WorldWideScience

Sample records for ground based gps

  1. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  2. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  3. Ground Based GPS Phase Measurements for Atmospheric Sounding

    Science.gov (United States)

    2016-06-14

    based GPS observations for the correction of radar observations. 6 REFERENCES Alber, C., R. Ware, C. Rocken, and J. Braun, A new method for sensing ...rocken@ucar.edu Award #: N00014-97-1-0258 LONG-TERM GOAL The goal is to develop GPS remote sensing techniques to determine atmospheric signal delay and...agrees best with the observations in a least squares sense is selected. The corresponding refractivity profile is then selected. • We tested this

  4. Analysis of meteorological variables in the Australasian region using ground- and space-based GPS techniques

    Science.gov (United States)

    Kuleshov, Yuriy; Choy, Suelynn; Fu, Erjiang Frank; Chane-Ming, Fabrice; Liou, Yuei-An; Pavelyev, Alexander G.

    2016-07-01

    Results of analysis of meteorological variables (temperature and moisture) in the Australasian region using the global positioning system (GPS) radio occultation (RO) and GPS ground-based observations verified with in situ radiosonde (RS) data are presented. The potential of using ground-based GPS observations for retrieving column integrated precipitable water vapour (PWV) over the Australian continent has been demonstrated using the Australian ground-based GPS reference stations network. Using data from the 15 ground-based GPS stations, the state of the atmosphere over Victoria during a significant weather event, the March 2010 Melbourne storm, has been investigated, and it has been shown that the GPS observations has potential for monitoring the movement of a weather front that has sharp moisture contrast. Temperature and moisture variability in the atmosphere over various climatic regions (the Indian and the Pacific Oceans, the Antarctic and Australia) has been examined using satellite-based GPS RO and in situ RS observations. Investigating recent atmospheric temperature trends over Antarctica, the time series of the collocated GPS RO and RS data were examined, and strong cooling in the lower stratosphere and warming through the troposphere over Antarctica has been identified, in agreement with outputs of climate models. With further expansion of the Global Navigation Satellite Systems (GNSS) system, it is expected that GNSS satellite- and ground-based measurements would be able to provide an order of magnitude larger amount of data which in turn could significantly advance weather forecasting services, climate monitoring and analysis in the Australasian region.

  5. REMOTE SENSING OF WATER VAPOR CONTENT USING GROUND-BASED GPS DATA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Spatial and temporal resolution of water vapor content is useful in improving the accuracy of short-term weather prediction.Dense and continuously tracking regional GPS arrays will play an important role in remote sensing atmospheric water vapor content.In this study,a piecewise linear solution method was proposed to estimate the precipitable water vapor (PWV) content from ground-based GPS observations in Hong Kong.To evaluate the solution accuracy of the water vapor content sensed by GPS,the upper air sounding data (radiosonde) that are collected locally was used to calculate the precipitable water vapor during the same period.One-month results of PWV from both ground-based GPS sensing technique and radiosonde method are in agreement within 1~2 mm.This encouraging result will motivate the GPS meteorology application based on the establishment of a dense GPS array in Hong Kong.

  6. Navigating the Return Trip from the Moon Using Earth-Based Ground Tracking and GPS

    Science.gov (United States)

    Berry, Kevin; Carpenter, Russell; Moreau, Michael C.; Lee, Taesul; Holt, Gregg N.

    2009-01-01

    NASA s Constellation Program is planning a human return to the Moon late in the next decade. From a navigation perspective, one of the most critical phases of a lunar mission is the series of burns performed to leave lunar orbit, insert onto a trans-Earth trajectory, and target a precise re-entry corridor in the Earth s atmosphere. A study was conducted to examine sensitivity of the navigation performance during this phase of the mission to the type and availability of tracking data from Earth-based ground stations, and the sensitivity to key error sources. This study also investigated whether GPS measurements could be used to augment Earth-based tracking data, and how far from the Earth GPS measurements would be useful. The ability to track and utilize weak GPS signals transmitted across the limb of the Earth is highly dependent on the configuration and sensitivity of the GPS receiver being used. For this study three GPS configurations were considered: a "standard" GPS receiver with zero dB antenna gain, a "weak signal" GPS receiver with zero dB antenna gain, and a "weak signal" GPS receiver with an Earth-pointing direction antenna (providing 10 dB additional gain). The analysis indicates that with proper selection and configuration of the GPS receiver on the Orion spacecraft, GPS can potentially improve navigation performance during the critical final phases of flight prior to Earth atmospheric entry interface, and may reduce reliance on two-way range tracking from Earth-based ground stations.

  7. Evaluation of Real-Time Ground-Based GPS Meteorology

    Science.gov (United States)

    Fang, P.; Bock, Y.; Gutman, S.

    2003-04-01

    We demonstrate and evaluate a system to estimate zenith tropospheric delays in real time (5-10 minute latency) based on the technique of instantaneous GPS positioning as described by Bock et al. [2000] using data from the Orange County Real Time GPS Network. OCRTN is an upgrade of a sub-network of SCIGN sites in southern California to low latency (1-2 sec), high-rate (1 Hz) data streaming. Currently, ten sites are streaming data (Ashtech binary MBEN format) by means of dedicated, point-to-point radio modems to a network hub that translates the asynchronous serial data to TCP/IP and onto a PC workstation residing on a local area network. Software residing on the PC allows multiple clients to access the raw data simultaneously though TCP/IP. One of the clients is a Geodetics RTD server that receives and archives (1) the raw 1 Hz network data, (2) estimates of instantaneous positions and zenith tropospheric delays, and (3) RINEX data to decimated to 30 seconds. The network is composed of ten sites. The distribution of nine of the sites approximates a right triangle with two 60 km legs, and a tenth site on Catalina Island a distance of about 50 km (over water) from the hypotenuse of the triangle. Relative zenith delays are estimated every second with a latency less than a second. Median values are computed at a user-specified interval (e.g., 10 minutes) with outliers greater than 4 times the interquartile range rejected. We describe the results with those generated by our operational system using the GAMIT software, with a latency of 30-60 minutes. Earlier results (from a similar network) comparing 30-minute median RTD values to GAMIT 30-minute estimates indicate that the two solutions differ by about 1 cm. We also describe our approach to determining absolute zenith delays. If an Internet connection is available we will present a real-time demonstration. [Bock, Y., R. Nikolaidis, P. J. de Jonge, and M. Bevis, Instantaneous resolution of crustal motion at medium

  8. Precipitable Water Vapor Estimates in the Australian Region from Ground-Based GPS Observations

    Directory of Open Access Journals (Sweden)

    Suelynn Choy

    2015-01-01

    Full Text Available We present a comparison of atmospheric precipitable water vapor (PWV derived from ground-based global positioning system (GPS receiver with traditional radiosonde measurement and very long baseline interferometry (VLBI technique for a five-year period (2008–2012 using Australian GPS stations. These stations were selectively chosen to provide a representative regional distribution of sites while ensuring conventional meteorological observations were available. Good agreement of PWV estimates was found between GPS and VLBI comparison with a mean difference of less than 1 mm and standard deviation of 3.5 mm and a mean difference and standard deviation of 0.1 mm and 4.0 mm, respectively, between GPS and radiosonde measurements. Systematic errors have also been discovered during the course of this study, which highlights the benefit of using GPS as a supplementary atmospheric PWV sensor and calibration system. The selected eight GPS sites sample different climates across Australia covering an area of approximately 30° NS/EW. It has also shown that the magnitude and variation of PWV estimates depend on the amount of moisture in the atmosphere, which is a function of season, topography, and other regional climate conditions.

  9. Geocenter Coordinates from a Combined Processing of LEO and Ground-based GPS Observations

    Science.gov (United States)

    Männel, Benjamin; Rothacher, Markus

    2017-04-01

    The GPS observations provided by the global IGS (International GNSS Service) tracking network play an important role for the realization of a unique terrestrial reference frame that is accurate enough to allow the monitoring of the Earth's system. Combining these ground-based data with GPS observations tracked by high-quality dual-frequency receivers on-board Low Earth Orbiters (LEO) might help to further improve the realization of the terrestrial reference frame and the estimation of the geocenter coordinates, GPS satellite orbits and Earth rotation parameters (ERP). To assess the scope of improvement, we processed a network of 50 globally distributed and stable IGS-stations together with four LEOs (GRACE-A, GRACE-B, OSTM/Jason-2 and GOCE) over a time interval of three years (2010-2012). To ensure fully consistent solutions the zero-difference phase observations of the ground stations and LEOs were processed in a common least-square adjustment, estimating GPS orbits, LEO orbits, station coordinates, ERPs, site-specific tropospheric delays, satellite and receiver clocks and ambiguities. We present the significant impact of the individual LEOs and a combination of all four LEOs on geocenter coordinates derived by using a translational approach (also called network shift approach). In addition, we present geocenter coordinates derived from the same set of GPS observations by using a unified approach. This approach combines the translational and the degree-one approach by estimating translations and surface deformations simultaneously. Based on comparisons against each other and against geocenter time series derived by other techniques the effect of the selected approach is assessed.

  10. Geocenter variations derived from a combined processing of LEO- and ground-based GPS observations

    Science.gov (United States)

    Männel, Benjamin; Rothacher, Markus

    2017-08-01

    GNSS observations provided by the global tracking network of the International GNSS Service (IGS, Dow et al. in J Geod 83(3):191-198, 2009) play an important role in the realization of a unique terrestrial reference frame that is accurate enough to allow a detailed monitoring of the Earth's system. Combining these ground-based data with GPS observations tracked by high-quality dual-frequency receivers on-board low earth orbiters (LEOs) is a promising way to further improve the realization of the terrestrial reference frame and the estimation of geocenter coordinates, GPS satellite orbits and Earth rotation parameters. To assess the scope of the improvement on the geocenter coordinates, we processed a network of 53 globally distributed and stable IGS stations together with four LEOs (GRACE-A, GRACE-B, OSTM/Jason-2 and GOCE) over a time interval of 3 years (2010-2012). To ensure fully consistent solutions, the zero-difference phase observations of the ground stations and LEOs were processed in a common least-squares adjustment, estimating all the relevant parameters such as GPS and LEO orbits, station coordinates, Earth rotation parameters and geocenter motion. We present the significant impact of the individual LEO and a combination of all four LEOs on the geocenter coordinates. The formal errors are reduced by around 20% due to the inclusion of one LEO into the ground-only solution, while in a solution with four LEOs LEO-specific characteristics are significantly reduced. We compare the derived geocenter coordinates w.r.t. LAGEOS results and external solutions based on GPS and SLR data. We found good agreement in the amplitudes of all components; however, the phases in x- and z-direction do not agree well.

  11. Seismo-traveling ionospheric disturbances of earthquake and tsunami waves observed by space- and ground-based GPS receivers

    Science.gov (United States)

    Liu, J. Y. G.; Chen, C. Y.; Lin, C. H.

    2015-12-01

    FORMOSAT-3/COSMIC (F3/C) is a constellation of six microsatellites launched on April 15, 2006 and has been orbiting with 72° inclination at 700 to 800 km above the earth since December 2007. The main payload of the F3/C is the GPS Occultation eXperiment (GOX) which carries out probing the radio occultation (RO) total electron content between GPS satellite and F3/C. Therefore, F3/C provides us an excellent opportunity to vertically scan ionospheric electron density from 100 up to 800 km altitude. On the other hand, worldwide ground-based GPS receivers can be employed to observe traveling ionospheric disturbances of the TEC. Here, we present the ionosphere response to seismic and tsunami waves by means of F3/C RO TEC and worldwide ground-based GPS TEC as well as existing data of infrasondes, magnetometers, and Doppler sounding systems during the 11 March 2011 M9.0 Tohoku earthquake.

  12. Atmospheric Water Monitoring by Using Ground-Based GPS during Heavy Rains Produced by TPV and SWV

    Directory of Open Access Journals (Sweden)

    Guoping Li

    2013-01-01

    Full Text Available The time series of precipitable water (PW in 30 min intervals has been determined through experimentation and operational application of a ground-based global positioning system (GPS network in Chengdu Plain, which is used for precise and reliable meteorological research. This study is the first to apply PW to the southwest vortex (SWV and heavy rain events by using the data from an intensive SWV experiment conducted in summer 2010. The PW derived from the local ground-based GPS network was used in the monitoring and analysis of heavy rain caused by the SWV and the Tibetan Plateau vortex (TPV. Results indicate that an increase in GPS precipitable water (GPS-PW occurs prior to the development of the TPV and SWV; rainfall occurs mainly during high levels of GPS-PW. The evolution features of GPS-PW in rainfall process caused by different weather systems over the Tibetan Plateau (TP also differ. These results indicate the reference values for operational applications of GPS-PW data in short-term forecasting and nowcasting of high-impact weather in addition to further investigation of heavy rain caused by the TPV, SWV, and other severe weather systems over the TP.

  13. Integrated water vapor from IGS ground-based GPS observations. Initial results from a global 5-min data set

    Energy Technology Data Exchange (ETDEWEB)

    Heise, S.; Dick, G.; Gendt, G.; Schmidt, T.; Wickert, J. [GFZ German Research Centre for Geosciences, Potsdam (Germany). Dept. 1 Geodesy and Remote Sensing

    2009-07-01

    Ground based GPS zenith path delay (ZPD) measurements are well established as a powerful tool for integrated water vapor (IWV) observation. The International GNSS Service (IGS) provides ZPD data of currently more than 300 globally distributed GPS stations. To derive IWV from these data, meteorological information (ground pressure and mean temperature above the station) are needed. Only a limited number of IGS stations is equipped with meteorological ground sensors up to now. Thus, meteorological data for IWV conversion are usually derived from nearby ground meteorological observations (ground pressure) and meteorological analyses (mean temperature). In this paper we demonstrate for the first time the applicability of ground pressure data from ECMWF meteorological analysis fields in this context. Beside simplified data handling (no single station data and quality control) this approach allows for IWV derivation if nearby meteorological stations are not available. Using ECMWF ground pressure and mean temperature data the new IGS 5-min ZPD data set has been converted to IWV for the first time. We present initial results from selected stations with ground meteorological sensors including pressure and temperature comparisons between ECMWF and local measurements. The GPS IWV is generally validated by comparison with ECMWF IWV. The ECMWF derived station meteorological data are compared with local measurements at all accordingly equipped stations. Based on this comparison, the mean error (in terms of standard deviation) introduced by time interpolation of the 6-hourly ECMWF data is estimated below 0.2 mm IWV. (orig.)

  14. Assessment of NASA Airborne Laser Altimetry Data Using Ground-Based GPS Data near Summit Station, Greenland

    Science.gov (United States)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-01-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airbornelaser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface elevation biases for these altimeters over the flat, ice-sheet interior are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  15. Mapping the East African Ionosphere Using Ground-based GPS TEC Measurements

    Science.gov (United States)

    Mengist, Chalachew Kindie; Kim, Yong Ha; Yeshita, Baylie Damtie; Workayehu, Abyiot Bires

    2016-03-01

    The East African ionosphere (3°S-18°N, 32°E-50°E) was mapped using Total Electron Content (TEC) measurements from ground-based GPS receivers situated at Asmara, Mekelle, Bahir Dar, Robe, Arbaminch, and Nairobi. Assuming a thin shell ionosphere at 350 km altitude, we project the Ionospheric Pierce Point (IPP) of a slant TEC measurement with an elevation angle of >10° to its corresponding location on the map. We then infer the estimated values at any point of interest from the vertical TEC values at the projected locations by means of interpolation. The total number of projected IPPs is in the range of 24-66 at any one time. Since the distribution of the projected IPPs is irregularly spaced, we have used an inverse distance weighted interpolation method to obtain a spatial grid resolution of 1°×1° latitude and longitude, respectively. The TEC maps were generated for the year 2008, with a 2 hr temporal resolution. We note that TEC varies diurnally, with a peak in the late afternoon (at 1700 LT), due to the equatorial ionospheric anomaly. We have observed higher TEC values at low latitudes in both hemispheres compared to the magnetic equatorial region, capturing the ionospheric distribution of the equatorial anomaly. We have also confirmed the equatorial seasonal variation in the ionosphere, characterized by minimum TEC values during the solstices and maximum values during the equinoxes. We evaluate the reliability of the map, demonstrating a mean error (difference between the measured and interpolated values) range of 0.04-0.2 TECU (Total Electron Content Unit). As more measured TEC values become available in this region, the TEC map will be more reliable, thereby allowing us to study in detail the equatorial ionosphere of the African sector, where ionospheric measurements are currently very few.

  16. Open-loop GPS signal tracking at low elevation angles from a ground-based observation site

    Science.gov (United States)

    Beyerle, Georg; Zus, Florian

    2017-01-01

    A 1-year data set of ground-based GPS signal observations aiming at geometric elevation angles below +2° is analysed. Within the "GLESER" measurement campaign about 2600 validated setting events were recorded by the "OpenGPS" open-loop tracking receiver at an observation site located at 52.3808° N, 13.0642° E between January and December 2014. The measurements confirm the feasibility of open-loop signal tracking down to geometric elevation angles of -1 to -1.5° extending the corresponding closed-loop tracking range by up to 1°. The study is based on the premise that observations of low-elevation events by a ground-based receiver may serve as test cases for space-based radio occultation measurements, even if the latter proceed at a significantly faster temporal scale. The results support the conclusion that the open-loop Doppler model has negligible influence on the derived carrier frequency profile for strong signal-to-noise density ratios above about 30 dB Hz. At lower signal levels, however, the OpenGPS receiver's dual-channel design, which tracks the same signal using two Doppler models differing by 10 Hz, uncovers a notable bias. The repeat patterns of the GPS orbit traces in terms of azimuth angle reveal characteristic signatures in both signal amplitude and Doppler frequency with respect to the topography close to the observation site. Mean vertical refractivity gradients, extracted from ECMWF meteorological fields, correlate weakly to moderately with observed signal amplitude fluctuations at geometric elevation angles between +1 and +2°. Results from multiple phase screen simulations support the interpretation that these fluctuations are at least partly produced by atmospheric multipath; at negative elevation angles diffraction at the ground surface seems to contribute.

  17. Assimilative Modeling of Ionospheric Disturbances with FORMOSAT-3/COSMIC and Ground-Based GPS Measurements

    Directory of Open Access Journals (Sweden)

    Xiaoqing Pi

    2009-01-01

    Full Text Available The four-dimensional Global Assimilative Ionospheric Model (GAIM is applied to a study of ionospheric disturbances. The investigation is focused on disturbance features, particularly in the altitude and latitude dimensions, at low latitudes during a geomagnetic storm on 7 August 2006, under solar minimum conditions. The modeling of storm-time ionospheric state (electron density is conducted by assimilating an unprecedented volume of line-of-sight TEC data collected by the Global Positioning System (GPS occultation receivers on board six FORMOSAT-3/COSMIC satellites and geodetic-quality GPS receivers at two hundred globally-distributed ground tracking stations.With a band-limited Kalman filter technique to update the ionospheric state, the assimilative modeling reveals a pronounced enhancement in the equatorial anomaly in the East Asia sector during dusk and evening hours. The disturbance characteristics, obtained by comparing with the quiet conditions prior to the storm also modeled in this study through data assimilation, include lifted F layer and reduced electron density in the equatorial region, enhanced density at the magnetically conjugate anomaly latitudes, and tilted feature of density increase towards higher altitudes at lower latitudes. The characteristics are attributed to the enhanced plasma fountain effect driven by an enhanced eastward zonal electric field. These results enable us to distinguish the storm-time electric field perturbations clearly from other sources during the storm. The possible origins of electric field perturbations are also discussed, including penetration of the magnetospheric electric field and wind dynamo disturbances.

  18. Precipitable water vapor and its relationship with the Standardized Precipitation Index: ground-based GPS measurements and reanalysis data

    Science.gov (United States)

    Bordi, Isabella; Zhu, Xiuhua; Fraedrich, Klaus

    2016-01-01

    Monthly means of ground-based GPS measurements of precipitable water vapor (PWV) from six stations in the USA covering the period January 2007-December 2012 are analyzed to investigate their usefulness for monitoring meteorological wet/dry spells. For this purpose, the relationship between PWV and the Standardized Precipitation Index (SPI) on 1-month timescale is investigated. The SPI time series at grid points close to the stations are computed using gridded precipitation records from the NOAA Climate Prediction Center (CPC) unified precipitation dataset (January 1948-April 2012). GPS measurements are first verified against PWV data taken from the latest ECMWF reanalysis ERA-Interim; these PWV reanalysis data, which extend back to 1979, are then used jointly with CPC precipitation to compute precipitation efficiency (PE), defined as the percentage of total water vapor content that falls onto the surface as measurable precipitation in a given time period. The overall results suggest that (i) PWV time series are dominated by the seasonal cycle with maximum values during summer months, (ii) the comparison between GPS and ERA-Interim PWV monthly data shows good agreement with differences less than 4 mm, (iii) at all stations and for almost all months, PWV is only poorly correlated with recorded precipitation and the SPI, while PE correlates highly with the SPI, providing an estimate of the water availability at a given location and useful information on wet/dry spell occurrence, and (iv) long data records would allow, for each month of the year, the identification of PE thresholds associated with different SPI classes that, in turn, have potential for forecasting meteorological wet/dry spells. Thus, it is through PE that ground-based GPS measurements appear of relevance for assessing wet/dry spells, although there is not a direct relationship between PWV and SPI.

  19. Global Three-Dimensional Ionospheric Data Assimilation Model Using Ground-based GPS and Radio Occultation Total Electron Content

    Science.gov (United States)

    Jann-Yenq Liu, Tiger; Lin, Chi-Yen; Matsuo, Tomoko; Lin, Charles C. H.; Tsai, Ho-Fang; Chen, Chao-Yen

    2017-04-01

    An ionospheric data assimilation approach presented here is based on the Gauss-Markov Kalman filter with International Reference Ionosphere (IRI) as the background model and designed to assimilate the total electron content (TEC) observed from ground-based GPS receivers and space-based radio occultation (RO) of FORMOSAT-3/COSMIC (F3/C) or FORMOSAT-7/COSMIC-2 (F7/C2). The Kalman filter consists of the forecast step according to Gauss-Markov process and measurement update step. Observing System Simulation Experiments (OSSEs) show that the Gauss-Markov Kalman filter procedure can increase the accuracy of the data assimilation analysis over the procedure consisting of the measurement update step alone. Moreover, in comparing to F3/C, the dense F7/C2 RO observation can further increase the model accuracy significantly. Validating the data assimilation results with the vertical TEC in Global Ionosphere Maps and that derived from ground-based GPS measurements, as well as the ionospheric F2-peak height and electron density sounded by ionosondes is also carried out. Both the OSSE results and the observation validations confirm that the developed data assimilation model can be used to reconstruct the three-dimensional electron density in the ionosphere satisfactorily.

  20. Synthesis Analysis of One Severe Convection Precipitation Event in Jiangsu Using Ground-Based GPS Technology

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2015-07-01

    Full Text Available Global positioning system (GPS detection technology has several advantageous characteristics (i.e., all-weather applications, high accuracy, high spatial and temporal resolution, and low cost, and GPS tracking and monitoring techniques for water vapor have developed rapidly in recent years. The GPS-precipitable water vapor (GPS-PWV, obtained through inversion using this technology can reflect the water vapor inflow and outflow in a vertical air column above a certain area in nearly real-time, which is especially important for areas of severe water vapor variation. In this paper, we studied the relationship between GPS-PWV variation and actual precipitation. The specific aim was to identify the underlying physical mechanisms driving the variation and to further strengthen the utility of GPS-PWV in forecasts and warnings of severe convection weather. We concluded that (1 rapid rise in the GPS-PWV in the long-term low-level data predicted the arrival of precipitation and was therefore useful in weather forecasts; (2 the GPS-PWV variation was closely related with the movement of the water vapor transfer belt; (3 the atmosphere showed an unstable energy structure before the GPS-PWV increase; and (4 local motion was strongly related with the development and maintenance of precipitation.

  1. Three methods to retrieve slant total electron content measurements from ground-based GPS receivers and performance assessment

    Science.gov (United States)

    Zhang, Baocheng

    2016-07-01

    The high sampling rate along with the global coverage of ground-based receivers makes Global Positioning System (GPS) data particularly ideal for sensing the Earth's ionosphere. Retrieval of slant total electron content measurements (TECMs) constitutes a key first step toward extracting various ionospheric parameters from GPS data. Within the ionospheric community, the interpretation of TECM is widely recognized as the slant total electron content along the satellite receiver line of sight, biased by satellite and receiver differential code biases (DCBs). The Carrier-to-Code Leveling (CCL) has long been used as a geometry-free method for retrieving TECM, mainly because of its simplicity and effectiveness. In fact, however, the CCL has proven inaccurate as it may give rise to TECM very susceptible to so-called leveling errors. With the goal of attaining more accurate TECM retrieval, we report in this contribution two other methods than the CCL, namely, the Precise Point Positioning (PPP) and the Array-aided PPP (A-PPP). The PPP further exploits the International GPS Service (IGS) orbit and clock products and turns out to be a geometry-based method. The A-PPP is designed to retrieve TECM from an array of colocated receivers, taking advantage of the broadcast orbit and clock products. Moreover, A-PPP also takes into account the fact that the ionospheric effects measured from one satellite to all colocated receivers ought to be the same, thus leading to the estimability of interreceiver DCB. We perform a comparative study of the formal precision and the empirical accuracy of the TECM that are retrieved, respectively, by three methods from the same set of GPS data. Results of such a study can be used to assess the actual performance of the three methods. In addition, we check the temporal stability in A-PPP-derived interreceiver DCB estimates over time periods ranging from 1 to 3 days.

  2. Open-loop GPS signal tracking at low elevation angles from a ground-based observation site

    Science.gov (United States)

    Beyerle, Georg; Zus, Florian

    2016-04-01

    For more than a decade space-based global navigation satellite system (GNSS) radio occultation (RO) observations are used by meteorological services world-wide for their numerical weather prediction models. In addition, climate studies increasingly rely on validated GNSS-RO data sets of atmospheric parameters. GNSS-RO profiles typically cover an altitude range from the boundary layer up to the upper stratosphere; their highest accuracy and precision, however, are attained at the tropopause level. In the lower troposphere, multipath ray propagation tend to induce signal amplitude and frequency fluctuations which lead to the development and implementation of open-loop signal tracking methods in GNSS-RO receiver firmwares. In open-loop mode the feed-back values for the carrier tracking loop are derived not from measured data, but from a Doppler frequency model which usually is extracted from an atmospheric climatology. In order to ensure that this receiver-internal parameter set, does not bias the carrier phase path observables, dual-channel open-loop GNSS-RO signal tracking was suggested. Following this proposal the ground-based "GLESER" (GPS low-elevation setting event recorder) campaign was established. Its objective was to disproof the existence of model-induced frequency biases using ground-based GPS observations at very low elevation angles. Between January and December 2014 about 2600 validated setting events, starting at geometric elevation angles of +2° and extending to -1°… - 1.5°, were recorded by the single frequency "OpenGPS" GPS receiver at a measurement site located close to Potsdam, Germany (52.3808°N, 13.0642°E). The study is based on the assumption that these ground-based observations may be used as proxies for space-based RO measurements, even if the latter occur on a one order of magnitude faster temporal scale. The "GLESER" data analysis shows that the open-loop Doppler model has negligible influence on the derived frequency profile

  3. Vertical profiling of atmospheric refractivity using GPS STD data from a single ground-based station: Simulations and applications

    Science.gov (United States)

    Zus, F.; Dick, G.; Heise, S.; Wickert, J.; Ramatschi, M.

    2013-12-01

    We developed a ray-tracing operator to compute the signal travel time delay due to the neutral atmosphere, known as Slant Total Delay (STD), between a GPS satellite and a ground-based receiving station. Having developed a rapid and precise forward operator we constructed the tangent-linear (adjoint) operator to estimate refractivity in the vicinity of a single station. The refractivity retrievals potentially complement refractivity retrievals from radio occultation data and can be considered a valuable input for Numerical Weather Prediction. In a first experiment (simulation) we study the feasibility for vertical profiling of refractivity using STDs from a single station. The simulation cycle consists of the computation of STDs given a refractivity profile, the addition of noise to mimic observation errors and the retrieval of a refractivity profile from the artificial STDs by a non-linear least-square analysis. Clearly, besides the noise level, the elevation range plays an important role regarding the quality of the refractivity retrieval; near-horizon STDs corrupted by noise allow a significantly better refractivity retrieval than STDs close to the zenith without any noise. The simulation study suggests that near-horizon STDs provide additional information when compared to Zenith Total Delays (ZTDs). In a second experiment (application) we replace the artificial STDs in the simulation by STDs retrieved from GPS phase-observations. The procedure is repeated station-by-station for 200 stations in Germany. We do not find a significant benefit from STDs over ZTDs in the retrieved refractivity profile since near-horizon STDs are rarely available and representative errors due to asymmetry are non-negligable. We attempt to mitigate the latter problem by the additional estimation of horizontal gradients, and indeed, we find strong evidence that STDs retrieved from GPS phase-observations contain asymmetric information. The former problem still poses a serious limitation

  4. CASES: A Novel Low-Cost Ground-based Dual-Frequency GPS Software Receiver

    Science.gov (United States)

    Haacke, B.; Crowley, G.; Reynolds, A.; Bust, G. S.; Kintner, P. M.; Psaiki, M.; Humphreys, T. E.; Powell, S.; O'Hanlon, B.

    2010-12-01

    GPS receivers can be used for monitoring space weather events such as TEC variations and scintillation. The new CASES GPS sensor developed by ASTRA, Cornell and UTAustin represents a revolutionary advance in dual frequency GPS space-weather monitoring. CASES is a paperback-novel-sized dual-frequency GPS software receiver with robust dual-frequency tracking performance, stand-alone capability, and complete software upgradability. This sensor measures and calculates TEC with a relative accuracy of a few 0.01 TECU at a cadence of up to 100 Hz. It measures amplitude and phase at up to 100 Hz on both L1 and L2, for up to 12 satellites in view. It calculates the scintillation severity indicators S4, τ0, and σφ at a cadence that is user defined. It is able to track through scintillation with {S4, τ0, amplitude} combinations as severe as {0.8, 0.8 seconds, 43 dB-Hz (nominal)} (i.e., commensurate with vigorous post-sunset equatorial scintillation) with a mean time between cycle slips greater than 240 seconds and with a mean time between frequency-unlock greater than 1 hour. Other capabilities and options include: Various data interface solutions; In-receiver and network-wide calibration of biases, and detection and mitigation of multipath; Network-wide automated remote configuration of receivers, quality control, re-processing, archiving and redistribution of data in real-time; Software products for data-processing and visualization. The low price of the sensor means that many more instruments can be purchased on a fixed budget, which will lead to new kinds of opportunities for monitoring and scientific study, including networked applications. Other uses for CASES receivers include geodetic and seismic monitoring, measurement of precipitable water vapor in the troposphere at meso-scale resolution, and educational outreach.

  5. Empirical model for mean temperature for Indian zone and estimation of precipitable water vapor from ground based GPS measurements

    Directory of Open Access Journals (Sweden)

    C. Suresh Raju

    2007-10-01

    Full Text Available Estimation of precipitable water (PW in the atmosphere from ground-based Global Positioning System (GPS essentially involves modeling the zenith hydrostatic delay (ZHD in terms of surface Pressure (Ps and subtracting it from the corresponding values of zenith tropospheric delay (ZTD to estimate the zenith wet (non-hydrostatic delay (ZWD. This further involves establishing an appropriate model connecting PW and ZWD, which in its simplest case assumed to be similar to that of ZHD. But when the temperature variations are large, for the accurate estimate of PW the variation of the proportionality constant connecting PW and ZWD is to be accounted. For this a water vapor weighted mean temperature (Tm has been defined by many investigations, which has to be modeled on a regional basis. For estimating PW over the Indian region from GPS data, a region specific model for Tm in terms of surface temperature (Ts is developed using the radiosonde measurements from eight India Meteorological Department (IMD stations spread over the sub-continent within a latitude range of 8.5°–32.6° N. Following a similar procedure Tm-based models are also evolved for each of these stations and the features of these site-specific models are compared with those of the region-specific model. Applicability of the region-specific and site-specific Tm-based models in retrieving PW from GPS data recorded at the IGS sites Bangalore and Hyderabad, is tested by comparing the retrieved values of PW with those estimated from the altitude profile of water vapor measured using radiosonde. The values of ZWD estimated at 00:00 UTC and 12:00 UTC are used to test the validity of the models by estimating the PW using the models and comparing it with those obtained from radiosonde data. The region specific Tm-based model is found to be in par with if not better than a

  6. Evaluating multimodel variability of humidity over Europe using long term GPS network and ground base datasets

    Science.gov (United States)

    Bastin, Sophie; Bock, Olivier; Parracho, Ana

    2016-04-01

    Thanks to efforts made to reanalyse observed data to produce long-term homogenized datasets of new parameters or multi-parameters in recent years, we can better characterize, evaluate and analyse the water cycle in models at different scales. In this paper, a few MED-CORDEX simulations covering the ERA-interim period are evaluated against reprocessed IWV from GPS datasets over the European domain, from 1995 to 2008. The humidity is an important component of the water cycle, and models often have difficulties representing it. The high quality, consistent, long-term IWV dataset recently produced from GPS at more than 100 stations over Europe, with about half of the stations having nearly 15 years of data over the period from 1995 to 2010 is therefore used to evaluate the simulated IWV at seasonal, interannual and possibly diurnal time scales. Regional features are then identified, corresponding to different climate regimes. Other datasets, such as reanalysis of multi-parameters observed at one site (SIRTA, Palaiseau, France) over more than 10 years, or more regional networks are used to explain the dispersion of IWV among the different models and their biases against observations. The relationship between IWV and surface temperature is also evaluated locally to assess how much the sources of humidity from advection or surface fluxes are enough to reach the total capacity of the atmosphere in humidity when temperature increases. Over arid areas, this relation can depart from the Clausius-Clapeyron relation when temperature becomes too high. The ability of models to reproduce this relation during present climate is of high importance to estimate future climate.

  7. PW Characteristics during the 2013 Colorado Flood using Ground-Based GPS Measurements

    Science.gov (United States)

    Huelsing, H. K.; Wang, J.

    2016-12-01

    During September 9-16, 2013, the Front Range region of Colorado experienced heavy rainfall that resulted in severe flooding. Precipitation totals for the event exceeded 450mm, damages to public and private properties were estimated to be over $2 billion, and 9 lives were lost. This study analyzes the characteristics of precipitable water (PW) surrounding the event using 10-years of high-resolution GPS PW data in Boulder, Colorado, which was located within the region of maximum rainfall. The characteristics examined include the temporal variability and abnormality of PW as well as the sources of moisture for the event. The temporal variability for PW in Boulder is dominated by seasonal variability with an average summertime maximum of 36mm. In 2013, the seasonal PW maximum extended into early September due to the occurrence of the flooding event. A closer examination of the temporal variability of PW surrounding this event showed that PW rapidly increased from 22mm to 32mm over the course of 1 day and values remained around 30mm for the entire event. When examining the abnormality of PW during the event, the atmosphere over Boulder was found to be near to saturation for the duration of the event and the monthly-averaged PW for September of 2013 was 25% higher than the long-term climatology. Also, the frequency distribution of September PW for Boulder is typically Gaussian, or normal, but in 2013 the distribution for September was bimodal, representing a shift in atmospheric conditions from climatology. This shift was the result of large-scale moisture transport into Colorado from the eastern tropical Pacific and the Gulf of Mexico. This moisture transport was the product of a stagnating, cutoff low over the southwestern United States working in conjunction with an anticyclone located over the southeastern United States. A blocking ridge located over the Canadian Rocky Mountains kept both of the synoptic features in place over the course of several days, which helped

  8. Using the IRI, the MAGIC model, and the co-located ground-based GPS receivers to study ionospheric solar eclipse and storm signatures on July 22, 2009

    Science.gov (United States)

    Lin, Chi-Yen; Liu, Jann-Yenq; Lin, Chien-Hung; Sun, Yang-Yi; Araujo-Pradere, Eduardo A.; Kakinami, Yoshihiro

    2012-06-01

    The longest total solar eclipse in the 21st century occurred in Southeast Asia on 22 July 2009 from 00:55 to 04:15 UT, and was accompanied by a moderate magnetic storm starting at 03:00 UT with a D st reduction of -78 nT at 07:00 UT. In this study, we use the ionospheric reference model IRI, the data assimilation model MAGIC, and ground-based GPS receivers to simulate and examine the ionospheric solar eclipse and geomagnetic storm signatures in Taiwan and Japan. Cross-comparisons between the two model results and observations show that IRI fails to simulate the two signatures while MAGIC partially reproduces the storm features. It is essential to include ground-based GPS measurements to improve the IRI performance.

  9. Ground deformation monitoring based on GPS-InSAR%基于GPS-InSAR集成技术地表形变的监测

    Institute of Scientific and Technical Information of China (English)

    焦明连; 蒋廷臣

    2008-01-01

    应用GPS-InSAR集成技术进行地表形变监测是目前极具潜力的研究方向.本文分析了GPS和InSAR两种技术的特点和互补性,提出了GPS-InSAR集成技术数据融合的方案,并通过对国内外研究实例的分析,说明利用GPS-InSAR集成技术监测地表形变是可行的,并具有广阔地应用前景.

  10. Rapid Retrieval and Assimilation of Ground Based GPS-Met Observations at the NOAA Forecast Systems Laboratory: Impact on Weather Forecasts

    Science.gov (United States)

    Gutman, S.

    2003-04-01

    This year, 2003, marks the tenth anniversary of ground-based Global Positioning System meteorology. GPS-Met as we now know it started in 1992 with the definition of the essential techniques to retrieve integrated (total column) precipitable water vapor (IPW) from zenith-scaled neutral atmospheric signal delays (Bevis et al., 1992). It culminated with the GPS/Storm experiment in 1993, which demonstrated the ability to make IPW measurements with about the predicted accuracy under warm-weather conditions (Rocken et al., 1995). Since then, most of the major advances in GPS-Met data processing have been in the form of improved mapping functions (Niell, 1996), the estimation of GPS signal delays in an absolute (Duan et al., 1996) versus a relative sense (Rocken et al., 1993), and improved GPS satellite orbit accuracy with reduced latency (Fang et al., 1998). Experiments with other GPS-Met data processing techniques, such as the estimation of line-of-sight GPS signal delays using a double-difference to zero-difference technique described by Alber et al. (2000) and Braun et al. (2001) are noted, but lingering questions about the validity of this approach (Gutman, 2002), and not the potential value of a slant-path measurements per se, (as enumerated by MacDonald and Xie, 2001 or Ha et al., 2002) have thus far precluded its routine implementation at the National Oceanic and Atmospheric Administration Forecast Systems Laboratory (NOAA/FSL). Since 1994, NOAA/FSL has concentrated on evaluating the scientific and engineering bases of ground-based GPS-Met and assessing its utility for operational weather forecasting, climate monitoring, satellite calibration and validation, and improved differential GPS positioning and navigation. The term “rapid” in the title of this paper is defined as “available in time to be used for a specific application.” The requirement for high accuracy GPS-Met retrievals with lower latency is primarily driven by two factors: the trend toward

  11. 成都地区地基GPS观测网遥感大气可降水量的初步实验%Experiment on Driving Precipitable Water Vapor from Ground-Based GPS Network in Chengdu Plain

    Institute of Scientific and Technical Information of China (English)

    李国平; 黄丁发; 刘碧全; 陈娇娜

    2007-01-01

    The estimates of total zenith delay are derived using Bernese GPS Software V4. 2 based on GPS data every 30 s from the first measurement experiment of a ground-based GPS network in Chengdu Plain of Southwest China during the period from July to September 2004. Then the estimates of 0.5 hourly precipitable water vapor (PWV) derived from global positioning system (GPS) are obtained using meteorological data from automatic weather stations (AWS). The comparison of PWV derived from GPS and those from radiosonde observations is given for the Chengdu station, with RMS (root mean square)differences of 3.09m. The consistency of precipitabie water vapor derived from GPS to those from radiosonde is good. It is concluded that Bevis' empirical formula for estimating the weighted atmospheric mean temperature Can be applicable in Chengdu area because the relationship of GPS PWV with Bevis' formula and GPS PWV with radiosonde method shows a high correlation. The result of this GPS measurement experiment is helpful both for accumulating the study of precipitable water vapor derived from GPS in Chengdu areas located at the eastern side of the Tibetan Plateau and for studying spatial-temporal variations of regional atmospheric water vapor through many disciplines cooperatively.

  12. A study of El Niño-Southern oscillation impacts to the South China Sea region using ground-based GPS receiver

    Science.gov (United States)

    Suparta, Wayan; Iskandar, Ahmad; Singh Jit Singh, Mandeep; Alauddin Mohd Ali, Mohd; Yatim, Baharudin; Tangang, Fredolin

    2013-04-01

    We observe an ENSO activity by using ground-based GPS receiver as an effort to study the effects of global warming and climate change in the tropical region. The precipitable water vapor (PWV) derived from Global Positioning System (GPS) meteorology in line with the sea surface temperature anomaly (SSTa) is used to indicate their response on ENSO activities. The PWV data used in this study was taken from the station at Universiti Malaysia Sabah, Kota Kinabalu (UMSK) over 2011, together with NTUS station (in the Singapore), PIMO (in Philippines) and BAKO (in Indonesia) are also compared. The relationship between PWV and SSTa at all stations on weekly basis exhibited modest with correlation coefficients between -0.30 and -0.78 significantly at the 99% confidence level. The negative correlation indicates that during a La Niña phase, the PWV is increased when the sea surface temperatures getting cold causes warm air mass in the central Pacific moved to west Pacific. The increased of PWV causes the GPS signals will be getting slower.

  13. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment

    Directory of Open Access Journals (Sweden)

    Tao Yang

    2016-08-01

    Full Text Available This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV during a landing process. The system mainly include three novel parts: (1 Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2 Large scale outdoor camera array calibration module; and (3 Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS-denied environments.

  14. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment.

    Science.gov (United States)

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-08-30

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments.

  15. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment

    Science.gov (United States)

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-01-01

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments. PMID:27589755

  16. Moisture Analysis of a Squall Line Case Based on Precipitable Water Vapor Data from a Ground-Based GPS Network in the Yangtze River Delta

    Institute of Scientific and Technical Information of China (English)

    DING Jincai; YANG Yinming; YE Qixin; HUANG Yan; MA Xiaoxing; MA Leiming; Y.R.GUO

    2007-01-01

    A squall line swept eastward across the area of the Yangtze River Delta and produced gusty winds and heavy rain from the afternoon to the evening of 24 August 2002. In this paper, the roles of moisture in the genesis and development of the squall line were studied. Based on the precipitable water vapor (PWV) data from a ground-based GPS network over the Yangtze River Delta in China, plus data from a Pennsylvania State University/National Atmospheric Center (PSU/NCAR) mesoscale model (MM5) simulation, initialized by three-dimensional variational (3D-VAR) assimilation of the PWV data, some interesting features are revealed. During the 12 hours prior to the squall line arriving in the Shanghai area, a significant increase in PWV indicates a favorable moist environment for a squall line to develop. The vertical profile of the moisture illustrates that it mainly increased in the middle levels of the troposphere, and not at the surface. Temporal variation in PWV is a better precursor for squall line development than other surface meteorological parameters. The characteristics of the horizontal distribution of PWV not only indicated a favorable moist environment, but also evolved a cyclonic wind field for a squall line genesis and development. The "+2 mm" contours of the three-hourly PWV variation can be used successfully to predict the location of the squall line two hours later.

  17. A global assessment of NASA AIRS v6 and EUMETSAT IASI v6 precipitable water vapor using ground-based GPS SuomiNet stations

    Science.gov (United States)

    Roman, Jacola; Knuteson, Robert; August, Thomas; Hultberg, Tim; Ackerman, Steve; Revercomb, Hank

    2016-08-01

    Satellite remote sensing of precipitable water vapor (PWV) is essential for monitoring moisture in real time for weather applications, as well as tracking the long-term changes in PWV for climate change trend detection. This study assesses the accuracies of the current satellite observing system, specifically the National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) v6 PWV product and the European Organization for the Exploitation of Meteorological Satellite Studies (EUMETSAT) Infrared Atmospheric Sounding Interferometer (IASI) v6 PWV product, using ground-based SuomiNet Global Positioning System (GPS) network as truth. Elevation-corrected collocated matchups to each SuomiNet GPS station in North America and around the world were created, and results were broken down by station, ARM region, climate zone, and latitude zone. The greatest difference, exceeding 5%, between IASI and AIRS retrievals occurred in the tropics. Generally, IASI and AIRS fall within a 5% error in the PWV range of 20-40 mm (a mean bias less than 2 mm), with a wet bias for extremely low PWV values (less than 5 mm) and a dry bias for extremely high PWV values (greater than 50 mm). The operational IR satellite products are able to capture the mean PWV but degrade in the extreme dry and wet regimes.

  18. GPS: Actions Needed to Address Ground System Development Problems and User Equipment Production Readiness

    Science.gov (United States)

    2015-09-01

    GPS Actions Needed to Address Ground System Development Problems and User Equipment Production Readiness Report to...00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE GPS : Actions Needed to Address Ground System Development Problems and User Equipment Production...Highlights of GAO-15-657, a report to congressional committees September 2015 GPS Actions Needed to Address Ground System Development Problems and User

  19. Space-based monitoring of ground deformation

    Science.gov (United States)

    Nobakht Ersi, Fereydoun; Safari, Abdolreza; Gamse, Sonja

    2016-07-01

    Ground deformation monitoring is valuable to understanding of the behaviour of natural phenomena. Space-Based measurement systems such as Global Positioning System are useful tools for continuous monitoring of ground deformation. Ground deformation analysis based on space geodetic techniques have provided a new, more accurate, and reliable source of information for geodetic positioning which is used to detect deformations of the Ground surface. This type of studies using displacement fields derived from repeated measurments of space-based geodetic networks indicates how crucial role the space geodetic methods play in geodynamics. The main scope of this contribution is to monitor of ground deformation by obtained measurements from GPS sites. We present ground deformation analysis in three steps: a global congruency test on daily coordinates of permanent GPS stations to specify in which epochs deformations occur, the localization of the deformed GPS sites and the determination of deformations.

  20. Variation of TEC and related parameters over the Indian EIA region from ground and space based GPS observations during the low solar activity period of May 2007-April 2008

    Science.gov (United States)

    Chakravarty, S. C.; Nagaraja, Kamsali; Jakowski, N.

    2017-03-01

    The annual variations of ionospheric Total Electron Content (TEC), F-region peak ionisation (NmF2) and the ionospheric slab thickness (τ) over the Indian region during the low solar activity period of May 2007-April 2008 have been studied. For this purpose the ground based TEC data obtained from GAGAN measurements and the space based data from GPS radio occultation technique using CHAMP have been utilised. The results of these independent measurements are combined to derive additional parameters such as the equivalent slab thickness of the total and the bottom-side ionospheric regions (τT and τB). The one year hourly average values of all these parameters over the ionospheric anomaly latitude region (10-26°N) are presented here along with the statistical error estimates. It is expected that these results are potentially suited to be used as base level values during geomagnetically quiet and undisturbed solar conditions.

  1. 3 dimensional ionospheric electron density reconstruction based on GPS measurements

    Science.gov (United States)

    Stolle, C.; Schlüter, S.; Jacobi, C.; Jakowski, N.

    When radio waves as sended by the naviagtion system GPS are passing through the ionosphere they are subject to delays in phase, travel time and polarisation which is an effect of the free electrons. The measured integrated value of Total Electron Content can be utilised for three-dimensional reconstruction of electron density patterns in the ionosphere. Here a tomographic approach is represented. Scince the distribution of data is very sparse and patchy we decided for an algebraic iterative algorithm. The ground based GPS data collected by IGS receivers can be combined by space based GPS of radio limb sounding, incoherent scatter radar and ionosondes data. Hereby, radio occultation data improve beside the amount of available data especially the vertical resolution of electron density distribution. Ionosonde peack electron densities are taken as stop criteria determination for iteration. Reconstructed ionospheric scenarios and validations of the system by independent measurements are presented.

  2. ERA-Interim应用于中国地区地基GPS/PWV计算的精度评估%Accuracy Assessment of Applying ERA-Interim Reanalysis Data to Calculate Ground-based GPS/PWV over China

    Institute of Scientific and Technical Information of China (English)

    赵静旸; 宋淑丽; 朱文耀

    2014-01-01

    由于中国绝大多数地基GPS网观测时未作气象观测,致使已积累的大量GPS观测数据无法在气象领域发挥作用.针对这一情况,研究和分析了利用ERA-Interim再分析产品获取中国地区气象资料和计算GPS/PWV的方法.以全国分布的24个气象观测站2006、2007年的气压、温度和相对湿度的实测资料为标准,评估了中国地区ERA-Interim再分析资料提取这三个参数和计算GPS/PWV所能达到的精度,并进行了精度评估.

  3. Geomagnetic storm effects on GPS based navigation

    Directory of Open Access Journals (Sweden)

    P. V. S. Rama Rao

    2009-05-01

    Full Text Available The energetic events on the sun, solar wind and subsequent effects on the Earth's geomagnetic field and upper atmosphere (ionosphere comprise space weather. Modern navigation systems that use radio-wave signals, reflecting from or propagating through the ionosphere as a means of determining range or distance, are vulnerable to a variety of effects that can degrade the performance of the navigational systems. In particular, the Global Positioning System (GPS that uses a constellation of earth orbiting satellites are affected due to the space weather phenomena.

    Studies made during two successive geomagnetic storms that occurred during the period from 8 to 12 November 2004, have clearly revealed the adverse affects on the GPS range delay as inferred from the Total Electron Content (TEC measurements made from a chain of seven dual frequency GPS receivers installed in the Indian sector. Significant increases in TEC at the Equatorial Ionization anomaly crest region are observed, resulting in increased range delay during the periods of the storm activity. Further, the storm time rapid changes occurring in TEC resulted in a number of phase slips in the GPS signal compared to those on quiet days. These phase slips often result in the loss of lock of the GPS receivers, similar to those that occur during strong(>10 dB L-band scintillation events, adversely affecting the GPS based navigation.

  4. Construction and Application about the Monitoring System of Water Vapor Derived from Ground-based GPS in Chengdu%成都地基的GPS水汽监测系统建设与应用

    Institute of Scientific and Technical Information of China (English)

    王皓; 李国平

    2011-01-01

    Water vapor plays a very important role in weather and climate changes. Though water vapor is very little in the atmosphere, but its change, in the atmosphere, is very obvious. Water vapor is also an important kind of greenhouse gas in the atmosphere whose spatial distribution is extremely uneven and time variation is very fast. It is not only the main driving force of weather and climate changes, but also an important formation and evolution reason for disastrous weather, especially medium or small scale disastrous weather. In satellite geodesy, GPS positioning accuracy was primarily affected by water vapor.Therefore, people learn from the elimination of noise in the measurement process, gradually to develop out of a new discipline—GPS meteorology (GPS/MET). Along with the development of GPS meteorology, people start to utilize ground-based GPS technology in order to effectively compensate for the defects of traditional detection technologies spatially and temporally and obtain water vapor information with high-precision, high-capacity and high space-time resolution ratio through ground-based GPS water vapor monitoring network. How to measure water vapor content in the atmosphere, to monitor the distribution of water vapor and its trends, which have an important practical significance to meteorological department, especially in monitoring and forecasting disastrous weather on a medium or small scale. The main content of this paper is to launch the development of ground-based GPS water vapor monitoring system;the purpose is to make this system fill in the blank of the application of GPS inversion water vapor technology in Sichuan and even the southwest areas of China, and also enhance the capacities of meteorological department on forecasting and monitoring of medium or small scale disastrous weather, as well as promote the work of many related meteorological operations.%水汽尽管在大气中的含量很少,但是其在大气中的变化却十分剧烈.其空

  5. Height Accuracy Based on Different Rtk GPS Method for Ultralight Aircraft Images

    Science.gov (United States)

    Tahar, K. N.

    2015-08-01

    Height accuracy is one of the important elements in surveying work especially for control point's establishment which requires an accurate measurement. There are many methods can be used to acquire height value such as tacheometry, leveling and Global Positioning System (GPS). This study has investigated the effect on height accuracy based on different observations which are single based and network based GPS methods. The GPS network is acquired from the local network namely Iskandar network. This network has been setup to provide real-time correction data to rover GPS station while the single network is based on the known GPS station. Nine ground control points were established evenly at the study area. Each ground control points were observed about two and ten minutes. It was found that, the height accuracy give the different result for each observation.

  6. Studying Convective Events Over Southern Arizona by Using Ground GPS Receivers and Cloud to Ground Lightning

    Science.gov (United States)

    Orduño, A. M.; Sosa, C. M.; Jacobo, R. A.

    2013-05-01

    Over the last decades, Global Position System (GPS) satellites have been used for in various fields of the Earth Sciences. In particular, "GPS Meteorology" was born in the attempt to retrieve water vapor, specifically column-integrated water vapor or, precipitable water vapor (PWV), that results from the noise induced by the atmosphere in the GPS signal. Monitoring PWV with GPS is relatively inexpensive, works under all weather conditions, and has a high time resolution which complements traditional techniques such as radiosondes and satellite-based retrievals. The North American Monsoon (NAM) is a seasonal system that affects the southwestern of United States and northwestern Mexico. Atmospheric Water Vapor is transported from the Gulf of California, Pacific Ocean and the Gulf of Mexico to the continental areas and this contribute to the genesis of convective systems that develop over this region. In many cases, these systems are characterized by relatively short lifetimes, a great amount of precipitation accompanied with lightning making it difficult to study with radiosondes, given their limited time resolution (operationally twice a day). On the other hand, GOES satellite has better time resolution (one hour), but does not provide water vapor in cloudy conditions, precisely when the data are needed. This makes GPS a great tool to study deep atmospheric convection over during the NAM. During the monsoon season 2002 and 2003, we noted that local GPS and the radiosondes launched in Tucson, Arizona showed, for some cases, a significant discrepancy in their PWV estimation. In determining the causes of these discrepancies we discovered that the GPS was detecting convective events in its vicinity that the radiosondes could not detect, a strength that had not considered before. Convective activity in Southern Arizona often produces gust fronts that result in dramatic changes of temperature and humidity. These gust fronts also generate a shift in wind direction and

  7. {WiFi GPS} based Combined positioning Algorithm

    OpenAIRE

    Zirari, Soumaya; Canalda, Philippe; Spies, François

    2010-01-01

    International audience; If nowadays, positioning becomes more and more accurate, and covers better and better a territory (indoor and outdoor), it remains territories where traditional (and basic) positioning system (GPS, gsm or WiFi) and hybrid ones (GPS-gsm, GPS-WiFi, GPS-WiFi-gsm,...) are insufficient and requires research investment treating combined positioning. In this paper we propose a GPS-WiFi combined positioning algorithm, based on trilateration technique. Real experiments and othe...

  8. GPSIM: A Personal Computer-Based GPS Simulator System

    Science.gov (United States)

    Ibrahim, D.

    Global Positioning Systems (GPS) are now in use in many applications, ranging from GIS to route guidance, automatic vehicle location (AVL), air, land, and marine navigation, and many other transportation and geographical based applications. In many applications, the GPS receiver is connected to some form of intelligent electronic system which receives the positional data from the GPS unit and then performs the required operation. When developing and testing GPS-based systems, one of the problems is that it is usually necessary to create GPS-compatible geographical data to simulate a GPS operation in real time. This paper provides the details of a Personal Computer (PC)-based GPS simulator system called GPSIM. The system receives user way-points and routes from Windows-based screen forms and then simulates a GPS operation in real time by generating most of the commonly used GPS sentences. The user-specified waypoints are divided into a number of small segments, each segment specifying a small distance in the direction of the original waypoint. The GPS sentence corresponding to the geographical coordinates of each segment is then sent out of the PC serial port. The system described is an invaluable testing tool for GPS-based system developers and also for people training to learn to use GPS-based products.

  9. SqueeSAR™ and GPS ground deformation monitoring of Santorini Volcano (1992-2012): Tectonic implications

    Science.gov (United States)

    Lagios, E.; Sakkas, V.; Novali, F.; Bellotti, F.; Ferretti, A.; Vlachou, K.; Dietrich, V.

    2013-05-01

    The Santorini Volcanic Complex (SVC) has been in a dormant state for the last 60 years until January 2011 when upward influx of magma reawakened the volcano with intense radial ground deformation and inter-caldera seismicity that lasted until January 2012 but declined afterwards. This paper aims to study the ground deformation and the inferred tectonic implications of the SVC for the period 1992-2012 mainly based on the SqueeSAR™ technique and DGPS campaign results of our local network which incorporates available data on Internet from several continuous GPS stations established on the island. The spatial deformation of the SVC during the quiet period 1992-2010 was deduced by joint analysis of ERS1 and 2 and ENVISAT. It was found that the intra caldera Palaea Kammeni shield volcano was being uplifted (2-3 mm/yr) with increasing rate, whilst the adjacent Nea Kammeni shield volcano was being subsided (up to 6 mm/yr) with increasing rate. The rest of the SVC showed a velocity field varying from - 1 to + 2 mm/yr, indicating a rather linear deformation during that period. The results from the GPS network are in full agreement with the SqueeSAR results. Based on the results of SqueeSAR analysis of 12 ENVISAT images, and DGPS/CGPS data to end 2012, the deformation for the unrest period 2011-2012 was non-linear being characterized by strong radial deformation in the northern part of the caldera (50-120 mm/yr), and accelerating values (> 130 mm/yr2). Combined GPS/SqueeSAR Mogi modeling indicated a source located north of Nea Kammeni at a shallow depth. However, a progressively decreasing rate in deformation was noted at most GPS/CGPS station components after January 2012, indicating magma settlement consistent with the constantly decreasing rate of the inter-caldera seismicity. The faulting features seem to have a key role in the evolution of the deformation, which continues up the end 2012, but at a very low level.

  10. Autonomous navigation system based on GPS and magnetometer data

    Science.gov (United States)

    Julie, Thienel K. (Inventor); Richard, Harman R. (Inventor); Bar-Itzhack, Itzhack Y. (Inventor)

    2004-01-01

    This invention is drawn to an autonomous navigation system using Global Positioning System (GPS) and magnetometers for low Earth orbit satellites. As a magnetometer is reliable and always provides information on spacecraft attitude, rate, and orbit, the magnetometer-GPS configuration solves GPS initialization problem, decreasing the convergence time for navigation estimate and improving the overall accuracy. Eventually the magnetometer-GPS configuration enables the system to avoid costly and inherently less reliable gyro for rate estimation. Being autonomous, this invention would provide for black-box spacecraft navigation, producing attitude, orbit, and rate estimates without any ground input with high accuracy and reliability.

  11. A Forward GPS Multipath Simulator Based on the Vegetation Radiative Transfer Equation Model.

    Science.gov (United States)

    Wu, Xuerui; Jin, Shuanggen; Xia, Junming

    2017-06-05

    Global Navigation Satellite Systems (GNSS) have been widely used in navigation, positioning and timing. Nowadays, the multipath errors may be re-utilized for the remote sensing of geophysical parameters (soil moisture, vegetation and snow depth), i.e., GPS-Multipath Reflectometry (GPS-MR). However, bistatic scattering properties and the relation between GPS observables and geophysical parameters are not clear, e.g., vegetation. In this paper, a new element on bistatic scattering properties of vegetation is incorporated into the traditional GPS-MR model. This new element is the first-order radiative transfer equation model. The new forward GPS multipath simulator is able to explicitly link the vegetation parameters with GPS multipath observables (signal-to-noise-ratio (SNR), code pseudorange and carrier phase observables). The trunk layer and its corresponding scattering mechanisms are ignored since GPS-MR is not suitable for high forest monitoring due to the coherence of direct and reflected signals. Based on this new model, the developed simulator can present how the GPS signals (L1 and L2 carrier frequencies, C/A, P(Y) and L2C modulations) are transmitted (scattered and absorbed) through vegetation medium and received by GPS receivers. Simulation results show that the wheat will decrease the amplitudes of GPS multipath observables (SNR, phase and code), if we increase the vegetation moisture contents or the scatters sizes (stem or leaf). Although the Specular-Ground component dominates the total specular scattering, vegetation covered ground soil moisture has almost no effects on the final multipath signatures. Our simulated results are consistent with previous results for environmental parameter detections by GPS-MR.

