hauge, Åshild; Bygballe, Lena; Almås, Anders-Johan

    2016-04-01

    Klima 2050 - Risk reduction through climate adaptation of buildings and infrastructure is a Centre for Research based Innovation (SFI), funded jointly by the Research Council of Norway (RCN) and the partners of the centre. The aim of Klima 2050 is to reduce the societal risks associated with climate changes, including enhanced precipitation and flood water exposure within the built environment. The Centre will strengthen companies' innovation capacity through a focus on long-term research. It is also a clear objective to facilitate close cooperation between Research & Development, performing companies, public entities, and prominent research groups. Emphasis will be placed on development of moisture-resilient buildings, storm-water management, blue-green solutions, mitigation measures for water-triggered landslides, socio-economic incentives and decision-making processes. Both extreme weather and gradual climatic changes will be addressed. The Centre consists of a consortium of 18 partners from three sectors: industry, public entities and research/education organizations. The partners from the industry/private sector include a variety of companies from the building industry. The public entities comprise the most important infrastructure owners in Norway (public roads, railroads, buildings, airports), as well as the directorate for water and energy. The research and education partners are SINTEF Building and Infrastructure, the Norwegian Business School, the Norwegian University of Science and Technology, the Norwegian Meteorological Institute, and the Norwegian Geotechnical Institute. This contribution presents the main research plans and activities of this Centre, which was started in 2015 and will run for 8 years, until 2023. The presentation also includes options for international cooperation in the Centre via PhD and postdoctoral positions, MSc projects and guest-researcher stays with Klima 2050 partners.

  13. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  14. Independet Component Analyses of Ground-based Exoplanetary Transits

    Science.gov (United States)

    Silva Martins-Filho, Walter; Griffith, Caitlin Ann; Pearson, Kyle; Waldmann, Ingo; Biddle, Lauren; Zellem, Robert Thomas; Alvarez-Candal, Alvaro

    2016-10-01

    Most observations of exoplanetary atmospheres are conducted when a "Hot Jupiter" exoplanet transits in front of its host star. These Jovian-sized planets have small orbital periods, on the order of days, and therefore a short transit time, making them more ameanable to observations. Measurements of Hot Jupiter transits must achieve a 10-4 level of accuracy in the flux to determine the spectral modulations of the exoplanetary atmosphere. In order to accomplish this level of precision, we need to extract systematic errors, and, for ground-based measurements, the effects of Earth's atmosphere, from the signal due to the exoplanet, which is several orders of magnitudes smaller. Currently, the effects of the terrestrial atmosphere and the some of the time-dependent systematic errors are treated by dividing the host star by a reference star at each wavelength and time step of the transit. More recently, Independent Component Analyses (ICA) have been used to remove systematic effects from the raw data of space-based observations (Waldmann 2014,2012; Morello et al.,2015,2016). ICA is a statistical method born from the ideas of the blind-source separation studies, which can be used to de-trend several independent source signals of a data set (Hyvarinen and Oja, 2000). One strength of this method is that it requires no additional prior knowledge of the system. Here, we present a study of the application of ICA to ground-based transit observations of extrasolar planets, which are affected by Earth's atmosphere. We analyze photometric data of two extrasolar planets, WASP-1b and GJ3470b, recorded by the 61" Kuiper Telescope at Stewart Observatory using the Harris B and U filters. The presentation will compare the light curve depths and their dispersions as derived from the ICA analysis to those derived by analyses that ratio of the host star to nearby reference stars.References: Waldmann, I.P. 2012 ApJ, 747, 12, Waldamann, I. P. 2014 ApJ, 780, 23; Morello G. 2015 ApJ, 806

  15. Making green infrastructure healthier infrastructure

    Directory of Open Access Journals (Sweden)

    Mare Lõhmus

    2015-11-01

    Full Text Available Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens’ quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion.

  16. Models of ionospheric VLF absorption of powerful ground based transmitters

    Science.gov (United States)

    Cohen, M. B.; Lehtinen, N. G.; Inan, U. S.

    2012-12-01

    Ground based Very Low Frequency (VLF, 3-30 kHz) radio transmitters play a role in precipitation of energetic Van Allen electrons. Initial analyses of the contribution of VLF transmitters to radiation belt losses were based on early models of trans-ionospheric propagation known as the Helliwell absorption curves, but some recent studies have found that the model overestimates (by 20-100 dB) the VLF energy reaching the magnetosphere. It was subsequently suggested that conversion of wave energy into electrostatic modes may be responsible for the error. We utilize a newly available extensive record of VLF transmitter energy reaching the magnetosphere, taken from the DEMETER satellite, and perform a direct comparison with a sophisticated full wave model of trans-ionospheric propagation. Although the model does not include the effect of ionospheric irregularities, it correctly predicts the average total power injected into the magnetosphere within several dB. The results, particularly at nighttime, appear to be robust against the variability of the ionospheric electron density. We conclude that the global effect of irregularity scattering on whistler mode conversion to quasi-electrostatic may be no larger than 6 dB.

  17. The Open-Multinet Upper Ontology Towards the Semantic-based Management of Federated Infrastructures

    Directory of Open Access Journals (Sweden)

    Alexander Willner

    2015-12-01

    Full Text Available The Internet remains an unfinished work. There are several approaches to enhancing it that have been experimentally validated within federated testbed environments. To best gain scientific knowledge from these studies, reproducibility and automation are needed in all areas of the experiment life cycle. Within the GENI and FIRE context, several architectures and protocols have been developed for this purpose. However, a major open research issue remains, namely the description and discovery of the heterogeneous resources involved. To remedy this, we propose a semantic information model that can be used to allow declarative interoperability, build dependency graphs, validate requests, infer knowledge and conduct complex queries. The requirements for such an information model have been extracted from current international Future Internet research projects and the practicality of the model is being evaluated through initial implementations. The main outcome of this work is the definition of the Open-Multinet Upper Ontology and related sub-ontologies, which can be used to describe and manage federated infrastructures and their resources.

  18. Green Infrastructure Design Based on Spatial Conservation Prioritization and Modeling of Biodiversity Features and Ecosystem Services

    Science.gov (United States)

    Snäll, Tord; Lehtomäki, Joona; Arponen, Anni; Elith, Jane; Moilanen, Atte

    2016-02-01

    There is high-level political support for the use of green infrastructure (GI) across Europe, to maintain viable populations and to provide ecosystem services (ES). Even though GI is inherently a spatial concept, the modern tools for spatial planning have not been recognized, such as in the recent European Environment Agency (EEA) report. We outline a toolbox of methods useful for GI design that explicitly accounts for biodiversity and ES. Data on species occurrence, habitats, and environmental variables are increasingly available via open-access internet platforms. Such data can be synthesized by statistical species distribution modeling, producing maps of biodiversity features. These, together with maps of ES, can form the basis for GI design. We argue that spatial conservation prioritization (SCP) methods are effective tools for GI design, as the overall SCP goal is cost-effective allocation of conservation efforts. Corridors are currently promoted by the EEA as the means for implementing GI design, but they typically target the needs of only a subset of the regional species pool. SCP methods would help to ensure that GI provides a balanced solution for the requirements of many biodiversity features (e.g., species, habitat types) and ES simultaneously in a cost-effective manner. Such tools are necessary to make GI into an operational concept for combating biodiversity loss and promoting ES.

  19. Green Infrastructure Design Based on Spatial Conservation Prioritization and Modeling of Biodiversity Features and Ecosystem Services.

    Science.gov (United States)

    Snäll, Tord; Lehtomäki, Joona; Arponen, Anni; Elith, Jane; Moilanen, Atte

    2016-02-01

    There is high-level political support for the use of green infrastructure (GI) across Europe, to maintain viable populations and to provide ecosystem services (ES). Even though GI is inherently a spatial concept, the modern tools for spatial planning have not been recognized, such as in the recent European Environment Agency (EEA) report. We outline a toolbox of methods useful for GI design that explicitly accounts for biodiversity and ES. Data on species occurrence, habitats, and environmental variables are increasingly available via open-access internet platforms. Such data can be synthesized by statistical species distribution modeling, producing maps of biodiversity features. These, together with maps of ES, can form the basis for GI design. We argue that spatial conservation prioritization (SCP) methods are effective tools for GI design, as the overall SCP goal is cost-effective allocation of conservation efforts. Corridors are currently promoted by the EEA as the means for implementing GI design, but they typically target the needs of only a subset of the regional species pool. SCP methods would help to ensure that GI provides a balanced solution for the requirements of many biodiversity features (e.g., species, habitat types) and ES simultaneously in a cost-effective manner. Such tools are necessary to make GI into an operational concept for combating biodiversity loss and promoting ES.

  20. The Italian Cloud-based brokering Infrastructure to sustain Interoperability for Operative Hydrology

    Science.gov (United States)

    Boldrini, E.; Pecora, S.; Bussettini, M.; Bordini, F.; Nativi, S.

    2015-12-01

    This work presents the informatics platform carried out to implement the National Hydrological Operative Information System of Italy. In particular, the presentation will focus on the governing aspects of the cloud infrastructure and brokering software that make possible to sustain the hydrology data flow between heterogeneous user clients and data providers.The Institute for Environmental Protection and Research, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale) in collaboration with the Regional Agency for Environmental Protection in the Emilia-Romagna region, ARPA-ER (Agenzia Regionale per la Prevenzione e l´Ambiente dell´Emilia-Romagna) and CNR-IIA (National Research Council of Italy) designed and developed an innovative platform for the discovery and access of hydrological data coming from 19 Italian administrative regions and 2 Italian autonomous provinces, in near real time. ISPRA has deployed and governs such a system. The presentation will introduce and discuss the technological barriers for interoperability as well as social and policy ones. The adopted solutions will be described outlining the sustainability challenges and benefits.

  1. Multi-Source Data Processing Middleware for Land Monitoring within a Web-Based Spatial Data Infrastructure for Siberia

    Directory of Open Access Journals (Sweden)

    Christiane Schmullius

    2013-06-01

    Full Text Available Land monitoring is a key issue in Earth system sciences to study environmental changes. To generate knowledge about change, e.g., to decrease uncertaincy in the results and build confidence in land change monitoring, multiple information sources are needed. Earth observation (EO satellites and in situ measurements are available for operational monitoring of the land surface. As the availability of well-prepared geospatial time-series data for environmental research is limited, user-dependent processing steps with respect to the data source and formats pose additional challenges. In most cases, it is possible to support science with spatial data infrastructures (SDI and services to provide such data in a processed format. A data processing middleware is proposed as a technical solution to improve interdisciplinary research using multi-source time-series data and standardized data acquisition, pre-processing, updating and analyses. This solution is being implemented within the Siberian Earth System Science Cluster (SIB-ESS-C, which combines various sources of EO data, climate data and analytical tools. The development of this SDI is based on the definition of automated and on-demand tools for data searching, ordering and processing, implemented along with standard-compliant web services. These tools, consisting of a user-friendly download, analysis and interpretation infrastructure, are available within SIB-ESS-C for operational use.

  2. Ground Based Investigation of Electrostatic Accelerometer in HUST

    Science.gov (United States)

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L

  3. Probing Pluto's Atmosphere Using Ground-Based Stellar Occultations

    Science.gov (United States)

    Sicardy, Bruno; Rio de Janeiro Occultation Team, Granada Team, International Occultation and Timing Association, Royal Astronomical Society New Zealand Occultation Section, Lucky Star associated Teams

    2016-10-01

    Over the last three decades, some twenty stellar occultations by Pluto have been monitored from Earth. They occur when the dwarf planet blocks the light from a star for a few minutes as it moves on the sky. Such events led to the hint of a Pluto's atmosphere in 1985, that was fully confirmed during another occultation in 1988, but it was only in 2002 that a new occultation could be recorded. From then on, the dwarf planet started to move in front of the galactic center, which amplified by a large factor the number of events observable per year.Pluto occultations are essentially refractive events during which the stellar rays are bent by the tenuous atmosphere, causing a gradual dimming of the star. This provides the density, pressure and temperature profiles of the atmosphere from a few kilometers above the surface up to about 250 km altitude, corresponding respectively to pressure levels of about 10 and 0.1 μbar. Moreover, the extremely fine spatial resolution (a few km) obtained through this technique allows the detection of atmospheric gravity waves, and permits in principle the detection of hazes, if present.Several aspects make Pluto stellar occultations quite special: first, they are the only way to probe Pluto's atmosphere in detail, as the dwarf planet is far too small on the sky and the atmosphere is far too tenuous to be directly imaged from Earth. Second, they are an excellent example of participative science, as many amateurs have been able to record those events worldwide with valuable scientific returns, in collaboration with professional astronomers. Third, they reveal Pluto's climatic changes on decade-scales and constrain the various seasonal models currently explored.Finally, those observations are fully complementary to space exploration, in particular with the New Horizons (NH) mission. I will show how ground-based occultations helped to better calibrate some NH profiles, and conversely, how NH results provide some key boundary conditions

  4. Efficiency Sustainability Resource Visual Simulator for Clustered Desktop Virtualization Based on Cloud Infrastructure

    Directory of Open Access Journals (Sweden)

    Jong Hyuk Park

    2014-11-01

    Full Text Available Following IT innovations, manual operations have been automated, improving the overall quality of life. This has been possible because an organic topology has been formed among many diverse smart devices grafted onto real life. To provide services to these smart devices, enterprises or users use the cloud. Cloud services are divided into infrastructure as a service (IaaS, platform as a service (PaaS and software as a service (SaaS. SaaS is operated on PaaS, and PaaS is operated on IaaS. Since IaaS is the foundation of all services, algorithms for the efficient operation of virtualized resources are required. Among these algorithms, desktop resource virtualization is used for high resource availability when existing desktop PCs are unavailable. For this high resource availability, clustering for hierarchical structures is important. In addition, since many clustering algorithms show different percentages of the main resources depending on the desktop PC distribution rates and environments, selecting appropriate algorithms is very important. If diverse attempts are made to find algorithms suitable for the operating environments’ desktop resource virtualization, huge costs are incurred for the related power, time and labor. Therefore, in the present paper, a desktop resource virtualization clustering simulator (DRV-CS, a clustering simulator for selecting clusters of desktop virtualization clusters to be maintained sustainably, is proposed. The DRV-CS provides simulations, so that clustering algorithms can be selected and elements can be properly applied in different desktop PC environments through the DRV-CS.

  5. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  6. Tissue Engineering of Cartilage on Ground-Based Facilities

    Science.gov (United States)

    Aleshcheva, Ganna; Bauer, Johann; Hemmersbach, Ruth; Egli, Marcel; Wehland, Markus; Grimm, Daniela

    2016-06-01

    Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free three-dimensional (3D) tissue formation. To investigate the short-term influence, human chondrocytes were cultivated for 2 h, 4 h, 16 h, and 24 h on a 2D Fast-Rotating Clinostat (FRC) in DMEM/F-12 medium supplemented with 10 % FCS. We detected holes in the vimentin network, perinuclear accumulations of vimentin after 2 h, and changes in the chondrocytes shape visualised by F-actin staining after 4 h of FRC-exposure. Scaffold-free cultivation of chondrocytes for 7 d on the Random Positioning Machine (RPM), the FRC and the Rotating Wall Vessel (RWV) resulted in spheroid formation, a phenomenon already known from spaceflight experiments with chondrocytes (MIR Space Station) and thyroid cancer cells (SimBox/Shenzhou-8 space mission). The experiments enabled by the ESA-CORA-GBF programme gave us an optimal opportunity to study gravity-related cellular processes, validate ground-based facilities for our chosen cell system, and prepare long-term experiments under real microgravity conditions in space

  7. Theoretical validation of ground-based microwave ozone observations

    Directory of Open Access Journals (Sweden)

    P. Ricaud

    Full Text Available Ground-based microwave measurements of the diurnal and seasonal variations of ozoneat 42±4.5 and 55±8 km are validated by comparing with results from a zero-dimensional photochemical model and a two-dimensional (2D chemical/radiative/dynamical model, respectively. O3 diurnal amplitudes measured in Bordeaux are shown to be in agreement with theory to within 5%. For the seasonal analysis of O3 variation, at 42±4.5 km, the 2D model underestimates the yearly averaged ozone concentration compared with the measurements. A double maximum oscillation (~3.5% is measured in Bordeaux with an extended maximum in September and a maximum in February, whilst the 2D model predicts only a single large maximum (17% in August and a pronounced minimum in January. Evidence suggests that dynamical transport causes the winter O3 maximum by propagation of planetary waves, phenomena which are not explicitly reproduced by the 2D model. At 55±8 km, the modeled yearly averaged O3 concentration is in very good agreement with the measured yearly average. A strong annual oscillation is both measured and modeled with differences in the amplitude shown to be exclusively linked to temperature fields.

  8. Atmospheric Refraction Path Integrals in Ground-Based Interferometry

    CERN Document Server

    Mathar, R J

    2004-01-01

    The basic effect of the earth's atmospheric refraction on telescope operation is the reduction of the true zenith angle to the apparent zenith angle, associated with prismatic aberrations due to the dispersion in air. If one attempts coherent superposition of star images in ground-based interferometry, one is in addition interested in the optical path length associated with the refracted rays. In a model of a flat earth, the optical path difference between these is not concerned as the translational symmetry of the setup means no net effect remains. Here, I evaluate these interferometric integrals in the more realistic arrangement of two telescopes located on the surface of a common earth sphere and point to a star through an atmosphere which also possesses spherical symmetry. Some focus is put on working out series expansions in terms of the small ratio of the baseline over the earth radius, which allows to bypass some numerics which otherwise is challenged by strong cancellation effects in building the opti...

  9. Experiments on a Ground-Based Tomographic Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Hoonyol Lee

    2016-08-01

    Full Text Available This paper presents the development and experiment of three-dimensional image formation by using a ground-based tomographic synthetic aperture radar (GB-TomoSAR system. GB-TomoSAR formulates two-dimensional synthetic aperture by the motion of antennae, both in azimuth and vertical directions. After range compression, three-dimensional image focusing is performed by applying Deramp-FFT (Fast Fourier Transform algorithms, both in azimuth and vertical directions. Geometric and radiometric calibrations were applied to make an image cube, which is then projected into range-azimuth and range-vertical cross-sections for visualization. An experiment with a C-band GB-TomoSAR system with a scan length of 2.49 m and 1.86 m in azimuth and vertical-direction, respectively, shows distinctive three-dimensional radar backscattering of stable buildings and roads with resolutions similar to the theoretical values. Unstable objects such as trees and moving cars generate severe noise due to decorrelation during the eight-hour image-acquisition time.

  10. Satellite Type Estination from Ground-based Photometric Observation

    Science.gov (United States)

    Endo, T.; Ono, H.; Suzuki, J.; Ando, T.; Takanezawa, T.

    2016-09-01

    The optical photometric observation is potentially a powerful tool for understanding of the Geostationary Earth Orbit (GEO) objects. At first, we measured in laboratory the surface reflectance of common satellite materials, for example, Multi-layer Insulation (MLI), mono-crystalline silicon cells, and Carbon Fiber Reinforced Plastic (CFRP). Next, we calculated visual magnitude of a satellite by simplified shape and albedo. In this calculation model, solar panels have dimensions of 2 by 8 meters, and the bus area is 2 meters squared with measured optical properties described above. Under these conditions, it clarified the brightness can change the range between 3 and 4 magnitudes in one night, but color index changes only from 1 to 2 magnitudes. Finally, we observed the color photometric data of several GEO satellites visible from Japan multiple times in August and September 2014. We obtained that light curves of GEO satellites recorded in the B and V bands (using Johnson filters) by a ground-base optical telescope. As a result, color index changed approximately from 0.5 to 1 magnitude in one night, and the order of magnitude was not changed in all cases. In this paper, we briefly discuss about satellite type estimation using the relation between brightness and color index obtained from the photometric observation.

  11. VME-based remote instrument control without ground loops

    CERN Document Server

    Belleman, J; González, J L

    1997-01-01

    New electronics has been developed for the remote control of the pick-up electrodes at the CERN Proton Synchrotron (PS). Communication between VME-based control computers and remote equipment is via full duplex point-to-point digital data links. Data are sent and received in serial format over simple twisted pairs at a rate of 1 Mbit/s, for distances of up to 300 m. Coupling transformers are used to avoid ground loops. The link hardware consists of a general-purpose VME-module, the 'TRX' (transceiver), containing four FIFO-buffered communication channels, and a dedicated control card for each remote station. Remote transceiver electronics is simple enough not to require micro-controllers or processors. Currently, some sixty pick-up stations of various types, all over the PS Complex (accelerators and associated beam transfer lines) are equipped with the new system. Even though the TRX was designed primarily for communication with pick-up electronics, it could also be used for other purposes, for example to for...

  12. Ground-based measurements of UV Index (UVI at Helwan

    Directory of Open Access Journals (Sweden)

    H. Farouk

    2012-12-01

    Full Text Available On October 2010 UV Index (UVI ground-based measurements were carried out by weather station at solar laboratory in NRIAG. The daily variation has maximum values in spring and summer days, while minimum values in autumn and winter days. The low level of UVI between 2.55 and 2.825 was found in December, January and February. The moderate level of UVI between 3.075 and 5.6 was found in March, October and November. The high level of UVI between 6.7 and 7.65 was found in April, May and September. The very high level of UVI between 8 and 8.6 was found in June, July and August. High level of radiation over 6 months per year including 3 months with a very high level UVI. According to the equation {UVI=a[SZA]b} the UVI increases with decreasing SZA by 82% on a daily scale and 88% on a monthly scale. Helwan exposure to a high level of radiation over 6 months per year including 3 months with a very high level UVI, so it is advisable not to direct exposure to the sun from 11 am to 2:00 pm.

  13. Ground-based monitoring of solar radiation in Moldova

    Science.gov (United States)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Integrated measurements of solar radiation in Kishinev, Moldova have been started by Atmospheric Research Group (ARG) at the Institute of Applied Physics from 2003. Direct, diffuse and total components of solar and atmospheric long-wave radiation are measured by using of the radiometric complex at the ground-based solar radiation monitoring station. Measurements are fulfilled at the stationary and moving platforms equipped with the set of 9 broadband solar radiation sensors overlapping wavelength range from UV-B to IR. Detailed description of the station can be found at the site http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E). Summary of observation data acquired at the station in the course of short-term period from 2004 to 2009 are presented below. Solar radiation measurements were fulfilled by using CM11(280-3000 nm) and CH1 sensors (Kipp&Zonen). In the course of a year maximum and minimum of monthly sums of total radiation was ~706.4 MJm-2 in June and ~82.1MJm-2 in December, respectively. Monthly sums of direct solar radiation (on horizontal plane) show the maximum and minimum values of the order ~456.9 MJm-2 in July and ~25.5MJm-2 in December, respectively. In an average, within a year should be marked the predominance of direct radiation over the scattered radiation, 51% and 49%, respectively. In the course of a year, the percentage contribution of the direct radiation into the total radiation is ~55-65% from May to September. In the remaining months, the percentage contribution decreases and takes the minimum value of ~ 28% in December. In an average, annual sum of total solar radiation is ~4679.9 MJm-2. For the period from April to September accounts for ~76% of the annual amount of total radiation. Annual sum of sunshine duration accounts for ~2149 hours, which is of ~ 48% from the possible sunshine duration. In an average, within a year maximum and minimum of sunshine duration is ~ 304 hours in

  14. GVT-Based Ground Flutter Test without Wind Tunnel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc (ZONA) and Arizona State University (ASU) propose a R&D effort to develop a ground flutter testing system without wind tunnel, called the...

  15. GVT-Based Ground Flutter Test without Wind Tunnel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc (ZONA) and Arizona State University (ASU) propose a R&D effort to further develop the ground flutter testing system in place of a wind...

  16. System of gait analysis based on ground reaction force assessment

    Directory of Open Access Journals (Sweden)

    František Vaverka

    2015-12-01

    Full Text Available Background: Biomechanical analysis of gait employs various methods used in kinematic and kinetic analysis, EMG, and others. One of the most frequently used methods is kinetic analysis based on the assessment of the ground reaction forces (GRF recorded on two force plates. Objective: The aim of the study was to present a method of gait analysis based on the assessment of the GRF recorded during the stance phase of two steps. Methods: The GRF recorded with a force plate on one leg during stance phase has three components acting in directions: Fx - mediolateral, Fy - anteroposterior, and Fz - vertical. A custom-written MATLAB script was used for gait analysis in this study. This software displays instantaneous force data for both legs as Fx(t, Fy(t and Fz(t curves, automatically determines the extremes of functions and sets the visual markers defining the individual points of interest. Positions of these markers can be easily adjusted by the rater, which may be necessary if the GRF has an atypical pattern. The analysis is fully automated and analyzing one trial takes only 1-2 minutes. Results: The method allows quantification of temporal variables of the extremes of the Fx(t, Fy(t, Fz(t functions, durations of the braking and propulsive phase, duration of the double support phase, the magnitudes of reaction forces in extremes of measured functions, impulses of force, and indices of symmetry. The analysis results in a standardized set of 78 variables (temporal, force, indices of symmetry which can serve as a basis for further research and diagnostics. Conclusions: The resulting set of variable offers a wide choice for selecting a specific group of variables with consideration to a particular research topic. The advantage of this method is the standardization of the GRF analysis, low time requirements allowing rapid analysis of a large number of trials in a short time, and comparability of the variables obtained during different research measurements.

  17. GIS-based Geospatial Infrastructure of Water Resource Assessment for Supporting Oil Shale Development in Piceance Basin of Northwestern Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [Colorado School of Mines, Golden, CO (United States) Dept. of Geology and Geological Engineering; Minnick, Matthew D [Colorado School of Mines, Golden, CO (United States) Dept. of Geology and Geological Engineering; Mattson, Earl D [Idaho National Lab. (INL), Idaho Falls, ID (United States); Geza, Mengistu [Colorado School of Mines, Golden, CO (United States) Dept. of Cilvil and Environmental Engineering; Murray, Kyle E. [Univ. of Oklahoma, Norman, OK (United States) Oklahoma Geological Survey

    2015-04-01

    Oil shale deposits of the Green River Formation (GRF) in Northwestern Colorado, Southwestern Wyoming, and Northeastern Utah may become one of the first oil shale deposits to be developed in the U.S. because of their richness, accessibility, and extensive prior characterization. Oil shale is an organic-rich fine-grained sedimentary rock that contains significant amounts of kerogen from which liquid hydrocarbons can be produced. Water is needed to retort or extract oil shale at an approximate rate of three volumes of water for every volume of oil produced. Concerns have been raised over the demand and availability of water to produce oil shale, particularly in semiarid regions where water consumption must be limited and optimized to meet demands from other sectors. The economic benefit of oil shale development in this region may have tradeoffs within the local and regional environment. Due to these potential environmental impacts of oil shale development, water usage issues need to be further studied. A basin-wide baseline for oil shale and water resource data is the foundation of the study. This paper focuses on the design and construction of a centralized geospatial infrastructure for managing a large amount of oil shale and water resource related baseline data, and for setting up the frameworks for analytical and numerical models including but not limited to three-dimensional (3D) geologic, energy resource development systems, and surface water models. Such a centralized geospatial infrastructure made it possible to directly generate model inputs from the same database and to indirectly couple the different models through inputs/outputs. Thus ensures consistency of analyses conducted by researchers from different institutions, and help decision makers to balance water budget based on the spatial distribution of the oil shale and water resources, and the spatial variations of geologic, topographic, and hydrogeological Characterization of the basin. This endeavor

  18. Consortium of Universities for the Advancement of Hydrologic Science Inc. (CUAHSI) Science Plan: A Community-based Infrastructure Initiative

    Science.gov (United States)

    Wilson, J. L.; Dressler, K.; Hooper, R. P.

    2005-12-01

    The river basin is a fundamental unit of the landscape and water in that defined landscape plays a central role in shaping the land surface, in dissolving minerals, in transporting chemicals, and in determining species distribution. Therefore, the river basin is a natural observatory for examining hydrologic phenomena and the complex interaction of physical, chemical, and biological processes that control them. CUAHSI, incorporated in 2001, is a community-based research infrastructure initiative formed to mobilize the hydrologic community through addressing key science questions and leveraging nationwide hydrologic resources from its member institutions and collaborative partners. Through an iterative community-based process, it has been previously proposed to develop a network of hydrologic infrastructure that organizes around scales on the order of 10,000 km2 to examine critical interfaces such as the land-surface, atmosphere, and human impact. Data collection will characterize the stores, fluxes, physical pathways, and residence time distributions of water, sediment, nutrients, and contaminants coherently at nested scales. These fundamental properties can be used by a wide range of scientific disciplines to address environmental questions. This more complete characterization will enable new linkages to be identified and hypotheses to be tested more incisively. With such a research platform, hydrologic science can advance beyond measuring streamflow or precipitation input to understanding how the river basin functions in both its internal processes and in responding to environmental stressors. That predictive understanding is needed to make informed decisions as development and even natural pressures stress existing water supplies and competing demands for water require non-traditional solutions that take into consideration economic, environmental, and social factors. Advanced hydrologic infrastructure will enable research for a broad range of multidisciplinary

  19. 一种基于PKI的密钥%An Internet Key Exchange Protocol Based on Public Key Infrastructure

    Institute of Scientific and Technical Information of China (English)

    朱建明; 马建峰

    2004-01-01

    Internet key exchange (IKE) is an automated key exchange mechanism that is used to facilitate the transfer of IPSec security associations (SAs).Public key infrastructure (PKI) is considered as a key element for providing security to new distributed communication networks and services.In this paper, we concentrate on the properties of the protocol of Phase 1 IKE.After investigating IKE protocol and PKI technology, we combine IKE protocol and PKI and present an implementation scheme of the IKE based on PKI.Then, we give a logic analysis of the proposed protocol with the BAN-logic and discuss the security of the protocol.The result indicates that the protocol is correct and satisfies the security requirements of Internet key exchange.

  20. Direction based Hazard Routing Protocol (DHRP) for disseminating road hazard information using road side infrastructures in VANETs.

    Science.gov (United States)

    Berlin, M A; Anand, Sheila

    2014-01-01

    This paper presents Direction based Hazard Routing Protocol (DHRP) for disseminating information about fixed road hazards such as road blocks, tree fall, boulders on road, snow pile up, landslide, road maintenance work and other obstacles to the vehicles approaching the hazardous location. The proposed work focuses on dissemination of hazard messages on highways with sparse traffic. The vehicle coming across the hazard would report the presence of the hazard. It is proposed to use Road Side fixed infrastructure Units for reliable and timely delivery of hazard messages to vehicles. The vehicles can then take appropriate safety action to avoid the hazardous location. The proposed protocol has been implemented and tested using SUMO simulator to generate road traffic and NS 2.33 network simulator to analyze the performance of DHRP. The performance of the proposed protocol was also compared with simple flooding protocol and the results are presented.