  12. GPS-Based AR Games Development Potential

    Directory of Open Access Journals (Sweden)

    Gregorius Alvin Raditya Santoso

    2014-11-01

    Full Text Available The application of new technologies in a game is not a new thing. One example is the application of Augmented Reality (AR technology in game. Many people do not know the application of AR technology in game, although the application of this technology is able to produce a game with unique gameplay. In addition, since AR game is GPS-based, it offers new gaming experience, that is, playing outdoors in which the real world becomes the game arena. This advantage gives the AR technology a huge potential to be developed into a game

  13. Research of remote sensing technology of atmospheric water vapor by using ground-based GPS and application system of meteorological operations%地基GPS水汽监测技术及气象业务化应用系统的研究

    Institute of Scientific and Technical Information of China (English)

    李国平

    2011-01-01

    本研究建立了川渝地区地基GPS(global positioning system,全球定位系统)遥感水汽的本地化计算模型,开发出GPS遥感水汽的计算软件包,开展了局域地基GPS观测网遥感大气水汽的试验及业务应用,反演出30 min间隔的高时间分辨率GPS可降水量序列。评估了反演精度,研究了GPS水汽产品在气象业务应用的可行性。研发了可搭建在MICAPS(meteorological information comprehensive analysis and process system)平台上的地基G%This study established local computing model of remote sensing water vapor by using ground-based GPS(global positioning system) in the region of Sichuan-Chongqing,and developed computing software packages of GPS remote sensing water vapor.Then the experiment and operational application of remote sensing water vapor by using ground-based GPS in this local network was done,by which the high time resolution GPS precipitable water vapor(PWV) sequence of 30 min intervals was derived.This paper also gives the assessment of the retrieval accuracy,as well as the feasibility of meteorological operations application of GPS water vapor products.The major results of this study include developing the operations application system of remote sensing atmospheric water vapor by using ground-based GPS,which can be build on the MICAPS(meteorological information comprehensive analysis and process system) as an operational application system,and realizing the real-time transmission,data solution,deriving of PWV by a local ground-based GPS network and visualization of GPS water vapor products.This meteorological operations system played a unique role in the heavy rain,blizzard and other severe weather forecast in its trial-run.Systematical study of the temporal variation,horizontal distribution of GPS-PWV was done by our research group.Furthermore,the relationship between PWV derived by GPS among surface air temperature,pressure,specific humidity,solar radiation

  14. Accuracy of non-differential GPS for the determination of speed over ground.

    Science.gov (United States)

    Witte, T H; Wilson, A M

    2004-12-01

    Accurate determination of speed is important in many studies of human and animal locomotion. Some global positioning system (GPS) receivers can data log instantaneous speed. The speed accuracy of these systems is, however, unclear with manufacturers reporting velocity accuracies of 0.1-0.2 ms(-1). This study set out to trial non-differential GPS as a means of determining speed under real-life conditions. A bicycle was ridden around a running track and a custom-made bicycle speedometer was calibrated. Additional experiments were performed around circular tracks of known circumference and along a straight road. Instantaneous speed was determined simultaneously by the custom speedometer and a data logging helmet-mounted GPS receiver. GPS speed was compared to speedometer speed. The effect on speed accuracy of satellite number; changing satellite geometry, achieved through shielding the GPS antenna; speed; horizontal dilution of precision and cyclist position on a straight or a bend, was evaluated. The relative contribution of each variable to overall speed accuracy was determined by ANOVA. The speed determined by the GPS receiver was within 0.2 ms(-1) of the true speed measured for 45% of the values with a further 19% lying within 0.4 ms(-1) (n = 5060). The accuracy of speed determination was preserved even when the positional data were degraded due to poor satellite number or geometry. GPS data loggers are therefore accurate for the determination of speed over-ground in biomechanical and energetic studies performed on relatively straight courses. Errors increase on circular paths, especially those with small radii of curvature, due to a tendency to underestimate speed.

  15. GPS Rapid Static and Kinematic Positioning Based on GPS Active Network

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper presents a data processing strategy for GPS kinematic positioning by using a GPS active network to model the GPS errors in double difference observable.Firstly,the double difference residuals are estimated between the reference stations in the active network.Then the errors at a user station are predicted as the network corrections to user measurements,based on the location of the user.Finally conventional kinematic positioning algorithms can be applied to determine the position of the user station.As an example,continuous 24-hour GPS data in March 2001 has been processed by this method.It clearly demonstrates that,after applying these corrections to a user within the network,both the success rate for ambiguity resolution and the positioning accuracy have been significantly improved.

  16. SqueeSARTM & GPS Ground Deformation Monitoring (1992-2012) of Santorini Volcano (Greece)

    Science.gov (United States)

    Lagios, E.; Sakkas, V.; Novali, F.; Vlachou, K.; Bellotti, F.; Giannico, C.

    2012-12-01

    The Santorini Volcanic Complex (SVC) - consisting of the islands of Thera, Therassia, Aspronisi and the two Kammenis (Palea & Nea Kammeni) - is one of the largest Quaternary volcanic centers in the Aegean located in the central part of the Hellenic Volcanic Arc. The complex has been in a quiet state the last 60 years, until January 2011 when the volcano reawakened, starting producing earthquakes in the caldera region of magnitudes up to 3, and showing an intense radial ground deformation. The seismicity in the caldera lasted until Jan. 2012 while afterwards, a decline in the seismicity rate started taking place. In the following, a two decade (1992-2012) ground deformation of the SVC is presented based on (i) the SqueeSAR technique (an advanced Permanent Scatterer (PS) Interferometric technique) and (ii) GPS campaign measurement results of our local network, including the continuous GPS (CGPS) stations established on the island. The spatial deformation of Santorini Volcano during the "quiet" period 1992-2010 was deduced by joint analysis of ERS1&2 and ENVISAT radar images of ascending and descending orbital geometry. This period, considering also the acceleration field of the PS, Palea Kammeni was getting uplifted (2-3 mm/yr), characterized by an increasing rate of uplift, whilst the adjacent Nea Kammeni was subsided (up to -3 mm/yr) with increasing rates. These two islets exhibit a different type of vertical motion. The rest of the area showed a LOS velocity field varying from -1 to +2 mm/yr and sub-millimeter acceleration field values, indicating a linear deformation during that period. Combining ascending and descending radar data, the vertical and horizontal (E-W) components of the velocity field were determined, where several deformation patterns were identified: The two main faulting zones, the Columbo and the Kammeni zones at the northern and central part, the Alpine basement at the SE part of Thera, and a pattern associated with the graben basin at its SE

  17. GPS Multipath Fade Measurements to Determine L-Band Ground Reflectivity Properties

    Science.gov (United States)

    Kavak, Adnan; Xu, Guang-Han; Vogel, Wolfhard J.

    1996-01-01

    In personal satellite communications, especially when the line-of-sight is clear, ground specular reflected signals along with direct signals are received by low gain, almost omni-directional subscriber antennas. A six-channel, C/A code processing, GPS receiver with an almost omni-directional patch antenna was used to take measurements over three types of ground to characterize 1.575 GHz specular ground reflections and ground dielectric properties. Fade measurements were taken over grass, asphalt, and lake water surfaces by placing the antenna in a vertical position at a fixed height from the ground. Electrical characteristics (conductivity and dielectric constant) of these surfaces (grass, asphalt, lake water) were obtained by matching computer simulations to the experimental results.

  18. Effect of forest canopy on GPS-based movement data

    Science.gov (United States)

    Nicholas J. DeCesare; John R. Squires; Jay A. Kolbe

    2005-01-01

    The advancing role of Global Positioning System (GPS) technology in ecology has made studies of animal movement possible for larger and more vagile species. A simple field test revealed that lengths of GPS-based movement data were strongly biased (P<0.001) by effects of forest canopy. Global Positioning System error added an average of 27.5% additional...

  19. Towards the Implementation of GPS-based Tsunami Early Warning System Using Ionospheric Measurements

    Science.gov (United States)

    Yang, Y. M.; Komjathy, A.; Meng, X.; Verkhoglyadova, O. P.; Mannucci, A. J.

    2014-12-01

    Natural hazards and solid Earth events, such as earthquakes, tsunamis and volcanic eruptions are actual sources that may trigger acoustic and gravity waves resulting in traveling ionospheric disturbances (TIDs) in the upper atmosphere. Trans-ionospheric radio wave measurements sense the total electron content (TEC) along the signal propagation path. In this research, we introduce a novel GPS-based detection and estimation technique for remote sensing of atmospheric wave-induced TIDs including space weather phenomena induced by major natural hazard events, using TEC time series collected from worldwide ground-based dual-frequency GNSS receiver networks. We will demonstrate the ability of using ground-based dual-frequency GPS measures to detect and monitor tsunami wave propagations from previous great earthquake and tsunami events including: 2011 Tohoku and 2010 Chile earthquakes and tsunamis. Two major TIDs with different propagation speeds and wavelengths were identified through analysis of the GPS remote sensing observations. Dominant physical characteristics of atmospheric wave-induced TIDs are found to be associated with specific tsunami propagations and oceanic Rayleigh waves. We compared GPS-based observations, corresponding model simulations and other geophysical measurements. Our results lead to a better understanding of the tsunami-induced ionosphere responses. In addition, we investigate ionospheric signatures caused by the 1964 Great Alaska Earthquake and tsunami using the GPS-based method. Based on current distribution of Plate Boundary Observatory (PBO) GPS stations, the simulated results indicate that tsunami-induced TIDs may be detected about 60 minutes prior to tsunamis arriving at the US west coast. It is expected that this GPS-based technology becomes an integral part of future early-warning systems.

  20. FFT and PLL Based GPS Signal Processing for Software GPS Receiver

    Institute of Scientific and Technical Information of China (English)

    Ko Sun-jun; Won Jong-hoon; Lee Ja-sung

    2003-01-01

    This paper presents FFT and PLL based GPS signal acquisition and tracking algorithms for a software GPS receiver. Conventional hardware based acquisition and tracking have some restrictions in processing signal with poor signal to noise ratio. The FFT of digitized local signals of multiple carrier frequencies for a specified Doppler band are pre-computed and are circular correlated with the digitized incoming signal from RF-front-end in an organized computational order. The global maximum of the correlation is associated with the closest estimates of the Doppler shift and the code shift. PLL refines the estimates to track the signal. Doppler information from an external source can readily be integrated to narrow down the frequency band for correlation and is especially useful for tracking in a high dynamic navigation situation. The performance of the proposed algorithms is evaluated through post processing of the IF signals acquired from a commercial hardware GPS receiver.

  1. Improvements on GPS Location Cluster Analysis for the Prediction of Large Carnivore Feeding Activities: Ground-Truth Detection Probability and Inclusion of Activity Sensor Measures.

    Directory of Open Access Journals (Sweden)

    Kevin A Blecha

    Full Text Available Animal space use studies using GPS collar technology are increasingly incorporating behavior based analysis of spatio-temporal data in order to expand inferences of resource use. GPS location cluster analysis is one such technique applied to large carnivores to identify the timing and location of feeding events. For logistical and financial reasons, researchers often implement predictive models for identifying these events. We present two separate improvements for predictive models that future practitioners can implement. Thus far, feeding prediction models have incorporated a small range of covariates, usually limited to spatio-temporal characteristics of the GPS data. Using GPS collared cougar (Puma concolor we include activity sensor data as an additional covariate to increase prediction performance of feeding presence/absence. Integral to the predictive modeling of feeding events is a ground-truthing component, in which GPS location clusters are visited by human observers to confirm the presence or absence of feeding remains. Failing to account for sources of ground-truthing false-absences can bias the number of predicted feeding events to be low. Thus we account for some ground-truthing error sources directly in the model with covariates and when applying model predictions. Accounting for these errors resulted in a 10% increase in the number of clusters predicted to be feeding events. Using a double-observer design, we show that the ground-truthing false-absence rate is relatively low (4% using a search delay of 2-60 days. Overall, we provide two separate improvements to the GPS cluster analysis techniques that can be expanded upon and implemented in future studies interested in identifying feeding behaviors of large carnivores.

  2. Ionospheric scintillation detection based on GPS observations, a case study over Iran

    Science.gov (United States)

    Sobhkhiz Miandehi, Sahar; Alizadeh Elizei, M. Mahdi; Schuh, Harald

    2017-04-01

    Global Positioning System (GPS) which is used extensively for various purposes such as navigation, surveying, remote sensing and telecommunication, is strongly affected by the earth's upper atmosphere, the ionosphere. Ionosphere is a highly variable region with complex physical characteristics in which the density of free electrons are large enough to have considerable effects on signals' propagation travelling through this dispersive medium. As GPS signals travel through the ionosphere, they may experience rapid amplitude fluctuations or unexpected phase changes. This is referred to as ionospheric scintillation. Ionospheric scintillation which is caused by small scale irregularities in the electron density, is one of the dominant propagation disturbances at radio frequency signals. These irregularities severely affect the accuracy and reliability of GPS measurements. Therefore it is necessary to investigate ionospheric scintillation and its effects on GPS observations. The focus of this paper is to detect ionospheric scintillations over Iran's region, during different periods of solar activity and to investigate these effects on GPS observations in more detail. Furthermore the effects of these irregularities on regional modeling of ionosphere over Iran is also investigated. The results show that effectiveness of this phenomenon depends on geographic location, local time and global geomagnetic storm index (kp index). The required data for this investigation are ground based measurements of permanent GPS stations over Iran, established by the National Cartographic Center of Iran (NCC).

  3. GPS SATELLITE SIMULATOR SIGNAL ESTIMATION BASED ON ANN

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Multi-channel Global Positioning System (GPS) satellite signal simulator is used to provide realistic test signals for GPS receivers and navigation systems. In this paper, signals arriving the antenna of GPS receiver are analyzed from the viewpoint of simulator design. The estimation methods are focused of which several signal parameters are difficult to determine directly according to existing experiential models due to various error factors. Based on the theory of Artificial Neural Network (ANN), an approach is proposed to simulate signal propagation delay,carrier phase, power, and other parameters using ANN. The architecture of the hardware-in-the-loop test system is given. The ANN training and validation process is described. Experimental results demonstrate that the ANN designed can statistically simulate sample data in high fidelity.Therefore the computation of signal state based on this ANN can meet the design requirement,and can be directly applied to the development of multi-channel GPS satellite signal simulator.

  4. Norwegian GPs' participation in multidisciplinary meetings: A register-based study from 2007

    Directory of Open Access Journals (Sweden)

    Gjesdal Sturla

    2010-11-01

    Full Text Available Abstract Background An increasing number of patients with chronic disorders and a more complex health service demand greater interdisciplinary collaboration in Primary Health Care. The aim of this study was therefore to identify factors related to general practitioners (GPs, their list populations and practice municipalities associated with a high rate of GP participation in multidisciplinary meetings (MDMs. Methods A national cross-sectional register-based study of Norwegian general practice was conducted, including data on all GPs in the Regular GP Scheme in 2007 (N = 3179. GPs were grouped into quartiles based on the annual number of MDMs per patient on their list, and the groups were compared using one-way analysis of variance. Binary logistic regression was used to analyse associations between high rates of participation and characteristics of the GP, their list population and practice municipality. Results On average, GPs attended 30 MDMs per year. The majority of the meetings concerned patients in the age groups 20-59 years. Psychological disorders were the motivation for 53% of the meetings. In a multivariate logistic regression model, the following characteristics predicted a high rate of MDM attendance: younger age of the GP, with an OR of 1.6 (95% CI 1.2-2.1 for GPs Conclusions Psychological problems including substance addiction gave grounds for the majority of MDMs. GPs with a high proportion of consultations with such problems also participated more frequently in MDMs. List size was negatively associated with the rate of MDMs, while a more disadvantaged list population was positively associated. Working in smaller organisational units seemed to facilitate cooperation between different professionals. There may be a generation shift towards more frequent participation in interdisciplinary work among younger GPs.

  5. Cost-effective monitoring of ground motion by joint use of a single-frequency GPS and a MEMS accelerometer

    Science.gov (United States)

    Tu, Rui; Wang, Rongjiang; Ge, Maorong; Walter, Thomas R.; Ramatschi, Markus; Milkereit, Claus; Bindi, Dino; Dahm, Torsten

    2014-05-01

    Real-time detection and precise estimation of strong ground motion are crucial for rapid assessment and early warning of geohazards such as earthquakes, landslides, and volcanic activity. This challenging task can be accomplished by combining GPS and accelerometer measurements because of their complementary capabilities to resolve broadband ground motion signals. However, for implementing an operational monitoring network of such joint measurement systems, cost-effective techniques need to be developed and rigorously tested. We propose a new approach for joint processing of single-frequency GPS and MEMS (micro-electro-mechanical systems) accelerometer data in real time. To demonstrate the performance of our method, we describe results from outdoor experiments under controlled conditions. For validation, we analysed dual-frequency GPS data and images recorded by a video camera. The results of the different sensors agree very well, suggesting that real-time broadband information of ground motion can be provided by using single-frequency GPS and MEMS accelerometers. Reference: Tu, R., R. Wang, M. Ge, T. R. Walter, M. Ramatschi, C. Milkereit, D. Bindi, and T. Dahm (2013), Cost-effective monitoring of ground motion related to earthquakes, landslides, or volcanic activity by joint use of a single-frequency GPS and a MEMS accelerometer, Geophysical Research Letters, 40, 3825-3829, doi:10.1002/grl.50653.

  6. Statistics of Night time Ionospheric Scintillation Using GPS data at low latitude ground station Varanasi

    CERN Document Server

    Priyadarshi, S

    2012-01-01

    Ionospheric scintillation is the rapid change in the phase and/or the amplitude of a radio signal as it passes through small scale plasma density irregularities in the ionosphere. These scintillations not only can reduce the accuracy of GPS/Satellite Based Augmentation System (SBAS) receiver pseudo-range and carrier phase measurement but also can result in a complete loss of lock on a satellite. Scintillation in the ionosphere varies as the sun spot number (SSN), Geomagnetic index (o < Kp < 9), time of year, time of day, geographical position. Most scintillation occurs for a few hours after sunset during the peak years of the solar cycle. Typically delay locked loop/phase locked loop designs of GPS/SBAS receivers enable them to handle moderate amount if scintillations. Consequently, any attempt to determine the effects of scintillations on GPS/SBAS must consider both predictions of scintillation activity in the ionosphere and residual effect of this activity after processing by a receiver. In this work ...

  7. Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

    Directory of Open Access Journals (Sweden)

    Haiwen Liu

    2014-01-01

    Full Text Available A miniaturized bandpass filter (BPF using defected ground structure (DGS resonator with the characteristic of harmonic rejection is developed in this paper. The second and third harmonics of the proposed BPF are rejected by the characteristic of stepped-impedance DGS resonator. Moreover, open stubs are established so that two adjustable transmission zeros can independently be created to extend the stopband and improve the rejection level. Finally, a second-order BPF, centered at 1.62 GHz with a stopband extended up to 5.6 GHz and a rejection level better than 20 dB, is designed and implemented for GPS application. A good agreement between simulation and measurement verifies the validity of this design methodology.

  8. Constrained low-cost GPS/INS filter with encoder bias estimation for ground vehicles' applications

    Science.gov (United States)

    Abdel-Hafez, Mamoun F.; Saadeddin, Kamal; Amin Jarrah, Mohammad

    2015-06-01

    In this paper, a constrained, fault-tolerant, low-cost navigation system is proposed for ground vehicle's applications. The system is designed to provide a vehicle navigation solution at 50 Hz by fusing the measurements of the inertial measurement unit (IMU), the global positioning system (GPS) receiver, and the velocity measurement from wheel encoders. A high-integrity estimation filter is proposed to obtain a high accuracy state estimate. The filter utilizes vehicle velocity constraints measurement to enhance the estimation accuracy. However, if the velocity measurement of the encoder is biased, the accuracy of the estimate is degraded. Therefore, a noise estimation algorithm is proposed to estimate a possible bias in the velocity measurement of the encoder. Experimental tests, with simulated biases on the encoder's readings, are conducted and the obtained results are presented. The experimental results show the enhancement in the estimation accuracy when the simulated bias is estimated using the proposed method.

  9. Characterization of Personal Privacy Devices (PPD) radiation pattern impact on the ground and airborne segments of the local area augmentation system (LAAS) at GPS L1 frequency

    Science.gov (United States)

    Alkhateeb, Abualkair M. Khair

    Personal Privacy Devices (PPDs) are radio-frequency transmitters that intentionally transmit in a frequency band used by other devices for the intent purpose of denying service to those devices. These devices have shown the potential to interfere with the ground and air sub-systems of the Local Area Augmentation Systems (LAAS), a GPS-based navigation aids at commercial airports. The Federal Aviation Administration (FAA) is concerned by the potential impact of these devices to GPS navigation aids at airports and has commenced an activity to determine the severity of this threat. In support of this situation, the research in this dissertation has been conducted under (FAA) Cooperative Agreement 2011-G-012, to investigate the impact of these devices on the LAAS. In order to investigate the impact of PPDs Radio Frequency Interference (RFI) on the ground and air sub-systems of the LAAS, the work presented in phase one of this research is intended to characterize the vehicle's impact on the PPD's Effective Isotropic Radiated Power (EIRP). A study was conceived in this research to characterize PPD performance by examining the on-vehicle radiation patterns as a function of vehicle type, jammer type, jammer location inside a vehicle and jammer orientation at each location. Phase two was to characterize the GPS Radiation Pattern on Multipath Limiting Antenna. MLA has to meet stringent requirements for acceptable signal detection and multipath rejection. The ARL-2100 is the most recent MLA antenna proposed to be used in the LAAS ground segment. The ground-based antenna's radiation pattern was modeled. This was achieved via (HFSS) a commercial-off the shelf CAD-based modeling code with a full-wave electromagnetic software simulation package that uses the Finite Element Analysis. Phase three of this work has been conducted to study the characteristics of the GPS Radiation Pattern on Commercial Aircraft. The airborne GPS antenna was modeled and the resulting radiation pattern on

  10. Effect of an evidence-based answering service on GPs and their patients : a pilot study

    NARCIS (Netherlands)

    Verhoeven, A.A.; Schuling, J.

    2004-01-01

    OBJECTIVES: For general practitioners (GPs), an important obstacle to practising evidence-based medicine is lack of time. An evidence-based answering service was developed that took over searching and appraisal of medical evidence from the GPs. GPs sent in questions, and the informationist formulate

  11. Effect of an evidence-based answering service on GPs and their patients : a pilot study

    NARCIS (Netherlands)

    Verhoeven, A.A.; Schuling, J.

    2004-01-01

    OBJECTIVES: For general practitioners (GPs), an important obstacle to practising evidence-based medicine is lack of time. An evidence-based answering service was developed that took over searching and appraisal of medical evidence from the GPs. GPs sent in questions, and the informationist formulate

  12. Recent Ground Deformation around the Northern Part of Lake Nasser, Aswan, Egypt Using GPS and InSAR

    Science.gov (United States)

    Saleh, Mohamed; Masson, Frederic

    2017-04-01

    The rate of seismic activity around the Lake Nasser was rapidly increased after the creation of the High Dam. The largest earthquake recorded in this area was the November 14, 1981, with magnitude ML5.6 at Kalabsha fault, 60 km southwest of Aswan High Dam. Due to the great importance of this region, many attempts were made to constrain the ground deformation around the northern part of Nasser Lake using GPS data. Due to the sparse spatial resolution of the GPS stations in this region, the achieved results need more verification. Therefore, we are using about 15 years of campaign data collected from the local geodetic network around the northern part of the Lake in addition to 34 SAR scenes, covering the time span from 2002 to 2010, to better constrain the ground deformation of this area. The processing of the GPS data was carried out using GAMIT/GLOBK whereas, the NSBAS technique was applied to the SAR scenes. Combining the results from both GPS and InSAR analysis may help to better understand the geodynamical behavior of such an important region in Egypt for the safety of human and vital national constructions.

  13. GPS-based CERN-LNGS time link for Borexino

    CERN Document Server

    Caccianiga, B; Cerretto, G; Esteban, H; Korga, G; Misiaszek, M; Orsini, M; Pallavicini, M; Pettiti, V; Plantard, C; Razeto, A

    2012-01-01

    We describe the design, the equipment, and the calibration of a new GPS based time link between CERN and the Borexino experiment at the Gran Sasso Laboratory in Italy. This system has been installed and operated in Borexino since March 2012, and used for a precise measurement of CNGS muon neutrinos speed in May 2012. The result of the measurement will be reported in a different letter.

  14. Smartphone-based integrated PDR/GPS/Bluetooth pedestrian location

    Science.gov (United States)

    Li, Xianghong; Wei, Dongyan; Lai, Qifeng; Xu, Ying; Yuan, Hong

    2017-02-01

    Typical indoor location method is fingerprint and traditional outdoor location system is GPS. Both of them are of poor accuracy and limited only for indoor or outdoor environments. As the smartphones are equipped with MEMS sensors, it means PDR can be widely used. In this paper, an algorithm of smartphone-based integrated PDR/GPS/Bluetooth for pedestrian location in the indoor/outdoor is proposed, which can be highly expected to realize seamless indoor/outdoor localization of the pedestrian. In addition, we also provide technologies to estimate orientation with Magnetometer and Gyroscope and detect context with output of sensors. The extensive experimental results show that the proposed algorithm can realize seamless indoor/outdoor localization.

  15. EMD-based GPS baseline solution and validation test

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; GAO Jing-xiang; WANG Jin-ling; XU Chang-hui

    2008-01-01

    A GPS baseline solution model is presented, based on the Empirical Mode Decomposition (EMD), which has the advantage of eliminating the error effects outside the model. The EMD technique is a new signal processing method for non-linear time series, which decomposes a time series into a finite and often small number of Intrinsic Mode Functions (IMFs). The decomposition procedure is adaptive and data-driven which is suitable for non-linear data series analysis. A multi-scale decomposition and reconstruction architecture is defined on the basis of the EMD theory and the error mitigation model is demonstrated as well. A standard of the scale selection for the elimination of errors, outside the model, was given in terms of the mean of the accumulated standardized modes. Thereafter, the scheme of the GPS baseline solution based on the EMD is suggested. The float solution residuals of the Double-Difference (DD) observation equation are used to extract the errors outside the model applied to modify the GPS DD measurements. Then the float solution was given again and the fixed solution was obtained by a Lambda algorithm. Three schemes are designed to test the proposed model and the experimental results show that the proposed model dramatically improves the relia- bility of ambiguity resolution after the elimination of errors outside the model.

  16. Application of Ground Penetrating Radar Surveys and GPS Surveys for Monitoring the Condition of Levees and Dykes

    Directory of Open Access Journals (Sweden)

    Tanajewski Dariusz

    2016-08-01

    Full Text Available This paper analyses the possibility of using integrated GPS (Global Positioning System surveys and ground penetrating radar surveys to precisely locate damages to levees, particularly due to the activity of small fossorial mammals. The technology of intercommunication between ground penetrating radar (GPR and an RTK (Real-Time Kinematic survey unit, and the method of data combination, are presented. The errors which may appear during the survey work are also characterized. The procedure for processing the data so that the final results have a spatial character and are ready to be implemented in digital maps and geographic information systems (GIS is also described.

  17. Application of Ground Penetrating Radar Surveys and GPS Surveys for Monitoring the Condition of Levees and Dykes

    Science.gov (United States)

    Tanajewski, Dariusz; Bakuła, Mieczysław

    2016-08-01

    This paper analyses the possibility of using integrated GPS (Global Positioning System) surveys and ground penetrating radar surveys to precisely locate damages to levees, particularly due to the activity of small fossorial mammals. The technology of intercommunication between ground penetrating radar (GPR) and an RTK (Real-Time Kinematic) survey unit, and the method of data combination, are presented. The errors which may appear during the survey work are also characterized. The procedure for processing the data so that the final results have a spatial character and are ready to be implemented in digital maps and geographic information systems (GIS) is also described.

  18. PRICISE TARGET GEOLOCATION BASED ON INTEGERATION OF THERMAL VIDEO IMAGERY AND RTK GPS IN UAVS

    Directory of Open Access Journals (Sweden)

    H. R. Hosseinpoor

    2015-12-01

    Full Text Available There are an increasingly large number of uses for Unmanned Aerial Vehicles (UAVs from surveillance, mapping and target geolocation. However, most of commercial UAVs are equipped with low-cost navigation sensors such as C/A code GPS and a low-cost IMU on board, allowing a positioning accuracy of 5 to 10 meters. This low accuracy which implicates that it cannot be used in applications that require high precision data on cm-level. This paper presents a precise process for geolocation of ground targets based on thermal video imagery acquired by small UAV equipped with RTK GPS. The geolocation data is filtered using a linear Kalman filter, which provides a smoothed estimate of target location and target velocity. The accurate geo-locating of targets during image acquisition is conducted via traditional photogrammetric bundle adjustment equations using accurate exterior parameters achieved by on board IMU and RTK GPS sensors and Kalman filtering and interior orientation parameters of thermal camera from pre-flight laboratory calibration process.

  19. Pricise Target Geolocation Based on Integeration of Thermal Video Imagery and Rtk GPS in Uavs

    Science.gov (United States)

    Hosseinpoor, H. R.; Samadzadegan, F.; Dadras Javan, F.

    2015-12-01

    There are an increasingly large number of uses for Unmanned Aerial Vehicles (UAVs) from surveillance, mapping and target geolocation. However, most of commercial UAVs are equipped with low-cost navigation sensors such as C/A code GPS and a low-cost IMU on board, allowing a positioning accuracy of 5 to 10 meters. This low accuracy which implicates that it cannot be used in applications that require high precision data on cm-level. This paper presents a precise process for geolocation of ground targets based on thermal video imagery acquired by small UAV equipped with RTK GPS. The geolocation data is filtered using a linear Kalman filter, which provides a smoothed estimate of target location and target velocity. The accurate geo-locating of targets during image acquisition is conducted via traditional photogrammetric bundle adjustment equations using accurate exterior parameters achieved by on board IMU and RTK GPS sensors and Kalman filtering and interior orientation parameters of thermal camera from pre-flight laboratory calibration process.

  20. A GPS-Based Decentralized Control Method for Islanded Microgrids

    DEFF Research Database (Denmark)

    Golsorkhi, Mohammad; Lu, Dylan; Guerrero, Josep M.

    2017-01-01

    , GPS timing technology is utilized to synchronize the DERs to a common reference frame, rotating at nominal frequency. In addition, an adaptive Q-f droop controller is introduced as a backup to ensure stable operation during GPS signal interruptions. In the context of the common reference frame, even...... with respect to GPS interruptions....

  1. Aircraft landing using GPS

    Science.gov (United States)

    Lawrence, David Gary

    The advent of the Global Positioning System (GPS) is revolutionizing the field of navigation. Commercial aviation has been particularly influenced by this worldwide navigation system. From ground vehicle guidance to aircraft landing applications, GPS has the potential to impact many areas of aviation. GPS is already being used for non-precision approach guidance; current research focuses on its application to more critical regimes of flight. To this end, the following contributions were made: (1) Development of algorithms and a flexible software architecture capable of providing real-time position solutions accurate to the centimeter level with high integrity. This architecture was used to demonstrate 110 automatic landings of a Boeing 737. (2) Assessment of the navigation performance provided by two GPS-based landing systems developed at Stanford, the Integrity Beacon Landing System, and the Wide Area Augmentation System. (3) Preliminary evaluation of proposed enhancements to traditional techniques for GPS positioning, specifically, dual antenna positioning and pseudolite augmentation. (4) Introduction of a new concept for positioning using airport pseudolites. The results of this research are promising, showing that GPS-based systems can potentially meet even the stringent requirements of a Category III (zero visibility) landing system. Although technical and logistical hurdles still exist, it is likely that GPS will soon provide aircraft guidance in all phases of flight, including automatic landing, roll-out, and taxi.

  2. Cost-effective monitoring of ground motion related to earthquakes, landslides, or volcanic activity by joint use of a single-frequency GPS and a MEMS accelerometer

    Science.gov (United States)

    Tu, R.; Wang, R.; Ge, M.; Walter, T. R.; Ramatschi, M.; Milkereit, C.; Bindi, D.; Dahm, T.

    2013-08-01

    detection and precise estimation of strong ground motion are crucial for rapid assessment and early warning of geohazards such as earthquakes, landslides, and volcanic activity. This challenging task can be accomplished by combining GPS and accelerometer measurements because of their complementary capabilities to resolve broadband ground motion signals. However, for implementing an operational monitoring network of such joint measurement systems, cost-effective techniques need to be developed and rigorously tested. We propose a new approach for joint processing of single-frequency GPS and MEMS (microelectromechanical systems) accelerometer data in real time. To demonstrate the performance of our method, we describe results from outdoor experiments under controlled conditions. For validation, we analyzed dual-frequency GPS data and images recorded by a video camera. The results of the different sensors agree very well, suggesting that real-time broadband information of ground motion can be provided by using single-frequency GPS and MEMS accelerometers.

  3. Accuracy of WAAS-enabled GPS for the determination of position and speed over ground.

    Science.gov (United States)

    Witte, T H; Wilson, A M

    2005-08-01

    The Global Positioning System (GPS) offers many advantages over conventional methods for the determination of subject speed during biomechanical studies. Recent advances in GPS technology, in particular the implementation of the Wide-Angle Augmentation System and European Geostationary Navigation Overlay Service (WAAS/EGNOS), mean that small, highly portable units are available offering the potential of superior accuracy in the determination of both position and speed. This study set out to examine the accuracy of a WAAS-enabled GPS unit for the determination of position and speed. Comparison with the new and published data showed significant enhancements in both position and speed accuracy over a non-WAAS system. Position data collected during straight line cycling showed significantly lower sample-to-sample variation (mean absolute deviation from straight line 0.11 vs. 0.78 m) and greater repeatability from trial to trial (mean absolute deviation from actual path 0.37 vs. 4.8 m) for the WAAS-enabled unit compared to the non-WAAS unit. The speed determined by the WAAS-enabled GPS receiver during cycling in a straight line was within 0.2 ms(-1) of the actual speed measured for 57% of the values with 82% lying within 0.4 ms(-1), however, the data tended towards underestimation of speed during circle cycling, with 65% of values within 0.2 ms(-1) and 87% within 0.4 ms(-1) of the actual value. Local dGPS and dual frequency techniques are more accurate still, however, traditional differential GPS (dGPS), employing FM radio transmission of correction data to a separate receiver, now offers no advantage over WAAS and appears redundant.

  4. Ground Deformation during Papandayan Volcano 2002 Eruption as Detected by GPS Surveys

    Directory of Open Access Journals (Sweden)

    Hasanuddin Z. Abidin

    2003-05-01

    Full Text Available Papandayan is an A-type active volcano located in the southern part of Garut Regency, about 70 km southeast of Bandung, Indonesia. Its earliest recorded eruption, and most violent and devastating outburst occurred in 1772 and the latest eruptions occurred in the period of 11 November to 8 December 2002, and consisted of freatic, freatomagmatic and magmatic types of eruption.During the latest eruption period, GPS surveys were conducted at several points inside and around the crater in a radial mode using the reference point located at Papandayan observatory around 10 km from the crater. At the points closest to the erupting craters, GPS displacements up to a few dm were detected, whereas at the points outside the crater, the displacements were in the cm level. The magnitude of displacements observed at each point also show a temporal variation according to the eruption characteristics. The results show that deformation during eruption tends to be local, e.g. just around the crater. Pressure source is difficult to be properly modeled from GPS results, due to limited GPS data available and differences in topography, geological structure and/or rheology related to each GPS station.

  5. GPS-based Microenvironment Tracker (MicroTrac) Model to ...

    Science.gov (United States)

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure to do so can add uncertainty and bias to risk estimates. In this study, a classification model, called MicroTrac, was developed to estimate time of day and duration spent in eight ME (indoors and outdoors at home, work, school; inside vehicles; other locations) from global positioning system (GPS) data and geocoded building boundaries. Based on a panel study, MicroTrac estimates were compared to 24 h diary data from 7 participants on workdays and 2 participants on nonworkdays, with corresponding GPS data and building boundaries of home, school, and work. MicroTrac correctly classified the ME for 99.5% of the daily time spent by the participants. The capability of MicroTrac could help to reduce the time-location uncertainty in air pollution exposure models and exposure metrics for individuals in health studies. The National Exposure Research Laboratory’s (NERL’s) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA’s mission to protect human health and the environment. HEASD’s research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA’s strategic plan. More specifically, our division conducts research to characterize

  6. GPS based Advanced Vehicle Tracking and Vehicle Control System

    Directory of Open Access Journals (Sweden)

    Mashood Mukhtar

    2015-02-01

    Full Text Available Security systems and navigators have always been a necessity of human‟s life. The developments of advanced electronics have brought revolutionary changes in these fields. In this paper, we will present a vehicle tracking system that employs a GPS module and a GSM modem to find the location of a vehicle and offers a range of control features. To complete the design successfully, a GPS unit, two relays, a GSM Modem and two MCU units are used. There are five features introduced in the project. The aim of this project is to remotely track a vehicle‟s location, remotely switch ON and OFF the vehicle‟s ignition system and remotely lock and unlock the doors of the vehicle. An SMS message is sent to the tracking system and the system responds to the users request by performing appropriate actions. Short text messages are assigned to each of these features. A webpage is specifically designed to view the vehicle‟s location on Google maps. By using relay based control concept introduced in this paper, number of control features such as turning heater on/off, radio on/off etc. can be implemented in the same fashion.

  7. Anomaly detection in GPS data based on visual analytics

    OpenAIRE

    Yu, Y.; Liao, Z; Chen, B

    2010-01-01

    Modern machine learning techniques provide robust approaches for data-driven modeling and critical information extraction, while human experts hold the advantage of possessing high-level intelligence and domain-specific expertise. We combine the power of the two for anomaly detection in GPS data by integrating them through a visualization and human-computer interaction interface. In this paper we introduce GPSvas (GPS Visual Analytics System), a system that detects anomalies in GPS data using...

  8. Terrain Imaging Using a SAR System Based on Reflected GPS Signals

    Institute of Scientific and Technical Information of China (English)

    Li Yong-hong; C. Rizos; E. Donskoi; J. Homer; B. Mojarrabi

    2003-01-01

    This paper describes a 3D multi-static synthetic aperture radar (SAR) imaging system which utilises reflected GPS signals from moving objects on the Earth's surface. The principle of bi-static radar is used to model the reflected GPS signals. The movement of a visible GPS satellite serves as a base for a synthetic aperture over an observation time period. As an example, a MATLAB simulation has been carried out in order to detect the movement of imaged object sunder the assumption of one static GPS receiver with two targets which move with different speeds. The influence of the visible satellite'sposition and velocity on the spatial resolution of such a SAR system isdiscussed. Simulation results show that by measuring the cross-correlation of the reflected GPS signal from the terrain and objects on it,the detection of the objects can enjoy a good spatial resolution for thecase of moving objects and a moving GPS receiver. Furthermore, thespatial resolution is also related to the selection of visible GPS satelliteswith respect to their azimuths, elevations and velocities. This systemhas the following useful features: (a) no dedicated signal transmitter is required; (b) the GPS signal frequency is reused; (c) GPS operates round-the-clock and its signals cover the entire Earth's surface; (d) low power consumption; and (e) known GPS signal structure.

  9. A New Window-Based Program for Quality Control of GPS Sensing Data

    Directory of Open Access Journals (Sweden)

    Hongsik Yun

    2012-10-01

    Full Text Available The main purpose of this study is to develop a new Windows-based program that calculates a quality control parameter that shows the quality of GPS observations using Global Positing Sensing (GPS data in a Receiver INdependent Exchange (RINEX format. This new program, Global Positing Sensing Quality Control (GPSQC, allows general GPS users to easily and intuitively check the quality of GPS observations before post-processing, which will lead to the improvement of GPS positioning precision in diverse areas of GPS applications. The GPSQC is designed to control the multi-path, cycle slip, and ionospheric errors of L1 and L2 signals in GPS observations. The GPSQC was developed using C#.NET language for the Window series with Microsoft Graphical User Interfaces (MS GUIs. This program gives brief information for GPS observations, time series plots, graphs of quality control parameters, and a summary report in MS word, Excel and PDF formats. It can simply perform quality checking of GPS observations that is difficult for surveyors conducting field work. We expect that GPSQC can be used to improve the accuracy of positioning and to solve time-consuming problems due to data loss and large errors in GPS observations.

  10. The Aalborg Survey / Part 2 - GPS Based Survey

    DEFF Research Database (Denmark)

    Harder, Henrik; Reiter, Ida Maria; Christensen, Cecilie Breinholm

    Background and purpose The Aalborg Survey consists of four independent parts: a web, GPS and an interview based survey and a literature study, which together form a consistent investigation and research into use of urban space, and specifically into young people’s use of urban space: what young...... people do in urban spaces, where they are in the urban spaces and when the young people are in the urban spaces. The answers to these questions form the framework and enable further academic discussions and conclusions in relation to the overall research project Diverse Urban Spaces (DUS). The primary...... aim of the DUS research project is to investigate why young people do what they do in the urban spaces, and how this knowledge can contribute to an increase in young people’s use of urban spaces. It is the overall aim of the DUS research project to facilitate an increased and more diverse use of urban...

  11. Exploring Urban Taxi Drivers’ Activity Distribution Based on GPS Data

    Directory of Open Access Journals (Sweden)

    Xiaowei Hu

    2014-01-01

    Full Text Available With the rapid development of information communication technology and data mining technology, we can obtain taxi vehicle’s real time operation status through the large-scale taxi GPS trajectories data and explore the drivers’ activity distribution characteristics. Based on the 204 continuous hours of 3198 taxi vehicles’ operation data of Shenzhen, China, this paper analyzed the urban taxi driver’s activity distribution characteristics from different temporal and spatial levels. In the time level, we identified the difference with taxi daily operation pattern (weekday versus weekends, continuous time in one day, passengers in vehicle time, and taxi drivers’ operation frequency; in the space level, we explored the taxi driver’s searching pattern, including searching activity space distribution and the relationship between the pick-up locations and the drop-off locations. This research can be helpful for urban taxi drivers’ operation and behavior pattern identification, as well as the contribution to the geographical activity space analysis.

  12. A GPS-Based Pitot-Static Calibration Method Using Global Output-Error Optimization

    Science.gov (United States)

    Foster, John V.; Cunningham, Kevin

    2010-01-01

    Pressure-based airspeed and altitude measurements for aircraft typically require calibration of the installed system to account for pressure sensing errors such as those due to local flow field effects. In some cases, calibration is used to meet requirements such as those specified in Federal Aviation Regulation Part 25. Several methods are used for in-flight pitot-static calibration including tower fly-by, pacer aircraft, and trailing cone methods. In the 1990 s, the introduction of satellite-based positioning systems to the civilian market enabled new inflight calibration methods based on accurate ground speed measurements provided by Global Positioning Systems (GPS). Use of GPS for airspeed calibration has many advantages such as accuracy, ease of portability (e.g. hand-held) and the flexibility of operating in airspace without the limitations of test range boundaries or ground telemetry support. The current research was motivated by the need for a rapid and statistically accurate method for in-flight calibration of pitot-static systems for remotely piloted, dynamically-scaled research aircraft. Current calibration methods were deemed not practical for this application because of confined test range size and limited flight time available for each sortie. A method was developed that uses high data rate measurements of static and total pressure, and GPSbased ground speed measurements to compute the pressure errors over a range of airspeed. The novel application of this approach is the use of system identification methods that rapidly compute optimal pressure error models with defined confidence intervals in nearreal time. This method has been demonstrated in flight tests and has shown 2- bounds of approximately 0.2 kts with an order of magnitude reduction in test time over other methods. As part of this experiment, a unique database of wind measurements was acquired concurrently with the flight experiments, for the purpose of experimental validation of the

  13. EVA: GPS-based extended velocity and acceleration determination

    Science.gov (United States)

    Salazar, Dagoberto; Hernandez-Pajares, Manuel; Juan-Zornoza, Jose Miguel; Sanz-Subirana, Jaume; Aragon-Angel, Angela

    2011-06-01

    In this work, a new GPS carrier phase-based velocity and acceleration determination method is presented that extends the effective range of previous techniques. The method is named `EVA', and may find applications in fields such as airborne gravimetry when rough terrain or water bodies make difficult or impractical to set up nearby GPS reference receivers. The EVA method is similar to methods such as Kennedy (Precise acceleration determination from carrier phase measurements. In: Proceedings of the 15th international technical meeting of the satellite division of the Institute of Navigation. ION GPS 2002, Portland pp 962-972, 2002b) since it uses L1 carrier phase observables for velocity and acceleration determination. However, it introduces a wide network of stations and it is independent of precise clock information because it estimates satellite clock drifts and drift rates `on-the-fly', requiring only orbit data of sufficient quality. Moreover, with EVA the solution rate is only limited by data rate, and not by the available precise satellite clocks data rate. The results obtained are more robust for long baselines than the results obtained with the reference Kennedy method. An advantage of being independent of precise clock information is that, beside IGS Final products, also the Rapid, Ultra-Rapid (observed) and Ultra-Rapid (predicted) products may be used. Moreover, the EVA technique may also use the undifferenced ionosphere-free carrier phase combination (LC), overcoming baseline limitations in cases where ionosphere gradients may be an issue and very low biases are required. During the development of this work, some problems were found in the velocity estimation process of the Kennedy method. The sources of the problems were identified, and an improved version of the Kennedy method was used for this research work. An experiment was performed using a light aircraft flying over the Pyrenees, showing that both EVA and the improved Kennedy methods are able to

  14. Accuracy Management of LiDAR Data Using GPS Ground Control Points

    OpenAIRE

    BAŞ, Nuray; ÇELİK, Hakan; COŞKUN, H. Gonca

    2016-01-01

    Nowadays, both faster and more accurate data acquisition studies are gradually gaining speed, different of traditional land surveying technics in order to obtain land data having high accuration and geometric resolution on mapping. In this study, it is aimed that, to test with RTK/GPS (Real Time Kinematic-Global Positioning System) data of LiDAR (Light Detection and Ranging) Technology, as Remote Sensing Technic, making detection at 1.064nm near infrared region of electromagnetic spectrum in ...

  15. The coseismic ground deformations of the 1997 Umbria-Marche earthquakes: a lesson for the development of new GPS networks

    Directory of Open Access Journals (Sweden)

    E. Serpelloni

    2008-06-01

    Full Text Available After the occurrence of the two main shocks Mw=5.7 (00.33 GMT and Mw=6.0 (09:40 GMT on September 26, 1997, which caused severe damages and ground cracks in a wide area of the Umbria Marche region, the Istituto Nazionale di Geofisica in cooperation with the Istituto Geografico Militare Italiano set out to detect the coseismic ground deformation and reoccupied the available geodetic monuments placed across the epicentral area, belonging to the first order Italian GPS network IGM95 and to the Tyrgeonet network. The comparison between the pre and post-earthquakes coordinate set, the latter obtained from the surveys performed in the early days of October 1997 in the Umbria Marche earthquake area, showed maximum displacements values at the closest stations to the epicentres, up to 14.0±1.8 and 24.0±3.0 cm in the horizontal and vertical components, respectively. The availability of the IGM95 stations allowed geodetic data to be translated into relevant geophysical results. For the first time in Italy, the evaluation of post-earthquake coordinates at 13 vertices provided the estimation of a significant deformation field associated with a seismic sequence. Unfortunately, the same actions could not be applied to the October 14, 1997, Mw=5.6 Sellano earthquake, whose epicentre was located a few tens of km south of the previous ones, due to a lack of available geodetic vertices of Tyrgeonet and IGM95 networks in the surroundings of the epicentral zone. This fact, which prevented the estimation of coseismic deformation and seismic source modelling for this earthquake, clarified the need to set up tailor made GPS networks devoted to geophysical applications, able to capture a possible coseismic signal, but also interseismic and post-seismic signals, at the surface of the Earth’s crust at the scale of the expected magnitudes and fault length. Here we show and discuss the development of the Discrete GPS and Continuous GPS (CGPS networks in

  16. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  17. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  18. GPS水汽处理的设计与实现%GPS -based Design and Implementation of Water Vapor Treatment

    Institute of Scientific and Technical Information of China (English)

    王棋

    2012-01-01

    介绍地基GPS气象学的基本原理,并利用VB编程语言编程实现GPS水汽计算和结果的图形化显示。同时对某地2008年5月份的根据三种静力学延迟模型反演的气象数据和降水数据进行分析,探索模型的适用情况。%Introduce the basic principles of ground -based GPS meteorology and the use of VB programming language program- ming GPS water vapor calculations and results displayed graphically. At the same time a place in May 2008 of the static delay model based on three meteorological data inversion and precipitation data for analysis, to explore the application of the model.

  19. NONLINEAR FILTER METHOD OF GPS DYNAMIC POSITIONING BASED ON BANCROFT ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    ZHANGQin; TAOBen-zao; ZHAOChao-ying; WANGLi

    2005-01-01

    Because of the ignored items after linearization, the extended Kalman filter (EKF) becomes a form of suboptimal gradient descent algorithm. The emanative tendency exists in GPS solution when the filter equations are ill-posed. The deviation in the estimation cannot be avoided. Furthermore, the true solution may be lost in pseudorange positioning because the linearized pseudorange equations are partial solutions. To solve the above problems in GPS dynamic positioning by using EKF, a closed-form Kalman filter method called the two-stage algorithm is presented for the nonlinear algebraic solution of GPS dynamic positioning based on the global nonlinear least squares closed algorithm--Bancroft numerical algorithm of American. The method separates the spatial parts from temporal parts during processing the GPS filter problems, and solves the nonlinear GPS dynamic positioning, thus getting stable and reliable dynamic positioning solutions.

  20. The study of baseline shift error in strong-motion and ground tilting during co-seismic period with collocated GPS and strong-motion observations

    Science.gov (United States)

    Tu, Rui; Zhang, Pengfei; Zhang, Rui; Liu, Jinhai; Lu, Xiaochun

    2017-01-01

    Strong-motion's baseline shift error is very difficult to process precisely; it is mainly caused by the tilting, rotation of the ground and environment noises during the co-seismic period. In the study, we first studied how to effectively extract the strong-motion's baseline shift error with GPS observation; this also provides a new way of correcting the baseline shift errors. Then we studied how to retrieve the ground tilting information of the station point with the collocated GPS and strong-motion observations, the information is an important input parameter of rotational seismology. In addition, both experimental result and seismic data show that the baseline shift error is mainly caused by the ground tiling and rotation during the co-seismic period. Also, there is a strong directly proportional relationship between the baseline shift error and ground tilting, of which the proportionality constant is approximately equal to the value of gravitational acceleration of the station.

  1. Ground Control Point - Wireless System Network for UAV-based environmental monitoring applications

    Science.gov (United States)

    Mejia-Aguilar, Abraham

    2016-04-01

    In recent years, Unmanned Aerial Vehicles (UAV) have seen widespread civil applications including usage for survey and monitoring services in areas such as agriculture, construction and civil engineering, private surveillance and reconnaissance services and cultural heritage management. Most aerial monitoring services require the integration of information acquired during the flight (such as imagery) with ground-based information (such as GPS information or others) for improved ground truth validation. For example, to obtain an accurate 3D and Digital Elevation Model based on aerial imagery, it is necessary to include ground-based information of coordinate points, which are normally acquired with surveying methods based on Global Position Systems (GPS). However, GPS surveys are very time consuming and especially for longer time series of monitoring data repeated GPS surveys are necessary. In order to improve speed of data collection and integration, this work presents an autonomous system based on Waspmote technologies build on single nodes interlinked in a Wireless Sensor Network (WSN) star-topology for ground based information collection and later integration with surveying data obtained by UAV. Nodes are designed to be visible from the air, to resist extreme weather conditions with low-power consumption. Besides, nodes are equipped with GPS as well as Inertial Measurement Unit (IMU), accelerometer, temperature and soil moisture sensors and thus provide significant advantages in a broad range of applications for environmental monitoring. For our purpose, the WSN transmits the environmental data with 3G/GPRS to a database on a regular time basis. This project provides a detailed case study and implementation of a Ground Control Point System Network for UAV-based vegetation monitoring of dry mountain grassland in the Matsch valley, Italy.

  2. Voice and GPS Based Navigation System For Visually Impaired

    Directory of Open Access Journals (Sweden)

    Harsha Gawari

    2014-04-01

    Full Text Available The paper represents the architecture and implementation of a system that will help to navigate the visually impaired people. The system designed uses GPS and voice recognition along with obstacle avoidance for the purpose of guiding visually impaired. The visually impaired person issues the command and receives the direction response using audio signals. The latitude and longitude values are received continuously from the GPS receiver. The directions are given to the user with the help of audio signals. An obstacle detector is used to help the user to avoid obstacles by sending an audio message.GPS receivers use NMEA standard. With the advancement in voice recognition it becomes easier to issue commands regarding directions to the visually impaired.

  3. Atmospheric refractivity profiling by the mountain-based GPS and the tomographic method

    Science.gov (United States)

    Cao, Yunchang; Guo, Zhimei; Bi, Yanmeng; Tu, Mahong; Zheng, Feifei

    2007-11-01

    Atmospheric refractivity sounding is of great importance to the meteorological and military applications. An experiment was conducted for sounding the atmospheric refractivity on the top of the Wuling Mountain in August, 2005. Profiles of the atmospheric refractivity were obtained by both the mountain-based GPS and the tomographic method. Comparison shows that there is a bias of -3.83N and a standard deviation of 7.03N between the mountain-based GPS and the radiosonde. A bias less than 1% among different receivers proves that the receivers tested can meet the demand of the radio occultation technique. A very good consistence among the profiles by the mountain-based GPS, the tomographic method and the radiosonde suggests the effectiveness of both the mountain-based GPS and the tomographic method, indicating the great potential in the future meteorological application.

  4. Navigation in GPS Challenged Environments Based Upon Ranging Imagery

    Science.gov (United States)

    Markiel, J. N. Nikki

    The ability of living creatures to navigate their environment is one of the great mysteries of life. Humans, even from an early age, can acquire data about their surroundings, determine whether objects are movable or fixed, and identify open space, separate static and non-static objects, and move towards another location with minimal effort, in infinitesimal time spans. Over extended time periods humans can recall the location of objects and duplicate navigation tasks based purely on relative positioning of landmarks. Our ability to emulate this complex process in autonomous vehicles remains incomplete, despite significant research efforts over the past half century. Autonomous vehicles rely on a variety of electronic sensors to acquire data about their environment; the challenge is to transform that data into information supporting the objective of navigation. Historically, much of the sensor data was limited to the two dimensional (2D) instance; recent technological developments such as Laser Ranging and 3D Sonar are extending data collection to full three dimensional (3D) acquisition. The objective of this dissertation is the development of an algorithm to support the transformation of 3D ranging data into a navigation solution within unknown environments, and in the presence of dynamically moving objects. The algorithm reflects one of the very first attempts to leverage the 3D ranging technology for the purpose of autonomous navigation, and provides a system which enables the ability to complete the following objectives: • Separation of static and non-static elements in the environment. • Navigation based upon the range measurements of static elements. This research extends the body of knowledge in three primary topics. 1) The first is the development of a general method to identify n features in an initial data set from m features in a subsequent data set, given that both data sets are acquired via 3D ranging sensors. Accomplishing this objective

  5. Modelling and Simulation of Pseudolite-based Navigation: A GPS-independent Radio Navigation System

    Directory of Open Access Journals (Sweden)

    Krishneshwar Tiwary

    2010-08-01

    Full Text Available The use of global positioning system (GPS for precision guidance of weapons is being questioned due to its vulnerability of jamming and spoofing for non-military code users. In this paper a novel approach is proposed for guidance of weapons where use of GPS or other civilian Satellite-based navigation system is threatened. The proposed approach is modelled and simulated using SIMULINK for realistic trajectories and scenario. The results of simulation are validated with the actual GPS data.

  6. GPS Metric Tracking Unit

    Science.gov (United States)

    2008-01-01

    As Global Positioning Satellite (GPS) applications become more prevalent for land- and air-based vehicles, GPS applications for space vehicles will also increase. The Applied Technology Directorate of Kennedy Space Center (KSC) has developed a lightweight, low-cost GPS Metric Tracking Unit (GMTU), the first of two steps in developing a lightweight, low-cost Space-Based Tracking and Command Subsystem (STACS) designed to meet Range Safety's link margin and latency requirements for vehicle command and telemetry data. The goals of STACS are to improve Range Safety operations and expand tracking capabilities for space vehicles. STACS will track the vehicle, receive commands, and send telemetry data through the space-based asset, which will dramatically reduce dependence on ground-based assets. The other step was the Low-Cost Tracking and Data Relay Satellite System (TDRSS) Transceiver (LCT2), developed by the Wallops Flight Facility (WFF), which allows the vehicle to communicate with a geosynchronous relay satellite. Although the GMTU and LCT2 were independently implemented and tested, the design collaboration of KSC and WFF engineers allowed GMTU and LCT2 to be integrated into one enclosure, leading to the final STACS. In operation, GMTU needs only a radio frequency (RF) input from a GPS antenna and outputs position and velocity data to the vehicle through a serial or pulse code modulation (PCM) interface. GMTU includes one commercial GPS receiver board and a custom board, the Command and Telemetry Processor (CTP) developed by KSC. The CTP design is based on a field-programmable gate array (FPGA) with embedded processors to support GPS functions.

  7. GPS Based Autonomous Flight Control System for an Unmanned Airship

    Directory of Open Access Journals (Sweden)

    Vishnu G Nair,

    2014-01-01

    Full Text Available An unmanned airship, also known as a Unmanned aircraft System (UAS or a remotely piloted aircraft is a machine which functions either by the remote control of a navigator or pilot. The unmanned airship uses the autonomous flight, navigation and guidance based on the telemetry command of ground station. The Autonomous Flight Control System (AFCS [1] plays a key role in achieving the given requirements and missions. This paper introduces the overall design architecture of the hardware and software of the flight control systems in a 50m long unmanned airship

  8. NASA's GPS tracking system for Aristoteles

    Science.gov (United States)

    Davis, E. S.; Hajj, G.; Kursinski, E. R.; Kyriacou, C.; Meehan, T. K.; Melbourne, William G.; Neilan, R. E.; Young, L. E.; Yunck, Thomas P.

    1991-12-01

    NASA 's Global Positioning System (GPS) tracking system for Artistoteles receivers and a GPS flight receiver aboard Aristoteles is described. It will include a global network of GPS ground receivers and a GPS flight receiver aboard Aristoteles. The flight receiver will operate autonomously; it will provide real time navigation solutions for Aristoteles and tracking data needed by ESOC for operational control of the satellite. The GPS flight and ground receivers will currently and continuously track all visible GPS satellites. These observations will yield high accuracy differential positions and velocities of Aristoteles in a terrestrial frame defined by the locations of the globally distributed ground work. The precise orbits and tracking data will be made available to science investigators as part of the geophysical data record. The characteristics of the GPS receivers, both flight and ground based, that NASA will be using to support Aristoteles are described. The operational aspects of the overall tracking system, including the data functions and the resulting data products are summarized. The expected performance of the tracking system is compared to Aristoteles requirements and the need to control key error sources such as multipath is identified.

  9. 利用神经网络预测的GPS/SINS组合导航系统算法研究%GPS/SINS Integrated Navigation Algorithm Based on Neural Network Prediction

    Institute of Scientific and Technical Information of China (English)

    林雪原; 鞠建波

    2011-01-01

    We put forward a GPS/SINS integrated navigation algorithm based on neural network (NN) prediction. When GPS signal is available, this method uses the outputs of inertial sensors and the outputs of Kalman filter as the inputs and ideal outputs of NN respectively, and the NN is trained on-line. During GPS signal outage, the trained NN is used to predict the navigation parameter error to correct SINS. The ground static and dynamic car experimental results show the reliability and effectiveness of this method.%提出了一种基于神经网络预测的GPS/SINS组合导航系统算法.GPS信号可用时,该算法分别将惯性传感器的输出以及卡尔曼滤波器的输出信息作为神经网络的输入及理想输出信息,并进行在线训练;当GPS信息失锁时,利用已经训练好的神经网络预测各导航参数误差,并校正SINS.地面静态实验与动态跑车实验结果证明了该方法的可行性与有效性.

  10. Direct GPS P-Code Acquisition Method Based on FFT

    Institute of Scientific and Technical Information of China (English)

    LI Hong; LU Mingquan; FENG Zhenming

    2008-01-01

    Recently, direct acquisition of GPS P-code has received considerable attention to enhance the anti-jamming and anti-spoofing capabilities of GPS receivers. This paper describes a P-code acquisition method that uses block searches with large-scale FFT to search code phases and carrier frequency offsets in parallel. To limit memory use, especially when implemented in hardware, only the largest correlation result with its position information was preserved after searching a block of resolution cells in both the time and frequency domains. A second search was used to solve the code phase slip problem induced by the code frequency offset. Simulation results demonstrate that the probability of detection is above 0.99 for carrier-to-noise density ratios in excess of 40 dB- Hz when the predetection integration time is 0.8 ms and 6 non-coherent integrations are used in the analysis.

  11. Instant tsunami early warning based on real-time GPS – Tohoku 2011 case study

    Directory of Open Access Journals (Sweden)

    A. Hoechner

    2013-05-01

    Full Text Available Taking the 2011 Tohoku earthquake as an example, we demonstrate the ability of real-time GPS to provide qualified tsunami early warning within minutes. While in earlier studies we demonstrated the power of the so-called GPS shield concept based on synthetic data, we here present a complete processing chain starting from actual GPS raw data and fully simulate the situation as it would be in a warning center. The procedure includes processing of GPS observations with predicted high precision orbits, inversion for slip and computation of the tsunami propagation and coastal warning levels. We show that in case of the Tohoku earthquake, it would be feasible to provide accurate tsunami warning as soon as 3 min after the beginning of the earthquake.

  12. Optimal on-airport monitoring of the integrity of GPS-based landing systems

    Science.gov (United States)

    Xie, Gang

    2004-11-01

    The Global Positioning System (GPS) is a satellite-based radio navigation system. The Local Area Augmentation System (LAAS) is a version of Differential GPS (DGPS) designed to reliably support aircraft precision approaches. The Integrity Monitor Testbed (IMT) is a prototype of the LAAS Ground Facility (LGF) that is used to evaluate whether the LGF can meet system integrity requirements. To insure high integrity, the IMT has a variety of monitors to detect all possible failures. It also contains a failure-handling logic, known as Executive Monitoring (EXM), to exclude faulty measurements and recover once the failure disappears. Spatial ionospheric gradients are major threats to the LAAS. One focus of this thesis is exploring methods to quickly detect ionospheric gradients given the required low probability of false alarms. The first part of the thesis introduces GPS, LAAS, and the IMT and explains the algorithms and functionalities of IMT integrity monitors in detail. It then analyzes the failure responses of the integrity monitors under the most general measurement failure model. This analysis not only qualitatively maps the integrity monitors into the entire failure space, but also provides a tool to quantitatively compare the performance of different integrity monitors. In addition, the analysis examines the limitations of the existing monitors in detecting small but hazardous ionospheric gradients. The divergence Cumulative Sum (CUSUM) method is then derived and assessed. It can reduce the time required to detect marginal ionospheric gradients by about 30%. With the divergence CUSUM method implemented in the IMT, system integrity and performance are greatly improved. Different monitors can respond to the same failures. The last part of this thesis shows that the combination of these different monitors can detect certain failures more quickly than any individual monitor. This idea leads to a new method, called failure-specific testing, which can significantly

  13. Building a mechanistic understanding of predation with GPS-based movement data.

    Science.gov (United States)

    Merrill, Evelyn; Sand, Håkan; Zimmermann, Barbara; McPhee, Heather; Webb, Nathan; Hebblewhite, Mark; Wabakken, Petter; Frair, Jacqueline L

    2010-07-27

    Quantifying kill rates and sources of variation in kill rates remains an important challenge in linking predators to their prey. We address current approaches to using global positioning system (GPS)-based movement data for quantifying key predation components of large carnivores. We review approaches to identify kill sites from GPS movement data as a means to estimate kill rates and address advantages of using GPS-based data over past approaches. Despite considerable progress, modelling the probability that a cluster of GPS points is a kill site is no substitute for field visits, but can guide our field efforts. Once kill sites are identified, time spent at a kill site (handling time) and time between kills (killing time) can be determined. We show how statistical models can be used to investigate the influence of factors such as animal characteristics (e.g. age, sex, group size) and landscape features on either handling time or killing efficiency. If we know the prey densities along paths to a kill, we can quantify the 'attack success' parameter in functional response models directly. Problems remain in incorporating the behavioural complexity derived from GPS movement paths into functional response models, particularly in multi-prey systems, but we believe that exploring the details of GPS movement data has put us on the right path.