  1. "Science SQL" as a Building Block for Flexible, Standards-based Data Infrastructures

    Science.gov (United States)

    Baumann, Peter

    2016-04-01

    We have learnt to live with the pain of separating data and metadata into non-interoperable silos. For metadata, we enjoy the flexibility of databases, be they relational, graph, or some other NoSQL. Contrasting this, users still "drown in files" as an unstructured, low-level archiving paradigm. It is time to bridge this chasm which once was technologically induced, but today can be overcome. One building block towards a common re-integrated information space is to support massive multi-dimensional spatio-temporal arrays. These "datacubes" appear as sensor, image, simulation, and statistics data in all science and engineering domains, and beyond. For example, 2-D satellilte imagery, 2-D x/y/t image timeseries and x/y/z geophysical voxel data, and 4-D x/y/z/t climate data contribute to today's data deluge in the Earth sciences. Virtual observatories in the Space sciences routinely generate Petabytes of such data. Life sciences deal with microarray data, confocal microscopy, human brain data, which all fall into the same category. The ISO SQL/MDA (Multi-Dimensional Arrays) candidate standard is extending SQL with modelling and query support for n-D arrays ("datacubes") in a flexible, domain-neutral way. This heralds a new generation of services with new quality parameters, such as flexibility, ease of access, embedding into well-known user tools, and scalability mechanisms that remain completely transparent to users. Technology like the EU rasdaman ("raster data manager") Array Database system can support all of the above examples simultaneously, with one technology. This is practically proven: As of today, rasdaman is in operational use on hundreds of Terabytes of satellite image timeseries datacubes, with transparent query distribution across more than 1,000 nodes. Therefore, Array Databases offering SQL/MDA constitute a natural common building block for next-generation data infrastructures. Being initiator and editor of the standard we present principles

  2. The Durability and Fragility of Knowledge Infrastructures: Lessons Learned from Astronomy

    CERN Document Server

    Borgman, Christine L; Sands, Ashley E; Golshan, Milena S

    2016-01-01

    Infrastructures are not inherently durable or fragile, yet all are fragile over the long term. Durability requires care and maintenance of individual components and the links between them. Astronomy is an ideal domain in which to study knowledge infrastructures, due to its long history, transparency, and accumulation of observational data over a period of centuries. Research reported here draws upon a long-term study of scientific data practices to ask questions about the durability and fragility of infrastructures for data in astronomy. Methods include interviews, ethnography, and document analysis. As astronomy has become a digital science, the community has invested in shared instruments, data standards, digital archives, metadata and discovery services, and other relatively durable infrastructure components. Several features of data practices in astronomy contribute to the fragility of that infrastructure. These include different archiving practices between ground- and space-based missions, between sky su...

  3. Characterization of subarctic vegetation using ground based remote sensing methods

    Science.gov (United States)

    Finnell, D.; Garnello, A.; Palace, M. W.; Sullivan, F.; Herrick, C.; Anderson, S. M.; Crill, P. M.; Varner, R. K.

    2014-12-01

    Stordalen mire is located at 68°21'N and 19°02'E in the Swedish subarctic. Climate monitoring has revealed a warming trend spanning the past 150 years affecting the mires ability to hold stable palsa/hummock mounds. The micro-topography of the landscape has begun to degrade into thaw ponds changing the vegetation cover from ombrothrophic to minerotrophic. Hummocks are ecologically important due to their ability to act as a carbon sinks. Thaw ponds and sphagnum rich transitional zones have been documented as sources of atmospheric CH4. An objective of this project is to determine if a high resolution three band camera (RGB) and a RGNIR camera could detect differences in vegetation over five different site types. Species composition was collected for 50 plots with ten repetitions for each site type: palsa/hummock, tall shrub, semi-wet, tall graminoid, and wet. Sites were differentiated based on dominating species and features consisting of open water presence, sphagnum spp. cover, graminoid spp. cover, or the presence of dry raised plateaus/mounds. A pole based camera mount was used to collect images at a height of ~2.44m from the ground. The images were cropped in post-processing to fit a one-square meter quadrat. Texture analysis was performed on all images, including entropy, lacunarity, and angular second momentum. Preliminary results suggested that site type influences the number of species present. The p-values for the ability to predict site type using a t-test range from <0.0001 to 0.0461. A stepwise discriminant analysis on site type vs. texture yielded a 10% misclassification rate. Through the use of a stepwise regression of texture variables, actual vs. predicted percent of vegetation coverage provided R squared values of 0.73, 0.71, 0.67, and 0.89 for C. bigelowii, R. chamaemorus, Sphagnum spp., and open water respectively. These data have provided some support to the notion that texture analyses can be used for classification of mire site types. Future

  4. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel E.; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  5. Ozone profiles above Kiruna from two ground-based radiometers

    Science.gov (United States)

    Ryan, Niall J.; Walker, Kaley A.; Raffalski, Uwe; Kivi, Rigel; Gross, Jochen; Manney, Gloria L.

    2016-09-01

    This paper presents new atmospheric ozone concentration profiles retrieved from measurements made with two ground-based millimetre-wave radiometers in Kiruna, Sweden. The instruments are the Kiruna Microwave Radiometer (KIMRA) and the Millimeter wave Radiometer 2 (MIRA 2). The ozone concentration profiles are retrieved using an optimal estimation inversion technique, and they cover an altitude range of ˜ 16-54 km, with an altitude resolution of, at best, 8 km. The KIMRA and MIRA 2 measurements are compared to each other, to measurements from balloon-borne ozonesonde measurements at Sodankylä, Finland, and to measurements made by the Microwave Limb Sounder (MLS) aboard the Aura satellite. KIMRA has a correlation of 0.82, but shows a low bias, with respect to the ozonesonde data, and MIRA 2 shows a smaller magnitude low bias and a 0.98 correlation coefficient. Both radiometers are in general agreement with each other and with MLS data, showing high correlation coefficients, but there are differences between measurements that are not explained by random errors. An oscillatory bias with a peak of approximately ±1 ppmv is identified in the KIMRA ozone profiles over an altitude range of ˜ 18-35 km, and is believed to be due to baseline wave features that are present in the spectra. A time series analysis of KIMRA ozone for winters 2008-2013 shows the existence of a local wintertime minimum in the ozone profile above Kiruna. The measurements have been ongoing at Kiruna since 2002 and late 2012 for KIMRA and MIRA 2, respectively.

  6. Project management for complex ground-based instruments: MEGARA plan

    Science.gov (United States)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  7. A coherency function model of ground motion at base rock corresponding to strike-slip fault

    Institute of Scientific and Technical Information of China (English)

    丁海平; 刘启方; 金星; 袁一凡

    2004-01-01

    At present, the method to study spatial variation of ground motions is statistic analysis based on dense array records such as SMART-1 array, etc. For lacking of information of ground motions, there is no coherency function model of base rock and different style site. Spatial variation of ground motions in elastic media is analyzed by deterministic method in this paper. Taking elastic half-space model with dislocation source of fault, near-field ground motions are simulated. This model takes strike-slip fault and earth media into account. A coherency function is proposed for base rock site.

  8. Designing a cost-effective CO2 storage infrastructure using a GIS based linear optimization energy model

    NARCIS (Netherlands)

    Broek, M. van den; Brederode, E.; Ramírez, A.; Kramers, L.; Kuip, M. van der; Wildenborg, T.; Turkenburg, W.; Faaij, A.

    2010-01-01

    Large-scale deployment of carbon capture and storage needs a dedicated infrastructure. Planning and designing of this infrastructure require incorporation of both temporal and spatial aspects. In this study, a toolbox has been developed that integrates ArcGIS, a geographical information system with

  9. Designing a cost-effective CO2 storage infrastructure using a GIS based linear optimization energy model

    NARCIS (Netherlands)

    Broek, M. van den; Brederode, E.; Ramírez, A.; Kramers, L.; Kuip, M. van der; Wildenborg, T.; Turkenburg, W.; Faaij, A.

    2010-01-01

    Large-scale deployment of carbon capture and storage needs a dedicated infrastructure. Planning and designing of this infrastructure require incorporation of both temporal and spatial aspects. In this study, a toolbox has been developed that integrates ArcGIS, a geographical information system with

  10. SIRTA, a ground-based atmospheric observatory for cloud and aerosol research

    Directory of Open Access Journals (Sweden)

    M. Haeffelin

    2005-02-01

    Full Text Available Ground-based remote sensing observatories have a crucial role to play in providing data to improve our understanding of atmospheric processes, to test the performance of atmospheric models, and to develop new methods for future space-borne observations. Institut Pierre Simon Laplace, a French research institute in environmental sciences, created the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA, an atmospheric observatory with these goals in mind. Today SIRTA, located 20km south of Paris, operates a suite a state-of-the-art active and passive remote sensing instruments dedicated to routine monitoring of cloud and aerosol properties, and key atmospheric parameters. Detailed description of the state of the atmospheric column is progressively archived and made accessible to the scientific community. This paper describes the SIRTA infrastructure and database, and provides an overview of the scientific research associated with the observatory. Researchers using SIRTA data conduct research on atmospheric processes involving complex interactions between clouds, aerosols and radiative and dynamic processes in the atmospheric column. Atmospheric modellers working with SIRTA observations develop new methods to test their models and innovative analyses to improve parametric representations of sub-grid processes that must be accounted for in the model. SIRTA provides the means to develop data interpretation tools for future active remote sensing missions in space (e.g. CloudSat and CALIPSO. SIRTA observation and research activities take place in networks of atmospheric observatories that allow scientists to access consistent data sets from diverse regions on the globe.

  11. Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Marine Corps Base Camp Lejeune. Task 3

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s advanced vehicle testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (Intertek) to conduct several U.S. Department of Defense-based studies to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 consisted of a survey of the non-tactical fleet of vehicles at Marine Corps Base Camp Lejeune to begin the review of vehicle mission assignments and types of vehicles in service. Task 2 selected vehicles for further monitoring and involved identifying daily operational characteristics of these select vehicles. Data logging of vehicle movements was initiated in order to characterize the vehicle’s mission. The Task 3 vehicle utilization report provided results of the data analysis and observations related to the replacement of current vehicles with PEVs. Finally, this report provides an assessment of charging infrastructure required to support the suggested PEV replacements. Intertek acknowledges the support of Idaho National Laboratory, Marine Corps headquarters, and Marine Corps Base Camp Lejeune Fleet management and personnel for participation in this study. Intertek is pleased to provide this report and is encouraged by enthusiasm and support from Marine Corps Base Camp Lejeune personnel.

  12. Scaling earthquake ground motions for performance-based assessment of buildings

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.; Hamburger, R.O.

    2011-01-01

    The impact of alternate ground-motion scaling procedures on the distribution of displacement responses in simplified structural systems is investigated. Recommendations are provided for selecting and scaling ground motions for performance-based assessment of buildings. Four scaling methods are studied, namely, (1)geometric-mean scaling of pairs of ground motions, (2)spectrum matching of ground motions, (3)first-mode-period scaling to a target spectral acceleration, and (4)scaling of ground motions per the distribution of spectral demands. Data were developed by nonlinear response-history analysis of a large family of nonlinear single degree-of-freedom (SDOF) oscillators that could represent fixed-base and base-isolated structures. The advantages and disadvantages of each scaling method are discussed. The relationship between spectral shape and a ground-motion randomness parameter, is presented. A scaling procedure that explicitly considers spectral shape is proposed. ?? 2011 American Society of Civil Engineers.

  13. Green(ing) infrastructure

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2014-03-01

    Full Text Available Green infrastructure can be defined as the design and development of infrastructure that works with natural systems in the performance of its functions. Green infrastructure recognises the importance of the natural environment in land use planning...

  14. Optimal design of green and grey stormwater infrastructure for small urban catchment based on life-cycle cost-effectiveness analysis

    Science.gov (United States)

    Yang, Y.; Chui, T. F. M.

    2016-12-01

    Green infrastructure (GI) is identified as sustainable and environmentally friendly alternatives to the conventional grey stormwater infrastructure. Commonly used GI (e.g. green roof, bioretention, porous pavement) can provide multifunctional benefits, e.g. mitigation of urban heat island effects, improvements in air quality. Therefore, to optimize the design of GI and grey drainage infrastructure, it is essential to account for their benefits together with the costs. In this study, a comprehensive simulation-optimization modelling framework that considers the economic and hydro-environmental aspects of GI and grey infrastructure for small urban catchment applications is developed. Several modelling tools (i.e., EPA SWMM model, the WERF BMP and LID Whole Life Cycle Cost Modelling Tools) and optimization solvers are coupled together to assess the life-cycle cost-effectiveness of GI and grey infrastructure, and to further develop optimal stormwater drainage solutions. A typical residential lot in New York City is examined as a case study. The life-cycle cost-effectiveness of various GI and grey infrastructure are first examined at different investment levels. The results together with the catchment parameters are then provided to the optimization solvers, to derive the optimal investment and contributing area of each type of the stormwater controls. The relationship between the investment and optimized environmental benefit is found to be nonlinear. The optimized drainage solutions demonstrate that grey infrastructure is preferred at low total investments while more GI should be adopted at high investments. The sensitivity of the optimized solutions to the prices the stormwater controls is evaluated and is found to be highly associated with their utilizations in the base optimization case. The overall simulation-optimization framework can be easily applied to other sites world-wide, and to be further developed into powerful decision support systems.

  15. Ground-based gamma-ray telescopes as ground stations in deep-space lasercom

    CERN Document Server

    Carrasco-Casado, Alberto; Vergaz, Ricardo

    2016-01-01

    As the amount of information to be transmitted from deep-space rapidly increases, the radiofrequency technology has become a bottleneck in space communications. RF is already limiting the scientific outcome of deep-space missions and could be a significant obstacle in the developing of manned missions. Lasercom holds the promise to solve this problem, as it will considerably increase the data rate while decreasing the energy, mass and volume of onboard communication systems. In RF deep-space communications, where the received power is the main limitation, the traditional approach to boost the data throughput has been increasing the receiver's aperture, e.g. the 70-m antennas in the NASA's Deep Space Network. Optical communications also can benefit from this strategy, thus 10-m class telescopes have typically been suggested to support future deep-space links. However, the cost of big telescopes increase exponentially with their aperture, and new ideas are needed to optimize this ratio. Here, the use of ground-...

  16. Cyber and physical infrastructure interdependencies.

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Laurence R.; Kelic, Andjelka; Warren, Drake E.

    2008-09-01

    The goal of the work discussed in this document is to understand the risk to the nation of cyber attacks on critical infrastructures. The large body of research results on cyber attacks against physical infrastructure vulnerabilities has not resulted in clear understanding of the cascading effects a cyber-caused disruption can have on critical national infrastructures and the ability of these affected infrastructures to deliver services. This document discusses current research and methodologies aimed at assessing the translation of a cyber-based effect into a physical disruption of infrastructure and thence into quantification of the economic consequences of the resultant disruption and damage. The document discusses the deficiencies of the existing methods in correlating cyber attacks with physical consequences. The document then outlines a research plan to correct those deficiencies. When completed, the research plan will result in a fully supported methodology to quantify the economic consequences of events that begin with cyber effects, cascade into other physical infrastructure impacts, and result in degradation of the critical infrastructure's ability to deliver services and products. This methodology enables quantification of the risks to national critical infrastructure of cyber threats. The work addresses the electric power sector as an example of how the methodology can be applied.

  17. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  18. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  19. Fast tracking ICT infrastructure requirements and design, based on Enterprise Reference Architecture and matching Reference Models

    DEFF Research Database (Denmark)

    Bernus, Peter; Baltrusch, Rob; Vesterager, Johan

    2002-01-01

    The Globemen Consortium has developed the virtual enterprise reference architecture and methodology (VERAM), based on GERAM and developed reference models for virtual enterprise management and joint mission delivery. The planned virtual enterprise capability includes the areas of sales and market......The Globemen Consortium has developed the virtual enterprise reference architecture and methodology (VERAM), based on GERAM and developed reference models for virtual enterprise management and joint mission delivery. The planned virtual enterprise capability includes the areas of sales...

  20. Ground-Based Observing Campaign of Briz-M Debris

    Science.gov (United States)

    Lederer, S. M.; Buckalew, B.; Frith, J.; Cowardin, H. M.; Hickson, P.; Matney, M.; Anz-Meador, P.

    2017-01-01

    In 2015, NASA's Orbital Debris Program Office (ODPO) completed the installation of the Meter Class Autonomous Telescope (MCAT) on Ascension Island. MCAT is a 1.3m optical telescope designed with a fast tracking capability for observing orbital debris at all orbital regimes (Low-Erath orbits to Geosyncronous (GEO) orbits) from a low latitude site. This new asset is dedicated year-round for debris observations, and its location fills a geographical gap in the Ground-based Electro Optical Space Surveillance (GEODSS) network. A commercial off the shelf (COTS) research grade 0.4m telescope (named the Benbrook telescope) will also be installed on Ascension at the end of 2016. This smaller version is controlled by the same master software, designed by Euclid Research, and can be tasked to work independently or in concert with MCAT. Like MCAT, it has a the same suite of filters, a similar field of view, and a fast-tracking Astelco mount, and is also capable of tracking debris at all orbital regimes. These assets are well suited for targeted campagins or surveys of debris. Since 2013, NASA's ODPO has also had extensive access to the 3.8m infrared UKIRT telescope, located on Mauna Kea. At nearly 14,000-ft, this site affords excellent conditions for collecting both photometery and spectroscopy at near-IR (0.9 - 2.5 micrometers SWIR) and thermal-IR (8 - 25 micrometers; LWIR) regimes, ideal for investigating material properties as well as thermal characteristics and sizes of debris. For the purposes of understanding orbital debris, taking data in both survey mode as well as targeting individual objects for more in-depth characterizations are desired. With the recent break-ups of Briz-M rocket bodies, we have collected a suite of data in the optical, near-infrared, and mid-infrared of in-tact objects as well as those classified as debris. A break-up at GEO of a Briz-M rocket occurred in January, 2016, well timed for the first remote observing survey-campaign with MCAT. Access to

  1. Quantification of changes in oil sands mining infrastructure land based on RapidEye and SPOT5

    Science.gov (United States)

    Zhang, Ying; Lantz, Nicholas; Guindon, Bert; Shipman, Todd; Chao, Dennis; Raymond, Don

    2013-10-01

    Natural resources development, spanning exploration, production and transportation activities, alters local land surface at various spatial scales. Quantification of these anthropogenic changes, both permanent and reversible, is needed for compliance assessment and for development of effective sustainable management strategies. Multi-spectral high resolution imagery data from SPOT5 and RapidEye were used for extraction and quantification of the anthropogenic and natural changes for a case study of Alberta bitumen (oil sands) mining located near Fort McMurray, Canada. Two test sites representative of the major Alberta bitumen production extraction processes, open pit and in-situ extraction, were selected. A hybrid change detection approach, combining pixel- and object-based target detection and extraction, is proposed based on Change Vector Analysis (CVA). The extraction results indicate that the changed infrastructure landscapes of these two sites have different footprints linked with their differing oil sands production processes. Pixeland object-based accuracy assessments have been applied for validation of the change detection results. For manmade disturbances, other than fine linear features such as the seismic lines, accuracies of about 80% have been achieved at the pixel level while, at the object level, these rise to 90-95%. Since many disturbance features are transient, the land surface changes by re-growth of vegetation and the capability for natural restoration on the mining sites have been assessed.

  2. Armenia - Irrigation Infrastructure

    Data.gov (United States)

    Millennium Challenge Corporation — This study evaluates irrigation infrastructure rehabilitation in Armenia. The study separately examines the impacts of tertiary canals and other large infrastructure...

  3. Central Region Green Infrastructure

    Data.gov (United States)

    Minnesota Department of Natural Resources — This Green Infrastructure data is comprised of 3 similar ecological corridor data layers ? Metro Conservation Corridors, green infrastructure analysis in counties...

  4. Do knowledge infrastructure facilities support Evidence-Based Practice in occupational health? An exploratory study across countries among occupational physicians enrolled on Evidence-Based Medicine courses

    Directory of Open Access Journals (Sweden)

    van Dijk Frank JH

    2009-01-01

    Full Text Available Abstract Background Evidence-Based Medicine (EBM is an important method used by occupational physicians (OPs to deliver high quality health care. The presence and quality of a knowledge infrastructure is thought to influence the practice of EBM in occupational health care. This study explores the facilities in the knowledge infrastructure being used by OPs in different countries, and their perceived importance for EBM practice. Methods Thirty-six OPs from ten countries, planning to attend an EBM course and to a large extent recruited via the European Association of Schools of Occupational Medicine (EASOM, participated in a cross-sectional study. Results Research and development institutes, and knowledge products and tools are used by respectively more than 72% and more than 80% of the OPs and they are rated as being important for EBM practice (more than 65 points (range 0–100. Conventional knowledge access facilities, like traditional libraries, are used often (69% but are rated as less important (46.8 points (range 0–100 compared to the use of more novel facilities, like question-and-answer facilities (25% that are rated as more important (48.9 points (range 0–100. To solve cases, OPs mostly use non evidence-based sources. However, they regard the evidence-based sources that are not often used, e.g. the Cochrane library, as important enablers for practising EBM. The main barriers are lack of time, payment for full-text articles, language barrier (most texts are in English, and lack of skills and support. Conclusion This first exploratory study shows that OPs use many knowledge infrastructure facilities and rate them as being important for their EBM practice. However, they are not used to use evidence-based sources in their practice and face many barriers that are comparable to the barriers physicians face in primary health care.

  5. Seismic Responses of Asymmetric Base-Isolated Structures under Near-Fault Ground Motion

    Institute of Scientific and Technical Information of China (English)

    YE Kun; LI Li; FANG Qin-han

    2008-01-01

    An inter-story shear model of asymmetric base-isolated structures incorporating deformation of each isolation bearing was built, and a method to simultaneously simulate bi-directional near-fault and far-field ground motions was proposed. A comparative study on the dynamic responses of asymmetric base-isolated structures under near-fault and far-field ground motions were conducted to investigate the effects of eccentricity in the isolation system and in the superstructures, the ratio of the uncoupled torsional to lateral frequency of the superstructure and the pulse period of near-fault ground motions on the nonlinear seismic response of asymmetric base-isolated structures. Numerical results show that eccentricity in the isolation system makes asymmetric base-isolated structure more sensitive to near-fault ground motions, and the pulse period of near-fault ground motions plays an import role in governing the seismic responses of asymmetric base-isolated structures.

  6. Usage of Wireless Sensor Networks in a service based spatial data infrastructure for Landslide Monitoring and Early Warning

    Science.gov (United States)

    Arnhardt, C.; Fernandez-Steeger, T. M.; Walter, K.; Kallash, A.; Niemeyer, F.; Azzam, R.; Bill, R.

    2007-12-01

    The joint project Sensor based Landslide Early Warning System (SLEWS) aims at a systematic development of a prototyping alarm- and early warning system for the detection of mass movements by application of an ad hoc wireless sensor network (WSN). Next to the development of suitable sensor setups, sensor fusion and network fusion are applied to enhance data quality and reduce false alarm rates. Of special interest is the data retrieval, processing and visualization in GI-Systems. Therefore a suitable serviced based Spatial Data Infrastructure (SDI) will be developed with respect to existing and upcoming Open Geospatial Consortium (OGC) standards.The application of WSN provides a cheap and easy to set up solution for special monitoring and data gathering in large areas. Measurement data from different low-cost transducers for deformation observation (acceleration, displacement, tilting) is collected by distributed sensor nodes (motes), which interact separately and connect each other in a self-organizing manner. Data are collected and aggregated at the beacon (transmission station) and further operations like data pre-processing and compression can be performed. The WSN concept provides next to energy efficiency, miniaturization, real-time monitoring and remote operation, but also new monitoring strategies like sensor and network fusion. Since not only single sensors can be integrated at single motes either cross-validation or redundant sensor setups are possible to enhance data quality. The planned monitoring and information system will include a mobile infrastructure (information technologies and communication components) as well as methods and models to estimate surface deformation parameters (positioning systems). The measurements result in heterogeneous observation sets that have to be integrated in a common adjustment and filtering approach. Reliable real-time information will be obtained using a range of sensor input and algorithms, from which early warnings

  7. NO2 DOAS measurements from ground and space: comparison of ground based measurements and OMI data in Mexico City

    Science.gov (United States)

    Rivera, C.; Stremme, W.; Grutter, M.

    2012-04-01

    The combination of satellite data and ground based measurements can provide valuable information about atmospheric chemistry and air quality. In this work we present a comparison between measured ground based NO2 differential columns at the Universidad Nacional Autónoma de México (UNAM) in Mexico City, using the Differential Optical Absorption Spectroscopy (DOAS) technique and NO2 total columns measured by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite using the same measurement technique. From these data, distribution maps of average NO2 above the Mexico basin were constructed and hot spots inside the city could be identified. In addition, a clear footprint was detected from the Tula industrial area, ~50 km northwest of Mexico City, where a refinery, a power plant and other industries are located. A less defined footprint was identified in the Cuernavaca basin, South of Mexico City, and the nearby cities of Toluca and Puebla do not present strong enhancements in the NO2 total columns. With this study we expect to cross-validate space and ground measurements and provide useful information for future studies.

  8. Understanding the infrastructure of European Research Infrastructures

    DEFF Research Database (Denmark)

    Lindstrøm, Maria Duclos; Kropp, Kristoffer

    2017-01-01

    European Research Infrastructure Consortia (ERICs) are a new form of legal and financial framework for the establishment and operation of research infrastructures in Europe. Despite their scope, ambition and novelty, the topic has received limited scholarly attention. This paper analyses one ERIC...... the ESS became an ERIC using the Bowker and Star’s sociology of infrastructures. We conclude that focusing on ERICs as a European standard for organising and funding research collaboration gives new insights into the problems of membership, durability and standardisation faced by research infrastructures....... It is also a promising theoretical framework for addressing the relationship between the ERIC-construct and the large diversity of European Research Infrastructures....

  9. A Provenance-Based Infrastructure to Support the Life Cycle of Executable Papers

    DEFF Research Database (Denmark)

    Bonnet, Philippe

    2011-01-01

    of an executable paper. The automated capture of provenance information allows authors to easily integrate and update results into papers as they write, and also helps reviewers better evaluate approaches by enabling them to explore experimental results by varying parameters or data. With a provenance-based system...

  10. SQoS as the Base for Next Generation Global Infrastructure

    DEFF Research Database (Denmark)

    Madsen, Ole Brun; Knudsen, Thomas Phillip; Pedersen, Jens Myrup

    2003-01-01

    efficient scalability without loss of control over the structurally based properties may prevent or seriously delay the introduction of globally available new application and switching services. Reliability and scalability issues are addressed from a structural viewpoint. The concept of Structural Quality...

  11. Progress in materials-based hydrogen storage at Hysa infrastructure in South Africa

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2015-10-01

    Full Text Available innovative research and development [1]. Within HySA Infrastructure’s portfolio are various hydrogen storage options including high pressure composite cylinders, materials-based-storage [2-4] and chemical carriers. This presentation will first provide...

  12. Architectural and Mobility Management Designs in Internet-Based Infrastructure Wireless Mesh Networks

    Science.gov (United States)

    Zhao, Weiyi

    2011-01-01

    Wireless mesh networks (WMNs) have recently emerged to be a cost-effective solution to support large-scale wireless Internet access. They have numerous applications, such as broadband Internet access, building automation, and intelligent transportation systems. One research challenge for Internet-based WMNs is to design efficient mobility…

  13. Requirements for a systems-based research and development management process in transport infrastructure engineering

    CSIR Research Space (South Africa)

    Rust, FC

    2015-05-01

    Full Text Available , interviews, and an e-mail survey with responses from 42 significant international R&D programmes. The findings confirmed the need for a systems-based approach to R&D management. The study formulated twelve principles or tenets for a new, systems...

  14. Architectural and Mobility Management Designs in Internet-Based Infrastructure Wireless Mesh Networks

    Science.gov (United States)

    Zhao, Weiyi

    2011-01-01

    Wireless mesh networks (WMNs) have recently emerged to be a cost-effective solution to support large-scale wireless Internet access. They have numerous applications, such as broadband Internet access, building automation, and intelligent transportation systems. One research challenge for Internet-based WMNs is to design efficient mobility…

  15. Contextual-Analysis for Infrastructure Awareness Systems

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Tabard, Aurelien; Alt, Florian

    Infrastructures are persistent socio-technical systems used to deliver different kinds of services. Researchers have looked into how awareness of infrastructures in the areas of sustainability [6, 10] and software appropriation [11] can be provided. However, designing infrastructure-aware systems...... has specific requirements, which are often ignored. In this paper we explore the challenges when developing infrastructure awareness systems based on contextual analysis, and propose guidelines for enhancing the design process....

  16. Profile-IQ: Web-based data query system for local health department infrastructure and activities.

    Science.gov (United States)

    Shah, Gulzar H; Leep, Carolyn J; Alexander, Dayna

    2014-01-01

    To demonstrate the use of National Association of County & City Health Officials' Profile-IQ, a Web-based data query system, and how policy makers, researchers, the general public, and public health professionals can use the system to generate descriptive statistics on local health departments. This article is a descriptive account of an important health informatics tool based on information from the project charter for Profile-IQ and the authors' experience and knowledge in design and use of this query system. Profile-IQ is a Web-based data query system that is based on open-source software: MySQL 5.5, Google Web Toolkit 2.2.0, Apache Commons Math library, Google Chart API, and Tomcat 6.0 Web server deployed on an Amazon EC2 server. It supports dynamic queries of National Profile of Local Health Departments data on local health department finances, workforce, and activities. Profile-IQ's customizable queries provide a variety of statistics not available in published reports and support the growing information needs of users who do not wish to work directly with data files for lack of staff skills or time, or to avoid a data use agreement. Profile-IQ also meets the growing demand of public health practitioners and policy makers for data to support quality improvement, community health assessment, and other processes associated with voluntary public health accreditation. It represents a step forward in the recent health informatics movement of data liberation and use of open source information technology solutions to promote public health.

  17. Wing Infrastructure Development Outlook (WINDO) Plan. Environmental Assessment: Langley Air Force Base, Virginia

    Science.gov (United States)

    2005-08-01

    with Nealy Avenue/ Hammond Avenue. Parking in some on-base areas is limited. The combination of Ward Road, Clarke Avenue, Weyland Road and Lee...The large wind tunnels and aeronautical test equipment that comprise the NASA facility resemble a large industrial area. A number of older...shallow water table aquifer , an upper artesian aquifer system, and the principal artesian aquifer system. All three aquifers in this area contain water

  18. Detecting Different Road Infrastructural Elements Based on the Stochastic Characterization of Speed Patterns

    Directory of Open Access Journals (Sweden)

    Mario Muñoz-Organero

    2017-01-01

    Full Text Available The automatic detection of road related information using data from sensors while driving has many potential applications such as traffic congestion detection or automatic routable map generation. This paper focuses on the automatic detection of road elements based on GPS data from on-vehicle systems. A new algorithm is developed that uses the total variation distance instead of the statistical moments to improve the classification accuracy. The algorithm is validated for detecting traffic lights, roundabouts, and street-crossings in a real scenario and the obtained accuracy (0.75 improves the best results using previous approaches based on statistical moments based features (0.71. Each road element to be detected is characterized as a vector of speeds measured when a driver goes through it. We first eliminate the speed samples in congested traffic conditions which are not comparable with clear traffic conditions and would contaminate the dataset. Then, we calculate the probability mass function for the speed (in 1 m/s intervals at each point. The total variation distance is then used to find the similarity among different points of interest (which can contain a similar road element or a different one. Finally, a k-NN approach is used for assigning a class to each unlabelled element.

  19. Towards a Wireless and Low-Power Infrastructure for Representing Information Based on E-Paper Displays

    Directory of Open Access Journals (Sweden)

    Diego Sánchez-de-Rivera

    2017-01-01

    Full Text Available There has been much interest in replacing traditional information supports with more technological solutions in recent years. New technologies which allow paper-like perception with minimal power needs have emerged as low-power wireless scenarios. A priority for these new supports is to create the architecture for a scalable solution which maintains minimal power requirements. The retail industry demands a new information infrastructure that improves customer and employee satisfaction. In this work, authors propose an information provision architecture based on E-Paper and carry out an experiment where different smart labeling architectures based on Paper, E-Paper, LED liquid crystal display (LCD and Dot-matrix LCD were tested in order to determine which is best suited for a real labeling environment. Enclosed in a research project called SMARKET, the authors pilot-tested the work in a real supermarket, having the opportunity to survey employees and customers about satisfaction and frustration with the use of the architectures proposed in this research work.

  20. Do knowledge infrastructure facilities support Evidence-Based Practice in occupational health? An exploratory study across countries among occupational physicians enrolled on EBM courses

    NARCIS (Netherlands)

    Hugenholtz, N.I.R.; Nieuwenhuijsen, K.; Sluiter, J.K.; van Dijk, F.J.H.