  14. Navigation of Unmanned Vehicle Based on GPS/INS/Lidar%基于GPS/INS/Lidar的无人车导航

    Institute of Scientific and Technical Information of China (English)

    杨森森; 张伟军; 谢一峰

    2013-01-01

    To achieve the autonomous navigation of unmanned vehicle, this article introduces an integrated navigation based on GPS and INS and Lidar is used to avoid obstacle. First, this paper presents the framework of the unmanned vehicle and set up the CAN bus communication network based on SJA-J1939. Then carrier phase differential GPS is applied to received high-accuracy information of positioning. Also, INS exports data includes direction an acceleration. At last, lidar scans the environment to acquire the distance and corresponding angle and avoid obstacle efficiently. Experiments have proved the feasibility.%为了实现无人车的自主导航,提出了一种基于GPS和INS的组合导航,并辅以激光雷达实现避障功能.首先确立整车的控制架构,确定基于SAE-J1939协议的整车CAN总线通信网络;然后研究了GPS导航,利用GPS的载波差分获得较高的位置精度,同时整合惯导的输出数据;最后通过激光雷达的不断扫描,获取周围物体的角度和距离,实现周边环境建模,有效规避障碍.实验验证了此导航的可行性和实时性.

  15. The future of GPS-based electric power system measurements, operation and control

    Energy Technology Data Exchange (ETDEWEB)

    Rizy, D.T. [Oak Ridge National Lab., TN (United States); Wilson, R.E. [Western Area Power Administration, Golden, CO (United States); Martin, K.E.; Litzenberger, W.H. [Bonneville Power Administration, Portland, OR (United States); Hauer, J.F. [Pacific Northwest National Lab., Richland, WA (United States); Overholt, P.N. [Dept. of Energy, Washington, DC (United States); Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1998-11-01

    Much of modern society is powered by inexpensive and reliable electricity delivered by a complex and elaborate electric power network. Electrical utilities are currently using the Global Positioning System-NAVSTAR (GPS) timekeeping to improve the network`s reliability. Currently, GPS synchronizes the clocks on dynamic recorders and aids in post-mortem analysis of network disturbances. Two major projects have demonstrated the use of GPS-synchronized power system measurements. In 1992, the Electric Power Research Institute`s (EPRI) sponsored Phase Measurements Project used a commercially available Phasor Measurements Unit (PMU) to collect GPS-synchronized measurements for analyzing power system problems. In 1995, Bonneville Power Administration (BPA) and Western Area Power Administration (WAPA) under DOE`s and EPRI`s sponsorship launched the Wide Area Measurements (WAMS) project. WAMS demonstrated GPS-synchronized measurements over a large area of their power networks and demonstrated the networking of GPS-based measurement systems in BPA and WAPA. The phasor measurement technology has also been used to conduct dynamic power system tests. During these tests, a large dynamic resistor was inserted to simulate a small power system disturbance.

  16. Analysis of railway subgrade frost heave deformation based on GPS

    Directory of Open Access Journals (Sweden)

    Fuxun Ma

    2016-03-01

    Full Text Available In order to analyze the connection between the railway subgrade frost heave deformation and temperature variation, five GPS stations' data were used to monitor the deformation on a certain section of railway subgrade in northeast China. GAMIT software is used to process the data, providing daily solution, daytime solution and nighttime solution. Vertical trends of these five stations were analyzed to investigate frost heave effect on railway subgrade deformation. The results show that the temperature difference between daytime and night induces stations, significant vertical displacement, and the temperature difference between seasons causes settlement of station which appears linear trend.

  17. GPS/Magnetometer Based Satellite Navigation and Attitude Determination

    Science.gov (United States)

    Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    In recent years algorithms were developed for orbit, attitude and angular-rate determination of Low Earth Orbiting (LEO) satellites. Those algorithms rely on measurements of magnetometers, which are standard, relatively inexpensive, sensors that are normally installed on every LEO satellite. Although magnetometers alone are sufficient for obtaining the desired information, the convergence of the algorithms to the correct values of the satellite orbital parameters, position, attitude and angular velocity is very slow. The addition of sun sensors reduces the convergence time considerably. However, for many LEO satellites the sun data is not available during portions of the orbit when the spacecraft (SC) is in the earth shadow. It is here where the GPS space vehicles (SV) can provide valuable support. This is clearly demonstrated in the present paper. Although GPS measurements alone can be used to obtain SC position, velocity, attitude and angular-rate, the use of magnetometers improve the results due to the synergistic effect of sensor fusion. Moreover, it is possible to obtain these results with less than three SVs. In this paper we introduce an estimation algorithm, which is a combination of an Extended Kalman Filter (EKF) and a Pseudo Linear Kalman Filter (PSELIKA).

  18. A Java-based tool for creating KML files from GPS waypoints

    Science.gov (United States)

    Kinnicutt, P. G.; Rivard, C.; Rimer, S.

    2008-12-01

    Google Earth provides a free tool with powerful capabilities for visualizing geoscience images and data. Commercial software tools exist for doing sophisticated digitizing and spatial modeling , but for the purposes of presentation, visualization and overlaying aerial images with data Google Earth provides much of the functionality. Likewise, with current technologies in GPS (Global Positioning System) systems and with Google Earth Plus, it is possible to upload GPS waypoints, tracks and routes directly into Google Earth for visualization. However, older technology GPS units and even low-cost GPS units found today may lack the necessary communications interface to a computer (e.g. no Bluetooth, no WiFi, no USB, no Serial, etc.) or may have an incompatible interface, such as a Serial port but no USB adapter available. In such cases, any waypoints, tracks and routes saved in the GPS unit or recorded in a field notebook must be manually transferred to a computer for use in a GIS system or other program. This presentation describes a Java-based tool developed by the author which enables users to enter GPS coordinates in a user-friendly manner, then save these coordinates in a Keyhole MarkUp Language (KML) file format, for visualization in Google Earth. This tool either accepts user-interactive input or accepts input from a CSV (Comma Separated Value) file, which can be generated from any spreadsheet program. This tool accepts input in the form of lat/long or UTM (Universal Transverse Mercator) coordinates. This presentation describes this system's applicability through several small case studies. This free and lightweight tool simplifies the task of manually inputting GPS data into Google Earth for people working in the field without an automated mechanism for uploading the data; for instance, the user may not have internet connectivity or may not have the proper hardware or software. Since it is a Java application and not a web- based tool, it can be installed on one

  19. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  20. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  1. Altitudinal variation of midlatitude localized TEC enhancement from ground- and space-based measurements

    Science.gov (United States)

    Datta-Barua, S.; Mannucci, A. J.; Walter, T.; Enge, P.

    2008-10-01

    We present terrestrial and space-based dual-frequency observations of a region of enhanced total electron content (TEC) over the southeastern United States at local nighttime during the geomagnetic storm of 29-31 October 2003. The apparently localized, large-amplitude, and nearly Earth-fixed midlatitude ionosphere disturbance contained about 10 m higher delay at Global Positioning System (GPS) L1 frequency than the nighttime background ionosphere TEC. Using the dual-frequency altimeter on board the Jason satellite, we show evidence that nearly all of the electron content was below its orbital altitude of 1300 km at 0000 local time on 31 October 2003. Dual frequency GPS measurements from the receiver on board the SAC-C satellite indicate that some portion of the electron content existed above the 700 km orbit altitude of SAC-C. We develop a horizontally piecewise constant regional model of the enhancement. We compare the model prediction of TEC with the SAC-C satellite GPS data to constrain the altitude of this enhanced TEC region. Our model indicates that the peak density of the anomalous region is at slightly higher altitude and greater in amplitude than that of the background. The TEC enhancement provides a concrete case study of an extreme scenario that both space-based and ground-based GPS augmentation systems must take into account in order to offer high-accuracy, high-integrity corrections to GPS for safety-of-life applications.

  2. Ionospheric correction for spaceborne single-frequency GPS based on single layer model

    Indian Academy of Sciences (India)

    Xia Yang; Jiancheng Li; Shoujian Zhang

    2014-06-01

    A modified ionospheric correction method and the corresponding approximate algorithm for spaceborne single-frequency Global Positioning System (GPS) users are proposed in this study. Single Layer Model (SLM) mapping function for spaceborne GPS was analyzed. SLM mapping functions at different altitudes were calculated. Ionospheric Pierce Point (IPP) trajectories of the dlft station (an IGS station located at the longitude of 4° 23′ 15.22′′E and the latitude of 51° 59′ 9.63′′N, in the TU Delft University, The Netherlands) and the GRACE satellite were computed with the corresponding single layer height of 350 and 500 km, respectively. The Klobuchar model was used to compute ionospheric delays for the dlft station, and modified Klobuchar model, together with scale factors, was used to compute the fractional ionospheric corrections above the GRACE altitudes. Calculation results were validated using dual-frequency observations. The study shows that the single layer height needs to be changed from 350 to 500 km according to the altitude of GRACE. Approximate forms of Earth angle and slant factor developed for modified Klobuchar model are applicable to GRACE, with accuracy adequate to preserve the essential elements required to compute ionospheric delays. Results show that the Klobuchar model is effective for ground GPS, and the modified Klobuchar model corrects more than 80% on average of the ionospheric delays for spaceborne single-frequency GPS.

  3. Accurate Quantification of Grassland Cover Density in an Alpine Meadow Soil Based on Remote Sensing and GPS

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-Sui; HU Ye-Cui; PENG Liu-Ying

    2005-01-01

    The principles of remotely estimating grassland cover density in an alpine meadow soil from space lie in the synchronous collection of in situ samples with the satellite pass and statistically linking these cover densities to their image properties according to their geographic coordinates. The principles and procedures for quantifying grassland cover density from satellite image data were presented with an example from Qinghai Lake, China demonstrating how quantification could be made more accurate through the integrated use of remote sensing and global positioning systems (GPS). An empirical model was applied to an entire satellite image to convert pixel values into ground cover density. Satellite data based on 68 field samples was used to produce a map of ten cover densities. After calibration a strong linear regression relationship (r2 = 0.745) between pixel values on the satellite image and in situ measured grassland cover density was established with an 89% accuracy level. However, to minimize positional uncertainty of field samples, integrated use of hyperspatial satellite data and GPS could be utilized. This integration could reduce disparity in ground and space sampling intervals,and improve future quantification accuracy even more.

  4. A New Algorithm for ABS/GPS Integration Based on Fuzzy-Logic in Vehicle Navigation System

    Directory of Open Access Journals (Sweden)

    Ali Amin Zadeh

    2011-10-01

    Full Text Available GPS based vehicle navigation systems have difficulties in tracking vehicles in urban canyons due to poor satellite availability. ABS (Antilock Brake System Navigation System consists of self-contained optical encoders mounted on vehicle wheels that can continuously provide accurate short-term positioning information. In this paper, a new concept regarding GPS/ABS integration, based on Fuzzy Logic is presented. The proposed algorithm is used to identify GPS position accuracy based on environment and vehicle dynamic knowledge. The GPS is used as reference during the time it is in a good condition and replaced by ABS positioning system when GPS information is unreliable. We compare our proposed algorithm with other common algorithm in real environment. Our results show that the proposed algorithm can significantly improve the stability and reliability of ABS/GPS navigation system.

  5. GPS derived ground motions (2005-2014) within the Gulf of Mexico region referred to a stable Gulf of Mexico reference frame

    Science.gov (United States)

    Yu, J.; Wang, G.

    2015-11-01

    This study investigates current ground motions derived from the GPS geodesy infrastructure in the Gulf of Mexico region. The positions and velocity vectors of 161 continuous GPS (CGPS) stations are presented with respect to a newly established local reference frame, the Stable Gulf of Mexico Reference Frame (SGOMRF). Thirteen long-term (> 5 years) CGPS are used to realize the local reference frame. The root-mean-square (RMS) of the velocities of the 13 SGOMRF reference stations achieves 0.2 mm yr-1 in the horizontal and 0.3 mm yr-1 in the vertical directions. GPS observations presented in this study indicate significant land subsidence in the coastal area of southeastern Louisiana, the greater Houston metropolitan area, and two cities in Mexico (Aguascalientes and Mexico City). The most rapid subsidence is recorded at the Mexico City International airport, which is up to 26.6 cm yr-1 (2008-2014). Significant spatial variation of subsidence rates is observed in both Mexico City and the Houston area. The overall subsidence rate in the Houston area is decreasing. GPS observations in southeastern Louisiana indicate minor (4.0-6.0 mm yr-1) but consistent subsidence over time and space. This poses a potential threat to the safety of costal infrastructure in the long-term.

  6. GPS derived ground motions (2005–2014 within the Gulf of Mexico region referred to a stable Gulf of Mexico reference frame

    Directory of Open Access Journals (Sweden)

    J. Yu

    2015-11-01

    Full Text Available This study investigates current ground motions derived from the GPS geodesy infrastructure in the Gulf of Mexico region. The positions and velocity vectors of 161 continuous GPS (CGPS stations are presented with respect to a newly established local reference frame, the Stable Gulf of Mexico Reference Frame (SGOMRF. Thirteen long-term (> 5 years CGPS are used to realize the local reference frame. The root-mean-square (RMS of the velocities of the 13 SGOMRF reference stations achieves 0.2 mm yr−1 in the horizontal and 0.3 mm yr−1 in the vertical directions. GPS observations presented in this study indicate significant land subsidence in the coastal area of southeastern Louisiana, the greater Houston metropolitan area, and two cities in Mexico (Aguascalientes and Mexico City. The most rapid subsidence is recorded at the Mexico City International airport, which is up to 26.6 cm yr−1 (2008–2014. Significant spatial variation of subsidence rates is observed in both Mexico City and the Houston area. The overall subsidence rate in the Houston area is decreasing. GPS observations in southeastern Louisiana indicate minor (4.0–6.0 mm yr−1 but consistent subsidence over time and space. This poses a potential threat to the safety of costal infrastructure in the long-term.

  7. Accuracy Improvement of Zenith Tropospheric Delay Estimation Based on GPS Precise Point Positioning Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHU Qinglin; ZHAO Zhenwei; LIN Leke; WU Zhensen

    2010-01-01

    In the precise point positioning (PPP), some impossible accurately simulated systematic errors still remained in the GPS observations and will inevitably degrade the precision of zenith tropospheric delay (ZTD) estimation. The stochastic models used in the GPS PPP mode are compared. In this paper, the research results show that the precision of PPP-derived ZTD can be obviously improved through selecting a suitable stochastic model for GPS measurements. Low-elevation observations can cover more troposphere information that can improve the estimation of ZTD. A new stochastic model based on satellite low elevation cosine square is presented. The results show that the stochastic model using satellite elevation-based cosine square function is better than previous stochastic models.

  8. GENESIS: GPS Environmental and Earth Science Information System

    Science.gov (United States)

    Hajj, George

    1999-01-01

    This presentation reviews the GPS ENvironmental and Earth Science Information System (GENESIS). The objectives of GENESIS are outlined (1) Data Archiving, searching and distribution for science data products derived from Space borne TurboRogue Space Receivers for GPS science and other ground based GPS receivers, (2) Data browsing using integrated visualization tools, (3) Interactive web/java-based data search and retrieval, (4) Data subscription service, (5) Data migration from existing GPS archived data, (6) On-line help and documentation, and (7) participation in the WP-ESIP federation. The presentation reviews the products and services of Genesis, and the technology behind the system.

  9. Fresnel zones for ground-based antennas

    DEFF Research Database (Denmark)

    Andersen, J. Bach

    1964-01-01

    The ordinary Fresnel zone concept is modified to include the influence of finite ground conductivity. This is important for ground-based antennas because the influence on the radiation pattern of irregularities near the antenna is determined by the amplitude and phase of the groundwave. A new...

  10. Recent research and applications of GPS based technology for bridge health monitoring

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Today,long-span bridges are being designed to be more flexible and to resist extensive impacts from changes in temperature,severe wind gusts and earthquake tremors. Structural responses (especially displacement) of bridge structures are becoming increasingly important for the finite element (FE) modal updating,structural response prediction and safety evaluation. Methods of global displacement sensing were developed for these needs. This paper presents an overview of current research and development activities in the field of bridge health monitoring using the global positioning system (GPS). The GPS monitoring technology and its accuracy assessment method are also briefly described. Finally,existing problems and promising research efforts in the GPS based bridge health monitoring are discussed.

  11. Two Approaches for Successful Mapping GPS Data to Underlying Road Network in Location-based Services

    NARCIS (Netherlands)

    Meratnia, N.; Kyamakya, K.

    2004-01-01

    Latest data acquisition techniques facilitate the provision of real-time location-based services. With the coming about of miniature and cheap GPS receivers and cellular phones, new horizons have been opened for such services. The mobile telephony and Internet technology within the GIS environment h

  12. Two Approaches for Successful Mapping GPS Data to Underlying Road Network in Location-based Services

    NARCIS (Netherlands)

    Meratnia, Nirvana; Kyamakya, K.

    2004-01-01

    Latest data acquisition techniques facilitate the provision of real-time location-based services. With the coming about of miniature and cheap GPS receivers and cellular phones, new horizons have been opened for such services. The mobile telephony and Internet technology within the GIS environment h

  13. Integration of GPS Precise Point Positioning and MEMS-Based INS Using Unscented Particle Filter

    Directory of Open Access Journals (Sweden)

    Mahmoud Abd Rabbou

    2015-03-01

    Full Text Available Integration of Global Positioning System (GPS and Inertial Navigation System (INS integrated system involves nonlinear motion state and measurement models. However, the extended Kalman filter (EKF is commonly used as the estimation filter, which might lead to solution divergence. This is usually encountered during GPS outages, when low-cost micro-electro-mechanical sensors (MEMS inertial sensors are used. To enhance the navigation system performance, alternatives to the standard EKF should be considered. Particle filtering (PF is commonly considered as a nonlinear estimation technique to accommodate severe MEMS inertial sensor biases and noise behavior. However, the computation burden of PF limits its use. In this study, an improved version of PF, the unscented particle filter (UPF, is utilized, which combines the unscented Kalman filter (UKF and PF for the integration of GPS precise point positioning and MEMS-based inertial systems. The proposed filter is examined and compared with traditional estimation filters, namely EKF, UKF and PF. Tightly coupled mechanization is adopted, which is developed in the raw GPS and INS measurement domain. Un-differenced ionosphere-free linear combinations of pseudorange and carrier-phase measurements are used for PPP. The performance of the UPF is analyzed using a real test scenario in downtown Kingston, Ontario. It is shown that the use of UPF reduces the number of samples needed to produce an accurate solution, in comparison with the traditional PF, which in turn reduces the processing time. In addition, UPF enhances the positioning accuracy by up to 15% during GPS outages, in comparison with EKF. However, all filters produce comparable results when the GPS measurement updates are available.

  14. Direct Location of Infrared Images Based on GPS/IMU%基于GPS/IMU的红外影像直接定位技术

    Institute of Scientific and Technical Information of China (English)

    彭希隆; 赵红; 范永弘; 刘军

    2012-01-01

    Studying the fast target location of infrared images without control points is propitious to exert the potential of infrared remote sensing in surveying and mapping usage. Firstly, the principle and method of GPS/ IMU based target location was introduced, then the feasibility of multiple infrared images forward intersection and GPS/IMU assisted infrared images bundle block adjustment were verified through experiment, and at the same time the causes of error were analyzed. The result of the experiments showed that the aerial infrared remote sensing with the integrated GPS/IMU system can meet the accuracy requirements of the target detection as well as early warning and it has practical value.%研究无控制点情况下的红外影像目标快速定位技术,有利于发挥红外遥感的测绘应用潜力.首先介绍了基于GPS/IMU的目标定位原理与方法;然后实验验证了红外影像多像前方交会和GPS/IMU辅助红外影像光束法区域网平差的可行性;并分析了误差产生的原因.实验证明,航空红外遥感在GPS/IMU组合系统的配合下,能满足目标探测与预警的精度要求,具有实用价值.

  15. ANALISA PERBANDINGAN KETELITIAN PENENTUAN POSISI DENGAN GPS RTK-NTRIP DENGAN BASE GPS CORS BIG DARI BERBAGAI MACAM MOBILE PROVIDER DIDASARKAN PADA PERGESERAN LINEAR (STUDI KASUS: SURABAYA

    Directory of Open Access Journals (Sweden)

    Atika Sari

    2015-02-01

    Full Text Available Penentuan posisi dalam pemetaan menggunakan penginderaan jauh dan foto udara memerlukan pengamatan GPS geodetik sebagai titik kontrol yang memilki ketelitian tinggi. Sistem koreksi data penentuan posisinya diperoleh dari transmisi data dari stasiun base ke receiver. Dalam perkembangan sekarang ini metode pengukuran RTK telah menggunakan metode NTRIP (Networked Transport of RTCM via Internet Protocol sebagai metode transmisi koreksi data dengan menggunakan intenet sehingga pengukuran tersebut masih bisa dilakukan dengan jarak yang lebih jauh dari base-nya. Pada metode NTRIP ini menggunakan metode pengiriman koreksi data GNSS melalui jaringan internet. Pengembangan sistem dengan fasilitas akses internet mobile melalui general packet radio service (GPRS dan global system for mobile (GSM, menyediakan metode cepat dan handal untuk mendistribusikan baris data GPS atau koreksi diferensial real-time (DGPS / RTK ke penerima GPS di daerah manapun yang berada di bawah jangkauan jaringan telepon seluler. Sehingga untuk mengetahui provider yang sesuai digunakan dalam wilayah surabaya dalam menggunakan metode RTK NTRIP maka dilakukanlah penelitian ini. Dari hasil pengamatan dari pengukuran dengan menggunakan  metode RTK-NTRIP dengan base GPS CORS BIG didapat nilai rata-rata dari masing-masing provider sekitar < 4 m.

  16. The Research of GPS/DR Fusion Simulation Based on UKF%基于联合卡尔曼滤波的GPS/DR融合仿真

    Institute of Scientific and Technical Information of China (English)

    张晓霞; 李晓琳; 王宏玉; 张雷; 韩刘柱

    2013-01-01

    The article aimed at studying the GPS (Global Positioning System) and DR(Dead Reckoning) integrated navigation fusion technology,applying it in the AGV( Automated Guided Vehicle)navigation,making AGV obtained more stable navigation data. This article has constructed federal kalman filter which was suited for GPS/DR integrated navigation system,used MATLAB simulation modeling,outputted simulation results and analyzed the simulation results to verify the feasibility of federal kalman filter. The author used randn() function as a random number generator and analyzed federal kalman filtering fusion algorithm based on MATLAB software. Innovatively putting forward system compensation coefficient G, the filtering effect can be made to artificial regulation. In the MATLAB simulation model (out of 50 m) ,GPS error range is 6 mwith signal greatly fluctuating. DR navigation maximum error is 1. 8 m,whose result doesn't convergence. GPS/DR integrated navigation system error is 0. 2 m with signal fluctuating stationary and the result convergence. The result of simulation indicates that this method on the premise of system precision,the system fault tolerance and work reliability is improved. GPS/DR integrated navigation system overcomes the problem of GPS signal cover and makes full use of the short - term high precision with independent positioning feature of DR.%目的 研究GPS(Global Positioning System)与DR(Dead Reckoning)组合导航融合技术,使AGV获得更加稳定可靠的导航定位数据.构建出适用于GPS/DR组合导航系统的联合卡尔曼滤波器.方法 在GPS(全球定位系统)基础上增加DR(航位推算系统)用以辅助GPS定位.采用randn()函数作为随机数发生器,基于MATLAB软件对联合卡尔曼滤波融合算法进行理论分析及仿真研究.创新性的提出系统补偿系数G,将它用于联合卡尔曼滤波中,使得滤波效果可人工调控.结果 设计出适用于AGV的GPS/DR组合导航系统联合卡尔曼滤波器,

  17. Local effects of redundant terrestrial and GPS-based tie vectors in ITRF-like combinations

    Science.gov (United States)

    Abbondanza, Claudio; Altamimi, Zuheir; Sarti, Pierguido; Negusini, Monia; Vittuari, Luca

    2009-11-01

    Tie vectors (TVs) between co-located space geodetic instruments are essential for combining terrestrial reference frames (TRFs) realised using different techniques. They provide relative positioning between instrumental reference points (RPs) which are part of a global geodetic network such as the international terrestrial reference frame (ITRF). This paper gathers the set of very long baseline interferometry (VLBI)-global positioning system (GPS) local ties performed at the observatory of Medicina (Northern Italy) during the years 2001-2006 and discusses some important aspects related to the usage of co-location ties in the combinations of TRFs. Two measurement approaches of local survey are considered here: a GPS-based approach and a classical approach based on terrestrial observations (i.e. angles, distances and height differences). The behaviour of terrestrial local ties, which routinely join combinations of space geodetic solutions, is compared to that of GPS-based local ties. In particular, we have performed and analysed different combinations of satellite laser ranging (SLR), VLBI and GPS long term solutions in order to (i) evaluate the local effects of the insertion of the series of TVs computed at Medicina, (ii) investigate the consistency of GPS-based TVs with respect to space geodetic solutions, (iii) discuss the effects of an imprecise alignment of TVs from a local to a global reference frame. Results of ITRF-like combinations show that terrestrial TVs originate the smallest residuals in all the three components. In most cases, GPS-based TVs fit space geodetic solutions very well, especially in the horizontal components (N, E). On the contrary, the estimation of the VLBI RP Up component through GPS technique appears to be awkward, since the corresponding post fit residuals are considerably larger. Besides, combination tests including multi-temporal TVs display local effects of residual redistribution, when compared to those solutions where Medicina TVs

  18. An Air-Based Multi-Target Guidance System Adopting GPS Data%采用GPS数据的空基多目标引导系统

    Institute of Scientific and Technical Information of China (English)

    杨剑; 曹红旗; 张鹏

    2011-01-01

    In flight test of a fighter aircraft,normally several targets are needed,which are commanded and guided by the ground-based radar,and thus can not meet the requirement of test. To solve the problem,an air-based multi-target command and guidance system was developed, where GPS data was used. The composition and working principle of the system were introduced, and the block diagram of the application software was presented. The usage of GPS information were discussed in detail, including the selection of GPS information, receiving and management of GPS data. The functions of the system were also presented.%针对现代战斗机通常需要多架目标机配合试飞,而依赖地面雷达数据指挥目标机飞行已难以满足其试飞需求的问题,设计采用GPS数据的空基多目标引导系统,介绍了其组成、工作原理和应用软件框图,重点论述了GPS信息的使用,包括GPS信息的选择、GPS数据的接收和管理,最后详细阐述了系统的主要功能设置.

  19. Fisheye-Based Method for GPS Localization Improvement in Unknown Semi-Obstructed Areas

    Directory of Open Access Journals (Sweden)

    Julien Moreau

    2017-01-01

    Full Text Available A precise GNSS (Global Navigation Satellite System localization is vital for autonomous road vehicles, especially in cluttered or urban environments where satellites are occluded, preventing accurate positioning. We propose to fuse GPS (Global Positioning System data with fisheye stereovision to face this problem independently to additional data, possibly outdated, unavailable, and needing correlation with reality. Our stereoscope is sky-facing with 360° × 180° fisheye cameras to observe surrounding obstacles. We propose a 3D modelling and plane extraction through following steps: stereoscope self-calibration for decalibration robustness, stereo matching considering neighbours epipolar curves to compute 3D, and robust plane fitting based on generated cartography and Hough transform. We use these 3D data with GPS raw data to estimate NLOS (Non Line Of Sight reflected signals pseudorange delay. We exploit extracted planes to build a visibility mask for NLOS detection. A simplified 3D canyon model allows to compute reflections pseudorange delays. In the end, GPS positioning is computed considering corrected pseudoranges. With experimentations on real fixed scenes, we show generated 3D models reaching metric accuracy and improvement of horizontal GPS positioning accuracy by more than 50%. The proposed procedure is effective, and the proposed NLOS detection outperforms CN0-based methods (Carrier-to-receiver Noise density.

  20. Receiver-channel based adaptive blind equalization approach for GPS dynamic multipath mitigation

    Institute of Scientific and Technical Information of China (English)

    Zhao Yun; Xue Xiaonan; Zhang Tingfei

    2013-01-01

    Aiming at mitigating multipath effect in dynamic global positioning system (GPS) satellite navigation applications,an approach based on channel blind equalization and real-time recursive least square (RLS) algorithm is proposed,which is an application of the wireless communication channel equalization theory to GPS receiver tracking loops.The blind equalization mechanism builds upon the detection of the correlation distortion due to multipath channels; there-fore an increase in the number of correlator channels is required compared with conventional GPS receivers.An adaptive estimator based on the real-time RLS algorithm is designed for dynamic estimation of multipath channel response.Then,the code and carrier phase receiver tracking errors are compensated by removing the estimated multipath components from the correlators' outputs.To demonstrate the capabilities of the proposed approach,this technique is integrated into a GPS software receiver connected to a navigation satellite signal simulator,thus simulations under controlled dynamic multipath scenarios can be carried out.Simulation results show that in a dynamic and fairly severe multipath environment,the proposed approach achieves simultaneously instantaneous accurate multipath channel estimation and significant multipath tracking errors reduction in both code delay and carrier phase.

  1. Fisheye-Based Method for GPS Localization Improvement in Unknown Semi-Obstructed Areas.

    Science.gov (United States)

    Moreau, Julien; Ambellouis, Sébastien; Ruichek, Yassine

    2017-01-17

    A precise GNSS (Global Navigation Satellite System) localization is vital for autonomous road vehicles, especially in cluttered or urban environments where satellites are occluded, preventing accurate positioning. We propose to fuse GPS (Global Positioning System) data with fisheye stereovision to face this problem independently to additional data, possibly outdated, unavailable, and needing correlation with reality. Our stereoscope is sky-facing with 360° × 180° fisheye cameras to observe surrounding obstacles. We propose a 3D modelling and plane extraction through following steps: stereoscope self-calibration for decalibration robustness, stereo matching considering neighbours epipolar curves to compute 3D, and robust plane fitting based on generated cartography and Hough transform. We use these 3D data with GPS raw data to estimate NLOS (Non Line Of Sight) reflected signals pseudorange delay. We exploit extracted planes to build a visibility mask for NLOS detection. A simplified 3D canyon model allows to compute reflections pseudorange delays. In the end, GPS positioning is computed considering corrected pseudoranges. With experimentations on real fixed scenes, we show generated 3D models reaching metric accuracy and improvement of horizontal GPS positioning accuracy by more than 50%. The proposed procedure is effective, and the proposed NLOS detection outperforms CN0-based methods (Carrier-to-receiver Noise density).

  2. GPS-derived ground deformation (2005-2014) within the Gulf of Mexico region referred to a stable Gulf of Mexico reference frame

    Science.gov (United States)

    Yang, L.; Yu, J.; Wang, G.

    2016-12-01

    This study investigates current ground deformation derived from the GPS geodesy infrastructure in the Gulf of Mexico region. The positions and velocity vectors of 161 continuous GPS (CGPS) stations are presented with respect to a newly established local reference frame, the Stable Gulf of Mexico Reference Frame (SGOMRF). Thirteen long-term ( > 5 years) CGPS are used to realize the local reference frame. The root mean square (RMS) of the velocities of the 13 SGOMRF reference stations achieves 0.2 mm yr -1 in the horizontal and 0.3 mm yr -1 in the vertical directions. GPS observations presented in this study indicate significant land subsidence in the coastal area of southeastern Louisiana, the greater Houston metropolitan area, and two cities in Mexico (Aguascalientes and Mexico City). The most rapid subsidence is recorded at the Mexico City International airport, which is up to 26.6 cm yr -1 (2008-2014). Significant spatial variation of subsidence rates is observed in both Mexico City and the Houston area. The overall subsidence rate in the Houston area is decreasing. The subsidence rate in southeastern Louisiana is relatively smaller (4.0-6.0 mm yr -1 ) but tends to be steady over time. This poses a potential threat to the safety of coastal infrastructure in the long-term.

  3. GPS-derived ground deformation (2005-2014) within the Gulf of Mexico region referred to a stable Gulf of Mexico reference frame

    Science.gov (United States)

    Yu, Jiangbo; Wang, Guoquan

    2016-07-01

    This study investigates current ground deformation derived from the GPS geodesy infrastructure in the Gulf of Mexico region. The positions and velocity vectors of 161 continuous GPS (CGPS) stations are presented with respect to a newly established local reference frame, the Stable Gulf of Mexico Reference Frame (SGOMRF). Thirteen long-term (> 5 years) CGPS are used to realize the local reference frame. The root mean square (RMS) of the velocities of the 13 SGOMRF reference stations achieves 0.2 mm yr-1 in the horizontal and 0.3 mm yr-1 in the vertical directions. GPS observations presented in this study indicate significant land subsidence in the coastal area of southeastern Louisiana, the greater Houston metropolitan area, and two cities in Mexico (Aguascalientes and Mexico City). The most rapid subsidence is recorded at the Mexico City International airport, which is up to 26.6 cm yr-1 (2008-2014). Significant spatial variation of subsidence rates is observed in both Mexico City and the Houston area. The overall subsidence rate in the Houston area is decreasing. The subsidence rate in southeastern Louisiana is relatively smaller (4.0-6.0 mm yr-1) but tends to be steady over time. This poses a potential threat to the safety of coastal infrastructure in the long-term.

  4. BioGPS descriptors for rational engineering of enzyme promiscuity and structure based bioinformatic analysis.

    Directory of Open Access Journals (Sweden)

    Valerio Ferrario

    Full Text Available A new bioinformatic methodology was developed founded on the Unsupervised Pattern Cognition Analysis of GRID-based BioGPS descriptors (Global Positioning System in Biological Space. The procedure relies entirely on three-dimensional structure analysis of enzymes and does not stem from sequence or structure alignment. The BioGPS descriptors account for chemical, geometrical and physical-chemical features of enzymes and are able to describe comprehensively the active site of enzymes in terms of "pre-organized environment" able to stabilize the transition state of a given reaction. The efficiency of this new bioinformatic strategy was demonstrated by the consistent clustering of four different Ser hydrolases classes, which are characterized by the same active site organization but able to catalyze different reactions. The method was validated by considering, as a case study, the engineering of amidase activity into the scaffold of a lipase. The BioGPS tool predicted correctly the properties of lipase variants, as demonstrated by the projection of mutants inside the BioGPS "roadmap".

  5. A GPS based fawn saving system using relative distance and angle determination

    Science.gov (United States)

    Ascher, A.; Eberhardt, M.; Lehner, M.; Biebl, E.

    2016-09-01

    Active UHF RFID systems are often used for identifying, tracking and locating objects. In the present publication a GPS- based localization system for saving fawns during pasture mowing was introduced and tested. Fawns were first found by a UAV before mowing began. They were then tagged with small active RFID transponders, and an appropriate reader was installed on a mowing machine. Conventional direction-of-arrival approaches require a large antenna array with multiple elements and a corresponding coherent receiver, which introduces a large degree of complexity on the reader-side. Instead, our transponders were equipped with a small GPS module, allowing a transponder to determine its own position on request from the reader. A UHF link was used to transmit the location to a machine- mounted reader, where a second GPS receiver was installed. Using information from this second position and a machine- mounted magnetometer for determining the relative north direction of a vehicle, relative distance, and angle between GPS receivers can be calculated. The accuracy and reliability of this novel method were tested under realistic operating conditions, considering critical factors such as the height of grass, the lying position of a fawn, humidity and geographical area.

  6. Improving Electricity Consumption Estimation for Electric Vehicles Based on Sparse GPS Observations

    Directory of Open Access Journals (Sweden)

    Jiangbo Wang

    2017-01-01

    Full Text Available Improving the estimation accuracy for the energy consumption of electric vehicles (EVs would greatly contribute to alleviating the range anxiety of drivers and serve as a critical basis for the planning, operation, and management of charging infrastructures. To address the challenges in energy consumption estimation encountered due to sparse Global Positioning System (GPS observations, an estimation model is proposed that considers both the kinetic characteristics from sparse GPS observations and the unique attributes of EVs: (1 work opposing the rolling resistance; (2 aerodynamic friction losses; (3 energy consumption/generation depending on the grade of the route; (4 auxiliary load consumption; and (5 additional energy losses arising from the unstable power output of the electric motor. Two quantities, the average energy consumption per kilometer and the energy consumption for an entire trip, were focused on and compared for model fitness, parameter, and effectiveness, and the latter showed a higher fitness. Based on sparse GPS observations of 68 EVs in Aichi Prefecture, Japan, the traditional linear regression approach and a multilevel mixed-effects linear regression approach were used for model calibration. The proposed model showed a high accuracy and demonstrated a great potential for application in using sparse GPS observations to predict the energy consumption of EVs.

  7. Impact of Ionosphere on GPS-based Precise Orbit Determination of Low Earth Orbiters

    Science.gov (United States)

    Arnold, D.; Jaeggi, A.; Beutler, G.; Meyer, U.; Schaer, S.

    2015-12-01

    Deficiencies in geodetic products derived from the orbital trajectories of Low Earth Orbiting (LEO) satellites determined by GPS-based Precise Orbit Determination (POD) were identified in recent years. The precise orbits of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission are, e.g., severely affected by an increased position noise level over the geomagnetic poles and spurious signatures along the Earth's geomagnetic equator (see Fig. 1, which shows the carrier phase residuals of a reduced-dynamic orbit determination for GOCE in m). Such degradations may directly map into the gravity fields recovered from the orbits. They are related to a disturbed GPS signal propagation through the Earth's ionosphere and indicate that the GPS observation model and/or the data pre-processing need to be improved. While GOCE was the first mission where severe ionosphere-related problems became obvious, the GPS-based LEO POD of satellites of the more recent missions Swarm and Sentinel-1A turn out to be affected, as well. We characterize the stochastic and systematic behavior of the ionosphere by analyzing GPS data collected by the POD antennas of various LEO satellites covering a broad altitude range (e.g., GRACE, GOCE and Swarm) and for periods covering significant parts of an entire solar cycle, which probe substantially different ionosphere conditions. The information may provide the basis for improvements of data pre-processing to cope with the ionosphere-induced problems of LEO POD. The performance of cycle slip detection can, e.g., be degraded by large changes of ionospheric refraction from one measurement epoch to the next. Geographically resolved information on the stochastic properties of the ionosphere above the LEOs provide more realistic threshold values for cycle slip detection algorithms. Removing GPS data showing large ionospheric variations is a crude method to mitigate the ionosphere-induced artifacts in orbit and gravity field products

  8. Unmanned Surface Vehicle Automatic Navigation Based On GPS%基于 GPS 定位的无人艇自主导航

    Institute of Scientific and Technical Information of China (English)

    陈永泽; 舒军勇; 王真亮; 谢能刚

    2016-01-01

    This paper mainly investigated unmanned surface vehicle automatic navigation based on GPS.According to the GPS received position coordinates and planning target point coordinates,this paper put forward an automatic navigation algorithm.Experimental sample of unmanned surface vehicle was established and actual trajectory was gained.By the actual trajectory and the comparison of theoretical trajectory as a result,we proved that the unmanned surface vehicle navigation algorithm has good robustness.%研究了基于 GPS 定位技术的无人艇自主导航。根据 GPS 接收到的位置坐标和规划的目标点坐标,提出一种自主导航算法。研制了无人艇实验样船,得到了无人艇实际航行轨迹。实际航行轨迹和理论航行轨迹的对比结果表明:该无人艇自主导航算法具有良好的鲁棒性。

  9. Positioning accuracy and reliability of GALILEO,integrated GPS-GALILEO system based on single positioning model

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chunmei; OU Jikun; YUAN Yunbin

    2005-01-01

    A kind of uniform reliability index suitable for the code and phase observations is presented and used in reliability evaluation of satellite systems. Then, based on 25 stations of Crustal Movement Observation Network of China, satellite visibility, positioning availability and observation reliability of GPS, GALILEO and integrated GPS- GALILEO are calculated and analyzed in detail. Simulation results reveal that the satellite visibility of GALILEO is superior to that of GPS. Given positioning accuracy, horizontal positioning availability of GALILEO is consistent with that of GPS, but its vertical positioning availability is superior to that of GPS. However, the integrated GPS-GALILEO is shown to be superior to each of the single systems in the aspects of positioning accuracy and availability. The reliability of code and phase observations based on GALILEO and integrated GPS-GALILEO system is superior to that of GPS both in spatial and temporal domains on the whole. The new reliability index presented is simple to calculate and reflects reliability differences of different satellite systems.

  10. Forest operations planning by using RTK-GPS based digital elevation model

    Directory of Open Access Journals (Sweden)

    Neşe Gülci

    2015-07-01

    Full Text Available Having large proportion of forests in mountainous terrain in Turkey, the logging methods that not only minimize operational costs but also minimize environmental damages should be determined in forest operations planning. In a case where necessary logging equipment and machines are available, ground slope is the most important factor in determining the logging method. For this reason, accurate, up to date, and precise ground slope data is very crucial in the success of forest operations planning. In recent years, high-resolution Digital Elevation Models (DEM can be generated for forested areas by using Real Time Kinematic (RTK GPS method and these DEMs can be used to develop precise slope maps. In this study, high-resolution DEM was developed by RTK-GPS method to generate precise slope map in a sample area. Then, the slope map was classified into slope classes specified by IUFRO in order to assist forest operations planning. According to the results, logging methods that are suitable for very steep and steep terrain conditions (i.e. skyline logging, cable pulling, and chute systems should be preferred in 48.1% of the study area. It was also found that logging methods that are suitable for terrain with medium slope (i.e. skidding and cable pulling and gentle slope (i.e. skidding and mobile winch should be preferred in 34.1% and 17.8% of the study area, respectively.

  11. Choosing Geodetic Monuments Based on Noise in New Zealand GPS Time Series

    Science.gov (United States)

    Beavan, J.

    2004-12-01

    Geodetic signals of tectonic or volcanological interest recorded by geodetic instrumentation may be degraded or obscured by the presence of noise in the geodetic data. Limiting the noise is therefore important for the detection and interpretation of such signals. One source of noise is random motion occurring within the connection of the geodetic instrument to the ground. In the case of surface instruments such as GPS, the connection to the ground is through a geodetic monument. The motion of this monument, with respect to a representative volume of the Earth's near surface in its vicinity, is termed monument noise. Monument noise results from processes such as soil swelling in response to rainfall, and general rock and soil weathering effects. In this paper we investigate the noise levels within time series of continuous GPS (CGPS) positions collected on concrete pillar monuments in New Zealand. We compare these noise levels with those from drilled, braced monuments in several U.S. CGPS networks. We investigate under what conditions monument noise is the limiting noise source in the CGPS data, and attempt to provide a basis for decisions on what type of monument to deploy under certain scenarios.

  12. Accuracy evaluation of Kinematic GPS analysis based on the difference of the IGS products

    Science.gov (United States)

    Watanabe, T.; Tadokoro, K.; Okuda, T.; Ikuta, R.; Kuno, M.

    2010-12-01

    The Philippine Sea plate subducts beneath the southwest Japan from the Nankai Trough with a rate of about 4-6 cm/year, where great interplate earthquakes have repeatedly occurred every 100-150 years. To clarify the mechanism of earthquake occurrence at such subduction zones, we require the geodetic data obtained from not only onshore area but also offshore area. However it is difficult to estimate the plate interaction in offshore areas, due to the poverty of those data. For this issue, we have conducted seafloor geodetic observation using GPS/Acoustic techniques around the Nankai Trough since 2004. In this system, we estimate the position of a surveying vessel by Kinematic GPS analysis and measure the distance between the vessel and the benchmark on the seafloor by Acoustic measurements. Next, we determine the location of the benchmark and detected crustal movement on the seafloor. Recently, a number of research institute have conducted seafloor geodetic observation after earthquake occurred in offshore area (Tadokoro et al., 2006), and then speedy solution is desired from a viewpoint of not only scientific research but also disaster mitigation. Although we use the IGS final product for its accuracy, the latency of that is longer, about 13 days or more. On the other hand, the IGS ultra-rapid product is updated every 6 hours with the delay of 3 hours. In the previous study, we compared the kinematic GPS solutions using the IGS final and ultra-rapid products. The rover GPS site was located on the roof of a building at Nagoya University and 5 fixed GPS sites were located on the roof of other buildings whose baseline lengths were 30-150 km. Though the standard deviation of the difference between final and ultra-rapid solutions increases with increasing baseline length, which is about 1.6 mm in 150 km baseline. This result showed that the difference was not significant for seafloor geodetic observations. In this study, we investigate the kinematic GPS solutions based

  13. Radiation-resistant composite scintillators based on GSO and GPS grains

    Science.gov (United States)

    Boyarintsev, A. Yu.; Galunov, N. Z.; Gerasymov, Ia. V.; Karavaeva, N. L.; Krech, A. V.; Levchuk, L. G.; Popov, V. F.; Sidletskiy, O. Ts.; Sorokin, P. V.; Tarasenko, O. A.

    2017-01-01

    The effect of irradiation on the scintillation light output, optical transmittance, and luminescent spectra of composite scintillators based on grains of single crystals Gd2SiO5:Ce (GSO) and Gd2Si2O7:Ce (GPS) is studied. The dielectric gel Sylgard-184 is the base and the binder for the grains inside the composite scintillator. The paper presents and analyzes the results obtained for the scintillators exposed by 10 MeV electrons from the linear electron accelerator at room temperature. The exposure doses D≤250 Mrad. The dose rate is 0.2 or 1500 Mrad/h. The study has shown that the composite scintillators based on the grains of GSO and GPS are radiation-resistant over the range of the irradiation.

  14. PERFORMANCE ANALYSIS OF INTEGRATED GPS/GLONASS CARRIER PHASE-BASED POSITIONING

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Due to the different signal frequencies for the GLONASS satellites,the commonly- used double-differencing procedure for carrier phase data processing can not be implemented in its straightforward form,as in the case of GPS.In this paper a novel data processing strategy,involving a three-step procedure,for integrated GPS/GLONASS positioning is proposed.The first is pseudo-range-based positioning, that uses double-differenced (DD) GPS pseudo-range and single-differenced (SD) G LONASS pseudo-range measurements to derive the initial position and receiver clock bias.The second is forming DD measurements (expressed in cycles) in order to estimate the ambiguities,by using the receiver clock bias estimated in the above step.The third is to form DD measurements (expressed in met ric units) with the unknown SD integer ambiguity for the GLONASS reference satel lite as the only parameter (which is constant before a cycle slip occurs for thi s satellite).A real-time stochastic model estimated by residual series over prev ious epochs is proposed for integrated GPS/GLONASS carrier phase and pseudo-rang e data processing.Other associated issues,such as cycle slip detection,valida tion criteria and adaptive procedure(s) for ambiguity resolution,is also d iscussed.The performance of this data processing strategy will be demonstrated through case study examples of rapid static positioning and kinematic positionin g.From four experiments carried out to date,the results indicate that ra pi d static positioning requires 1 minute of single frequency GPS/GLONASS data for 100% positioning success rate.The single epoch positioning solution for kinemat ic positioning can achieve 94.6% success rate over short baselines (<6 km).

  15. Validation of GOME-2/Metop total column water vapour with ground-based and in situ measurements

    Science.gov (United States)

    Kalakoski, Niilo; Kujanpää, Jukka; Sofieva, Viktoria; Tamminen, Johanna; Grossi, Margherita; Valks, Pieter

    2016-04-01

    The total column water vapour product from the Global Ozone Monitoring Experiment-2 on board Metop-A and Metop-B satellites (GOME-2/Metop-A and GOME-2/Metop-B) produced by the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) is compared with co-located radiosonde observations and global positioning system (GPS) retrievals. The validation is performed using recently reprocessed data by the GOME Data Processor (GDP) version 4.7. The time periods for the validation are January 2007-July 2013 (GOME-2A) and December 2012-July 2013 (GOME-2B). The radiosonde data are from the Integrated Global Radiosonde Archive (IGRA) maintained by the National Climatic Data Center (NCDC). The ground-based GPS observations from the COSMIC/SuomiNet network are used as the second independent data source. We find a good general agreement between the GOME-2 and the radiosonde/GPS data. The median relative difference of GOME-2 to the radiosonde observations is -2.7 % for GOME-2A and -0.3 % for GOME-2B. Against the GPS, the median relative differences are 4.9 % and 3.2 % for GOME-2A and B, respectively. For water vapour total columns below 10 kg m-2, large wet biases are observed, especially against the GPS retrievals. Conversely, at values above 50 kg m-2, GOME-2 generally underestimates both ground-based observations.

  16. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  17. GSM-GPS Based Intelligent Security and Control System for Vehicle

    Directory of Open Access Journals (Sweden)

    Mr. Kiran Gaikwad

    2013-05-01

    Full Text Available The revolution of Mobile and Technology has made ‘GSM based vehicle security system’. The vehicle security system is prominent worldwide. But it is not so much secure system. Every vehicle owner wants maximum protection of his vehicle; otherwise thief can easily trap the vehicle. So, by combing the idea of mobile and vehicle security system GSM based vehicle security system can be designed. So this GSM-GPS based vehicle security system works when someone tries to steal your vehicle. This paper deals with the design {&} development of an embedded system, which is being used to prevent/control the theft of a vehicle. The instrument is an embedded system based on GSM and GPS technology. The instrument is installed in the engine of the vehicle. The main objective of this instrument is to protect the vehicle from any unauthorized access, through entering a protected password and intimate the status and location of the same vehicle to the authorize person (owner using Global System for Mobile Communication (GSM and Global Positioning System (GPS technology. Here owner of vehicle can control system through Cell phone or a personal computer (PC. In this system new concept is inclusion of RTC (Real Time Clock by which vehicle can be permanently off depending upon date and time set. This system is intelligent because it performs many tasks automatically and also control vehicle on/off from a distance

  18. Ground based spectroscopy of hot Jupiters

    Science.gov (United States)

    Waldmann, Ingo

    2010-05-01

    It has been shown in recent years with great success that spectroscopy of exoplanetary atmospheres is feasible using space based observatories such as the HST and Spitzer. However, with the end of the Spitzer cold-phase, space based observations in the near to mid infra-red are limited, which will remain true until the the onset of the JWST. The importance of developing methods of ground based spectroscopic analysis of known hot Jupiters is therefore apparent. In the past, various groups have attempted exoplanetary spectroscopy using ground based facilities and various techniques. Here I will present results using a novel spectral retrieval method for near to mid infra-red emission and transmission spectra of exoplanetary atmospheres taken from the ground and discuss the feasibility of future ground-based spectroscopy in a broader context. My recently commenced PhD project is under the supervision of Giovanna Tinetti (University College London) and in collaboration with J. P. Beaulieu (Institut d'Astrophysique de Paris), Mark Swain and Pieter Deroo (Jet Propulsion Laboratory, Caltech).

  19. Uav Onboard GPS in Positioning Determination

    Science.gov (United States)

    Tahar, K. N.; Kamarudin, S. S.

    2016-06-01

    The establishment of ground control points is a critical issue in mapping field, especially for large scale mapping. The fast and rapid technique for ground control point's establishment is very important for small budget projects. UAV onboard GPS has the ability to determine the point positioning. The objective of this research is to assess the accuracy of unmanned aerial vehicle onboard global positioning system in positioning determination. Therefore, this research used UAV onboard GPS as an alternative to determine the point positioning at the selected area. UAV is one of the powerful tools for data acquisition and it is used in many applications all over the world. This research concentrates on the error contributed from the UAV onboard GPS during observation. There are several points that have been used to study the pattern of positioning error. All errors were analyzed in world geodetic system 84- coordinate system, which is the basic coordinate system used by the global positioning system. Based on this research, the result of UAV onboard GPS positioning could be used in ground control point establishment with the specific error. In conclusion, accurate GCP establishment could be achieved using UAV onboard GPS by applying a specific correction based on this research.

  20. A GPS-based Real-time Road Traffic Monitoring System

    Science.gov (United States)

    Tanti, Kamal Kumar

    In recent years, monitoring systems are astonishingly inclined towards ever more automatic; reliably interconnected, distributed and autonomous operation. Specifically, the measurement, logging, data processing and interpretation activities may be carried out by separate units at different locations in near real-time. The recent evolution of mobile communication devices and communication technologies has fostered a growing interest in the GIS & GPS-based location-aware systems and services. This paper describes a real-time road traffic monitoring system based on integrated mobile field devices (GPS/GSM/IOs) working in tandem with advanced GIS-based application software providing on-the-fly authentications for real-time monitoring and security enhancement. The described system is developed as a fully automated, continuous, real-time monitoring system that employs GPS sensors and Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based on the requirements of client’s satisfaction. Due to the modular architecture of the system, other sensor types may be supported with minimal effort. Data on the distributed network & measurements are transmitted via cellular SIM cards to a Control Unit, which provides for post-processing and network management. The Control Unit may be remotely accessed via an Internet connection. The new system will not only provide more consistent data about the road traffic conditions but also will provide methods for integrating with other Intelligent Transportation Systems (ITS). For communication between the mobile device and central monitoring service GSM technology is used. The resulting system is characterized by autonomy, reliability and a high degree of automation.

  1. Ultra-tight GPS/IMU Integration based Long-Range Rocket Projectile Navigation

    Directory of Open Access Journals (Sweden)

    Handong Zhao

    2016-01-01

    Full Text Available Accurate navigation is important for long-range rocket projectile’s precise striking. For getting a stable and high-performance navigation result, a ultra-tight global position system (GPS, inertial measuring unit integration (IMU-based navigation approach is proposed. In this study, high-accuracy position information output from IMU in a short time to assist the carrier phase tracking in the GPS receiver, and then fused the output information of IMU and GPS based on federated filter. Meanwhile, introduced the cubature kalman filter as the local filter to replace the unscented kalman filter, and improved it with strong tracking principle, then, improved the federated filter with vector sharing theory. Lastly simulation was carried out based on the real ballistic data, from the estimation error statistic figure. The navigation accuracy of the proposed method is higher than traditional method.Defence Science Journal, Vol. 66, No. 1, January 2016, pp. 64-70, DOI: http://dx.doi.org/10.14429/dsj.66.8326

  2. GPS Interference Mitigation Using Derivative-free Kalman Filter-based RNN

    Directory of Open Access Journals (Sweden)

    W. L. Mao

    2016-09-01

    Full Text Available The global positioning system (GPS with accurate positioning and timing properties has become integral part of all applications around the world. Radio frequency interference can significantly decrease the performance of GPS receivers or even completely prohibit the acquisition or tracking of satellites. The approaches of system performances that can be further enhanced by preprocessing to reject the jamming signal will be investigated. A recurrent neural network (RNN predictor for the GPS anti-jamming applications will be proposed. The adaptive RNN predictor is utilized to accurately predict the narrowband waveform based on an unscented Kalman filter (UKF-based algorithm. The UKF algorithm as a derivative-free alternative to the extended Kalman filter (EKF in the framework of state-estimation is adopted to achieve better performance in terms of convergence rate and quality of solution. The adaptive RNN filter can be successfully applied for the suppression of interference with a number of different narrowband formats, i.e. continuous wave interference (CWI, multi-tone CWI, swept CWI and pulsed CWI, to emulate realistic circumstances. Simulation results show that the proposed UKF-based scheme can offer the superior performances to suppress the interference over the conventional methods by computing mean squared prediction error (MSPE and signal-to-noise ratio (SNR improvements.

  3. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  4. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  5. A novel algorithm to identifying vehicle travel path in elevated road area based on GPS trajectory data

    Institute of Scientific and Technical Information of China (English)

    Xianrui XU; Xiaojie LI; Yujie HU; Zhongren PENG

    2012-01-01

    In recent years,the increasing development of traffic information collection technology based on floating car data has been recognized,which gives rise to the establishment of real-time traffic information dissemination system in many cities.However,the recent massive construction of urban elevated roads hinders the processing of corresponding GPS data and further extraction of traffic information (e.g.,identifying the real travel path),as a result of the frequent transfer of vehicles between ground and elevated road travel.Consequently,an algorithm for identifying the travel road type (i.e.,elevated or ground road) of vehicles is designed based on the vehicle traveling features,geometric and topological characteristics of the elevated road network,and a trajectory model proposed in the present study.To be specific,the proposed algorithm can detect the places where a vehicle enters,leaves or crosses under elevated roads.An experiment of 10 sample taxis in Shanghai,China was conducted,and the comparison of our results and results that are obtained from visual interpretation validates the proposed algorithm.

  6. GPS Based Reduced-Dynamic Orbit Determination for Low Earth Orbiters with Ambiguity Fixing

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2015-01-01

    Full Text Available With the ever-increasing number of satellites in Low Earth Orbit (LEO for scientific missions, the precise determination of the position and velocity of the satellite is a necessity. GPS (Global Positioning System based reduced-dynamic orbit determination (RPOD method is commonly used in the post processing with high precision. This paper presents a sequential RPOD strategy for LEO satellite in the framework of Extended Kalman Filter (EKF. Precise Point Positioning (PPP technique is used to process the GPS observations, with carrier phase ambiguity resolution using Integer Phase Clocks (IPCs products. A set of GRACE (Gravity Recovery And Climate Experiment mission data is used to test and validate the RPOD performance. Results indicate that orbit determination accuracy could be improved by 15% in terms of 3D RMS error in comparison with traditional RPOD method with float ambiguity solutions.

  7. Characteristics on fault coupling along the Solomon megathrust based on GPS observations from 2011 to 2014

    Science.gov (United States)

    Kuo, Yu-Ting; Ku, Chin-Shang; Chen, Yue-Gau; Wang, Yu; Lin, Yu-Nung Nina; Chuang, Ray Y.; Hsu, Ya-Ju; Taylor, Frederick W.; Huang, Bor-Shouh; Tung, Hsin

    2016-08-01

    The Solomon megathrust along the western Solomon arc generated two megathrust earthquakes in the past decade (Mw 8.1 in 2007 and Mw 7.1 in 2010). To investigate the interseismic deformation and inferred coupling on the megathrust, we deployed the first continuous GPS network in the Western Solomon Islands. Our 2011-2014 GPS data and the back slip inversion model show coupling ratio as high as 73% along the southeastern 2007 rupture segment but only 10% on average along the segment of 2010 event. Based on the spatial distribution of coseismic slip, aftershock clusters, derived coupling pattern, and paleogeodetic records, we discovered the former as a semipermanent asperity and the latter as a potential megathrust barrier. We propose that a characteristic earthquake of magnitude not less than Mw 8 will recur in an interval of 100 or more years by either single or doublet earthquake.

  8. GPS based checking survey and precise DEM development in Open mine

    Institute of Scientific and Technical Information of China (English)

    XU Ai-gong

    2008-01-01

    The checking survey in Open mine is one of the most frequent and important work. It plays the role of forming a connecting link between open mine planning and production. Traditional checking method has such disadvantages as long time consumption,heavy workload, complicated calculating process, and lower automation. Used GPS and GIS technologies to systematically study the core issues of checking survey in open mine.A detail GPS data acquisition coding scheme was presented. Based on the scheme an algorithm used for computer semiautomatic cartography was made. Three methods used for eliminating gross errors from raw data which were needed for creating DEM was discussed. Two algorithms were researched and realized which can be used to create open mine fine DEM model with constrained conditions and to dynamically update the model.The precision analysis and evaluation of the created model were carried out.

  9. GPS based checking survey and precise DEM development in open mine

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ai-gong [Liaoning Technical University, Fuxin (China). School of Geomatics

    2008-06-15

    The checking survey in Open mine is one of the most frequent and important work. It plays the role of forming a connecting link between open mine planning and production. Traditional checking method has such disadvantages as long time consumption, heavy workload, complicated calculating process, and lower automation. The author used GPS and GIS technologies to systematically study the core issues of checking survey in open mine. A detail GPS data acquisition coding scheme was presented. Based on the scheme an algorithm used for computer semiautomatic cartography was made. Three methods used for eliminating gross errors from raw data which were needed for creating OEM was discussed. Two algorithms were researched and realized which can be used to create open mine fine OEM model with constrained conditions and to dynamically update the model. The precision analysis and evaluation of the created model were carried out. 5 refs.

  10. Vehicle Unpaved Road Response Spectrum Acquisition Based on Accelerometer and GPS Data

    Directory of Open Access Journals (Sweden)

    Yao Guo

    2012-07-01

    Full Text Available This paper describes a response acquisition system composed of some spindle accelerometers and a time synchronized on-board GPS receiver developed in order to collect the dynamic response of vehicle riding on an unpaved road. A method of time-space conversion for calculating the response spectrum is proposed to eliminate the adverse effect of time-varying speed, based on the transform from the equitime sampled spindle acceleration responses to equidistance sampling. By using two groups of independent distance histories acquired from GPS, a method called long-range error correction is proposed to improve the accuracy of the vehicle’s distance information, which is critical for the time-space conversion. The accuracy and limitations of the system have been analyzed, and its validity has been verified by implementing the system on a wheel loader for road response spectrum measuring. This paper offers a practical approach to obtaining unpaved road response spectra for durability road simulation.

  11. Design of cold chain logistics remote monitoring system based on ZigBee and GPS location

    Science.gov (United States)

    Zong, Xiaoping; Shao, Heling

    2017-03-01

    This paper designed a remote monitoring system based on Bee Zig wireless sensor network and GPS positioning, according to the characteristics of cold chain logistics. The system consisted of the ZigBee network, gateway and monitoring center. ZigBee network temperature acquisition modules and GPS positioning acquisition module were responsible for data collection, and then send the data to the host computer through the GPRS network and Internet to realize remote monitoring of vehicle with functions of login permissions, temperature display, latitude and longitude display, historical data, real-time alarm and so on. Experiments showed that the system is stable, reliable and effective to realize the real-time remote monitoring of the vehicle in the process of cold chain transport.