    2009-01-01

    ABSTRACT: BACKGROUND: Evidence-Based Medicine (EBM) is an important method used by occupational physicians (OPs) to deliver high quality health care. The presence and quality of a knowledge infrastructure is thought to influence the practice of EBM in occupational health care. This study explores

  1. Do knowledge infrastructure facilities support Evidence-Based Practice in occupational health? An exploratory study across countries among occupational physicians enrolled on EBM courses

    NARCIS (Netherlands)

    Hugenholtz, N.I.R.; Nieuwenhuijsen, K.; Sluiter, J.K.; van Dijk, F.J.H.

    2009-01-01

    ABSTRACT: BACKGROUND: Evidence-Based Medicine (EBM) is an important method used by occupational physicians (OPs) to deliver high quality health care. The presence and quality of a knowledge infrastructure is thought to influence the practice of EBM in occupational health care. This study explores th

  2. Do knowledge infrastructure facilities support Evidence-Based Practice in occupational health? An exploratory study across countries among occupational physicians enrolled on EBM courses

    NARCIS (Netherlands)

    N.I.R. Hugenholtz; K. Nieuwenhuijsen; J.K. Sluiter; F.J.H. van Dijk

    2009-01-01

    ABSTRACT: BACKGROUND: Evidence-Based Medicine (EBM) is an important method used by occupational physicians (OPs) to deliver high quality health care. The presence and quality of a knowledge infrastructure is thought to influence the practice of EBM in occupational health care. This study explores th

  3. Analyses of Cryogenic Propellant Tank Pressurization based upon Ground Experiments

    OpenAIRE

    Ludwig, Carina; Dreyer, Michael

    2012-01-01

    The pressurization system of cryogenic propellant rockets requires on-board pressurant gas. The objective of this study was to analyze the influence of the pressurant gas temperature on the required pressurant gas mass in terms of lowering the launcher mass. First, ground experiments were performed in order to investigate the pressurization process with regard to the influence of the pressurant gas inlet temperature. Second, a system study for the cryogenic upper stage of a sma...

  4. Ground-based Remote Sensing of Cloud Liquid Water Path

    Science.gov (United States)

    Crewell, S.; Loehnert, U.

    Within the BALTEX Cloud LIquid WAter NETwork (CLIWA-NET) measurements of cloud parameters were performed to improve/evaluate cloud parameterizations in numerical weather prediction and climate models. The key variable is the cloud liq- uid water path (LWP) which is measured by passive microwave radiometry from the ground during three two-month CLIWA-NET observational periods. Additionally to the high temporal resolution time series from the ground, LWP fields are derived from satellite measurements. During the first two campaigns a continental scale network consisting of 12 stations was established. Most stations included further cloud sen- sitive instruments like infrared radiometer and lidar ceilometer. The third campaign started with a two-week long microwave intercomparison campaign (MICAM) in Cabauw, The Netherlands, and proceeded with a regional network within a 100 by 100 km area. The presentation will focus on the accuracy of LWP derived from the ground by in- vestigating the accuracy of the microwave brightness temperature measurement and examining the LWP retrieval uncertainty. Up to now microwave radiometer are no standard instruments and the seven radiometer involved in MICAM differ in frequen- cies, bandwidths, angular resolution, integration time etc. The influence of this instru- ment specifications on the LWP retrieval will be discussed.

  5. Risk management in large scale underground infrastructures

    NARCIS (Netherlands)

    Helmholt, K.A.; Courage, W.M.G.

    2013-01-01

    Underground infrastructures can fail due to ground movements. Due to the underground nature this is difficult to detect above ground. In a collaboration of multiple research institutes a new approach has been developed to estimate the probability of failure using underground position sensors. A Proo

  6. Red Hat Enterprise Virtualization - KVM-based infrastructure services at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Cortijo, D.

    2011-06-14

    Over the past 18 months, BNL has moved a large percentage of its Linux-based servers and services into a Red Hat Enterprise Virtualization (RHEV) environment. This presentation will address our approach to virtualization, critical decision points, and a discussion of our implementation. Specific topics will include an overview of hardware and software requirements, networking, and storage; discussion of the decision of Red Hat solution over competing products (VMWare, Xen, etc); details on some of the features of RHEV - both current and on their roadmap; Review of performance and reliability gains since deployment completion; path forward for RHEV at BNL and caveats and potential problems.

  7. Using an emergency response infrastructure to help women who experience gender-based violence in Gujarat, India.

    Science.gov (United States)

    Newberry, Jennifer A; Mahadevan, Swaminatha; Gohil, Narendrasinh; Jamshed, Roma; Prajapati, Jashvant; Rao, Gv Ramana; Strehlow, Matthew

    2016-05-01

    Many women who experience gender-based violence may never seek any formal help because they do not feel safe or confident that they will receive help if they try. A public-private-academic partnership in Gujarat, India, established a toll-free telephone helpline - called 181 Abhayam - for women experiencing gender-based violence. The partnership used existing emergency response service infrastructure to link women to phone counselling, nongovernmental organizations (NGOs) and government programmes. In India, the lifetime prevalence of gender-based violence is 37.2%, but less than 1% of women will ever seek help beyond their family or friends. Before implementation of the helpline, there were no toll-free helplines or centralized coordinating systems for government programmes, NGOs and emergency response services. In February 2014, the helpline was launched across Gujarat. In the first 10 months, the helpline assisted 9767 individuals, of which 8654 identified themselves as women. Of all calls, 79% (7694) required an intervention by phone or in person on the day they called and 43% (4190) of calls were by or for women experiencing violence. Despite previous data that showed women experiencing gender-based violence rarely sought help from formal sources, women in Gujarat did use the helpline for concerns across the spectrum of gender-based violence. However, for evaluating the impact of the helpline, the operational definitions of concern categories need to be further clarified. The initial triage system for incoming calls was advantageous for handling high call volumes, but may have contributed to dropped calls.

  8. A flexible framework for process-based hydraulic and water quality modeling of stormwater green infrastructure performance

    Science.gov (United States)

    Background Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. While popular, generally, the GI models are relatively simplistic. However,...

  9. Bandwidth provisioning in infrastructure-based wireless networks employing directional antennas

    Energy Technology Data Exchange (ETDEWEB)

    Hasiviswanthan, Shiva [Los Alamos National Laboratory; Zhao, Bo [PENN STATE UNIV.; Vasudevan, Sudarshan [UNIV OF MASS AMHERST; Yrgaonkar, Bhuvan [PENN STATE UNIV.

    2009-01-01

    Motivated by the widespread proliferation of wireless networks employing directional antennas, we study the problem of provisioning bandwidth in such networks. Given a set of subscribers and one or more access points possessing directional antennas, we formalize the problem of orienting these antennas in two fundamental settings: (1) subscriber-centric, where the objective is to fairly allocate bandwidth among the subscribers and (2) provider-centric, where the objective is to maximize the revenue generated by satisfying the bandwidth requirements of subscribers. For both the problems, we first design algorithms for a network with only one access point working under the assumption that the number of antennas does not exceed the number of noninterfering channels. Using the well-regarded lexicographic max-min fair allocation as the objective for a subscriber-centric network, we present an optimum dynamic programming algorithm. For a provider-centric network, the allocation problem turns out to be NP-hard. We present a greedy heuristic based algorithm that guarantees almost half of the optimum revenue. We later enhance both these algorithms to operate in more general networks with multiple access points and no restrictions on the relative numbers of antennas and channels. A simulation-based evaluation using OPNET demonstrates the efficacy of our approaches and provides us further in insights into these problems.

  10. Advanced Refrigerant-Based Cooling Technologies for Information and Communication Infrastructure (ARCTIC)

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, Todd

    2012-12-13

    Faster, more powerful and dense computing hardware generates significant heat and imposes considerable data center cooling requirements. Traditional computer room air conditioning (CRAC) cooling methods are proving increasingly cost-ineffective and inefficient. Studies show that using the volume of room air as a heat exchange medium is wasteful and allows for substantial mixing of hot and cold air. Further, it limits cabinet/frame/rack density because it cannot effectively cool high heat density equipment that is spaced closely together. A more cost-effective, efficient solution for maximizing heat transfer and enabling higher heat density equipment frames can be accomplished by utilizing properly positioned phase change or two-phase pumped refrigerant cooling methods. Pumping low pressure, oil-free phase changing refrigerant through microchannel heat exchangers can provide up to 90% less energy consumption for the primary cooling loop within the room. The primary benefits of such a solution include reduced energy requirements, optimized utilization of data center space, and lower OPEX and CAPEX. Alcatel-Lucent recently developed a modular cooling technology based on a pumped two-phase refrigerant that removes heat directly at the shelf level of equipment racks. The key elements that comprise the modular cooling technology consist of the following. A pump delivers liquid refrigerant to finned microchannel heat exchangers mounted on the back of equipment racks. Fans drive air through the equipment shelf, where the air gains heat dissipated by the electronic components therein. Prior to exiting the rack, the heated air passes through the heat exchangers, where it is cooled back down to the temperature level of the air entering the frame by vaporization of the refrigerant, which is subsequently returned to a condenser where it is liquefied and recirculated by the pump. All the cooling air enters and leaves the shelves/racks at nominally the same temperature. Results

  11. Spectral invariance hypothesis study of polarized reflectance with Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI)

    Science.gov (United States)

    Bradley, Christine L.; Kupinski, Meredith; Diner, David J.; Xu, Feng; Chipman, Russell A.

    2015-09-01

    Many models used to represent the boundary condition for the separation of atmospheric scattering from the surface reflectance in polarized remote sensing measurements assume that the polarized surface reflectance is spectrally neutral. The Spectral Invariance Hypothesis asserts that the magnitude and shape of the polarized bidirectional reflectance factor (pBRF) is equal for all wavelengths. In order to test this hypothesis, JPL's Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) is used to measure polarization information of different outdoor surface types. GroundMSPI measures the linear polarization Stokes parameters (I, Q, U), at three wavelengths, 470 nm, 660 nm, and 865 nm. The camera is mounted on a two-axis gimbal to accurately select the view azimuth and elevation directions. On clear sky days we acquired day-long scans of scenes that contain various surface types such as grass, dirt, cement, brick, and asphalt and placed a Spectralon panel in the camera field of view to provide a reflectance reference. Over the course of each day, changing solar position in the sky provides a large range of scattering angles for this study. The polarized bidirectional reflectance factor (pBRF) is measured for the three wavelengths and the best fit slope of the spectral correlation is reported. This work reports the range of best fit slopes measured for five region types.

  12. IRIDE White Book, An Interdisciplinary Research Infrastructure based on Dual Electron linacs&lasers

    CERN Document Server

    Alesini, D; Anania, M P; Andreas, S; Angelone, M; Arcovito, A; Arnesano, F; Artioli, M; Avaldi, L; Babusci, D; Bacci, A; Balerna, A; Bartalucci, S; Bedogni, R; Bellaveglia, M; Bencivenga, F; Benfatto, M; Biedron, S; Bocci, V; Bolognesi, M; Bolognesi, P; Boni, R; Bonifacio, R; Boscolo, M; Boscherini, F; Bossi, F; Broggi, F; Buonomo, B; Calo', V; Catone, D; Capogni, M; Capone, M; Castellano, M; Castoldi, A; Catani, L; Cavoto, G; Cherubini, N; Chirico, G; Cestelli-Guidi, M; Chiadroni, E; Chiarella, V; Cianchi, A; Cianci, M; Cimino, R; Ciocci, F; Clozza, A; Collini, M; Colo', G; Compagno, A; Contini, G; Coreno, M; Cucini, R; Curceanu, C; Dabagov, S; Dainese, E; Davoli, I; Dattoli, G; De Caro, L; De Felice, P; Della Longa, S; Monache, G Delle; De Spirito, M; Di Cicco, A; Di Donato, C; Di Gioacchino, D; Di Giovenale, D; Di Palma, E; Di Pirro, G; Dodaro, A; Doria, A; Dosselli, U; Drago, A; Escrinabo, R; Esposito, A; Faccini, R; Ferrari, A; Ferrario, M; Filabozzi, A; Filippetto, D; Fiori, F; Frasciello, O; Fulgentini, L; Gallerano, G P; Gallo, A; Gambaccini, M; Gatti, C; Gatti, G; Gauzzi, P; Ghigo, A; Ghiringhelli, G; Giannessi, L; Giardina, G; Giannini, C; Giorgianni, F; Giovenale, E; Gizzi, L; Guaraldo, C; Guazzoni, C; Gunnella, R; Hatada, K; Ivashyn, S; Jegerlehner, F; Keeffe, P O; Kluge, W; Kupsc, A; Iannone, M; Labate, L; Sandri, P Levi; Lombardi, V; Londrillo, P; Loreti, S; Losacco, M; Lupi, S; Macchi, A; Magazu', S; Mandaglio, G; Marcelli, A; Margutti, G; Mariani, C; Mariani, P; Marzo, G; Masciovecchio, C; Masujan, P; Mattioli, M; Mazzitelli, G; Merenkov, N P; Michelato, P; Migliardo, F; Migliorati, M; Milardi, C; Milotti, E; Milton, S; Minicozzi, V; Mobilio, S; Morante, S; Moricciani, D; Mostacci, A; Muccifora, V; Murtas, F; Musumeci, P; Nguyen, F; Orecchini, A; Organtini, G; Ottaviani, P L; Pace, E; Paci, M; Pagani, C; Pagnutti, S; Palmieri, V; Palumbo, L; Panaccione, G C; Papadopoulos, C F; Papi, M; Passera, M; Pasquini, L; Pedio, M; Perrone, A; Petralia, A; Petrillo, C; Petrillo, V; Pillon, M; Pierini, P; Pietropaolo, A; Polosa, A D; Pompili, R; Portoles, J; Prosperi, T; Quaresima, C; Quintieri, L; Rau, J V; Reconditi, M; Ricci, A; Ricci, R; Ricciardi, G; Ripiccini, E; Romeo, S; Ronsivalle, C; Rosato, N; Rosenzweig, J B; Rossi, G; Rossi, A A; Rossi, A R; Rossi, F; Russo, D; Sabatucci, A; Sabia, E; Sacchetti, F; Salducco, S; Sannibale, F; Sarri, G; Scopigno, T; Serafini, L; Sertore, D; Shekhovtsova, O; Spassovsky, I; Spadaro, T; Spataro, B; Spinozzi, F; Stecchi, A; Stellato, F; Surrenti, V; Tenore, A; Torre, A; Trentadue, L; Turchini, S; Vaccarezza, C; Vacchi, A; Valente, P; Venanzoni, G; Vescovi, S; Villa, F; Zanotti, G; Zema, N; Zobov, M

    2013-01-01

    This report describes the scientific aims and potentials as well as the preliminary technical design of IRIDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity 'particle factory', based on a combination of a high duty cycle radio-frequency superconducting electron linac and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of science and technology. IRIDE will contribute to open new avenues of discoveries and to address most important riddles: What does matter consist of? What is the structure of proteins that have a fundamental role in life processes? What can we learn from protein structure to improve the treatment of diseases and to design mor...

  13. Establishment of Infrastructure for Domestic-Specific Level 3 PSA based on MACCS2

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Seung-Cheol; Han, Seok-Jung; Choi, Sun-Yeong; Lee, Seung-Jun [KAERI, Daejeon (Korea, Republic of); Kim, Wan-Seob [Korea Reliability Technology and System, Daejeon (Korea, Republic of)

    2015-05-15

    Research activities related to the Level 3 PSA have naturally disappeared since the use of risk surrogates. Recently, Level 3 PSA was only performed to the extent of the purpose of operating license for the plant under construction. Since the Fukushima accident, concern about a comprehensive site-specific Level 3 PSA has been raised for some compelling reasons, especially the evaluation of the domestic multi-unit site risk effect including other site radiological sources (e.g., spent fuel pool, multi-units). Unfortunately, there are no domestic-specific consequence analysis code and input database required to perform a site-specific Level 3 PSA. The paper focuses on the development of the input data management system for domestic-specific Level 3 PSA based MACCS2 (MELCOR Accident Consequence Code System). The authors call it KOSCA-MACCS2 (Korea Off-Site Consequence Analysis based in MACCS2). It serves as an integrated platform for a domestic-specific Level 3 PSA. Also, it provides the pre-processing modules to automatically generate MACCS2 input from diverse types of the domestic-specific data including numerical map data, e.g., meteorological data, numerical population map, digital land use map, economic statistics and so on. Note that some functions should be still developed and added on it, e.g., post-processing module to convert MACCS2 outputs to graphic report forms, and so on. Henceforth, it is necessary to develop a Korean-specific Level 3 PSA code as a substitution for the foreign software, MACCS2.

  14. A grid-based infrastructure for ecological forecasting of rice land Anopheles arabiensis aquatic larval habitats

    Directory of Open Access Journals (Sweden)

    Kakoma Ibulaimu I

    2006-10-01

    Full Text Available Abstract Background For remote identification of mosquito habitats the first step is often to construct a discrete tessellation of the region. In applications where complex geometries do not need to be represented such as urban habitats, regular orthogonal grids are constructed in GIS and overlaid on satellite images. However, rice land vector mosquito aquatic habitats are rarely uniform in space or character. An orthogonal grid overlaid on satellite data of rice-land areas may fail to capture physical or man-made structures, i.e paddies, canals, berms at these habitats. Unlike an orthogonal grid, digitizing each habitat converts a polygon into a grid cell, which may conform to rice-land habitat boundaries. This research illustrates the application of a random sampling methodology, comparing an orthogonal and a digitized grid for assessment of rice land habitats. Methods A land cover map was generated in Erdas Imagine V8.7® using QuickBird data acquired July 2005, for three villages within the Mwea Rice Scheme, Kenya. An orthogonal grid was overlaid on the images. In the digitized dataset, each habitat was traced in Arc Info 9.1®. All habitats in each study site were stratified based on levels of rice stage Results The orthogonal grid did not identify any habitat while the digitized grid identified every habitat by strata and study site. An analysis of variance test indicated the relative abundance of An. arabiensis at the three study sites to be significantly higher during the post-transplanting stage of the rice cycle. Conclusion Regions of higher Anopheles abundance, based on digitized grid cell information probably reflect underlying differences in abundance of mosquito habitats in a rice land environment, which is where limited control resources could be concentrated to reduce vector abundance.

  15. Response of base isolation system excited by spectrum compatible ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Han; Kim, Min Kyu; Choi, In Kil [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Structures in a nuclear power system are designed to be elastic even under an earthquake excitation. However a structural component such as an isolator shows inelastic behavior inherently. For the seismic assessment of nonlinear structures, the response history analysis should be performed. Especially for the performance based design, where the failure probability of a system needs to be evaluated, the variation of response should be evaluated. In this study, the spectrum compatible ground motions, the artificial ground motion and the modified ground motion, were generated. Using these ground motions, the variations of seismic responses of a simplified isolation system were evaluated.

  16. Tourist Perceptions On Supporting Infrastructure Facilities And Climate-Based Visiting Time Of Ngebel Lake, Ponorogo

    Directory of Open Access Journals (Sweden)

    Ardhila Ayu Prasetyowati

    2014-04-01

    Full Text Available This study aims to analyze the tourists’ perception about the importance and satisfaction on the product of fisheries tourism, and to assess the visiting time of tourist based on climate conditions. The research was conducted in May to June 2013 in Ngebel Lake, Ponorogo. We used descriptive quantitative approach, with 45 respondents. Data collected from interview, questionnaire and observation. Analytical methods were used to determine the perception of tourists on the satisfaction and interest in fisheries tourism products, i.e. Importance Performance Analysis (IPA. We also used Tourism Climate Index (TCI to determine the visiting time of tourist. The results show the value of satisfaction and tourist interest is low, therefore the improvement of several aspects become important. It is encompasses: a the existence of parking area; b the condition of Ngebel Lake; c planning and management system, the condition of the local community; and d activities of fish course restaurant and fish farming system of floating net cages. TCI value indicates ideal conditions for tourists traveled in Ngebel Lake is in November (convenience index value of 106, in December (97 and in April (94. This appropriate time to visit Ngebel Lake is expected to create a good impression for the tourists and enjoy the various fisheries activities in Ngebel Lake. Keywords: Importance Performance Analysis, Ngebel Lake, Tourist Climate Index

  17. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.

  18. Individualized network-based drug repositioning infrastructure for precision oncology in the panomics era.

    Science.gov (United States)

    Cheng, Feixiong; Hong, Huixiao; Yang, Shengyong; Wei, Yuquan

    2016-06-12

    Advances in next-generation sequencing technologies have generated the data supporting a large volume of somatic alterations in several national and international cancer genome projects, such as The Cancer Genome Atlas and the International Cancer Genome Consortium. These cancer genomics data have facilitated the revolution of a novel oncology drug discovery paradigm from candidate target or gene studies toward targeting clinically relevant driver mutations or molecular features for precision cancer therapy. This focuses on identifying the most appropriately targeted therapy to an individual patient harboring a particularly genetic profile or molecular feature. However, traditional experimental approaches that are used to develop new chemical entities for targeting the clinically relevant driver mutations are costly and high-risk. Drug repositioning, also known as drug repurposing, re-tasking or re-profiling, has been demonstrated as a promising strategy for drug discovery and development. Recently, computational techniques and methods have been proposed for oncology drug repositioning and identifying pharmacogenomics biomarkers, but overall progress remains to be seen. In this review, we focus on introducing new developments and advances of the individualized network-based drug repositioning approaches by targeting the clinically relevant driver events or molecular features derived from cancer panomics data for the development of precision oncology drug therapies (e.g. one-person trials) to fully realize the promise of precision medicine. We discuss several potential challenges (e.g. tumor heterogeneity and cancer subclones) for precision oncology. Finally, we highlight several new directions for the precision oncology drug discovery via biotherapies (e.g. gene therapy and immunotherapy) that target the 'undruggable' cancer genome in the functional genomics era.

  19. Preliminary GIS based analysis of seismic risk in water pipeline lifeline system in urban infrastructure of Chania (Crete)

    Science.gov (United States)

    Kouli, Maria; Papadopoulos, Ilias; Vallianatos, Filippos

    2013-08-01

    The lifelines seismic risk assessment is based on a fuzzy classification on parameters related to geometry (effective length distribution L) and constructive details (material type C) along with urban (U) and economic (E) parameters. Then a functional value G = f(L, C, U, E) is constructed as an indicator of risk of the element/system under investigation. In the present study a new functional Fg is introduced in a GIS environment. The application of spatial analysis methods provides a better understanding of the possible failure patterns and trends in water distribution networks. The Fg parameter takes into account the influence of geological and seismotectonic environment in a local scale, constructed in a way to reflect the amplification factor A (X), where X local coordinate of the cell, which experimentally could be estimated. The Fg= f(A(X), U(X), L(X)) is strongly affected by the local geotectonic conditions as well the spatial distribution of population and the geometrical lattice of pipe line system. The proposed index was applied in the city of Chania, Crete island, as the functioning of the infrastructure during and especially after a destructive earthquake, in the front of the Hellenic Arc, is of vital importance for the society and contributes to the rescue and emergency operations. We propose Fg mainly for systems where site effects are important and present a significant spatial inhomogeneity while at the same time the examined urban system has no constructive variability it time and space.

  20. A Mobile-based Platform for Big Load Profiles Data Analytics in Non-Advanced Metering Infrastructures

    Directory of Open Access Journals (Sweden)

    Moussa Sherin

    2016-01-01

    Full Text Available With the rapidly increase of electricity demand around the world due to industrialization and urbanization, this turns the availability of precise knowledge about the consumption patterns of consumers to a valuable asset for electricity providers, given the current competitive electricity market. This would allow them to provide satisfactory services in time of load peaks and to control fraud and abuse cases. Despite of this crucial necessity, this is currently very hard to achieve in many developing countries since smart meters or advanced metering infrastructures (AMIs are not yet settled there to monitor and report energy usages. Whereas the communication and information technologies have widely emerged in such nations, allowing the enormous spread of smart devices among population. In this paper, we present mobile-based BLPDA, a novel platform for big data analytics of consumerss’ load profiles (LPs in the absence of AMIs’ establishment. The proposed platform utilizes mobile computing in order to collect the consumptions of consumers, build their LPs, and analyze the aggregated usages data. Thus, allowing electricity providers to have better vision for an enhanced decision making process. The experimental results emphasize the effectiveness of our platform as an adequate alternative for AMIs in developing countries with minimal cost.

  1. A knowledge base system for ground control over abandoned mines

    Energy Technology Data Exchange (ETDEWEB)

    Nazimko, V.V.; Zviagilsky, E.L. [Donetsk State Technical University, Donetsk (Ukraine)

    1999-07-01

    The knowledge of engineering systems has been developed to choose optimal technology for subsidence prevention over abandoned mines. The expert system treats a specific case, maps consequences of actions and derives relevant technology (or a set of technologies) that should be used to prevent ground subsidence. Input parameters that characterise the case are treated using fuzzy logic and are then fed to a neural network. The network has been successfully trained by a backpropagation algorithm on the basis of three fuzzy rules. 5 refs., 2 figs., 3 tabs.

  2. Ground-based measurement of surface temperature and thermal emissivity

    Science.gov (United States)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  3. A Geometry Based Infra-Structure for Computational Analysis and Design

    Science.gov (United States)

    Haimes, Robert

    1998-01-01

    The computational steps traditionally taken for most engineering analysis suites (computational fluid dynamics (CFD), structural analysis, heat transfer and etc.) are: (1) Surface Generation -- usually by employing a Computer Assisted Design (CAD) system; (2) Grid Generation -- preparing the volume for the simulation; (3) Flow Solver -- producing the results at the specified operational point; (4) Post-processing Visualization -- interactively attempting to understand the results. For structural analysis, integrated systems can be obtained from a number of commercial vendors. These vendors couple directly to a number of CAD systems and are executed from within the CAD Graphical User Interface (GUI). It should be noted that the structural analysis problem is more tractable than CFD; there are fewer mesh topologies used and the grids are not as fine (this problem space does not have the length scaling issues of fluids). For CFD, these steps have worked well in the past for simple steady-state simulations at the expense of much user interaction. The data was transmitted between phases via files. In most cases, the output from a CAD system could go to Initial Graphics Exchange Specification (IGES) or Standard Exchange Program (STEP) files. The output from Grid Generators and Solvers do not really have standards though there are a couple of file formats that can be used for a subset of the gridding (i.e. PLOT3D data formats). The user would have to patch up the data or translate from one format to another to move to the next step. Sometimes this could take days. Specifically the problems with this procedure are:(1) File based -- Information flows from one step to the next via data files with formats specified for that procedure. File standards, when they exist, are wholly inadequate. For example, geometry from CAD systems (transmitted via IGES files) is defined as disjoint surfaces and curves (as well as masses of other information of no interest for the Grid Generator

  4. Commercial off the Shelf Ground Control Supports Calibration and Conflation from Ground to Space Based Sensors

    Science.gov (United States)

    Danielová, M.; Hummel, P.

    2016-06-01

    The need for rapid deployment of aerial and satellite imagery in support of GIS and engineering integration projects require new sources of geodetic control to ensure the accuracy for geospatial projects. In the past, teams of surveyors would need to deploy to project areas to provide targeted or photo identifiable points that are used to provide data for orthorecificaion, QA/QC and calibration for multi-platform sensors. The challenge of integrating street view, UAS, airborne and Space based sensors to produce the common operational picture requires control to tie multiple sources together. Today commercial off the shelf delivery of existing photo identifiable control is increasing the speed of deployment of this data without having to revisit sites over and over again. The presentation will discuss the processes developed by CompassData to build a global library of 40,000 control points available today. International Organization for Standardization (ISO) based processes and initiatives ensure consistent quality of survey data, photo identifiable features selected and meta data to support photogrammetrist, engineers and GIS professionals to quickly deliver projects with better accuracy.

  5. Principle and Design of a Single-phase Inverter Based Grounding System for Neutral-to-ground Voltage Compensation in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, Lingjie; Zeng, Xiangjun

    2017-01-01

    Neutral-to-ground overvoltage may occur in non-effectively grounded power systems because of the distributed parameters asymmetry and resonance between Petersen coil and distributed capacitances. Thus, the constraint of neutral-to-ground voltage is critical for the safety of distribution networks....... In this paper, an active grounding system based on single-phase inverter and its control parameter design method is proposed to achieve this objective. Relationship between its output current and neutral-to-ground voltage is derived to explain the principle of neutral-to-ground voltage compensation. Then...... margin subjecting to large range of load change. The PI method is taken as the comparative method and the performances of both control methods are presented in detail. Experimental results prove the effectiveness and novelty of the proposed grounding system and control method....

  6. Ground Wars

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Kleis

    Political campaigns today are won or lost in the so-called ground war--the strategic deployment of teams of staffers, volunteers, and paid part-timers who work the phones and canvass block by block, house by house, voter by voter. Ground Wars provides an in-depth ethnographic portrait of two...... infrastructures that utilize large databases with detailed individual-level information for targeting voters, and armies of dedicated volunteers and paid part-timers. Nielsen challenges the notion that political communication in America must be tightly scripted, controlled, and conducted by a select coterie...... of professionals. Yet he also quashes the romantic idea that canvassing is a purer form of grassroots politics. In today's political ground wars, Nielsen demonstrates, even the most ordinary-seeming volunteer knocking at your door is backed up by high-tech targeting technologies and party expertise. Ground Wars...

  7. Simultaneous ground- and satellite-based observation of MF/HF auroral radio emissions

    Science.gov (United States)

    Sato, Yuka; Kumamoto, Atsushi; Katoh, Yuto; Shinbori, Atsuki; Kadokura, Akira; Ogawa, Yasunobu

    2016-05-01

    We report on the first simultaneous measurements of medium-high frequency (MF/HF) auroral radio emissions (above 1 MHz) by ground- and satellite-based instruments. Observational data were obtained by the ground-based passive receivers in Iceland and Svalbard, and by the Plasma Waves and Sounder experiment (PWS) mounted on the Akebono satellite. We observed two simultaneous appearance events, during which the frequencies of the auroral roar and MF bursts detected at ground level were different from those of the terrestrial hectometric radiation (THR) observed by the Akebono satellite passing over the ground-based stations. This frequency difference confirms that auroral roar and THR are generated at different altitudes across the F peak. We did not observe any simultaneous observations that indicated an identical generation region of auroral roar and THR. In most cases, MF/HF auroral radio emissions were observed only by the ground-based detector, or by the satellite-based detector, even when the satellite was passing directly over the ground-based stations. A higher detection rate was observed from space than from ground level. This can primarily be explained in terms of the idea that the Akebono satellite can detect THR emissions coming from a wider region, and because a considerable portion of auroral radio emissions generated in the bottomside F region are masked by ionospheric absorption and screening in the D/E regions associated with ionization which results from auroral electrons and solar UV radiation.

  8. Quantification of anthropogenic and natural changes in oil sands mining infrastructure land based on RapidEye and SPOT5

    Science.gov (United States)

    Zhang, Ying; Guindon, Bert; Lantz, Nicholas; Shipman, Todd; Chao, Dennis; Raymond, Don

    2014-06-01

    Natural resources development, spanning exploration, production and transportation activities, alters local land surface at various spatial scales. Quantification of these anthropogenic changes, both permanent and reversible, is needed for compliance assessment and for development of effective sustainable management strategies. Multi-spectral high resolution imagery data from SPOT5 and RapidEye were used for extraction and quantification of the anthropogenic and natural changes for a case study of Alberta bitumen (oil sands) mining located in the Western Boreal Plains near Fort McMurray, Canada. Two test sites representative of the major Alberta bitumen production extraction processes, open pit and in situ extraction, were selected. A hybrid change detection approach, combining pixel- and object-based target detection and extraction, is proposed based on Change Vector Analysis (CVA). The extraction results indicate that the changed infrastructure landscapes of these two sites have different footprints linked with their differing oil sands production processes. Pixel- and object-based accuracy assessments have been applied for validation of the change detection results. For manmade disturbances, except for those fine linear features such as the seismic lines, accuracies of about 80% have been achieved at the pixel level while, at the object level, these rise to 90-95%. Since many disturbance features are transient, a new landscape index, entitled the Re-growth Index, has been formulated at single object level specifically to monitor restoration of these features to their natural state. It is found that the temporal behaviour of the Re-growth Index in an individual patch varies depending on the type of natural land cover. In addition, the Re-growth Index is also useful for assessing the detectability of disturbed sites.