  12. Smoother and Bayesian filter based semi-codeless tracking of dual-frequency GPS signals

    Institute of Scientific and Technical Information of China (English)

    LIAO Bingyu; YUAN Hong; LIN Baojun

    2006-01-01

    To precisely determine the integrated orbit of the Chinese manned spacecraft mission,a smoother and Bayesian filter based technique for optimum semi-codeless tracking of the P(Y) code on dual-frequency GPS signals has been advanced. This signal processing technique has been proven effective and robust for affording access to dual-frequency GPS signals. This paper introduces the signal dynamics and measurement models, describes the W·D bit estimation method, and corrects the mistakes of direct estimation of W bit in current semi-codeless tracking. Median filter is chosen as a smoother to find the best measurements at the current time among the history and current information. The Bayesian filter is used to track the L2 P(Y) code phase and L2 carrier phase recursively.

  13. 基于 E1椭球的 GPS 二维约束网平差设计与实现%The Design and Implementation Of GPS 2D Constrained Net Adjustment Based on the E1 Ellipsoid

    Institute of Scientific and Technical Information of China (English)

    杨剑伟; 吕志伟; 白文礼; 吕金浩

    2013-01-01

    现代工程G PS基线向量网与地面网联合平差一般是采用二维约束平差的方式在平面直角坐标系中进行。本文详述了基于E1椭球在地方独立坐标系中进行二维约束网平差的原理。算例表明:对于小范围的G PS工程控制网,采用二维约束平差在精度和实用性方面都能满足需求。%Modern engineering of GPS baseline vector network and the ground network combined adjustment is generally conducted based on the 2D constrained adjustment manner in the plane rectangular coordinate system .2D constrained net adjustment is described based on E1 ellipsoid in local independent coordinate system detailed .The example shows that in the small range of GPS control network ,the 2D constrained network adjustment can meet the demand in terms of the accuracy and practicality .

  14. High precision mobile location framework and its service based on virtual reference station of GPS

    Science.gov (United States)

    Liu, Chun; Sun, Liangyu; Yao, Lianbi

    2008-10-01

    The wireless communication technology and space technology are synchronously developed in recent years, which bring up the development of location based service (LBS). At present, many location technology methods were developed. However, all these methods can only provide a relative poor location precision and depend on high cost. The technology of Virtual Reference Station (VRS) of GPS is then involved in this paper. One of the objective in this paper is aim to give the LBS position structure to improve the mobile location position when a mobile position instrument is connected with VRS network. The cheaper GPS built-in Personal Designer Aid (PDA) is then used to achieve a higher precision by using RTCM data from existing VRS network. In order to obtain a high precision position when using the low-cost GPS receiver as a rover, the infrusture of the mobile differential correction system is then put forward. According to network transportation of RTCM via internet protocol (NTRIP), the message is communicated through wireless network, such as GPRS, CDMA and so on. The rough coordinate information is sent to VRS control center continuously, and then the VRS correction information is replied to rover in the data format of RTCM3.1. So the position will be updated based on mathematic solution after the decoding of RTCM3.1 data. The thought of LBS position can improve the precision, and can speed the LBS.

  15. GPS and InSAR observations of ground deformation in the northern Malawi (Nyasa) rift from the SEGMeNT project

    Science.gov (United States)

    Durkin, W. J., IV; Pritchard, M. E.; Elliott, J.; Zheng, W.; Saria, E.; Ntambila, D.; Chindandali, P. R. N.; Nooner, S. L.; Henderson, S. T.

    2016-12-01

    We describe new ground deformation observations from the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) spanning the northern sector of the Malawi (Nyasa) rift, which is one of the few places in the world suitable for a comprehensive study of early rifting processes. We installed 12 continuous GPS sensors spanning 700 km across the rift including Tanzania, Malawi, and Zambia to measure the width and gradient within the actively deforming zone. Most of these stations have 3 or more years of data now, although a few have shorter time series because of station vandalism. Spanning a smaller area, but with higher spatial resolution, we have created a time series of ground deformation using 150 interferograms from the Japanese ALOS-1 satellite spanning June 2007 to December 2010. We also present interferograms from other satellites including ERS, Envisat, and Sentinel spanning shorter time intervals. The observations include the 2009-2010 Karonga earthquake sequence and associated postseismic deformation as seen by multiple independent satellite lines-of-sight, that we model using a fault geometry determined using relocated aftershocks recorded by a local seismic array. We have not found any ground deformation at the Rungwe volcanic province from InSAR within our detection threshold ( 2 cm/yr), but we have observed localized seasonal ground movements exceeding 8 cm that are associated with subsidence in the dry season and uplift at the beginning of the wet season.

  16. 基于 GPS 轨迹数据的拥堵路段预测%The Congestion Road Segment Prediction Based on GPS Trajectory Data

    Institute of Scientific and Technical Information of China (English)

    林树宽; 于伶姿; 乔建忠; 张百合

    2015-01-01

    基于真实的 GPS 轨迹数据,对城市拥堵路段进行预测。在此过程中,摒弃传统的基于交通流预测和拥堵识别的方法,提出一种新的基于拥堵向量和拥堵转移矩阵的拥堵路段预测方法。该方法同时考虑路段拥堵的时间周期性和时空相关性,通过对出租车 GPS 轨迹数据进行挖掘和训练,建立拥堵向量和拥堵转移矩阵,实现对拥堵路段的预测。真实数据集上的实验验证了所提的拥堵路段预测方法的有效性。%Congestion road segments over real GPS trajectory data Was predicted.The traditional methods Were ostracized based on traffic floWprediction and congestion identification,and a novel method Was proposed based on the congestion vector and the congestion transition matrix.The congestion vector and the congestion transition matrix Were established by mining and training taxi GPS trajectory data,resulting in the implementation of the prediction of traffic congestion.In the course of prediction,time periodicity and spatial-temporal correlation of road segment congestion Were both considered.The experiments on real data shoWthe effectiveness of the congestion road segment prediction method proposed.

  17. GPS based surface displacements – a proxy for discharge and sediment transport from the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Hasholt, Bent; Khan, Shfaqat Abbas; Mikkelsen, Andreas Bech

    2014-01-01

    The elastic respond of the Earth’s surface to mass changes has been measured with Global Positioning System (GPS). Mass loss as accumulated runoff and sediment transport from a 10000 km2 segment of the Greenland Ice Sheet (GrIS) correlated very well (R2=0.83) with GPS measured uplift. Accumulated....... Based on the entire GPS record (1996–2013), it is shown that until 2005–2006 the mass balance of this segment of the GrIS was rather stable – since then there has been an increasing loss of mass, culminating in 2012....

  18. Evaluation of GPS-Based Attitude Parameters Applied to Bathymetric Measurements

    Institute of Scientific and Technical Information of China (English)

    Chang Chia-chyang; Lee Hsing-wei

    2003-01-01

    As the survey vessels normally take bathymetric measurements in a 'dynamic'environment on the sea surface,the attitude parameters of the vessel are basically required to be introduced measurements related to the sounding datum. A multi-antenna GPSsystem, which can be easy-mounted on a vessel, has proved to be able toprecisely determine its attitude parameters through the combinations ofthe GPS vectors. This study aimed at evaluating such a GPS-basedsystem to determine the attitude parameters for the survey vessels, basedon the data collected both in-land for testing and on-sea for practical use.The precision of the estimates was realized to be around 1.6' for heading,2.3' for pitch, 9.9' for roll, and 0.3 cm for heave, based on the testing data. When system was practically applied to the bathymetric measurements made on-board, the sea depth agreements for the check points can be improved by a significant level of 43%, if a complete set of attitude parameters was in use. As the attitude information was provedto be helpful for the bathymetric measurements, it can be suggested thata multi-antenna GPS system is an economic and effective tool for the deter minations of the attitude parameter, and particularly suitable for the applications of hydrographic surveys.

  19. GPS-Based Daily Context Recognition for Lifelog Generation Using Smartphone

    Directory of Open Access Journals (Sweden)

    Go Tanaka

    2015-02-01

    Full Text Available Mobile devices are becoming increasingly more sophisticated with their many diverse and powerful sensors, such as GPS, acceleration, and gyroscope sensors. They provide numerous services for supporting daily human life and are now being studied as a tool to reduce the worldwide increase of lifestyle-related diseases. This paper describes a method for recognizing the contexts of daily human life by recording a lifelog based on a person’s location. The proposed method can distinguish and recognize several contexts at the same location by extracting features from the GPS data transmitted from smartphones. The GPS data are then used to generate classification models by machine learning. Five classification models were generated: a mobile or stationary recognition model, a transportation recognition model, and three daily context recognition models. In addition, optimal learning algorithms for machine learning were determined. The experimental results show that this method is highly accurate. As examples, the F-measure of the daily context recognition was approximately 0.954 overall at a tavern and approximately 0.920 overall at a university .

  20. Complex Road Intersection Modelling Based on Low-Frequency GPS Track Data

    Science.gov (United States)

    Huang, J.; Deng, M.; Zhang, Y.; Liu, H.

    2017-09-01

    It is widely accepted that digital map becomes an indispensable guide for human daily traveling. Traditional road network maps are produced in the time-consuming and labour-intensive ways, such as digitizing printed maps and extraction from remote sensing images. At present, a large number of GPS trajectory data collected by floating vehicles makes it a reality to extract high-detailed and up-to-date road network information. Road intersections are often accident-prone areas and very critical to route planning and the connectivity of road networks is mainly determined by the topological geometry of road intersections. A few studies paid attention on detecting complex road intersections and mining the attached traffic information (e.g., connectivity, topology and turning restriction) from massive GPS traces. To the authors' knowledge, recent studies mainly used high frequency (1 s sampling rate) trajectory data to detect the crossroads regions or extract rough intersection models. It is still difficult to make use of low frequency (20-100 s) and easily available trajectory data to modelling complex road intersections geometrically and semantically. The paper thus attempts to construct precise models for complex road intersection by using low frequency GPS traces. We propose to firstly extract the complex road intersections by a LCSS-based (Longest Common Subsequence) trajectory clustering method, then delineate the geometry shapes of complex road intersections by a K-segment principle curve algorithm, and finally infer the traffic constraint rules inside the complex intersections.

  1. Landmark-based robust navigation for tactical UGV control in GPS-denied communication-degraded environments

    Science.gov (United States)

    Endo, Yoichiro; Balloch, Jonathan C.; Grushin, Alexander; Lee, Mun Wai; Handelman, David

    2016-05-01

    Control of current tactical unmanned ground vehicles (UGVs) is typically accomplished through two alternative modes of operation, namely, low-level manual control using joysticks and high-level planning-based autonomous control. Each mode has its own merits as well as inherent mission-critical disadvantages. Low-level joystick control is vulnerable to communication delay and degradation, and high-level navigation often depends on uninterrupted GPS signals and/or energy-emissive (non-stealth) range sensors such as LIDAR for localization and mapping. To address these problems, we have developed a mid-level control technique where the operator semi-autonomously drives the robot relative to visible landmarks that are commonly recognizable by both humans and machines such as closed contours and structured lines. Our novel solution relies solely on optical and non-optical passive sensors and can be operated under GPS-denied, communication-degraded environments. To control the robot using these landmarks, we developed an interactive graphical user interface (GUI) that allows the operator to select landmarks in the robot's view and direct the robot relative to one or more of the landmarks. The integrated UGV control system was evaluated based on its ability to robustly navigate through indoor environments. The system was successfully field tested with QinetiQ North America's TALON UGV and Tactical Robot Controller (TRC), a ruggedized operator control unit (OCU). We found that the proposed system is indeed robust against communication delay and degradation, and provides the operator with steady and reliable control of the UGV in realistic tactical scenarios.

  2. Diurnal variations in integrated water vapor derived from a GPS ground network in the Volga-Ural region of Russia

    Science.gov (United States)

    Kalinnikov, Vladislav V.; Khutorova, Olga G.

    2017-03-01

    In this article, we present estimates of diurnal and semidiurnal harmonics of variations in integrated water vapor content (IWV) according to data from 16 GPS stations in the Volga-Ural region of Russia during 2013-2015. Amplitudes of diurnal harmonics are maximal in summer and reach values from 0.37 to 1.01 mm. Time at the maximum of diurnal harmonic is typically in the period from 14:00 to 17:00. Semidiurnal harmonics have the largest amplitudes in spring and autumn, but they do not exceed 0.19 mm. A comparison of the diurnal cycle from GPS data and ERA-Interim reanalysis has revealed significant differences in the phase. It is established that, as a result of evaporation from the underlying surface and convective lifting of moist air, the summer diurnal variations in IWV and surface density of water vapor are in antiphase. The diurnal cycle of IWV is determined by surface air temperature to be 88 % in summer and less than at 35 % in other seasons. It is noted that maximal amplitudes of diurnal harmonic of IWV are observed at stations located on the windward side of mountains.

  3. FGMOS Based Voltage-Controlled Grounded Resistor

    Directory of Open Access Journals (Sweden)

    R. Pandey

    2010-09-01

    Full Text Available This paper proposes a new floating gate MOSFET (FGMOS based voltage-controlled grounded resistor. In the proposed circuit FGMOS operating in the ohmic region is linearized by another conventional MOSFET operating in the saturation region. The major advantages of FGMOS based voltage-controlled grounded resistor (FGVCGR are simplicity, low total harmonic distortion (THD, and low power consumption. A simple application of this FGVCGR as a tunable high-pass filter is also suggested. The proposed circuits operate at the supply voltages of +/-0.75 V. The circuits are designed and simulated using SPICE in 0.25-µm CMOS technology. The simulation results of FGVCGR demonstrate a THD of 0.28% for the input signal 0.32 Vpp at 45 kHz, and a maximum power consumption of 254 µW.

  4. Space and Ground-Based Infrastructures

    Science.gov (United States)

    Weems, Jon; Zell, Martin

    This chapter deals first with the main characteristics of the space environment, outside and inside a spacecraft. Then the space and space-related (ground-based) infrastructures are described. The most important infrastructure is the International Space Station, which holds many European facilities (for instance the European Columbus Laboratory). Some of them, such as the Columbus External Payload Facility, are located outside the ISS to benefit from external space conditions. There is only one other example of orbital platforms, the Russian Foton/Bion Recoverable Orbital Capsule. In contrast, non-orbital weightless research platforms, although limited in experimental time, are more numerous: sounding rockets, parabolic flight aircraft, drop towers and high-altitude balloons. In addition to these facilities, there are a number of ground-based facilities and space simulators, for both life sciences (for instance: bed rest, clinostats) and physical sciences (for instance: magnetic compensation of gravity). Hypergravity can also be provided by human and non-human centrifuges.

  5. Vertical Displacement due to Ocean Tidal Loading Around Taiwan Based on GPS Observations

    Directory of Open Access Journals (Sweden)

    Ta-Kang Yeh

    2011-01-01

    Full Text Available Ocean tidal loading (OTL is an important factor in GPS positioning, especially along the vertical direction. OTL influences the precision of GPS positioning and produces height variations of up to 12 cm. In this study, daily GPS data obtained from 27 GPS tracking stations around Taiwan were collected, and four OTL models were applied to relative static GPS positions derived from these data. The GPS data were obtained from 8 - 14 August 2006 (summer and 1 - 30 January 2007 (winter. The software Bernese 5.0 was utilized for data processing.

  6. Development of Ground-Based Plant Sentinels

    Science.gov (United States)

    2007-11-02

    plants in response to different strains of Pseudomonas syringae. Planta . 217:767-775. De Moraes CM, Schultz JC, Mescher MC, Tumlinson JH. (2004...09-30-2004 Final Technical _ April 2001 - April 2003 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Developing Plants as Ground-based Sentinels 5b. GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT 9 "Z Plants emit volatile mixes characteristic of exposure to both plant and animal (insect) pathogens (bacteria and fungi). The

  7. Study of Lever-Arm Effect Using Embedded Photogrammetry and On-Board GPS Receiver on Uav for Metrological Mapping Purpose and Proposal of a Free Ground Measurements Calibration Procedure

    Science.gov (United States)

    Daakir, M.; Pierrot-Deseilligny, M.; Bosser, P.; Pichard, F.; Thom, C.; Rabot, Y.

    2016-03-01

    Nowadays, Unmanned Aerial Vehicle (UAV) on-board photogrammetry knows a significant growth due to the democratization of using drones in the civilian sector. Also, due to changes in regulations laws governing the rules of inclusion of a UAV in the airspace which become suitable for the development of professional activities. Fields of application of photogrammetry are diverse, for instance: architecture, geology, archaeology, mapping, industrial metrology, etc. Our research concerns the latter area. Vinci-Construction- Terrassement is a private company specialized in public earthworks that uses UAVs for metrology applications. This article deals with maximum accuracy one can achieve with a coupled camera and GPS receiver system for direct-georeferencing of Digital Surface Models (DSMs) without relying on Ground Control Points (GCPs) measurements. This article focuses specially on the lever-arm calibration part. This proposed calibration method is based on two steps: a first step involves the proper calibration for each sensor, i.e. to determine the position of the optical center of the camera and the GPS antenna phase center in a local coordinate system relative to the sensor. A second step concerns a 3d modeling of the UAV with embedded sensors through a photogrammetric acquisition. Processing this acquisition allows to determine the value of the lever-arm offset without using GCPs.

  8. Elevation Change of Drangajokull, Iceland, from Cloud-Cleared ICESat Repeat Profiles and GPS Ground-Survey Data

    Science.gov (United States)

    Shuman, Christopher A.; Sigurdsson, Oddur; Williams, Richard, Jr.; Hall, Dorothy K.

    2009-01-01

    Located on the Vestfirdir Northwest Fjords), DrangaJokull is the northernmost ice map in Iceland. Currently, the ice cap exceeds 900 m in elevation and covered an area of approx.l46 sq km in August 2004. It was about 204 sq km in area during 1913-1914 and so has lost mass during the 20th century. Drangajokull's size and accessibility for GPS surveys as well as the availability of repeat satellite altimetry profiles since late 2003 make it a good subject for change-detection analysis. The ice cap was surveyed by four GPS-equipped snowmobiles on 19-20 April 2005 and has been profiled in two places by Ice, Cloud. and land Elevation Satellite (ICESat) 'repeat tracks,' fifteen times from late to early 2009. In addition, traditional mass-balance measurements have been taken seasonally at a number of locations across the ice cap and they show positive net mass balances in 2004/2005 through 2006/2007. Mean elevation differences between the temporally-closest ICESat profiles and the GPS-derived digital-elevation model (DEM)(ICESat - DEM) are about 1.1 m but have standard deviations of 3 to 4 m. Differencing all ICESat repeats from the DEM shows that the overall elevation difference trend since 2003 is negative with losses of as much as 1.5 m/a from same season to same season (and similar elevation) data subsets. However, the mass balance assessments by traditional stake re-measurement methods suggest that the elevation changes where ICESat tracks 0046 and 0307 cross Drangajokull are not representative of the whole ice cap. Specifically, the area has experienced positive mass balance years during the time frame when ICESat data indicates substantial losses. This analysis suggests that ICESat-derived elevations may be used for multi-year change detection relative to other data but suggests that large uncertainties remain. These uncertainties may be due to geolocation uncertainty on steep slopes and continuing cloud cover that limits temporal and spatial coverage across the

  9. Error and Performance Analysis of MEMS-based Inertial Sensors with a Low-cost GPS Receiver

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2008-03-01

    Full Text Available Global Navigation Satellite Systems (GNSS, such as the Global Positioning System (GPS, have been widely utilized and their applications are becoming popular, not only in military or commercial applications, but also for everyday life. Although GPS measurements are the essential information for currently developed land vehicle navigation systems (LVNS, GPS signals are often unavailable or unreliable due to signal blockages under certain environments such as urban canyons. This situation must be compensated in order to provide continuous navigation solutions. To overcome the problems of unavailability and unreliability using GPS and to be cost and size effective as well, Micro Electro Mechanical Systems (MEMS based inertial sensor technology has been pushing for the development of low-cost integrated navigation systems for land vehicle navigation and guidance applications. This paper will analyze the characterization of MEMS based inertial sensors and the performance of an integrated system prototype of MEMS based inertial sensors, a low-cost GPS receiver and a digital compass. The influence of the stochastic variation of sensors will be assessed and modeled by two different methods, namely Gauss-Markov (GM and AutoRegressive (AR models, with GPS signal blockage of different lengths. Numerical results from kinematic testing have been used to assess the performance of different modeling schemes.

  10. A Map-Matching Algorithm for GPS/DR Integrated Navigation Systems Based on Dempster-Shafer Evidence Reasoning

    Institute of Scientific and Technical Information of China (English)

    CHEN Ze-wang; YUAN Xin

    2004-01-01

    GPS (Global Positioning System) has been widely used in car navigation systems. Most car navigation systems estimate the car position from GPS and DR (dead reckoning). However, the unknown GPS noise characteristic and the unbounded DR accumulation of errors over time make the position information with undesirable position errors. The map matching can improve the position accuracy and availability of the vehicular position system. In this paper, general principle of map matching is investigated according to segmentation and feature extraction, and a map matching algorithm based on D-S (Dempster-Shafer) evidence reasoning for GPS integrated navigation system is proposed, which can find the exact road on which a car moves. For the experiments, a car navigation system is developed with some sensors and the field test demonstrates the effectiveness and applicability of the algorithm for the car location and navigation.

  11. Impact of GPS tracking data of LEO satellites on global GPS solutions

    Science.gov (United States)

    Rothacher, M.; Svehla, D.

    Already at present quite a few Low Earth Orbiting (LEO) satellites (SAC-C, CHAMP, JASON-1, GRACE-1 and GRACE-2) are equipped with one or more GPS receivers for precise orbit determination or other applications (atmospheric sounding, gravity field recovery, . . . ). This trend will continue in the near future (e.g., with the GOCE and COSMIC missions) and we will soon have an entire "constellation" of LEO satellites tracked by GPS at our disposal. In this contribution we want to study the impact of LEO GPS measurements (from a single LEO satellite or from a LEO constellation) on global GPS solutions, where GPS satellite orbits and clocks, Earth rotation parameters (ERPs), station coordinates and troposphere zenith delays are determined simultaneously using the data of the global network of the International GPS Service (IGS). In order to assess the impact of the LEO GPS data on global IGS results, we have to perform a combined analysis of the space-borne and the ground-based GPS data. Such a combination may benefit on one hand from the differences between a ground station and a LEO, e.g., (1) the different tracking geometry (coverage of isolated geographical areas by LEOs, rapidly changing geometry, . . . ), (2) that LEOs connect all ground stations within 1-2 hours, (3) that baselines between LEO and ground stations may be longer than station-station baselines, (4) that no tropospheric delays have to be estimated for LEOs, and (5) that LEOs orbit the Earth within the ionosphere and may therefore contribute to global ionosphere models. On the other hand we have to deal with difficult aspects of precise orbit determination for the LEOs: only if we succeed to obtain very accurate dynamic or reduced-dynamic orbits for the LEOs, we will have a chance at all to improve the global GPS results. We present first results concerning the influence of LEO data on GPS orbits, ERPs, site coordinates, and troposphere zenith delays using both, variance-covariance analyses based on

  12. 基于GPS/电子罗盘的测姿定位系统%Attitude-measuring and Positioning System Based on Electronic Compass and GPS

    Institute of Scientific and Technical Information of China (English)

    刘宇; 陈箫; 李锦明; 谭秋林

    2011-01-01

    For the background of MEMS-IMU/GPS / electronic compass integrated navigation system, proposing and designing an attitude-measuring and positioning system based on GPS / electronic compass. Aiming at that those Gyro may start after a long time to be stable, and high-speed gyro ball, wear, and gyro ball always comes with high rotation-speed, large abrasion, short life-span, high price and many failures and so on, this design combines GPS with electronic compass, so that we can make full use of a variety of sources of information to complement each other, which constitutes a redundant and high-precision navigation and positioning system with the characters such as high accuracy, stability, small size, easy to operate and so on. The system uses micro-C8051F021 single chip as a CPU, low power iTrax03-02 as GPS receivers. HMR3300 digital compass to provide attitude information, through the serial communications, so that it can achieve real-time attitude-measuring and positioning.%以MEMS-IMU/GPS/电子罗盘组合导航系统研究为背景,提出并设计了一种基于电子罗盘/GPS的测姿定位系统;针对电罗经启动后要较长时间才能稳定,而陀螺球转速高、磨损大、寿命短等问题,将GPS与电子罗盘组合,利用多种信息源相互补充,构成了一种有多余度和高精度的导航定位系统,具有高精度、稳定、小型化、易操作等特点;该系统利用微型单片机C8051F021作为中央处理器,功耗极低的iTrax03-02作为GPS接收机,数字罗盘HMR3300提供姿态信息,通过串口通信,从而实现实时测姿定位功能.

  13. Recent GPS Results at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Behrend, Dirk; Imfeld, Hans L.; /SLAC

    2005-08-17

    The Alignment Engineering Group (AEG) makes use of GPS technology for fulfilling part of its above ground surveying tasks at SLAC since early 2002. A base station (SLAC M40) has been set up at a central location of the SLAC campus serving both as master station for real-time kinematic (RTK) operations and as datum point for local GPS campaigns. The Leica RS500 system is running continuously and the GPS data are collected both externally (logging PC) and internally (receiver flashcard). The external logging is facilitated by a serial to Ethernet converter and an Ethernet connection at the station. Internal logging (ring buffer) is done for data security purposes. The weatherproof boxes for the instrumentation are excellent shelters against rain and wind, but do heat up considerably in sun light. Whereas the GPS receiver showed no problems, the Pacific Crest PDL 35 radio shut down several times due to overheating disrupting the RTK operations. In order to prevent heat-induced shutdowns, a protection against direct sun exposure (shading) and a constant air circulation system (ventilation) were installed. As no further shutdowns have occurred so far, it appears that the two measures successfully mended the heat problem.

  14. Evaluating the Correctness of Airborne Laser Scanning Data Heights Using Vehicle-Based RTK and VRS GPS Observations

    Directory of Open Access Journals (Sweden)

    Martin Vermeer

    2011-08-01

    Full Text Available In this study, we describe a system in which a GPS receiver mounted on the roof of a car is used to provide reference information to evaluate the elevation accuracy and georeferencing of airborne laser scanning (ALS point clouds. The concept was evaluated in the Klaukkala test area where a number of roads were traversed to collect real-time kinematic data. Two test cases were evaluated, including one case using the real-time kinematic (RTK method with a dedicated GPS base station at a known benchmark in the area and another case using the GNSSnet virtual reference station service (VRS. The utility of both GPS methods was confirmed. When all test data were included, the mean difference between ALS data and GPS-based observations was −2.4 cm for both RTK and VRS GPS cases. The corresponding dispersions were ±4.5 cm and ±5.9 cm, respectively. In addition, our examination did not reveal the presence of any significant rotation between ALS and GPS data.

  15. Bridge Performance Assessment Based on an Adaptive Neuro-Fuzzy Inference System with Wavelet Filter for the GPS Measurements

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2015-10-01

    Full Text Available This study describes the performance assessment of the Huangpu Bridge in Guangzhou, China based on long-term monitoring in real-time by the kinematic global positioning system (RTK-GPS technique. Wavelet transformde-noising is applied to filter the GPS measurements, while the adaptive neuro-fuzzy inference system (ANFIS time series output-only model is used to predict the deformations of GPS-bridge monitoring points. In addition, GPS and accelerometer monitoring systems are used to evaluate the bridge oscillation performance. The conclusions drawn from investigating the numerical results show that: (1the wavelet de-noising of the GPS measurements of the different recording points on the bridge is a suitable tool to efficiently eliminate the signal noise and extract the different deformation components such as: semi-static and dynamic displacements; (2 the ANFIS method with two multi-input single output model is revealed to powerfully predict GPS movement measurements and assess the bridge deformations; and (3 The installed structural health monitoring system and the applied ANFIS movement prediction performance model are solely sufficient to assure bridge safety based on the analyses of the different filtered movement components.

  16. GPS Separator

    CERN Multimedia

    2016-01-01

    Footage of the 70 degree ISOLDE GPS separator magnet MAG70 as well as the switchyard for the Central Mass and GLM (GPS Low Mass) and GHM (GPS High Mass) beamlines in the GPS separator zone. In the GPS20 vacuum sector equipment such as the long GPS scanner 482 / 483 unit, faraday cup FC 490, vacuum valves and wiregrid piston WG210 and WG475 and radiation monitors can also be seen. Also the RILIS laser guidance and trajectory can be seen, the GPS main beamgate switch box and the actual GLM, GHM and Central Beamline beamgates in the beamlines as well as the first electrostatic quadrupoles for the GPS lines. Close up of the GHM deflector plates motor and connections and the inspection glass at the GHM side of the switchyard.

  17. Hacking GPS

    CERN Document Server

    Kingsley-Hughes, Kathie

    2005-01-01

    * This is the "user manual" that didn't come with any of the 30 million GPS receivers currently in use, showing readers how to modify, tweak, and hack their GPS to take it to new levels!* Crazy-cool modifications include exploiting secret keycodes, revealing hidden features, building power cords and cables, hacking the battery and antenna, protecting a GPS from impact and falls, making a screen protector, and solar-powering a GPS* Potential power users will take the function and performance of their GPS to a whole new level by hacking into the firmware and hacking into a PC connection with a GPS* Fear not! Any potentially dangerous mod (to the device) is clearly labeled, with precautions listed that should be taken* Game time! Readers can check out GPS games, check into hacking geocaching, and even use a GPS as a metal detector

  18. Direction finding of GPS receiver interference based on the nulling weights

    Science.gov (United States)

    Wang, Jing; Amin, Moeness

    2007-04-01

    Most military applications of GPS require performing both jammer nulling and localization. While nulling can be achieved using adaptive gradient techniques applied to the input sampled data, high resolution direction of arrival estimation can precede using subspace and eigenstructure methods applied to the estimate of the covariance matrix. In this paper, we extract the jammer direction of arrival (DOA) information directly from the adaptive weights, in which case we assume interference nulling precedes interference localization. This high resolution DOA estimation approach based on available beamforming weight values leads to simplified receiver structure and allows a choice of IF or baseband processing as well as flexibility for analog, digital or mixed mode implementations.

  19. Equipamento microprocessado para geração de sinal de correção diferencial, em tempo real, para GPS Microprocessor-based equipment for real time generation of differential GPS correction signal

    Directory of Open Access Journals (Sweden)

    Thales C. B. Lima

    2006-08-01

    Full Text Available Este trabalho apresenta o desenvolvimento de um equipamento microprocessado, de baixo custo, para geração de sinal de correção diferencial para GPS, em tempo real, e configuração e supervisão do receptor GPS base. O equipamento desenvolvido possui um microcontrolador dedicado, display alfanumérico, teclado multifunção para configuração e operação do sistema e interfaces de comunicação. O circuito eletrônico do equipamento tem a função de receber as informações do GPS base e interpretá-las, transformando-as numa sentença no protocolo RTCM SC-104. O software do microcontrolador é responsável pela conversão do sinal recebido pelo GPS base, do formato proprietário para o protocolo RTCM SC-104. A placa processadora principal possui duas interfaces seriais padrão RS-232C. Uma delas tem a função de configuração e leitura das informações geradas pelo receptor GPS base. A outra atua somente como saída, enviando o sinal de correção diferencial. O projeto do equipamento microprocessado mostrou que é possível a construção de uma estação privada para a geração do sinal de correção diferencial, de baixo custo.This work presents the development of low cost microprocessor-based equipment for generation of differential GPS correction signal, in real time, and configuration and supervision of the GPS base. The developed equipment contains a dedicated microcontroller connected to the GPS receiver, alphanumeric display and multifunction keyboard for configuration and operation of the system and communication interfaces. The electronic circuit has the function of receiving the information from GPS base; interpret them, converting the sentence in the RTCM SC-104 protocol. The microcontroller software makes the conversion of the signal received by the GPS base from the specific format to RTCM SC-104 protocol. The processing main board has two serials RS-232C standard interfaces. One of them is used for configuration and

  20. Earth's gravity field modelling based on satellite accelerations derived from onboard GPS phase measurements

    Science.gov (United States)

    Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.

    2017-09-01

    GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.

  1. Determining precipitable water in the atmosphere of Iran based on GPS zenith tropospheric delays

    Directory of Open Access Journals (Sweden)

    Elaheh Sadeghi

    2014-08-01

    Full Text Available Precipitable water (PW is considered as one of the most important weather parameters in meteorology. Moreover, moisture affects the propagation of the Global Positioning System’s (GPS signals. Using four different models, the current paper tries to identify the best relationship between the atmospheric error known as zenith wet delay (ZWD and PW. For that matter, based on 54,330 radiosonde profiles from 11 stations, two different models i.e. linear and quadratic have been derived for Iran. For analyzing the accuracy of these models, ZWDs of three permanent GPS stations located in the cities of Tehran, Ahvaz and Tabriz have been used. Applying the aforementioned models as well as those already developed for Europe and the U.S., PWs are derived at the position of these stations in Iran. Further, in this research, root mean square error (RMSE and bias are the measures for selecting the optimal model. Here, the bias and the RMSE (between GPS and radiosonde derived PWs for the proposed linear model for Iran is 1.44 mm and 4.42 mm, and for quadratic model 2.18 mm and 4.74 mm respectively while, the bias and the RMSE for Bevis’ linear model is 2.63 mm and 4.98 mm and for Emardson and Derk’s quadratic models are 2.80 mm and 5.08 mm respectively. As such, it is observed that the bias of the proposed linear model for Iran is 1.19 mm and 1.36 mm less than the Bevis’ and Emardson and Derk’s models. In addition, the RMSE of the proposed linear model is 0.56 and 0.66 mm less than the RMSE of the later ones. This emphasizes that the estimation of the model coefficients must be based on regional meteorological measurements.

  2. Earth's gravity field modelling based on satellite accelerations derived from onboard GPS phase measurements

    Science.gov (United States)

    Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.

    2017-02-01

    GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.

  3. Self-monitoring blood pressure in patients with hypertension: an internet-based survey of UK GPs.

    Science.gov (United States)

    Fletcher, Benjamin R; Hinton, Lisa; Bray, Emma P; Hayen, Andrew; Hobbs, Fd Richard; Mant, Jonathan; Potter, John F; McManus, Richard J

    2016-11-01

    Previous research suggests that most GPs in the UK use self-monitoring of blood pressure (SMBP) to monitor the control of hypertension rather than for diagnosis. This study sought to assess current practice in the use of self-monitoring and any changes in practice following more recent guideline recommendations. To survey the views and practice of UK GPs in 2015 with regard to SMBP and compare them with a previous survey carried out in 2011. Web-based survey of a regionally representative sample of 300 UK GPs. GPs completed an online questionnaire concerning the use of SMBP in the management of hypertension. Analyses comprised descriptive statistics, tests for between-group differences (z, Wilcoxon signed-rank, and χ(2) tests), and multivariate logistic regression. Results were available for 300 GPs (94% of those who started the survey). GPs reported using self-monitoring to diagnose hypertension (169/291; 58%; 95% confidence interval (CI) = 52 to 64) and to monitor control (245/291; 84%; 95% CI = 80 to 88), the former having significantly increased since 2011 (from 37%; 95% CI = 33 to 41; PGPs used higher systolic thresholds for diagnosis (118/169; 70%; 95% CI = 63 to 77) and treatment (168/225; 75%; 95% CI = 69 to 80) than recommended in guidelines, and under half (120/289; 42%; 95% CI = 36 to 47) adjusted the SMBP results to guide treatment decisions. Since new UK national guidance in 2011, GPs are more likely to use SMBP to diagnose hypertension. However, significant proportions of GPs continue to use non-standard diagnostic and monitoring thresholds. The use of out-of-office methods to improve the accuracy of diagnosis is unlikely to be beneficial if suboptimal thresholds are used. © British Journal of General Practice 2016.

  4. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  5. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of a test of a ground-based lidar of other type. The test was performed at DTU’s test site for large wind turbines at Høvsøre, Denmark. The result as an establishment of a relation between the reference wind speed measurements with measurement uncertainties provided...... by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The comparison of the lidar measurements of the wind direction with that from the wind vanes is also given....

  6. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  7. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  8. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Georgieva Yankova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  9. Identifying Mobility Types in Cognitively Heterogeneous Older Adults Based on GPS-Tracking: What Discriminates Best?

    Science.gov (United States)

    Wettstein, Markus; Wahl, Hans-Werner; Shoval, Noam; Auslander, Gail; Oswald, Frank; Heinik, Jeremia

    2015-12-01

    Heterogeneity in older adults' mobility and its correlates have rarely been investigated based on objective mobility data and in samples including cognitively impaired individuals. We analyzed mobility profiles within a cognitively heterogeneous sample of N = 257 older adults from Israel and Germany based on GPS tracking technology. Participants were aged between 59 and 91 years (M = 72.9; SD = 6.4) and were either cognitively healthy (CH, n = 146), mildly cognitively impaired (MCI, n = 76), or diagnosed with an early-stage dementia of the Alzheimer's type (DAT, n = 35). Based on cluster analysis, we identified three mobility types ("Mobility restricted," "Outdoor oriented," "Walkers"), which could be predicted based on socio-demographic indicators, activity, health, and cognitive impairment status using discriminant analysis. Particularly demented individuals and persons with worse health exhibited restrictions in mobility. Our findings contribute to a better understanding of heterogeneity in mobility in old age.

  10. The Use of Design Patterns in a Location-Based GPS Application

    Directory of Open Access Journals (Sweden)

    David Gillibrand

    2011-05-01

    Full Text Available The development of location-based systems and applications presents a number of challenges - including those of designing and developing for a range of heterogeneous mobile device types, the associated spectrum of programming languages, and the incorporation of spatial concepts into applied software solutions. This paper addresses these challenges by presenting a harmonised approach to the construction of GPS location-based applications that is based on Design Patterns. The context of location-based systems is presented, followed by several design patterns - including the Observer and Bridge Design Patterns, which are described and applied to the application. Finally the benefits of using Design Patterns in this framework-oriented approach are discussed and future related work in the area of systems design for mobile applications is outlined.

  11. Validation of Microscopic Traffic Models Based on GPS Precise Measurement of Vehicle Dynamics

    Directory of Open Access Journals (Sweden)

    Tomas Apeltauer

    2013-04-01

    Full Text Available A necessary stage in the development of traffic models is model validation, where the developed model is verified by comparing its outputs with observed data. The most frequently used variables are average value of speed, flow intensity and flow density (during a selected period.It is possible to use these values for the calibration of macroscopic models, but one cannot always obtain a relevant microscopic dynamic model in this way. A typical use of the microsimulation models is the capacity assessment, where this sort of data (flow, speed and queues is considered to be standard and sufficient. However microsimulation is also increasingly being used for other assessments (e.g. noise and emissions where the correct representation of each vehicle’s acceleration and deceleration plays a crucial role. Another emerging area is the use of microsimulation to predict near-miss situations and conflicts to identify dangerous and accident prone locations. In such assessments the vehicle trajectory, distance from other vehicles as well as velocity and acceleration are very important.Additional source of data, which can be used to validate vehicle dynamics in microsimulation models, is the Global Positioning System (GPS that is able to determine vehicle position with centimeter accuracy.In this article we discuss validation of selected microscopic traffic models, based on the comparison of simulated vehicle dynamics with observed dynamic characteristics of vehicles recorded by the precise geodetic GPS equipment.

  12. Low-Cost MEMS-Based Pedestrian Navigation Technique for GPS-Denied Areas

    Directory of Open Access Journals (Sweden)

    Abdelrahman Ali

    2013-01-01

    Full Text Available The progress in the micro electro mechanical system (MEMS sensors technology in size, cost, weight, and power consumption allows for new research opportunities in the navigation field. Today, most of smartphones, tablets, and other handheld devices are fully packed with the required sensors for any navigation system such as GPS, gyroscope, accelerometer, magnetometer, and pressure sensors. For seamless navigation, the sensors’ signal quality and the sensors availability are major challenges. Heading estimation is a fundamental challenge in the GPS-denied environments; therefore, targeting accurate attitude estimation is considered significant contribution to the overall navigation error. For that end, this research targets an improved pedestrian navigation by developing sensors fusion technique to exploit the gyroscope, magnetometer, and accelerometer data for device attitude estimation in the different environments based on quaternion mechanization. Results indicate that the improvement in the traveled distance and the heading estimations is capable of reducing the overall position error to be less than 15 m in the harsh environments.

  13. Operating Time Division for a Bus Route Based on the Recovery of GPS Data

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2017-01-01

    Full Text Available Bus travel time is an important source of data for time of day partition of the bus route. However, in practice, a bus driver may deliberately speed up or slow down on route so as to follow the predetermined timetable. The raw GPS data collected by the GPS device equipped on the bus, as a result, cannot reflect its real operating conditions. To address this concern, this study first develops a method to identify whether there is deliberate speed-up or slow-down movement of a bus. Building upon the relationships between the intersection delay, link travel time, and traffic flow, a recovery method is established for calculating the real bus travel time. Using the dwell time at each stop and the recovered travel time between each of them as the division indexes, a sequential clustering-based time of day partition method is proposed. The effectiveness of the developed method is demonstrated using the data of bus route 63 in Harbin, China. Results show that the partition method can help bus enterprises to design reasonable time of day intervals and significantly improve their level of service.

  14. Damage alarming of long-span suspension bridge based on GPS-RTK monitoring

    Institute of Scientific and Technical Information of China (English)

    缪长青; 王蔓; 田洪金; 冯兆祥; 陈策

    2015-01-01

    Structure damage identification and alarming of long-span bridge were conducted with three-dimensional dynamic displacement data collected by GPS subsystem of health monitoring system on Runyang Suspension Bridge. First, the effects of temperature on the main girder spatial position coordinates were analyzed from the transverse, longitudinal and vertical directions of bridge, and the correlation regression models were built between temperature and the position coordinates of main girder in the longitudinal and vertical directions; then the alarming indices of coordinate residuals were conducted, and the mean-value control chart was applied to making statistical pattern identification for abnormal changes of girder dynamic coordinates; and finally, the structural damage alarming method of main girder was established. Analysis results show that temperature has remarkable correlation with position coordinates in the longitudinal and vertical directions of bridge, and has weak correlation with the transverse coordinates. The 3% abnormal change of the longitudinal coordinates and 5% abnormal change of the vertical ones caused by structural damage are respectively identified by the mean-value control chart method based on GPS dynamic monitoring data and hence the structural abnormalities state identification and damage alarming for main girder of long-span suspension bridge can be realized in multiple directions.

  15. GPS Radio Occultation as Part of the Global Observing System for Atmosphere

    Science.gov (United States)

    Mannucci, Anthony J.; Ao, C. O.; Iijima, B. A.; Wilson, B. D.; Yunck, T. P.; Kursinski, E. R.

    2008-01-01

    Topics include: The Measurement (Physical retrievals based on time standards), GPS Retrieval Products, Retrievals and Radiances: CLARREO Mission, GPS RO and AIRS, GPS RO and Microwave, GPS RO and Radiosondes, GPS/GNSS Science, and Conclusions.

  16. GPS based surface displacements – a proxy for discharge and sediment transport from the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    B. Hasholt

    2014-07-01

    Full Text Available The elastic respond of the Earth's surface to mass changes has been measured with Global Positioning System (GPS. Mass loss as accumulated runoff and sediment transport from a 10 000 km2 segment of the Greenland Ice Sheet (GrIS correlated very well (R2 = 0.83 with GPS measured uplift. Accumulated winter precipitation correlated fairly well with surface depression (R2 = 0.69. The relationships are based on seven years of runoff and sediment transport observations from the Watson River (2007–2013, winter precipitation from Kangerlussuaq Airport and GPS observations at Kellyville. GPS recordings of surface subsidence and uplift from 1996–2013 are used to calculate 18 years time series of annual runoff, sediment and solute transport and winter precipitation. Runoff and related transport of sediment and solutes increase over the period, while winter precipitation (land depression tends to decrease. Based on the entire GPS record (1996–2013, it is shown that until 2005–2006 the mass balance of this segment of the GrIS was rather stable – since then there has been an increasing loss of mass, culminating in 2012.

  17. Vehicle management based on GPS/GIS:A case study on bulk concrete trucks

    Institute of Scientific and Technical Information of China (English)

    ZOU Yong-gui; CHENG Ke-fei; ZHANG Cong

    2004-01-01

    Vehicle management is a very important application area of GPS/GIS. Each customer has its special requirements on GIS system when he installs it. We discuss a common structure of our GPS/GIS implementation, and present a case study on bulk concrete trucks management for bulk concrete producers. With GPS/GIS system, bulk concrete producers can improve their performance in scheduling and management.

  18. Aerial Prefeeding Followed by Ground Based Toxic Baiting for More Efficient and Acceptable Poisoning of Invasive Small Mammalian Pests.

    Directory of Open Access Journals (Sweden)

    David Morgan

    Full Text Available Introduced brushtail possums (Trichosurus vulpecula and rat species (Rattus spp. are major vertebrate pests in New Zealand, with impacts on conservation and agriculture being managed largely through poisoning operations. Aerial distribution of baits containing sodium fluoroacetate (1080 has been refined to maximise cost effectiveness and minimise environmental impact, but this method is strongly opposed by some as it is perceived as being indiscriminate. Although ground based control enables precise placement of baits, operations are often more than twice as costly as aerial control, mainly due to the high labour costs. We investigated a new approach to ground based control that combined aerial distribution of non-toxic 'prefeed' baits followed by sparse distribution of toxic baits at regular intervals along the GPS tracked prefeeding flight paths. This approach was tested in two field trials in which both 1080 baits and cholecalciferol baits were used in separate areas. Effectiveness of the approach, assessed primarily using 'chewcards', was compared with that of scheduled aerial 1080 operations that were conducted in outlying areas of both trials. Contractors carrying out ground based control were able to follow the GPS tracks of aerial prefeeding flight lines very accurately, and with 1080 baits achieved very high levels of kill of possums and rats similar to those achieved by aerial 1080 baiting. Cholecalciferol was less effective in the first trial, but by doubling the amount of cholecalciferol bait used in the second trial, few possums or rats survived. By measuring the time taken to complete ground baiting from GPS tracks, we predicted that the method (using 1080 baits would be similarly cost effective to aerial 1080 operations for controlling possums and rats, and considerably less expensive than typical current costs of ground based control. The main limitations to the use of the method will be access to, and size of, the operational

  19. Aerial Prefeeding Followed by Ground Based Toxic Baiting for More Efficient and Acceptable Poisoning of Invasive Small Mammalian Pests.

    Science.gov (United States)

    Morgan, David; Warburton, Bruce; Nugent, Graham

    2015-01-01

    Introduced brushtail possums (Trichosurus vulpecula) and rat species (Rattus spp.) are major vertebrate pests in New Zealand, with impacts on conservation and agriculture being managed largely through poisoning operations. Aerial distribution of baits containing sodium fluoroacetate (1080) has been refined to maximise cost effectiveness and minimise environmental impact, but this method is strongly opposed by some as it is perceived as being indiscriminate. Although ground based control enables precise placement of baits, operations are often more than twice as costly as aerial control, mainly due to the high labour costs. We investigated a new approach to ground based control that combined aerial distribution of non-toxic 'prefeed' baits followed by sparse distribution of toxic baits at regular intervals along the GPS tracked prefeeding flight paths. This approach was tested in two field trials in which both 1080 baits and cholecalciferol baits were used in separate areas. Effectiveness of the approach, assessed primarily using 'chewcards', was compared with that of scheduled aerial 1080 operations that were conducted in outlying areas of both trials. Contractors carrying out ground based control were able to follow the GPS tracks of aerial prefeeding flight lines very accurately, and with 1080 baits achieved very high levels of kill of possums and rats similar to those achieved by aerial 1080 baiting. Cholecalciferol was less effective in the first trial, but by doubling the amount of cholecalciferol bait used in the second trial, few possums or rats survived. By measuring the time taken to complete ground baiting from GPS tracks, we predicted that the method (using 1080 baits) would be similarly cost effective to aerial 1080 operations for controlling possums and rats, and considerably less expensive than typical current costs of ground based control. The main limitations to the use of the method will be access to, and size of, the operational site, along with

  20. VLBI and GPS-based Time-Transfer Using CONT08 Data

    Science.gov (United States)

    Rieck, Carsten; Haas, Ruediger; Jaldehag, Kenneth; Jahansson, Jan

    2010-01-01

    One important prerequisite for geodetic Very Long Baseline Interferometry (VLBI) is the use of frequency standards with excellent short term stability. This makes VLBI stations, which are often co-located with Global Navigation Satellite System (GNSS) receiving stations, interesting for studies of time- and frequency-transfer techniques. We present an assessment of VLBI time-transfer based on the data of the two week long consecutive IVS CONT08 VLBI campaign by using GPS Carrier Phase (GPSCP). CONT08 was a 15 day long campaign in August 2008 that involved eleven VLBI stations on five continents. For CONT08 we estimated the worst case VLBI frequency link stability between the stations of Onsala and Wettzell to 1e-15 at one day. Comparisons with GPSCP confirm the VLBI results. We also identify time-transfer related challenges of the VLBI technique as used today.

  1. Design and Implementation of Browser based GPS/GPRS Vehicle Positioning and Tracking System

    Directory of Open Access Journals (Sweden)

    Zhang Keqiang

    2015-01-01

    Full Text Available This paper mainly describes a vehicle positioning and tracking system which is based on browser, GPS and GPRS. And this system takes advantage of Baidu Map as basic material to show vehicle status, which enables drivers and supervisor to monitor the vehicle’s current and past positions. The vehicle’s location data is got from satellites, and these data is sent to the central server through GPRS, the central server will store formatted data into the database after the data is parsed; Later, these data stored in the database will be used by web application and displayed on the map as markers. This paper also involves the implementation on mobile side, and this system used Baidu map JavaScript interface, Ajax, JSP and JSON to implement the vehicle positioning and tracking system.

  2. New and Improved Solar Radiation Models for GPS Satellites Based on Flight Data

    Science.gov (United States)

    1997-04-12

    Bar-Sever, Y.E., A New Model for GPS Yaw Attitude, Journal of Geodesy , 70, pp 714-723, 1996. Bar-Sever, Y.E., Strategies for Near Real Time...1983. Watkins, M.M, Bar-Sever, Y.E., Yuan, D-N, Evaluation of GPS orbital Ephemerides with Satellite laser Ranging, Journal of geodesy , 1997

  3. The magnitude and direction movement in Thailand based on Global Positioning System (GPS)

    Science.gov (United States)

    Jamrus, Uthen; Deng, Hui

    2016-10-01

    In this research, we applied the Global Navigation Satellite System (GNSS) with Global Positioning System (GPS) to create new geodetic network, which is referred to ITRF2000. GPS observation data in 2010 and 2012 were used for network adjustment by Least Square Method (Minimally Constrained Adjustment and Fully Constrained Adjustment), then adjusted coordinates were used to determine updated magnitude and direction.

  4. SMS-based time use research among Dutch GPs: an experiment.

    NARCIS (Netherlands)

    Batenburg, R.; Hassel, D. van; Velden, L. van der

    2013-01-01

    Context: It has become a critical challenge in many countries to ensure sufficient capacity of primary care providers, specifically the capacity of General Practitioners (GPs). In a number of countries, health workforce planning is specifically developed for GPs, increasing the need for reliable and

  5. Simulation on C/A codes and analysis of GPS/pseudolite signals acquisition

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei

    2009-01-01

    The global positioning system (GPS) is an extremely mature technique in the navigation and position-ing field. However, there are still some limits in some aspects and for some special applications. Spe-cially, the performance of GPS needs to be improved with technological advances. As a GPS-like ground transmitter, the pseudolite provides a new research direction to achieve high positioning ac-curacy and reliability. In this paper, we describe the core technologies of designing and simulation on the coarse acquisition codes in constructing the pseudolite system. In the GPS/pseudolite integration system, the signal PRN 36 of the pseudolite and the GPS satellites signals are acquired in the modified receiver based on the computer software platform. It is shown that the pseudolite technology is ideally suited to augment the GPS alone and provide greater integrity, availability, and continuity of the navi-gation positioning system, especially for indoor use.

  6. A Leo Satellite Navigation Algorithm Based on GPS and Magnetometer Data

    Science.gov (United States)

    Deutschmann, Julie; Harman, Rick; Bar-Itzhack, Itzhack

    2001-01-01

    The Global Positioning System (GPS) has become a standard method for low cost onboard satellite orbit determination. The use of a GPS receiver as an attitude and rate sensor has also been developed in the recent past. Additionally, focus has been given to attitude and orbit estimation using the magnetometer, a low cost, reliable sensor. Combining measurements from both GPS and a magnetometer can provide a robust navigation system that takes advantage of the estimation qualities of both measurements. Ultimately, a low cost, accurate navigation system can result, potentially eliminating the need for more costly sensors, including gyroscopes. This work presents the development of a technique to eliminate numerical differentiation of the GPS phase measurements and also compares the use of one versus two GPS satellites.

  7. Evaluating a GPS-Based Transportation Device to Support Independent Bus Travel by People with Intellectual Disability

    Science.gov (United States)

    Davies, Daniel K.; Stock, Steven E.; Holloway, Shane; Wehmeyer, Michael L.

    2010-01-01

    We examined the utility of a PDA-based software system with integrated GPS technology for providing location-aware visual and auditory prompts to enable people with intellectual disability to successfully navigate a downtown bus route. Participants using the system were significantly more successful at completing a bus route than were people in a…

  8. Mindfulness-based stress reduction for GPs: results of a controlled mixed methods pilot study in Dutch primary care

    NARCIS (Netherlands)

    Verweij, H.; Waumans, R.C.; Smeijers, D.; Lucassen, P.L.; Donders, A.R.; Horst, H.E. van der; Speckens, A.E.

    2016-01-01

    BACKGROUND: Burnout is highly prevalent in GPs and can have a negative influence on their wellbeing, performance, and patient care. Mindfulness-based stress reduction (MBSR) may be an effective intervention to decrease burnout symptoms and increase wellbeing. AIM: To gain insight into the feasibilit

  9. Evaluating a GPS-Based Transportation Device to Support Independent Bus Travel by People with Intellectual Disability

    Science.gov (United States)

    Davies, Daniel K.; Stock, Steven E.; Holloway, Shane; Wehmeyer, Michael L.

    2010-01-01

    We examined the utility of a PDA-based software system with integrated GPS technology for providing location-aware visual and auditory prompts to enable people with intellectual disability to successfully navigate a downtown bus route. Participants using the system were significantly more successful at completing a bus route than were people in a…

  10. Validity and reliability of intra-stroke kayak velocity and acceleration using a GPS-based accelerometer.

    Science.gov (United States)

    Janssen, Ina; Sachlikidis, Alexi

    2010-03-01

    The aim of this study was to assess the validity and reliability of the velocity and acceleration measured by a kayak-mounted GPS-based accelerometer units compared to the video-derived measurements and the effect of satellite configuration on velocity. Four GPS-based accelerometers units of varied accelerometer ranges (2 g or 6 g) were mounted on a kayak as the paddler performed 12 trials at three different stroke rates for each of three different testing sessions (two in the morning vs. one in the afternoon). The velocity and acceleration derived by the accelerometers was compared with the velocity and acceleration derived from high-speed video footage (100Hz). Validity was measured using Bland and Altman plots, R2, and the root of the mean of the squared difference (RMSe), while reliability was calculated using the coefficient of variation, R2, and repeated measures analysis of variance (ANOVA) tests. The GPS-based accelerometers under-reported kayak velocity by 0.14-0.19 m/s and acceleration by 1.67 m/s2 when compared to the video-derived measurements. The afternoon session reported the least difference, indicating a time of day effect on the velocity measured. This study highlights the need for sports utilising GPS-based accelerometers, such as minimaxX, for intra-stroke measurements to conduct sport-specific validity and reliability studies to ensure the accuracy of their data.

  11. H-- Filtering Algorithms Case Study GPS-Based Satellite Orbit Determination

    Science.gov (United States)

    Kuang, Jinlu; Tan, Soonhie

    In this paper the new Hfiltering algorithms for the design of navigation systems for autonomous LEO satellite is introduced. The nominal orbit (i.e., position and velocity) is computed by integrating the classical orbital differential equations of the LEO satellite by using the 7th-8th order Runge- Kutta algorithms. The perturbations due to the atmospheric drag force, the lunar-solar attraction and the solar radiation pressure are included together with the Earth gravity model (EGM-96). The spherical harmonic coefficients of the EGM-96 are considered up to 72 for the order and degree. By way of the MATLAB GPSoft software, the simulated pseudo ranges between the user LEO satellite and the visible GPS satellites are generated when given the appropriate angle of mask. The effects of the thermal noises, tropospheric refraction, ionospheric refraction, and multipath of the antenna are also compensated numerically in the simulated pseudo ranges. The dynamic Position-Velocity (PV) model is obtained by modeling the velocity as nearly constant being the white noise process. To further accommodate acceleration in the process model, the Position-Velocity-Acceleration (PVA) model is investigated by assuming the acceleration to be the Gaussian- Markov process. The state vector for the PV model becomes 8-dimensional (3-states for positions, 3-states for velocities, 1-state for range (clock) bias error, 1-state for range (clock) drift error). The state vector for the PV model becomes 11-dimensional with the addition of three more acceleration states. Three filtering approaches are used to smooth the orbit solution based upon the GPS pseudo range observables. The numerical simulation shows that the observed orbit root-mean-square errors of 60 meters by using the least squares adjustment method are improved to be less than 5 meters within 16 hours of tracking time by using the Hfiltering algorithms. The results are compared with the ones obtained by using the Extended Kalman

  12. GPS Elevation Abnormal Fitting Based on Matlab%基于Matlab的GPS高程异常拟合

    Institute of Scientific and Technical Information of China (English)

    冯海波; 韩冰; 梁宏伟; 张元杰

    2013-01-01

    GPS has its deficiency in the elevation pointing accuracy aspect because the geoid is an irregular curved surface and it is unable to simulate with an accurate curved surface, which enables GPS only to provide for us the accuracy of the geoid height rather than the normal height in our project needs. So it has seriously affected the three dimensional localization application development of GPS and made the superiority of providing the three dimensional coordinates not able to obtain the full display. By collecting and ana lyzing the domestic and international study methods and application techniques of GPS leveling in recent years and based on these re search results, complex terrain, geoid characteristics, and the case study, the paper studies GPS elevation abnormal fitting in large ar eas.%由于似大地水准面是一个不规则的曲面,它无法用一个精准的曲面来模拟,这就使得GPS只能提供给我们高精度的大地高,而不是工程中需要的正常高,严重影响了GPS3维定位的应用发展,使其提供维坐标的优越性未能得到充分发挥.在借鉴国内外研究成果的基础上,针对我国国土面积广,地形尤为复杂,似大地水准面起伏比较大的特点,结合工程实例,对大面积区域内GPS高程异常拟合作了相应的分析和研究.

  13. Path optimization method based on GPS floating car%基于 GPS 浮动车的路径优化方法研究

    Institute of Scientific and Technical Information of China (English)

    陈冶灿; 王秀玲

    2015-01-01

    由于城市路径具有大规模路网等特点,传统的路径优化算法难以解决具有实际情况的城市交通路网问题。考虑城市实际道路路网信息,结合动态 GPS 浮动车数据,将实际道路长度和道路拟合成虚拟路径,提出了一种基于粒子群蚁群算法的混合算法。研究表明,混合算法在时间和精度上优于蚁群算法和粒子群算法,在提高高效性和准确性上具有较好的效果,为城市道路优化和城市出行提供可靠依据。%As the urban path has the characteristics of large-scale network,with the actual situation of the urban traffic road network problem is difficult to solved by traditional path optimization algorithm.The actual path length and the roads are compounded to synthesize virtual path by considering actual city road network information and combining with dynamic GPS floating car data,it is proposed a hybrid algorithm based on particle swarm of ant colony algorithm.Study shows that the hybrid algorithm in time and accuracy is better than the ant colony algorithm and particle swarm optimization,is effective in improving efficiency and accuracy,travel to provide reliable basis for the optimization of urban roads and cities.

  14. Preliminary Results of 4-D Water Vapor Tomography in the Troposphere Using GPS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Slant-path water vapor amounts (SWV) from a station to all the GPS (Global Positioning System)satellites in view can be estimated by using a ground-based GPS receiver. In this paper, a tomographic method was utilized to retrieve the local horizontal and vertical structure of water vapor over a local GPS receiver network using SWV amounts as observables in the tomography. The method of obtaining SWV using ground-based GPS is described first, and then the theory of tomography using GPS is presented.A water vapor tomography experiment was made using a small GPS network in the Beijing region. The tomographic results were analyzed in two ways: (1) a pure GPS method, i.e., only using GPS observables as input to the tomography; (2) combining GPS observables with vertical constraints or a priori information,which come from average radiosonde measurements over three days. It is shown that the vertical structure of water vapor is well resolved with a priori information. Comparisons of profiles between radiosondes and GPS show that the RMS error of the tomography is about 1-2 mm. It is demonstrated that the tomography can monitor the evolution of tropospheric water vapor in space and time. The vertical resolution of the tomography is tested with layer thicknesses of 600 m, 800 m and 1000 m. Comparisons with radiosondes show that the result from a resolution of 800 m is slightly better than results from the other two resolutions in the experiment. Water vapor amounts recreated from the tomography field agree well with precipitable water vapor (PWV) calculated using GPS delays. Hourly tomographic results are also shown using the resolution of 800 m. Water vapor characteristics under the background of heavy rainfall development are analyzed using these tomographic results. The water vapor spatio-temporal structures derived from the GPS network show a great potential in the investigation of weather disasters.

  15. Current trends in ground based solar magnetometry

    Science.gov (United States)

    Gosain, Sanjay

    2016-07-01

    Continuous observations of the sun, over more than a century, have led to several important discoveries in solar astronomy. These include the discovery of the solar magnetism and its cyclic modulation, active region formation and decay and their role in energetic phenomena such as fares and coronal mass ejections (CMEs), fine structure and dynamics of the sunspots and small-scale organization of the magnetic flux in the form of flux tubes and so forth. In this article we give a brief overview of advancements in solar observational techniques in recent decades and the results obtained from the such observations. These include techniques to achieve high angular resolution, high spectral and polarimetric sensitivity and innovative new detectors. A wide range of spatial, temporal and spectral domains exploited by solar astronomers to understand the solar phenomena are discussed. Many new upcoming telescopes and instruments that are designed to address different aspects of solar physics problems are briefly described. Finally, we discuss the advantages of observing from the ground and how they can complement space-based observations.

  16. Analysis of unmanned aerial vehicle navigation and height control system based on GPS

    Institute of Scientific and Technical Information of China (English)

    Jianjun Zhang; Hong Yuan

    2010-01-01

    According to the characteristic of global positioning system(GPS)reflection signals,a GPS delay mapping receiver system scheme is put forward,which not only satisfies the unmanned aerial vehicle(UAV)guidance localization but also realizes height measurement.A code delay algorithm is put forward,which processes the direct and land reflected signal and outputs the navigation data and specular point.The GPS terrain reflected echo signal mathematical equation is inferred.The reflecting signal area,when the GPS signal passes the land,is analyzed.The height survey model reflected land surface characteristic is established.A simulation system which carries guidance localization of the UAV and the height measuring control through the GPS direct signal and the land reflected signal is designed,taken the GPS satellite as the illumination source,the receiver is put on the UAV.Then the UAV guidance signal,the GPS reflection signal and receiver's parallel processing are realized.The parallel processing reduces UAV's payload and raises system's operating efficiency.The simulation results confirms the validity of the model and also provides the basis for the UAV's optimization design.

  17. Accuracy of GPS devices for measuring high-intensity running in field-based team sports.

    Science.gov (United States)

    Rampinini, E; Alberti, G; Fiorenza, M; Riggio, M; Sassi, R; Borges, T O; Coutts, A J

    2015-01-01

    We compared the accuracy of 2 GPS systems with different sampling rates for the determination of distances covered at high-speed and metabolic power derived from a combination of running speed and acceleration. 8 participants performed 56 bouts of shuttle intermittent running wearing 2 portable GPS devices (SPI-Pro, GPS-5 Hz and MinimaxX, GPS-10 Hz). The GPS systems were compared with a radar system as a criterion measure. The variables investigated were: total distance (TD), high-speed distance (HSR>4.17 m·s(-1)), very high-speed distance (VHSR>5.56 m·s(-1)), mean power (Pmean), high metabolic power (HMP>20 W·kg(-1)) and very high metabolic power (VHMP>25 W·kg(-1)). GPS-5 Hz had low error for TD (2.8%) and Pmean (4.5%), while the errors for the other variables ranged from moderate to high (7.5-23.2%). GPS-10 Hz demonstrated a low error for TD (1.9%), HSR (4.7%), Pmean (2.4%) and HMP (4.5%), whereas the errors for VHSR (10.5%) and VHMP (6.2%) were moderate. In general, GPS accuracy increased with a higher sampling rate, but decreased with increasing speed of movement. Both systems could be used for calculating TD and Pmean, but they cannot be used interchangeably. Only GPS-10 Hz demonstrated a sufficient level of accuracy for quantifying distance covered at higher speeds or time spent at very high power. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Time aspects of the European Complement to GPS: Continental and transatlantic experimental phases

    Science.gov (United States)

    Uhrich, Pierre J. M.; Juompan, B.; Tourde, R.; Brunet, M.; Dutrey, J.-F.

    1995-01-01

    The CNES project of a European Complement to GPS (CE-GPS) is conceived to fulfill the needs of Civil Aviation for a non-precise approach phase with GPS as sole navigation means. This generates two missions: a monitoring mission - alarm of failure - ,and a navigation mission - generating a GPS-like signal on board the geostationary satellites. The host satellites will be the Inmarsat constellation. The CE-GPS missions lead to some time requirements, mainly the accuracy of GPS time restitution and of monitoring clock synchronization. To demonstrate that the requirements of the CE-GPS could be achieved, including the time aspects, an experiment has been scheduled over the Last two years, using a part of the Inmarsat II F-2 payload and specially designed ground stations based on 10 channels GPS receivers. This paper presents a review of the results obtained during the continental phase of the CE-GPS experiment with two stations in France, along with some experimental results obtained during the transatlantic phase (three stations in France, French Guyana, and South Africa). It describes the synchronization of the monitoring clocks using the GPS Common-view or the C- to L-Band transponder of the Inmarsat satellite, with an estimated accuracy better than 10 ns (1 sigma).

  19. GPS & Roadpricing

    DEFF Research Database (Denmark)

    Zabic, Martina

    2005-01-01

    I denne artikel præsenteres analysemetoderne og resultaterne fra et eksamensprojekt omhandlende en analyse af GPS kvaliteten i forhold til roadpricing i København. Denne undersøgelse af GPS kvaliteten i forbindelse med roadpricing, er foretaget i tilknytning til det danske AKTA forsøg (www.......akta-kbh.dk), hvor GPS data er indsamlet for 500 biler over en 2-årig periode (2001-2003). Artiklen præsenterer således en analyse af GPS nøjagtigheden med henblik på at undersøge om kvalitet og pålidelighed er tilstrækkelig, til et GPS-baseret roadpricingssystem i København. Ved GPS-baseret roadpricing, udstyres...... med henblik på enhedsomkostningerne skulle være økonomisk realisable til brug i et så omfattende roadpricingssystem. Endvidere vanskeliggøres positionerings forholdene, idet bilen der ønskes positionsbestemt er i bevægelse. Når både satellitterne og GPS modtageren er i bevægelse, reduceres...

  20. GPS & Roadpricing

    DEFF Research Database (Denmark)

    Zabic, Martina

    2005-01-01

    I denne artikel præsenteres analysemetoderne og resultaterne fra et eksamensprojekt omhandlende en analyse af GPS kvaliteten i forhold til roadpricing i København. Denne undersøgelse af GPS kvaliteten i forbindelse med roadpricing, er foretaget i tilknytning til det danske AKTA forsøg (www.......akta-kbh.dk), hvor GPS data er indsamlet for 500 biler over en 2-årig periode (2001-2003). Artiklen præsenterer således en analyse af GPS nøjagtigheden med henblik på at undersøge om kvalitet og pålidelighed er tilstrækkelig, til et GPS-baseret roadpricingssystem i København. Ved GPS-baseret roadpricing, udstyres...... med henblik på enhedsomkostningerne skulle være økonomisk realisable til brug i et så omfattende roadpricingssystem. Endvidere vanskeliggøres positionerings forholdene, idet bilen der ønskes positionsbestemt er i bevægelse. Når både satellitterne og GPS modtageren er i bevægelse, reduceres...

  1. GPS source solution of the 2004 Parkfield earthquake

    CERN Document Server

    Houlie, N; Kim, A

    2014-01-01

    We compute a series of finite-source parameter inversions of the fault rupture of the 2004 Parkfield earthquake based on 1 Hz GPS records only. We confirm that some of the co-seismic slip at shallow depth (<5 km) constrained by InSAR data processing results from early post-seismic deformation. We also show 1) that if located very close to the rupture, a GPS receiver can saturate while it remains possible to estimate the ground velocity (~1.2 m/s) near the fault, 2) that GPS waveforms inversions constrain that the slip distribution at depth even when GPS monuments are not located directly above the ruptured areas and 3) the slip distribution at depth from our best models agree with that recovered from strong motion data. The 95th percentile of the slip amplitudes for rupture velocities ranging from 2 to 5 km/s is, 55 +/- 6 cm.

  2. GPS手机的差分定位系统研究%Differential positioning system base on GPS phone

    Institute of Scientific and Technical Information of China (English)

    李传华; 孙礼军; 陆林涛

    2012-01-01

    提高GPS手机的定位精度具有很广阔的应用前景,本文研究GPS手机的实时定位差分系统的设计和实现方法.该系统采用基准站广播位置差分值、移动站实时处理的差分GPS方案,其主要优点是定位精度高、改正速度快、设备简单、操作方便;分析了位置差分GPS的定位误差,给出了测量结果.理论分析和测试结果都表明,该系统的差分定位精度比手机GPS直接定位相对提高31m左右,定位误差达4m左右,能够满足相关领域测量精度要求.%Due to its popularity, GPS phone is used to replaee expensive professional GPS receiver in some fields on less accuracy , which has became a trend. Improving GPS positioning accuracy of mobile phone has a wide application prospects. This paper studied on the real-time differential positioning system based on GPS phone, which uses position difference algorithm that base station broadcasts DGPS corrections and roving station real-time performs. It has some advantages, such as the higher positioning accuracy, the faster correction speed, the equipment is simple and easy to use. This paper analyzed the position error of DGPS and calculated the measured results. The test result indicated that the DGPS positioning accuracy improved 31 meters than absolute positioning based on GPS phone, positioning error of 4 meters, which could meet the accuracy requirement in some fields.

  3. GOCE gradiometer validation by GPS

    Science.gov (United States)

    Visser, P. N. A. M.

    The upcoming European Space Agency (ESA) Gravity Field and Steady-State Ocean Circular Explorer (GOCE) mission, foreseen to be launched in 2007 (status: July 2006) will carry a highly sensitive gradiometer, consisting of three orthogonal pairs of ultra-sensitive accelerometers. A challenging calibration procedure has been developed to calibrate the gradiometer not only pre-launch by a series of on-ground tests, but also after launch by making use of on-board cold-gas thrusters to provoke a long series of gradiometer shaking events which will provide observations for its calibration. In addition, a number of quick-look post-launch methods has been designed and will be implemented that aim at validating the calibration of the gradiometer instrument and at the same time support the operations of the satellite. These methods are based on (1) comparison with the best available global gravity field models, (2) upward continuation of high-precision ground-based gravity field data over certain geographical areas, and (3) use of GPS Satellite-to-Satellite Tracking (SST) observations. The focus of this paper is on the third method. An assessment has been made of how well the gradiometer observations can be validated by a combination with GPS tracking observations of GOCE. It was found by a detailed simulation study that the most important parameters, the scale factors of the diagonal gravity gradient components, can be determined with an accuracy better than 0.004, provided a nominal behavior of the gradiometer and GPS instruments.

  4. How to Distribute GPS-Time Over COTS-Based LANs

    Science.gov (United States)

    1999-12-01

    FWF) grant P10244-eMA, the OeNB “Jubil~umsfonds- Projekt ” 6454, the BMfWV research contract Z1.601.577/2-IV/B/9/96, the Gesellschuft fiir...interfaces to GPS receivers, are routed to the GPS and application interface. In addition, the UTCSU’s internal time information (“NTPA-bus”).is

  5. Identifying Key Factors for Introducing GPS-Based Fleet Management Systems to the Logistics Industry

    Directory of Open Access Journals (Sweden)

    Yi-Chung Hu

    2015-01-01

    Full Text Available The rise of e-commerce and globalization has changed consumption patterns. Different industries have different logistical needs. In meeting needs with different schedules logistics play a key role. Delivering a seamless service becomes a source of competitive advantage for the logistics industry. Global positioning system-based fleet management system technology provides synergy to transport companies and achieves many management goals such as monitoring and tracking commodity distribution, energy saving, safety, and quality. A case company, which is a subsidiary of a very famous food and retail conglomerate and operates the largest shipping line in Taiwan, has suffered from the nonsmooth introduction of GPS-based fleet management systems in recent years. Therefore, this study aims to identify key factors for introducing related systems to the case company. By using DEMATEL and ANP, we can find not only key factors but also causes and effects among key factors. The results showed that support from executives was the most important criterion but it has the worst performance among key factors. It is found that adequate annual budget planning, enhancement of user intention, and collaboration with consultants with high specialty could be helpful to enhance the faith of top executives for successfully introducing the systems to the case company.

  6. Tikhonov-based ARCE algorithm and its applications in rapid positioning using single frequency GPS receivers

    Science.gov (United States)

    Fan, Shijie; Wang, Zhenjie; Peng, Xiuying

    2008-10-01

    ARCE (Ambiguity Resolution Using Constraint Equation) is a new fast method to resolve the integer ambiguities based on LSE (Least-Squares Estimate) and null space, which is suitable for single frequency GPS receivers and whose necessary observation time span of fixing the integer ambiguities correctly is relatively long (say, at least one minute). In this paper, ARCE is improved for deformation monitoring when there is only one epoch phase observation. In this instance, the normal matrix is rank-deficient and it is impossible to fix the integer ambiguities correctly using ARCE if LSE is employed. In allusion to the above case, based on Tikhonov regularization theorem, a new regularizer is designed to transform the rank-deficient normal matrix to a full rank one. The accurate float ambiguity solutions are obtained and the corresponding search range of the integer ambiguities diminishes. So, the integer ambiguities can be fixed using ARCE. The effect of the single epoch algorithm is tested utilizing a baseline whose length over 3KM and the results show that the success rate of fixing the integer ambiguities using the new algorithm can achieve to over 90 percent.

  7. Model-based robust estimation and fault detection for MEMS-INS/GPS integrated navigation systems

    Directory of Open Access Journals (Sweden)

    Miao Lingjuan

    2014-08-01

    Full Text Available In micro-electro-mechanical system based inertial navigation system (MEMS-INS/global position system (GPS integrated navigation systems, there exist unknown disturbances and abnormal measurements. In order to obtain high estimation accuracy and enhance detection sensitivity to faults in measurements, this paper deals with the problem of model-based robust estimation (RE and fault detection (FD. A filter gain matrix and a post-filter are designed to obtain a RE and FD algorithm with current measurements, which is different from most of the existing priori filters using measurements in one-step delay. With the designed filter gain matrix, the H-infinity norm of the transfer function from noise inputs to estimation error outputs is limited within a certain range; with the designed post-filter, the residual signal is robust to disturbances but sensitive to faults. Therefore, the algorithm can guarantee small estimation errors in the presence of disturbances and have high sensitivity to faults. The proposed method is evaluated in an integrated navigation system, and the simulation results show that it is more effective in position estimation and fault signal detection than priori RE and FD algorithms.

  8. Model-based robust estimation and fault detection for MEMS-INS/GPS integrated navigation systems

    Institute of Scientific and Technical Information of China (English)

    Miao Lingjuan; Shi Jing

    2014-01-01

    In micro-electro-mechanical system based inertial navigation system (MEMS-INS)/global position system (GPS) integrated navigation systems, there exist unknown disturbances and abnormal measurements. In order to obtain high estimation accuracy and enhance detection sensitivity to faults in measurements, this paper deals with the problem of model-based robust esti-mation (RE) and fault detection (FD). A filter gain matrix and a post-filter are designed to obtain a RE and FD algorithm with current measurements, which is different from most of the existing pri-ori filters using measurements in one-step delay. With the designed filter gain matrix, the H-infinity norm of the transfer function from noise inputs to estimation error outputs is limited within a certain range;with the designed post-filter, the residual signal is robust to disturbances but sensitive to faults. Therefore, the algorithm can guarantee small estimation errors in the presence of distur-bances and have high sensitivity to faults. The proposed method is evaluated in an integrated navigation system, and the simulation results show that it is more effective in position estimation and fault signal detection than priori RE and FD algorithms.

  9. Augmented Reality for Searching Potential Assets in Medan using GPS based Tracking

    Science.gov (United States)

    Muchtar, M. A.; Syahputra, M. F.; Syahputra, N.; Ashrafia, S.; Rahmat, R. F.

    2017-01-01

    Every city is required to introduce its variety of potential assets so that the people know how to utilize or to develop their area. Potential assets include infrastructure, facilities, people, communities, organizations, customs that affects the characteristics and the way of life in Medan. Due to lack of socialization and information, most of people in Medan only know a few parts of the assets. Recently, so many mobile apps provide search and mapping locations used to find the location of potential assets in user’s area. However, the available information, such as text and digital maps, sometimes do not much help the user clearly and dynamically. Therefore, Augmented Reality technology able to display information in real world vision is implemented in this research so that the information can be more interactive and easily understood by user. This technology will be implemented in mobile apps using GPS based tracking and define the coordinate of user’s smartphone as a marker so that it can help people dynamically and easily find the location of potential assets in the nearest area based on the direction of user’s view on camera.

  10. Dynamic Recognition of Driver’s Propensity Based on GPS Mobile Sensing Data and Privacy Protection

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Wang

    2016-01-01

    Full Text Available Driver’s propensity is a dynamic measurement of driver’s emotional preference characteristics in driving process. It is a core parameter to compute driver’s intention and consciousness in safety driving assist system, especially in vehicle collision warning system. It is also an important influence factor to achieve the Driver-Vehicle-Environment Collaborative Wisdom and Control macroscopically. In this paper, dynamic recognition model of driver’s propensity based on support vector machine is established taking the vehicle safety controlled technology and respecting and protecting the driver’s privacy as precondition. The experiment roads travel time obtained through GPS is taken as the characteristic parameter. The sensing information of Driver-Vehicle-Environment was obtained through psychological questionnaire tests, real vehicle experiments, and virtual driving experiments, and the information is used for parameter calibration and validation of the model. Results show that the established recognition model of driver’s propensity is reasonable and feasible, which can achieve the dynamic recognition of driver’s propensity to some extent. The recognition model provides reference and theoretical basis for personalized vehicle active safety systems taking people as center especially for the vehicle safety technology based on the networking.

  11. Long-term ionospheric anomaly monitoring for ground based augmentation systems

    Science.gov (United States)

    Jung, Sungwook; Lee, Jiyun

    2012-08-01

    Extreme ionospheric anomalies can pose a potential integrity threat to ground-based augmentation of the Global Positioning System (GPS), and thus the development of ionospheric anomaly threat models for each region of operation is essential for system design and operation. This paper presents a methodology for automated long-term ionospheric anomaly monitoring, which will be used to build an ionospheric anomaly threat model, evaluate its validity over the life cycle of the system, continuously monitor ionospheric anomalies, and update the threat model if necessary. This procedure automatically processes GPS data collected from external networks and estimates ionospheric gradients at regular intervals. If ionospheric gradients large enough to be potentially hazardous to users are identified, manual data examination is triggered. This paper also develops a simplified truth processing method to create precise ionospheric delay estimates in near real-time, which is the key to automating the ionospheric monitoring procedure. The performance of the method is examined using data from the 20 November 2003 and 9 November 2004 ionospheric storms. These results demonstrate the effectiveness of simplified truth processing within long-term ionosphere monitoring. From the case studies, the automated procedure successfully identified extreme ionospheric anomalies, including the two worst ionospheric gradients observed and validated previously based on manual analysis. The automation of data processing enables us to analyze ionospheric data continuously going forward and to more accurately categorize ionospheric behavior under both nominal and anomalous conditions.

  12. GPS Position Time Series @ JPL

    Science.gov (United States)

    Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen

    2013-01-01

    Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis

  13. GPS Position Time Series @ JPL

    Science.gov (United States)

    Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen

    2013-01-01

    Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis

  14. Ground-based observations of Kepler asteroseismic targets

    DEFF Research Database (Denmark)

    Uyttterhoeven , K.; Karoff, Christoffer

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising...

  15. Power Gating Based Ground Bounce Noise Reduction

    Directory of Open Access Journals (Sweden)

    M. Uma Maheswari

    2014-08-01

    Full Text Available As low power circuits are most popular the decrease in supply voltage leads to increase in leakage power with respect to the technology scaling. So for removing this kind of leakages and to provide a better power efficiency many power gating techniques are used. But the leakage due to ground connection to the active part of the circuit is very high rather than all other leakages. As it is mainly due to the back EMF of the ground connection it was called it as ground bounce noise. To reduce this noise different methodologies are designed. In this paper the design of such an efficient technique related to ground bounce noise reduction using power gating circuits and comparing the results using DSCH and Microwind low power tools. In this paper the analysis of adders such as full adders using different types of power gated circuits using low power VLSI design techniques and to present the comparison results between different power gating methods.

  16. The Design of Vehicle Navigation System Based on GPS%GPS车载导航系统的设计

    Institute of Scientific and Technical Information of China (English)

    施文灶; 王平

    2014-01-01

    GPS车载导航系统融合了车辆、交通、计算机、通信、系统科学等领域的相关技术,逐渐成为交通导航的重要工具。本设计以处理器为S3C6410A的开发板作为开发平台,采用Linux作为嵌入式操作系统,选用GPS模块GR-87采集GPS数据,对GPS车载导航系统的方案进行论证,介绍了GPS数据的获取、电子地图的生成和显示。以福建师范大学校园为实测环境,实现实时定位、动态路径规划等功能。%GPS car navigation system which combined relatedifleds such as vehicles, transportation, computer, communication and systems science has gradually become an important tool for trafifc navigation. The design uses development board based on S3C6410A pro-cessor as a development platform, adopts Linux as an embedded operating system, selects GPS module GR-87 to collect GPS data. It dem-onstrated the design program for GPS car navigation system, GPS data acquisition, generation and display of the electronic map. This design uses Fujian Normal University as the measured environment, and achieves the function of real-time positioning and dynamic path planing.

  17. Movable Ground Based Recovery System for Reuseable Space Flight Hardware

    Science.gov (United States)

    Sarver, George L. (Inventor)

    2013-01-01

    A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.

  18. Positioning Accuracy Analysis of GPS/BDS/GLONASS Network RTK Based on DREAMNET

    Directory of Open Access Journals (Sweden)

    YAO Yibin

    2016-09-01

    Full Text Available With BDS being continually providing service in the Asia-Pacific Region, GLONASS being fully operational with 24 satellites in orbit again and GPS modernization, multi-GNSS network RTK will become the development trend of network RTK in the future. The data of multi-GNSS will be process by data reserving, editing and managing system of network RTK (DREAMNET, which developed independently by this research group, to analyze and compare the positioning accuracy between different combinations of global navigation satellite system. According to the experiment, the positioning accuracy of GPS/BDS/GLONASS network RTK and GPS/BDS network RTK is highest, GPS and BDS only second. Besides, with the increasing of the cut-off elevation, the availability of single GPS network RTK significantly reduces. However with 40°cut-off elevations, positioning service with the accuracy of 0.005m in horizontal, 0.025m in vertical will be provided by GPS/BDS/GLONASS network RTK in 99.84% time of a day. Finally, the statistics of positioning accuracy for 15days show that the accuracy of 0.01m in horizontal, 0.025m in vertical could be reached in six situations, which including BDS and BDS/GLONASS network RTK. Besides, the accuracy of 0.006m in horizontal, 0.015m in vertical could be reached by GPS/BDS/GLONASS network RTK, proving that the positioning accuracy and stability of DREAMNET can meet the needs of surveying and mapping.

  19. Entropy-Based Registration of Point Clouds Using Terrestrial Laser Scanning and Smartphone GPS.

    Science.gov (United States)

    Chen, Maolin; Wang, Siying; Wang, Mingwei; Wan, Youchuan; He, Peipei

    2017-01-20

    Automatic registration of terrestrial laser scanning point clouds is a crucial but unresolved topic that is of great interest in many domains. This study combines terrestrial laser scanner with a smartphone for the coarse registration of leveled point clouds with small roll and pitch angles and height differences, which is a novel sensor combination mode for terrestrial laser scanning. The approximate distance between two neighboring scan positions is firstly calculated with smartphone GPS coordinates. Then, 2D distribution entropy is used to measure the distribution coherence between the two scans and search for the optimal initial transformation parameters. To this end, we propose a method called Iterative Minimum Entropy (IME) to correct initial transformation parameters based on two criteria: the difference between the average and minimum entropy and the deviation from the minimum entropy to the expected entropy. Finally, the presented method is evaluated using two data sets that contain tens of millions of points from panoramic and non-panoramic, vegetation-dominated and building-dominated cases and can achieve high accuracy and efficiency.

  20. Entropy-Based Registration of Point Clouds Using Terrestrial Laser Scanning and Smartphone GPS

    Directory of Open Access Journals (Sweden)

    Maolin Chen

    2017-01-01

    Full Text Available Automatic registration of terrestrial laser scanning point clouds is a crucial but unresolved topic that is of great interest in many domains. This study combines terrestrial laser scanner with a smartphone for the coarse registration of leveled point clouds with small roll and pitch angles and height differences, which is a novel sensor combination mode for terrestrial laser scanning. The approximate distance between two neighboring scan positions is firstly calculated with smartphone GPS coordinates. Then, 2D distribution entropy is used to measure the distribution coherence between the two scans and search for the optimal initial transformation parameters. To this end, we propose a method called Iterative Minimum Entropy (IME to correct initial transformation parameters based on two criteria: the difference between the average and minimum entropy and the deviation from the minimum entropy to the expected entropy. Finally, the presented method is evaluated using two data sets that contain tens of millions of points from panoramic and non-panoramic, vegetation-dominated and building-dominated cases and can achieve high accuracy and efficiency.

  1. Fault Slip Model of 2013 Lushan Earthquake Retrieved Based on GPS Coseismic Displacements

    Institute of Scientific and Technical Information of China (English)

    Mengkui Li; Shuangxi Zhang; Chaoyu Zhang; Yu Zhang

    2015-01-01

    Lushan Earthquake (~Mw 6.6) occurred in Sichuan Province of China on 20 April 2013, was the largest earthquake in Longmenshan fault belt since 2008 Wenchuan Earthquake. To better understand its rupture pattern, we focused on the influences of fault parameters on fault slips and performed fault slip inversion using Akaike’s Bayesian Information Criterion (ABIC) method. Based on GPS coseismic data, our inverted results showed that the fault slip was mainly confined at depths. The maximum slip amplitude is about 0.7 m, and the scalar seismic moment is about 9.47×1018 N·m. Slip pattern reveals that the earthquake occurred on the thrust fault with large dip-slip and small strike-slip, such a simple fault slip represents no second sub-event occurred. The Coulomb stress changes (DCFF) matched the most aftershocks with negative anomalies. The in-verted results demonstrated that the source parameters have significant impacts on fault slip distri-bution, especially on the slip direction and maximum displacement.

  2. On the GPS-based ionospheric perturbation after the Tohoku earthquake of March 11, 2011

    Science.gov (United States)

    Shalimov, S. L.; Nesterov, I. A.; Vorontsov, A. M.

    2017-03-01

    Based on the data from the GPS receiving networks in Japan and America which have a high time resolution (2 min), two-dimensional (2D) distributions of the variations in the ionospheric total electron content (TEC) are constructed both close to and far from of the epicenter of the submarine earthquake of March 11, 2011 in Japan. Above the epicenter, a diverging multi-period disturbance appears after the main shock due to the acoustic gravity waves. Far from the epicenter, the wave trains associated with the tsunamigenic atmospheric internal gravity waves are revealed. These atmospheric waves significantly advance the arrival of the tsunami signal initially on the Hawaiian islands and then on the western coast of North America. The presence of the tsunami precursor in the form of atmospheric gravity waves is supported by the numerical calculations and by the analysis of the dispersion relation for the waves in the atmosphere. The detected ionospheric responses close and far from the epicenter can be used in the early tsunami warning systems.

  3. Improved Algorithm for Weak GPS Signal Acquisition Based on Delay-accumulation Method

    Directory of Open Access Journals (Sweden)

    LI Yuanming

    2016-01-01

    Full Text Available A new improved algorithm is proposed to solve the problem of GPS weak signal capture that the traditional algorithms are unavailable to capture under a weak signal environment. This algorithm is based on the analysis of double block zero padding (DBZP algorithm and it adopts the delay-accumulation method to retain the operation results temporarily which are discarded in DBZP algorithm. Waiting for delaying 1 ms, the corresponding correlation calculation results are obtained. Then superimpose the obtained results with the operation results retained temporarily and compare the coherent accumulation results with the threshold value. The data measurements are increased by improving the utilization rate of correlation operation results in the improved algorithm on the premise of increasing little computation. Simulation results showed that the improved algorithm can improve the acquisition algorithm processing gain and it is able to capture the signals whose carrier-to-noise ratio(C/N0 is 17 dB-Hz and the detection probability can achieve to 91%.

  4. Research of smoothing pseudo-range algorithm by Doppler based on GPS/BD

    Science.gov (United States)

    Kang, Chuanli; Zhou, Yanliu

    2015-12-01

    GNSS (Global Navigation Satellite System) technology not only in the general field of surveying and mapping, geology, mining, water and electricity, and in particular in the field of public security, fire protection, tourism, search and rescue, adventure have been more widely used. These special areas require real-time and high positioning accuracy. Currently, GNSS precision positioning technology has become a hot research direction. This paper introduced an algorithm of smoothing pseudo range by Doppler based GPS/BD to improve GNSS positioning precision. This algorithm decoded the pseudo range data and ephemeris data, and then designed algorithm of smoothing pseudo range by Doppler according principle of Doppler smoothing pseudo range. This algorithm was realized by C++ and proved its efficiency. At last, this algorithm has proved its correctness through calculating and analyzing practical Doppler and pseudo range data, and then a conclusion has been obtained: the Doppler value precision is sub-meter, far better than the pseudo-range accuracy, so that if the two data are combined to calculate position that can help to improve the positioning accuracy.

  5. Discussion on the Method of Building Urban GPS Control Network Based on GPS Technology%利用GPS技术建立城市GPS控制网的方法探讨

    Institute of Scientific and Technical Information of China (English)

    乔丽华; 冯军

    2012-01-01

    Based on years of production experience of the author, this paper introduces the solution to the usual problems we will meet with when building city GPS control network using GPS technique, taking the GPS control network of Ledong County in Hainan as an example. It ensures through total quality control that the survey result of the city four - level GPS control network is in accordance with the current survey standard. It also discusses the accuracy of GPS control surveying.%笔者结合多年生产经验,以海南省乐东县GPS控制网为例,介绍了利用GPS技术建立城市GPS控制网时一些常见的问题及处理办法。通过全面的质量控制以确保城市D级GPS控制网测量成果符合现行测量规范的要求,讨论了GPS控制测量的精度等问题。

  6. Estimation of above ground biomass in boreal forest using ground-based Lidar

    Science.gov (United States)

    Taheriazad, L.; Moghadas, H.; Sanchez-Azofeifa, A.

    2017-05-01

    Assessing above ground biomass of forest is important for carbon storage monitoring in boreal forest. In this study, a new model is developed to estimate the above ground biomass using ground based Lidar data. 21 trees were measured and scanned across the plot area study in boreal forests of Alberta, Canada. The study area was scanned in the summer season 2014 to quantify the green biomass. The average of total crown biomass and green biomass in this study was 377 kg (standard deviation, S.D. = 243 kg) and 6.42 kg (S.D. = 2.69 m), respectively.

  7. GPS Composite Clock Analysis

    OpenAIRE

    Wright, James R.

    2008-01-01

    The GPS composite clock defines GPS time, the timescale used today in GPS operations. GPS time is illuminated by examination of its role in the complete estimation and control problem relative to UTC/TAI. The phase of each GPS clock is unobservable from GPS pseudorange measurements, and the mean phase of the GPS clock ensemble (GPS time) is unobservable. A new and useful observability definition is presented, together with new observability theorems, to demonstrate explicitly that GPS time is...

  8. Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: Application to the 2011 Tohoku-Oki earthquake (Mw 9.0)

    Science.gov (United States)

    Ohta, Yusaku; Kobayashi, Tatsuya; Tsushima, Hiroaki; Miura, Satoshi; Hino, Ryota; Takasu, Tomoji; Fujimoto, Hiromi; Iinuma, Takeshi; Tachibana, Kenji; Demachi, Tomotsugu; Sato, Toshiya; Ohzono, Mako; Umino, Norihito

    2012-02-01

    Real-time crustal deformation monitoring is extremely important for achieving rapid understanding of actual earthquake scales, because the measured permanent displacement directly gives the true earthquake size (seismic moment, Mw) information, which in turn, provides tsunami forecasting. We have developed an algorithm to detect/estimate static ground displacements due to earthquake faulting from real-time kinematic GPS (RTK-GPS) time series. The new algorithm identifies permanent displacements by monitoring the difference of a short-term average (STA) to a long-term average (LTA) of the GPS time series. We assessed the noise property and precision of the RTK-GPS time series with various baseline length conditions and orbits and discerned that the real-time ephemerides based on the International GNSS Service (IGS) are sufficient for crustal deformation monitoring with long baselines up to ˜1,000 km. We applied the algorithm to data obtained in the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0) to test the possibility of coseismic displacement detections, and further, we inverted the obtained displacement fields for a fault model; the inversion estimated a fault model with Mw 8.7, which is close to the actual Mw of 9.0, within five minutes from the origin time. Once the fault model is estimated, tsunami waveforms can be immediately synthesized using pre-computed tsunami Green's functions. The calculated waveforms showed good agreement with the actual tsunami observations both in arrival times and wave heights, suggesting that the RTK-GPS data by our algorithm can provide reliable rapid tsunami forecasting that can complement existing tsunami forecasting systems based on seismic observations.

  9. Comparing the Effectiveness of GPS-Enhanced Voice Guidance for Pedestrians with Metric- and Landmark-Based Instruction Sets

    Science.gov (United States)

    Rehrl, Karl; Häusler, Elisabeth; Leitinger, Sven

    This paper reports on a field experiment comparing two different kinds of verbal turn instructions in the context of GPS-based pedestrian navigation. The experiment was conducted in the city of Salzburg with 20 participants. Both instruction sets were based on qualitative turn direction concepts. The first one was enhanced with metric distance information and the second one was enhanced with landmark-anchored directions gathered from participants of a previous field experiment. The results show that in context of GPS-enhanced pedestrian navigation both kinds of instruction sets lead to similar navigation performance. Results also demonstrate that effective voice-only guidance of pedestrians in unfamiliar environments at a minimal error rate and without stopping the walk is feasible. Although both kinds of instructions lead to similar navigation performance, participants clearly preferred landmark-enhanced instructions.

  10. FPGA-based real-time embedded system for RISS/GPS integrated navigation.

    Science.gov (United States)

    Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd

    2012-01-01

    Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm.

  11. 激光扫描仪结合GPS/IMU在地面三维形状测量中的应用%Use of laser scanner combining GPS/IMU on 3 DM shpae surveying on ground

    Institute of Scientific and Technical Information of China (English)

    林世祥

    2006-01-01

    阐述了开发使用比全站仪更为灵活的车载GPS/IMU(全球定位系统/惯性导航系统)结合地面型三维激光扫描仪,在地面三维形状测量的应用,并就系统构成,数据解析、检证、量测精度等进行了探讨.

  12. BDS/GPS Dual Systems Positioning Based on the Modified SR-UKF Algorithm

    Directory of Open Access Journals (Sweden)

    JaeHyok Kong

    2016-05-01

    Full Text Available The Global Navigation Satellite System can provide all-day three-dimensional position and speed information. Currently, only using the single navigation system cannot satisfy the requirements of the system’s reliability and integrity. In order to improve the reliability and stability of the satellite navigation system, the positioning method by BDS and GPS navigation system is presented, the measurement model and the state model are described. Furthermore, the modified square-root Unscented Kalman Filter (SR-UKF algorithm is employed in BDS and GPS conditions, and analysis of single system/multi-system positioning has been carried out, respectively. The experimental results are compared with the traditional estimation results, which show that the proposed method can perform highly-precise positioning. Especially when the number of satellites is not adequate enough, the proposed method combine BDS and GPS systems to achieve a higher positioning precision.

  13. BDS/GPS Dual Systems Positioning Based on the Modified SR-UKF Algorithm.

    Science.gov (United States)

    Kong, JaeHyok; Mao, Xuchu; Li, Shaoyuan

    2016-05-03

    The Global Navigation Satellite System can provide all-day three-dimensional position and speed information. Currently, only using the single navigation system cannot satisfy the requirements of the system's reliability and integrity. In order to improve the reliability and stability of the satellite navigation system, the positioning method by BDS and GPS navigation system is presented, the measurement model and the state model are described. Furthermore, the modified square-root Unscented Kalman Filter (SR-UKF) algorithm is employed in BDS and GPS conditions, and analysis of single system/multi-system positioning has been carried out, respectively. The experimental results are compared with the traditional estimation results, which show that the proposed method can perform highly-precise positioning. Especially when the number of satellites is not adequate enough, the proposed method combine BDS and GPS systems to achieve a higher positioning precision.

  14. Kalman filter-based algorithms for monitoring the ionosphere and plasmasphere with GPS in near-real time

    Science.gov (United States)

    Anghel, Adela; Carrano, Charles; Komjathy, Attila; Astilean, Adina; Letia, Tiberiu

    2009-01-01

    Data collected from a GPS receiver located at low latitudes in the American sector are used to investigate the performance of the WinTEC algorithm [Anghel et al., 2008a, Kalman filter-based algorithm for near realtime monitoring of the ionosphere using dual frequency GPS data. GPS Solutions, accepted for publication; for different ionospheric modeling techniques: the single-shell linear, quadratic, and cubic approaches, and the multi-shell linear approach. Our results indicate that the quadratic and cubic approaches perform much better than the single-shell and multi-shell linear approaches in terms of post-fit residuals. The performance of the algorithm for the cubic approach is then further tested by comparing the vertical TEC predicted by WinTEC and USTEC [Spencer et al., 2004. Ionospheric data assimilation methods for geodetic applications. In: Proceedings of IEEE PLANS, Monterey, CA, 26-29 April, pp. 510-517] at five North American stations. In addition, since the GPS-derived total electron content (TEC) contains contributions from both ionospheric and plasmaspheric sections of the GPS ray paths, in an effort to improve the accuracy of the TEC retrievals, a new data assimilation module that uses background information from an empirical plasmaspheric model [Gallagher et al., 1988. An empirical model of the Earth's plasmasphere. Advances in Space Research 8, (8)15-(8)24] has been incorporated into the WinTEC algorithm. The new Kalman filter-based algorithm estimates both the ionospheric and plasmaspheric electron contents, the combined satellite and receiver biases, and the estimation error covariance matrix, in a single-site or network solution. To evaluate the effect of the plasmaspheric component on the estimated biases and total TEC and to assess the performance of the newly developed algorithm, we compare the WinTEC results, with and without the plasmaspheric term included, at three GPS receivers located at different latitudes in the American sector, during

  15. Atmospheric Climate Change Detection Based on the GPS Radio Occultation Record

    Science.gov (United States)

    Steiner, A. K.; Lackner, B. C.; Hegerl, G. C.; Pirscher, B.; Borsche, M.; Foelsche, U.; Kirchengast, G.

    2009-04-01

    Monitoring of global climate change requires high quality observations of the Earth's atmosphere. Radio occultation (RO) measurements based on signals from Global Positioning System (GPS) satellites provide a useful upper air record in this respect. RO data are considered a climate benchmark data type since they are based on timing with precise atomic clocks and tied to the international definition of the second. High quality and vertical resolution in the upper troposphere and lower stratosphere (UTLS), long-term stability, and consistency of RO data stemming from satellites in different orbits without need for inter-calibration make RO well suited for atmospheric observations and climate change detection. RO data are available on a continuous basis since fall of 2001 from the German research satellite CHAMP (CHAllenging Minisatellite Payload for geoscientific research), establishing the first RO climate record covering more than seven years. Intermittent periods of observations from the U.S. GPS/Met proof-of-concept mission exist in the years 1995-1997, with sufficient data only for October 1995 and February 1997. We present a climate change detection study based on monthly mean zonal mean RO climatologies in the UTLS region within 9-25 km (300-30 hPa) where we use different detection methods. An optimal fingerprinting technique is applied to the whole record of RO accessible parameters refractivity, geopotential height, and temperature to detect a forced climate signal. Three representative global climate models of the 4th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) are employed to estimate natural climate variability by making use of pre-industrial control runs. The response pattern to the external forcings is presented by an ensemble mean of the models' A2 and B1 scenario runs. Optimal fingerprinting shows that a climate change signal can be detected at the 90% significance level in the RO refractivity record. Furthermore, simple

  16. Combined Earth orientation parameters based on homogeneous and continuous VLBI and GPS data

    Science.gov (United States)

    Thaller, Daniela; Krügel, Manuela; Rothacher, Markus; Tesmer, Volker; Schmid, Ralf; Angermann, Detlef

    2007-06-01

    The CONT02 campaign is of great interest for studies combining very long baseline interferometry (VLBI) with other space-geodetic techniques, because of the continuously available VLBI observations over 2 weeks in October 2002 from a homogeneous network. Especially, the combination with the Global Positioning System (GPS) offers a broad spectrum of common parameters. We combined station coordinates, Earth orientation parameters (EOPs) and troposphere parameters consistently in one solution using technique- specific datum-free normal equation systems. In this paper, we focus on the analyses concerning the EOPs, whereas the comparison and combination of the troposphere parameters and station coordinates are covered in a companion paper in Journal of Geodesy. In order to demonstrate the potential of the VLBI and GPS space-geodetic techniques, we chose a sub-daily resolution for polar motion (PM) and universal time (UT). A consequence of this solution set-up is the presence of a one-to-one correlation between the nutation angles and a retrograde diurnal signal in PM. The Bernese GPS Software used for the combination provides a constraining approach to handle this singularity. Simulation studies involving both nutation offsets and rates helped to get a deeper understanding of this singularity. With a rigorous combination of UT1 UTC and length of day (LOD) from VLBI and GPS, we showed that such a combination works very well and does not suffer from the systematic effects present in the GPS-derived LOD values. By means of wavelet analyses and the formal errors of the estimates, we explain this important result. The same holds for the combination of nutation offsets and rates. The local geodetic ties between GPS and VLBI antennas play an essential role within the inter-technique combination. Several studies already revealed non-negligible discrepancies between the terrestrial measurements and the space-geodetic solutions. We demonstrate to what extent these discrepancies

  17. Determination of the Ocean Tide Constituents Loading Based on GPS Measurements in the Chinese Offshore Islands

    Science.gov (United States)

    Liu, Y.; Wu, Z.; He, X.; Peng, L.

    2015-12-01

    Ocean tide loading largely affects the accuracy of GPS positioning. In turn, GPS measurements could be used to monitor the ocean tide loading effect. In this paper, 67-days GPS observations from two island GPS stations, respectively located in the East China Sea and the South China Sea, were collected and calculated in 30s sampling rate using the Precise Point Positioning (PPP) algorithm. The variation of GPS observed position time series are 2cm in the horizontal and 7cm in the vertical generated by the ocean tide loading effect and other error sources. With the power spectra analysis by the Fast Fourier Transform (FFT), the eigenvalues of the semidiurnal constituents and the diurnal constituents are obtained from the GPS estimates time series. The calculated frequencies are well agreements to the known within the error less than 1.5% for K1,Q1, O1, K2,S2, M2,N2, but P1 within 4.2%. The calculated amplitudes are also well consistent with the results from the global tide models FES2004,NAO.99 and GOT4.7. Their difference in the amplitude are mostly less than 5mm in the horizontal and the vertical direction, except K1 and M2. The maximum amplitude difference occurs in K1 and M2 up to 1.5cm in the vertical direction. In additional, two islands locate at the different transmission Channel, but they give the same calculated frequency in the horizontal and the vertical directional, respectively for 8 tidal constituents. This exhibits they belongs to the same tide wave system as in fact.

  18. Teaching earth science in the field: GPS-based educational trails as a practically relevant, empirical verified approach

    Science.gov (United States)

    Kisser, Thomas

    2015-04-01

    GPS devices are common use in the daily life and are used in geography classes increasingly often. Presently, specialist literature is merely descriptive and thematically reduced to the function of orientation. The questions whether they are an applicable tool for teaching earth science circumstances and if the lasting learning success shows any differences compared to normal lessons hold in a class room haven't been answered. Neurobiological and teaching psychological knowledge support the idea that students completing the GPS-based educational trail will learn more successful compared to students in a "normal" class: A successful contextualization of modern geomedia stimulates the motivation. Geocaches are also suitable for didactical structuration. The order of "Geopoints" is chosen in a way that the structure of the landscape is being displayed adequate. The students feel addressed affectively due to the real-life encounters and experience their environment consciously. The presented concept "GPS-based educational trail" is different from a normal geocache, which is merely a hide-and-seek-game. Here, the main focus lays on the field work and earth science. The GPS-decvices are used for the orientation between the Geopoints. In order to get two groups with characteristics as different as possible, due to their developmental psychology, age-related education of cognitive and methodical competence, classes from grade 5 (11 years old) and 11 (17 years old) have been chosen. The different cognitive states of development require different didactical approaches. For the 11 grade the topic "rearrangements of fluvial topography" is a possible one. Using the example of anthropogenic rearrangements of the Rheinaue wetlands near Karlsruhe the interdependency between human and environment can be shown. The "Nördlinger Ries" between the Swabian and the Franconian Jura has been chosen for grade 5. The typical elements of the Swabian Jura (karst formation, hydrogeology

  19. GPS-based ionospheric tomography with a constrained adaptive simultaneous algebraic reconstruction technique

    Indian Academy of Sciences (India)

    Wen Debao; Zhang Xiao; Tong Yangjin; Zhang Guangsheng; Zhang Min; Leng Rusong

    2015-03-01

    In this paper, a constrained adaptive simultaneous algebraic reconstruction technique (CASART) is presented to obtain high-quality reconstructions from insufficient projections. According to the continuous smoothness of the variations of ionospheric electron density (IED) among neighbouring voxels, Gauss weighted function is introduced to constrain the tomography system in the new method. It can resolve the dependence on the initial values for those voxels without any GPS rays traversing them. Numerical simulation scheme is devised to validate the feasibility of the new algorithm. Some comparisons are made to demonstrate the superiority of the new method. Finally, the actual GPS observations are applied to further validate the feasibility and superiority of the new algorithm.

  20. 基于低通滤波技术的GPS/INS组合导航%Low-Pass Filter Technique Based GPS/INS Integrated Navigation

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      针对GPS/INS组合导航系统中的惯性导航系统(inertial navigation system,INS)存在的随机误差的问题,研究了一种通过低通滤波器减弱或消除GPS/INS组合导航系统高频噪声的方法。分析了陀螺仪与加速度计在三轴方向上的误差源及其相关性,给出无人机组合导航系统中GPS/INS组合导航误差模型,针对INS数据中所含的高频误差,构造了低通滤波器以消除其对导航精度的影响;并通过实测 Matlab/Simulink 仿真与实测 GPS/INS 导航数据验证该低通滤波器性能。试验结果表明:采用低通滤波处理 INS高频误差显著改善了位置精度,三轴方向上精度分别提高了25%、22%和21%。%Aiming at the random error of inertial navigation system (INS) in GPS/INS integrated navigation system, research a method using a low-pass filter to attenuate or eliminate high-frequency noise in the GPS/INS integrated navigation system. Error sources and their correlations in all three axial directions of the gyroscope and the accelerometer are analyzed. An error model of the GPS/INS integrated navigation is presented for a UAV integrated navigation system. A low-pass filter is developed to eliminate the influence of the high-frequency noise in the INS data to the navigation accuracy. The performance of this low-pass filter is verified by MatLab/Simulink simulations and real GPS/INS navigation tests. The test result shows that adopt low-pass filter to deal with INS high frequency and improve position accuracy effectively. The 3 axis accuracy increase 25%, 22%and 21%separately.

  1. Integrating stations from the North America Gravity Database into a local GPS-based land gravity survey

    Science.gov (United States)

    Shoberg, Thomas G.; Stoddard, Paul R.

    2013-01-01

    The ability to augment local gravity surveys with additional gravity stations from easily accessible national databases can greatly increase the areal coverage and spatial resolution of a survey. It is, however, necessary to integrate such data seamlessly with the local survey. One challenge to overcome in integrating data from national databases is that these data are typically of unknown quality. This study presents a procedure for the evaluation and seamless integration of gravity data of unknown quality from a national database with data from a local Global Positioning System (GPS)-based survey. The starting components include the latitude, longitude, elevation and observed gravity at each station location. Interpolated surfaces of the complete Bouguer anomaly are used as a means of quality control and comparison. The result is an integrated dataset of varying quality with many stations having GPS accuracy and other reliable stations of unknown origin, yielding a wider coverage and greater spatial resolution than either survey alone.

  2. Dynamic Performance Analysis of the Towers of a Long-Span Bridge Based on GPS Monitoring Technique

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2016-01-01

    Full Text Available The present study investigates the parameter identification and the dynamic performance of a long-span bridge tower based on the output of a global positioning system (GPS health monitoring system. The random decrement (RD algorithm is used to estimate the tower displacement impulse response. Three methods are applied to extract the dynamic performance including least squares complex exponential (LSCE method, Hilbert envelope method (HEM, and eigensystem realization algorithm (ERA. Results reveal that the HEM and LSCE method are more suitable to extract fundamental frequency and modal and damping ratios of the tower. Furthermore, the dynamic properties and statistical time series analysis of the GPS measurements illustrate that the traffic loads have a high significant impact on the semistatic and dynamic performances.

  3. Prediction of Individual Social-Demographic Role Based on Travel Behavior Variability Using Long-Term GPS Data

    Directory of Open Access Journals (Sweden)

    Lei Zhu

    2017-01-01

    Full Text Available With the development of and advances in smartphones and global positioning system (GPS devices, travelers’ long-term travel behaviors are not impossible to obtain. This study investigates the pattern of individual travel behavior and its correlation with social-demographic features. For different social-demographic groups (e.g., full-time employees and students, the individual travel behavior may have specific temporal-spatial-mobile constraints. The study first extracts the home-based tours, including Home-to-Home and Home-to-Non-Home, from long-term raw GPS data. The travel behavior pattern is then delineated by home-based tour features, such as departure time, destination location entropy, travel time, and driving time ratio. The travel behavior variability describes the variances of travelers’ activity behavior features for an extended period. After that, the variability pattern of an individual’s travel behavior is used for estimating the individual’s social-demographic information, such as social-demographic role, by a supervised learning approach, support vector machine. In this study, a long-term (18-month recorded GPS data set from Puget Sound Regional Council is used. The experiment’s result is very promising. The sensitivity analysis shows that as the number of tours thresholds increases, the variability of most travel behavior features converges, while the prediction performance may not change for the fixed test data.

  4. A Kalman filter-based short baseline RTK algorithm for single-frequency combination of GPS and BDS.

    Science.gov (United States)

    Zhao, Sihao; Cui, Xiaowei; Guan, Feng; Lu, Mingquan

    2014-08-20

    The emerging Global Navigation Satellite Systems (GNSS) including the BeiDou Navigation Satellite System (BDS) offer more visible satellites for positioning users. To employ those new satellites in a real-time kinematic (RTK) algorithm to enhance positioning precision and availability, a data processing model for the dual constellation of GPS and BDS is proposed and analyzed. A Kalman filter-based algorithm is developed to estimate the float ambiguities for short baseline scenarios. The entire work process of the high-precision algorithm based on the proposed model is deeply investigated in detail. The model is validated with real GPS and BDS data recorded from one zero and two short baseline experiments. Results show that the proposed algorithm can generate fixed baseline output with the same precision level as that of either a single GPS or BDS RTK algorithm. The significantly improved fixed rate and time to first fix of the proposed method demonstrates a better availability and effectiveness on processing multi-GNSSs.

  5. A Kalman Filter-Based Short Baseline RTK Algorithm for Single-Frequency Combination of GPS and BDS

    Directory of Open Access Journals (Sweden)

    Sihao Zhao

    2014-08-01

    Full Text Available The emerging Global Navigation Satellite Systems (GNSS including the BeiDou Navigation Satellite System (BDS offer more visible satellites for positioning users. To employ those new satellites in a real-time kinematic (RTK algorithm to enhance positioning precision and availability, a data processing model for the dual constellation of GPS and BDS is proposed and analyzed. A Kalman filter-based algorithm is developed to estimate the float ambiguities for short baseline scenarios. The entire work process of the high-precision algorithm based on the proposed model is deeply investigated in detail. The model is validated with real GPS and BDS data recorded from one zero and two short baseline experiments. Results show that the proposed algorithm can generate fixed baseline output with the same precision level as that of either a single GPS or BDS RTK algorithm. The significantly improved fixed rate and time to first fix of the proposed method demonstrates a better availability and effectiveness on processing multi-GNSSs.

  6. A design proposal of a certain missile tactical command system based on Beidou satellite communication and GPS positioning techniques

    Science.gov (United States)

    Ma, Jian; Hao, Yongsheng; Miao, Jian; Zhang, Jianmao

    2007-11-01

    This paper introduced a design proposal of tactical command system that applied to a kind of anti-tank missile carriers. The tactical command system was made up of embedded computer system based on PC104 bus, Linux operating system, digital military map, Beidou satellite communication equipments and GPS positioning equipments. The geographic coordinates was measured by the GPS receiver, the positioning data, commands and information were transmitted real-time between tactical command systems, tactical command systems and command center, by the Beidou satellite communication systems. The Beidou satellite communication equipments and GPS positioning equipments were integrated to an independent module, exchanging data with embedded computer through RS232 serial ports and USB ports. The decision support system software based on information fusion, calculates positioning data, geography information and battle field information synthetically, shows the position of allies and the position of enemy on the military map, and assesses the various threats of different enemy objects, educes a situation assessment and threat assessment.

  7. Prediction of Individual Social-Demographic Role Based on Travel Behavior Variability Using Long-Term GPS Data

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lei [Transportation and Hydrogen Systems Center, National Renewable Energy Laboratory (NREL), 15013 Denver West Parkway, Golden, CO 80401, USA; Gonder, Jeffrey [Transportation and Hydrogen Systems Center, National Renewable Energy Laboratory (NREL), 15013 Denver West Parkway, Golden, CO 80401, USA; Lin, Lei [Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY 14260, USA

    2017-01-01

    With the development of and advances in smartphones and global positioning system (GPS) devices, travelers’ long-term travel behaviors are not impossible to obtain. This study investigates the pattern of individual travel behavior and its correlation with social-demographic features. For different social-demographic groups (e.g., full-time employees and students), the individual travel behavior may have specific temporal-spatial-mobile constraints. The study first extracts the home-based tours, including Home-to-Home and Home-to-Non-Home, from long-term raw GPS data. The travel behavior pattern is then delineated by home-based tour features, such as departure time, destination location entropy, travel time, and driving time ratio. The travel behavior variability describes the variances of travelers’ activity behavior features for an extended period. After that, the variability pattern of an individual’s travel behavior is used for estimating the individual’s social-demographic information, such as social-demographic role, by a supervised learning approach, support vector machine. In this study, a long-term (18-month) recorded GPS data set from Puget Sound Regional Council is used. The experiment’s result is very promising. The sensitivity analysis shows that as the number of tours thresholds increases, the variability of most travel behavior features converges, while the prediction performance may not change for the fixed test data.

  8. Overview of Space-Based GPS Occultation Sounding in China%我国天基GPS掩星探测现状及发展趋势

    Institute of Scientific and Technical Information of China (English)

    王也英; 杜晓勇; 袁勇

    2011-01-01

    The development history and present state of space-based GPS occultation, as well as the advancements of space-based occultation sounding and the brief merits and demerits of different occultation inversion methods, are introduced. The emphasis is put on the latest researches and advancements of GPS occultation sounding in China. A detailed introduction is made to the research achievements of mountainbased GPS occultation sounding. The prospects of the research emphases and development tendency of GPS occultation sounding in China are discussed. It is pointed out that GPS occultation sounding will develop towards the constellation and comprehensive application, and China will certainly rank among GPS occultation sounding developers.%简述了天基GPS掩星探测的发展历史和发展现状,指出了天基掩星探测的优势以及不同掩星反演方法的优缺点,并对我国的GPS山基掩星探测研究的进展和取得的成果进行了详细介绍,最后对GPS掩星探测未来的研究重点和发展趋势进行了展望,指出GPS掩星探测将向着星座化、综合化应用方向发展,我国也必将积极参与到GPS掩星探测的行列.

  9. GPS pseudolites: Theory, design, and applications

    Science.gov (United States)

    Cobb, H. Stewart

    Pseudolites (ground-based pseudo-satellite transmitters) can initialize carrier-phase differential GPS (CDGPS) navigation systems in seconds to perform real-time dynamic positioning with one-sigma errors as low as 1 cm. Previous CDGPS systems were rarely used due to cumbersome initialization procedures requiring up to 30 minutes; initialization of the carrier-phase integer ambiguities via pseudolite removes these constraints. This work describes pseudolites optimized for this application which cost two orders of magnitude less than previous pseudolites. Synchrolites (synchronized pseudolites) which derive their timing from individual Global Positioning System (GPS) satellites are also described. Synchrolites can replace the CDGPS reference station and datalink, while simultaneously serving to initialize CDGPS navigation. A cluster of well-placed synchrolites could enable CDGPS navigation even if only one GPS satellite signal is available. A prototype CDGPS system initialized by pseudolites and synchrolites was designed and tested. The goal of this system, known as the Integrity Beacon Landing System (IBLS), was to provide navigation accurate and reliable enough to land aircraft in bad weather. Flight test results for prototype pseudolite and synchrolite systems, including results from 110 fully automatic landings of a Boeing 737 airliner controlled by IBLS, are presented. Existing pseudolite applications are described, including simulation of the GPS constellation for indoor navigation experiments. Synchrolite navigation algorithms are developed and analyzed. New applications for pseudolites and synchrolites are proposed. Theoretical and practical work on the near/far problem is presented.

  10. Integrated navigation of aerial robot for GPS and GPS-denied environment

    Science.gov (United States)

    Suzuki, Satoshi; Min, Hongkyu; Wada, Tetsuya; Nonami, Kenzo

    2016-09-01

    In this study, novel robust navigation system for aerial robot in GPS and GPS- denied environments is proposed. Generally, the aerial robot uses position and velocity information from Global Positioning System (GPS) for guidance and control. However, GPS could not be used in several environments, for example, GPS has huge error near buildings and trees, indoor, and so on. In such GPS-denied environment, Laser Detection and Ranging (LIDER) sensor based navigation system have generally been used. However, LIDER sensor also has an weakness, and it could not be used in the open outdoor environment where GPS could be used. Therefore, it is desired to develop the integrated navigation system which is seamlessly applied to GPS and GPS-denied environments. In this paper, the integrated navigation system for aerial robot using GPS and LIDER is developed. The navigation system is designed based on Extended Kalman Filter, and the effectiveness of the developed system is verified by numerical simulation and experiment.

  11. Investigating Atmospheric Rivers using GPS PW from Ocean Transits

    Science.gov (United States)

    Almanza, V.; Foster, J. H.; Businger, S.

    2014-12-01

    Atmospheric Rivers (AR) can be described as a long narrow feature within a warm conveyor belt where anomalous precipitable water (PW) is transported from low to high latitudes. Close monitoring of ARs is heavily reliant on satellites, which are limited both in space and time, to capture the fluctuations PW particularly over the ocean. Ship-based Global Positioning System (GPS) receivers have been successful in obtaining millimeter PW accuracy within 100 km from the nearest ground-based reference receiver at a 30 second sampling rate. We extended this capability with a field experiment using ship-based GPS PW on board a cargo ship to traverse over the Eastern Pacific Ocean. In one 14-day cruise cycle, between the periods of February 3-16, 2014, the ship-based GPS captured PW spikes >50 mm during the early development of two ARs, which lead to moderate to heavy rainfall events for Hawaii and flood conditions along the West Coast of the United States. Comparisons between PW solutions processed using different GPS reference sites at distances 100-2000 km provided an internal validation for the ship-based GPS PW with errors typically less than 5 mm. Land-based observations provided an external validation and are in good agreement with ship-based GPS PW at distances GPS receivers offer an extremely cost-effective approach for acquiring continuous meteorological observations over the oceans, which can provide important calibration/validation data for satellite retrieval algorithms. Ship-based systems could be particularly useful for augmenting our meteorological observing networks to improve weather prediction and nowcasting, which in turn provide critical support for hazard response and mitigation efforts in coastal regions.

  12. Small satellite attitude determination based on GPS/IMU data fusion

    Energy Technology Data Exchange (ETDEWEB)

    Golovan, Andrey [Navigation and Control Laboratory, M.V. Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow (Russian Federation); Cepe, Ali [Department of Applied Mechanics and Control, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2014-12-10

    In this paper, we present the mathematical models and algorithms that describe the problem of attitude determination for a small satellite using measurements from three angular rate sensors (ARS) and aiding measurements from multiple GPS receivers/antennas rigidly attached to the platform of the satellite.

  13. Tractor-mounted, GPS-based spot fumigation system manages Prunus replant disease

    Science.gov (United States)

    Our research goal was to use recent advances in global positioning system (GPS) and computer technology to apply just the right amount of fumigant where it is most needed (i.e., in a small target treatment zone in and around each tree replanting site) to control Prunus replant disease (PRD). We deve...

  14. A new voxel-based model for the determination of atmospheric weighted mean temperature in GPS atmospheric sounding

    Science.gov (United States)

    He, Changyong; Wu, Suqin; Wang, Xiaoming; Hu, Andong; Wang, Qianxin; Zhang, Kefei

    2017-06-01

    The Global Positioning System (GPS) is a powerful atmospheric observing system for determining precipitable water vapour (PWV). In the detection of PWV using GPS, the atmospheric weighted mean temperature (Tm) is a crucial parameter for the conversion of zenith tropospheric delay (ZTD) to PWV since the quality of PWV is affected by the accuracy of Tm. In this study, an improved voxel-based Tm model, named GWMT-D, was developed using global reanalysis data over a 4-year period from 2010 to 2013 provided by the United States National Centers for Environmental Prediction (NCEP). The performance of GWMT-D was assessed against three existing empirical Tm models - GTm-III, GWMT-IV, and GTmN - using different data sources in 2014 - the NCEP reanalysis data, surface Tm data provided by Global Geodetic Observing System and radiosonde measurements. The results show that the new GWMT-D model outperforms all the other three models with a root-mean-square error of less than 5.0 K at different altitudes over the globe. The new GWMT-D model can provide a practical alternative Tm determination method in real-time GPS-PWV remote sensing systems.