  9. Space- and ground-based particle physics meet at CERN

    CERN Document Server

    CERN Bulletin

    2012-01-01

    The fourth international conference on Particle and Fundamental Physics in Space (SpacePart12) will take place at CERN from 5 to 7 November. The conference will bring together scientists working on particle and fundamental physics in space and on ground, as well as space policy makers from around the world.   One hundred years after Victor Hess discovered cosmic rays using hot air balloons, the experimental study of particle and fundamental physics is still being pursued today with extremely sophisticated techniques: on the ground, with state-of-the-art accelerators like the LHC; and in space, with powerful observatories that probe, with amazing accuracy, the various forms of cosmic radiation, charged and neutral, which are messengers of the most extreme conditions of matter and energy. SpacePart12 will be the opportunity for participants to exchange views on the progress of space-related science and technology programmes in the field of particle and fundamental physics in space. SpacePar...

  10. A novel technique for extracting clouds base height using ground based imaging

    Directory of Open Access Journals (Sweden)

    E. Hirsch

    2011-01-01

    Full Text Available The height of a cloud in the atmospheric column is a key parameter in its characterization. Several remote sensing techniques (passive and active, either ground-based or on space-borne platforms and in-situ measurements are routinely used in order to estimate top and base heights of clouds. In this article we present a novel method that combines thermal imaging from the ground and sounded wind profile in order to derive the cloud base height. This method is independent of cloud types, making it efficient for both low boundary layer and high clouds. In addition, using thermal imaging ensures extraction of clouds' features during daytime as well as at nighttime. The proposed technique was validated by comparison to active sounding by ceilometers (which is a standard ground based method, to lifted condensation level (LCL calculations, and to MODIS products obtained from space. As all passive remote sensing techniques, the proposed method extracts only the height of the lowest cloud layer, thus upper cloud layers are not detected. Nevertheless, the information derived from this method can be complementary to space-borne cloud top measurements when deep-convective clouds are present. Unlike techniques such as LCL, this method is not limited to boundary layer clouds, and can extract the cloud base height at any level, as long as sufficient thermal contrast exists between the radiative temperatures of the cloud and its surrounding air parcel. Another advantage of the proposed method is its simplicity and modest power needs, making it particularly suitable for field measurements and deployment at remote locations. Our method can be further simplified for use with visible CCD or CMOS camera (although nighttime clouds will not be observed.

  11. Durability of critical infrastructures

    Directory of Open Access Journals (Sweden)

    Raluca Pascu

    2011-08-01

    Full Text Available The paper deals with those infrastructures by which world society, under the pressure ofdemographic explosion, self-survives. The main threatening comes not from terrorist attacks, but fromthe great natural catastrophes and global climate change. It’s not for the first time in history when suchmeasures of self-protection are built up. First objective of this paper is to present the background fordurability analysis. Then, with the aid of these mathematical tools the absolute durability of three linearmodels, typical for critical infrastructures, are successively calculated. In order to enhance the durabilityof critical infrastructures the solution based on redundancies is chosen. Five types of connection theredundancies for each of the three models are considered. Three topological schemes for connecting theredundancies are adopted: locally, by twining and globally. Absolute values of durability in all fifteenmodels with redundancies are further calculated. Then, the relative performances of enhanced durabilityin the same fifteen models, compared with the three original models, considered as references, areanalysed. The relative costs of the same fifteen models and in similar topologic conditions are furtheranalysed. By dividing the performance with cost the relative profitableness of each model is obtained.Finally, the three initial models, each reshaped with redundancies in three selective modes, arecompared from the perspective of their relative profitableness. The outcomes of this paper are original.They are of practical interests in planning the maintenance programs and checking the plausibility ofproposed interventions according to the clause 7.4 of ISO 13822:2001

  12. Ground-Based Lidar Measurements During the CALIPSO and Twilight Zone (CATZ) Campaign

    Science.gov (United States)

    Berkoff, Timothy; Qian, Li; Kleidman, Richard; Stewart, Sebastian; Welton, Ellsworth; Li, Zhu; Holbem, Brent

    2008-01-01

    The CALIPSO and Twilight Zone (CATZ) field campaign was carried out between June 26th and August 29th of 2007 in the multi-state Maryland-Virginia-Pennsylvania region of the U.S. to study aerosol properties and cloud-aerosol interactions during overpasses of the CALIPSO satellite. Field work was conducted on selected days when CALIPSO ground tracks occurred in the region. Ground-based measurements included data from multiple Cimel sunphotometers that were placed at intervals along a segment of the CALIPSO ground-track. These measurements provided sky radiance and AOD measurements to enable joints inversions and comparisons with CALIPSO retrievals. As part of this activity, four ground-based lidars provided backscatter measurements (at 523 nm) in the region. Lidars at University of Maryland Baltimore County (Catonsville, MD) and Goddard Space Flight Center (Greenbelt, MD) provided continuous data during the campaign, while two micro-pulse lidar (MPL) systems were temporarily stationed at various field locations directly on CALIPSO ground-tracks. As a result, thirteen on-track ground-based lidar observations were obtained from eight different locations in the region. In some cases, nighttime CALIPSO coincident measurements were also obtained. In most studies reported to date, ground-based lidar validation efforts for CALIPSO rely on systems that are at fixed locations some distance away from the satellite ground-track. The CATZ ground-based lidar data provide an opportunity to examine vertical structure properties of aerosols and clouds both on and off-track simultaneously during a CALIPSO overpass. A table of available ground-based lidar measurements during this campaign will be presented, along with example backscatter imagery for a number of coincident cases with CALIPSO. Results indicate that even for a ground-based measurements directly on-track, comparisons can still pose a challenge due to the differing spatio-temporal properties of the ground and satellite

  13. Improving the detection of explosive hazards with LIDAR-based ground plane estimation

    Science.gov (United States)

    Buck, A.; Keller, J. M.; Popescu, M.

    2016-05-01

    Three-dimensional point clouds generated by LIDAR offer the potential to build a more complete understanding of the environment in front of a moving vehicle. In particular, LIDAR data facilitates the development of a non-parametric ground plane model that can filter target predictions from other sensors into above-ground and below-ground sets. This allows for improved detection performance when, for example, a system designed to locate above-ground targets considers only the set of above-ground predictions. In this paper, we apply LIDAR-based ground plane filtering to a forward looking ground penetrating radar (FLGPR) sensor system and a side looking synthetic aperture acoustic (SAA) sensor system designed to detect explosive hazards along the side of a road. Additionally, we consider the value of the visual magnitude of the LIDAR return as a feature for identifying anomalies. The predictions from these sensors are evaluated independently with and without ground plane filtering and then fused to produce a combined prediction confidence. Sensor fusion is accomplished by interpolating the confidence scores of each sensor along the ground plane model to create a combined confidence vector at specified points in the environment. The methods are tested along an unpaved desert road at an arid U.S. Army test site.

  14. Microcontroller based ground weapon control system(Short Communication

    Directory of Open Access Journals (Sweden)

    M. Sankar Kishore

    2001-10-01

    Full Text Available Armoured vehicles and tanks generally consist of high resolution optical (both infrared and visible and display systems for recognition and identification of the targets. Different weapons/articles to engage the targets may be present. A fire control system (FCS controls all the above systems, monitors the status of the articles present and passes the information to the display system. Depending upon the health and availability of the articles, the FCS selects and fires the articles. Design and development of ground control unit which is the heart of the FCS, both in hardware and software, has been emphasised. The system has been developed using microcontroller and software developed in ASM 51 language. The system also has a facility to test all the systems and articles as initial power on condition. From the safety point of view, software and hardware interlocks have been provided in the critical operations, like firing sequence. "

  15. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report presents information concerning field procedures employed during the monitoring, well construction, well purging, sampling, and well logging at the Wright-Patterson Air Force Base. Activities were conducted in an effort to evaluate ground water contamination.

  16. Ground-based Infrared Observations of Water Vapor and Hydrogen Peroxide in the Atmosphere of Mars

    Science.gov (United States)

    Encrenaz, T.; Greathouse, T. K.; Bitner, M.; Kruger, A.; Richter, M. J.; Lacy, J. H.; Bézard, B.; Fouchet, T.; Lefevre, F.; Forget, F.; Atreya, S. K.

    2008-11-01

    Ground-based observations of water vapor and hydrogen peroxide have been obtained in the thermal infrared range, using the TEXES instrument at the NASA Infrared Telescope Facility, for different times of the seasonal cycle.

  17. Informing hydrological models with ground-based time-lapse relative gravimetry: potential and limitations

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Christiansen, Lars; Rosbjerg, Dan

    2011-01-01

    Coupled hydrogeophysical inversion emerges as an attractive option to improve the calibration and predictive capability of hydrological models. Recently, ground-based time-lapse relative gravity (TLRG) measurements have attracted increasing interest because there is a direct relationship between ...

  18. Changes in ground-based solar ultraviolet radiation during fire episodes: a case study

    CSIR Research Space (South Africa)

    Wright, CY

    2013-09-01

    Full Text Available about the relationship between fires and solar UVR without local high-quality column or ground-based ambient air pollution (particulate matter in particular) data; however, the threat to public health from fires was acknowledged....

  19. Spectrally selective surfaces for ground and space-based instrumentation: support for a resource base

    Science.gov (United States)

    McCall, Susan H.; Sinclair, R. Lawrence; Pompea, Stephen M.; Breault, Robert P.

    1993-11-01

    The performance of space telescopes, space instruments, and space radiator systems depends critically upon the selection of appropriate spectrally selective surfaces. Many space programs have suffered severe performance limitations, schedule setbacks, and spent hundreds of thousands of dollars in damage control because of a lack of readily-accessible, accurate data on the properties of spectrally selective surfaces, particularly black surfaces. A Canadian effort is underway to develop a resource base (database and support service) to help alleviate this problem. The assistance of the community is required to make the resource base comprehensive and useful to the end users. The paper aims to describe the objectives of this project. In addition, a request for information and support is made for various aspects of the project. The resource base will be useful for both ground and space-based instrumentation.

  20. Embedded Processor Oriented Compiler Infrastructure

    Directory of Open Access Journals (Sweden)

    DJUKIC, M.

    2014-08-01

    Full Text Available In the recent years, research of special compiler techniques and algorithms for embedded processors broaden the knowledge of how to achieve better compiler performance in irregular processor architectures. However, industrial strength compilers, besides ability to generate efficient code, must also be robust, understandable, maintainable, and extensible. This raises the need for compiler infrastructure that provides means for convenient implementation of embedded processor oriented compiler techniques. Cirrus Logic Coyote 32 DSP is an example that shows how traditional compiler infrastructure is not able to cope with the problem. That is why the new compiler infrastructure was developed for this processor, based on research. in the field of embedded system software tools and experience in development of industrial strength compilers. The new infrastructure is described in this paper. Compiler generated code quality is compared with code generated by the previous compiler for the same processor architecture.

  1. System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator

    Science.gov (United States)

    2006-08-01

    System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator Jae-Jun Kim∗ and Brij N. Agrawal † Department of...TITLE AND SUBTITLE System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator 5a. CONTRACT NUMBER 5b...and Dynamics, Vol. 20, No. 4, July-August 1997, pp. 625-632. 6Schwartz, J. L. and Hall, C. D., “ System Identification of a Spherical Air-Bearing

  2. Towards evidence-based, GIS-driven national spatial health information infrastructure and surveillance services in the United Kingdom.

    Science.gov (United States)

    Boulos, Maged N Kamel

    2004-01-28

    The term "Geographic Information Systems" (GIS) has been added to MeSH in 2003, a step reflecting the importance and growing use of GIS in health and healthcare research and practices. GIS have much more to offer than the obvious digital cartography (map) functions. From a community health perspective, GIS could potentially act as powerful evidence-based practice tools for early problem detection and solving. When properly used, GIS can: inform and educate (professionals and the public); empower decision-making at all levels; help in planning and tweaking clinically and cost-effective actions, in predicting outcomes before making any financial commitments and ascribing priorities in a climate of finite resources; change practices; and continually monitor and analyse changes, as well as sentinel events. Yet despite all these potentials for GIS, they remain under-utilised in the UK National Health Service (NHS). This paper has the following objectives: (1) to illustrate with practical, real-world scenarios and examples from the literature the different GIS methods and uses to improve community health and healthcare practices, e.g., for improving hospital bed availability, in community health and bioterrorism surveillance services, and in the latest SARS outbreak; (2) to discuss challenges and problems currently hindering the wide-scale adoption of GIS across the NHS; and (3) to identify the most important requirements and ingredients for addressing these challenges, and realising GIS potential within the NHS, guided by related initiatives worldwide. The ultimate goal is to illuminate the road towards implementing a comprehensive national, multi-agency spatio-temporal health information infrastructure functioning proactively in real time. The concepts and principles presented in this paper can be also applied in other countries, and on regional (e.g., European Union) and global levels.

  3. Towards evidence-based, GIS-driven national spatial health information infrastructure and surveillance services in the United Kingdom

    Directory of Open Access Journals (Sweden)

    Boulos Maged

    2004-01-01

    Full Text Available Abstract The term "Geographic Information Systems" (GIS has been added to MeSH in 2003, a step reflecting the importance and growing use of GIS in health and healthcare research and practices. GIS have much more to offer than the obvious digital cartography (map functions. From a community health perspective, GIS could potentially act as powerful evidence-based practice tools for early problem detection and solving. When properly used, GIS can: inform and educate (professionals and the public; empower decision-making at all levels; help in planning and tweaking clinically and cost-effective actions, in predicting outcomes before making any financial commitments and ascribing priorities in a climate of finite resources; change practices; and continually monitor and analyse changes, as well as sentinel events. Yet despite all these potentials for GIS, they remain under-utilised in the UK National Health Service (NHS. This paper has the following objectives: (1 to illustrate with practical, real-world scenarios and examples from the literature the different GIS methods and uses to improve community health and healthcare practices, e.g., for improving hospital bed availability, in community health and bioterrorism surveillance services, and in the latest SARS outbreak; (2 to discuss challenges and problems currently hindering the wide-scale adoption of GIS across the NHS; and (3 to identify the most important requirements and ingredients for addressing these challenges, and realising GIS potential within the NHS, guided by related initiatives worldwide. The ultimate goal is to illuminate the road towards implementing a comprehensive national, multi-agency spatio-temporal health information infrastructure functioning proactively in real time. The concepts and principles presented in this paper can be also applied in other countries, and on regional (e.g., European Union and global levels.

  4. Ground-based hyperspectral analysis of the urban nightscape

    Science.gov (United States)

    Alamús, Ramon; Bará, Salvador; Corbera, Jordi; Escofet, Jaume; Palà, Vicenç; Pipia, Luca; Tardà, Anna

    2017-02-01

    Airborne hyperspectral cameras provide the basic information to estimate the energy wasted skywards by outdoor lighting systems, as well as to locate and identify their sources. However, a complete characterization of the urban light pollution levels also requires evaluating these effects from the city dwellers standpoint, e.g. the energy waste associated to the excessive illuminance on walls and pavements, light trespass, or the luminance distributions causing potential glare, to mention but a few. On the other hand, the spectral irradiance at the entrance of the human eye is the primary input to evaluate the possible health effects associated with the exposure to artificial light at night, according to the more recent models available in the literature. In this work we demonstrate the possibility of using a hyperspectral imager (routinely used in airborne campaigns) to measure the ground-level spectral radiance of the urban nightscape and to retrieve several magnitudes of interest for light pollution studies. We also present the preliminary results from a field campaign carried out in the downtown of Barcelona.

  5. Figure-ground organization based on three-dimensional symmetry

    Science.gov (United States)

    Michaux, Aaron; Jayadevan, Vijai; Delp, Edward; Pizlo, Zygmunt

    2016-11-01

    We present an approach to figure/ground organization using mirror symmetry as a general purpose and biologically motivated prior. Psychophysical evidence suggests that the human visual system makes use of symmetry in producing three-dimensional (3-D) percepts of objects. 3-D symmetry aids in scene organization because (i) almost all objects exhibit symmetry, and (ii) configurations of objects are not likely to be symmetric unless they share some additional relationship. No general purpose approach is known for solving 3-D symmetry correspondence in two-dimensional (2-D) camera images, because few invariants exist. Therefore, we present a general purpose method for finding 3-D symmetry correspondence by pairing the problem with the two-view geometry of the binocular correspondence problem. Mirror symmetry is a spatially global property that is not likely to be lost in the spatially local noise of binocular depth maps. We tested our approach on a corpus of 180 images collected indoors with a stereo camera system. K-means clustering was used as a baseline for comparison. The informative nature of the symmetry prior makes it possible to cluster data without a priori knowledge of which objects may appear in the scene, and without knowing how many objects there are in the scene.

  6. Working towards a European Geological Data Infrastructure

    Science.gov (United States)

    van der Krogt, Rob; Hughes, Richard; Pedersen, Mikael; Serrano, Jean-Jacques; Lee, Kathryn A.; Tulstrup, Jørgen; Robida, François

    2013-04-01

    The increasing importance of geological information for policy, regulation and business needs at European and international level has been recognized by the European Parliament and the European Commission, who have called for the development of a common European geological knowledge base. The societal relevance of geoscience data/information is clear from many current issues such as shale gas exploration (including environmental impacts), the availability of critical mineral resources in a global economy, management and security with regard to geohazards (seismic, droughts, floods, ground stability), quality of (ground-)water and soil and societal responses to the impacts of climate change. The EGDI-Scope project responds to this, aiming to prepare an implementation plan for a pan-European Geological Data Infrastructure (EGDI), under the umbrella of the FP7 e- Infrastructures program. It is envisaged that the EGDI will build on geological datasets and models currently held by the European Geological Surveys at national and regional levels, and will also provide a platform for datasets generated by the large number of relevant past, ongoing and future European projects which have geological components. With European policy makers and decision makers from (international) industry as the main target groups (followed by research communities and the general public) stakeholder involvement is imperative to the successful realization and continuity of the EGDI. With these ambitions in mind, the presentation will focus on the following issues, also based on the first results and experiences of the EGDI-Scope project that started mid-2012: • The organization of stakeholder input and commitment connected to relevant 'use cases' within different thematic domains; a number of stakeholder representatives is currently involved, but the project is open to more extensive participation; • A large number of European projects relevant for data delivery to EGDI has been reviewed

  7. DATA PROCESSING AND ANALYSIS TOOLS BASED ON GROUND-BASED SYNTHETIC APERTURE RADAR IMAGERY

    Directory of Open Access Journals (Sweden)

    M. Crosetto

    2017-09-01

    Full Text Available The Ground-Based SAR (GBSAR is a terrestrial remote sensing technique used to measure and monitor deformation. In this paper we describe two complementary approaches to derive deformation measurements using GBSAR data. The first approach is based on radar interferometry, while the second one exploits the GBSAR amplitude. In this paper we consider the so-called discontinuous GBSAR acquisition mode. The interferometric process is not always straightforward: it requires appropriate data processing and analysis tools. One of the main critical steps is phase unwrapping, which can critically affect the deformation measurements. In this paper we describe the procedure used at the CTTC to process and analyse discontinuous GBSAR data. In the second part of the paper we describe the approach based on GBSAR amplitude images and an image-matching method.

  8. Cloud Base Height and Effective Cloud Emissivity Retrieval with Ground-Based Infrared Interferometer

    Institute of Scientific and Technical Information of China (English)

    PAN Lin-Jun; LU Da-Ren

    2012-01-01

    Based on ground-based Atmospheric Emitted Radiance Interferometer (AERI) observations in Shouxian, Anhui province, China, the authors retrieve the cloud base height (CBH) and effective cloud emissivity by using the minimum root-mean-square difference method. This method was originally developed for satellite remote sensing. The high-temporal-resolution retrieval results can depict the trivial variations of the zenith clouds continu- ously. The retrieval results are evaluated by comparing them with observations by the cloud radar. The compari- son shows that the retrieval bias is smaller for the middle and low cloud, especially for the opaque cloud. When two layers of clouds exist, the retrieval results reflect the weighting radiative contribution of the multi-layer cloud. The retrieval accuracy is affected by uncertainties of the AERI radiances and sounding profiles, in which the role of uncertainty in the temperature profile is dominant.

  9. Fractal actors and infrastructures

    DEFF Research Database (Denmark)

    Bøge, Ask Risom

    2011-01-01

    -network-theory (ANT) into surveillance studies (Ball 2002, Adey 2004, Gad & Lauritsen 2009). In this paper, I further explore the potential of this connection by experimenting with Marilyn Strathern’s concept of the fractal (1991), which has been discussed in newer ANT literature (Law 2002; Law 2004; Jensen 2007). I...... under surveillance. Based on fieldwork conducted in 2008 and 2011 in relation to my Master’s thesis and PhD respectively, I illustrate fractal concepts by describing the acts, actors and infrastructure that make up the ‘DNA surveillance’ conducted by the Danish police....

  10. Water Supply Infrastructure System Surety

    Energy Technology Data Exchange (ETDEWEB)

    EKMAN,MARK E.; ISBELL,DARYL

    2000-01-06

    The executive branch of the United States government has acknowledged and identified threats to the water supply infrastructure of the United States. These threats include contamination of the water supply, aging infrastructure components, and malicious attack. Government recognition of the importance of providing safe, secure, and reliable water supplies has a historical precedence in the water works of the ancient Romans, who recognized the same basic threats to their water supply infrastructure the United States acknowledges today. System surety is the philosophy of ''designing for threats, planning for failure, and managing for success'' in system design and implementation. System surety is an alternative to traditional compliance-based approaches to safety, security, and reliability. Four types of surety are recognized: reactive surety; proactive surety, preventative surety; and fundamental, inherent surety. The five steps of the system surety approach can be used to establish the type of surety needed for the water infrastructure and the methods used to realize a sure water infrastructure. The benefit to the water industry of using the system surety approach to infrastructure design and assessment is a proactive approach to safety, security, and reliability for water transmission, treatment, distribution, and wastewater collection and treatment.

  11. GROUND FILTERING LiDAR DATA BASED ON MULTI-SCALE ANALYSIS OF HEIGHT DIFFERENCE THRESHOLD

    Directory of Open Access Journals (Sweden)

    P. Rashidi

    2017-09-01

    Full Text Available Separating point clouds into ground and non-ground points is a necessary step to generate digital terrain model (DTM from LiDAR dataset. In this research, a new method based on multi-scale analysis of height difference threshold is proposed for ground filtering of LiDAR data. The proposed method utilizes three windows with different sizes in small, average and large to cover the entire LiDAR point clouds, then with a height difference threshold, point clouds can be separated to ground and non-ground in each local window. Meanwhile, the best threshold values for size of windows are considered based on physical characteristics of the ground surface and size of objects. Also, the minimum of height of object in each window selected as height difference threshold. In order to evaluate the performance of the proposed algorithm, two datasets in rural and urban area were applied. The overall accuracy in rural and urban area was 96.06% and 94.88% respectively. These results of the filtering showed that the proposed method can successfully filters non-ground points from LiDAR point clouds despite of the data area.

  12. Low Power Ground-Based Laser Illumination for Electric Propulsion Applications

    Science.gov (United States)

    Lapointe, Michael R.; Oleson, Steven R.

    1994-01-01

    A preliminary evaluation of low power, ground-based laser powered electric propulsion systems is presented. A review of available and near-term laser, photovoltaic, and adaptive optic systems indicates that approximately 5-kW of ground-based laser power can be delivered at an equivalent one-sun intensity to an orbit of approximately 2000 km. Laser illumination at the proper wavelength can double photovoltaic array conversion efficiencies compared to efficiencies obtained with solar illumination at the same intensity, allowing a reduction in array mass. The reduced array mass allows extra propellant to be carried with no penalty in total spacecraft mass. The extra propellant mass can extend the satellite life in orbit, allowing additional revenue to be generated. A trade study using realistic cost estimates and conservative ground station viewing capability was performed to estimate the number of communication satellites which must be illuminated to make a proliferated system of laser ground stations economically attractive. The required number of satellites is typically below that of proposed communication satellite constellations, indicating that low power ground-based laser beaming may be commercially viable. However, near-term advances in low specific mass solar arrays and high energy density batteries for LEO applications would render the ground-based laser system impracticable.

  13. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    Science.gov (United States)

    Thein, Pyi Soe; Pramumijoyo, Subagyo; Brotopuspito, Kirbani Sri; Wilopo, Wahyu; Kiyono, Junji; Setianto, Agung; Putra, Rusnardi Rahmat

    2015-04-01

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green's function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  14. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Thein, Pyi Soe, E-mail: pyisoethein@yahoo.com [Geology Department, Yangon University (Myanmar); Pramumijoyo, Subagyo; Wilopo, Wahyu; Setianto, Agung [Geological Engineering Department, Gadjah Mada University (Indonesia); Brotopuspito, Kirbani Sri [Physics Department, Gadjah Mada University (Indonesia); Kiyono, Junji; Putra, Rusnardi Rahmat [Graduate School of Global Environmental Studies, Kyoto University (Japan)

    2015-04-24

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  15. Intelligent systems technology infrastructure for integrated systems

    Science.gov (United States)

    Lum, Henry

    1991-01-01

    A system infrastructure must be properly designed and integrated from the conceptual development phase to accommodate evolutionary intelligent technologies. Several technology development activities were identified that may have application to rendezvous and capture systems. Optical correlators in conjunction with fuzzy logic control might be used for the identification, tracking, and capture of either cooperative or non-cooperative targets without the intensive computational requirements associated with vision processing. A hybrid digital/analog system was developed and tested with a robotic arm. An aircraft refueling application demonstration is planned within two years. Initially this demonstration will be ground based with a follow-on air based demonstration. System dependability measurement and modeling techniques are being developed for fault management applications. This involves usage of incremental solution/evaluation techniques and modularized systems to facilitate reuse and to take advantage of natural partitions in system models. Though not yet commercially available and currently subject to accuracy limitations, technology is being developed to perform optical matrix operations to enhance computational speed. Optical terrain recognition using camera image sequencing processed with optical correlators is being developed to determine position and velocity in support of lander guidance. The system is planned for testing in conjunction with Dryden Flight Research Facility. Advanced architecture technology is defining open architecture design constraints, test bed concepts (processors, multiple hardware/software and multi-dimensional user support, knowledge/tool sharing infrastructure), and software engineering interface issues.

  16. Establishing common ground in community-based arts in health.

    Science.gov (United States)

    White, Mike

    2006-05-01

    This article originates in current research into community-based arts in health. Arts in health is now a diverse field of practice, and community-based arts in health interventions have extended the work beyond healthcare settings into public health. Examples of this work can now be found internationally in different health systems and cultural contexts. The paper argues that researchers need to understand the processes through which community-based arts in health projects evolve, and how they work holistically in their attempt to produce therapeutic and social benefits for both individuals and communities, and to connect with a cultural base in healthcare services themselves. A development model that might be adapted to assist in analysing this is the World Health Organisation Quality of Life Index (WHOQOL). Issues raised in the paper around community engagement, healthy choice and self-esteem are then illustrated in case examples of community-based arts in health practice in South Africa and England; namely the DramAide and Siyazama projects in KwaZulu-Natal, and Looking Well Healthy Living Centre in North Yorkshire. In South Africa there are arts and media projects attempting to raise awareness about HIV/AIDS through mass messaging, but they also recognize that they lack models of longer-term community engagement. Looking Well by contrast addresses health issues identified by the community itself in ways that are personal, empathic and domesticated. But there are also similarities among these projects in their aims to generate a range of social, educational and economic benefits within a community-health framework, and they are successfully regenerating traditional cultural forms to create public participation in health promotion. Process evaluation may provide a framework in which community-based arts in health projects, especially if they are networked together to share practice and thinking, can assess their ability to address health inequalities and focus

  17. Monitoring of Oil Exploitation Infrastructure by Combining Unsupervised Pixel-Based Classification of Polarimetric SAR and Object-Based Image Analysis

    Directory of Open Access Journals (Sweden)

    Simon Plank

    2014-12-01

    Full Text Available In developing countries, there is a high correlation between the dependence of oil exports and violent conflicts. Furthermore, even in countries which experienced a peaceful development of their oil industry, land use and environmental issues occur. Therefore, independent monitoring of oil field infrastructure may support problem solving. Earth observation data enables fast monitoring of large areas which allows comparing the real amount of land used by the oil exploitation and the companies’ contractual obligations. The target feature of this monitoring is the infrastructure of the oil exploitation, oil well pads—rectangular features of bare land covering an area of approximately 50–60 m × 100 m. This article presents an automated feature extraction procedure based on the combination of a pixel-based unsupervised classification of polarimetric synthetic aperture radar data (PolSAR and an object-based post-classification. The method is developed and tested using dual-polarimetric TerraSAR-X imagery acquired over the Doba basin in south Chad. The advantages of PolSAR are independence of the cloud coverage (vs. optical imagery and the possibility of detailed land use classification (vs. single-pol SAR. The PolSAR classification uses the polarimetric Wishart probability density function based on the anisotropy/entropy/alpha decomposition. The object-based post-classification refinement, based on properties of the feature targets such as shape and area, increases the user’s accuracy of the methodology by an order of a magnitude. The final achieved user’s and producer’s accuracy is 59%–71% in each case (area based accuracy assessment. Considering only the numbers of correctly/falsely detected oil well pads, the user’s and producer’s accuracies increase to even 74%–89%. In an iterative training procedure the best suited polarimetric speckle filter and processing parameters of the developed feature extraction procedure are

  18. Analysis of meteorological variables in the Australasian region using ground- and space-based GPS techniques

    Science.gov (United States)

    Kuleshov, Yuriy; Choy, Suelynn; Fu, Erjiang Frank; Chane-Ming, Fabrice; Liou, Yuei-An; Pavelyev, Alexander G.

    2016-07-01

    Results of analysis of meteorological variables (temperature and moisture) in the Australasian region using the global positioning system (GPS) radio occultation (RO) and GPS ground-based observations verified with in situ radiosonde (RS) data are presented. The potential of using ground-based GPS observations for retrieving column integrated precipitable water vapour (PWV) over the Australian continent has been demonstrated using the Australian ground-based GPS reference stations network. Using data from the 15 ground-based GPS stations, the state of the atmosphere over Victoria during a significant weather event, the March 2010 Melbourne storm, has been investigated, and it has been shown that the GPS observations has potential for monitoring the movement of a weather front that has sharp moisture contrast. Temperature and moisture variability in the atmosphere over various climatic regions (the Indian and the Pacific Oceans, the Antarctic and Australia) has been examined using satellite-based GPS RO and in situ RS observations. Investigating recent atmospheric temperature trends over Antarctica, the time series of the collocated GPS RO and RS data were examined, and strong cooling in the lower stratosphere and warming through the troposphere over Antarctica has been identified, in agreement with outputs of climate models. With further expansion of the Global Navigation Satellite Systems (GNSS) system, it is expected that GNSS satellite- and ground-based measurements would be able to provide an order of magnitude larger amount of data which in turn could significantly advance weather forecasting services, climate monitoring and analysis in the Australasian region.

  19. Ground-Based Surveillance and Tracking System (GSTS)

    Science.gov (United States)

    1987-08-01

    reported availabilty of relatively high- paying jobs. The consequences of increased migration could be significant. No significant impacts at U.S. Army...Air Force Base are contributing to overdrawing the aquifers, and at current usage rates the aquifers could be depleted (44). The "Draft Environmental

  20. The DKIST Data Center: Meeting the Data Challenges for Next-Generation, Ground-Based Solar Physics

    Science.gov (United States)

    Davey, A. R.; Reardon, K.; Berukoff, S. J.; Hays, T.; Spiess, D.; Watson, F. T.; Wiant, S.