  15. Source process with heterogeneous rupture velocity for the 2011 Tohoku-Oki earthquake based on 1-Hz GPS data

    Science.gov (United States)

    Wang, Zhen; Kato, Teruyuki; Zhou, Xin; Fukuda, Jun'ichi

    2016-11-01

    A rupture model with varying rupture front expansion velocity for the March 11, 2011, Tohoku-Oki earthquake was obtained by the joint inversion of high-rate Global Positioning System (GPS) data and ocean bottom GPS/acoustic (OB-GPS) data. The inverted rupture velocity with a complex distribution gradually increases near the hypocenter and shows rapid rupture expansion at the shallowest part of the fault. The entire rupture process, which lasted 160 s, can be divided into three energy release stages, based on the moment rate function. The preferred slip model, showing a compatible relationship with aftershocks, has a primary asperity concentrated from the hypocenter to the trench and a small asperity located on the southern fault. Source time functions for subfaults and temporal rupture images suggest that repeated slips occurred in the primary rupture, which is consistent with that from seismic waveforms. Our estimated maximum slip and total seismic moment are 65 m and 4.2 × 1022 Nm (Mw 9.0), respectively. The large slip, stress drop, and rupture velocity are all concentrated at shallow depths, which indicates that the shallow part of the fault radiated high-frequency as well as low-frequency seismic waves.[Figure not available: see fulltext.

  16. Volcano deformation and subdaily GPS products

    Science.gov (United States)

    Grapenthin, Ronni

    Volcanic unrest is often accompanied by hours to months of deformation of the ground that is measurable with high-precision GPS. Although GPS receivers are capable of near continuous operation, positions are generally estimated for daily intervals, which I use to infer characteristics of a volcano’s plumbing system. However, GPS based volcano geodesy will not be useful in early warning scenarios unless positions are estimated at high rates and in real time. Visualization and analysis of dynamic and static deformation during the 2011 Tohokuoki earthquake in Japan motivates the application of high-rate GPS from a GPS seismology perspective. I give examples of dynamic seismic signals and their evolution to the final static offset in 30 s and 1 s intervals, which demonstrates the enhancement of subtle rupture dynamics through increased temporal resolution. This stresses the importance of processing data at recording intervals to minimize signal loss. Deformation during the 2009 eruption of Redoubt Volcano, Alaska, suggested net deflation by 0.05 km³ in three distinct phases. Mid-crustal aseismic precursory inflation began in May 2008 and was detected by a single continuous GPS station about 28 km NE of Redoubt. Deflation during the explosive and effusive phases was sourced from a vertical ellipsoidal reservoir at about 7-11.5 km. From this I infer a model for the temporal evolution of a complex plumbing system of at least 2 sources during the eruption. Using subdaily GPS positioning solutions I demonstrate that plumes can be detected and localized by utilizing information on phase residuals. The GPS network at Bezymianny Volcano, Kamchatka, records network wide subsidence at rapid rates between 8 and 12 mm/yr from 2005-2010. I hypothesize this to be caused by continuous deflation of a ˜30 km deep sill under Kluchevskoy Volcano. Interestingly, 1-2 explosive events per year cause little to no deformation at any site other than the summit site closest to the vent. I

  17. GPS Attitude Determination for Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Toyon Research Corporation proposes to develop a family of compact, low-cost GPS-based attitude (GPS/A) sensors for launch vehicles. In order to obtain 3-D attitude...

  18. New Applications for Detecting Natural Hazards Using Ground and Space-Based GNSS-Derived Ionospheric Measurements

    Science.gov (United States)

    Komjathy, A.; Butala, M.; Verkhoglyadova, O. P.; Wilson, B. D.; Iijima, B.; Akopian, V.; Mannucci, A.

    2012-12-01

    The NASA Jet Propulsion Laboratory (JPL) and University of Southern California (USC) have jointly developed the Global Assimilative Ionospheric Model (GAIM) to monitor space weather, study storm effects, and provide ionospheric calibration for various customers including NASA flight projects. JPL/USC GAIM is a physics-based 3D data assimilation model using 4DVAR and Kalman filter approaches to solve for ion and electron density states and other key ionospheric drivers. The JPL/USC GAIM technologies, now operating in real-time and post-processing modes, can routinely accept as input ground GPS TEC data from 1200+ sites including streaming and hourly GPS stations, occultation links from CHAMP, SAC-C, COSMIC and C/NOFS satellites, UV limb and nadir scans. In the presentation, first we will discuss recent advances in our assimilating ground-based GPS, C/NOFS and COSMIC occultation measurements using our GAIM system characterizing the ionosphere in 3D. We will elaborate on our improved space-based bias estimation techniques to generate high precision calibrated TEC measurements to be assimilated into GAIM. We will discuss the benefits of adding GLONASS measurements to our GIM and GAIM processing technologies. New and upcoming applications and first results will be shown for estimating very high precision TEC perturbations using real-time and post-processed GNSS observations from GEONET and IGS networks. We will demonstrate initial steps on how to integrate this GNSS ionosphere-based technology into a global tsunami warning system. Additional potential applications might include the remote sensing of ionospheric TEC perturbations generated by other natural hazards such as earthquakes and volcanic eruptions and human-made events such as nuclear tests.

  19. 带有差分GPS的多传感器无人直升机航测遥感系统%An unmanned helicopter based mapping system with differential GPS and multi-Sensor

    Institute of Scientific and Technical Information of China (English)

    陈天恩; 长井正彦; 柴崎亮介

    2012-01-01

    Low-altitude UAV( Unmanned Aerial Vehicles) based mapping system is a new type of spatial information acquisition and processing equipment overall the world in recent years. It takes UAV equipped with camera systems, GPS receivers, IMU, laser scanners,automatic flight control systems and other equipments as a platform to obtain ground information in flexible,fast and efficient, precise and accurate, safe, reliable, low operating cost, wide application characteristics, and has been used in the digital city rapid updates , the new rural surveying and mapping support services, emergency disaster relief, etc. It could be taken as an important supplementary means of satellite remote sensing and traditional aerial photography methods. This paper described an unmanned helicopter based mapping system developed by the authors in Japan. The system is equipped with differential GPS and IMU for direct geographic location and orientation with fewer or without ground control points. The onboard laser scanner could be used to collect ground surface model directly georeferenced through the post processed GPS/IMU data and triangulation with the images captured with onboard cameras. The geometric accuracy of the system was verified with actual flight data, and the results showed that the system could be used to map large-scale topographic maps and other areas of application.%本文主要介绍作者在日本研制的一种基于无人直升机平台的多种传感器航测遥感系统,它直接采用GPS和IMU数据进行地理定位定向而不需要地面控制点.通过实飞数据对系统达到的几何精度进行了验证,结果表明该系统可用来测绘大比例尺地形图以及应用于其他相关领域.

  20. The SMS-GPS-Trip-Method

    DEFF Research Database (Denmark)

    Reinau, Kristian Hegner; Harder, Henrik; Weber, Michael

    2015-01-01

    This article presents a new method for collecting travel behavior data, based on a combination of GPS tracking and SMS technology, coined the SMS–GPS-Trip method. The state-of-the-art method for collecting data for activity based traffic models is a combination of travel diaries and GPS tracking...

  1. 基于VRS技术的GPS-PDA在森林资源调查监测中的应用%Application of GPS-PDA in Inventory and Monitoring of Forest Resources Based on VRS Technology

    Institute of Scientific and Technical Information of China (English)

    黄宁辉

    2012-01-01

    介绍GPS - PDA软硬件组成及在外业建标、建模、数据验证、GCP采集、面积求算、专项调查等有关森林资源调查监测方面的应用.详细阐述Trimble Geo - XT移动站在森林监测中的应用实例和步骤,认为基于VRS技术的GPS - PDA在森林资源调查监测中具有定位精度高,定位方式灵活、可灵活定制调查表格、提高外业数据采集效率、数据兼容性好等优点.%This paper introduced the application of GPS-PDA in setting up standard, modeling, dala validation, GCP acquisition, area calculated, special survey on forest resources inventory and monitoring, and hardware and software building. Elaborated the application examples and steps of Trimble Ceo-XT mobile station in the forest monitoring. Believed that on the base of VRS technology, GPS-PDA has advantages in the investigation and monitoring of forest resources with high positioning accuracy, positioning flexible, and data compatibility, can be flexibly customized survey form, to improve data collection efficiency.

  2. Long aseismic slip duration of the 2006 Java tsunami earthquake based on GPS data

    Science.gov (United States)

    Raharja, Rio; Gunawan, Endra; Meilano, Irwan; Abidin, Hasanuddin Z.; Efendi, Joni

    2016-10-01

    The Java earthquake occurred on July 17, 2006 with magnitude 7.8 associated to the subduction process of Indo-Australian plate and Sundaland block off southwestern coast of Java. We present postseismic deformation parameters of the 2006 Java earthquake analyzed using campaign GPS observation from 2006 to 2008 and continuous observation from 2007 to 2014. We use an analytical approach of logarithmic and exponential functions to model these GPS data. We find that the decay time in the order of hundreds of days after the mainshock as observed by 8 years' data after the mainshock for magnitude 7 earthquake is longer than a general megathrust earthquake event. Our findings suggest that the 2006 Java earthquake which is considered as "tsunami earthquake" most probably occurred in the region that has low rigidity and tends to continuously slip for long time periods.

  3. Long aseismic slip duration of the 2006 Java tsunami earthquake based on GPS data

    Directory of Open Access Journals (Sweden)

    Rio Raharja

    2016-10-01

    Full Text Available Abstract The Java earthquake occurred on July 17, 2006 with magnitude 7.8 associated to the subduction process of Indo-Australian plate and Sundaland block off southwestern coast of Java. We present postseismic deformation parameters of the 2006 Java earthquake analyzed using campaign GPS observation from 2006 to 2008 and continuous observation from 2007 to 2014. We use an analytical approach of logarithmic and exponential functions to model these GPS data. We find that the decay time in the order of hundreds of days after the mainshock as observed by 8 years’ data after the mainshock for magnitude 7 earthquake is longer than a general megathrust earthquake event. Our findings suggest that the 2006 Java earthquake which is considered as “tsunami earthquake” most probably occurred in the region that has low rigidity and tends to continuously slip for long time periods.

  4. Constraining earthquake source inversions with GPS data: 1. Resolution-based removal of artifacts

    Science.gov (United States)

    Page, M.T.; Custodio, S.; Archuleta, R.J.; Carlson, J.M.

    2009-01-01

    We present a resolution analysis of an inversion of GPS data from the 2004 Mw 6.0 Parkfield earthquake. This earthquake was recorded at thirteen 1-Hz GPS receivers, which provides for a truly coseismic data set that can be used to infer the static slip field. We find that the resolution of our inverted slip model is poor at depth and near the edges of the modeled fault plane that are far from GPS receivers. The spatial heterogeneity of the model resolution in the static field inversion leads to artifacts in poorly resolved areas of the fault plane. These artifacts look qualitatively similar to asperities commonly seen in the final slip models of earthquake source inversions, but in this inversion they are caused by a surplus of free parameters. The location of the artifacts depends on the station geometry and the assumed velocity structure. We demonstrate that a nonuniform gridding of model parameters on the fault can remove these artifacts from the inversion. We generate a nonuniform grid with a grid spacing that matches the local resolution length on the fault and show that it outperforms uniform grids, which either generate spurious structure in poorly resolved regions or lose recoverable information in well-resolved areas of the fault. In a synthetic test, the nonuniform grid correctly averages slip in poorly resolved areas of the fault while recovering small-scale structure near the surface. Finally, we present an inversion of the Parkfield GPS data set on the nonuniform grid and analyze the errors in the final model. Copyright 2009 by the American Geophysical Union.

  5. Improved GPS-based time link calibration involving ROA and PTB.

    Science.gov (United States)

    Esteban, Héctor; Palacio, Juan; Galindo, Francisco Javier; Feldmann, Thorsten; Bauch, Andreas; Piester, Dirk

    2010-03-01

    The calibration of time transfer links is mandatory in the context of international collaboration for the realization of International Atomic Time. In this paper, we present the results of the calibration of the GPS time transfer link between the Real Instituto y Observatorio de la Armada (ROA) and the Physikalisch-Technische Bundesanstalt (PTB) by means of a traveling geodetic-type GPS receiver and an evaluation of the achieved type A and B uncertainty. The time transfer results were achieved by using CA, P3, and also carrier phase PPP comparison techniques. We finally use these results to re-calibrate the two-way satellite time and frequency transfer (TWSTFT) link between ROA and PTB, using one month of data. We show that a TWSTFT link can be calibrated by means of GPS time comparisons with an uncertainty below 2 ns, and that potentially even sub-nanosecond uncertainty can be achieved. This is a novel and cost-effective approach compared with the more common calibration using a traveling TWSTFT station.

  6. Present-Day 3D Velocity Field of Eastern North America Based on Continuous GPS Observations

    Science.gov (United States)

    Goudarzi, Mohammad Ali; Cocard, Marc; Santerre, Rock

    2016-07-01

    The Saint Lawrence River valley in eastern Canada was studied using observations of continuously operating GPS (CGPS) stations. The area is one of the most seismically active regions in eastern North America characterized by many earthquakes, which is also subject to an ongoing glacial isostatic adjustment. We present the current three-dimensional velocity field of eastern North America obtained from more than 14 years (9 years on average) of data at 112 CGPS stations. Bernese GNSS and GITSA software were used for CGPS data processing and position time series analysis, respectively. The results show the counterclockwise rotation of the North American plate in the No-Net-Rotation model with the average of 16.8 ± 0.7 mm/year constrained to ITRF 2008. We also present an ongoing uplift model for the study region based on the present-day CGPS observations. The model shows uplift all over eastern Canada with the maximum rate of 13.7 ± 1.2 mm/year and subsidence to the south mainly over northern USA with a typical rate of -1 to -2 mm/year and the minimum value of -2.7 ± 1.4 mm/year. We compared our model with the rate of radial displacements from the ICE-5G model. Both models agree within 0.02 mm/year at the best stations; however, our model shows a systematic spatial tilt compared to ICE-5G. The misfits between two models amount to the maximum relative subsidence of -6.1 ± 1.1 mm/year to the east and maximum relative uplift of 5.9 ± 2.7 mm/year to the west. The intraplate horizontal velocities are radially outward from the centers of maximum uplift and are inward to the centers of maximum subsidence with the typical velocity of 1-1.6 ± 0.4 mm/year that is in agreement with the ICE-5G model to the first order.

  7. GPS/leveling quasi-geoid fitting based on RBF neural networks%基于RBF神经网络的GPS/水准高程异常拟合

    Institute of Scientific and Technical Information of China (English)

    束蝉方; 李斐; 李明峰

    2011-01-01

    To determine an orthometric height using GPS, it is necessary to know the geoid/ quasi-geoid undulation. Fitting of GPS/leveling scatting data is one of main methods to get the quasi-geoid unknown. This paper proposed a new method for the fitting of GPS/leveling data based on radial basis functions (RBF) neural networks. The new learning algorithm selected the centers among the vertices of the Vornoni diagram of the sample data points. The bandwidth parameters of RBF, which was supposed experientially to be linear related to the distance from the center to the nearest scattering data point, were chosen optimizedly using generalized cross validation (GCV). The numerical results tested in one zone indicate that the new method is efficient for the geoid/quasi-geoid undulation fitting.%通过对离散GPS/水准点观测数据进行拟合从而获得区域内任意一点的高程异常是工程实践中经常遇到的问题.本文将径向基函数(RBF)神经网络方法应用于GPS/水准高程异常拟合,提出了一种新型网络学习方法.该方法首先通过对GPS/水准数据点进行Delaunay三角剖分,以其对偶Voronoi图的节点来构造选择基函数中心,再通过广义交叉验证(GCV)来最优确定基函数的宽度参数,最后利用最小二乘来确定RBF的输出权值,从而优化网络学习效果.实验结果表明,该学习方法取得良好的网络性能,和其它常用拟合方法的比较结果也反映出RBF神经网络适合应用于GPS/水准高程异常拟合.

  8. A Quarter Active Suspension System Based Ground-Hook Controller

    OpenAIRE

    Turnip Arjon

    2016-01-01

    An alternative design technique for active suspension system of vehicle using a developved ground-hook damping system as a reference is proposed. The controller parameters are determined using Lyapunov method and can be tuned to precisely achieve the type of desired response which given by reference model. The simulation result show that the designed active suspension system based ground-hook reference model is able to significantly improve the ride comfort and the road holding compared with ...

  9. ["All of us actually practice EBM!" - Attitudes of German GPs towards evidence-based medicine and clinical guidelines in daily practice: a focus group study].

    Science.gov (United States)

    Bücker, Bettina; Redaèlli, Marcus; Simic, Dusan; Wilm, Stefan

    2013-01-01

    Implementation of guidelines in general practice is difficult. Do general practitioners (GPs) reject evidence-based medicine (EBM) in general? Which attitudes do GPs have towards EBM and guidelines, and which value do they attach to EBM in daily routine? We conducted a qualitative study using five focus groups with 53 GPs. The study was set in the German federal states of Bavaria, Saxony, North Rhine-Westphalia, Hesse and Hamburg. Participants were selected according to area (rural/urban), region (North/South, East/West) and grade of professionalisation. Focus groups were digitally recorded and fully transcribed. Data were analysed in a multidisciplinary team using qualitative content analysis. Most participants felt positive towards EBM. Lack of feasibility was explicitly mentioned: the participants distinguished between "practised" and "true" EBM. Guidelines are often considered unsuitable for general practice. The GPs felt confident that their treatment of patients was evidence-based. Compared to older studies, German GPs have an increasingly favourable opinion about EBM. In order to enhance the practical application of EBM and guidelines the attitudes of GPs need to be considered. Copyright © 2013. Published by Elsevier GmbH.

  10. Engineering uses of physics-based ground motion simulations

    Science.gov (United States)

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  11. GPS P码接收机本地信号发生器的FPGA实现%Implementation of Local GPS P Code Generation in GPS Receiver Based on FPGA

    Institute of Scientific and Technical Information of China (English)

    曹进; 李荣冰; 徐昭; 谢非

    2013-01-01

    As the military use of GPS,P code is famous for its characteristic of high precise,long period and complex structure. The software receiver based on P code is not only of high position precision, but also of high level of anti-jamming and anti-spoofing. It is of great importance for direct P code acquisition and the tracking if we can generate any bits of P Code in its period. After doing research on the mechanism and structure of P Code generation, we designed some algorithm of P code and realize it through MATLAB. Then we propose the algorithm for FPGA by modules including register module, delay module,period module and register phase module. The result shows that P Code of any time or any satellite can be generated by it without time delay.%P码作为GPS军用伪码,具有结构复杂、周期长且码速率快的特点,这使得使用P码的软件接收机不仅定位精度高,且具有很强的抗干扰和反欺骗能力.能够实现任意卫星的任意时刻P码的产生,对于实现P码直接捕获和跟踪有很重要的意义.对于P码的产生原理和结构进行了分析,基于MATLAB设计了相应的P码发生算法并进行简单的算法仿真.之后针对FPGA硬件平台对P码发生器进行了相应的模块设计,包含寄存器模块、延时模块、周期控制模块和寄存器相位模块等.测试实验结果表明P码发生器可以基本无延迟地生成任意卫星、任意时刻的P码.

  12. Laser based bi-directional Gbit ground links with the Tesat transportable adaptive optical ground station

    Science.gov (United States)

    Heine, Frank; Saucke, Karen; Troendle, Daniel; Motzigemba, Matthias; Bischl, Hermann; Elser, Dominique; Marquardt, Christoph; Henninger, Hennes; Meyer, Rolf; Richter, Ines; Sodnik, Zoran

    2017-02-01

    Optical ground stations can be an alternative to radio frequency based transmit (forward) and receive (return) systems for data relay services and other applications including direct to earth optical communications from low earth orbit spacecrafts, deep space receivers, space based quantum key distribution systems and Tbps capacity feeder links to geostationary spacecrafts. The Tesat Transportable Adaptive Optical Ground Station is operational since September 2015 at the European Space Agency site in Tenerife, Spain.. This paper reports about the results of the 2016 experimental campaigns including the characterization of the optical channel from Tenerife for an optimized coding scheme, the performance of the T-AOGS under different atmospheric conditions and the first successful measurements of the suitability of the Alphasat LCT optical downlink performance for future continuous variable quantum key distribution systems.

  13. Saved by Iridium? An Alternative to GPS

    Science.gov (United States)

    2012-05-17

    Groups of GPS Vulnerabilities Hostile Attacks Controllable Risks Other Vulnerabilities Direct or Kinetic Environmental Effects Self-Induced Directed...Constellation GONASS GALILEO BEIDOU-2 IRNSS GROUND BASED RADIO NAVIGATION LORAN LACATA VHF DME INS AUTOMATIC NAVIGATION TERCOM DESMAC PTAN Radio...0 0 1 0 1 LACATA 0 0 1 1 0 2 VHF 0 1 1 1 0 3 DME 0 1 1 1 0 3 INS 0 0 1 1 1 3 AUTOMATIC NAVIGATION TERCOM 0 0 1 1 1 3 DESMAC 0 0 1 1 1 3 PTAN 0

  14. GPS for land surveyors

    CERN Document Server

    Van Sickle, Jan

    2008-01-01

    The GPS SignalGlobal Positioning System (GPS) Signal StructureTwo ObservablesPseudorangingCarrier Phase RangingBiases and SolutionsThe Error BudgetDifferencingThe FrameworkTechnological ForerunnersVery Long Baseline InterferometryTransitNavstar GPSGPS Segment OrganizationGPS ConstellationThe Control SegmentReceivers and MethodsCommon Features of GPS ReceiversChoosing a GPS ReceiverSome GPS Surveying MethodsCoordinatesA Few Pertinent Ideas About Geodetic Datums for GPSState Plane CoordinatesHeightsGPS Surveying TechniquesStatic GPS SurveyingReal-Time Kinematic (RTK) and Differential GPS (DGPS)T

  15. Coastal GPS Altimetry for Eddy Monitoring

    Science.gov (United States)

    Cardellach, E.; Treuhaft, R. N.; Chao, Y.; Lowe, S. T.; Young, L. E.; Zuffada, C.

    2003-04-01

    Coastal zones (within approximately 20-30 km of the coast) are dominated by fast-changing (on the order of days) and small-scale (on the order of km or less) processes. The dynamics and thermodynamics associated with these coastal processes influence the physics, biogeochemistry and the associated carbon cycling in the coastal zones. To monitor these important processes at the highest possible resolution (both spatial and temporal) is therefore an integrated component of the Earth's observing system. Coastal processes are currently not adequately monitored from existing spaceborne observations. The infrared instruments can measure the sea surface temperature in coastal zones with a resolution of approximately 1km daily, but are heavily contaminated by clouds usually found in the land-sea boundaries. The conventional radar altimetry, even with the wide-swath (e.g., OSTM) configuration, can only provide measurements every 10 days, too long to resolve the fast-changing coastal processes, not mentioning the land contamination within the first few footprints (on the order of 20 km) away from the coast. Coastal GPS altimetry from cliffs or structures near the coastline provides a complementary way to measure these coastal processes. The precision of such ground-based grazing angle GPS measurements has been proven to be 2-cm over the smooth surface at Crater Lake [Treuhaft et al., 2001]. Nevertheless, the accuracy of the GPS altimetry over the open sea, significantly affected by roughness, has yet to be assessed. This poster aims to present a set of experiments and analyses to prove the coastal GPS altimetry concept with a few-cm accuracy goal. It includes the analysis of data gathered over the ocean from an oil platform, Platform Harvest, as well as simulations of the GPS reflected signal to identify and correct the effects of the sea roughness. The results of this research are planned to feed the design, execution and processing of an eddy monitoring experiment. It will

  16. Estimation of annual variation of water vapor in the Arctic Ocean between 80°-87°N using shipborne GPS data based on kinematic precise point positioning

    Institute of Scientific and Technical Information of China (English)

    LUO Xiaowen; ZHANG Tao; GAO Jinyao; YANG Chunguo; WU Zaocai

    2015-01-01

    The measurement of atmospheric water vapor (WV) content and variability is important for meteorological and climatological research. A technique for the remote sensing of atmospheric WV content using ground-based Global Positioning System (GPS) has become available, which can routinely achieve accuracies for integrated WV content of 1–2 kg/m2. Some experimental work has shown that the accuracy of WV measurements from a moving platform is comparable to that of (static) land-based receivers. Extending this technique into the marine environment on a moving platform would be greatly beneficial for many aspects of meteorological research, such as the calibration of satellite data, investigation of the air-sea interface, as well as forecasting and climatological studies. In this study, kinematic precise point positioning has been developed to investigate WV in the Arctic Ocean (80°–87°N) and annual variations are obtained for 2008 and 2012 that are identical to those related to the enhanced greenhouse effect.

  17. sUAS Position Estimation and Fusion in GPS-Degraded and GPS-Denied Environments using an ADS-B Transponder and Local Area Multilateration

    Science.gov (United States)

    Larson, Robert Sherman

    An Unmanned Aerial Vehicle (UAV) and a manned aircraft are tracked using ADS-B transponders and the Local Area Multilateration System (LAMS) in simulated GPS-degraded and GPS-denied environments. Several position estimation and fusion algorithms are developed for use with the Autonomous Flight Systems Laboratory (AFSL) TRansponder based Position Information System (TRAPIS) software. At the lowest level, these estimation and fusion algorithms use raw information from ADS-B and LAMS data streams to provide aircraft position estimates to the ground station user. At the highest level, aircraft position is estimated using a discrete time Kalman filter with real-time covariance updates and fusion involving weighted averaging of ADS-B and LAMS positions. Simulation and flight test results are provided, demonstrating the feasibility of incorporating an ADS-B transponder on a commercially-available UAS and maintaining situational awareness of aircraft positions in GPS-degraded and GPS-denied environments.

  18. Ground point filtering of UAV-based photogrammetric point clouds

    Science.gov (United States)

    Anders, Niels; Seijmonsbergen, Arie; Masselink, Rens; Keesstra, Saskia

    2016-04-01

    Unmanned Aerial Vehicles (UAVs) have proved invaluable for generating high-resolution and multi-temporal imagery. Based on photographic surveys, 3D surface reconstructions can be derived photogrammetrically so producing point clouds, orthophotos and surface models. For geomorphological or ecological applications it may be necessary to separate ground points from vegetation points. Existing filtering methods are designed for point clouds derived using other methods, e.g. laser scanning. The purpose of this paper is to test three filtering algorithms for the extraction of ground points from point clouds derived from low-altitude aerial photography. Three subareas were selected from a single flight which represent different scenarios: 1) low relief, sparsely vegetated area, 2) low relief, moderately vegetated area, 3) medium relief and moderately vegetated area. The three filtering methods are used to classify ground points in different ways, based on 1) RGB color values from training samples, 2) TIN densification as implemented in LAStools, and 3) an iterative surface lowering algorithm. Ground points are then interpolated into a digital terrain model using inverse distance weighting. The results suggest that different landscapes require different filtering methods for optimal ground point extraction. While iterative surface lowering and TIN densification are fully automated, color-based classification require fine-tuning in order to optimize the filtering results. Finally, we conclude that filtering photogrammetric point clouds could provide a cheap alternative to laser scan surveys for creating digital terrain models in sparsely vegetated areas.

  19. Test of GBAS Integrity Monitoring System Using GPS Simulator

    Institute of Scientific and Technical Information of China (English)

    Yun Young-sun; Park Sung-min; Kee Chang-don

    2003-01-01

    In recent years, many countries are developing aircraft navigation systems using GNSS(Global Navigation Satellite System),because GNSS has many technical and economic benefits. International organizations as ICAO(International Civil Aviation Organization) and RTCA(Radio Technical Commission for Aeronautics) set up international standards of GBAS(Ground Based Augmentation System)using GNSS and recommend countries to develop GBAS that is based on the standards. To go with the international stream, Korea Airport Cooperation has also developed GBAS. For evaluating the system,KAC and Seoul National University have performed flight tests of the developed GBAS several times and have concluded that the system has good accuracy enough to be used in aircrafts. At that time, the purpose of tests was focused on accuracy of GBAS. But integrity of the system which is important for safety of aircrafts was not tested sufficiently,because it is impossible to make erroneous situations of real GPS signals. So, at this time, we used GPS simulator which can generate GPS signals with satellite failure scenarios. The GPS simulator used in this test generates GPS signals by the scenarios organized in advance.The scenarios can include pseudorange and carrier phase error, parity error and etc. So we organized several scenarios which can includes potential errors of GPS signals and many possible cases for testing the system effectively and accurately. And we tested integrity function of the GBAS system by using GPS signals generated by the simulator.This paper introduces the implemented integrity monitoring system and algorithms used in the tests. And it describes the scenarios of satellite failure. Finally, this paper shows the results of tests.

  20. Coordinated Ground- and Space-based Multispectral Campaign to Study Equatorial Spread-F Formation

    Science.gov (United States)

    Finn, S. C.; Geddes, G.; Aryal, S.; Stephan, A. W.; Budzien, S. A.; Duggirala, P. R.; Chakrabarti, S.; Valladares, C.

    2016-12-01

    We present a concept for a multispectral campaign using coordinated data from state-of-the-art instruments aboard the International Space Station (ISS) and multiple ground-based spectrometers and digisondes deployed at low-latitudes to study the formation and development of Equatorial Spread-F (ESF). This extended observational campaign utilizes ultraviolet, visible, and radio measurements to develop a predictive capability for ESF and to study the coupling of the ionosphere-thermosphere (I-T) system during geomagnetically quiet and disturbed times. The ground-based instruments will be deployed in carefully chosen locations in the American and Indian sectors while the space-based data will provide global coverage spanning all local times and longitudes within ±51° geographic latitudes. The campaign, over an extended period covering a range of geophysical conditions, will provide the extensive data base necessary to address the important science questions. The space-based instrument suite consists of the Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) and the GPS Radio Occultation and Ultraviolet Photometry-Colocated (GROUP-C) instruments, scheduled to launch to the ISS in November 2016. LITES is a compact imaging spectrograph for remote sensing of the upper atmosphere and ionosphere from 60 to 140nm and GROUP-C has a nadir-viewing FUV photometer. The ground-based instruments to be deployed for this campaign are three high-resolution imaging spectrographs capable of continuous round-the-clock airglow observations: Multiwavelength Imaging Spectrograph using Echelle grating (MISE) in India and two High Throughput and Multi-slit Imaging Spectrographs (HiT&MIS) to be deployed in Colombia and Argentina, the Low-Latitude Ionosphere Sensor Network (LISN), and the Global Ionospheric Radio Observatory (GIRO) digisondes network. We present data from the ground-based instruments, initial results from the LITES and GROUP-C instruments on

  1. Characteristic of Lokon Volcano Deformation of 2009 - 2011 Based on GPS Data

    Directory of Open Access Journals (Sweden)

    Estu Kriswati

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v7i4.147Precursor of Lokon Volcano eruptions in 2011 is believed to begin since December 2007 which was marked by increasing number of volcanic earthquakes and gas emission. To support this information, deformation method is used primarily to determine deformation characteristics of Lokon volcanic activity in the period of 2009-2011. The period of analysis is adapted to the presence of GPS data. Displacement rate of Lokon GPS observation points in the period of 2009 - 2011 ranged from 1.1 to 7 cm a year. Strain patterns that occur in the areas are compression surrounding Tompaluan crater and extension in the eastern slope. Location of the pressure source for August 2009 - March 2011 measurement was at a depth of 1800 m beneath Tompaluan crater. Deformation in the Lokon Volcano is characteristized by the compression zone in the summit and crater area caused by magma activity raised into the surface from a shallow magma source which is accompanied by a high release of volcanic gases. Accumulated pressure release and deformation rate as measured in the Lokon Volcano remain low.

  2. An Accurate and Generic Testing Approach to Vehicle Stability Parameters Based on GPS and INS

    Directory of Open Access Journals (Sweden)

    Zhibin Miao

    2015-12-01

    Full Text Available With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. As a common method, usually GPS sensors and INS sensors are applied to measure vehicle stability parameters by fusing data from the two system sensors. Although prior model parameters should be recognized in a Kalman filter, it is usually used to fuse data from multi-sensors. In this paper, a robust, intelligent and precise method to the measurement of vehicle stability is proposed. First, a fuzzy interpolation method is proposed, along with a four-wheel vehicle dynamic model. Second, a two-stage Kalman filter, which fuses the data from GPS and INS, is established. Next, this approach is applied to a case study vehicle to measure yaw rate and sideslip angle. The results show the advantages of the approach. Finally, a simulation and real experiment is made to verify the advantages of this approach. The experimental results showed the merits of this method for measuring vehicle stability, and the approach can meet the design requirements of a vehicle stability controller.

  3. GPS operations at Olkiluoto in 2011

    Energy Technology Data Exchange (ETDEWEB)

    Koivula, H.; Kallio, U.; Nyberg, S.; Jokela, J.; Poutanen, M. [Finnish Geodetic Institute, Masala (Finland)

    2012-06-15

    The Finnish Geodetic Institute has studied crustal deformations at Olkiluoto, Kivetty and Romuvaara in co-operation with Posiva Oy since 1995. At Olkiluoto a total of 32 GPS campaigns have been carried out at inner network since 1995 and 17 campaigns at outer network since 2003. Kivetty and Romuvaara were not measured in 2011. In the Olkiluoto inner network 80 percent of the estimated change rates are smaller than 0.10 mm/a. One third of the change rates are statistically significant. They are mainly related to the Olkiluoto permanent station (GPS1) and to the pillars GPS6 and GPS13. The change rates related to GPS6 are not realistic due to the site-specific changes affecting the time series. The maximum change rate (-0.20 mm/a {+-} 0.05 mm/a) is related to GPS13. The time series of GPS13 is half the length of other pillars and therefore, the change rates are more uncertain. In the Olkiluoto outer network the maximum and statistically significant change rate is between GPS1-GPS11 (0.39 mm/a {+-} 0.06 mm/a). Pillar GPS12 was not observed this year. The change rates of baselines GPS1-GPS14 and GPS1-GPS15 are first time statistically significant. The change rates indicate a small movement of the GPS1 pillar. The baseline GPS1-GPS11 crosses an old fracture zone locating in the direction of the Eurajoensalmi, which might be a reason for the deformation. On the other hand, the Onkalo excavations in the vicinity of the Olkiluoto permanent station (GPS1) may cause some movement. Electronic distance measurements have been performed at Olkiluoto at the baseline GPS7-GPS8 using the Mekometer since 2002. The measurements have been carried out simultaneously with GPS campaigns. Based on 19 measurements in 10 years, the trends of the two time series seems to be similar. Due to unmodelled or dismodelled geometrical offsets and the scale difference between GPS measurements and EDM there is about 0.3 mm difference between distances GPS7-GPS8 derived from GPS measurements and EDM

  4. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  5. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  6. A Precision, Low-Cost GPS-Based Transmitter Synchronization Scheme for Improved AM Reception

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Stephen Fulton [ORNL; Moore, Anthony [ORNL

    2009-01-01

    This paper describes a highly accurate carrier-frequency synchronization scheme for actively, automatically locking multiple, remotely located AM broadcast transmitters to a common frequency/timing reference source such as GPS. The extremely tight frequency lock (to {approx}1 part in 10{sup 9} or better) permits the effective elimination of audible and even sub-audible beats between the local (desired) station's carrier signal and the distant stations carriers, usually received via skywave propagation during the evening and nighttime hours. These carrier-beat components cause annoying modulations of the desired station's audio at the receiver and concurrent distortion of the audio modulation from the distant station(s) and often cause listeners to ldquotune outrdquo due to the low reception quality. Significant reduction or elimination of the beats and related effects will greatly enlarge the effective (interference-limited) listening area of the desired station (from 4 to 10 times as indicated in our tests) and simultaneously reduce the corresponding interference of the local transmitter to the distant stations as well. In addition, AM stereo (CQUAM) reception will be particularly improved by minimizing the phase shifts induced by co-channel interfering signals; hybrid digital (HD) signals will also benefit via reduction in beats from analog signals. The automatic frequency-control hardware described is inexpensive ($1000-$2000), requires no periodic recalibration, has essentially zero long-term drift, and could employ alternate wide-area frequency references of suitable accuracy, including broadcasts from WWVB, LORAN-C, and equivalent sources. The basic configuration of the GPS-disciplined oscillator which solves this problem is extremely simple. The main oscillator is a conventional high-stability quartz-crystal type. To counter long- term drifts, the oscillator is slightly adjusted to track a high-precision source of standard frequency obtained from a

  7. Modeling the Effects of Soil Moisture at a GPS-Interferometric Reflectometry Station

    Science.gov (United States)

    Chew, C.; Small, E. E.; Larson, K. M.; Nievinski, F. G.; Zavorotny, V.

    2011-12-01

    GPS-Interferometric Reflectometry (GPS-IR) uses ground-reflected GPS signals to estimate near-surface soil moisture. Data are recorded by high-precision, geodetic-quality GPS antennas/receivers, for example those that comprise NSF's EarthScope Plate Boundary Observatory. The ground reflections used in GPS-IR are representative of a ~1000 m2 area around an antenna. As the dielectric constant of the surface fluctuates, the phase, amplitude, and frequency of signal-to-noise ratio (SNR) data recorded by the GPS unit change. Based on field observations, it has been shown that these characteristics of the SNR data are sensitive to shallow soil moisture. A single-scattering, electrodynamic model was used to simulate SNR output over a range of soil moisture conditions. All simulations were for a 2.4 m tall antenna surrounded by a surface free of roughness or vegetation. The model was run using three different types of soil moisture profiles: constant with depth, monotonic variations with depth, and observed profiles interpolated from field data. For all profiles, amplitude, phase shift, and frequency changes were calculated from simulated SNR data. The three GPS metrics are well correlated with soil moisture content modeled at the soil surface because a majority of the incident microwave energy is reflected at the air-soil interface. When surface soil is dry relative to the underlying soil, GPS metrics are also strongly correlated with soil moisture averaged over the top 5 cm of the soil column. The relationship between GPS metrics and soil moisture averaged over 5 cm is not as strong when surface soil is relatively wet (>35% volumetric soil moisture). Interpolated profiles from field data resulted in a very strong correlation between SNR metrics and soil moisture averaged over the top 5 cm of soil, suggesting that soil moisture estimated from SNR data is useful for various hydrologic applications.

  8. Using GPS technology to (re)-examine operational definitions of 'neighbourhood' in place-based health research.

    Science.gov (United States)

    Boruff, Bryan J; Nathan, Andrea; Nijënstein, Sandra

    2012-06-27

    Inconsistencies in research findings on the impact of the built environment on walking across the life course may be methodologically driven. Commonly used methods to define 'neighbourhood', from which built environment variables are measured, may not accurately represent the spatial extent to which the behaviour in question occurs. This paper aims to provide new methods for spatially defining 'neighbourhood' based on how people use their surrounding environment. Informed by Global Positioning Systems (GPS) tracking data, several alternative neighbourhood delineation techniques were examined (i.e., variable width, convex hull and standard deviation buffers). Compared with traditionally used buffers (i.e., circular and polygon network), differences were found in built environment characteristics within the newly created 'neighbourhoods'. Model fit statistics indicated that exposure measures derived from alternative buffering techniques provided a better fit when examining the relationship between land-use and walking for transport or leisure. This research identifies how changes in the spatial extent from which built environment measures are derived may influence walking behaviour. Buffer size and orientation influences the relationship between built environment measures and walking for leisure in older adults. The use of GPS data proved suitable for re-examining operational definitions of neighbourhood.

  9. Development of a regional tropospheric delay model for GPS-based navigation with emphasis to the Indian Region

    Science.gov (United States)

    Parameswaran, K.; Saha, Korak; Suresh Raju, C.

    2008-08-01

    The accuracy of Global Navigation Satellite System (GNSS), aimed to support precise positioning for aircraft navigation globally by coordinating different regional augmentation systems, is limited by the extent to which the atmospheric propagation delay of microwave signals can be modeled. An algorithm is developed for modeling the tropospheric delay based on mean meteorological parameters. A Region-specific Tropospheric Delay (RTD) model is developed exclusively for the Indian region using meteorological data from the Indian subcontinent, as a part of GPS Aided Geo Augmented Navigation (GAGAN) program. The applicability of this model is examined in the context of the global model used in Wide Area Augmentation System (WAAS), developed employing meteorological data mostly from North American continent, by comparing the estimated zenith tropospheric delay (ZTD) with those obtained from regional models employing measured atmospheric parameters at the surface. The rms deviation of ZTD estimated using RTD model from that of the surface model is found to be ˜5 cm. A further validation by comparing with GPS measurements from two IGS stations at Bangalore and Hyderabad showed that predictions made using the RTD model are within an rms deviation of ±5 cm while those using WAAS model is ±7 cm. Maximum value of the residual error for RTD model is ˜15 cm, which corresponds to a ˜0.5 m error in the vertical coordinates for the lowest satellite elevation angles usually encountered.

  10. Using GPS technology to (re-examine operational definitions of ‘neighbourhood’ in place-based health research

    Directory of Open Access Journals (Sweden)

    Boruff Bryan J

    2012-06-01

    Full Text Available Abstract Background Inconsistencies in research findings on the impact of the built environment on walking across the life course may be methodologically driven. Commonly used methods to define ‘neighbourhood’, from which built environment variables are measured, may not accurately represent the spatial extent to which the behaviour in question occurs. This paper aims to provide new methods for spatially defining ‘neighbourhood’ based on how people use their surrounding environment. Results Informed by Global Positioning Systems (GPS tracking data, several alternative neighbourhood delineation techniques were examined (i.e., variable width, convex hull and standard deviation buffers. Compared with traditionally used buffers (i.e., circular and polygon network, differences were found in built environment characteristics within the newly created ‘neighbourhoods’. Model fit statistics indicated that exposure measures derived from alternative buffering techniques provided a better fit when examining the relationship between land-use and walking for transport or leisure. Conclusions This research identifies how changes in the spatial extent from which built environment measures are derived may influence walking behaviour. Buffer size and orientation influences the relationship between built environment measures and walking for leisure in older adults. The use of GPS data proved suitable for re-examining operational definitions of neighbourhood.

  11. A Quarter Active Suspension System Based Ground-Hook Controller

    Directory of Open Access Journals (Sweden)

    Turnip Arjon

    2016-01-01

    Full Text Available An alternative design technique for active suspension system of vehicle using a developved ground-hook damping system as a reference is proposed. The controller parameters are determined using Lyapunov method and can be tuned to precisely achieve the type of desired response which given by reference model. The simulation result show that the designed active suspension system based ground-hook reference model is able to significantly improve the ride comfort and the road holding compared with semi-active suspension.

  12. Bds/gps Integrated Positioning Method Research Based on Nonlinear Kalman Filtering

    Science.gov (United States)

    Ma, Y.; Yuan, W.; Sun, H.

    2017-09-01

    In order to realize fast and accurate BDS/GPS integrated positioning, it is necessary to overcome the adverse effects of signal attenuation, multipath effect and echo interference to ensure the result of continuous and accurate navigation and positioning. In this paper, pseudo-range positioning is used as the mathematical model. In the stage of data preprocessing, using precise and smooth carrier phase measurement value to promote the rough pseudo-range measurement value without ambiguity. At last, the Extended Kalman Filter(EKF), the Unscented Kalman Filter(UKF) and the Particle Filter(PF) algorithm are applied in the integrated positioning method for higher positioning accuracy. The experimental results show that the positioning accuracy of PF is the highest, and UKF is better than EKF.

  13. Single Epoch GPS Deformation Signals Extraction and Gross Error Detection Technique Based on Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; GAO Jingxiang; XU Changhui

    2006-01-01

    Wavelet theory is efficient as an adequate tool for analyzing single epoch GPS deformation signal. Wavelet analysis technique on gross error detection and recovery is advanced. Criteria of wavelet function choosing and Mallat decomposition levels decision are discussed. An effective deformation signal extracting method is proposed, that is wavelet noise reduction technique considering gross error recovery, which combines wavelet multi-resolution gross error detection results. Time position recognizing of gross errors and their repairing performance are realized. In the experiment, compactly supported orthogonal wavelet with short support block is more efficient than the longer one when discerning gross errors, which can obtain more finely analyses. And the shape of discerned gross error of short support wavelet is simpler than that of the longer one. Meanwhile, the time scale is easier to identify.

  14. A New GPS-based Digital Protection System for Smart Grids in Loop Structure

    Directory of Open Access Journals (Sweden)

    X. Liu

    2014-12-01

    Full Text Available This paper presents a new digital protection system to solve the protection challenges in future smart grids, i.e., fast protection and fault isolation in a loop-structured system with limited magnitude of fault current. The new system combines two protection algorithms, i.e., a differential protection as the primary algorithm and an overcurrent protection as the backup one. The new system uses real-time Ethernet and digital data acquisition techniques to overcome the restriction on data transmission over large grids. The current measurements at different locations are time-synchronized by GPS clocks, and then transmitted to a central computer via the Ethernet. As opposed to digital relays which often contain PMU functionality nowadays, this approach uses time stamps on the instantaneous current values. We build a prototype of the new system on a test-bed. The results from simulations and experiments have demonstrated that the protection system achieves fast and accurate protection.

  15. GEARS: An Enterprise Architecture Based On Common Ground Services

    Science.gov (United States)

    Petersen, S.

    2014-12-01

    Earth observation satellites collect a broad variety of data used in applications that range from weather forecasting to climate monitoring. Within NOAA the National Environmental Satellite Data and Information Service (NESDIS) supports these applications by operating satellites in both geosynchronous and polar orbits. Traditionally NESDIS has acquired and operated its satellites as stand-alone systems with their own command and control, mission management, processing, and distribution systems. As the volume, velocity, veracity, and variety of sensor data and products produced by these systems continues to increase, NESDIS is migrating to a new concept of operation in which it will operate and sustain the ground infrastructure as an integrated Enterprise. Based on a series of common ground services, the Ground Enterprise Architecture System (GEARS) approach promises greater agility, flexibility, and efficiency at reduced cost. This talk describes the new architecture and associated development activities, and presents the results of initial efforts to improve product processing and distribution.

  16. Integrated Train Ground Radio Communication System Based TD-LTE

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hongli; CAO Yuan; ZHU Li; XU Wei

    2016-01-01

    In existing metro systems, the train ground radio communication system for different applications are deployed independently. Investing and constructing the communication infrastructures repeatedly wastes substan-tial social resources, and it brings difficulties to maintain all these infrastructures. We present the communication Quality of service (QoS) requirement for different train ground radio applications. An integrated TD-LTE based train ground radio communication system for the metro system (LTE-M) is designed next. In order to test the LTE-M system performance, an indoor testing environment is set up. The channel simulator and programmable attenua-tors are used to simulate the real metro environment. Ex-tensive test results show that the designed LTE-M system performance satisfies metro communication requirements.

  17. GPs' knowledge, use, and confidence in national physical activity and health guidelines and tools: a questionnaire-based survey of general practice in England.

    Science.gov (United States)

    Chatterjee, Robin; Chapman, Tim; Brannan, Mike Gt; Varney, Justin

    2017-10-01

    Physical activity (PA) brief advice in health care is effective at getting individuals active. It has been suggested that one in four people would be more active if advised by a GP or nurse, but as many as 72% of GPs do not discuss the benefits of physical activity with patients. To assess the knowledge, use, and confidence in national PA and Chief Medical Officer (CMO) health guidelines and tools among GPs in England. Online questionnaire-based survey of self-selecting GPs in England that took place over a 10-day period in March 2016. The questionnaire consisted of six multiple-choice questions and was available on the Doctors.net.uk (DNUK) homepage. Quotas were used to ensure good regional representation. The final analysis included 1013 responses. Only 20% of responders were broadly or very familiar with the national PA guidelines. In all, 70% of GPs were aware of the General Practice Physical Activity Questionnaire (GPPAQ), but 26% were not familiar with any PA assessment tools, and 55% reported that they had not undertaken any training with respect to encouraging PA. The majority of GPs in England (80%) are unfamiliar with the national PA guidelines. Awareness of the recommended tool for assessment, GPPAQ, is higher than use by GPs. This may be because it is used by other clinical staff, for example, as part of the NHS Health Check programme. Although brief advice in isolation by GPs on PA will only be a part of the behaviour change journey, it is an important prompt, especially if repeated as part of routine practice. This study highlights the need for significant improvement in knowledge, skills, and confidence to maximise the potential for PA advice in GP consultations. © British Journal of General Practice 2017.

  18. Ground-based observations of Kepler asteroseismic targets

    CERN Document Server

    Uytterhoeven, K; Southworth, J; Randall, S; Ostensen, R; Molenda-Zakowicz, J; Marconi, M; Kurtz, D W; Kiss, L; Gutierrez-Soto, J; Frandsen, S; De Cat, P; Bruntt, H; Briquet, M; Zhang, X B; Telting, J H; Steslicki, M; Ripepi, V; Pigulski, A; Paparo, M; Oreiro, R; Choong, Ngeow Chow; Niemczura, E; Nemec, J; Narwid, A; Mathias, P; Martin-Ruiz, S; Lehman, H; Kopacki, G; Karoff, C; Jackiewicz, J; Henden, A A; Handler, G; Grigachene, A; Green, E M; Garrido, R; Machado, L Fox; Debosscher, J; Creevey, O L; Catanzaro, G; Bognar, Z; Biazzo, K; Bernabei, S

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising Kepler pulsators. So far, 35 different instruments at 30 telescopes on 22 different observatories in 12 countries are in use, and a total of more than 530 observing nights has been awarded. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observato...

  19. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  20. Ground-based lidar for atmospheric boundary layer ozone measurements.

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  1. Ground-Based Calibration Of A Microwave Landing System

    Science.gov (United States)

    Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando

    1996-01-01

    System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.

  2. Ground-based Light Curves Two Pluto Days Before the New Horizons Passage

    Science.gov (United States)

    Bosh, A. S.; Pasachoff, J. M.; Babcock, B. A.; Durst, R. F.; Seeger, C. H.; Levine, S. E.; Abe, F.; Suzuki, D.; Nagakane, M.; Sickafoose, A. A.; Person, M. J.; Zuluaga, C.; Kosiarek, M. R.

    2015-12-01

    We observed the occultation of a 12th magnitude star, one of the two brightest occultation stars ever in our dozen years of continual monitoring of Pluto's atmosphere through such studies, on 29 June 2015 UTC. At Canterbury University's Mt. John University Observatory on the south island of New Zealand, in clear sky, we used our POETS frame-transfer CCD at 10 Hz with GPS timing on the 1-m McLellan telescope as well as an infrared camera on an 0.6-m telescope and three-color photometry at a slower cadence on a second 0.6-m telescope. The light curves show a central flash, indicating that we were close to the center of the occultation path, and allowing us to explore Pluto's atmosphere lower than usual. The light curves show that Pluto's atmosphere remained robust. Observations from 0.5- and 0.4-m telescopes at the Auckland Observatory gave the first half of the occultation before clouds came in. We coordinated our observations with aircraft observations with NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) and its High Speed Imaging Photometer for Occultations (HIPO). Our ground-based and airborne stellar-occultation effort came only just over two weeks of Earth days and two Pluto days (based on Pluto's rotational period) before the flyby of NASA's New Horizons spacecraft, meaning that the mission's exquisite snapshot of Pluto's atmosphere can be placed in the context of our series of ground-based occultation observations carried out on a regular basis since 2002 following a first Pluto occultation observed in 1988 from aloft. Our observations were supported by NASA Planetary Astronomy grants NNX12AJ29G to Williams College, NNX15AJ82G to Lowell Observatory, and NNX10AB27G to MIT, and by the National Research Foundation of South Africa. We thank Alan Gilmore, Pam Kilmartin, Robert Lucas, Paul Tristam, and Carolle Varughese for assistance at Mt. John.

  3. GPS as an independent measurement to estimate terrestrial water storage variations in Washington and Oregon

    Science.gov (United States)

    Fu, Yuning; Argus, Donald F.; Landerer, Felix W.

    2015-01-01

    The Global Positioning System (GPS) measures elastic ground loading deformation in response to hydrological mass variations on or near Earth's surface. We present a time series of change in terrestrial water storage as a function of position in Washington and Oregon estimated using GPS measurements of vertical displacement of Earth's surface. The distribution of water variation inferred from GPS is highly correlated with physiographic provinces: the seasonal water is mostly located in the mountain areas, such as the Cascade Range and Olympic Mountains, and is much smaller in the basin and valley areas of the Columbia Basin and Harney Basin. GPS is proven to be an independent measurement to distinguish between hydrological models. The drought period of 2008-2010 (maximum in 2010) and the recovery period of 2011-2012 in the Cascade Range are well recovered with GPS-determined time-variable monthly water mass series. The GPS-inferred water storage variation in the Cascade Range is consistent with that derived from JPL's GRACE monthly mass grid solutions. The percentage of RMS reduction is ~62% when we subtract GRACE water series from GPS-derived results. GPS-determined water storage variations can fill gaps in the current GRACE mission, also in the transition period from the current GRACE to the future GRACE Follow-on missions. We demonstrate that the GPS-inferred water storage variations can determine and verify local scaling factors for GRACE measurements; in the Cascade Range, the RMS reduction between GRACE series scaled by GPS and scaled by the hydrological model-based GRACE Tellus gain factors is up to 90.5%.

  4. An assessment of the quality of GPS water vapour estimates and their use in operational meteorology and climate monitoring

    OpenAIRE

    2010-01-01

    The path delay between a GPS satellite and a ground based GPS receiver depends, after elimination of ionospheric effects using a combination of the two GPS frequencies, on the integral effect of the densities of dry air and water vapour along the signal path. The total delay in the signal from each satellite is known as the slant delay as the path is most likely to be non-azimuthal. The slant paths are then transferred into the vertical (or zenith) by an elevation mapping function, and this n...

  5. Review and perspectives: Understanding natural-hazards-generated ionospheric perturbations using GPS measurements and coupled modeling

    Science.gov (United States)

    Komjathy, Attila; Yang, Yu-Ming; Meng, Xing; Verkhoglyadova, Olga; Mannucci, Anthony J.; Langley, Richard B.

    2016-07-01

    Natural hazards including earthquakes, volcanic eruptions, and tsunamis have been significant threats to humans throughout recorded history. Global navigation satellite systems (GNSS; including the Global Positioning System (GPS)) receivers have become primary sensors to measure signatures associated with natural hazards. These signatures typically include GPS-derived seismic deformation measurements, coseismic vertical displacements, and real-time GPS-derived ocean buoy positioning estimates. Another way to use GPS observables is to compute the ionospheric total electron content (TEC) to measure, model, and monitor postseismic ionospheric disturbances caused by, e.g., earthquakes, volcanic eruptions, and tsunamis. In this paper, we review research progress at the Jet Propulsion Laboratory and elsewhere using examples of ground-based and spaceborne observation of natural hazards that generated TEC perturbations. We present results for state-of-the-art imaging using ground-based and spaceborne ionospheric measurements and coupled atmosphere-ionosphere modeling of ionospheric TEC perturbations. We also report advancements and chart future directions in modeling and inversion techniques to estimate tsunami wave heights and ground surface displacements using TEC measurements and error estimates. Our initial retrievals strongly suggest that both ground-based and spaceborne GPS remote sensing techniques could play a critical role in detection and imaging of the upper atmosphere signatures of natural hazards including earthquakes and tsunamis. We found that combining ground-based and spaceborne measurements may be crucial in estimating critical geophysical parameters such as tsunami wave heights and ground surface displacements using TEC observations. The GNSS-based remote sensing of natural-hazard-induced ionospheric disturbances could be applied to and used in operational tsunami and earthquake early warning systems.

  6. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  7. GPS and MEMS Gyroscope Real-Time Heading Angle Measurement System Based on SCM%基于单片机的GPS/MEMS陀螺仪航向角实时测量系统

    Institute of Scientific and Technical Information of China (English)

    蒋窍; 李杰; 刘俊; 杜英

    2011-01-01

    In view of the problem that the measurement error for the gyroscope accumulated over time and GPS's poor reliability in a dynamic environment, GPS and MEMS gyroscope real-time heading angle measurement system based on SCM( Single Chip Machine) is proposed and designed. In the system, C8051F021 microcontroller was taken as the core processor,GPS and MEMS gyroscope were combined. Meanwhile, 1PPS( Pulse Per Second) pulse signal of GPS receiver was used as the synchronization label, to achieve real-time correction of MEMS gyroscope heading angle solving,and obtain high accuracy and reliability of the letter heading information. Experimental results show that the system can correctly and reliably measure vehicle heading information in real-time, the actual heading error was controlled with less than ± 1 °, with high practical value and broad prospects.%针对陀螺仪测量误差随时间累积,GPS在动态环境中可靠性差等问题,提出并设计了一种基于单片机的GPS/MEMS陀螺仪航向角实时测量系统。该系统以C8051F021单片机为核心处理器,GPS与MEMS陀螺仪相组合,将GPS接收机中IPPS脉冲信号作为同步标签,实现GPS对陀螺仪航向角解算的实时修正,从而获得高精度和高可靠性的航向角信息。试验结果表明该系统可以正确、可靠地完成对运动载体航向角信息的实时测量,航向角实际应用误差控制在±1°以内,具有较高的实际应用价值和广阔的研究前景。

  8. Scintillation-Hardened GPS Receiver

    Science.gov (United States)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  9. GPS phase scintillation at high latitudes during the geomagnetic storm of 17-18 March 2015

    DEFF Research Database (Denmark)

    Prikryl, P.; Ghoddousi-Fard, R.; Weygand, J. M.

    2016-01-01

    The geomagnetic storm of 17–18 March 2015 was caused by the impacts of a coronal mass ejection and a high-speed plasma stream from a coronal hole. The high-latitude ionosphere dynamics is studied using arrays of ground-based instruments including GPS receivers, HF radars, ionosondes, riometers...

  10. GPs' use of problem solving therapy for depression: a qualitative study of barriers to and enablers of evidence based care

    Directory of Open Access Journals (Sweden)

    Gunn Jane

    2007-04-01

    Full Text Available Abstract Background Depression is a major health concern, predominantly treated by general practitioners (GPs. Problem solving therapy (PST is recognised as an effective treatment for depression that is not widely used by GPs. This research aims to explore barriers and enablers that may influence GPs use of this treatment. Method Qualitative methodology was used including individual and focus group interviews of GPs, PST experts and consumers. Analysis was undertaken using the Theory of Planned Behaviour (TPB as a framework. Results A spectrum of potential influences, on GPs' use of PST emerged. Both barriers and enablers were identified. PST was perceived as being close to current practice approaches and potentially beneficial to both doctor and patient. In addition to a broadly positive attitude to PST, expressed by those with previous experience of its use, potential solutions to perceived barriers emerged. By contrast some GPs expressed fear that the use of PST would result in loss of doctor control of consultations and associated potential adverse patient outcomes. Patient expectations, which emerged as not always coinciding with GPs' perception of those expectations, were identified as a potential influence on GPs' decision concerning adoption of PST. In addition specific factors, including GP skill and confidence, consultation time constraints and technical issues related to PST were noted as potential concerns. Conclusion This research contributes to our knowledge of the factors that may influence GPs' decisions regarding use of PST as a treatment for depression. It recognises both barriers and enablers. It suggests that for many GPs, PST is viewed in a positive light, providing encouragement to those seeking to increase the provision of PST by GPs. In identifying a number of potential barriers, along with associated options to address many of these barriers, it provides insights which may assist in the planning of GP training in PST.

  11. Using GPS to Detect Imminent Tsunamis

    Science.gov (United States)

    Song, Y. Tony

    2009-01-01

    A promising method of detecting imminent tsunamis and estimating their destructive potential involves the use of Global Positioning System (GPS) data in addition to seismic data. Application of the method is expected to increase the reliability of global tsunami-warning systems, making it possible to save lives while reducing the incidence of false alarms. Tsunamis kill people every year. The 2004 Indian Ocean tsunami killed about 230,000 people. The magnitude of an earthquake is not always a reliable indication of the destructive potential of a tsunami. The 2004 Indian Ocean quake generated a huge tsunami, while the 2005 Nias (Indonesia) quake did not, even though both were initially estimated to be of the similar magnitude. Between 2005 and 2007, five false tsunami alarms were issued worldwide. Such alarms result in negative societal and economic effects. GPS stations can detect ground motions of earthquakes in real time, as frequently as every few seconds. In the present method, the epicenter of an earthquake is located by use of data from seismometers, then data from coastal GPS stations near the epicenter are used to infer sea-floor displacements that precede a tsunami. The displacement data are used in conjunction with local topographical data and an advanced theory to quantify the destructive potential of a tsunami on a new tsunami scale, based on the GPS-derived tsunami energy, much like the Richter Scale used for earthquakes. An important element of the derivation of the advanced theory was recognition that horizontal sea-floor motions contribute much more to generation of tsunamis than previously believed. The method produces a reliable estimate of the destructive potential of a tsunami within minutes typically, well before the tsunami reaches coastal areas. The viability of the method was demonstrated in computational tests in which the method yielded accurate representations of three historical tsunamis for which well-documented ground

  12. Research and implement of remote vehicle monitoring and early-warning system based on GPS/GPRS

    Science.gov (United States)

    Li, Shiwu; Tian, Jingjing; Yang, Zhifa; Qiao, Feiyan

    2013-03-01

    Concerning the problem of road traffic safety, remote monitoring and early-warning of vehicle states was the key to prevent road traffic accidents and improve the transportation effectiveness. Through the embedded development technology, a remote vehicle monitoring and early-warning system was developed based on UNO2170 industrial computer of Advantech with WinCE operating system using Embedded Visual C++ (EVC), which combined with multisensor data acquisition technology, global positioning system (GPS) and general packet radio service (GPRS). It achieved the remote monitoring and early-warning of commercial vehicle. This system was installed in a CA1046L2 light truck. Through many road tests, test results showed that the system reacted rapidly for abnormal vehicle states and had stable performance.

  13. Continuous professional development for GPs

    DEFF Research Database (Denmark)

    Kjaer, N K; Steenstrup, A P; Pedersen, L B

    2014-01-01

    randomly chosen Danish GPs. RESULTS: Focus groups: CPD activities are chosen based on personal needs analysis, and in order to be professionally updated, to meet engaged colleagues and to prevent burnout. GPs also attend CPD to assess their own pre-existing level of competence. CPD activities need...... by topics strengthening their professional capacity and preventing burnout. There would seem to be no need for a mandatory system....