    2016-12-01

    The Daniel K. Inouye Solar Telescope (DKIST) is under construction on the summit of Haleakalā in Maui, and scheduled to start science operations in 2020. The DKIST design includes a four-meter primary mirror coupled to an adaptive optics system, and a flexible instrumentation suite capable of delivering high-resolution optical and infrared observations of the solar chromosphere, photosphere, and corona. Through investigator-driven science proposals, the facility will generate an average of 8 TB of data daily, comprised of millions of images and hundreds of millions of metadata elements. The DKIST Data Center is responsible for the long-term curation and calibration of data received from the DKIST, and for distributing it to the user community for scientific use. Two key elements necessary to meet the inherent big data challenge are the development of flexible public/private cloud computing and coupled relational and non-relational data storage mechanisms. We discuss how this infrastructure is being designed to meet the significant expectation of automatic and manual calibration of ground-based solar physics data, and the maximization the data's utility through efficient, long-term data management practices implemented with prudent process definition and technology exploitation.

  1. AN ATTEMPT TO DEVELOP AN ENVIRONMENTAL INFORMATION SYSTEM OF ECOLOGICAL INFRASTRUCTURE FOR EVALUATING FUNCTIONS OF ECOSYSTEM-BASED SOLUTIONS FOR DISASTER RISK REDUCTION (ECO-DRR

    Directory of Open Access Journals (Sweden)

    T. Doko

    2016-06-01

    Full Text Available “Ecological Infrastructure (EI” are defined as naturally functioning ecosystems that deliver valuable services to people, such as healthy mountain catchments, rivers, wetlands, coastal dunes, and nodes and corridors of natural habitat, which together form a network of interconnected structural elements in the landscape. On the other hand, natural disaster occur at the locations where habitat was reduced due to the changes of land use, in which the land was converted to the settlements and agricultural cropland. Hence, habitat loss and natural disaster are linked closely. Ecological infrastructure is the nature-based equivalent of built or hard infrastructure, and is as important for providing services and underpinning socio-economic development. Hence, ecological infrastructure is expected to contribute to functioning as ecological disaster reduction, which is termed Ecosystem-based Solutions for Disaster Risk Reduction (Eco-DRR. Although ecological infrastructure already exists in the landscape, it might be degraded, needs to be maintained and managed, and in some cases restored. Maintenance and restoration of ecological infrastructure is important for security of human lives. Therefore, analytical tool and effective visualization tool in spatially explicit way for the past natural disaster and future prediction of natural disaster in relation to ecological infrastructure is considered helpful. Hence, Web-GIS based Ecological Infrastructure Environmental Information System (EI-EIS has been developed. This paper aims to describe the procedure of development and future application of EI-EIS. The purpose of the EI-EIS is to evaluate functions of Eco-DRR. In order to analyse disaster data, collection of past disaster information, and disaster-prone area is effective. First, a number of digital maps and analogue maps in Japan and Europe were collected. In total, 18,572 maps over 100 years were collected. The Japanese data includes Future

  2. An Attempt to Develop AN Environmental Information System of Ecological Infrastructure for Evaluating Functions of Ecosystem-Based Solutions for Disaster Risk Reduction Eco-Drr

    Science.gov (United States)

    Doko, T.; Chen, W.; Sasaki, K.; Furutani, T.

    2016-06-01

    "Ecological Infrastructure (EI)" are defined as naturally functioning ecosystems that deliver valuable services to people, such as healthy mountain catchments, rivers, wetlands, coastal dunes, and nodes and corridors of natural habitat, which together form a network of interconnected structural elements in the landscape. On the other hand, natural disaster occur at the locations where habitat was reduced due to the changes of land use, in which the land was converted to the settlements and agricultural cropland. Hence, habitat loss and natural disaster are linked closely. Ecological infrastructure is the nature-based equivalent of built or hard infrastructure, and is as important for providing services and underpinning socio-economic development. Hence, ecological infrastructure is expected to contribute to functioning as ecological disaster reduction, which is termed Ecosystem-based Solutions for Disaster Risk Reduction (Eco-DRR). Although ecological infrastructure already exists in the landscape, it might be degraded, needs to be maintained and managed, and in some cases restored. Maintenance and restoration of ecological infrastructure is important for security of human lives. Therefore, analytical tool and effective visualization tool in spatially explicit way for the past natural disaster and future prediction of natural disaster in relation to ecological infrastructure is considered helpful. Hence, Web-GIS based Ecological Infrastructure Environmental Information System (EI-EIS) has been developed. This paper aims to describe the procedure of development and future application of EI-EIS. The purpose of the EI-EIS is to evaluate functions of Eco-DRR. In order to analyse disaster data, collection of past disaster information, and disaster-prone area is effective. First, a number of digital maps and analogue maps in Japan and Europe were collected. In total, 18,572 maps over 100 years were collected. The Japanese data includes Future-Pop Data Series (1,736 maps

  3. Tracking of urban aerosols using combined lidar-based remote sensing and ground-based measurements

    Directory of Open Access Journals (Sweden)

    T.-Y. He

    2011-10-01

    Full Text Available A measuring campaign was performed over the neighboring towns of Nova Gorica in Slovenia and Gorizia in Italy on 24 and 25 May 2010, to investigate the concentration and distribution of urban aerosols. Tracking of two-dimensional spatial and temporal aerosol distributions was performed using scanning elastic lidar operating at 1064 nm. In addition, PM10 concentrations of particles, NOx and meteorological data were continuously monitored within the lidar scanning region. Based on the collected data, we investigated the flow dynamics and the aerosol concentrations within the lower troposphere and an evidence for daily aerosol cycles. We observed a number of cases with spatially localized increased lidar returns, which were found to be due to the presence of point sources of particulate matter. Daily aerosol concentration cycles were also clearly visible with a peak in aerosol concentration during the morning rush hours and daily maximum at around 17:00 Central European Time. We also found that the averaged horizontal atmospheric extinction within the scanning region 200 m above the ground is correlated to the PM10 concentration at the ground level with a correlation coefficient of 0.64, which may be due to relatively quiet meteorological conditions and basin-like terrain configuration.

  4. Challenges and opportunities in the design and construction of a GIS-based emission inventory infrastructure for the Niger Delta region of Nigeria.

    Science.gov (United States)

    Fagbeja, Mofoluso A; Hill, Jennifer L; Chatterton, Tim J; Longhurst, James W S; Akpokodje, Joseph E; Agbaje, Ganiy I; Halilu, Shaba A

    2017-01-27

    Environmental monitoring in middle- and low-income countries is hampered by many factors which include enactment and enforcement of legislations; deficiencies in environmental data reporting and documentation; inconsistent, incomplete and unverifiable data; a lack of access to data; and technical expertise. This paper describes the processes undertaken and the major challenges encountered in the construction of the first Niger Delta Emission Inventory (NDEI) for criteria air pollutants and CO2 released from the anthropogenic activities in the region. This study focused on using publicly available government and research data. The NDEI has been designed to provide a Geographic Information System-based component of an air quality and carbon management framework. The NDEI infrastructure was designed and constructed at 1-, 10- and 20-km grid resolutions for point, line and area sources using industry standard processes and emission factors derived from activities similar to those in the Niger Delta. Due to inadequate, incomplete, potentially inaccurate and unavailable data, the infrastructure was populated with data based on a series of best possible assumptions for key emission sources. This produces outputs with variable levels of certainty, which also highlights the critical challenges in the estimation of emissions from a developing country. However, the infrastructure is functional and has the ability to produce spatially resolved emission estimates.

  5. Synergistic use of RADARSAT-2 Ultra Fine and Fine Quad-Pol data to map oilsands infrastructure land: Object-based approach

    Science.gov (United States)

    Jiao, Xianfeng; Zhang, Ying; Guindon, Bert

    2015-06-01

    The landscape of Alberta's oilsands regions is undergoing extensive change due to the creation of infrastructure associated with the exploration for and extraction of this resource. Since most oil sands mining activities take place in remote forests or wetlands, one of the challenges is to collect up-to date and reliable information about the current state of land. Compared to optical sensors, SAR sensors have the advantage of being able to routinely collect imagery for timely monitoring by regulatory agencies. This paper explores the capability of high resolution RADARSAT-2 Ultra Fine and Fine Quad-Pol imagery for mapping oilsands infrastructure land using an object-based classification approach. Texture measurements extracted from Ultra Fine data are used to support an Ultra Fine based classification. Moreover, a radar vegetation index (RVI) calculated from PolSAR data is introduced for improved classification performance. The RVI is helpful in reducing confusion between infrastructure land and low vegetation covered surfaces. When Ultra Fine and PolSAR data are used in combination, the kappa value of well pads and processing facilities detection reached 0.87. In this study, we also found that core hole sites can be identified from early spring Ultra Fine data. With single-date image, kappa value of core hole sites ranged from 0.61 to 0.69.

  6. Ground Based GPS Phase Measurements for Atmospheric Sounding

    Science.gov (United States)

    2016-06-14

    based GPS observations for the correction of radar observations. 6 REFERENCES Alber, C., R. Ware, C. Rocken, and J. Braun, A new method for sensing ...rocken@ucar.edu Award #: N00014-97-1-0258 LONG-TERM GOAL The goal is to develop GPS remote sensing techniques to determine atmospheric signal delay and...agrees best with the observations in a least squares sense is selected. The corresponding refractivity profile is then selected. • We tested this

  7. Constraint-based Ground contact handling in Humanoid Robotics Simulation

    OpenAIRE

    Martin Moraud, Eduardo; Hale, Joshua G.; Cheng, Gordon

    2008-01-01

    International audience; This paper presents a method for resolving contact in dynamic simulations of articulated figures. It is intended for humanoids with polygonal feet and incorporates Coulomb friction exactly. The proposed technique is based on a constraint selection paradigm. Its implementation offers an exact mode which guarantees correct behavior, as well as an efficiency optimized mode which sacrifices accuracy for a tightly bounded computational burden, thus facilitating batch simula...

  8. Final Environmental Assessment For Wing Infrastructure Development Outlook (WINDO) Davis-Monthan Air Force Base, Tucson, Arizona

    Science.gov (United States)

    2005-06-01

    processing tools (Davis-Monthan AFB 2004e). Eventually some groups adopted the cultivation of domesticated plants and became less mobile as they...regulations that govern transportation of hazardous materials (EPA530-F- 96-032 et seq.). All waste ACM will be transported to the Tangerine Landfill...which is located at 10220 West Tangerine Road and operated by Pima County. FINAL ENVIRONMENTAL ASSESSMENT 4-24 Wing Infrastructure Development

  9. Ground-based follow-up in relation to Kepler Asteroseismic Investigation

    CERN Document Server

    Uytterhoeven, K; Bruntt, H; De Cat, P; Frandsen, S; Gutierrez-Soto, J; Kiss, L; Kurtz, D W; Marconi, M; Molenda-Zakowicz, J; Ostensen, R; Randall, S; Southworth, J; Szabo, R

    2010-01-01

    The Kepler space mission, successfully launched in March 2009, is providing continuous, high-precision photometry of thousands of stars simultaneously. The uninterrupted time-series of stars of all known pulsation types are a precious source for asteroseismic studies. The Kepler data do not provide information on the physical parameters, such as effective temperature, surface gravity, metallicity, and vsini, which are crucial for successful asteroseismic modelling. Additional ground-based time-series data are needed to characterize mode parameters in several types of pulsating stars. Therefore, ground-based multi-colour photometry and mid/high-resolution spectroscopy are needed to complement the space data. We present ground-based activities within KASC on selected asteroseismic Kepler targets of several pulsation types. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-...

  10. Ka-band bistatic ground-based SAR using noise signals

    Science.gov (United States)

    Lukin, K.; Mogyla, A.; Vyplavin, P.; Palamarchuk, V.; Zemlyaniy, O.; Tarasenko, V.; Zaets, N.; Skretsanov, V.; Shubniy, A.; Glamazdin, V.; Natarov, M.; Nechayev, O.

    2008-01-01

    Currently, one of the actual problems is remote monitoring of technical state of large objects. Different methods can be used for that purpose. The most promising of them relies on application of ground based synthetic aperture radars (SAR) and differential interferometry. We have designed and tested Ground Based Noise Waveform SAR based on noise radar technology [1] and synthetic aperture antennas [2]. It enabled to build an instrument for precise all-weather monitoring of large objects in real-time. We describe main performance of ground-based interferometric SAR which uses continuous Ka-band noise waveform as a probe signal. Besides, results of laboratory trials and evaluation of its main performance are presented as well.

  11. A Delphi-Based Framework for systems architecting of in-orbit exploration infrastructure for human exploration beyond Low Earth Orbit

    Science.gov (United States)

    Aliakbargolkar, Alessandro; Crawley, Edward F.

    2014-01-01

    The current debate in the U.S. Human Spaceflight Program focuses on the development of the next generation of man-rated heavy lift launch vehicles. While launch vehicle systems are of critical importance for future exploration, a comprehensive analysis of the entire exploration infrastructure is required to avoid costly pitfalls at early stages of the design process. This paper addresses this need by presenting a Delphi-Based Systems Architecting Framework for integrated architectural analysis of future in-orbit infrastructure for human space exploration beyond Low Earth Orbit. The paper is structured in two parts. The first part consists of an expert elicitation study to identify objectives for the in-space transportation infrastructure. The study was conducted between November 2011 and January 2012 with 15 senior experts involved in human spaceflight in the United States and Europe. The elicitation study included the formation of three expert panels representing exploration, science, and policy stakeholders engaged in a 3-round Delphi study. The rationale behind the Delphi approach, as imported from social science research, is discussed. Finally, a novel version of the Delphi method is presented and applied to technical decision-making and systems architecting in the context of human space exploration. The second part of the paper describes a tradespace exploration study of in-orbit infrastructure coupled with a requirements definition exercise informed by expert elicitation. The uncertainties associated with technical requirements and stakeholder goals are explicitly considered in the analysis. The outcome of the expert elicitation process portrays an integrated view of perceived stakeholder needs within the human spaceflight community. Needs are subsequently converted into requirements and coupled to the system architectures of interest to analyze the correlation between exploration, science, and policy goals. Pareto analysis is used to identify architectures

  12. Analysis of English Complex Sentences based on Figure-Ground Theory

    Institute of Scientific and Technical Information of China (English)

    侯皓

    2015-01-01

    English is a language featuring its complex sentences composed of main and sub-ordinate clauses. The subordinate clause conveys the unifnished messages in main clause and it becomes quite complicated. English complex sentence is a fair impor-tant sentence type and also of importance in English teaching. Analyzing complex sentence based on Figure-Ground Theory, especially the Adverbial Clause, is help-ful to learn English and translate it. The Figure-Ground Theory originated in psychol-ogy studies and it was introduced in cognitive linguistics to explain some language phenomena. From Figure-Ground perspective, the essay studies attributive clause, adverbial clause and nominal clause and some critical sentence types have been analyzed carefully and the major ifnding is Figure-Ground Theory is dynamic not static.

  13. Novel identification strategy for ground coffee adulteration based on UPLC-HRMS oligosaccharide profiling.

    Science.gov (United States)

    Cai, Tie; Ting, Hu; Jin-Lan, Zhang

    2016-01-01

    Coffee is one of the most common and most valuable beverages. According to International Coffee Organization (ICO) reports, the adulteration of coffee for financial reasons is regarded as the most serious threat to the sustainable development of the coffee market. In this work, a novel strategy for adulteration identification in ground coffee was developed based on UPLC-HRMS oligosaccharide profiling. Along with integrated statistical analysis, 17 oligosaccharide composition were identified as markers for the identification of soybeans and rice in ground coffee. This strategy, validated by manual mixtures, optimized both the reliability and authority of adulteration identification. Rice and soybean adulterants present in ground coffee in amounts as low as 5% were identified and evaluated. Some commercial ground coffees were also successfully tested using this strategy.

  14. Coastal wind study based on Sentinel-1 and ground-based scanning lidar

    DEFF Research Database (Denmark)

    Ahsbahs, Tobias Torben; Badger, Merete; Pena Diaz, Alfredo

    , the project "Reducing the Uncertainty of Near-shore Energy estimates from meso- and micro-scale wind models" (RUNE) was established. The lidar measurement campaign started November 2015 and ended in February 2016 at the Danish North Sea coast at around 56.5 ◦N, 8.2 ◦E. 107 satellite SAR scenes were collected...... fields from the Sentinel-1A satellite using APL/NOAA’s SAROPS system with GFS model wind directions as input. For the presented cases CMOD5.n is used. Ground-based scanning lidar located on land can also cover near shore areas. In order to improve wind farm planning for near-shore coastal areas...

  15. Dust optical properties retrieved from ground-based polarimetric measurements.

    Science.gov (United States)

    Li, Zhengqiang; Goloub, Philippe; Blarel, Luc; Damiri, Bahaiddin; Podvin, Thierry; Jankowiak, Isabelle

    2007-03-20

    We have systematically processed one year of sunphotometer measurements (recorded at five AERONET/PHOTONS sites in Africa) in order to assess mineral dust optical properties with the use of a new polarimetry-based algorithm. We consider the Cimel CE318 polarized sunphotometer version to obtain single-scattering albedo, scattering phase matrix elements F(11) and F(12) for dust aerosols selected with Angström exponents ranging from -0.05 to 0.25. Retrieved F(11) and F(12) differ significantly from those of spherical particles. The degree of linear polarization -F(12)/F(11) for single scattering of atmospheric total column dust aerosols in the case of unpolarized incident light is systematically retrieved for the first time to our knowledge from sunphotometer measurements and shows consistency with previous laboratory characterizations of nonspherical particles.

  16. Analysis of the substorm trigger phase using multiple ground-based instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Kauristie, K.; Pulkkinen, T.I.; Pellinen, R.J. [Finnish Meteorological Institute, Helsinki (Finland)] [and others

    1995-08-01

    The authors discuss in detail the observation of an event of auroral activity fading during the trigger, or growth phase of a magnetic storm. This event was observed by all-sky cameras, EISCAT radar and magnetometers, riometers, and pulsation magnetometers, from ground based stations in Finland and Scandanavia. Based on their detailed analysis, they present a possible cause for the observed fading.

  17. Plans of a test bed for ionospheric modelling based on Fennoscandian ground-based instrumentation

    Science.gov (United States)

    Kauristie, Kirsti; Kero, Antti; Verronen, Pekka T.; Aikio, Anita; Vierinen, Juha; Lehtinen, Markku; Turunen, Esa; Pulkkinen, Tuija; Virtanen, Ilkka; Norberg, Johannes; Vanhamäki, Heikki; Kallio, Esa; Kestilä, Antti; Partamies, Noora; Syrjäsuo, Mikko

    2016-07-01

    One of the recommendations for teaming among research groups in the COSPAR/ILWS roadmap is about building test beds in which coordinated observing supports model development. In the presentation we will describe a test bed initiative supporting research on ionosphere-thermosphere-magnetosphere interactions. The EISCAT incoherent scatter radars with their future extension, EISCAT3D, form the backbone of the proposed system. The EISCAT radars are surrounded by versatile and dense arrays of ground-based instrumentation: magnetometers and auroral cameras (the MIRACLE and IMAGE networks), ionospheric tomography receivers (the TomoScand network) and other novel technology for upper atmospheric probing with radio waves (e.g. the KAIRA facility, riometers and the ionosonde maintained by the Sodankylä Geophysical Observatory). As a new opening, close coordination with the Finnish national cubesat program is planned. We will investigate opportunities to establish a cost efficient nanosatellite program which would support the ground-based observations in a systematic and persistent manner. First experiences will be gathered with the Aalto-1 and Aalto-2 satellites, latter of which will be the Finnish contribution to the international QB50 mission. We envisage close collaboration also in the development of data analysis tools with the goal to integrate routines and models from different research groups to one system, where the different elements support each other. In the longer run we are aiming for a modelling framework with observational guidance which gives a holistic description on ionosphere-thermosphere processes and this way enables reliable forecasts on upper atmospheric space weather activity.

  18. Comparing Aerosol Retrievals from Ground-Based Instruments at the Impact-Pm Field Campaign

    Science.gov (United States)

    Kupinski, M.; Bradley, C. L.; Kalashnikova, O. V.; Xu, F.; Diner, D. J.; Clements, C. B.; Camacho, C.

    2016-12-01

    Detection of aerosol types, components having different size and chemical composition, over urban areas is important for understanding their impact on health and climate. In particular, sustained contact with size-differentiated airborne particulate matter: PM10 and PM2.5 can lead to adverse health effects such as asthma attacks, heart and lung diseases, and premature mortality. Multi-angular polarimetric measurements have been advocated in recent years as an additional tool to better understand and retrieve the aerosol properties needed for improved predictions of aerosol impart on air quality and climate. We deployed the ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) for accurate spectropolarimetric and radiance measurements co-located with the AERONET CIMEL sun photometer and a Halo Doppler 18 m resolution lidar from San José State University at the Garland-Fresno Air Quality supersite in Fresno, CA on July 7 during the Imaging Polarimetric Assessment and Characterization of Tropospheric Particulate Matter (ImPACT-PM) field experiment. GroundMSPI sampled the atmospheric scattering phase function in and 90 degrees out of the principal plane every 15 minutes in an automated manner, utilizing the 2-axis gimbal mount in elevation and azimuth. The goal of this work is verify atmospheric measurement of GroundMSPI with the coincident CIMEL sun photometer and ground-based lidar. Diffuse-sky radiance measurements of GroundMSPI are compared with the CIMEL sun photometer throughout the day. AERONET aerosol parameters such as size, shape, and index of refraction as well as lidar aerosol extinction profiles will be used in a forward radiative transfer model to compare with GroundMSPI observations and optimize these parameters to best match GroundMSPI data.

  19. Tracing ground water input to base flow using sulfate (S, O) isotopes.

    Science.gov (United States)

    Gu, Ailiang; Gray, Floyd; Eastoe, Christopher J; Norman, Laura M; Duarte, Oscar; Long, Austin

    2008-01-01

    Sulfate (S and O) isotopes used in conjunction with sulfate concentration provide a tracer for ground water contributions to base flow. They are particularly useful in areas where rock sources of contrasting S isotope character are juxtaposed, where water chemistry or H and O isotopes fail to distinguish water sources, and in arid areas where rain water contributions to base flow are minimal. Sonoita Creek basin in southern Arizona, where evaporite and igneous sources of sulfur are commonly juxtaposed, serves as an example. Base flow in Sonoita Creek is a mixture of three ground water sources: A, basin ground water with sulfate resembling that from Permian evaporite; B, ground water from the Patagonia Mountains; and C, ground water associated with Temporal Gulch. B and C contain sulfate like that of acid rock drainage in the region but differ in sulfate content. Source A contributes 50% to 70%, with the remainder equally divided between B and C during the base flow seasons. The proportion of B generally increases downstream. The proportion of A is greatest under drought conditions.

  20. Tracing ground water input to base flow using sulfate (S, O) isotopes

    Science.gov (United States)

    Gu, A.; Gray, F.; Eastoe, C.J.; Norman, L.M.; Duarte, O.; Long, A.

    2008-01-01

    Sulfate (S and O) isotopes used in conjunction with sulfate concentration provide a tracer for ground water contributions to base flow. They are particularly useful in areas where rock sources of contrasting S isotope character are juxtaposed, where water chemistry or H and O isotopes fail to distinguish water sources, and in arid areas where rain water contributions to base flow are minimal. Sonoita Creek basin in southern Arizona, where evaporite and igneous sources of sulfur are commonly juxtaposed, serves as an example. Base flow in Sonoita Creek is a mixture of three ground water sources: A, basin ground water with sulfate resembling that from Permian evaporite; B, ground water from the Patagonia Mountains; and C, ground water associated with Temporal Gulch. B and C contain sulfate like that of acid rock drainage in the region but differ in sulfate content. Source A contributes 50% to 70%, with the remainder equally divided between B and C during the base flow seasons. The proportion of B generally increases downstream. The proportion of A is greatest under drought conditions.

  1. A framework for recovery-oriented, COTS-based ground station networks

    Science.gov (United States)

    Cutler, James William

    The complexity of space communication has limited our access to space systems and kept mission operations costs high. Ultimately, this results in reduced mission capabilities and yields. In particular, ground stations, the access point between space and terrestrial networks, suffer from monolithic designs, narrow interfaces, and unreliability that raise significant financial barriers for low-cost, experimental satellite missions. This research reduces these barriers by developing technology for recovery-oriented, flexible access networks built from commercial-off-the-shelf (COTS) components. Based on our extensive small satellite experiences, we decomposed ground station services and captured them in an extensible framework that simplified reuse of ground station services and improved portability across heterogeneous installations. This capability, combined with selective customization through virtual machine technology, allowed us to deliver "just in time" ground stations for QuakeSat-1 at a fraction of the price of current commodity solutions. This decomposition is also informed by principles of robust system design. Thus, our ground station reference implementation called Mercury was a candidate for recursive recovery (RR), a high availability technique whose effectiveness in reducing recovery time has been demonstrated on research prototypes of Internet server systems. Augmenting Mercury to implement RR reduced recovery time of typical ground station software failures by a factor of four, dropping recovery time to within the "window of recovery" and effectively eliminating the adverse effects of these failures. Since the time of failures cannot be predicted, RR allowed us to mitigate the effects of the failures and greatly reduce their potential impact on ground station operations. Our ground station architecture harnessed the benefits of COTS components, including rapid prototyping and deployment, while overcoming the challenges of COTS reliability and mission

  2. A New Method of Desired Gait Synthesis for Biped Walking Robot Based on Ground Reaction Force

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new method of desired gait synthesis for biped walking robot based on the ground reaction force was proposed. The relation between the ground reaction force and joint motion is derived using the D'Almbert principle. In view of dynamic walking with high stability, the ZMP(Zero Moment Point)stability criterion must be considered in the desired gait synthesis. After that, the joint trajectories of biped walking robot are decided by substituting the ground reaction force into the aforesaid relation based on the ZMP criterion. The trajectory of desired ZMP is determined by a fuzzy logic based upon the body posture of biped walking robot. The proposed scheme is simulated and experimented on a 10 degree of freedom biped walking robot. The results indicate that the proposed method is feasible.

  3. BigBOSS: The Ground-Based Stage IV BAO Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, David; Bebek, Chris; Heetderks, Henry; Ho, Shirley; Lampton, Michael; Levi, Michael; Mostek, Nick; Padmanabhan, Nikhil; Perlmutter, Saul; Roe, Natalie; Sholl, Michael; Smoot, George; White, Martin; Dey, Arjun; Abraham, Tony; Jannuzi, Buell; Joyce, Dick; Liang, Ming; Merrill, Mike; Olsen, Knut; Salim, Samir

    2009-04-01

    The BigBOSS experiment is a proposed DOE-NSF Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with an all-sky galaxy redshift survey. The project is designed to unlock the mystery of dark energy using existing ground-based facilities operated by NOAO. A new 4000-fiber R=5000 spectrograph covering a 3-degree diameter field will measure BAO and redshift space distortions in the distribution of galaxies and hydrogen gas spanning redshifts from 0.2< z< 3.5. The Dark Energy Task Force figure of merit (DETF FoM) for this experiment is expected to be equal to that of a JDEM mission for BAO with the lower risk and cost typical of a ground-based experiment.

  4. Comparing Dawn, Hubble Space Telescope, and Ground-Based Interpretations of (4) Vesta

    CERN Document Server

    Reddy, Vishnu; Corre, Lucille Le; Scully, Jennifer E C; Gaskell, Robert; Russell, Christopher T; Park, Ryan S; Nathues, Andreas; Raymond, Carol; Gaffey, Michael J; Sierks, Holger; Becker, Kris J; McFadden, Lucy A

    2013-01-01

    Observations of asteroid 4 Vesta by NASA's Dawn spacecraft are interesting because its surface has the largest range of albedo, color and composition of any other asteroid visited by spacecraft to date. These hemispherical and rotational variations in surface brightness and composition have been attributed to impact processes since Vesta's formation. Prior to Dawn's arrival at Vesta, its surface properties were the focus of intense telescopic investigations for nearly a hundred years. Ground-based photometric and spectroscopic observations first revealed these variations followed later by those using Hubble Space Telescope. Here we compare interpretations of Vesta's rotation period, pole, albedo, topographic, color, and compositional properties from ground-based telescopes and HST with those from Dawn. Rotational spectral variations observed from ground-based studies are also consistent with those observed by Dawn. While the interpretation of some of these features was tenuous from past data, the interpretati...

  5. High-precision ground-based photometry of exoplanets

    Directory of Open Access Journals (Sweden)

    de Mooij Ernst J.W.

    2013-04-01

    Full Text Available High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana. The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level, this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  6. Evaluation of Real-Time Ground-Based GPS Meteorology

    Science.gov (United States)

    Fang, P.; Bock, Y.; Gutman, S.

    2003-04-01

    We demonstrate and evaluate a system to estimate zenith tropospheric delays in real time (5-10 minute latency) based on the technique of instantaneous GPS positioning as described by Bock et al. [2000] using data from the Orange County Real Time GPS Network. OCRTN is an upgrade of a sub-network of SCIGN sites in southern California to low latency (1-2 sec), high-rate (1 Hz) data streaming. Currently, ten sites are streaming data (Ashtech binary MBEN format) by means of dedicated, point-to-point radio modems to a network hub that translates the asynchronous serial data to TCP/IP and onto a PC workstation residing on a local area network. Software residing on the PC allows multiple clients to access the raw data simultaneously though TCP/IP. One of the clients is a Geodetics RTD server that receives and archives (1) the raw 1 Hz network data, (2) estimates of instantaneous positions and zenith tropospheric delays, and (3) RINEX data to decimated to 30 seconds. The network is composed of ten sites. The distribution of nine of the sites approximates a right triangle with two 60 km legs, and a tenth site on Catalina Island a distance of about 50 km (over water) from the hypotenuse of the triangle. Relative zenith delays are estimated every second with a latency less than a second. Median values are computed at a user-specified interval (e.g., 10 minutes) with outliers greater than 4 times the interquartile range rejected. We describe the results with those generated by our operational system using the GAMIT software, with a latency of 30-60 minutes. Earlier results (from a similar network) comparing 30-minute median RTD values to GAMIT 30-minute estimates indicate that the two solutions differ by about 1 cm. We also describe our approach to determining absolute zenith delays. If an Internet connection is available we will present a real-time demonstration. [Bock, Y., R. Nikolaidis, P. J. de Jonge, and M. Bevis, Instantaneous resolution of crustal motion at medium

  7. OGLE-2015-BLG-0196: Ground-based Gravitational Microlens Parallax Confirmed By Space-Based Observation

    CERN Document Server

    Han, C; Gould, A; Zhu, Wei; Szymański, M K; Soszyński, I; Skowron, J; Mróz, P; Poleski, R; Pietrukowicz, P; Kozłowski, S; Ulaczyk, K; Pawlak, M; Yee, J C; Beichman, C; Novati, S Calchi; Carey, S; Bryden, C; Fausnaugh, M; Gaudi, B S; Henderson, Calen B; Shvartzvald, Y; Wibking, B

    2016-01-01

    In this paper, we present the analysis of the binary gravitational microlensing event OGLE-2015-BLG-0196. The event lasted for almost a year and the light curve exhibited significant deviations from the lensing model based on the rectilinear lens-source relative motion, enabling us to measure the microlens parallax. The ground-based microlens parallax is confirmed by the data obtained from space-based microlens observations using the {\\it Spitzer} telescope. By additionally measuring the angular Einstein radius from the analysis of the resolved caustic crossing, the physical parameters of the lens are determined up to the two-fold degeneracy: $u_00$ solutions caused by the well-known "ecliptic" degeneracy. It is found that the binary lens is composed of two M dwarf stars with similar masses $M_1=0.38\\pm 0.04\\ M_\\odot$ ($0.50\\pm 0.05\\ M_\\odot)$ and $M_2=0.38\\pm 0.04\\ M_\\odot$ ($0.55\\pm 0.06\\ M_\\odot$) and the distance to the lens is $D_{\\rm L}=2.77\\pm 0.23$ kpc ($3.30\\pm 0.29$ kpc). Here the physical parameter...