  14. A comparative study of satellite and ground-based phenology.

    Science.gov (United States)

    Studer, S; Stöckli, R; Appenzeller, C; Vidale, P L

    2007-05-01

    Long time series of ground-based plant phenology, as well as more than two decades of satellite-derived phenological metrics, are currently available to assess the impacts of climate variability and trends on terrestrial vegetation. Traditional plant phenology provides very accurate information on individual plant species, but with limited spatial coverage. Satellite phenology allows monitoring of terrestrial vegetation on a global scale and provides an integrative view at the landscape level. Linking the strengths of both methodologies has high potential value for climate impact studies. We compared a multispecies index from ground-observed spring phases with two types (maximum slope and threshold approach) of satellite-derived start-of-season (SOS) metrics. We focus on Switzerland from 1982 to 2001 and show that temporal and spatial variability of the multispecies index correspond well with the satellite-derived metrics. All phenological metrics correlate with temperature anomalies as expected. The slope approach proved to deviate strongly from the temporal development of the ground observations as well as from the threshold-defined SOS satellite measure. The slope spring indicator is considered to indicate a different stage in vegetation development and is therefore less suited as a SOS parameter for comparative studies in relation to ground-observed phenology. Satellite-derived metrics are, however, very susceptible to snow cover, and it is suggested that this snow cover should be better accounted for by the use of newer satellite sensors.

  15. Aging in Activity Space: Results From Smartphone-Based GPS-Tracking of Urban Seniors.

    Science.gov (United States)

    York Cornwell, Erin; Cagney, Kathleen A

    2017-09-01

    Prior research emphasizes the importance of the residential neighborhood context during later life but little attention has been afforded to other areas that older adults encounter as they move beyond their residential environments for daily activities and social interactions. This study examines the predominance of the residential context within older adults' everyday lives. We provided 60 older adults in four New York City neighborhoods with iPhones, which captured Global Positioning Systems (GPS) locations at 5-min intervals over 1 week (n = 55,561) and 17 ecological momentary assessments (EMAs) over 4 days (n = 757) to assess real-time activities. Older adults in our sample spent nearly 40% of their time outside of their residential tracts and they visited 28 other tracts, on average. Exercising, shopping, socializing, and social activities were especially likely to take place outside of residential tracts. Differences in residential and nonresidential poverty exposure vary across gender, race/ethnicity, education, car ownership, and residential areas. Measuring activity space, rather than relying on residential tracts, allows examination of the social environments that are relevant for older adults' everyday lives. Variation in characteristics of activity spaces may be an underexplored source of differences in health and well-being during later life.

  16. The Evaluation of GPS techniques for UAV-based Photogrammetry in Urban Area

    Directory of Open Access Journals (Sweden)

    M. L. Yeh

    2016-06-01

    Full Text Available The efficiency and high mobility of Unmanned Aerial Vehicle (UAV made them essential to aerial photography assisted survey and mapping. Especially for urban land use and land cover, that they often changes, and need UAVs to obtain new terrain data and the new changes of land use. This study aims to collect image data and three dimensional ground control points in Taichung city area with Unmanned Aerial Vehicle (UAV, general camera and Real-Time Kinematic with positioning accuracy down to centimetre. The study area is an ecological park that has a low topography which support the city as a detention basin. A digital surface model was also built with Agisoft PhotoScan, and there will also be a high resolution orthophotos. There will be two conditions for this study, with or without ground control points and both were discussed and compared for the accuracy level of each of the digital surface models. According to check point deviation estimate, the model without ground control points has an average two-dimension error up to 40 centimeter, altitude error within one meter. The GCP-free RTK-airborne approach produces centimeter-level accuracy with excellent to low risk to the UAS operators. As in the case of the model with ground control points, the accuracy of x, y, z coordinates has gone up 54.62%, 49.07%, and 87.74%, and the accuracy of altitude has improved the most.

  17. The Evaluation of GPS techniques for UAV-based Photogrammetry in Urban Area

    Science.gov (United States)

    Yeh, M. L.; Chou, Y. T.; Yang, L. S.

    2016-06-01

    The efficiency and high mobility of Unmanned Aerial Vehicle (UAV) made them essential to aerial photography assisted survey and mapping. Especially for urban land use and land cover, that they often changes, and need UAVs to obtain new terrain data and the new changes of land use. This study aims to collect image data and three dimensional ground control points in Taichung city area with Unmanned Aerial Vehicle (UAV), general camera and Real-Time Kinematic with positioning accuracy down to centimetre. The study area is an ecological park that has a low topography which support the city as a detention basin. A digital surface model was also built with Agisoft PhotoScan, and there will also be a high resolution orthophotos. There will be two conditions for this study, with or without ground control points and both were discussed and compared for the accuracy level of each of the digital surface models. According to check point deviation estimate, the model without ground control points has an average two-dimension error up to 40 centimeter, altitude error within one meter. The GCP-free RTK-airborne approach produces centimeter-level accuracy with excellent to low risk to the UAS operators. As in the case of the model with ground control points, the accuracy of x, y, z coordinates has gone up 54.62%, 49.07%, and 87.74%, and the accuracy of altitude has improved the most.

  18. GPS-based precise orbit determination and accelerometry for low flying satellites

    NARCIS (Netherlands)

    Van den IJssel, J.A.A.

    2014-01-01

    Atmospheric density models are currently the limiting factor in the accuracy of the dynamic orbit determination and prediction of satellites in a low Earth orbit. Any improvement in these models would greatly aid in applications such as re-entry prediction, ground-track maintenance of Earth observat

  19. An Android based location service using GSMCellID and GPS to obtain a graphical guide to the nearest cash machine

    Science.gov (United States)

    Jacobsen, Jurma; Edlich, Stefan

    2009-02-01

    There is a broad range of potential useful mobile location-based applications. One crucial point seems to be to make them available to the public at large. This case illuminates the abilities of Android - the operating system for mobile devices - to fulfill this demand in the mashup way by use of some special geocoding web services and one integrated web service for getting the nearest cash machines data. It shows an exemplary approach for building mobile location-based mashups for everyone: 1. As a basis for reaching as many people as possible the open source Android OS is assumed to spread widely. 2. Everyone also means that the handset has not to be an expensive GPS device. This is realized by re-utilization of the existing GSM infrastructure with the Cell of Origin (COO) method which makes a lookup of the CellID in one of the growing web available CellID databases. Some of these databases are still undocumented and not yet published. Furthermore the Google Maps API for Mobile (GMM) and the open source counterpart OpenCellID are used. The user's current position localization via lookup of the closest cell to which the handset is currently connected to (COO) is not as precise as GPS, but appears to be sufficient for lots of applications. For this reason the GPS user is the most pleased one - for this user the system is fully automated. In contrary there could be some users who doesn't own a GPS cellular. This user should refine his/her location by one click on the map inside of the determined circular region. The users are then shown and guided by a path to the nearest cash machine by integrating Google Maps API with an overlay. Additionally, the GPS user can keep track of him- or herself by getting a frequently updated view via constantly requested precise GPS data for his or her position.

  20. The mapping of ionospheric TEC for central Russian and European regions on the base of GPS and GLONASS measurements

    Science.gov (United States)

    Shagimuratov, Irk; Cherniak, Iurii; Zakharenkova, Irina; Ephishov, Ivan; Krankowski, Andrzej; Radievsky, Alexander

    2014-05-01

    The total electron content (TEC) is a key parameter not only for space radio communication but also for addressing the fundamental problems of the ionosphere physics and near Earth space. Currently, the main sources of information on the TEC in the global scale are GNSS signals measurements. The spatial-temporal behavior of the ionosphere can be most effectively analyzed using TEC maps. To date, global IGS global ionospheric maps with a resolution of 2.5 degree in latitude and 5 in longitude and a time resolution of 2 h are most widely used. To study the detailed structure of the ionospheric gradients and rapid process as well as for precise positioning task it is necessary to use more precise regional TEC maps. The Regional TEC maps are currently constructed by different research groups for different regions: USA, Europe, Japan etc. The West Department of IZMIRAN research group is a one in Russia who works on the task of regional ionosphere mapping since 2000. It was developed the methodology for obtaining information on the spatial TEC distribution, TEC maps of the ionosphere on the basis of the algorithm for multi-station processing of GNSS observations. Using a set of algorithms and programs, regional TEC maps with a spatial resolution of 1° and a time resolution up to 15 min can be produced. Here is developed the approach to establish the regular online internet service for regional ionosphere mapping of the Western Russia and Eastern Europe. Nowadays the development of GLONASS navigation system is completely finished and it consists of a constellation of more than 24 satellites. It is good perspective for investigations of the ionosphere structure and dynamics on the base of the simultaneous observations of GPS and GLONASS systems. The GLONASS satellites have the inclination about 64 degrees as against GPS satellites with 56. So the GLONASS provides opportunity to study the high latitude ionosphere. The different scale electron density irregularities

  1. A New Model of Present-day Deformation of the Philippine Mobile Belt based on GPS and Seismological Data

    Science.gov (United States)

    Bacolcol, T. C.; Galgana, G. A.; Hamburger, M. W.; Nowicki, M. A.; McCaffrey, R.; Johnson, K. M.; Solidum, R.; Pelicano, A.; Luis, A.; Jorgio, R.; Rau, R.

    2013-12-01

    We present a comprehensive crustal deformation model for the Philippine Mobile Belt, based on a newly available suite of geodetic data from a dense nationwide network of newly observed and previously published continuous and campaign GPS sites in the Philippines, collected by PHIVOLCS and Indiana University. We use elastic block models constrained by known fault geometries, observed GPS observations and focal mechanism solutions to invert for an estimate of block rotations, fault coupling, and intra-block deformation. In our preferred model, the Philippine Mobile Belt can be represented by at least 12 independently moving rigid tectonic blocks, separated by active faults and subduction zones. We observe rapid convergence along the Manila Trench, which decreases progressively southwards, from > 100 mm/yr at around 20°N, to less than 20 mm/yr near its southern termination at Mindoro Island reflecting the ongoing collision between Mindoro and the Palawan block. Along the Philippine Trench, we observe ~50 mm/yr of oblique convergence, with the convergence changing from nearly westward in the south to NW near its northern termination. Slip rates along the Philippine fault vary from ~10 - 40 mm/yr, trending subparallel to the fault trace. In northern Luzon, Philippine Fault splays accommodate transpressional strain. The Central Visayas block experiences convergence with the Sundaland block along the Sulu Trench and the Mindoro-Palawan collision zone. Mindanao Island in the southern Philippines is dominated by east-verging subduction along the Cotabato Trench, and strain partitioning in eastern Mindanao along the southern Philippine Fault and Philippine Trench. We examine the spatial variation of subduction zone coupling along the Manila and Philippine trenches and examine their contribution to earthquake potential, through dynamic modeling of subduction-zone creeping and locked segments. Tests utilizing synthetic models of locking and creeping segments of the Manila

  2. Volcano monitoring using GPS: Developing data analysis strategies based on the June 2007 Kīlauea Volcano intrusion and eruption

    Science.gov (United States)

    Larson, Kristine M.; Poland, Michael; Miklius, Asta

    2010-01-01

    The global positioning system (GPS) is one of the most common techniques, and the current state of the art, used to monitor volcano deformation. In addition to slow (several centimeters per year) displacement rates, GPS can be used to study eruptions and intrusions that result in much larger (tens of centimeters over hours-days) displacements. It is challenging to resolve precise positions using GPS at subdaily time intervals because of error sources such as multipath and atmospheric refraction. In this paper, the impact of errors due to multipath and atmospheric refraction at subdaily periods is examined using data from the GPS network on Kīlauea Volcano, Hawai'i. Methods for filtering position estimates to enhance precision are both simulated and tested on data collected during the June 2007 intrusion and eruption. Comparisons with tiltmeter records show that GPS instruments can precisely recover the timing of the activity.

  3. 基于GPS-GSM的汽车短信防盗系统设计%GPS-GSM-BASED VEHICLE ANTI-THEFT MESSAGE SYSTEM DESIGN

    Institute of Scientific and Technical Information of China (English)

    刘柏楠; 张修红; 娄海波; 陈学旭

    2011-01-01

    Aiming at current problems in vehicle anti-theft devices and the market prospect, the authors put forward a new vehicle anti-theft system design proposal. The system consists of STC89C52 SCM, TC35i wireless communication module, XN934 + integrated GPS module, relay and other components. After testing, the system can be real-time monitoring of vehicles with the positioning accuracy 5 meters which realizes the anti-theft function.%针对目前汽车防盗设备存在的问题及市场应用前景,作者提出了一种新的汽车防盗系统的设计方案.本系统由STC89C52单片机、TC35i无线通信模块、XN934+一体化GPS模块、继电器等元件构成.经测试,本系统可以对汽车进行实时监控,且其定位精度为5 m,实现了汽车防盗功能.

  4. Seamless Location Measuring System with Wifi Beacon Utilized and GPS Receiver based Systems in Both of Indoor and Outdoor Location Measurements

    OpenAIRE

    Kohei Arai

    2015-01-01

    A seamless location measuring system with WiFi beacon utilized and GPS receiver based systems in both of indoor and outdoor location measurements is proposed. Through the experiments in both of indoor and outdoor, it is found that location measurement accuracy is around 2-3 meters for the locations which are designated in both of indoor and outdoor.

  5. Real-time inversions for finite fault slip models and rupture geometry based on high-rate GPS data

    Science.gov (United States)

    Minson, Sarah E.; Murray, Jessica R.; Langbein, John O.; Gomberg, Joan S.

    2015-01-01

    We present an inversion strategy capable of using real-time high-rate GPS data to simultaneously solve for a distributed slip model and fault geometry in real time as a rupture unfolds. We employ Bayesian inference to find the optimal fault geometry and the distribution of possible slip models for that geometry using a simple analytical solution. By adopting an analytical Bayesian approach, we can solve this complex inversion problem (including calculating the uncertainties on our results) in real time. Furthermore, since the joint inversion for distributed slip and fault geometry can be computed in real time, the time required to obtain a source model of the earthquake does not depend on the computational cost. Instead, the time required is controlled by the duration of the rupture and the time required for information to propagate from the source to the receivers. We apply our modeling approach, called Bayesian Evidence-based Fault Orientation and Real-time Earthquake Slip, to the 2011 Tohoku-oki earthquake, 2003 Tokachi-oki earthquake, and a simulated Hayward fault earthquake. In all three cases, the inversion recovers the magnitude, spatial distribution of slip, and fault geometry in real time. Since our inversion relies on static offsets estimated from real-time high-rate GPS data, we also present performance tests of various approaches to estimating quasi-static offsets in real time. We find that the raw high-rate time series are the best data to use for determining the moment magnitude of the event, but slightly smoothing the raw time series helps stabilize the inversion for fault geometry.

  6. 基于GPS的输电线路巡检%Inspection of Power Transmission Line Based on GPS

    Institute of Scientific and Technical Information of China (English)

    胡春霞; 王素珍; 孙成龙

    2012-01-01

    在电力系统中,架空高压输电线路是重要组成部分.为了保证输电线路的稳定安全运行、减少巡检员的工作量、同时为管理人员提供有效的监督依据,文中开发了基于GPS的输电线路巡检系统,该系统由终端手持机和后台管理系统组成,集卫星定位系统(GPs)、计算机通信技术和手持式处理终端于一体,具有低成本、操作方便、使用时间长等特点.该系统具有安排线路、记录数据、监督工作状态.汇总数据等功能,同时实现了无纸化办公以及巡检标准的规范化.%In the power system,overhead high voltage transmission lines are an important part. In order to ensure a stable and secure operation of transmission lines .reduce the workload of patrol members, and provide effective supervision for managers, discuss the inspection management system based on the global position system (GPS). H is composed of the terminal handheld and the backstage management system, which unifies the function of the global position system,computer network communication technology and portable information processing terminal The system has the advantages of low cost,convenient operation,long service time and other characteristics. With functions of line arrangements,data recording,supervision of the working state and summary report of data,achieve paperless office and specification of inspection standards.

  7. Reliability of calculation of the lithosphere deformations in tectonically stable area of Poland based on the GPS measurements

    Science.gov (United States)

    Araszkiewicz, Andrzej; Jarosiński, Marek

    2013-04-01

    In this research we aimed to check if the GPS observations can be used for calculation of a reliable deformation pattern of the intracontinental lithosphere in seismically inactive areas, such as territory of Poland. For this purpose we have used data mainly from the ASG-EUPOS permanent network and the solutions developed by the MUT CAG team (Military University of Technology: Centre of Applied Geomatics). From the 128 analyzed stations almost 100 are mounted on buildings. Daily observations were processed in the Bernese 5.0 software and next the weekly solutions were used to determine the station velocities expressed in ETRF2000. The strain rates were determined for almost 200 triangles with GPS stations in their corners plotted used Delaunay triangulation. The obtained scattered directions of deformations and highly changeable values of strain rates point to insufficient antennas' stabilization as for geodynamical studies. In order to depict badly stabilized stations we carried out a benchmark test to show what might be the effect of one station drift on deformations in contacting triangles. Based on the benchmark results, from our network we have eliminated the stations which showed deformation pattern characteristic for instable station. After several rounds of strain rate calculations and eliminations of dubious points we have reduced the number of stations down to 60. The refined network revealed more consistent deformation pattern across Poland. Deformations compared with the recent stress field of the study area disclosed good correlation in some places and significant discrepancies in the others, which will be the subject of future research.

  8. Assessment of altimetry data in Amazonian forest based in INSAR, LIDAR; and GPS technologies.

    Directory of Open Access Journals (Sweden)

    Corina da Costa Freitas

    2006-12-01

    Full Text Available There is a great amount of altimetry data collected by several experiments taken in the Tapajós National Forest located in the Brazilian Amazon State of Pará. Some of these data were produced by current state of the art technology whose effectiveness is still being proven by scientific investigations. In 1999 LIDAR profiles associated to videography data were taken in the region. In 2000 it was collected P and X band interferometric multifrequency data over areas of different vegetation types. The backscatter response collected by P band radar antenna potentially produces a real digital terrain model (DTM due to its penetration capability across forest canopy toward the soil. When collected in X band radiation is reflected in the top forest canopy which produces a digital surface model (DSM. The availability of digital terrain model and digital surface model covering the same forested area is of great interest for many purposes, especially cartographic applications and carbon stock estimation. Also in 2000, the SRTM mission provided global interferometric cover in C and X bands that permitted the use of these data in the present work. In 2001, 2002, 2003 e 2005 several field control positions were surveyed using GPS dual frequency receivers and by topography surveying methods using total stations. The purpose of this work is to make an evaluation of the errors affecting the original multiple sensor data collected in the study area and apply an effective correction in order to eliminate those errors to permit using the models in other applications. An effective correction type was developed that reduced the original errors. The correction methodology consisted in altimetry offset determination and its application to the original data. Evaluations confirmed that the correction methodology produced good results and the corrected models presented global and local errors lesser than those in the original models.

  9. Optimization of GPS Interferometric Reflectometry for Remote Sensing

    Science.gov (United States)

    Chen, Qiang

    GPS Interferometric Reflectometry (GPS-IR), a passive microwave remote sensing technique utilizing GPS signal as a source of opportunity, characterizes the Earth's surface through a bistatic radar configuration. The key idea of GPS-IR is utilizing a ground-based antenna to coherently receive the direct, or line-of-sight (LOS), signal and the Earth's surface reflected signal simultaneously. The direct and reflected signals create an interference pattern of the Signal-to-Noise Ratio (SNR), which contains the information about the Earth's surface environment. GPS-IR has proven its utility in a variety of environmental remote sensing applications, including the measurements of near-surface soil moisture, coastal sea level, snow depth and snow water equivalent, and vegetation biophysical parameters. A major approach of the GPS-IR technique is using the SNR data provided by the global network of the geodetic GPS stations deployed for tectonic and surveying applications. The geodetic GPS networks provide wide spatial coverage and have no additional cost for this capability expansion. However, the geodetic GPS instruments have intrinsic limitations: the geodetic-quality GPS antennas are designed to suppress the reflected signals, which is counter to the requirement of GPS-IR. As a result, it is desirable to refine and optimize the instrument and realize the full potential of the GPS-IR technique. This dissertation first analyzes the signal characteristics of four available polarizations of the GPS signal, and then discusses how these characteristics are related to and can be used for remote sensing applications of GPS-IR. Two types of antennas, a half-wavelength dipole antenna and a patch antenna, are proposed and fabricated to utilize the desired polarizations. Four field experiments are conducted to assess the feasibility of the design criteria and the performance of the proposed antennas. Three experiments are focused on snow depth measurement. The Table Mountain

  10. Ground-based complex for checking the optical system

    Science.gov (United States)

    Grebenyuk, V.; Boreiko, V.; Dmitrotsa, A.; Gorbunov, N.; Khrenov, B.; Klimov, P.; Lavrova, M.; Popescu, E. M.; Sabirov, B.; Tkachenko, A.; Tkachev, L.; Volvach, A.; Yashin, I.

    2016-09-01

    The purpose TUS space experiment is to study cosmic rays of ultrahigh energies produced by extensive air showers from space. The concentrator is located on satellite, made in the form of the Fresnel mirror towards the earth's atmosphere, the focus of which is a photodetector. The angle of view of the mirror is ±4.5° that for a given height of the orbit corresponds to the area 80 × 80 km2 on ground. The ground complex consisting of a number of stations, to check the optical system of the experiment is created, (their location and the amount will be determined after the launch of the satellite based on its actual orbit).

  11. Ground extraction from airborne laser data based on wavelet analysis

    Science.gov (United States)

    Xu, Liang; Yang, Yan; Jiang, Bowen; Li, Jia

    2007-11-01

    With the advantages of high resolution and accuracy, airborne laser scanning data are widely used in topographic mapping. In order to generate a DTM, measurements from object features such as buildings, vehicles and vegetation have to be classified and removed. However, the automatic extraction of bare earth from point clouds acquired by airborne laser scanning equipment remains a problem in LIDAR data filtering nowadays. In this paper, a filter algorithm based on wavelet analysis is proposed. Relying on the capability of detecting discontinuities of continuous wavelet transform and the feature of multi-resolution analysis, the object points can be removed, while ground data are preserved. In order to evaluate the performance of this approach, we applied it to the data set used in the ISPRS filter test in 2003. 15 samples have been tested by the proposed approach. Results showed that it filtered most of the objects like vegetation and buildings, and extracted a well defined ground model.

  12. A Test Method for GPS/INS Integrated Navigation Repeater Jamming Based on Partial States Test%局部状态检测的GPS/INS组合导航转发式干扰检验方法

    Institute of Scientific and Technical Information of China (English)

    朱立新; 孟; 王江; 马春来

    2014-01-01

    For the problem of GPS/INS Integrated Navigation Repeater Jamming,a method based on partial states chi-square test is presented. This method is based on the relationship between analysis of the characteristics of fault changes and the characteristics of fault diagnosis function. According to Demonstrate the feasibility of the method via changes in the observed value,changes in the observed model,and state value changes in the chi-square test,it is concluded that Repeater Jamming is a unnecessary and sufficient condition for GPS/INS Integrated Navigation’s system fault. At last,by adding cajolery to simulation trajectory to simulate the Repeater Jamming,the simulation results show that this method can judge the occurrence of Repeater Jamming in high sensitivity and high accuracy.%针对GPS/INS(Global Positioning System/Inertial Navigation System)组合导航中GPS 转发式干扰问题,在分析故障变化特性与故障诊断函数特性之间关系的基础上,提出了一种基于局部状态字2检验的方法。通过观测值的变化、观测模型的变化和χ²检验中x-1 k的变化论证了方法的可行性,并得出组合导航受到转发式干扰是判断系统发生故障的充分而非必要条件的结论。最后通过在仿真轨迹中加入诱偏来模拟转发式干扰,仿真实验证明该方法能够以较高的灵敏度和较高的准确性判断转发式干扰的发生。

  13. The evolution of OPUS: A set of web-based GPS processing tools offered by the National Geodetic Survey

    Science.gov (United States)

    Weston, Dr.; Mader, Dr.; Schenewerk, Dr.

    2012-04-01

    The Online Positioning User Service (OPUS) is a suite of web-based GPS processing tools that were initially developed by the National Geodetic Survey approximately eleven years ago. The first version, known as OPUS static (OPUS-S), processes L1 and L2 carrier-phase data in native receiver and RINEX formats. Datasets submitted to OPUS-S must be between two and 48 hours in duration and pass several quality control steps before being passed onto the positioning algorithm. OPUS-S was designed to select five nearby CORS to form baselines that are processed independently. The best three solutions are averaged to produce a final set of coordinates. The current version of OPUS-S has been optimized to accept and process GPS data from any location in the continental United States, Alaska, Hawaii and the Caribbean. OPUS Networks (OPUS-Net), one of the most recently developed versions and currently in beta testing, has many of the same processing characteristics and dataset requirements as OPUS-S but with one significant difference. OPUS-Net selects up to 10 IGS reference sites and three regional CORS to perform a simultaneous least squares adjustment with the user-submitted data. The CORS stations are primarily used to better estimate the troposphere while the position of the unknown station and the three CORS reference stations are determined from the more precisely known and monitored IGS reference stations. Additional enhancements to OPUS-Net are the implementation of absolute antenna patterns and ocean tides (FES2004), using reference station coordinates in IGS08 reference frame, as well as using improved phase ambiguity integer fixing and troposphere modeling (GPT and GMF a priori models). OPUS Projects, the final version of OPUS to be reviewed in this paper, is a complete web-based, GPS data processing and analysis environment. The main idea behind OPUS Projects is that one or more managers can define numerous, independent GPS projects. Each newly defined project is

  14. Suborbital Reusable Launch Vehicles as an Opportunity to Consolidate and Calibrate Ground Based and Satellite Instruments

    Science.gov (United States)

    Papadopoulos, K.

    2014-12-01

    XCOR Aerospace, a commercial space company, is planning to provide frequent, low cost access to near-Earth space on the Lynx suborbital Reusable Launch Vehicle (sRLV). Measurements in the external vacuum environment can be made and can launch from most runways on a limited lead time. Lynx can operate as a platform to perform suborbital in situ measurements and remote sensing to supplement models and simulations with new data points. These measurements can serve as a quantitative link to existing instruments and be used as a basis to calibrate detectors on spacecraft. Easier access to suborbital data can improve the longevity and cohesiveness of spacecraft and ground-based resources. A study of how these measurements can be made on Lynx sRLV will be presented. At the boundary between terrestrial and space weather, measurements from instruments on Lynx can help develop algorithms to optimize the consolidation of ground and satellite based data as well as assimilate global models with new data points. For example, current tides and the equatorial electrojet, essential to understanding the Thermosphere-Ionosphere system, can be measured in situ frequently and on short notice. Furthermore, a negative-ion spectrometer and a Faraday cup, can take measurements of the D-region ion composition. A differential GPS receiver can infer the spatial gradient of ionospheric electron density. Instruments and optics on spacecraft degrade over time, leading to calibration drift. Lynx can be a cost effective platform for deploying a reference instrument to calibrate satellites with a frequent and fast turnaround and a successful return of the instrument. A calibrated reference instrument on Lynx can make collocated observations as another instrument and corrections are made for the latter, thus ensuring data consistency and mission longevity. Aboard a sRLV, atmospheric conditions that distort remotely sensed data (ground and spacecraft based) can be measured in situ. Moreover, an

  15. Recent Advances in Global Positioning System(GPS)%全球定位系统(GPS)的最新进展(下)

    Institute of Scientific and Technical Information of China (English)

    胡明城

    2001-01-01

    This paper deals with the recent advances in global positioningsystem(GPS). First of all,the principal error sources of GPS observations are analysed. Then the scientific applications of space based GPS are described,of which the TOPEX and Microlape missions are excellent examples of great success. With regard to the application of GPS to meteorology (GPS/MET),detailed description is given to earth based GPS/MET and space based GPS/MET,they stand at the front of recent advances in GPS.

  16. The Effects of the Ionosphere on Ground-based Detection of the Global 21 cm Signal from the Cosmic Dawn and the Dark Ages

    Science.gov (United States)

    Datta, Abhirup; Bradley, Richard; Burns, Jack O.; Harker, Geraint; Komjathy, Attila; Lazio, T. Joseph W.

    2016-11-01

    Detection of the global H i 21 cm signal from the Cosmic Dawn and the Epoch of Reionization is the key science driver for several ongoing ground-based and future ground-/space-based experiments. The crucial spectral features in the global 21 cm signal (turning points) occur at low radio frequencies ≲ 100 {{MHz}}. In addition to the human-generated radio frequency interference, Earth’s ionosphere drastically corrupts low-frequency radio observations from the ground. In this paper, we examine the effects of time-varying ionospheric refraction, absorption, and thermal emission at these low radio frequencies and their combined effect on any ground-based global 21 cm experiment. It should be noted that this is the first study of the effect of a dynamic ionosphere on global 21 cm experiments. The fluctuations in the ionosphere are influenced by solar activity with flicker noise characteristics. The same characteristics are reflected in the ionospheric corruption to any radio signal passing through the ionosphere. As a result, any ground-based observations of the faint global 21 cm signal are corrupted by flicker noise (or 1/f noise, where f is the dynamical frequency) which scales as {ν }-2 (where ν is the frequency of radio observation) in the presence of a bright galactic foreground (\\propto {ν }-s, where s is the radio spectral index). Hence, the calibration of the ionosphere for any such experiment is critical. Any attempt to calibrate the ionospheric effects will be subject to the inaccuracies in the current ionospheric measurements using Global Positioning System (GPS) ionospheric measurements, riometer measurements, ionospheric soundings, etc. Even considering an optimistic improvement in the accuracy of GPS-total electron content measurements, we conclude that Earth’s ionosphere poses a significant challenge in the absolute detection of the global 21 cm signal below 100 MHz.

  17. Orbit determination for CE5T based upon GPS data%CE5T 星载 GPS 数据的定轨分析

    Institute of Scientific and Technical Information of China (English)

    曹建峰; 张宇; 胡松杰; 唐歌实; 李勰

    2016-01-01

    long data of the differential pseudo-ranging can achieve one hour forecast orbit accuracy of better than 100 m,which will have to be obtained with long-arc data for the ground-based tracking stations.

  18. An Enhanced Error Model for EKF-Based Tightly-Coupled Integration of GPS and Land Vehicle’s Motion Sensors

    Directory of Open Access Journals (Sweden)

    Tashfeen B. Karamat

    2015-09-01

    Full Text Available Reduced inertial sensor systems (RISS have been introduced by many researchers as a low-cost, low-complexity sensor assembly that can be integrated with GPS to provide a robust integrated navigation system for land vehicles. In earlier works, the developed error models were simplified based on the assumption that the vehicle is mostly moving on a flat horizontal plane. Another limitation is the simplified estimation of the horizontal tilt angles, which is based on simple averaging of the accelerometers’ measurements without modelling their errors or tilt angle errors. In this paper, a new error model is developed for RISS that accounts for the effect of tilt angle errors and the accelerometer’s errors. Additionally, it also includes important terms in the system dynamic error model, which were ignored during the linearization process in earlier works. An augmented extended Kalman filter (EKF is designed to incorporate tilt angle errors and transversal accelerometer errors. The new error model and the augmented EKF design are developed in a tightly-coupled RISS/GPS integrated navigation system. The proposed system was tested on real trajectories’ data under degraded GPS environments, and the results were compared to earlier works on RISS/GPS systems. The findings demonstrated that the proposed enhanced system introduced significant improvements in navigational performance.

  19. Correcting for GPS Multipath Error in LIDAR Surveys Using Crossover Analysis

    Science.gov (United States)

    Borsa, A. A.; Bills, B. G.; Fricker, H. A.; Minster, J. B.

    2003-12-01

    The quality of the range measurement from an airborne Light Detection and Ranging (LIDAR) survey is largely dependent on the accuracy of the GPS trajectory for the aircraft. GPS elevation error - which today is largely due to multipath effects at the aircraft and the GPS base station - contributes a major portion of the LIDAR vertical error budget. The usual practice of quoting an RMS value for the GPS component of the error budget implies that GPS noise is Gaussian, yet the true nature of the noise signal is time-varying with significant power at long periods. GPS noise with a 3-cm RMS can easily have more than 10 cm of total variability on a time scale of tens of minutes to several hours. We show examples from an airborne LIDAR survey over the open-pit Hector Mine where repeated flyovers of an area used for ground truth revealed large elevation biases between passes that could not be resolved by adjusting the (non-GPS) parameters of the LIDAR system. As part of the post-processing of a large kinematic GPS survey of the salar de Uyuni, Bolivia, we have developed an algorithm to correct time-varying GPS error using elevation mismatches at crossovers between vehicle paths. The survey was originally designed to incorporate a large number of crossovers for the purpose of determining survey repeatability, and we were later able to exploit the crossover difference observations to solve for a model of the actual error signal generating those differences. We give results from tests with synthetic noise and topography data indicating that this method removes more than two-thirds of the added noise from the topographic signal, and we show the excellent results obtained for the salar de Uyuni survey data. We believe that airborne LIDAR surveys incorporating crossovers at regular intervals can also benefit from the application of this algorithm.

  20. Miniaturized GPS/MEMS IMU integrated board

    Science.gov (United States)

    Lin, Ching-Fang (Inventor)

    2012-01-01

    This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.

  1. Determination of Vessel Attitudes Using GPS

    Institute of Scientific and Technical Information of China (English)

    王书寅; 周丰年; 金建霞; 吴敬文

    2002-01-01

    With the development of GPS carrier wave phase technology, it becomes possible that the height accuracy of centimeter level is got by GPS RTK technology. Vessel attitudes are very important parameters in marine survey. In this paper, they were determined by 4 GPS receivers. At the same time, the arithmetic and procedure of vessel attitude determining were given. Based on an experiment, some useful conclusions were obtained and the corresponding methods were put forward to improve the accuracy.

  2. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    Science.gov (United States)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  3. The STACEE-32 Ground Based Gamma-ray Detector

    CERN Document Server

    Hanna, D S; Boone, L M; Chantell, M C; Conner, Z; Covault, C E; Dragovan, M; Fortin, P; Gregorich, D T; Hinton, J A; Mukherjee, R; Ong, R A; Oser, S; Ragan, K; Scalzo, R A; Schütte, D R; Theoret, C G; Tümer, T O; Williams, D A; Zweerink, J A

    2002-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment detector in its initial configuration (STACEE-32). STACEE is a new ground-based gamma ray detector using the atmospheric Cherenkov technique. In STACEE, the heliostats of a solar energy research array are used to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous detectors.

  4. The STACEE Ground-Based Gamma-Ray Detector

    CERN Document Server

    Gingrich, D M; Bramel, D; Carson, J; Covault, C E; Fortin, P; Hanna, D S; Hinton, J A; Jarvis, A; Kildea, J; Lindner, T; Müller, C; Mukherjee, R; Ong, R A; Ragan, K; Scalzo, R A; Theoret, C G; Williams, D A; Zweerink, J A

    2005-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) in its complete configuration. STACEE uses the heliostats of a solar energy research facility to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The light is concentrated onto an array of photomultiplier tubes located near the top of a tower. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous ground-based detectors. STACEE is being used to observe pulsars, supernova remnants, active galactic nuclei, and gamma-ray bursts.

  5. Research on target accuracy for ground-based lidar

    Science.gov (United States)

    Zhu, Ling; Shi, Ruoming

    2009-05-01

    In ground based Lidar system, the targets are used in the process of registration, georeferencing for point cloud, and also can be used as check points. Generally, the accuracy of capturing the flat target center is influenced by scanning range and scanning angle. In this research, the experiments are designed to extract accuracy index of the target center with 0-90°scan angles and 100-195 meter scan ranges using a Leica HDS3000 laser scanner. The data of the experiments are listed in detail and the related results are analyzed.

  6. A Comparison of Snow Depth from GPS-Interferometry vs. AMSR-E/AMSR-2

    Science.gov (United States)

    Kim, E. J.; Patel, H.; Wu, A.; Braun, J.; Small, E. E.; Larson, K. M.

    2013-12-01

    The validation of snow data products from satellite sensors has perennially faced the challenge of finding station data that is both widely distributed and possessing sufficient spatial density to provide accurate validation statistics. Point data from ground truth stations have been widely used despite the orders-of-magnitude scale mismatch as well as the insufficient spatial density; this has persisted mainly due to the lack of better alternatives. We evaluate a novel source of validation data that uses ground-based GPS networks, by comparison against snow data products from the AMSR-E sensor aboard the Aqua satellite and now the AMSR2 sensor aboard the GCOM-W1satellite. There are three advantageous features of this approach. First, the GPS networks already exist. Second, the thousands of sites are widely distributed spatially and have a higher spatial density than other stations currently used for snow validation. And third, the observed area of the GPS technique approaches 10,000 m2--much larger than point-scale station observations (1 to 10 m2). Evaluating the new GPS approach along with the more well-known AMSR-E/AMSR-2 snow depth product will provide a baseline for exploiting this potentially large new validation data source in a variety of remote sensing science studies. This work is based on recent advances in GPS techniques by Larson et al that have allowed geodetic quality GPS instrumentation to be used to measure changes in soil moisture and snow depth in the region surrounding GPS antennas. These retrievals relate observed changes in ground reflected GPS signals to changes in either the soil conditions around the antenna or the depth of snow at the site. In this paper, we will focus solely on snow depth. Observations from several GPS stations from the Plate Boundary Observatory (PBO), operating in varied locations in the western United States have been compared with AMSR-E and/or AMSR-2 snow retrievals. These sites span a range of climates (especially

  7. An assisted GPS support for GPS simulators for embedded mobile positioning

    Science.gov (United States)

    Kashyap, Pradeep; Samant, Abhay; Sagiraju, Phani K.; Akopian, David

    2009-02-01

    During recent years, location technologies have emerged as a research area with many possible applications in wireless communications, surveillance, military equipment, etc. Location Based Services (LBS) such as safety applications have become very popular. For example, US Federal Communication Commission Enhanced 911 (E911) Mandate seeks to provide emergency services personnel with location information that will enable them to dispatch assistance to wireless 911 callers much more quickly. Assisted GPS (A-GPS) is an extension of the conventional Global Positioning System (GPS) which increases start-up sensitivity by as much as 25dB relative to conventional GPS and reduces start times to less than six seconds. In A-GPS assistance data is delivered to the receiver through communication links. This paper addresses the generation of the assistance for GPS simulators for testing A-GPS receivers. The proposed approach is to use IP-based links and location support standards for assistance delivery avoiding network-specific signaling mechanisms so that GPS receiver developers can use this information for testing A-GPS capabilities using basic GPS simulators. The approach is implemented for the GPS simulator developed by the National InstrumentsTM.

  8. A new method for GPS-based wind speed determinations during airborne volcanic plume measurements

    Science.gov (United States)

    Doukas, Michael P.

    2002-01-01

    Begun nearly thirty years ago, the measurement of gases in volcanic plumes is today an accepted technique in volcano research. Volcanic plume measurements, whether baseline gas emissions from quiescent volcanoes or more substantial emissions from volcanoes undergoing unrest, provide important information on the amount of gaseous output of a volcano to the atmosphere. Measuring changes in gas emission rates also allows insight into eruptive behavior. Some of the earliest volcanic plume measurements of sulfur dioxide were made using a correlation spectrometer (COSPEC). The COSPEC, developed originally for industrial pollution studies, is an upward-looking optical spectrometer tuned to the ultraviolet absorption wavelength of sulfur dioxide (Millán and Hoff, 1978). In airborne mode, the COSPEC is mounted in a fixed-wing aircraft and flown back and forth just underneath a volcanic plume, perpendicular to the direction of plume travel (Casadevall and others, 1981; Stoiber and others, 1983). Similarly, for plumes close to the ground, the COSPEC can be mounted in an automobile and driven underneath a plume if a suitable road system is available (Elias and others, 1998). The COSPEC can also be mounted on a tripod and used to scan a volcanic plume from a fixed location on the ground, although the effectiveness of this configuration declines with distance from the plume (Kyle and others, 1990). In the 1990’s, newer airborne techniques involving direct sampling of volcanic plumes with infrared spectrometers and electrochemical sensors were developed in order to measure additional gases such as CO2 and H2S (Gerlach and others, 1997; Gerlach and others, 1999; McGee and others, 2001). These methods involve constructing a plume cross-section from several measurement traverses through the plume in a vertical plane. Newer instruments such as open-path Fourier transform infrared (FTIR) spectrometers are now being used to measure the gases in volcanic plumes mostly from fixed

  9. Time-Frequency Filtering and Carrier-Phase Ambiguity Resolution for GPS-Based TSPI Systems in Jamming Environment

    Science.gov (United States)

    2007-08-15

    34Efficiency of carrier-phase integer ambiguity resolution for precise GPS positioning in noisy environments," Journal of Geodesy 81, 149-156 (2007). * A...and S. Mahmood "Efficiency of carrier-phase integer ambiguity resolution for precise GPS positioning in noisy environments," Journal of Geodesy 81...was an active collaboration with Drs. S. Mohamod and J. Murchison at Eglin AFB. The activities resulted in one joint paper published in Journal of Geodesy . During

  10. Multi-scale Kalman filters algorithm for GPS common-view observation data based on correlation structure of discrete wavelet coefficients

    Institute of Scientific and Technical Information of China (English)

    OU Xiaojuan; ZHOU Wei

    2007-01-01

    Global positioning system (GPS)common-view observation data were processed by using the multi-scale Kalman algorithm based on a correlative structure of the discrete wavelet coefficients.Suppose that the GPS common-view observation data has the 1/f fractal characteristic,the algorithm of wavelet transform was used to estimate the Hurst parameter H of GPS clock difference data.When 0<H<1,the 1/f fractal characteristic of the GPS clock difference data iS a Gaussian zero-mean and non-stationary stochastic process.Thus,the discrete wavelet coefficients can be discussed in the process of estimating multi-scale Kalman coefficients.Furthermore,the discrete clock difierence can be estimated.The single-channel and multi-channel common-view observation data were processed respectively.Comparisons were made between the results obtained and the Circular T data.Simulation results show that the algorithm discussed in this paper is both feasible and effective.

  11. Performance analysis on carrier phase-based tightly-coupled GPS/BDS/INS integration in GNSS degraded and denied environments.

    Science.gov (United States)

    Han, Houzeng; Wang, Jian; Wang, Jinling; Tan, Xinglong

    2015-04-14

    The integration of Global Navigation Satellite Systems (GNSS) carrier phases with Inertial Navigation System (INS) measurements is essential to provide accurate and continuous position, velocity and attitude information, however it is necessary to fix ambiguities rapidly and reliably to obtain high accuracy navigation solutions. In this paper, we present the notion of combining the Global Positioning System (GPS), the BeiDou Navigation Satellite System (BDS) and low-cost micro-electro-mechanical sensors (MEMS) inertial systems for reliable navigation. An adaptive multipath factor-based tightly-coupled (TC) GPS/BDS/INS integration algorithm is presented and the overall performance of the integrated system is illustrated. A twenty seven states TC GPS/BDS/INS model is adopted with an extended Kalman filter (EKF), which is carried out by directly fusing ambiguity fixed double-difference (DD) carrier phase measurements with the INS predicted pseudoranges to estimate the error states. The INS-aided integer ambiguity resolution (AR) strategy is developed by using a dynamic model, a two-step estimation procedure is applied with adaptively estimated covariance matrix to further improve the AR performance. A field vehicular test was carried out to demonstrate the positioning performance of the combined system. The results show the TC GPS/BDS/INS system significantly improves the single-epoch AR reliability as compared to that of GPS/BDS-only or single satellite navigation system integrated strategy, especially for high cut-off elevations. The AR performance is also significantly improved for the combined system with adaptive covariance matrix in the presence of low elevation multipath related to the GNSS-only case. A total of fifteen simulated outage tests also show that the time to relock of the GPS/BDS signals is shortened, which improves the system availability. The results also indicate that TC integration system achieves a few centimeters accuracy in positioning based

  12. Performance Analysis on Carrier Phase-Based Tightly-Coupled GPS/BDS/INS Integration in GNSS Degraded and Denied Environments

    Directory of Open Access Journals (Sweden)

    Houzeng Han

    2015-04-01

    Full Text Available The integration of Global Navigation Satellite Systems (GNSS carrier phases with Inertial Navigation System (INS measurements is essential to provide accurate and continuous position, velocity and attitude information, however it is necessary to fix ambiguities rapidly and reliably to obtain high accuracy navigation solutions. In this paper, we present the notion of combining the Global Positioning System (GPS, the BeiDou Navigation Satellite System (BDS and low-cost micro-electro-mechanical sensors (MEMS inertial systems for reliable navigation. An adaptive multipath factor-based tightly-coupled (TC GPS/BDS/INS integration algorithm is presented and the overall performance of the integrated system is illustrated. A twenty seven states TC GPS/BDS/INS model is adopted with an extended Kalman filter (EKF, which is carried out by directly fusing ambiguity fixed double-difference (DD carrier phase measurements with the INS predicted pseudoranges to estimate the error states. The INS-aided integer ambiguity resolution (AR strategy is developed by using a dynamic model, a two-step estimation procedure is applied with adaptively estimated covariance matrix to further improve the AR performance. A field vehicular test was carried out to demonstrate the positioning performance of the combined system. The results show the TC GPS/BDS/INS system significantly improves the single-epoch AR reliability as compared to that of GPS/BDS-only or single satellite navigation system integrated strategy, especially for high cut-off elevations. The AR performance is also significantly improved for the combined system with adaptive covariance matrix in the presence of low elevation multipath related to the GNSS-only case. A total of fifteen simulated outage tests also show that the time to relock of the GPS/BDS signals is shortened, which improves the system availability. The results also indicate that TC integration system achieves a few centimeters accuracy in

  13. Applications of FBG-based sensors to ground stability monitoring

    Institute of Scientific and Technical Information of China (English)

    An-Bin Huang; Chien-Chih Wang; Jui-Ting Lee; Yen-Te Ho

    2016-01-01

    Over the past few decades, many optical fiber sensing techniques have been developed. Among these available sensing methods, optical fiber Bragg grating (FBG) is probably the most popular one. With its unique capabilities, FBG-based geotechnical sensors can be used as a sensor array for distributive (profile) measurements, deployed under water (submersible), for localized high resolution and/or dif-ferential measurements. The authors have developed a series of FBG-based transducers that include inclination, linear displacement and gauge/differential pore pressure sensors. Techniques that involve the field deployment of FBG inclination, extension and pore-pressure sensor arrays for automated slope stability and ground subsidence monitoring have been developed. The paper provides a background of FBG and the design concepts behind the FBG-based field monitoring sensors. Cases of field monitoring using the FBG sensor arrays are presented, and their practical implications are discussed.

  14. GPS in Travel and Activity Surveys

    DEFF Research Database (Denmark)

    Nielsen, Thomas Alexander Sick; Hovgesen, Henrik Harder

    2004-01-01

    The use of GPS-positioning as a monitoring tool in travel and activity surveys opens up a range of possibilities. Using a personal GPS device, the locations and movements of respondents can be followed over a longer period of time. It will then be possible to analyse how the use of urban spaces...... are embedded in the wider context of activity patterns (work, school etc.). The general pattern of everyday itineraries, including route choice and time spent at different locations ?on the way? can also be analysed. If the personal GPS device is combined with an electronic questionnaire, for example...... area. The paper presents the possibilities in travel and activity surveys with GPS and electronic questionnaires. Demonstrative mapping of test data from passive GPS registration of Copenhagen respondents is presented. The different survey possibilities given a combination of GPS and PDA based...

  15. Statistical Studies of Ground-Based Optical Lightning Signatures

    Science.gov (United States)

    Hunt, C. R.; Nemzek, R. J.; Suszcynsky, D. M.

    2005-12-01

    Most extensive optical studies of lightning have been conducted from orbit, and the statistics of events collected from earth are relatively poorly documented. The time signatures of optical power measured in the presence of clouds are inevitably affected by scattering,which can distort the signatures by extending and delaying the amplitude profile in time. We have deployed two all-sky photodiode detectors, one in New Mexico and one in Oklahoma, which are gathering data alongside electric field change monitors as part of the LANL EDOTX Great Plains Array. Preliminary results show that the photodiode is sensitive to approximately 50% or more of RF events detected at ranges of up to 30 km, and still has some sensitivity at ranges in excess of 60 km (distances determined by the EDOTX field-change array). The shapes of events within this range were assessed, with focus on rise time, width, peak power, and their correlation to corresponding electric field signatures, and these are being compared with published on-orbit and ground-based data. Initial findings suggest a mean characteristic width (ratio of total detected optical energy to peak power) of 291 +/- 12 microseconds and a mean delay between the RF signal peak and optical peak of 121 +/- 17 microseconds. These values fall between prior ground-based measurements of direct return stroke emissions, and scattering-dominated on-orbit measurements. This work will promote better understanding of the correspondence between radio and optical measurements of lightning.

  16. GPS Separator HD

    CERN Multimedia

    2016-01-01

    Footage of the 70 degree ISOLDE GPS separator magnet MAG70 as well as the switchyard for the Central Mass and GLM (GPS Low Mass) and GHM (GPS High Mass) beamlines in the GPS separator zone. In the GPS20 vacuum sector equipment such as the long GPS scanner 482 / 483 unit, faraday cup FC 490, vacuum valves and wiregrid piston WG210 and WG475 and radiation monitors can also be seen. Also the RILIS laser guidance and trajectory can be seen, the GPS main beamgate switch box and the actual GLM, GHM and Central Beamline beamgates in the beamlines as well as the first electrostatic quadrupoles for the GPS lines. Close up of the GHM deflector plates motor and connections and the inspection glass at the GHM side of the switchyard.

  17. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  18. Real-time Gaussian Markov random-field-based ground tracking for ground penetrating radar data

    Science.gov (United States)

    Bradbury, Kyle; Torrione, Peter A.; Collins, Leslie

    2009-05-01

    Current ground penetrating radar algorithms for landmine detection require accurate estimates of the location of the air/ground interface to maintain high levels of performance. However, the presence of surface clutter, natural soil roughness, and antenna motion lead to uncertainty in these estimates. Previous work on improving estimates of the location of the air/ground interface have focused on one-dimensional filtering techniques to localize the air/ground interface. In this work, we propose an algorithm for interface localization using a 2- D Gaussian Markov random field (GMRF). The GMRF provides a statistical model of the surface structure, which enables the application of statistical optimization techniques. In this work, the ground location is inferred using iterated conditional modes (ICM) optimization which maximizes the conditional pseudo-likelihood of the GMRF at a point, conditioned on its neighbors. To illustrate the efficacy of the proposed interface localization approach, pre-screener performance with and without the proposed ground localization algorithm is compared. We show that accurate localization of the air/ground interface provides the potential for future performance improvements.

  19. Equatorial ionospheric electrodynamics observations in the African sector using recently deployed magnetometer and GPS networks

    Science.gov (United States)

    Yizengaw, Endawoke

    Recent ground-and space-based observations have shown that geomagnetic storms can have dramatic longitudinal differences in equatorial ionospheric electrodynamics, such as enhanced generation of F-region plasma irregularities and super fountain effect at low latitudes. For example, satellite observations have shown very unique equatorial ionospheric density struc-tures in the African region. The African region is the longitude sector where the peak in large scale bubble activity (zonal width, depletion level, and spacing) is maximum. No other region in the globe shows similar characteristics. Most recent in situ density observations from C/NOFS also reveal similar maximal bubble activities in Africa. However, the dearth of ground-based in-strumentation in the region makes it impossible to confirm these unique equatorial ionospheric structures from the ground and that leads the investigation of the physics into speculative dead ends. This initiated several open questions, which include: What are the possible governing mechanisms that create unique equatorial structures in Africa? In order to answer such open questions, recently limited progress has been made and very few ground-based instruments, including AMBER magnetometers and ACORN GPS network, have been either deployed in the region or in process. Some of many objectives of AMBER magnetometers network, in coordination with ground-and space-based GPS receiver observations, is to understand the fundamental electrodynamics that govern equatorial ionospheric motion and the penetration of ULF Pc5 wave into equatorial latitudes and its impact on the equatorial electrodynamics. This paper presents initial results from AMBER magnetometer network. The initial electro-dynamics result in Africa is also compared with similar observations in the American sector. The electron density structure in response to the electrodynamics is also investigated using the available ground-based GPS receivers in the region as well as data

  20. Evaluating GPS Data in Indoor Environments

    Directory of Open Access Journals (Sweden)

    MOTTE, H.

    2011-08-01

    Full Text Available With the latest generation of ultra-sensitive GPS-receivers, satellite signals can often be picked up even indoors, resulting in (inaccurate indoor GPS-localization. A covered position will therefore no longer be characterized by the absence of satellite signals, creating the need for another way of categorizing this data as potentially inaccurate. This paper describes the use of GPS-based localization in an indoor environment. Only high level, generally available, GPS-data (NMEA-0183 GNSS-subset are taken into account. Applications of ubiquitous location awareness, where the use of several RTLS (Real Time Location System combinations is feasible, may benefit from this information to discriminate between GPS and other available localization data. A quality indicating parameter is readily available in GPS-data; the DOP (Dilution Of Precision data field, which indicates the accuracy of the GPS localization based on the current satellite geometry. However since in indoor environments the roof and possible overlying floors often cause more signal attenuation compared to (outer walls or windows, the probability of a better reception of 'low' orbiting satellite signals increases, giving rise to an unjustified good horizontal DOP value. Standard NMEA-0183 GPS strings are therefore analyzed in search of other indicators for malicious GPS-data.

  1. GPS based daily activity patterns in European red deer and North American elk (Cervus elaphus): indication for a weak circadian clock in ungulates.

    Science.gov (United States)

    Ensing, Erik P; Ciuti, Simone; de Wijs, Freek A L M; Lentferink, Dennis H; Ten Hoedt, André; Boyce, Mark S; Hut, Roelof A

    2014-01-01

    Long-term tracking using global positioning systems (GPS) is widely used to study vertebrate movement ecology, including fine-scale habitat selection as well as large-scale migrations. These data have the potential to provide much more information about the behavior and ecology of wild vertebrates: here we explore the potential of using GPS datasets to assess timing of activity in a chronobiological context. We compared two different populations of deer (Cervus elaphus), one in the Netherlands (red deer), the other in Canada (elk). GPS tracking data were used to calculate the speed of the animals as a measure for activity to deduce unbiased daily activity rhythms over prolonged periods of time. Speed proved a valid measure for activity, this being validated by comparing GPS based activity data with head movements recorded by activity sensors, and the use of GPS locations was effective for generating long term chronobiological data. Deer showed crepuscular activity rhythms with activity peaks at sunrise (the Netherlands) or after sunrise (Canada) and at the end of civil twilight at dusk. The deer in Canada were mostly diurnal while the deer in the Netherlands were mostly nocturnal. On an annual scale, Canadian deer were more active during the summer months while deer in the Netherlands were more active during winter. We suggest that these differences were mainly driven by human disturbance (on a daily scale) and local weather (on an annual scale). In both populations, the crepuscular activity peaks in the morning and evening showed a stable timing relative to dawn and dusk twilight throughout the year, but marked periods of daily a-rhythmicity occurred in the individual records. We suggest that this might indicate that (changes in) light levels around twilight elicit a direct behavioral response while the contribution of an internal circadian timing mechanism might be weak or even absent.

  2. GPS based daily activity patterns in European red deer and North American elk (Cervus elaphus: indication for a weak circadian clock in ungulates.

    Directory of Open Access Journals (Sweden)

    Erik P Ensing

    Full Text Available Long-term tracking using global positioning systems (GPS is widely used to study vertebrate movement ecology, including fine-scale habitat selection as well as large-scale migrations. These data have the potential to provide much more information about the behavior and ecology of wild vertebrates: here we explore the potential of using GPS datasets to assess timing of activity in a chronobiological context. We compared two different populations of deer (Cervus elaphus, one in the Netherlands (red deer, the other in Canada (elk. GPS tracking data were used to calculate the speed of the animals as a measure for activity to deduce unbiased daily activity rhythms over prolonged periods of time. Speed proved a valid measure for activity, this being validated by comparing GPS based activity data with head movements recorded by activity sensors, and the use of GPS locations was effective for generating long term chronobiological data. Deer showed crepuscular activity rhythms with activity peaks at sunrise (the Netherlands or after sunrise (Canada and at the end of civil twilight at dusk. The deer in Canada were mostly diurnal while the deer in the Netherlands were mostly nocturnal. On an annual scale, Canadian deer were more active during the summer months while deer in the Netherlands were more active during winter. We suggest that these differences were mainly driven by human disturbance (on a daily scale and local weather (on an annual scale. In both populations, the crepuscular activity peaks in the morning and evening showed a stable timing relative to dawn and dusk twilight throughout the year, but marked periods of daily a-rhythmicity occurred in the individual records. We suggest that this might indicate that (changes in light levels around twilight elicit a direct behavioral response while the contribution of an internal circadian timing mechanism might be weak or even absent.

  3. 基于GPS和车辙的三维路面重构%Three-dimensional Road Reconstruction Based on GPS and Ruts

    Institute of Scientific and Technical Information of China (English)

    马荣贵; 汪花梅

    2012-01-01

    A three-dimensional (3D) reconstruction model of road surface was proposed based on global positioning system (GPS) and rut of road cross-section. First, non-equidistant GPS points were interpolated on Cardinal interpolation algorithm by taking into account different sampling interval of GPS and ruts, then equidistant interpolation points were selected according to requirement. Subsequently, GPS and rut data were fused to construct vertices dot matrix which was used to draw triangle mesh in 3D space. Finally, an experiment system with 3D road model was developed. Practice shows that the method of 3D road surface reconstruction described above is useful to observe rut, pothole and swelling of road.%提出了一种基于地理定位系统(GPS)和横断面车辙数据的路面三维重构模型.针对GPS和车辙的采样间隔不同,首先采用Cardinal插值算法对非等间距的离散GPS点插值,并按间距需求选取等间距的插值点,然后将序列化后的GPS插值数据与车辙数据融合,构造出在三维空间中用于绘制三角形网格的顶点矩阵,最后实现了三维重构路面的绘制.实验表明用该方法重构的三维路面在路面车辙、坑槽及拥包的检测方面有很好的应用价值.

  4. 基于单片机的手持式GPS定位仪设计%Design of Handheld GPS Positioning Instrument Based on Single-chip Microcomputer

    Institute of Scientific and Technical Information of China (English)

    孔令荣; 王昊

    2015-01-01

    GPS can provide users with global,all⁃weather,continuous,real⁃time,high⁃precision coordinate,speed and time infor⁃mation.Now,GPS receiver,as a kind of advanced navigation and positioning instruments,has been widely used in civilian and military fields.This design is based on AT89C51 single chip microcomputer to realize a simple GPS navigation information display system.The system mainly realizes data receiving,time display,latitude and longitude display,and other regular functions.The actual test shows the GPS receiver can achieve GPS information receiving and display,with features of high precision,small size,continuous navigation,etc., and can be widely used in personal travel adventure and taxi positioning,etc.%GPS能够为用户提供全球性、全天候、不间断、实时、高精度的经纬坐标、速度和时间信息。 GPS接收机作为一种先进的导航和定位仪器,已广泛应用于民用及军事等领域。设计了一种基于AT89C51单片机实现的简单的GPS导航信息显示系统,主要实现接收数据、时间显示、经度显示、纬度显示等常规功能。经过实际测试,定位仪能实现GPS基本信息的接收、显示,具有精度高、体积小及持续定位等特点,可应用于个人野外出游探险、出租汽车定位等领域。

  5. GPS Control Segment

    Science.gov (United States)

    2015-04-29

    Luke J. Schaub Chief, GPS Control Segment Division 29 Apr 15 GPS Control Segment Report Documentation Page Form ApprovedOMB No. 0704-0188...00-2015 4. TITLE AND SUBTITLE GPS Control Segment 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...Center, GPS Control Segment Division,Los Angeles AFB, El Segundo,CA,90245 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S

  6. GPS/DR车辆组合导航改进的粒子滤波算法研究%An Improved Particle Filtering Algorithm Based on GPS/DR Vehicle Integrated Navigation

    Institute of Scientific and Technical Information of China (English)

    焦雅林; 高社生; 薛丽

    2011-01-01

    粒子滤波是一种基于Monte Carlo仿真的最优回归贝叶斯滤波算法,在组合导航系统的观测精度较低时能获得较好的滤波效果,但在观测精度较高时,不但可能导致滤波发散,而且存在重要性分布函数难以选取,出现粒子退化的现象.为了克服这些缺点,文章研究GPS/DR车辆组合导航改进的粒子滤波算法,提出了基于改进粒子滤波算法的GPS/DR车辆组合导航信息融合技术.采用马尔科夫链蒙特卡洛(MCMC)移动方法,移动粒子样本到状态空间中的新位置,既保证了移动后的粒子样本和实际概率函数同分布,又防止了大量后选粒子被拒绝.用改进的粒子滤波算法和扩展Kalman滤波算法,分别对GPS/DR车辆组合导航系统进行仿真实验,结果表明,改进的粒子滤波算法能减小导航定位误差,滤波性能明显优于扩展卡尔曼滤波.%Particle filtering is effective but it diverges and causes degeneration when the measurement precision is high, and it is difficult to select the importance distribution function.We present an improved particle filtering algorithm for GPS/DR (global positioning system/dead-reckoning) vehicle integrated navigation information fusion to overcome the above-mentioned shortcomings.By using Markov chain Monte Carlo (MCMC) method, particle samples move to new location in the state space.Regularized particle filtering is applied to generating a new set of particles and extract particles from the original particles to form a new particle trajectory.Then the MH (Metropolis-Hastings) rules are used to determine whether or not to accept the new trajectory.The new set of particles has the same distribution as the actual probability distribution function and it prevents a large number of particles to be rejected.The simulation results show that the improved particle filtering can reduce the errors of navigation position based on GPS/DR vehicle integrated navigation, and outperform the extended

  7. Identification of rainy periods from ground based microwave radiometry

    Directory of Open Access Journals (Sweden)

    Ada Vittoria Bosisio

    2012-03-01

    Full Text Available In this paper the authors present the results of a study aiming at detecting rainy data in measurements collected by a dual band ground-based radiometer. The proposed criterion is based on the ratio of the brightness temperatures observed in the 20-30 GHz band without need of any ancillary information. A major result obtained from the probability density of the ratio computed over one month of data is the identification of threshold values between clear sky, cloudy sky and rainy sky, respectively. A linear fit performed by using radiometric data and concurrent rain gauge measurements shows a correlation coefficient equal to 0.56 between the temperature ratio and the observed precipitation.