  8. First ground-based FTIR-observations of methane in the tropics

    Directory of Open Access Journals (Sweden)

    A. K. Petersen

    2010-02-01

    Full Text Available Total column concentrations and volume mixing ratio profiles of methane have been retrieved from ground-based solar absorption FTIR spectra in the near-infrared recorded in Paramaribo (Suriname. The methane FTIR observations are compared with TM5 model simulations and satellite observations from SCIAMACHY, and represent the first validation of SCIAMACHY retrievals in the tropics using ground-based remote sensing techniques. Apart from local biomass burning features, our methane FTIR observations agree well with the SCIAMACHY retrievals and TM5 model simulations.

  9. Extended lateral heating of the nighttime ionosphere by ground-based VLF transmitters

    OpenAIRE

    İnan, Umran Savaş; Graf, K. L.; Spasojevic, M.; Marshall, R. A.; Lehtinen, N. G.; Foust, F. R.

    2013-01-01

    JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 7783–7797, doi:10.1002/2013JA019337, 2013 Extended lateral heating of the nighttime ionosphere by ground-based VLF transmitters K. L. Graf,1 M. Spasojevic,1 R. A. Marshall,2 N. G. Lehtinen,1 F. R. Foust,1 and U. S. Inan1,3 Received 16 August 2013; revised 9 October 2013; accepted 11 November 2013; published 3 December 2013. [1] The effects of ground-based very low frequency (VLF) transmitters on the lower ionospher...

  10. A transit timing analysis with combined ground- and space-based photometry

    Directory of Open Access Journals (Sweden)

    Raetz St.

    2015-01-01

    The CoRoT satellite looks back on six years of high precision photometry of a very high number of stars. Thousands of transiting events are detected from which 27 were confirmed to be transiting planets so far. In my research I search and analyze TTVs in the CoRoT sample and combine the unprecedented precision of the light curves with ground-based follow-up photometry. Because CoRoT can observe transiting planets only for a maximum duration of 150 days the ground-based follow-up can help to refine the ephemeris. Here we present first examples.

  11. Status of advanced ground-based laser interferometers for gravitational-wave detection

    CERN Document Server

    Dooley, Katherine L; Dwyer, Sheila; Puppo, Paola

    2014-01-01

    Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years' worth of science data at initial design sensitivities was completed. Upgrades to the initial detectors together with construction of brand new detectors are ongoing and feature advanced technologies to improve the sensitivity to GWs. This conference proceeding provides an overview of the common design features of ground-based laser interferometric GW detectors and establishes the context for the status updates of each of the four gravitational-wave detectors around the world: Advanced LIGO, Advanced Virgo, GEO600 and KAGRA.

  12. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis......We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler...

  13. Estimation of solar irradiance using ground-based whole sky imagers

    CERN Document Server

    Dev, Soumyabrata; Lee, Yee Hui; Winkler, Stefan

    2016-01-01

    Ground-based whole sky imagers (WSIs) can provide localized images of the sky of high temporal and spatial resolution, which permits fine-grained cloud observation. In this paper, we show how images taken by WSIs can be used to estimate solar radiation. Sky cameras are useful here because they provide additional information about cloud movement and coverage, which are otherwise not available from weather station data. Our setup includes ground-based weather stations at the same location as the imagers. We use their measurements to validate our methods.

  14. Bonding Strength of Ceromer with Direct Laser Sintered, Ni-Cr-Based, and ZrO2 Metal Infrastructures After Er:YAG, Nd:YAG, and Ho:YAG Laser Surface Treatments-A Comparative In Vitro Study.

    Science.gov (United States)

    Gorler, Oguzhan; Ozdemir, Ali Kemal

    2016-08-01

    Laser modalities instead of conventional surface treatment techniques have been suggested to obtain an adequate micromechanical bonding between dental super- and infrastructures. The present study was undertaken to assess the effect of surface treatment with Ho:YAG, Er:YAG, and Nd:YAG laser modalities on the shear bond strength (SBS) of ceromer to different types of metal infrastructures in in vitro settings. The study specimens consisted of 40 direct laser sintered (DLS), 40 Ni-Cr-based, and 40 zirconium oxide (ZrO2) infrastructures. In each infrastructure group, the specimens were divided randomly into five treatment modalities (n = 8): no treatment (controls), sandblasting, Er:YAG, Nd:YAG, and Ho:YAG lasers. The DLS, Ni-Cr-based, and ZrO2 infrastructures were prepared in the final dimensions of 7 mm in diameter and 3 mm in thickness in line with the ISO 11405 standard. Ceromer as superstructure was applied to all the infrastructures after their surface treatments according to the selected treatment modality. SBS test was performed to test the effectiveness of surface treatments. A stereomicroscope was used to determine the changes in the surface morphology of specimens. Among the laser modalities and sandblasting, Ho:YAG laser caused the most important increase in the DLS and Ni-Cr-based infrastructures but sandblasting caused the most important increase in the ZrO2 infrastructure. In all the infrastructures, Nd:YAG laser has the least effectiveness, and Er:YAG laser makes an intermediate success. The stereomicroscopy images presented that the applications of laser surface treatments altered the surface in all the infrastructures. Overall, in current experimental settings, Ho:YAG, Nd:YAG, and Er:YAG lasers, in order of strength, are effective in improving the bonding of ceromer to all the infrastructures. Ho:YAG laser is more effective in the DLS and Ni-Cr-based infrastructures, but sandblasting is more effective in the ZrO2 infrastructure. The studied

  15. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    Directory of Open Access Journals (Sweden)

    Sungdae Sim

    2012-12-01

    Full Text Available Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  16. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    Science.gov (United States)

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-12-12

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  17. Precision simulation of ground-based lensing data using observations from space

    CERN Document Server

    Mandelbaum, Rachel; Leauthaud, Alexie; Massey, Richard J; Rhodes, Jason

    2011-01-01

    Current and upcoming wide-field, ground-based, broad-band imaging surveys promise to address a wide range of outstanding problems in galaxy formation and cosmology. Several such uses of ground-based data, especially weak gravitational lensing, require highly precise measurements of galaxy image statistics with careful correction for the effects of the point-spread function (PSF). In this paper, we introduce the SHERA (SHEar Reconvolution Analysis) software to simulate ground-based imaging data with realistic galaxy morphologies and observing conditions, starting from space-based data (from COSMOS, the Cosmological Evolution Survey) and accounting for the effects of the space-based PSF. This code simulates ground-based data, optionally with a weak lensing shear applied, in a model-independent way using a general Fourier space formalism. The utility of this pipeline is that it allows for a precise, realistic assessment of systematic errors due to the method of data processing, for example in extracting weak len...

  18. LCG/AA build infrastructure

    CERN Document Server

    Hodgkins, Alex Liam; Hegner, Benedikt

    2012-01-01

    The Software Process & Infrastructure (SPI) project provides a build infrastructure for regular integration testing and release of the LCG Applications Area software stack. In the past, regular builds have been provided using a system which has been constantly growing to include more features like server-client communication, long-term build history and a summary web interface using present-day web technologies. However, the ad-hoc style of software development resulted in a setup that is hard to monitor, inflexible and difficult to expand. The new version of the infrastructure is based on the Django Python framework, which allows for a structured and modular design, facilitating later additions. Transparency in the workflows and ease of monitoring has been one of the priorities in the design. Formerly missing functionality like on-demand builds or release triggering will support the transition to a more agile development process.

  19. Monitoring Alpine Transportation Infrastructures Using Space Techniues

    Science.gov (United States)

    Strozzi, Tazio; Caduff, Rafael; Wegmuller, Urs; Brandstaetter, Michael; Kuhtreiber, Norbert

    2013-12-01

    Integration of satellite SAR interferometry, terrestrial radar interferometry and GPS is considered for the monitoring of ground motion along Alpine transportation infrastructures. We present results related to large-scale surveys in Switzerland along the Gotthard railway with satellite SAR interferometry and to a local monitoring of an active rockfall above the Pyhrn motorway in Austria using terrestrial radar interferometry and GPS.

  20. Finding common ground in team-based qualitative research using the convergent interviewing method.

    Science.gov (United States)

    Driedger, S Michelle; Gallois, Cindy; Sanders, Carrie B; Santesso, Nancy

    2006-10-01

    Research councils, agencies, and researchers recognize the benefits of team-based health research. However, researchers involved in large-scale team-based research projects face multiple challenges as they seek to identify epistemological and ontological common ground. Typically, these challenges occur between quantitative and qualitative researchers but can occur between qualitative researchers, particularly when the project involves multiple disciplinary perspectives. The authors use the convergent interviewing technique in their multidisciplinary research project to overcome these challenges. This technique assists them in developing common epistemological and ontological ground while enabling swift and detailed data collection and analysis. Although convergent interviewing is a relatively new method described primarily in marketing research, it compares and contrasts well with grounded theory and other techniques. The authors argue that this process provides a rigorous method to structure and refine research projects and requires researchers to identify and be accountable for developing a common epistemological and ontological position.

  1. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses

    Science.gov (United States)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.

    2004-01-01

    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  2. Communications and information infrastructure security

    CERN Document Server

    Voeller, John G

    2014-01-01

    Communication and Information Systems Security features articles from the Wiley Handbook of Science and Technology for Homeland Security covering strategies for protecting the telecommunications sector, wireless security, advanced web based technology for emergency situations. Science and technology for critical infrastructure consequence mitigation are also discussed.

  3. Simulation of the imaging quality of ground-based telescopes affected by atmospheric disturbances

    Science.gov (United States)

    Ren, Yubin; Kou, Songfeng; Gu, Bozhong

    2014-08-01

    Ground-based telescope imaging model is developed in this paper, the relationship between the atmospheric disturbances and the ground-based telescope image quality is studied. Simulation of the wave-front distortions caused by atmospheric turbulences has long been an important method in the study of the propagation of light through the atmosphere. The phase of the starlight wave-front is changed over time, but in an appropriate short exposure time, the atmospheric disturbances can be considered as "frozen". In accordance with Kolmogorov turbulence theory, simulating atmospheric disturbances of image model based on the phase screen distorted by atmospheric turbulences is achieved by the fast Fourier transform (FFT). Geiger mode avalanche photodiode array (APD arrays) model is used for atmospheric wave-front detection, the image is achieved by inversion method of photon counting after the target starlight goes through phase screens and ground-based telescopes. Ground-based telescope imaging model is established in this paper can accurately achieve the relationship between the quality of telescope imaging and monolayer or multilayer atmosphere disturbances, and it is great significance for the wave-front detection and optical correction in a Multi-conjugate Adaptive Optics system (MCAO).

  4. Hanford ground-water data base management guide and user's manual. [CIRMIS

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, P.J.; Argo, R.S.; Bradymire, S.L.; Newbill, C.A.

    1985-05-01

    This management guide and user's manual is a working document for the computerized Hanford Ground-water Data Base maintained by the Geosciences Research and Engineering Department at Pacific Northwest Laboratory for the Hanford Ground-Water Surveillance Program. The program is managed by the Occupational and Environmental Protection Department for the US Department of Energy. The data base is maintained to provide rapid access to data that are rountinely collected from ground-water monitoring wells at the Hanford site. The data include water levels, sample analyses, geologic descriptions and well construction information of over 3000 existing or destroyed wells. These data are used to monitor water quality and for the evaluation of ground-water flow and pollutant transport problems. The management guide gives instructions for maintenance of the data base on the Digital Equipment Corporation PDP 11/70 Computer using the CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) data base management software developed at Pacific Northwest Laboratory. Maintenance activities include inserting, modifying and deleting data, making back-up copies of the data base, and generating tables for annual monitoring reports. The user's guide includes instructions for running programs to retrieve the data in the form of listings of graphical plots. 3 refs.

  5. The component model of infrastructure: a practical approach to understanding public health program infrastructure.

    Science.gov (United States)

    Lavinghouze, S René; Snyder, Kimberly; Rieker, Patricia P

    2014-08-01

    Functioning program infrastructure is necessary for achieving public health outcomes. It is what supports program capacity, implementation, and sustainability. The public health program infrastructure model presented in this article is grounded in data from a broader evaluation of 18 state tobacco control programs and previous work. The newly developed Component Model of Infrastructure (CMI) addresses the limitations of a previous model and contains 5 core components (multilevel leadership, managed resources, engaged data, responsive plans and planning, networked partnerships) and 3 supporting components (strategic understanding, operations, contextual influences). The CMI is a practical, implementation-focused model applicable across public health programs, enabling linkages to capacity, sustainability, and outcome measurement.

  6. A Robust and Efficient Homography Based Approach for Ground Plane Detection

    Directory of Open Access Journals (Sweden)

    Sanjeev Sofat

    2012-07-01

    Full Text Available This paper presents a homography based ground planedetection method. The method is developed as a part of stereovision based obstacle detection technique for the visuallyimpaired people. The method assumes the presence of a texturedominant ground plane in the lower portion of the scene, whichis not severe restriction in a real world. SIFT algorithm is usedto extract features in the stereo images. The extracted SIFTfeatures are robustly matched by model fitting using RANSAC.A sample of putative matches lying in the lower portion of theimage is selected. A fitness function is developed to selectmatches from this sample, which are used to estimate groundplane homography hypothesis. The ground plane homographyhypothesis is used to classify the SIFT features as eitherbelonging to ground plane or not. Image segmentation usingmean shift and normalized cut is further used to filter theoutliers and augment the ground plane. Experimental testshave been conducted to test the performance of the proposedapproach. The tests indicate that the proposed approach hasgood classification rate and have operating distance rangefrom 3 feet to 12 feet.

  7. Development of access-based metrics for site location of ground segment in LEO missions

    Directory of Open Access Journals (Sweden)

    Hossein Bonyan Khamseh

    2010-09-01

    Full Text Available The classical metrics of ground segment site location do not take account of the pattern of ground segment access to the satellite. In this paper, based on the pattern of access between the ground segment and the satellite, two metrics for site location of ground segments in Low Earth Orbits (LEO missions were developed. The two developed access-based metrics are total accessibility duration and longest accessibility gap in a given period of time. It is shown that repeatability cycle is the minimum necessary time interval to study the steady behavior of the two proposed metrics. System and subsystem characteristics of the satellite represented by each of the metrics are discussed. Incorporation of the two proposed metrics, along with the classical ones, in the ground segment site location process results in financial saving in satellite development phase and reduces the minimum required level of in-orbit autonomy of the satellite. To show the effectiveness of the proposed metrics, simulation results are included for illustration.

  8. Which future for electromagnetic Astronomy: Ground Based vs Space Borne Large Astrophysical Facilities

    Science.gov (United States)

    Ubertini, Pietro

    2015-08-01

    The combined use of large ground based facilities and large space observatories is playing a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum, allowing high sensitivity observations from the lower radio wavelength to the higher energy gamma rays.It is nowadays clear that a forward steps in the understanding of the Universe evolution and large scale structure formation is essential and only possible with the combined use of multiwavelength imaging and spectral high resolution instruments.The increasing size, complexity and cost of large ground and space observatories places a growing emphasis on international collaboration. If the present set of astronomical facilities is impressive and complete, with nicely complementary space and ground based telescopes, the scenario becomes worrisome and critical in the next two decades. In fact, only a few ‘Large’ main space missions are planned and there is a need to ensure proper ground facility coverage: the synergy Ground-Space is not escapable in the timeframe 2020-2030.The scope of this talk is to review the current astronomical instrumentation panorama also in view of the recent major national agencies and international bodies programmatic decisions.This Division B meeting give us a unique opportunity to review the current situation and discuss the future perspectives taking advantage of the large audience ensured by the IAU GA.

  9. 基于LLVM架构的NiosⅡ后端快速移植%LLVM-INFRASTRUCTURE-BASED NIOS Ⅱ BACKEND FAST PORTING

    Institute of Scientific and Technical Information of China (English)

    任胜兵; 卢念; 张万利; 潘震宇

    2011-01-01

    编译器后端移植是目前嵌入式系统研究的重要领域,如何快速实现编译器后端移植仍然是嵌入式系统研究的热点.采用新的编译器架构LLNM,移植NiosⅡ处理器来分析LLVM快速后端移植架构.使用LLVM后端移植架构的TableGen描述NiosⅡ体系结构例如指令、寄存器等,使用完备LLVM C++函数库实现复杂或特殊的操作.TableGen与C++函数库互相配合,最终实现LLVM架构对NiosⅡ后端的支持.实验结果表明与GCC编译器后端移植方法相比,基于LLVM架构的编译器后端移植方法的工作量减少了64.2%~83.9%,大大节省后端移植时间.%Compiler backend porting is an important field for present research on embedded systems. How to fastly implement compiler backend porting is still a hot topic in the study on embedded systems. The paper uses a new compiler infrastructure, LLVM, by transplanting Nios II processor to analyze LLVM fast backend porting infrastructure. It uses LLVM backend porting infrastructure's TableGen to describe Nios II architecture with instructions and registers etc. It uses the complete C++ function library to implement complex or special operations. The support by LLVM infrastructure for Nios II backend is finally realized by the cooperation between TableGen and C++ function library. Experiment results indicate that, compared to GCC compiler backend porting method, the LLVM-infrastructure-based compiler backend porting method reduces the workload by 64.2% ~83.9% and significantly saves the backend porting time.

  10. PROTECTING CRITICAL DATABASES – TOWARDS A RISK-BASED ASSESSMENT OF CRITICAL INFORMATION INFRASTRUCTURES (CIIS IN SOUTH AFRICA

    Directory of Open Access Journals (Sweden)

    Mzukisi N Njotini

    2013-04-01

    Full Text Available South Africa has made great strides towards protecting critical information infrastructures (CIIs. For example, South Africa recognises the significance of safeguarding places or areas that are essential to the national security of South Africa or the economic and social well-being of South African citizens. For this reason South Africa has established mechanisms to assist in preserving the integrity and security of CIIs. The measures provide inter alia for the identification of CIIs; the registration of the full names, address and contact details of the CII administrators (the persons who manage CIIs; the identification of the location(s of CIIs or their component parts; and the outlining of the general descriptions of information or data stored in CIIs.It is argued that the measures to protect CIIs in South Africa are inadequate. In particular, the measures rely on a one-size-fits-all approach to identify and classify CIIs. For this reason the South African measures are likely to lead to the adoption of a paradigm that considers every infrastructure, data or database, regardless of its significance or importance, to be key or critical.

  11. Ground Control Point - Wireless System Network for UAV-based environmental monitoring applications

    Science.gov (United States)

    Mejia-Aguilar, Abraham

    2016-04-01

    In recent years, Unmanned Aerial Vehicles (UAV) have seen widespread civil applications including usage for survey and monitoring services in areas such as agriculture, construction and civil engineering, private surveillance and reconnaissance services and cultural heritage management. Most aerial monitoring services require the integration of information acquired during the flight (such as imagery) with ground-based information (such as GPS information or others) for improved ground truth validation. For example, to obtain an accurate 3D and Digital Elevation Model based on aerial imagery, it is necessary to include ground-based information of coordinate points, which are normally acquired with surveying methods based on Global Position Systems (GPS). However, GPS surveys are very time consuming and especially for longer time series of monitoring data repeated GPS surveys are necessary. In order to improve speed of data collection and integration, this work presents an autonomous system based on Waspmote technologies build on single nodes interlinked in a Wireless Sensor Network (WSN) star-topology for ground based information collection and later integration with surveying data obtained by UAV. Nodes are designed to be visible from the air, to resist extreme weather conditions with low-power consumption. Besides, nodes are equipped with GPS as well as Inertial Measurement Unit (IMU), accelerometer, temperature and soil moisture sensors and thus provide significant advantages in a broad range of applications for environmental monitoring. For our purpose, the WSN transmits the environmental data with 3G/GPRS to a database on a regular time basis. This project provides a detailed case study and implementation of a Ground Control Point System Network for UAV-based vegetation monitoring of dry mountain grassland in the Matsch valley, Italy.

  12. Monitoring of Civil Infrastructures by Interferometric Radar: A Review

    Science.gov (United States)

    Pieraccini, Massimiliano

    2013-01-01

    Ground-based radar interferometry is an increasingly popular technique for monitoring civil infrastructures. Many research groups, professionals, and companies have tested it in different operative scenarios, so it is time for a first systematic survey of the case studies reported in the literature. This review is addressed especially to the engineers and scientists interested to consider the applicability of the technique to their practice, so it is focused on the issues of the practical cases rather than on theory and principles, which are now well consolidated. PMID:24106454

  13. On reconciling ground-based with spaceborne normalized radar cross section measurements

    DEFF Research Database (Denmark)

    Baumgartner, Francois; Munk, Jens; Jezek, K C

    2002-01-01

    This study examines differences in the normalized radar cross section, derived from ground-based versus spaceborne radar data. A simple homogeneous half-space model, indicates that agreement between the two improves as 1) the distance from the scatterer is increased; and/or 2) the extinction...

  14. Facilitating Grounded Online Interactions in Video-Case-Based Teacher Professional Development

    Science.gov (United States)

    Nemirovsky, Ricardo; Galvis, Alvaro

    2004-01-01

    The use of interactive video cases for teacher professional development is an emergent medium inspired by case study methods used extensively in law, management, and medicine, and by the advent of multimedia technology available to support online discussions. This paper focuses on Web-based "grounded" discussions--in which the participants base…

  15. Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics

    Science.gov (United States)

    E.L. Loudermilk; J.K. Hiers; J.J. O’Brien; R.J. Mitchell; A. Singhania; J.C. Fernandez; W.P. Cropper; K.C. Slatton

    2009-01-01

    Ground-based LIDAR (also known as laser ranging) is a novel technique that may precisely quantify fuelbed characteristics important in determining fire behavior. We measured fuel properties within a south-eastern US longleaf pine woodland at the individual plant and fuelbed scale. Data were collected using a mobile terrestrial LIDAR unit at sub-cm scale for individual...

  16. Identifying Barriers in Implementing Outcomes-Based Assessment Program Review: A Grounded Theory Analysis

    Science.gov (United States)

    Bresciani, Marilee J.

    2011-01-01

    The purpose of this grounded theory study was to identify the typical barriers encountered by faculty and administrators when implementing outcomes-based assessment program review. An analysis of interviews with faculty and administrators at nine institutions revealed a theory that faculty and administrators' promotion, tenure (if applicable),…

  17. Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations

    NARCIS (Netherlands)

    Di Noia, A.; Hasekamp, O.P.; Harten, G. van; Rietjens, J.H.H.; Smit, J.M.; Snik, F.; Henzing, J.S.; Boer, J. de; Keller, C.U.; Volten, H.

    2015-01-01

    In this paper, the use of a neural network algorithm for the retrieval of the aerosol properties from ground-based spectropolarimetric measurements is discussed. The neural network is able to retrieve the aerosol properties with an accuracy that is almost comparable to that of an iterative retrieval

  18. Retrieval of liquid water cloud properties from ground-based remote sensing observations

    NARCIS (Netherlands)

    Knist, C.L.

    2014-01-01

    Accurate ground-based remotely sensed microphysical and optical properties of liquid water clouds are essential references to validate satellite-observed cloud properties and to improve cloud parameterizations in weather and climate models. This requires the evaluation of algorithms for retrieval of

  19. Ground-based remote sensing scheme for monitoring aerosol–cloud interactions (discussion)

    NARCIS (Netherlands)

    Sarna, K.; Russchenberg, H.W.J.

    2015-01-01

    A method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of cloud microphysical changes due to the changing aerosol concentration. We use high resolution measurements from lid

  20. Ground-based remote sensing scheme for monitoring aerosol-cloud interactions

    NARCIS (Netherlands)

    Sarna, K.; Russchenberg, H.W.J.

    2016-01-01

    A new method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of the change of the cloud droplet size due to the change in the aerosol concentration. We use high-resolution mea

  1. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis...

  2. USAF engineering and service roles in space operations - Building the foundation for our future space infrastructure

    Science.gov (United States)

    Martin, Robert J.

    The USAF Engineering and Services (E&S) is described in terms of its activities that support ground stations, launch bases, and space-based facilities. E&S is structured according to a master plan for space support and exploitation which includes infrastructure operations and management, infrastructure acquisition, environmental protection, and technology transfer. Also included in the E&S masterplan are personnel education and development, human services, and readiness objectives for the support of space operations and general USAF operations. The USAF E&S operations are expected to support the modernization of space-launch and -range infrastructure, develop training methods and personnel for space support, and improve traditional E&S support technologies and techniques.

  3. A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network

    Science.gov (United States)

    Jiang, H.; Cheng, H.; Zhang, Y.; Liu, J.

    A growing number of space activities have created an orbital debris environment that poses increasing impact risks to existing space systems and human space flight. For the safety of in-orbit spacecraft, a lot of observation facilities are needed to catalog space objects, especially in low earth orbit. Surveillance of Low earth orbit objects are mainly rely on ground-based radar, due to the ability limitation of exist radar facilities, a large number of ground-based radar need to build in the next few years in order to meet the current space surveillance demands. How to optimize the embattling of ground-based radar surveillance network is a problem to need to be solved. The traditional method for embattling optimization of ground-based radar surveillance network is mainly through to the detection simulation of all possible stations with cataloged data, and makes a comprehensive comparative analysis of various simulation results with the combinational method, and then selects an optimal result as station layout scheme. This method is time consuming for single simulation and high computational complexity for the combinational analysis, when the number of stations increases, the complexity of optimization problem will be increased exponentially, and cannot be solved with traditional method. There is no better way to solve this problem till now. In this paper, target detection procedure was simplified. Firstly, the space coverage of ground-based radar was simplified, a space coverage projection model of radar facilities in different orbit altitudes was built; then a simplified objects cross the radar coverage model was established according to the characteristics of space objects orbit motion; after two steps simplification, the computational complexity of the target detection was greatly simplified, and simulation results shown the correctness of the simplified results. In addition, the detection areas of ground-based radar network can be easily computed with the

  4. An Improved Algorithm of Grounding Grids Corrosion Diagnosis Based on Total Least Square Method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying-jiao; NIU Tao; WANG Sen

    2011-01-01

    A new model considering corrosion property for grounding grids diagnosis is proposed, which provides reference solutions of ambiguous branches. The constraint total least square method based on singular value decomposition is adopted to improve the effectiveness of grounding grids' diagnosis algorithm. The improvement can weaken the influence of the model's error, which results from the differences between design paper and actual grid. Its influence on touch and step voltages caused by the interior resistance of conductors is taken into account. Simulation results show the validity of this approach.

  5. Urban Green Infrastructure: German Experience

    Directory of Open Access Journals (Sweden)

    Diana Olegovna Dushkova

    2016-06-01

    Full Text Available The paper presents a concept of urban green infrastructure and analyzes the features of its implementation in the urban development programmes of German cities. We analyzed the most shared articles devoted to the urban green infrastructure to see different approaches to definition of this term. It is based on materials of field research in the cities of Berlin and Leipzig in 2014-2015, international and national scientific publications. During the process of preparing the paper, consultations have been held with experts from scientific institutions and Administrations of Berlin and Leipzig as well as local experts from environmental organizations of both cities. Using the German cities of Berlin and Leipzig as examples, this paper identifies how the concept can be implemented in the program of urban development. It presents the main elements of green city model, which include mitigation of negative anthropogenic impact on the environment under the framework of urban sustainable development. Essential part of it is a complex ecological policy as a major necessary tool for the implementation of the green urban infrastructure concept. This ecological policy should embody not only some ecological measurements, but also a greening of all urban infrastructure elements as well as implementation of sustainable living with a greater awareness of the resources, which are used in everyday life, and development of environmental thinking among urban citizens. Urban green infrastructure is a unity of four main components: green building, green transportation, eco-friendly waste management, green transport routes and ecological corridors. Experience in the development of urban green infrastructure in Germany can be useful to improve the environmental situation in Russian cities.

  6. Environmental Assessment, Wing Infrastructure Development Outlook (WINDO) Implementation Plan (FY 04-06). Volume 2, Beale Air Force Base, California

    Science.gov (United States)

    2005-08-01

    from the scour hole around the control tower and backfill with a “ flowable ” material. An engineering backfill such as low-strength material might be...aquifer or well capacity, water quality, surrounding geologic composition , and recharge rate. Floodplains are areas of low-level ground present along

  7. A Dynamic Programming-Based Heuristic for the Shift Design Problem in Airport Ground Handling

    DEFF Research Database (Denmark)

    Clausen, Tommy

    We consider the heterogeneous shift design problem for a workforce with multiple skills, where work shifts are created to cover a given demand as well as possible while minimizing cost and satisfying a flexible set of constraints. We focus mainly on applications within airport ground handling where...... the demand can be highly irregular and specified on time intervals as short as five minutes. Ground handling operations are subject to a high degree of cooperation and specialization that require workers with different qualifications to be planned together. Different labor regulations or organizational rules...... can apply to different ground handling operations, so the rules and restrictions can be numerous and vary significantly. This is modeled using flexible volume constraints that limit the creation of certain shifts. We present a fast heuristic for the heterogeneous shift design problem based on dynamic...

  8. (21) Lutetia spectrophotometry from Rosetta-OSIRIS images and comparison to ground-based observations

    Science.gov (United States)

    Magrin, S.; La Forgia, F.; Pajola, M.; Lazzarin, M.; Massironi, M.; Ferri, F.; da Deppo, V.; Barbieri, C.; Sierks, H.; Osiris Team

    2012-06-01

    Here we present some preliminary results on surface variegation found on (21) Lutetia from ROSETTA-OSIRIS images acquired on 2010-07-10. The spectrophotometry obtained by means of the two cameras NAC and WAC (Narrow and Wide Angle Cameras) is consistent with ground based observations, and does not show surface diversity above the data error bars. The blue and UV images (shortward 500 nm) may, however, indicate a variegation of the optical properties of the asteroid surface on the Baetica region (Sierks et al., 2011). We also speculate on the contribution due to different illumination and to different ground properties (composition or, more probably, grain size diversity). In particular a correlation with geologic units independently defined by Massironi et al. (2012) is evident, suggesting that the variegation of the ground optical properties is likely to be real.

  9. Protection Measures for Buildings Based on Coordinating Action Theory of Ground, Foundation and Structure

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the theory of coordinating action of building ground, foundation and structure, this paper presents a modified method for calculating additional stresses on buildings in mining areas by considering the joint effect of curvature deformation and horizontal deformation on buildings. It points out that for buildings over the coal pillar, it is advisable to soften the intermediate ground of buildings when they are affected by mining. For buildings over the goaf, it is preferable to soften the ground at both ends of buildings. In order to enhance the ability of a building to resist tensile deformation, the key measure is to reinforce the bottom foundation of the building. In addition, the concept of "angle of break of building" is proposed. It is because of this angle that the protecting coal pillar is left, which is a better solution than prevailing solutions The findings provide a more scientific basis for mining under buildings.

  10. Ground truth delineation for medical image segmentation based on Local Consistency and Distribution Map analysis.

    Science.gov (United States)

    Cheng, Irene; Sun, Xinyao; Alsufyani, Noura; Xiong, Zhihui; Major, Paul; Basu, Anup

    2015-01-01

    Computer-aided detection (CAD) systems are being increasingly deployed for medical applications in recent years with the goal to speed up tedious tasks and improve precision. Among others, segmentation is an important component in CAD systems as a preprocessing step to help recognize patterns in medical images. In order to assess the accuracy of a CAD segmentation algorithm, comparison with ground truth data is necessary. To-date, ground truth delineation relies mainly on contours that are either manually defined by clinical experts or automatically generated by software. In this paper, we propose a systematic ground truth delineation method based on a Local Consistency Set Analysis approach, which can be used to establish an accurate ground truth representation, or if ground truth is available, to assess the accuracy of a CAD generated segmentation algorithm. We validate our computational model using medical data. Experimental results demonstrate the robustness of our approach. In contrast to current methods, our model also provides consistency information at distributed boundary pixel level, and thus is invariant to global compensation error.

  11. Clustering of Infrastructure

    NARCIS (Netherlands)

    Willems, J.K.C.A.S.

    2001-01-01

    Bundling or converging infrastructure has been the leading principle for locating infrastructure since the mid seventies. It is assumed to offer certain advantages, such as a restriction of severance, consumption of free space and environmental hindrance. However, the concept of converging

  12. Infrastructure Survey 2011

    Science.gov (United States)

    Group of Eight (NJ1), 2012

    2012-01-01

    In 2011, the Group of Eight (Go8) conducted a survey on the state of its buildings and infrastructure. The survey is the third Go8 Infrastructure survey, with previous surveys being conducted in 2007 and 2009. The current survey updated some of the information collected in the previous surveys. It also collated data related to aspects of the…

  13. Particle production during inflation and gravitational waves detectable by ground-based interferometers

    OpenAIRE

    Cook, Jessica L.; Sorbo, Lorenzo

    2011-01-01

    Inflation typically predicts a quasi scale-invariant spectrum of gravitational waves. In models of slow-roll inflation, the amplitude of such a background is too small to allow direct detection without a dedicated space-based experiment such as the proposed BBO or DECIGO. In this paper we note that particle production during inflation can generate a feature in the spectrum of primordial gravitational waves. We discuss the possibility that such a feature might be detected by ground-based laser...

  14. Comparison of NO2 vertical profiles from satellite and ground based measurements over Antarctica

    OpenAIRE

    Kulkarni, Pavan; Bortoli, Daniele; Costa, Maria João; Silva, Ana Maria; Ravegnani, Fabrizio; Giovanelli, Giorgio

    2011-01-01

    The Intercomparison of nitrogen dioxide (NO2) vertical profiles, derived from the satellite based HALogen Occultation Experiment (HALOE) measurements and from the ground based UV-VIS spectrometer GASCOD (Gas Analyzer Spectrometer Correlating Optical Differences) observations at the Mario Zucchelli Station (MZS), in Antarctica, are done for the first time. It is shown here that both datasets are in good agreement showing the same features in terms of magnitude, profile structure, a...

  15. Shear wave velocity-based evaluation and design of stone column improved ground for liquefaction mitigation

    Institute of Scientific and Technical Information of China (English)

    Zhou Yanguo; Sun Zhengbo; Chen Jie; Chen Yunmin; Chen Renpeng

    2017-01-01

    The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice.In this paper,a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity (Vs)-void ratio (e) of sandy soils,and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available.The detailed procedures of pre-and post-improvement liquefaction evaluations and stone column design are given.According to this approach,the required level of ground improvement will be met once the target Vs of soil is raised high enough (i.e.,no less than the critical velocity) to resist the given earthquake loading according to the CRR-Vs relationship,and then this requirement is transferred to the control of target void ratio (i.e.,the critical e) according to the Vs-e relationship.As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature,specific considerations of the densification mechanism and effect are given,and the effects of drainage and reinforcement of stone columns are also discussed.A case study of a thermal power plant in Indonesia is introduced,where the effectiveness of stone column improved ground was evaluated by the proposed Vs-based method and compared with the SPT-based evaluation.This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.

  16. Shear wave velocity-based evaluation and design of stone column improved ground for liquefaction mitigation

    Science.gov (United States)

    Zhou, Yanguo; Sun, Zhengbo; Chen, Jie; Chen, Yunmin; Chen, Renpeng

    2017-04-01

    The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice. In this paper, a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity ( V s)-void ratio ( e) of sandy soils, and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available. The detailed procedures of pre- and post-improvement liquefaction evaluations and stone column design are given. According to this approach, the required level of ground improvement will be met once the target V s of soil is raised high enough (i.e., no less than the critical velocity) to resist the given earthquake loading according to the CRR- V s relationship, and then this requirement is transferred to the control of target void ratio (i.e., the critical e) according to the V s- e relationship. As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature, specific considerations of the densification mechanism and effect are given, and the effects of drainage and reinforcement of stone columns are also discussed. A case study of a thermal power plant in Indonesia is introduced, where the effectiveness of stone column improved ground was evaluated by the proposed V s-based method and compared with the SPT-based evaluation. This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.

  17. The national database of hospital-based cancer registries: a nationwide infrastructure to support evidence-based cancer care and cancer control policy in Japan.

    Science.gov (United States)

    Higashi, Takahiro; Nakamura, Fumiaki; Shibata, Akiko; Emori, Yoshiko; Nishimoto, Hiroshi

    2014-01-01

    Monitoring the current status of cancer care is essential for effective cancer control and high-quality cancer care. To address the information needs of patients and physicians in Japan, hospital-based cancer registries are operated in 397 hospitals designated as cancer care hospitals by the national government. These hospitals collect information on all cancer cases encountered in each hospital according to precisely defined coding rules. The Center for Cancer Control and Information Services at the National Cancer Center supports the management of the hospital-based cancer registry by providing training for tumor registrars and by developing and maintaining the standard software and continuing communication, which includes mailing lists, a customizable web site and site visits. Data from the cancer care hospitals are submitted annually to the Center, compiled, and distributed as the National Cancer Statistics Report. The report reveals the national profiles of patient characteristics, route to discovery, stage distribution, and first-course treatments of the five major cancers in Japan. A system designed to follow up on patient survival will soon be established. Findings from the analyses will reveal characteristics of designated cancer care hospitals nationwide and will show how characteristics of patients with cancer in Japan differ from those of patients with cancer in other countries. The database will provide an infrastructure for future clinical and health services research and will support quality measurement and improvement of cancer care. Researchers and policy-makers in Japan are encouraged to take advantage of this powerful tool to enhance cancer control and their clinical practice.

  18. Energy Transmission and Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: • improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; • identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); • analyze the potential within the district to utilize farm wastes to produce biofuels; • enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; • identify the policy, regulatory, and financial barriers impeding development of a new energy system; and • improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers

  19. Monitoring greenhouse gas emissions in Australian landscapes: Comparing ground based mobile surveying data to GOSAT observations

    Science.gov (United States)

    Bashir, S.; Iverach, C.; Kelly, B. F. J.

    2016-12-01

    Climate change is threatening the health and stability of the natural world and human society. Such concerns were emphasized at COP21 conference in Paris 2015 which highlighted the global need to improve our knowledge of sources of greenhouse gas and to develop methods to mitigate the effects of their emissions. Ongoing spatial and temporal measurements of greenhouse gases at both point and regional scales is important for clarification of climate change mechanisms and accounting. The Greenhouse gas Observing SATellite (GOSAT) is designed to monitor the global distribution of carbon dioxide (CO2) and methane (CH4) from orbit. As existing ground monitoring stations are limited and still unevenly distributed, satellite observations provide important frequent, spatially extensive, but low resolution observations. Recent developments in portable laser based greenhouse gas measurement systems have enabled the rapid measurement of greenhouse gases in ppb at the ground surface. This study was conducted to map major sources of CO2 and CH4 in the eastern states of Australia at the landscape scale and to compare the results to GOSAT observations. During April 2016 we conducted a regional CH4 and CO2 mobile survey, using an LGR greenhouse gas analyzer. Measurements were made along a 4000 KM circuit through major cities, country towns, dry sclerophyll forests, coastal wetlands, coal mining regions, coal seam gas developments, dryland farming and irrigated agricultural landscapes. The ground-based survey data were then compared with the data (L2) from GOSAT. Ground-based mobile surveys showed that there are clear statistical differences in the ground level atmospheric concentration of CH4 and CO2 associated with all major changes in land use. These changes extend for kilometers, and cover one or more GOSAT pixels. In the coal mining districts the ground-level atmospheric concentration of CH4 exceeded 2 ppm for over 40 km, yet this was not discernable in the retrieved data (L2

  20. CRRES/Ground-based multi-instrument observations of an interval of substorm activity

    Directory of Open Access Journals (Sweden)

    T. K. Yeoman

    Full Text Available Observations are presented of data taken during a 3-h interval in which five clear substorm onsets/intensifications took place. During this interval ground-based data from the EISCAT incoherent scatter radar, a digital CCD all sky camera, and an extensive array of magnetometers were recorded. In addition data from the CRRES and DMSP spacecraft, whose footprints passed over Scandinavia very close to most of the ground-based instrumentation, are available. The locations and movements of the substorm current system in latitude and longitude, determined from ground and spacecraft magnetic field data, have been correlated with the locations and propagation of increased particle precipitation in the E-region at EISCAT, increased particle fluxes measured by CRRES and DMSP, with auroral luminosity and with ionospheric convection velocities. The onsets and propagation of the injection of magnetospheric particle populations and auroral luminosity have been compared. CRRES was within or very close to the substorm expansion phase onset sector during the interval. The onset region was observed at low latitudes on the ground, and has been confirmed to map back to within L=7 in the magnetotail. The active region was then observed to propagate tailward and poleward. Delays between the magnetic signature of the substorm field aligned currents and field dipolarisation have been measured. The observations support a near-Earth plasma instability mechanism for substorm expansion phase onset.

  1. Nulling interferometry: performance comparison between space and ground-based sites for exozodiacal disc detection

    CERN Document Server

    Defrère, D; Foresto, V Coudé du; Danchi, W C; Hartog, R den

    2008-01-01

    Characterising the circumstellar dust around nearby main sequence stars is a necessary step in understanding the planetary formation process and is crucial for future life-finding space missions such as ESA's Darwin or NASA's Terrestrial Planet Finder (TPF). Besides paving the technological way to Darwin/TPF, the space-based infrared interferometers Pegase and FKSI (Fourier-Kelvin Stellar Interferometer) will be valuable scientific precursors in that respect. In this paper, we investigate the performance of Pegase and FKSI for exozodiacal disc detection and compare the results with ground-based nulling interferometers. Besides their main scientific goal (characterising hot giant extrasolar planets), Pegase and FKSI are very efficient in assessing within a few minutes the level of circumstellar dust in the habitable zone around nearby main sequence stars. They are capable of detecting exozodiacal discs respectively 5 and 1 time as dense as the solar zodiacal cloud and they outperform any ground-based instrumen...

  2. Validation of Aura OMI by Aircraft and Ground-Based Measurements

    Science.gov (United States)

    McPeters, R. D.; Petropavlovskikh, I.; Kroon, M.

    2006-12-01

    Both aircraft-based and ground-based measurements have been used to validate ozone measurements by the OMI instrument on Aura. Three Aura Validation Experiment (AVE) flights have been conducted, in November 2004 and June 2005 with the NASA WB57, and in January/February 2005 with the NASA DC-8. On these flights, validation of OMI was primarily done using data from the CAFS (CCD Actinic Flux Spectroradiometer) instrument, which is used to measure total column ozone above the aircraft. These measurements are used to differentiate changes in stratospheric ozone from changes in total column ozone. Also, changes in ozone over high clouds measured by OMI were checked in a flight over tropical storm Arlene on a flight on June 11th. Ground-based measurements were made during the SAUNA campaign in Sodankyla, Finland, in March and April 2006. Both total column ozone and the ozone vertical distribution were validated.

  3. REMOTE SENSING OF WATER VAPOR CONTENT USING GROUND-BASED GPS DATA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Spatial and temporal resolution of water vapor content is useful in improving the accuracy of short-term weather prediction.Dense and continuously tracking regional GPS arrays will play an important role in remote sensing atmospheric water vapor content.In this study,a piecewise linear solution method was proposed to estimate the precipitable water vapor (PWV) content from ground-based GPS observations in Hong Kong.To evaluate the solution accuracy of the water vapor content sensed by GPS,the upper air sounding data (radiosonde) that are collected locally was used to calculate the precipitable water vapor during the same period.One-month results of PWV from both ground-based GPS sensing technique and radiosonde method are in agreement within 1~2 mm.This encouraging result will motivate the GPS meteorology application based on the establishment of a dense GPS array in Hong Kong.

  4. DEM extraction and its accuracy analysis with ground-based SAR interferometry

    Science.gov (United States)

    Dong, J.; Yue, J. P.; Li, L. H.

    2014-03-01

    Two altimetry models extracting DEM (Digital Elevation Model) with the GBSAR (Ground-Based Synthetic Aperture Radar) technology are studied and their accuracies are analyzed in detail. The approximate and improved altimetry models of GBSAR were derived from the spaceborne radar altimetry based on the principles of the GBSAR technology. The error caused by the parallel ray approximation in the approximate model was analyzed quantitatively, and the results show that the errors cannot be ignored for the ground-based radar system. For the improved altimetry model, the elevation error expression can be acquired by simulating and analyzing the error propagation coefficients of baseline length, wavelength, differential phase and range distance in the mathematical model. By analyzing the elevation error with the baseline and range distance, the results show that the improved altimetry model is suitable for high-precision DEM and the accuracy can be improved by adjusting baseline and shortening slant distance.

  5. Empirically Grounded Agent-Based Models of Innovation Diffusion: A Critical Review

    CERN Document Server

    Zhang, Haifeng

    2016-01-01

    Innovation diffusion has been studied extensively in a variety of disciplines, including sociology, economics, marketing, ecology, and computer science. Traditional literature on innovation diffusion has been dominated by models of aggregate behavior and trends. However, the agent-based modeling (ABM) paradigm is gaining popularity as it captures agent heterogeneity and enables fine-grained modeling of interactions mediated by social and geographic networks. While most ABM work on innovation diffusion is theoretical, empirically grounded models are increasingly important, particularly in guiding policy decisions. We present a critical review of empirically grounded agent-based models of innovation diffusion, developing a categorization of this research based on types of agent models as well as applications. By connecting the modeling methodologies in the fields of information and innovation diffusion, we suggest that the maximum likelihood estimation framework widely used in the former is a promising paradigm...

  6. A novel intelligent adaptive control of laser-based ground thermal test

    Directory of Open Access Journals (Sweden)

    Gan Zhengtao

    2016-08-01

    Full Text Available Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion–integration–differentiation (PID type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller, output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization (H-PSO algorithm. A validating system has been established in the laboratory. The performance of the proposed controller is evaluated through extensive experiments under different operating conditions (reference and load disturbance. The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID (PID controller and the conventional PID type fuzzy (F-PID controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test.

  7. A novel intelligent adaptive control of laser-based ground thermal test

    Institute of Scientific and Technical Information of China (English)

    Gan Zhengtao; Yu Gang; Li Shaoxia; He Xiuli; Chen Ru; Zheng Caiyun; Ning Weijian

    2016-01-01

    Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion–integration–differentiation (PID) type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller, output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization (H-PSO) algorithm. A validating system has been established in the laboratory. The performance of the pro-posed controller is evaluated through extensive experiments under different operating conditions (reference and load disturbance). The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID (PID) controller and the conventional PID type fuzzy (F-PID) controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test.

  8. Comparison of Precipitation Observations from a Prototype Space-based Cloud Radar and Ground-based Radars

    Institute of Scientific and Technical Information of China (English)

    LIU Liping; ZHANG Zhiqiang; YU Danru; YANG Hu; ZHAO Chonghui; ZHONG Lingzhi

    2012-01-01

    A prototype space-based cloud radar has been developed and was installed on an airplane to observe a precipitation system over Tianjin,China in July 2010.Ground-based S-band and Ka-band radars were used to examine the observational capability of the prototype. A cross-comparison algorithm between different wavelengths,spatial resolutions and platform radars is presented.The reflectivity biases,correlation coefficients and standard deviations between the radars are analyzed.The equivalent reflectivity bias between the S- and Ka-band radars were simulated with a given raindrop size distribution.The results indicated that reflectivity bias between the S- and Ka-band radars due to scattering properties was less than 5 dB,and for weak precipitation the bias was negligible. The prototype space-based cloud radar was able to measure a reasonable vertical profile of reflectivity,but the reflectivity below an altitude of 1.5 km above ground level was obscured by ground clutter.The measured reflectivity by the prototype space-based cloud radar was approximately 10.9 dB stronger than that by the S-band Doppler radar (SA radar),and 13.7 dB stronger than that by the ground-based cloud radar.The reflectivity measured by the SA radar was 0.4 dB stronger than that by the ground-based cloud radar.This study could provide a method for the quantitative examination of the observation ability for space-based radars.

  9. Toward High Altitude Airship Ground-Based Boresight Calibration of Hyperspectral Pushbroom Imaging Sensors

    Directory of Open Access Journals (Sweden)

    Aiwu Zhang

    2015-12-01

    Full Text Available The complexity of the single linear hyperspectral pushbroom imaging based on a high altitude airship (HAA without a three-axis stabilized platform is much more than that based on the spaceborne and airborne. Due to the effects of air pressure, temperature and airflow, the large pitch and roll angles tend to appear frequently that create pushbroom images highly characterized with severe geometric distortions. Thus, the in-flight calibration procedure is not appropriate to apply to the single linear pushbroom sensors on HAA having no three-axis stabilized platform. In order to address this problem, a new ground-based boresight calibration method is proposed. Firstly, a coordinate’s transformation model is developed for direct georeferencing (DG of the linear imaging sensor, and then the linear error equation is derived from it by using the Taylor expansion formula. Secondly, the boresight misalignments are worked out by using iterative least squares method with few ground control points (GCPs and ground-based side-scanning experiments. The proposed method is demonstrated by three sets of experiments: (i the stability and reliability of the method is verified through simulation-based experiments; (ii the boresight calibration is performed using ground-based experiments; and (iii the validation is done by applying on the orthorectification of the real hyperspectral pushbroom images from a HAA Earth observation payload system developed by our research team—“LanTianHao”. The test results show that the proposed boresight calibration approach significantly improves the quality of georeferencing by reducing the geometric distortions caused by boresight misalignments to the minimum level.

  10. The comparison between a ground based and a space based probabilistic landslide susceptibility assessment

    Science.gov (United States)

    Reichenbach, P.; Mondini, A.; Guzzetti, F.; Rossi, M.; Ardizzone, F.; Cardinali, M.

    2009-04-01

    , thematic maps obtained processing satellite data can be an effective alternative to maps prepared using more traditional, ground based methods.

  11. Ground Motion Prediction Trends For Eastern North America Based on the Next Generation Attenuation East Ground Motion Database

    Science.gov (United States)

    Cramer, C. H.; Kutliroff, J.; Dangkua, D.

    2010-12-01

    A five-year Next Generation Attenuation (NGA) East project to develop new ground motion prediction equations for stable continental regions (SCRs), including eastern North America (ENA), has begun at the Pacific Earthquake Engineering Research (PEER) Center funded by the Nuclear Regulatory Commission (NRC), the U.S. Geological Survey (USGS), the Electric Power Research Institute (EPRI), and the Department of Energy (DOE). The initial effort focused on database design and collection of appropriate M>4 ENA broadband and accelerograph records to populate the database. Ongoing work has focused on adding records from smaller ENA earthquakes and from other SCRs such as Europe, Australia, and India. Currently, over 6500 horizontal and vertical component records from 60 ENA earthquakes have been collected and prepared (instrument response removed, filtering to acceptable-signal band, determining peak and spectral parameter values, quality assurance, etc.) for the database. Geologic Survey of Canada (GSC) strong motion recordings, previously not available, have also been added to the NGA East database. The additional earthquakes increase the number of ground motion recordings in the 10 - 100 km range, particularly from the 2008 M5.2 Mt. Carmel, IL event, and the 2005 M4.7 Riviere du Loup and 2010 M5.0 Val des Bois earthquakes in Quebec, Canada. The goal is to complete the ENA database and make it available in 2011 followed by a SCR database in 2012. Comparisons of ground motion observations from four recent M5 ENA earthquakes with current ENA ground motion prediction equations (GMPEs) suggest that current GMPEs, as a group, reasonably agree with M5 observations at short periods, particularly at distances less than 200 km. However, at one second, current GMPEs over predict M5 ground motion observations. The 2001 M7.6 Bhuj, India, earthquake provides some constraint at large magnitudes, as geology and regional attenuation is analogous to ENA. Cramer and Kumar, 2003, have

  12. Information infrastructure(s) boundaries, ecologies, multiplicity

    CERN Document Server

    Mongili, Alessandro

    2014-01-01

    This book marks an important contribution to the fascinating debate on the role that information infrastructures and boundary objects play in contemporary life, bringing to the fore the concern of how cooperation across different groups is enabled, but also constrained, by the material and immaterial objects connecting them. As such, the book itself is situated at the crossroads of various paths and genealogies, all focusing on the problem of the intersection between different levels of scale...

  13. Water erosion as a cause for agricultural soil loss: modeling of dynamic processes using high-resolution ground based LiDAR measurements

    Science.gov (United States)

    Oz, Imri; Filin, Sagi; Assouline, Shmuel; Shtain, Zachi; Furman, Alexander

    2016-04-01

    Soil erosion by rainfall and water flow is a frequent natural geomorphic process shaping the earth's surface at various scales. Conventional agrotechnical methods enhance soil erosion at the field scale and are at the origin of the reduction of the upper soil layer depth. This reduction is expressed in two aspects: decrease of soil depth, mainly due to erosion, and the diminution of soil quality, mainly due to the loss of fine material, nutrients and organic matter. Rain events, not even the most extremes, cause detachment and transport of fertile soil rich in organic matter and nutrients away from the fields, filling and plugging drainage channels, blocking infrastructure and contaminating water sources. Empirical, semi-empirical and mechanistic models are available to estimate soil erosion by water flow and sediment transport (e.g. WEPP, KINEROSS, EUROSEM). Calibration of these models requires data measured at high spatial and temporal resolutions. Development of high-resolution measurement tools (for both spatial and temporal aspects) should improve the calibration of functions related to particles detachment and transport from the soil surface. In addition, despite the great impact of different tillage systems on the soil erosion process, the vast majority of the models ignore this fundamental factor. The objective of this study is to apply high-resolution ground-based LiDAR measurements to different tillage schemes and scales to improve the ability of models to accurately describe the process of soil erosion induced by rainfall and overland flow. Ground-based laser scans provide high resolution accurate and subtle geomorphic changes, as well as larger-scale deformations. As such, it allows frequent monitoring, so that even the effect of a single storm can be measured, thus improving the calibration of the erosion models. Preliminary results for scans made in the field show the potential and limitations of ground-based LiDAR, and at this point qualitatively can

  14. Chef infrastructure automation cookbook

    CERN Document Server

    Marschall, Matthias

    2013-01-01

    Chef Infrastructure Automation Cookbook contains practical recipes on everything you will need to automate your infrastructure using Chef. The book is packed with illustrated code examples to automate your server and cloud infrastructure.The book first shows you the simplest way to achieve a certain task. Then it explains every step in detail, so that you can build your knowledge about how things work. Eventually, the book shows you additional things to consider for each approach. That way, you can learn step-by-step and build profound knowledge on how to go about your configuration management

  15. Flow Characteristics of Tidewater Glaciers in Greenland and Alaska using Ground-Based LiDAR

    Science.gov (United States)

    Finnegan, D. C.; Stearns, L. A.; Hamilton, G. S.; O'Neel, S.

    2010-12-01

    LiDAR scanning systems have been employed to characterize and quantify multi-temporal glacier and ice sheet changes for nearly three decades. Until recently, LiDAR scanning systems were limited to airborne and space-based platforms which come at a significant cost to deploy and are limited in spatial and temporal sampling capabilities necessary to compare with in-situ field measurements. Portable ground-based LiDAR scanning systems are now being used as a glaciological tool. We discuss research efforts to employ ground-based near-infrared LiDAR systems at two differing tidewater glacier systems in the spring of 2009; Helheim Glacier in southeast Greenland and Columbia Glacier in southeast Alaska. Preliminary results allow us to characterize short term displacement rates and detailed observations of calving processes. These results highlight the operational limitations and capabilities of commercially available LiDAR systems, and allow us to identify optimal operating characteristics for monitoring small to large-scale tidewater glaciers in near real-time. Furthermore, by identifying the operational limitations of these sensors it allows for optimal design characteristics of new sensors necessary to meet ground-based calibration and validation requirements of ongoing scientific missions.

  16. A Reliable TTP-Based Infrastructure with Low Sensor Resource Consumption for the Smart Home Multi-Platform

    Directory of Open Access Journals (Sweden)

    Jungho Kang

    2016-07-01

    Full Text Available With the ICT technology making great progress in the smart home environment, the ubiquitous environment is rapidly emerging all over the world, but problems are also increasing proportionally to the rapid growth of the smart home market such as multiplatform heterogeneity and new security threats. In addition, the smart home sensors have so low computing resources that they cannot process complicated computation tasks, which is required to create a proper security environment. A service provider also faces overhead in processing data from a rapidly increasing number of sensors. This paper aimed to propose a scheme to build infrastructure in which communication entities can securely authenticate and design security channel with physically unclonable PUFs and the TTP that smart home communication entities can rely on. In addition, we analyze and evaluate the proposed scheme for security and performance and prove that it can build secure channels with low resources. Finally, we expect that the proposed scheme can be helpful for secure communication with low resources in future smart home multiplatforms.

  17. A Reliable TTP-Based Infrastructure with Low Sensor Resource Consumption for the Smart Home Multi-Platform.

    Science.gov (United States)

    Kang, Jungho; Kim, Mansik; Park, Jong Hyuk

    2016-07-05

    With the ICT technology making great progress in the smart home environment, the ubiquitous environment is rapidly emerging all over the world, but problems are also increasing proportionally to the rapid growth of the smart home market such as multiplatform heterogeneity and new security threats. In addition, the smart home sensors have so low computing resources that they cannot process complicated computation tasks, which is required to create a proper security environment. A service provider also faces overhead in processing data from a rapidly increasing number of sensors. This paper aimed to propose a scheme to build infrastructure in which communication entities can securely authenticate and design security channel with physically unclonable PUFs and the TTP that smart home communication entities can rely on. In addition, we analyze and evaluate the proposed scheme for security and performance and prove that it can build secure channels with low resources. Finally, we expect that the proposed scheme can be helpful for secure communication with low resources in future smart home multiplatforms.

  18. Investments for urban infrastructure in boomtowns

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, R.G.; Mehr, A.F.

    1977-04-01

    Planning for coordinated investments in community infrastructures can avoid economic and social disruptions when sudden changes lead to inadequate facilities. Analysis of a community's infrastructure can be complicated by difficulties in projecting population shifts, acquiring investment capital, and defining the optimum level for satisfying demands. A flow diagram illustrates an investment scheme based on setting community goals and criteria on the assumption that trade-offs exist. Although further research is needed before the costs and benefits of urban infrastructure can be detailed, an indirect approach is proposed for modeling a composite community with a large construction project. Results indicate that urban infrastructure can affect wage differentials, which are related to educational facilities in boom towns. Suggestions for further study on private capital expenditures, the influence of expectations on wage differentials, cost benefits for the total population, and the community's mechanism for decision making are proposed for a better understanding of urban infrastructure. (DCK)

  19. A Modular Repository-based Infrastructure for Simulation Model Storage and Execution Support in the Context of In Silico Oncology and In Silico Medicine.

    Science.gov (United States)

    Christodoulou, Nikolaos A; Tousert, Nikolaos E; Georgiadi, Eleni Ch; Argyri, Katerina D; Misichroni, Fay D; Stamatakos, Georgios S

    2016-01-01

    The plethora of available disease prediction models and the ongoing process of their application into clinical practice - following their clinical validation - have created new needs regarding their efficient handling and exploitation. Consolidation of software implementations, descriptive information, and supportive tools in a single place, offering persistent storage as well as proper management of execution results, is a priority, especially with respect to the needs of large healthcare providers. At the same time, modelers should be able to access these storage facilities under special rights, in order to upgrade and maintain their work. In addition, the end users should be provided with all the necessary interfaces for model execution and effortless result retrieval. We therefore propose a software infrastructure, based on a tool, model and data repository that handles the storage of models and pertinent execution-related data, along with functionalities for execution management, communication with third-party applications, user-friendly interfaces to access and use the infrastructure with minimal effort and basic security features.

  20. MODEL OF FEES CALCULATION FOR ACCESS TO TRACK INFRASTRUCTURE FACILITIES

    Directory of Open Access Journals (Sweden)

    M. I. Mishchenko

    2014-12-01

    Full Text Available Purpose. The purpose of the article is to develop a one- and two-element model of the fees calculation for the use of track infrastructure of Ukrainian railway transport. Methodology. On the basis of this one can consider that when planning the planned preventive track repair works and the amount of depreciation charges the guiding criterion is not the amount of progress it is the operating life of the track infrastructure facilities. The cost of PPTRW is determined on the basis of the following: the classification track repairs; typical technological processes for track repairs; technology based time standards for PPTRW; costs for the work of people, performing the PPTRW, their hourly wage rates according to the Order 98-Ts; the operating cost of machinery; regulated list; norms of expenditures and costs of materials and products (they have the largest share of the costs for repairs; railway rates; average distances for transportation of materials used during repair; standards of general production expenses and the administrative costs. Findings. The models offered in article allow executing the objective account of expenses in travelling facilities for the purpose of calculation of the proved size of indemnification and necessary size of profit, the sufficient enterprises for effective activity of a travelling infrastructure. Originality. The methodological bases of determination the fees (payments for the use of track infrastructure on one- and two-element base taking into account the experience of railways in the EC countries and the current transport legislation were grounded. Practical value. The article proposes the one- and two-element models of calculating the fees (payments for the TIF use, accounting the applicable requirements of European transport legislation, which provides the expense compensation and income formation, sufficient for economic incentives of the efficient operation of the TIE of Ukrainian railway transport.

  1. Entry Dispersion Analysis for the Hayabusa Spacecraft using Ground Based Optical Observation

    CERN Document Server

    Yamaguchi, T; Yagi, M; Tholen, D J

    2011-01-01

    Hayabusa asteroid explorer successfully released the sample capsule to Australia on June 13, 2010. Since the Earth reentry phase of sample return was critical, many backup plans for predicting the landing location were prepared. This paper investigates the reentry dispersion using ground based optical observation as a backup observation for radiometric observation. Several scenarios are calculated and compared for the reentry phase of the Hayabusa to evaluate the navigation accuracy of the ground-based observation. The optical observation doesn't require any active reaction from a spacecraft, thus these results show that optical observations could be a steady backup strategy even if a spacecraft had some trouble. We also evaluate the landing dispersion of the Hayabusa only with the optical observation.

  2. Ground-based walking training improves quality of life and exercise capacity in COPD.

    Science.gov (United States)

    Wootton, Sally L; Ng, L W Cindy; McKeough, Zoe J; Jenkins, Sue; Hill, Kylie; Eastwood, Peter R; Hillman, David R; Cecins, Nola; Spencer, Lissa M; Jenkins, Christine; Alison, Jennifer A

    2014-10-01

    This study was designed to determine the effect of ground-based walking training on health-related quality of life and exercise capacity in people with chronic obstructive pulmonary disease (COPD). People with COPD were randomised to either a walking group that received supervised, ground-based walking training two to three times a week for 8-10 weeks, or a control group that received usual medical care and did not participate in exercise training. 130 out of 143 participants (mean±sd age 69±8 years, forced expiratory volume in 1 s 43±15% predicted) completed the study. Compared to the control group, the walking group demonstrated greater improvements in the St George's Respiratory Questionnaire total score (mean difference -6 points (95% CI -10- -2), pimproves quality of life and endurance exercise capacity in people with COPD.

  3. Coherent receiving efficiency in satellite-ground coherent laser communication system based on analysis of polarization

    Science.gov (United States)

    Hao, Shiqi; Zhang, Dai; Zhao, Qingsong; Wang, Lei; Zhao, Qi

    2017-06-01

    Aimed at analyzing the coherent receiving efficiency of a satellite-ground coherent laser communication system, polarization state of the received light is analyzed. We choose the circularly polarized, partially coherent laser as transmitted light source. The analysis process includes 3 parts. Firstly, an theoretical model to analyze received light's polarization state is constructed based on Gaussian-Schell model (GSM) and cross spectral density function matrix. Then, analytic formulas to calculate coherent receiving efficiency are derived in which both initial ellipticity modification and deflection angle between polarization axes of the received light and the intrinsic light are considered. At last, numerical simulations are operated based on our study. The research findings investigate variations of polarization state and obtain analytic formulas to calculate the coherent receiving efficiency. Our study has theoretical guiding significances in construction and optimization of satellite-ground coherent laser communication system.

  4. Techniques to extend the reach of ground based gravitational wave detectors

    Science.gov (United States)

    Dwyer, Sheila

    2016-03-01

    While the current generation of advanced ground based detectors will open the gravitational wave universe to observation, ground based interferometry has the potential to extend the reach of these observatories to high redshifts. Several techniques have the potential to improve the advanced detectors beyond design sensitivity, including the use of squeezed light, upgraded suspensions, and possibly new optical coatings, new test mass materials, and cryogenic suspensions. To improve the sensitivity by more than a factor of 10 compared to advanced detectors new, longer facilities will be needed. Future observatories capable of hosting interferometers 10s of kilometers long have the potential to extend the reach of gravitational wave astronomy to cosmological distances, enabling detection of binary inspirals from throughout the history of star formation.

  5. Ground-based near-infrared imaging of the HD141569 circumstellar disk

    CERN Document Server

    Boccaletti, A; Marchis, F; Hanh, J

    2003-01-01

    We present the first ground-based near-infrared image of the circumstellar disk around the post-Herbig Ae/Be star HD141569A initially detected with the HST. Observations were carried out in the near-IR (2.2 $\\mu$m) at the Palomar 200-inch telescope using the adaptive optics system PALAO. The main large scale asymmetric features of the disk are detected on our ground-based data. In addition, we measured that the surface brightness of the disk is slightly different than that derived by HST observations (at 1.1 $\\mu$m and 1.6 $\\mu$m). We interpret this possible color-effect in terms of dust properties and derive a minimal

  6. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar

    2013-12-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  7. Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence

    Science.gov (United States)

    Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D.; Chait, Maria

    2016-01-01

    To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence—the coincidence of sound elements in and across time—is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals (“stochastic figure-ground”: SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as “figures” popping out of a stochastic “ground.” Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the “figure” from the randomly varying “ground.” Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the “classic” auditory system, is also involved in the early stages of auditory scene analysis.” PMID:27325682

  8. Astronomy: On the Bleeding Edge of Scholarly Infrastructure

    Science.gov (United States)

    Borgman, Christine; Sands, A.; Wynholds, L. A.

    2013-01-01

    The infrastructure for scholarship has moved online, making data, articles, papers, journals, catalogs, and other scholarly resources nodes in a deeply interconnected network. Astronomy has led the way on several fronts, developing tools such as ADS to provide unified access to astronomical publications and reaching agreement on a common data file formats such as FITS. Astronomy also was among the first fields to establish open access to substantial amounts of observational data. We report on the first three years of a long-term research project to study knowledge infrastructures in astronomy, funded by the NSF and the Alfred P. Sloan Foundation. Early findings indicate that the availability and use of networked technologies for integrating scholarly resources varies widely within astronomy. Substantial differences arise in the management of data between ground-based and space-based missions and between subfields of astronomy, for example. While large databases such as SDSS and MAST are essential resources for many researchers, much pointed, ground-based observational data exist only on local servers, with minimal curation. Some astronomy data are easily discoverable and usable, but many are not. International coordination activities such as IVOA and distributed access to high-level data products servers such as SIMBAD and NED are enabling further integration of published data. Astronomers are tackling yet more challenges in new forms of publishing data, algorithms, visualizations, and in assuring interoperability with parallel infrastructure efforts in related fields. New issues include data citation, attribution, and provenance. Substantial concerns remain for the long term discoverability, accessibility, usability, and curation of astronomy data and other scholarly resources. The presentation will outline these challenges, how they are being addressed by astronomy and related fields, and identify concerns and accomplishments expressed by the astronomers we have

  9. Single Phase-to-Ground Fault Line Identification and Section Location Method for Non-Effectively Grounded Distribution Systems Based on Signal Injection

    Institute of Scientific and Technical Information of China (English)

    PAN Zhencun; WANG Chengshan; CONG Wei; ZHANG Fan

    2008-01-01

    A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in thisi oaper. A special diagnostic signal current is injected into the fault distribution system, and then it is de- tected at the outlet terminals to identify the fault line and at the sectionalizing or branching point along the fault line to locate the fault section. The method has been put into application in actual distribution network and field experience shows that it can identify the fault line and locate the fault section correctly and effectively.

  10. Seismic Response of Base-Isolated Structures under Multi-component Ground Motion Excitation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An analysis of a base-isolated structure for multi-component random ground motion is presented. The mean square response of the system is obtained under different parametric variations. The effectiveness of main parameters and the torsional component during an earthquake is quantified with the help of the response ratio and the root mean square response with and without base isolation. It is observed that the base isolation has considerable influence on the response and the effect of the torsional component is not ignored.

  11. CoRoT and asteroseismology. Preparatory work and simultaneous ground-based monitoring

    CERN Document Server

    Poretti, Ennio; Uytterhoeven, Katrien; Cutispoto, Giuseppe; Distefano, Elisa; Romano, Paolo

    2007-01-01

    The successful launch of the CoRoT (COnvection, ROtation and planetary Transits) satellite opens a new era in asteroseismology. The space photometry is complemented by high-resolution spectroscopy and multicolour photometry from ground, to disclose the pulsational content of the asteroseismic targets in the most complete way. Some preliminary results obtained with both types of data are presented. The paper is based on observations collected at S. Pedro Martir, Serra La Nave, La Silla, and Telescopio Nazionale Galileo Observatories.

  12. Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry

    OpenAIRE

    García, O.E.; Schneider, M; A. Redondas; Y. González; Hase, F.; Blumenstock, T.; Sepúlveda, E.

    2012-01-01

    This study investigates the long-term evolution of subtropical ozone profile time series (1999–2010) obtained from ground-based FTIR (Fourier Transform InfraRed) spectrometry at the Izaña Observatory ozone super-site. Different ozone retrieval strategies are examined, analysing the influence of an additional temperature retrieval and different constraints. The theoretical assessment reveals that the FTIR system is able to resolve four independent ozone layers with a precision of better than 6...

  13. Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-438 Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1) As of FY 2017...11 Track to Budget 17 Cost and Funding 18 Low Rate Initial Production 23 Foreign Military Sales 24 Nuclear Costs 24 Unit Cost...Document CLIN - Contract Line Item Number CPD - Capability Production Document CY - Calendar Year DAB - Defense Acquisition Board DAE - Defense Acquisition

  14. A Ground-Based Validation System of Teleoperation for a Space Robot

    OpenAIRE

    Xueqian Wang; Houde Liu; Wenfu Xu; Bin Liang; Yingchun Zhang

    2012-01-01

    Teleoperation of space robots is very important for future on‐orbit service. In order to assure the task is accomplished successfully, ground experiments are required to verify the function and validity of the teleoperation system before a space robot is launched. In this paper, a ground‐based validation subsystem is developed as a part of a teleoperation system. The subsystem is mainly composed of four parts: the input verification module, the onboard verification module, the dynamic and ima...

  15. NASA Requirements for Ground-Based Pressure Vessels and Pressurized Systems (PVS). Revision C

    Science.gov (United States)

    Greulich, Owen Rudolf

    2017-01-01

    The purpose of this document is to ensure the structural integrity of PVS through implementation of a minimum set of requirements for ground-based PVS in accordance with this document, NASA Policy Directive (NPD) 8710.5, NASA Safety Policy for Pressure Vessels and Pressurized Systems, NASA Procedural Requirements (NPR) 8715.3, NASA General Safety Program Requirements, applicable Federal Regulations, and national consensus codes and standards (NCS).

  16. The Gaia Era: synergy between space missions and ground based surveys

    CERN Document Server

    Vallenari, A

    2008-01-01

    The Gaia mission is expected to provide highly accurate astrometric, photometric, and spectroscopic measurements for about $10^9$ objects. Automated classification of detected sources is a key part of the data processing. Here a few aspects of the Gaia classification process are presented. Information from other surveys at longer wavelengths, and from follow-up ground based observations will be complementary to Gaia data especially at faint magnitudes, and will offer a great opportunity to understand our Galaxy.

  17. Green Infrastructure Modeling Toolkit

    Science.gov (United States)

    Green infrastructure, such as rain gardens, green roofs, porous pavement, cisterns, and constructed wetlands, is becoming an increasingly attractive way to recharge aquifers and reduce the amount of stormwater runoff that flows into wastewater treatment plants or into waterbodies...

  18. Infrastructure Area Simplification Plan

    CERN Document Server

    Field, L.

    2011-01-01

    The infrastructure area simplification plan was presented at the 3rd EMI All Hands Meeting in Padova. This plan only affects the information and accounting systems as the other areas are new in EMI and hence do not require simplification.

  19. EV Charging Infrastructure Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Karner, Donald [Electric Transportation Inc., Rogers, AR (United States); Garetson, Thomas [Electric Transportation Inc., Rogers, AR (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    As highlighted in the U.S. Department of Energy’s EV Everywhere Grand Challenge, vehicle technology is advancing toward an objective to “… produce plug-in electric vehicles that are as affordable and convenient for the average American family as today’s gasoline-powered vehicles …” [1] by developing more efficient drivetrains, greater battery energy storage per dollar, and lighter-weight vehicle components and construction. With this technology advancement and improved vehicle performance, the objective for charging infrastructure is to promote vehicle adoption and maximize the number of electric miles driven. The EV Everywhere Charging Infrastructure Roadmap (hereafter referred to as Roadmap) looks forward and assumes that the technical challenges and vehicle performance improvements set forth in the EV Everywhere Grand Challenge will be met. The Roadmap identifies and prioritizes deployment of charging infrastructure in support of this charging infrastructure objective for the EV Everywhere Grand Challenge

  20. IPHE Infrastructure Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-02-01

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fueling station development.

  1. Infrastructure Engineering and Deployment Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Infrastructure Engineering and Deployment Division advances transportation innovation by being leaders in infrastructure technology, including vehicles and...

  2. First-generation Science Cases for Ground-based Terahertz Telescopes

    CERN Document Server

    Hirashita, Hiroyuki; Matsushita, Satoki; Takakuwa, Shigehisa; Nakamura, Masanori; Asada, Keiichi; Liu, Hauyu Baobab; Urata, Yuji; Wang, Ming-Jye; Wang, Wei-Hao; Takahashi, Satoko; Tang, Ya-Wen; Chang, Hsian-Hong; Huang, Kuiyun; Morata, Oscar; Otsuka, Masaaki; Lin, Kai-Yang; Tsai, An-Li; Lin, Yen-Ting; Srinivasan, Sundar; Martin-Cocher, Pierre; Pu, Hung-Yi; Kemper, Francisca; Patel, Nimesh; Grimes, Paul; Huang, Yau-De; Han, Chih-Chiang; Huang, Yen-Ru; Nishioka, Hiroaki; Lin, Lupin Chun-Che; Zhang, Qizhou; Keto, Eric; Burgos, Roberto; Chen, Ming-Tang; Inoue, Makoto; Ho, Paul T P

    2015-01-01

    Ground-based observations at terahertz (THz) frequencies are a newly explorable area of astronomy for the next ten years. We discuss science cases for a first-generation 10-m class THz telescope, focusing on the Greenland Telescope as an example of such a facility. We propose science cases and provide quantitative estimates for each case. The largest advantage of ground-based THz telescopes is their higher angular resolution (~ 4 arcsec for a 10-m dish), as compared to space or airborne THz telescopes. Thus, high-resolution mapping is an important scientific argument. In particular, we can isolate zones of interest for Galactic and extragalactic star-forming regions. The THz windows are suitable for observations of high-excitation CO lines and [N II] 205 um lines, which are scientifically relevant tracers of star formation and stellar feedback. Those lines are the brightest lines in the THz windows, so that they are suitable for the initiation of ground-based THz observations. THz polarization of star-forming...

  3. Interactive dynamic three-dimensional scene for the ground-based three-dimensional display

    Science.gov (United States)

    Hou, Peining; Sang, Xinzhu; Guo, Nan; Chen, Duo; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    Three-dimensional (3D) displays provides valuable tools for many fields, such as scientific experiment, education, information transmission, medical imaging and physical simulation. Ground based 360° 3D display with dynamic and controllable scene can find some special applications, such as design and construction of buildings, aeronautics, military sand table and so on. It can be utilized to evaluate and visualize the dynamic scene of the battlefield, surgical operation and the 3D canvas of art. In order to achieve the ground based 3D display, the public focus plane should be parallel to the camera's imaging planes, and optical axes should be offset to the center of public focus plane in both vertical and horizontal directions. Virtual cameras are used to display 3D dynamic scene with Unity 3D engine. Parameters of virtual cameras for capturing scene are designed and analyzed, and locations of virtual cameras are determined by the observer's eye positions in the observing space world. An interactive dynamic 3D scene for ground based 360° 3D display is demonstrated, which provides high-immersion 3D visualization.

  4. Intercomparison of ground-based ozone and NO2 measurements during the MANTRA 2004 campaign

    Directory of Open Access Journals (Sweden)

    K. Strong

    2007-11-01

    Full Text Available The MANTRA (Middle Atmosphere Nitrogen TRend Assessment 2004 campaign took place in Vanscoy, Saskatchewan, Canada (52° N, 107° W from 3 August to 15 September, 2004. In support of the main balloon launch, a suite of five zenith-sky and direct-Sun-viewing UV-visible ground-based spectrometers was deployed, primarily measuring ozone and NO2 total columns. Three Fourier transform spectrometers (FTSs that were part of the balloon payload also performed ground-based measurements of several species, including ozone. Ground-based measurements of ozone and NO2 differential slant column densities from the zenith-viewing UV-visible instruments are presented herein. They are found to partially agree within NDACC (Network for the Detection of Atmospheric Composition Change standards for instruments certified for process studies and satellite validation. Vertical column densities of ozone from the zenith-sky UV-visible instruments, the FTSs, a Brewer spectrophotometer, and ozonesondes are compared, and found to agree within the combined error estimates of the instruments (15%. NO2 vertical column densities from two of the UV-visible instruments are compared, and are also found to agree within combined error (15%.

  5. Limitation of Ground-based Estimates of Solar Irradiance Due to Atmospheric Variations

    Science.gov (United States)

    Wen, Guoyong; Cahalan, Robert F.; Holben, Brent N.

    2003-01-01

    The uncertainty in ground-based estimates of solar irradiance is quantitatively related to the temporal variability of the atmosphere's optical thickness. The upper and lower bounds of the accuracy of estimates using the Langley Plot technique are proportional to the standard deviation of aerosol optical thickness (approx. +/- 13 sigma(delta tau)). The estimates of spectral solar irradiance (SSI) in two Cimel sun photometer channels from the Mauna Loa site of AERONET are compared with satellite observations from SOLSTICE (Solar Stellar Irradiance Comparison Experiment) on UARS (Upper Atmospheric Research Satellite) for almost two years of data. The true solar variations related to the 27-day solar rotation cycle observed from SOLSTICE are about 0.15% at the two sun photometer channels. The variability in ground-based estimates is statistically one order of magnitude larger. Even though about 30% of these estimates from all Level 2.0 Cimel data fall within the 0.4 to approx. 0.5% variation level, ground-based estimates are not able to capture the 27-day solar variation observed from SOLSTICE.

  6. Kepler and Ground-based Transits of the Exo-Neptune HAT-P-11b

    CERN Document Server

    Deming, Drake; Jackson, Brian; Peterson, Steven W; Agol, Eric; Knutson, Heather A; Jennings, Donald E; Haase, Flynn; Bays, Kevin

    2011-01-01

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B-band) and near-IR (J-band). Both the planet and host star are smaller than previously believed; our analysis yields Rp=4.31 +/-0.06 Earth-radii, and Rs = 0.683 +/-0.009 solar radii, both about 3-sigma smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transit duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler tr...

  7. Structure and evolution of Pluto's Atmosphere from ground-based stellar occultations between 2002 and 2015

    Science.gov (United States)

    Meza, Erick; Sicardy, Bruno; Rio de Janeiro occultation team, Granada occultation team, International Occultation and Timing Association

    2016-10-01

    Ground-Based stellar occultations probe Pluto's atmosphere from about 3 km altitude (~ 10 μbar pressure level) up to 260 km altitude (~0.1 μbar). Our main goal is to derive Pluto's atmosphere evolution using thirteen ground-based occultations observed between 2002 and 2015 (plus 2016, if available). We consistently analyze the light curves using the Dias et al. (ApJ 811, 53, 2015) model, and confirm the general pressure increase by a factor of about 1.5 between 2002 and 2015 and a factor of almost three between 1988 and 2015. Implications for Pluto's seasonal evolution will be briefly discussed in the context of the New Horizons (NH) findings.Ground-based-derived temperature profiles will be compared with NH's results, where we use new temperature boundary conditions in our inversion procedures, as given by NH near 260 km altitude. Although the profiles reasonably agree, significant discrepancies are observed both in the deeper stratospheric zone (altitude topographic features revealed by NH.Finally, possible correlations between spike activity in the occultation light-curves and local underlying presence of free nitrogen ice terrains will be investigated.Part of the research leading to these results has received funding from the European Research Council under the European Community's H2020 (2014-2020/ ERC Grant Agreement n 669416 "LUCKY STAR").

  8. Synchronized observations by using the STEREO and the largest ground-based decametre radio telescope

    Science.gov (United States)

    Konovalenko, A. A.; Stanislavsky, A. A.; Rucker, H. O.; Lecacheux, A.; Mann, G.; Bougeret, J.-L.; Kaiser, M. L.; Briand, C.; Zarka, P.; Abranin, E. P.; Dorovsky, V. V.; Koval, A. A.; Mel'nik, V. N.; Mukha, D. V.; Panchenko, M.

    2013-08-01

    We consider the approach to simultaneous (synchronous) solar observations of radio emission by using the STEREO-WAVES instruments (frequency range 0.125-16 MHz) and the largest ground-based low-frequency radio telescope. We illustrate it by the UTR-2 radio telescope implementation (10-30 MHz). The antenna system of the radio telescope is a T-shape-like array of broadband dipoles and is located near the village Grakovo in the Kharkiv region (Ukraine). The third observation point on the ground in addition to two space-based ones improves the space-mission performance capabilities for the determination of radio-emission source directivity. The observational results from the high sensitivity antenna UTR-2 are particularly useful for analysis of STEREO data in the condition of weak event appearances during solar activity minima. In order to improve the accuracy of flux density measurements, we also provide simultaneous observations with a large part of the UTR-2 radio telescope array and its single dipole close to the STEREO-WAVES antennas in sensitivity. This concept has been studied by comparing the STEREO data with ground-based records from 2007-2011 and shown to be effective. The capabilities will be useful in the implementation of new instruments (LOFAR, LWA, MWA, etc.) and during the future Solar Orbiter mission.

  9. Phase-coherent mapping of gravitational-wave backgrounds using ground-based laser interferometers

    CERN Document Server

    Romano, Joseph D; Cornish, Neil J; Gair, Jonathan; Mingarelli, Chiara M F; van Haasteren, Rutger

    2015-01-01

    We extend the formalisms developed in Gair et al. and Cornish and van Haasteren to create maps of gravitational-wave backgrounds using a network of ground-based laser interferometers. We show that in contrast to pulsar timing arrays, which are insensitive to half of the gravitational-wave sky (the curl modes), a network of ground-based interferometers is sensitive to both the gradient and curl components of the background. The spatial separation of a network of interferometers, or of a single interferometer at different times during its rotational and orbital motion around the Sun, allows for recovery of both components. We derive expressions for the response functions of a laser interferometer in the small-antenna limit, and use these expressions to calculate the overlap reduction function for a pair of interferometers. We also construct maximum-likelihood estimates of the + and x-polarization modes of the gravitational-wave sky in terms of the response matrix for a network of ground-based interferometers, e...

  10. A Ground-Based Array to Observe Geospace Electrodynamics During Adverse Space Weather Conditions

    Science.gov (United States)

    Sojka, J. J.; Eccles, J. V.; Rice, D.

    2004-05-01

    Geomagnetic Storms occur with surprising frequency and create adverse space weather conditions. During these periods, our knowledge and ability to specify or forecast in adequate detail for user needs is negligible. Neither experimental observations nor theoretical developments have made a significant new impact on the problem for over two decades. Although we can now map Total Electron Content (TEC) in the ionosphere over a continent with sufficient resolution to see coherent long-lived structures, these do not provide constraints on the geospace electrodynamics that is at the heart of our lack of understanding. We present arguments for the need of a continental deployment of ground-based sensors to stepwise advance our understanding of the geospace electrodynamics when it is most adverse from a space weather perspective and also most frustrating from an understanding of Magnetosphere-Ionosphere coupling. That a continental-scale deployment is more productive at addressing the problem than a realizable global distribution is shown. Each measurement is discussed from the point-of-view of either providing new knowledge or becoming a key for future real-time specification and forecasting for user applications. An example of a storm database from one mid-latitude station for the 31 March 2002 is used as a conceptual point in a ground-based array. The presentation focuses on scientific questions that have eluded a quantitative solution for over three decades and view a ground-based array as an "IGY" type of catalyst for answering these questions.

  11. Lidar-Based Estimates of Above-Ground Biomass in the Continental US and Mexico Using Ground, Airborne, and Satellite Observations

    Science.gov (United States)

    Nelson, Ross; Margolis, Hank; Montesano, Paul; Sun, Guoqing; Cook, Bruce; Corp, Larry; Andersen, Hans-Erik; DeJong, Ben; Pellat, Fernando Paz; Fickel, Thaddeus; Kauffman, Jobriath; Prisley, Stephen

    2016-01-01

    Existing national forest inventory plots, an airborne lidar scanning (ALS) system, and a space profiling lidar system (ICESat-GLAS) are used to generate circa 2005 estimates of total aboveground dry biomass (AGB) in forest strata, by state, in the continental United States (CONUS) and Mexico. The airborne lidar is used to link ground observations of AGB to space lidar measurements. Two sets of models are generated, the first relating ground estimates of AGB to airborne laser scanning (ALS) measurements and the second set relating ALS estimates of AGB (generated using the first model set) to GLAS measurements. GLAS then, is used as a sampling tool within a hybrid estimation framework to generate stratum-, state-, and national-level AGB estimates. A two-phase variance estimator is employed to quantify GLAS sampling variability and, additively, ALS-GLAS model variability in this current, three-phase (ground-ALS-space lidar) study. The model variance component characterizes the variability of the regression coefficients used to predict ALS-based estimates of biomass as a function of GLAS measurements. Three different types of predictive models are considered in CONUS to determine which produced biomass totals closest to ground-based national forest inventory estimates - (1) linear (LIN), (2) linear-no-intercept (LNI), and (3) log-linear. For CONUS at the national level, the GLAS LNI model estimate (23.95 +/- 0.45 Gt AGB), agreed most closely with the US national forest inventory ground estimate, 24.17 +/- 0.06 Gt, i.e., within 1%. The national biomass total based on linear ground-ALS and ALS-GLAS models (25.87 +/- 0.49 Gt) overestimated the national ground-based estimate by 7.5%. The comparable log-linear model result (63.29 +/-1.36 Gt) overestimated ground results by 261%. All three national biomass GLAS estimates, LIN, LNI, and log-linear, are based on 241,718 pulses collected on 230 orbits. The US national forest inventory (ground) estimates are based on 119

  12. Life-Cycle Assessments of Selected NASA Ground-Based Test Facilities

    Science.gov (United States)

    Sydnor, George Honeycutt

    2012-01-01

    In the past two years, two separate facility-specific life cycle assessments (LCAs) have been performed as summer student projects. The first project focused on 13 facilities managed by NASA s Aeronautics Test Program (ATP), an organization responsible for large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. A facility inventory was created for each facility, and the operational-phase carbon footprint and environmental impact were calculated. The largest impacts stemmed from electricity and natural gas used directly at the facility and to generate support processes such as compressed air and steam. However, in specialized facilities that use unique inputs like R-134a, R-14, jet fuels, or nitrogen gas, these sometimes had a considerable effect on the facility s overall environmental impact. The second LCA project was conducted on the NASA Ames Arc Jet Complex and also involved creating a facility inventory and calculating the carbon footprint and environmental impact. In addition, operational alternatives were analyzed for their effectiveness at reducing impact. Overall, the Arc Jet Complex impact is dominated by the natural-gas fired boiler producing steam on-site, but alternatives were provided that could reduce the impact of the boiler operation, some of which are already being implemented. The data and results provided by these LCA projects are beneficial to both the individual facilities and NASA as a whole; the results have already been used in a proposal to reduce carbon footprint at Ames Research Center. To help future life cycle projects, several lessons learned have been recommended as simple and effective infrastructure improvements to NASA, including better utility metering and data recording and standardization of modeling choices and methods. These studies also increased sensitivity to and appreciation for quantifying the impact of NASA s activities.

  13. Modernizing the ATLAS Simulation Infrastructure

    CERN Document Server

    Di Simone, Andrea; The ATLAS collaboration

    2016-01-01

    The ATLAS Simulation infrastructure has been used to produce upwards of 50 billion proton-proton collision events for analyses ranging from detailed Standard Model measurements to searches for exotic new phenomena. In the last several years, the infrastructure has been heavily revised to allow intuitive multithreading and significantly improved maintainability. Such a massive update of a legacy code base requires careful choices about what pieces of code to completely rewrite and what to wrap or revise. The initialization of the complex geometry was generalized to allow new tools and geometry description languages, popular in some detector groups. The addition of multithreading requires Geant4 MT and GaudiHive, two frameworks with fundamentally different approaches to multithreading, to work together. It also required enforcing thread safety throughout a large code base, which required the redesign of several aspects of the simulation, including “truth,” the record of particle interactions with the detect...

  14. Modernizing the ATLAS Simulation Infrastructure

    CERN Document Server

    Di Simone, Andrea; The ATLAS collaboration

    2017-01-01

    The ATLAS Simulation infrastructure has been used to produce upwards of 50 billion proton-proton collision events for analyses ranging from detailed Standard Model measurements to searches for exotic new phenomena. In the last several years, the infrastructure has been heavily revised to allow intuitive multithreading and significantly improved maintainability. Such a massive update of a legacy code base requires careful choices about what pieces of code to completely rewrite and what to wrap or revise. The initialization of the complex geometry was generalized to allow new tools and geometry description languages, popular in some detector groups. The addition of multithreading requires Geant4-MT and GaudiHive, two frameworks with fundamentally different approaches to multithreading, to work together. It also required enforcing thread safety throughout a large code base, which required the redesign of several aspects of the simulation, including “truth,” the record of particle interactions with the detect...

  15. Space-Based Internet of Things Applications Based on Integrated Ground-Air-Space Information Network%天地一体化信息网络天基物联网应用体系研究

    Institute of Scientific and Technical Information of China (English)

    曾业; 周永将

    2016-01-01

    天地一体化信息网络是国家重点工程之一,是未来我国信息时代的战略性公共信息基础设施。随着跨境电子商务、智能家居、智能航空管理等物联网应用的蓬勃发展,对发展天基物联网提出了急需。因此将天地一体化网络工程建设与天基物联网应用服务紧密结合非常重要。本文将主要对基于天地一体化信息网络工程的物联网应用体系进行研究,包括参考模型、网络架构、协议体系和软件系统等几个方面,为天地一体化信息网络工程的建设奠定基础。%As one of the key project in our country,the integrated ground-air-space information network will be the strategic infrastructure and technology in the coming information times. As the development of cross-border electronic commerce, smart home and intelligence air manages, the necessary on the development of space-based internet of things is presented, so it is significant to combine the building of integrated ground-air-space information network project with space-based internet of things applications. This paper focus on the research of space-based internet of things applications based on integrated ground-air-space information network, includes reference model, network architecture, software system and protocols architecture, and lay the foundation to build the integrated ground-air-space information network project.

  16. National infrastructure maintenance strategy for South Africa

    CSIR Research Space (South Africa)

    Wall, K

    2009-05-01

    Full Text Available especially in respect of those at local government level. The National Infrastructure Maintenance Strategy sets overarching national policy for sector-based initiatives, and describes the framework for a coordinated programme of actions. Simultaneous...

  17. National Infrastructure Maintenance Strategy and its implementation

    CSIR Research Space (South Africa)

    Wall, K

    2008-10-01

    Full Text Available The National Infrastructure Maintenance Strategy (NIMS) was approved by Cabinet in 2006. This Strategy sets overarching policy for sector-based initiatives and describes the framework for a coordinated programme of actions. It is an essential part...

  18. Progress with the national infrastructure maintenance strategy

    CSIR Research Space (South Africa)

    Wall, K

    2008-07-01

    Full Text Available The National Infrastructure Maintenance Strategy was approved by Cabinet in August 2006. This strategy sets overarching policy for sector-based initiatives, and describes the framework for a coordinated programme of actions. Simultaneous...

  19. Community-Based Soil Quality Assessment As a Tool for Designing an Urban Green Infrastructure Network to Manage Runoff.

    Science.gov (United States)

    Klimas, C.; Montgomery, J.

    2014-12-01

    Green infrastructure (GI) may be the most practical approach for reducing contaminated runoff, providing ecosystem services, mitigating food deserts and creating community open spaces in urban areas. This project was funded by the USEPA's People-Prosperity-Planet (P3) program and was a partnership between a team of DePaul University undergraduates (the P3 team) and high school interns (Green Teens) and staff from the Gary Comer Youth Center (GCYC). GCYC is located in a low-income African-American community on Chicago's south side characterized by high crime, abandoned buildings, lack of green space and a food desert. The overaching project goal was to develop a network of Green Teens qualified to conduct soil quality assessment using USDA-NRCS protocols in order to let them develop GI plans to minimize storm water runoff and contaminant loadings, improve community and environmental health, and provide more equitable access to green space. Working with a USDA-ARS soil scientist from Washington State University, the P3 team conducted soil quality assessment on 116 soil samples collected among four abandoned residential lots owned by GCYC. Analytes included infiltration, bulk density, texture, pH, conductivity, aggregate stability, available nutrients, and total and bioavailable (PBET) lead. Soil pH on all lots is greater than 8.0, are low in organic matter, have little microbial respiration activity, are enriched in available phosphorus, and have average total lead values ranging from 24-2,700 mg/kg. PBET lead was less than 40% on most lots. Regardless, these soils will need to be remediated by adding carbon-rich materials such as biosolids prior to GI installation. Students enrolled in a landscape design course at DePaul developed 3-D models representing potential GI designs for one of the vacant lots that include strategies for immobilizing heavy metals, reducing runoff, and which are tied into an educational module for neighborhood school children.

  20. MFC Communications Infrastructure Study

    Energy Technology Data Exchange (ETDEWEB)

    Michael Cannon; Terry Barney; Gary Cook; George Danklefsen, Jr.; Paul Fairbourn; Susan Gihring; Lisa Stearns

    2012-01-01

    Unprecedented growth of required telecommunications services and telecommunications applications change the way the INL does business today. High speed connectivity compiled with a high demand for telephony and network services requires a robust communications infrastructure.   The current state of the MFC communication infrastructure limits growth opportunities of current and future communication infrastructure services. This limitation is largely due to equipment capacity issues, aging cabling infrastructure (external/internal fiber and copper cable) and inadequate space for telecommunication equipment. While some communication infrastructure improvements have been implemented over time projects, it has been completed without a clear overall plan and technology standard.   This document identifies critical deficiencies with the current state of the communication infrastructure in operation at the MFC facilities and provides an analysis to identify needs and deficiencies to be addressed in order to achieve target architectural standards as defined in STD-170. The intent of STD-170 is to provide a robust, flexible, long-term solution to make communications capabilities align with the INL mission and fit the various programmatic growth and expansion needs.