  8. Unique cell culture systems for ground based research

    Science.gov (United States)

    Lewis, Marian L.

    1990-01-01

    The horizontally rotating fluid-filled, membrane oxygenated bioreactors developed at NASA Johnson for spacecraft applications provide a powerful tool for ground-based research. Three-dimensional aggregates formed by cells cultured on microcarrier beads are useful for study of cell-cell interactions and tissue development. By comparing electron micrographs of plant seedlings germinated during Shuttle flight 61-C and in an earth-based rotating bioreactor it is shown that some effects of microgravity are mimicked. Bioreactors used in the UAH Bioreactor Laboratory will make it possible to determine some of the effects of altered gravity at the cellular level. Bioreactors can be valuable for performing critical, preliminary-to-spaceflight experiments as well as medical investigations such as in vitro tumor cell growth and chemotherapeutic drug response; the enrichment of stem cells from bone marrow; and the effect of altered gravity on bone and muscle cell growth and function and immune response depression.

  9. Spatial-angular modeling of ground-based biaxial lidar

    Science.gov (United States)

    Agishev, Ravil R.

    1997-10-01

    Results of spatial-angular LIDAR modeling based on an efficiency criterion introduced are represented. Their analysis shows that a low spatial-angular efficiency of traditional VIS and NIR systems is a main cause of a low S/BR ratio at the photodetector input. It determines the considerable measurements errors and the following low accuracy of atmospheric optical parameters retrieval. As we have shown, the most effective protection against intensive sky background radiation for ground-based biaxial LIDAR's consist in forming of their angular field according to spatial-angular efficiency criterion G. Some effective approaches to high G-parameter value achievement to achieve the receiving system optimization are discussed.

  10. GLOBAL POSITIONING SYSTEM (GPS

    Directory of Open Access Journals (Sweden)

    Celalettin Karaali

    1996-02-01

    Full Text Available Use of GPS is becoming more widespread on surveying engineering. Especially, preference to GPS is increased by getting accuracy of order of milimeter, making observation on every weather forecast, without requiring intervisibility between station. Besides, developing new observation techniques and technologies in GPS increased its use in deformation easurements, monitoring crustal movements, mapping precise geoid maps, detail surveying, etc.

  11. Simulation on C/A codes and analysis of GPS/pseudolite signals acquisition

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The global positioning system(GPS) is an extremely mature technique in the navigation and position-ing field.However,there are still some limits in some aspects and for some special applications.Spe-cially,the performance of GPS needs to be improved with technological advances.As a GPS-like ground transmitter,the pseudolite provides a new research direction to achieve high positioning ac-curacy and reliability.In this paper,we describe the core technologies of designing and simulation on the coarse acquisition codes in constructing the pseudolite system.In the GPS/pseudolite integration system,the signal PRN 36 of the pseudolite and the GPS satellites signals are acquired in the modified receiver based on the computer software platform.It is shown that the pseudolite technology is ideally suited to augment the GPS alone and provide greater integrity,availability,and continuity of the navi-gation positioning system,especially for indoor use.

  12. Tracking 3D Moving Objects Based on GPS/IMU Navigation Solution, Laser Scanner Point Cloud and GIS Data

    Directory of Open Access Journals (Sweden)

    Siavash Hosseinyalamdary

    2015-07-01

    Full Text Available Monitoring vehicular road traffic is a key component of any autonomous driving platform. Detecting moving objects, and tracking them, is crucial to navigating around objects and predicting their locations and trajectories. Laser sensors provide an excellent observation of the area around vehicles, but the point cloud of objects may be noisy, occluded, and prone to different errors. Consequently, object tracking is an open problem, especially for low-quality point clouds. This paper describes a pipeline to integrate various sensor data and prior information, such as a Geospatial Information System (GIS map, to segment and track moving objects in a scene. We show that even a low-quality GIS map, such as OpenStreetMap (OSM, can improve the tracking accuracy, as well as decrease processing time. A bank of Kalman filters is used to track moving objects in a scene. In addition, we apply non-holonomic constraint to provide a better orientation estimation of moving objects. The results show that moving objects can be correctly detected, and accurately tracked, over time, based on modest quality Light Detection And Ranging (LiDAR data, a coarse GIS map, and a fairly accurate Global Positioning System (GPS and Inertial Measurement Unit (IMU navigation solution.

  13. Evaluating the Human Damage of Tsunami at Each Time Frame in Aggregate Units Based on GPS data

    Directory of Open Access Journals (Sweden)

    Y. Ogawa

    2016-06-01

    Full Text Available Assessments of the human damage caused by the tsunami are required in order to consider disaster prevention at such a regional level. Hence, there is an increasing need for the assessments of human damage caused by earthquakes. However, damage assessments in japan currently usually rely on static population distribution data, such as statistical night time population data obtained from national census surveys. Therefore, human damage estimation that take into consideration time frames have not been assessed yet. With these backgrounds, the objectives of this study are: to develop a method for estimating the population distribution of the for each time frame, based on location positioning data observed with mass GPS loggers of mobile phones, to use a evacuation and casualties models for evaluating human damage due to the tsunami, and evaluate each time frame by using the data developed in the first objective, and 3 to discuss the factors which cause the differences in human damage for each time frame. By visualizing the results, we clarified the differences in damage depending on time frame, day and area. As this study enables us to assess damage for any time frame in and high resolution, it will be useful to consider provision for various situations when an earthquake may hit, such as during commuting hours or working hours and week day or holiday.

  14. Evaluating the Human Damage of Tsunami at Each Time Frame in Aggregate Units Based on GPS data

    Science.gov (United States)

    Ogawa, Y.; Akiyama, Y.; Kanasugi, H.; Shibasaki, R.; Kaneda, H.

    2016-06-01

    Assessments of the human damage caused by the tsunami are required in order to consider disaster prevention at such a regional level. Hence, there is an increasing need for the assessments of human damage caused by earthquakes. However, damage assessments in japan currently usually rely on static population distribution data, such as statistical night time population data obtained from national census surveys. Therefore, human damage estimation that take into consideration time frames have not been assessed yet. With these backgrounds, the objectives of this study are: to develop a method for estimating the population distribution of the for each time frame, based on location positioning data observed with mass GPS loggers of mobile phones, to use a evacuation and casualties models for evaluating human damage due to the tsunami, and evaluate each time frame by using the data developed in the first objective, and 3) to discuss the factors which cause the differences in human damage for each time frame. By visualizing the results, we clarified the differences in damage depending on time frame, day and area. As this study enables us to assess damage for any time frame in and high resolution, it will be useful to consider provision for various situations when an earthquake may hit, such as during commuting hours or working hours and week day or holiday.

  15. Grid Mapping for Spatial Pattern Analyses of Recurrent Urban Traffic Congestion Based on Taxi GPS Sensing Data

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-03-01

    Full Text Available Traffic congestion is one of the most serious problems that impact urban transportation efficiency, especially in big cities. Identifying traffic congestion locations and occurring patterns is a prerequisite for urban transportation managers in order to take proper countermeasures for mitigating traffic congestion. In this study, the historical GPS sensing data of about 12,000 taxi floating cars in Beijing were used for pattern analyses of recurrent traffic congestion based on the grid mapping method. Through the use of ArcGIS software, 2D and 3D maps of the road network congestion were generated for traffic congestion pattern visualization. The study results showed that three types of traffic congestion patterns were identified, namely: point type, stemming from insufficient capacities at the nodes of the road network; line type, caused by high traffic demand or bottleneck issues in the road segments; and region type, resulting from multiple high-demand expressways merging and connecting to each other. The study illustrated that the proposed method would be effective for discovering traffic congestion locations and patterns and helpful for decision makers to take corresponding traffic engineering countermeasures in order to relieve the urban traffic congestion issues.

  16. DDCC-Based Quadrature Oscillator with Grounded Capacitors and Resistors

    Directory of Open Access Journals (Sweden)

    Montree Kumngern

    2009-01-01

    Full Text Available A new voltage-mode quadrature oscillator using two differential difference current conveyors (DDCCs, two grounded capacitors, and three grounded resistors is presented. The proposed oscillator provides the following advantages: the oscillation condition and oscillation frequency are orthogonally controlled; the oscillation frequency is controlled through a single grounded resistor; the use of only grounded capacitors and resistors makes the proposed circuit ideal for IC implementation; low passive and active sensitivities. Simulation results verifying the theoretical analysis are also included.

  17. Analysis of Ionospheric Effect During a Solar Eclipse Using GPS Observation of Occultation and Ground Stations%利用掩星和地基GPS研究日食电离层效应

    Institute of Scientific and Technical Information of China (English)

    王泽民; 安家春; 孙伟; 赵莹

    2011-01-01

    A total solar eclipse on 22 July 2009, the longest one of this century, occurred in East Asia and Pacific.Meanwhile, a medium magnetic storm arise in the late eclipse.The electron density profiles in maximum eclipse time were obtained from COSMIC radio occultation, and time series of TEC in local area was obtained from ground GPS stations of Wuhan CORS.And some physical mechanism of ionospheric effects during in the eclipse were analyzed.%21世纪最长的一次日全食于2009-07-22发生,从亚洲东部一直延伸到太平洋地区,同时,日食后期开始伴随着一次中等强度的磁暴.本文利用COSMIC掩星GPS数据反演了食甚时刻电子密度变化情况,利用武汉CORS地基GPS数据反演了局部TEC时序变化情况,并分析了日食电离层效应的物理机制.

  18. Patients, evidence and genes: an exploration of GPs' perspectives on gene-based personalized nutrition advice

    NARCIS (Netherlands)

    Bouwman, L.I.; Molder, te H.F.M.; Hiddink, G.J.

    2008-01-01

    Background. Nutrigenomics science examines the response of individuals to food compounds using post-genomics technology. It is expected that in the future, personalized nutrition advice can be provided based on information about genetic make-up. Objectives. Gene-based personalized nutrition advice e

  19. Low-cost implementation of Differential GPS using Arduino

    OpenAIRE

    Svaton, Martin

    2016-01-01

    The thesis proposes the low-cost solution of Differential GPS using Arduino as a Master Control Unit. The thesis provides the methods of GPS position augmentation, which is available for varied applications such as drones or autonomous lawnmowers operated in a private sector. Used methods of GPS positioning accuracy improvements are based on a Satellite-Based Augmentation System (SBAS) and pseudorange residuals.

  20. DEVELOPMENT OF A NOVEL GAS PRESSURIZED STRIPPING (GPS)-BASED TECHNOLOGY FOR CO2 CAPTURE FROM POST-COMBUSTION FLUE GASES Topical Report: Techno-Economic Analysis of GPS-based Technology for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shiaoguo

    2015-09-30

    This topical report presents the techno-economic analysis, conducted by Carbon Capture Scientific, LLC (CCS) and Nexant, for a nominal 550 MWe supercritical pulverized coal (PC) power plant utilizing CCS patented Gas Pressurized Stripping (GPS) technology for post-combustion carbon capture (PCC). Illinois No. 6 coal is used as fuel. Because of the difference in performance between the GPS-based PCC and the MEA-based CO2 absorption technology, the net power output of this plant is not exactly 550 MWe. DOE/NETL Case 11 supercritical PC plant without CO2 capture and Case 12 supercritical PC plant with benchmark MEA-based CO2 capture are chosen as references. In order to include CO2 compression process for the baseline case, CCS independently evaluated the generic 30 wt% MEA-based PCC process together with the CO2 compression section. The net power produced in the supercritical PC plant with GPS-based PCC is 647 MW, greater than the MEA-based design. The levelized cost of electricity (LCOE) over a 20-year period is adopted to assess techno-economic performance. The LCOE for the supercritical PC plant with GPS-based PCC, not considering CO2 transport, storage and monitoring (TS&M), is 97.4 mills/kWh, or 152% of the Case 11 supercritical PC plant without CO2 capture, equivalent to $39.6/tonne for the cost of CO2 capture. GPS-based PCC is also significantly superior to the generic MEA-based PCC with CO2 compression section, whose LCOE is as high as 109.6 mills/kWh.

  1. GPS operations at Olkiluoto in 2009

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, U.; Nyberg, S.; Koivula, H.; Jokela, J.; Poutanen, M.; Ahola, J. (Finnish Geodetic Institute, Masala (Finland))

    2010-06-15

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. One pillar in the investigation area belongs to the Finnish permanent GPS network, FinnRef. 28 GPS measurement campaigns have been carried out at Olkiluoto since 1995. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than +-0.20 mm/a. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments in connection to the GPS observations. Changes in he difference between the GPS and EDM results indicate the systematic change in GPS results. No corrections based on only one baseline were not applied to GPS vectors. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003 and now we have computed the first deformation analysis from the six years data. Four new permanent stations will be established in summer 2010 at Olkiluoto. We have automated the processing of the campaign data by using the Bernese processing engine (BPE) together with our own Perl scripts. The local crustal deformations have been studied in GeoSatakunta project, too. This GPS network is located in Cities of Pori and Rauma and their neighbouring municipalities. Two new pillars

  2. A transportation security system applying RFID and GPS

    Directory of Open Access Journals (Sweden)

    Ruijian Zhang

    2013-03-01

    Full Text Available Purpose: This paper is about developing a centralized, internet based security tool which utilizes RFID and GPS technology to identify drivers and track the load integrity. Design/methodology/approach: The system will accomplish the security testing in real-time using the internet and the U.S. Customs’ database (ACE. A central database and the interfaces and communication between the database and ACE will be established. After the vehicle is loaded, all openings of the tanker are sealed with disposable RFID tag seals. Findings/value: An RFID reader and GPS tracker wirelessly connected with the databases will serve as testing grounds for the implementation of security measures that can help prevent future terrorist attacks and help in ensuring that the goods and products are not compromised while in transit. The system will also reduce the labor work of security check to its minimum. 

  3. 基于ARM+FPGA的GPS接收机设计%Design of a GPS receiver based on ARM and FPGA

    Institute of Scientific and Technical Information of China (English)

    邢增强; 李金海; 梁华庆; 汪峰; 阎跃鹏

    2011-01-01

    The GPS receiver based on ARM and FPGA is designed for civilian and military application. The GP2015 chip is used as the receiver' s RF front-end. The AT91SAM9261 chip based on ARM9 core and The Cyclone Ⅱ seriers EP2C70F672I8 chip are used as the base-band processing part. Also the receiver' s software design is explained,including the capture engine,tracking engine,demodulation messages,and position resolution. Through the field test, the receiver's positioning precision is 6m ( longitude)/8m ( latitude ), and the dynamic performance is 2000m/s. The receiver can achieve high dynamic navigation and positioning. It has small size, low power consumption.%针对GPS接收机在民用和军事领域的重要应用,设计了一种基于ARM+ FPGA的GPS接收机.接收机的射频前端采用GP2015芯片,基带处理部分采用ARM9内核的A191 SAM9261芯片和CycloneⅡ系列的EP2C70F67218芯片.同时阐述来接收机的软件设计,包括捕获引擎、跟踪引擎、解调电文,定位解算等.该接收机通过现场实验定位精度为6m(经度)/8m(纬度),动态性能达2000m/s,可以实现高动态导航定位,同时体积小,功耗低.

  4. GPS Scintillation Analysis.

    Science.gov (United States)

    2007-11-02

    Rev. 2-89) Prescribed by ANSI Std. Z39-1 298-102 TABLE OF CONTENTS 1. INTRODUCTION 1 2. GPS COMPARISON WITH ALL-SKY IMAGES OVER AGUA VERDE...Depletions from 1 October 1994 2 3. GPS data from Agua Verde, Chile on the night of 1 October 1994 3 4. PL-SCINDA display of GPS ionospheric...comparison of GPS measurements with GOES8 L-band scintillation data, are discussed. 2. GPS COMPARISON WITH ALL-SKY IMAGES OVER AGUA VERDE, CHILE As

  5. GPS Control Segment Improvements

    Science.gov (United States)

    2015-04-29

    Systems Center GPS Control Segment Improvements Mr. Tim McIntyre GPS Product Support Manager GPS Ops Support and Sustainment Division Peterson...DATE 29 APR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE GPS Control Segment Improvements 5a. CONTRACT...ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Space Command,Space and Missile Systems Center, GPS Ops Support and Sustainment Division,Peterson AFB,CO,80916 8

  6. GPS queues with heterogeneous traffic classes

    NARCIS (Netherlands)

    Borst, Sem; Mandjes, Michel; Uitert, van Miranda

    2002-01-01

    We consider a queue fed by a mixture of light-tailed and heavy-tailed traffic. The two traffic classes are served in accordance with the generalized processor sharing (GPS) discipline. GPS-based scheduling algorithms, such as weighted fair queueing (WFQ), have emerged as an important mechanism for a

  7. Research on Low-cost Vehicle Navigation System Based on GPS/GIS/DR%基于GPS/GIS/DR的低成本车载导航仪研究

    Institute of Scientific and Technical Information of China (English)

    黄晶; 魏贵玲

    2009-01-01

    惯性器件与全球卫星定位系统(GPS)的组合导航成为目前车载导航的主流.无论在精度、性能、可靠性等各方面,GPS/DR组合导航系统都优于单独的GPS导航系统.在GPS信号丢失时,车载导航仪(GPS/GIS/DR)能利用陀螺自主导航,不间断提供导航信息并保持跟踪.%The integrated navigation of inertia elements and GPS is becoming the mainstream of vehicular navigation system.Compared with conventional GPS navigation system ,integrated GPS/DR navigation has better performances in terms of accuracy ,performance ,reliability etc.Vehicular navigation system (GPS/GIS/DR) can provide uninterrupted navigation information and keep tracing through gyroscope autonomous navigation when GPS signals are inaccessible.

  8. Evaluation of mobile micro-sensing devices for GPS-based personal exposure monitoring of heat and particulate matter - a matter of context

    Science.gov (United States)

    Ueberham, Maximilian; Schlink, Uwe; Weiland, Ulrike

    2017-04-01

    The application of mobile micro-sensing devices (MSDs) for human health and personal exposure monitoring (PEM) is an emerging topic of interest in urban air quality research. In the context of climate change, urban population growth and related anthropogenic activities, an increase is expected for the intensity of citizens' exposure to heat and particulate matter (PM). Therefore more focus on the small-scale perspective of spatio-temporal distribution of air quality parameters is important to complement fixed-monitoring site data. Mobile sensors for PEM are useful for both, the investigation of the local distribution of air quality and the personal exposure profiles of individuals moving within their activity spaces. An evaluation of MSDs' accuracy is crucial, before their sophisticated application in measurement campaigns. To detect variations of exposure at small scales, it is even more important to consider the accuracy of Global Positioning System (GPS) devices within different urban structure types (USTs). We present an assessment of the performance of GPS-based MSDs under indoor laboratory conditions and outdoor testing within different USTs. The aim was to evaluate the accuracy of several GPS devices and MSDs for heat and PM 2.5 in relation to reliable standard sensing devices as part of a PhD-project. The performance parameters are summary measures (mean value, standard deviation), correlation (Pearson r), difference measures (mean bias error, mean absolute error, index of agreement) and Bland-Altman plots. The MSDs have been tested in a climate chamber under constant temperature and relative humidity. For temperature MSDs reaction time was tested because of its relevance to detect temperature variations during mobile measurements. For interpretation of the results we considered the MSDs design and technology (e.g. passive vs. active ventilation). GPS-devices have been tested within low/high dense urban residential areas and low/high dense urban green areas

  9. The STACEE Ground-Based Gamma-ray Observatory

    Science.gov (United States)

    Ragan, Ken

    2002-04-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a ground-based instrument designed to study astrophysical sources of gamma rays in the energy range from 50 to 500 GeV using an array of heliostat mirrors at the National Solar Thermal Test Facility in New Mexico. The mirrors collect Cherenkov light generated by gamma-ray air showers and concentrate it onto cameras composed of photomultiplier tubes. The STACEE instrument is now complete, and uses a total of 64 heliostats. Prototype instruments, using smaller numbers of heliostats, have previously detected gamma emission from both the Crab Nebula and the Active Galactic Nucleus Mrk421. The complete instrument has a lower threshold -- approximately 50 GeV -- than those prototypes due to superior triggering and electronics, including flash ADCs for every channel.We will discuss the performance of the complete instrument in its first full season of operation, and present preliminary results of selected observations.

  10. Atmospheric contamination for CMB ground-based observations

    CERN Document Server

    Errard, J; Akiba, Y; Arnold, K; Atlas, M; Baccigalupi, C; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Cukierman, A; Delabrouille, J; Dobbs, M; Ducout, A; Elleflot, T; Fabbian, G; Feng, C; Feeney, S; Gilbert, A; Goeckner-Wald, N; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Hill, C; Holzapfel, W L; Hori, Y; Inoue, Y; Jaehnig, G C; Jaffe, A H; Jeong, O; Katayama, N; Kaufman, J; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Jeune, M Le; Lee, A T; Leitch, E M; Leon, D; Linder, E; Matsuda, F; Matsumura, T; Miller, N J; Myers, M J; Navaroli, M; Nishino, H; Okamura, T; Paar, H; Peloton, J; Poletti, D; Puglisi, G; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K M; Schenck, D E; Sherwin, B D; Siritanasak, P; Smecher, G; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Tajima, O; Takakura, S; Tikhomirov, A; Tomaru, T; Whitehorn, N; Wilson, B; Yadav, A; Zahn, O

    2015-01-01

    Atmosphere is one of the most important noise sources for ground-based Cosmic Microwave Background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3d-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive an analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the POLARBEAR-I project first season data set. We compare our results to previous st...

  11. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    CERN Document Server

    Chen, Hsin-Yu; Vitale, Salvatore; Holz, Daniel E; Katsavounidis, Erik

    2016-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over $80\\%$ of the localization probability, while mid-latitudes will access closer to $70\\%$. Facilities located near the two LIGO sites can obser...

  12. Progress in the ULTRA 1-m ground-based telescope

    Science.gov (United States)

    Romeo, Robert C.; Martin, Robert N.; Twarog, Bruce; Anthony-Twarog, Barbara; Taghavi, Ray; Hale, Rick; Etzel, Paul; Fesen, Rob; Shawl, Steve

    2006-06-01

    We present the technical status of the Ultra Lightweight Telescope for Research in Astronomy (ULTRA) program. The program is a 3-year Major Research Instrumentation (MRI) program funded by NSF. The MRI is a collaborative effort involving Composite Mirror Applications, Inc. (CMA), University of Kansas, San Diego State University and Dartmouth College. Objectives are to demonstrate the feasibility of carbon fiber reinforced plastic (CFRP) composite mirror technology for ground-based optical telescopes. CMA is spearheading the development of surface replication techniques to produce the optics, fabricating the 1m glass mandrel, and constructing the optical tube assembly (OTA). Presented will be an overview and status of the 1-m mandrel fabrication, optics development, telescope design and CFRP telescope fabrication by CMA for the ULTRA Telescope.

  13. Ground-based optical observation system for LEO objects

    Science.gov (United States)

    Yanagisawa, T.; Kurosaki, H.; Oda, H.; Tagawa, M.

    2015-08-01

    We propose a ground-based optical observation system for monitoring LEO objects, which uses numerous optical sensors to cover a vast region of the sky. Its potential in terms of detection and orbital determination were examined. About 30 cm LEO objects at 1000 km altitude are detectable using an 18 cm telescope, a CCD camera and the analysis software developed. Simulations and a test observation showed that two longitudinally separate observation sites with arrays of optical sensors can identify the same objects from numerous data sets and determine their orbits precisely. The proposed system may complement or replace the current radar observation system for monitoring LEO objects, like space-situation awareness, in the near future.

  14. Optical vortex coronagraphs on ground-based telescopes

    CERN Document Server

    Jenkins, Charles

    2007-01-01

    The optical vortex coronagraph is potentially a remarkably effective device, at least for an ideal unobstructed telescope. Most ground-based telescopes however suffer from central obscuration and also have to operate through the aberrations of the turbulent atmosphere. This note analyzes the performance of the optical vortex in these circumstances and compares to some other designs, showing that it performs similarly in this situation. There is a large class of coronagraphs of this general type, and choosing between them in particular applications depends on details of performance at small off-axis distances and uniformity of response in the focal plane. Issues of manufacturability to the necessary tolerances are also likely to be important.

  15. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. These effects can inform electromagnetic follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  16. GPS Modernization Update

    Science.gov (United States)

    2014-06-01

    space vehicles currently set healthy • 6 GPS IIA, 12 GPS IIR , 7 GPS IIR -M, 5 GPS IIF – 5 additional satellites in residual status, 1 in test status...Advisory Board Final.pptx S P A C E A N D M I S S I L E S Y S T E M S C E N T E R Legacy GPS IIA/ IIR • Single Frequency (L1) • Coarse...acquisition (C/A) code • Y-Code (L1Y & L2Y) GPS IIR -M • 2nd Civil Signal (L2C) • M-Code (L1M & L2M) GPS IIF • 3rd civil signal (L5) • 2 Rb + 1 Cs

  17. Ground-based Measurements of Next Generation Spectroradiometric Standard Stars

    Science.gov (United States)

    McGraw, John T.

    2013-01-01

    Accurate, radiometric standards are essential to the future of ground- and space-based astronomy and astrophysics. While astronomers tend to think of “standard stars” as available calibration sources, progress at NIST to accurately calibrate inexpensive, easy to use photodiode detectors as spectroradiometric standards from 200 nm to 1800 nm allows referencing astronomical measurements to these devices. Direction-, time-, and wavelength-dependent transmission of Earth’s atmosphere is the single largest source of error for ground-based radiometric measurement of astronomical objects. Measurements and impacts of atmospheric extinction - scattering and absorption - on imaging radiometric and spectroradiometric measurements are described. The conclusion is that accurate real-time measurement of extinction in the column of atmosphere through which standard star observations are made, over the spectral region being observed and over the field of view of the telescope are required. New techniques to directly and simultaneously measure extinction in the column of atmosphere through which observations are made are required. Our direct extinction measurement solution employs three small facility-class instruments working in parallel: a lidar to measure rapidly time variable transmission at three wavelengths with uncertainty of 0.25% per airmass, a spectrophotometer to measure rapidly wavelength variable extinction with sub-1% precision per nanometer resolution element from 350 to 1050nm, and a wide-field camera to measure angularly variable extinction over the field of view. These instruments and their operation will be described. We assert that application of atmospheric metadata provided by this instrument suite corrects for a significant fraction of systematic errors currently limiting radiometric precision, and provides a major step towards measurements that are provably dominated by random noise.

  18. Development and feasibility of a smartphone, ECG and GPS based system for remotely monitoring exercise in cardiac rehabilitation.

    Directory of Open Access Journals (Sweden)

    Charles Worringham

    Full Text Available BACKGROUND: Despite its efficacy and cost-effectiveness, exercise-based cardiac rehabilitation is undertaken by less than one-third of clinically eligible cardiac patients in every country for which data is available. Reasons for non-participation include the unavailability of hospital-based rehabilitation programs, or excessive travel time and distance. For this reason, there have been calls for the development of more flexible alternatives. METHODOLOGY AND PRINCIPAL FINDINGS: We developed a system to enable walking-based cardiac rehabilitation in which the patient's single-lead ECG, heart rate, GPS-based speed and location are transmitted by a programmed smartphone to a secure server for real-time monitoring by a qualified exercise scientist. The feasibility of this approach was evaluated in 134 remotely-monitored exercise assessment and exercise sessions in cardiac patients unable to undertake hospital-based rehabilitation. Completion rates, rates of technical problems, detection of ECG changes, pre- and post-intervention six minute walk test (6 MWT, cardiac depression and Quality of Life (QOL were key measures. The system was rated as easy and quick to use. It allowed participants to complete six weeks of exercise-based rehabilitation near their homes, worksites, or when travelling. The majority of sessions were completed without any technical problems, although periodic signal loss in areas of poor coverage was an occasional limitation. Several exercise and post-exercise ECG changes were detected. Participants showed improvements comparable to those reported for hospital-based programs, walking significantly further on the post-intervention 6 MWT, 637 m (95% CI: 565-726, than on the pre-test, 524 m (95% CI: 420-655, and reporting significantly reduced levels of cardiac depression and significantly improved physical health-related QOL. CONCLUSIONS AND SIGNIFICANCE: The system provided a feasible and very flexible alternative form of

  19. A GPS-Based Methodology to Analyze Environment-Health Associations at the Trip Level: Case-Crossover Analyses of Built Environments and Walking.

    Science.gov (United States)

    Chaix, Basile; Kestens, Yan; Duncan, Dustin T; Brondeel, Ruben; Méline, Julie; El Aarbaoui, Tarik; Pannier, Bruno; Merlo, Juan

    2016-10-15

    Environmental health studies have examined associations between context and health with individuals as statistical units. However, investigators have been unable to investigate momentary exposures, and such studies are often vulnerable to confounding from, for example, individual-level preferences. We present a Global Positioning System (GPS)-based methodology for segmenting individuals' observation periods into visits to places and trips, enabling novel life-segment investigations and case-crossover analysis for improved inferences. We analyzed relationships between built environments and walking in trips. Participants were tracked for 7 days with GPS receivers and accelerometers and surveyed with a Web-based mapping application about their transport modes during each trip (Residential Environment and Coronary Heart Disease (RECORD) GPS Study, France, 2012-2013; 6,313 trips made by 227 participants). Contextual factors were assessed around residences and the trips' origins and destinations. Conditional logistic regression modeling was used to estimate associations between environmental factors and walking or accelerometry-assessed steps taken in trips. In case-crossover analysis, the probability of walking during a trip was 1.37 (95% confidence interval: 1.23, 1.61) times higher when trip origin was in the fourth (vs. first) quartile of service density and 1.47 (95% confidence interval: 1.23, 1.68) times higher when trip destination was in the fourth (vs. first) quartile of service density. Green spaces at the origin and destination of trips were also associated with within-individual, trip-to-trip variations in walking. Our proposed approach using GPS and Web-based surveys enables novel life-segment epidemiologic investigations.

  20. 基于FPGA的GPS+GSM双重车载定位系统设计%Design of FPGA-based GPS+GSM Dual-positioning System for Vehicles

    Institute of Scientific and Technical Information of China (English)

    赵鹏伦; 沈昱明

    2011-01-01

    In order to overcome the flaw of incoherent localization of common vehicle-mounLed guided systems , the characteristics of Nios Ⅱ soft nuclear processor nimble in disposition and strong in expansibility are utilized to design a SoPC-based dual-positioning system with GPS and GSM modules. The μC/OS- Ⅱ operating system and Nios Ⅱ processor, memory and interface assembly are embedded quickly into FPGA by means of SoPC Builder development kit. The functions of man-machine interaction module, control module and connection module are implemented by the aid of individual chip. The general GPS navigation aid can realize the high-accurate real-time contjnual localization. This design is easy to upgrade and expand hardware's foundation without changing the hardware.%为了克服一般车载导航系统定位不连贯的缺陷,利用NiosⅡ软核处理器配置灵活、扩展性强等特点,结合GPS和GSM模块,设计出了一种基于SoPC技术的双重定位系统.该设计利用SoPC Builder开发工具将NiosⅡ处理器、存储器和接口等组件及μC/OS-Ⅱ操作系统快速地嵌入到FPGA中,用单个芯片完成了人机交互模块、控制模块和通信模块等功能,较一般的GPS导航设备更能实现较高精度的实时连续系统定位,且该设计在不改变硬件的基础上可方便升级、扩展更多功能.

  1. Comparing source inversion techniques for GPS-based local tsunami forecasting: A case study for the April 2014 M8.1 Iquique, Chile, earthquake

    Science.gov (United States)

    Chen, Kejie; Babeyko, Andrey; Hoechner, Andreas; Ge, Maorong

    2016-04-01

    Real-time GPS is nowadays considered as a valuable component of next generation near-field tsunami early warning systems able to provide fast and reliable source parameters. Looking for optimal methodologies and assessing corresponding uncertainties becomes an important task. We take the opportunity and consider the 2014 Pisagua event as a case study to explore tsunami forecast uncertainty related to the GPS-based source inversion. We intentionally neglect all other sources of uncertainty (observation set, signal processing, wave simulation, etc.) and exclusively assess the effect of inversion technique. In particular, we compare three end-member methods: (1) point-source fastCMT (centroid moment tensor), (2) distributed slip along predefined plate interface, and (3) unconstrained inversion into a single uniform slip finite fault. The three methods provide significantly different far-field tsunami forecast but show surprisingly similar tsunami predictions in the near field.

  2. GPS phase scintillation at high latitudes during the geomagnetic storm of 17-18 March 2015

    Science.gov (United States)

    Prikryl, P.; Ghoddousi-Fard, R.; Weygand, J. M.; Viljanen, A.; Connors, M.; Danskin, D. W.; Jayachandran, P. T.; Jacobsen, K. S.; Andalsvik, Y. L.; Thomas, E. G.; Ruohoniemi, J. M.; Durgonics, T.; Oksavik, K.; Zhang, Y.; Spanswick, E.; Aquino, M.; Sreeja, V.

    2016-10-01

    The geomagnetic storm of 17-18 March 2015 was caused by the impacts of a coronal mass ejection and a high-speed plasma stream from a coronal hole. The high-latitude ionosphere dynamics is studied using arrays of ground-based instruments including GPS receivers, HF radars, ionosondes, riometers, and magnetometers. The phase scintillation index is computed for signals sampled at a rate of up to 100 Hz by specialized GPS scintillation receivers supplemented by the phase scintillation proxy index obtained from geodetic-quality GPS data sampled at 1 Hz. In the context of solar wind coupling to the magnetosphere-ionosphere system, it is shown that GPS phase scintillation is primarily enhanced in the cusp, the tongue of ionization that is broken into patches drawn into the polar cap from the dayside storm-enhanced plasma density, and in the auroral oval. In this paper we examine the relation between the scintillation and auroral electrojet currents observed by arrays of ground-based magnetometers as well as energetic particle precipitation observed by the DMSP satellites. Equivalent ionospheric currents are obtained from ground magnetometer data using the spherical elementary currents systems technique that has been applied over the ground magnetometer networks in North America and North Europe. The GPS phase scintillation is mapped to the poleward side of strong westward electrojet and to the edge of the eastward electrojet region. Also, the scintillation was generally collocated with fluxes of energetic electron precipitation observed by DMSP satellites with the exception of a period of pulsating aurora when only very weak currents were observed.

  3. Tracking Architecture Based on Dual-Filter with State Feedback and Its Application in Ultra-Tight GPS/INS Integration.

    Science.gov (United States)

    Zhang, Xi; Miao, Lingjuan; Shao, Haijun

    2016-05-02

    If a Kalman Filter (KF) is applied to Global Positioning System (GPS) baseband signal preprocessing, the estimates of signal phase and frequency can have low variance, even in highly dynamic situations. This paper presents a novel preprocessing scheme based on a dual-filter structure. Compared with the traditional model utilizing a single KF, this structure avoids carrier tracking being subjected to code tracking errors. Meanwhile, as the loop filters are completely removed, state feedback values are adopted to generate local carrier and code. Although local carrier frequency has a wide fluctuation, the accuracy of Doppler shift estimation is improved. In the ultra-tight GPS/Inertial Navigation System (INS) integration, the carrier frequency derived from the external navigation information is not viewed as the local carrier frequency directly. That facilitates retaining the design principle of state feedback. However, under harsh conditions, the GPS outputs may still bear large errors which can destroy the estimation of INS errors. Thus, an innovative integrated navigation filter is constructed by modeling the non-negligible errors in the estimated Doppler shifts, to ensure INS is properly calibrated. Finally, field test and semi-physical simulation based on telemetered missile trajectory validate the effectiveness of methods proposed in this paper.

  4. A GPS-Based Control Method for Load Sharing and Power Quality Improvement in Microgrids

    DEFF Research Database (Denmark)

    Golsorkhi, Mohammad; Lu, Dylan; Savaghebi, Mehdi;

    2016-01-01

    This paper proposes a novel control method for accurate sharing of load current among the Distributed Energy Resources (DER) and high power quality operating in islanded ac microgrids. This control scheme is based on hierarchical structure comprising of decentralized primary controllers and a cen....... The secondary controller produces compensation signals at fundamental and dominant harmonics to improve the voltage quality at a sensitive load bus. Experimental results are presented to validate the efficacy of the proposed method.......This paper proposes a novel control method for accurate sharing of load current among the Distributed Energy Resources (DER) and high power quality operating in islanded ac microgrids. This control scheme is based on hierarchical structure comprising of decentralized primary controllers......-I) droop characteristic. The droop coefficient, which acts as a virtual resistance, is adaptively changed as a function of peak current. This strategy not only simplifies the control design but also enables faster dynamics and higher accuracy of current sharing especially at high loading conditions...

  5. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  6. PBO H2O: Monitoring the Terrestrial Water Cycle with reflected GPS signals recorded by the Plate Boundary Observatory Network

    Science.gov (United States)

    Small, E. E.; Fairfax, E. J.; Chew, C. C.; Larson, K. M.

    2015-12-01

    Data from NSF's EarthScope Plate Boundary Observatory (PBO), and similar GPS networks worldwide, can be used to monitor the terrestrial water cycle. GPS satellites transmit L-band microwave signals, which are strongly influenced by water at the surface of the Earth. GPS signals take two different paths: (1) the "direct" signal travels from the satellite to the antenna; (2) the "reflected" signal interacts with the Earth's surface before travelling to the antenna. The direct signal is used by geophysicists to measure the position of the antenna. By analyzing these GPS data over multiple years, the motion of the site can be estimated. The effects of reflected signals are generally ignored by geophysicists because they are small. This is not happenstance, as significant effort has been made to design and deploy a GPS antenna that suppresses ground reflections. Our group has developed a remote sensing technique to retrieve terrestrial water cycle variables from GPS data. We extract the water cycle products from signal strength data that measures the interference between the direct and reflected GPS signals. The sensing footprint is intermediate in scale between in situ observations and most remote sensing measurements. Snow depth, snow water equivalent (SWE), near surface soil moisture, and an index of vegetation water content are currently estimated from nearly 500 PBO sites. These PBO H2O products are updated daily and are available online (http://xenon.colorado.edu/portal/index.php). Validation studies show that retrieved products are of sufficient quality to be used in a variety of applications. The root mean square error (RMSE) of GPS-based SWE is 2 cm, based on a comparison to snow survey data at nearly 20 GPS sites. The RMSE of near surface volumetric soil moisture is moisture and similar products.

  7. A GPS-Based Control Framework for Accurate Current Sharing and Power Quality Improvement in Microgrids

    DEFF Research Database (Denmark)

    Golsorkhi, Mohammad; Savaghebi, Mehdi; Lu, Dylan;

    2016-01-01

    consensus protocol to ensure proportional sharing of average power. The voltage conditioning scheme produces compensation signals at fundamental and dominant harmonics to improve the voltage quality at a sensitive load bus. Experimental results are presented to validate the efficacy of the proposed method.......This paper proposes a novel hierarchical control strategy for improvement of load sharing and power quality in ac microgrids. This control framework is composed of a droop based controller at the primary level, and a combination of distributed power sharing and voltage conditioning schemes...... dynamic response. The droop coefficient, which acts as a virtual resistance is adaptively changed as a function of the peak current. This strategy not only simplifies the control design but also improves the current sharing accuracy at high loading conditions. The distributed power sharing scheme uses...

  8. INS/GPS for High-Dynamic UAV-Based Applications

    Directory of Open Access Journals (Sweden)

    Junchuan Zhou

    2012-01-01

    Full Text Available The carrier-phase-derived delta pseudorange measurements are often used for velocity determination. However, it is a type of integrated measurements with errors strongly related to pseudorange errors at the start and end of the integration interval. Conventional methods circumvent these errors with approximations, which may lead to large velocity estimation errors in high-dynamic applications. In this paper, we employ the extra states to “remember” the pseudorange errors at the start point of the integration interval. Sequential processing is employed for reducing the processing load. Simulations are performed based on a field-collected UAV trajectory. Numerical results show that the correct handling of errors involved in the delta pseudorange measurements is critical for high-dynamic applications. Besides, sequential processing can update different types of measurements without degrading the system estimation accuracy, if certain conditions are met.

  9. Rapid ambiguity resolution over medium-to-long baselines based on GPS/BDS multi-frequency observables

    Science.gov (United States)

    Gong, Xiaopeng; Lou, Yidong; Liu, Wanke; Zheng, Fu; Gu, Shengfeng; Wang, Hua

    2017-02-01

    Medium-long baseline RTK positioning generally needs a long initial time to find an accurate position due to non-negligible atmospheric delay residual. In order to shorten the initial or re-convergence time, a rapid phase ambiguity resolution method is employed based on GPS/BDS multi-frequency observables in this paper. This method is realized by two steps. First, double-differenced un-combined observables (i.e., L1/L2 and B1/B2/B3 observables) are used to obtain a float solution with atmospheric delay estimated as random walk parameter by using Kalman filter. This model enables an easy and consistent implementation for different systems and different frequency observables and can readily be extended to use more satellite navigation systems (e.g., Galileo, QZSS). Additional prior constraints for atmospheric information can be quickly added as well, because atmospheric delay is parameterized. Second, in order to fix ambiguity rapidly and reliably, ambiguities are divided into three types (extra-wide-lane (EWL), wide-lane (WL) and narrow-lane (NL)) according to their wavelengths and are to be fixed sequentially by using the LAMBDA method. Several baselines ranging from 61 km to 232 km collected by Trimble and Panda receivers are used to validate the method. The results illustrate that it only takes approximately 1, 2 and 6 epochs (30 s intervals) to fix EWL, WL and NL ambiguities, respectively. More epochs' observables are needed to fix WL and NL ambiguity around local time 14:00 than other time mainly due to more active ionosphere activity. As for the re-convergence time, the simulated results show that 90% of epochs can be fixed within 2 epochs by using prior atmospheric delay information obtained from previously 5 min. Finally, as for positioning accuracy, meter, decimeter and centimeter level positioning results are obtained according to different ambiguity resolution performances, i.e., EWL, WL and NL fixed solutions.

  10. A Novel Approach based on GPS/GNSS Surveying to Monitor Excessive Active Landslide: A Case Study of Intepe Landslide

    Science.gov (United States)

    Güngördü, Deniz; Cuneyt Erenoǧlu, R.; Akcay, Özgün; Erenoǧlu, Oya

    2016-04-01

    Landslide is the down-slope of soil, rock and organic material under the influence of gravity and they leave deep scars in the topography and occur quite fast in a short time, are one of the most dangerous types of natural disasters. Geology, geotechnics and geodesy sciences had implemented many kind of technique which is many usefully and early warning systems with increasing of technologically events for monitoring. In last decades, the Global Positioning System (GPS/GNSS) technology has shown that it is capable to monitor sub-centimeter landslide deformations. In this study, it is imposed to represent the area under investigation by a number of GPS/GNSS sites in order to monitor the landslide phenomena. After the landslide occured in February 2015 in Intepe, Canakkale (NW Turkey), some sites are used to define a stable reference frame and remaining stations are the monitoring points situated in the deformation area. In this way, these sites were surveyed for 6 days using rapid-static GPS/GNSS technique. Then, a series of deformation analysis was performed between consecutive days. Finally, the determination of the significant movement of these sites was done relatively to the reference ones, e.g. the movement was 3.5 cm per a day averagely. This paper therefore highlights an investigation of landslide motions to discover the characteristics of mass movement for the excessive active landslide. Keywords: GPS/GNSS, landslide, deformation monitoring, Intepe, Turkey

  11. A pseudolite-based positioning system for legacy GNSS receivers.

    Science.gov (United States)

    Kim, Chongwon; So, Hyoungmin; Lee, Taikjin; Kee, Changdon

    2014-03-27

    The ephemeris data format of legacy GPS receivers is improper for positioning stationary pseudolites on the ground. Therefore, to utilize pseudolites for navigation, GPS receivers must be modified so that they can handle the modified data formats of the pseudolites. Because of this problem, the practical use of pseudolites has so far been limited. This paper proposes a pseudolite-based positioning system that can be used with unmodified legacy GPS receivers. In the proposed system, pseudolites transmit simulated GPS signals. The signals use standard GPS ephemeris data format and contain ephemeris data of simulated GPS satellites, not those of pseudolites. The use of the standard format enables the GPS receiver to process pseudolite signals without any modification. However, the position output of the GPS receiver is not the correct position in this system, because there are additional signal delays from each pseudolite to the receiver. A post-calculation process was added to obtain the correct receiver position using GPS receiver output. This re-estimation is possible because it is based on known information about the simulated signals, pseudolites, and positioning process of the GPS receiver. Simulations using generated data and live GPS data are conducted for various geometries to verify the proposed system. The test results show that the proposed system provides the desired user position using pseudolite signals without requiring any modifications to the legacy GPS receiver. In this initial study, a pseudolite-only indoor system was assumed. However, it can be expanded to a GPS-pseudolite system outdoors.

  12. Independet Component Analyses of Ground-based Exoplanetary Transits

    Science.gov (United States)

    Silva Martins-Filho, Walter; Griffith, Caitlin Ann; Pearson, Kyle; Waldmann, Ingo; Biddle, Lauren; Zellem, Robert Thomas; Alvarez-Candal, Alvaro

    2016-10-01

    Most observations of exoplanetary atmospheres are conducted when a "Hot Jupiter" exoplanet transits in front of its host star. These Jovian-sized planets have small orbital periods, on the order of days, and therefore a short transit time, making them more ameanable to observations. Measurements of Hot Jupiter transits must achieve a 10-4 level of accuracy in the flux to determine the spectral modulations of the exoplanetary atmosphere. In order to accomplish this level of precision, we need to extract systematic errors, and, for ground-based measurements, the effects of Earth's atmosphere, from the signal due to the exoplanet, which is several orders of magnitudes smaller. Currently, the effects of the terrestrial atmosphere and the some of the time-dependent systematic errors are treated by dividing the host star by a reference star at each wavelength and time step of the transit. More recently, Independent Component Analyses (ICA) have been used to remove systematic effects from the raw data of space-based observations (Waldmann 2014,2012; Morello et al.,2015,2016). ICA is a statistical method born from the ideas of the blind-source separation studies, which can be used to de-trend several independent source signals of a data set (Hyvarinen and Oja, 2000). One strength of this method is that it requires no additional prior knowledge of the system. Here, we present a study of the application of ICA to ground-based transit observations of extrasolar planets, which are affected by Earth's atmosphere. We analyze photometric data of two extrasolar planets, WASP-1b and GJ3470b, recorded by the 61" Kuiper Telescope at Stewart Observatory using the Harris B and U filters. The presentation will compare the light curve depths and their dispersions as derived from the ICA analysis to those derived by analyses that ratio of the host star to nearby reference stars.References: Waldmann, I.P. 2012 ApJ, 747, 12, Waldamann, I. P. 2014 ApJ, 780, 23; Morello G. 2015 ApJ, 806

  13. INS/GPS Integration Architectures

    Science.gov (United States)

    2010-03-01

    to maintain the mean code tracking error close to zero. RF FILTER I/Q DEMOD SAMPLING CORRELATION AND INTEGRATION SQUARE LAW DETECTION kth...Q(t) INERTIAL SENSORS OTHER SENSORS CORRELATOR BANK (n) x ′ˆ Figure 2.9: Code tracking information flow diagram for GPS-based navigator. The

  14. Cost Analysis of Plug-In Hybred Electric Vehicles Using GPS-Based Longitudinal Travel Data

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xing [Lamar University; Dong, Jing [Iowa State University; Lin, Zhenhong [ORNL

    2014-01-01

    Using spatial, longitudinal travel data of 415 vehicles over 3 18 months in the Seattle metropolitan area, this paper estimates the operating costs of plug-in hybrid electric vehicles (PHEVs) of various electric ranges (10, 20, 30, and 40 miles) for 3, 5, and 10 years of payback period, considering different charging infrastructure deployment levels and gasoline prices. Some key findings were made. (1) PHEVs could help save around 60% or 40% in energy costs, compared with conventional gasoline vehicles (CGVs) or hybrid electric vehicles (HEVs), respectively. However, for motorists whose daily vehicle miles traveled (DVMT) is significant, HEVs may be even a better choice than PHEV40s, particularly in areas that lack a public charging infrastructure. (2) The incremental battery cost of large-battery PHEVs is difficult to justify based on the incremental savings of PHEVs operating costs unless a subsidy is offered for largebattery PHEVs. (3) When the price of gasoline increases from $4/gallon to $5/gallon, the number of drivers who benefit from a larger battery increases significantly. (4) Although quick chargers can reduce charging time, they contribute little to energy cost savings for PHEVs, as opposed to Level-II chargers.

  15. Intelligent Mobile Device GPS Positioning System Design and Implementation Based on Android%基于Android的智能移动设备GPS定位系统设计与实现

    Institute of Scientific and Technical Information of China (English)

    蔡立斌

    2012-01-01

      First research the framework of Android; propose the method of GPS positioning based on the Android smart phone platform, focused on the Android GPS technology and programming method, Realize GPS positioning and navigation of the Android system.%  首先对Android框架结构进行了研究;提出了基于Android的智能手机平台GPS定位的方法,着重探讨了Android 的GPS定位技术和编程实现方法;实现了Android系统GPS定位与导航。

  16. Models of ionospheric VLF absorption of powerful ground based transmitters

    Science.gov (United States)

    Cohen, M. B.; Lehtinen, N. G.; Inan, U. S.

    2012-12-01

    Ground based Very Low Frequency (VLF, 3-30 kHz) radio transmitters play a role in precipitation of energetic Van Allen electrons. Initial analyses of the contribution of VLF transmitters to radiation belt losses were based on early models of trans-ionospheric propagation known as the Helliwell absorption curves, but some recent studies have found that the model overestimates (by 20-100 dB) the VLF energy reaching the magnetosphere. It was subsequently suggested that conversion of wave energy into electrostatic modes may be responsible for the error. We utilize a newly available extensive record of VLF transmitter energy reaching the magnetosphere, taken from the DEMETER satellite, and perform a direct comparison with a sophisticated full wave model of trans-ionospheric propagation. Although the model does not include the effect of ionospheric irregularities, it correctly predicts the average total power injected into the magnetosphere within several dB. The results, particularly at nighttime, appear to be robust against the variability of the ionospheric electron density. We conclude that the global effect of irregularity scattering on whistler mode conversion to quasi-electrostatic may be no larger than 6 dB.

  17. Research on Vehicle Equipment's Visualized Management System Based on GPS/GIS/GPRS%基于GPS/GIS/GPRS的车辆装备可视化管理系统研究

    Institute of Scientific and Technical Information of China (English)

    闫永

    2009-01-01

    通过对GPS,GIS和GPRS技术以及三者集成技术的浅析,针对车辆装备管理工作中存在的现实问题,讨论了基于GPS,GIS和GPRS技术的车辆装备可视化管理系统的设计,探讨了基于GPS,GIS和GPRS技术的车辆装备可视化管理系统的实现途径.

  18. Handset Design Based on Moving Targets Tracker Via GPS/GSM%基于GPS/GSM移动目标跟踪器的手持机设计

    Institute of Scientific and Technical Information of China (English)

    刘军涛; 郝文宁; 刘玉栋; 赵恩来

    2011-01-01

    伴随着新军事变革的日渐深入,部队信息化程度日益提高.本文针对部队演习和训练中存在着大量移动目标,指挥控制中心不便管理的现状,设计了一款基丁GSM网络的信息采集系统的手持机系统.经测试该系统能有效提高部队实体机动信息采集效率,对于促进部队相关训练具有一定的现实意义.%The informationization level becomes higher and higher with the revolution in military. In this paper, an information collected handset based on GSM is designed to response the situation that there are so many moving targets in the exercising that brings a lot of inconvenience. It is proved to be an effective system to strenghen the capability of collecting information about troop moving, and it has its realistic significance in promoting the relative exercises.

  19. PERSONNEL SCHEDULING SOLUTION BASED ON GPS/GIS%一种基于GPS/GIS的人员调度解决方案

    Institute of Scientific and Technical Information of China (English)

    徐立东; 王一良

    2012-01-01

    对防伪税控企业在实践中遇到的问题进行了分析和研究,提出一种解决方案.方案是以GIS/GPS为技术平台结合最短路径算法的思想设计的.给出了紧急派工系统的结构图,对应用的关键技术进行了简要介绍,对方案中应用到的算法进行了举例.最后通过分析、联系实际得出结果,证明了方案的可行性.%In this article we research and analyse the problems the fake-prevention tax-controlled enterprise have encountered in practices, and propose a solution. The design idea of this scheme is based on the technical platform of CPS/CIS and is integrated with the shortest path theory. This article provides the structure chart of emergency dispatching system, gives a brief overview on the key technology of the system and die example on the algorithms used in the scheme. Finally, the result is gained through analysing and by connection with actual practices, and it proves the feasibility of the scheme.

  20. Inversion of GPS meteorology data

    Directory of Open Access Journals (Sweden)

    K. Hocke

    Full Text Available The GPS meteorology (GPS/MET experiment, led by the Universities Corporation for Atmospheric Research (UCAR, consists of a GPS receiver aboard a low earth orbit (LEO satellite which was launched on 3 April 1995. During a radio occultation the LEO satellite rises or sets relative to one of the 24 GPS satellites at the Earth's horizon. Thereby the atmospheric layers are successively sounded by radio waves which propagate from the GPS satellite to the LEO satellite. From the observed phase path increases, which are due to refraction of the radio waves by the ionosphere and the neutral atmosphere, the atmospheric parameter refractivity, density, pressure and temperature are calculated with high accuracy and resolution (0.5–1.5 km. In the present study, practical aspects of the GPS/MET data analysis are discussed. The retrieval is based on the Abelian integral inversion of the atmospheric bending angle profile into the refractivity index profile. The problem of the upper boundary condition of the Abelian integral is described by examples. The statistical optimization approach which is applied to the data above 40 km and the use of topside bending angle profiles from model atmospheres stabilize the inversion. The retrieved temperature profiles are compared with corresponding profiles which have already been calculated by scientists of UCAR and Jet Propulsion Laboratory (JPL, using Abelian integral inversion too. The comparison shows that in some cases large differences occur (5 K and more. This is probably due to different treatment of the upper boundary condition, data runaways and noise. Several temperature profiles with wavelike structures at tropospheric and stratospheric heights are shown. While the periodic structures at upper stratospheric heights could be caused by residual errors of the ionospheric correction method, the periodic temperature fluctuations at heights below 30 km are most likely caused by atmospheric waves (vertically

  1. GPS based TEC measurements for a period August 2008–December 2009 near the northern crest of Indian equatorial ionospheric anomaly region

    Indian Academy of Sciences (India)

    S P Karia; K N Pathak

    2011-10-01

    In recent years, measurements of total electron content (TEC) have gained importance with increasing demand for the GPS-based navigation applications in trans-ionospheric communications. To study the variation in ionospheric TEC, we used the data obtained from GPS Ionospheric Scintillation and TEC monitoring (GISTM) system which is in operation at SVNIT, Surat, India (21.16°N, 72.78°E) located at the northern crest of equatorial anomaly region. The data collected (for the low sunspot activity period from August 2008–December 2009) were used to study the diurnal, monthly, seasonal semi-annual and annual variations of TEC at Surat. It was observed that the diurnal variation at the region reaches its maximum value between 13:00 and 16:00 IST. The monthly average diurnal variations showed that the TEC maximizes during the equinox months followed by the winter months, and are lowest during the summer months. The ionospheric range delay to TEC for the primary GPS signal is 0.162 m per TECU. The diurnal variation in TEC shows a minimum to maximum variation of about 5 to 50 TECU (in current low sunspot activity periods). These TEC values correspond to range delay variations of about 1 to 9 m at Surat. These variations in the range delay will certainly increase in high sunspot activity periods. Detected TEC variations are also closely related to space weather characterizing quantities such as solar wind and geomagnetic activity indices.

  2. USB接口GPS中频信号采样器研究与实现%Research and realization of GPS intermediate frequency signal sampler based on USB

    Institute of Scientific and Technical Information of China (English)

    曾庆喜; 王庆; 杨英杰; 宋阳

    2012-01-01

    提出了一种模块化的GPS中频信号采样器设计方法.基于GPS射频前端芯片来设计信号前端电路;利用FPGA实现了射频前端与USB之间数据实时高速传输;提出了采样率转换在FPGA中实现的方法和适合本采样器的信号验证算法.系统测试结果表明,该设计的GPS中频信号采样器信号验证算法高效准确、可靠性高,适用于GPS软件接收机算法的开发与试验.%A design method for modular GPS IF signal sampler is proposed in this paper. The radio frequency front end is designed based on a GPS radio frequency integrated circuit. A method of real-time and high-speed data transmission between front end and USB is presented. The sampling rate conversion is realized in FPGA. An algorithm of signal verification suitable for this sampler is presented. The experimental results prove that the algorithms are efficient, accurate and highly reliable. The design is suitable for the development and test of software GPS receiver.

  3. Validating time series of a combined GPS and MERIS Integrated Water Vapor product

    NARCIS (Netherlands)

    Lindenbergh, R.; Van der Marel, H.; Keshin, M.; De Haan, S.

    2009-01-01

    Increased knowledge of atmospheric water vapor can improve weather predictions and is expected to reduce errors in products derived from GPS and (In)SAR data. At GPS ground stations Integrated Water Vapor (IWV) is estimated from the GPS signal delay with a high temporal resolution. The Envisat MERIS

  4. Validating time series of a combined GPS and MERIS Integrated Water Vapor product

    NARCIS (Netherlands)

    Lindenbergh, R.; Van der Marel, H.; Keshin, M.; De Haan, S.

    2009-01-01

    Increased knowledge of atmospheric water vapor can improve weather predictions and is expected to reduce errors in products derived from GPS and (In)SAR data. At GPS ground stations Integrated Water Vapor (IWV) is estimated from the GPS signal delay with a high temporal resolution. The Envisat MERIS

  5. Design of GPS data encryption communication system based on SOPC%基于SOPC的GPS信息加密传输系统

    Institute of Scientific and Technical Information of China (English)

    徐劲松; 严迎建; 刘凯; 王志新

    2011-01-01

    A GPS data encryption communication system is presented, which can be used for monitor and control of vehicle for money escort and other important mobile equipment or personnel.It is composed of a center computer, which is located in headquarter, and a group of terminal modules.The first is responsible for the receiving, processing and display of information of all mobile objects, encrypt key distribution and other system management work.The second that is installed on the mobile object, take responsibility for the collection,encryption, transmission of GPS and other data of the mobile object.The wireless communication of the center computer and the terminal module is CDMA channel.The GPS data is acquire through GPS receiving module.The control of the terminal module and data encryption/decryption are realized by a SOPC, which is based on an Altera FPGA.%设计了一个GPS信息加密传输系统,用于车辆、人员等重要移动目标的远程监控.该系统主要由一台中心计算机和一组终端模块组成,前者负责定位信息的接收、处理、显示以及密钥分发等系统管理任务,后者安装在被监控的移动目标上,负责定位及其它监控信息的加密传输,中心计算机与终端模块之间采用CDMA进行无线通信.终端模块利用商用GPS接收模块实现定位信息采集,采用基于Alera FPGA的SOPC技术,实现了整个终端模块的控制和数据加解密.

  6. Ground Based Investigation of Electrostatic Accelerometer in HUST

    Science.gov (United States)

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L

  7. Probing Pluto's Atmosphere Using Ground-Based Stellar Occultations

    Science.gov (United States)

    Sicardy, Bruno; Rio de Janeiro Occultation Team, Granada Team, International Occultation and Timing Association, Royal Astronomical Society New Zealand Occultation Section, Lucky Star associated Teams

    2016-10-01

    Over the last three decades, some twenty stellar occultations by Pluto have been monitored from Earth. They occur when the dwarf planet blocks the light from a star for a few minutes as it moves on the sky. Such events led to the hint of a Pluto's atmosphere in 1985, that was fully confirmed during another occultation in 1988, but it was only in 2002 that a new occultation could be recorded. From then on, the dwarf planet started to move in front of the galactic center, which amplified by a large factor the number of events observable per year.Pluto occultations are essentially refractive events during which the stellar rays are bent by the tenuous atmosphere, causing a gradual dimming of the star. This provides the density, pressure and temperature profiles of the atmosphere from a few kilometers above the surface up to about 250 km altitude, corresponding respectively to pressure levels of about 10 and 0.1 μbar. Moreover, the extremely fine spatial resolution (a few km) obtained through this technique allows the detection of atmospheric gravity waves, and permits in principle the detection of hazes, if present.Several aspects make Pluto stellar occultations quite special: first, they are the only way to probe Pluto's atmosphere in detail, as the dwarf planet is far too small on the sky and the atmosphere is far too tenuous to be directly imaged from Earth. Second, they are an excellent example of participative science, as many amateurs have been able to record those events worldwide with valuable scientific returns, in collaboration with professional astronomers. Third, they reveal Pluto's climatic changes on decade-scales and constrain the various seasonal models currently explored.Finally, those observations are fully complementary to space exploration, in particular with the New Horizons (NH) mission. I will show how ground-based occultations helped to better calibrate some NH profiles, and conversely, how NH results provide some key boundary conditions

  8. A New GPS System for Continuous Deformation Monitoring

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper presents a multi-antenna GPS based system developed for localcontinuous deformation monitoring. Due to a large number of points that needs to be monitored,the standard approaches of using permanent GPS receiver arrays will cause high cost. Iteventually becomes the limiting factor for large-scale use of GPS in these application areas.Multi-antenna GPS system allows a number of GPS antennas to be linked to one GPS receiverby a specially designed electronic component, i.e. the so-called GPS multi-antenna switch(GMS), The receiver takes data sequentially from each of the antennas attached to thereceiver. A distinctive advantage of the approach is that one GPS receiver can be used tomonitor more than one point. The cost per monitored point (i. e. the expenses of hardware)istherefore significantly reduced.

  9. Advanced GPS Technologies (AGT)

    Science.gov (United States)

    2015-05-01

    V Air Force Research Laboratory ••• Advanced GPS Technologies (AGT) Integrity *Service *Excellence 1 May 2015 Kevin Slimak Program Manager...2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Advanced GPS Technologies (AGT) 5a. CONTRACT NUMBER 5b...DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Presented at the GPS Partnership

  10. Maps of Ionospheric F2-Layer Characteristics Derived from GPS Radio Occultation Observations

    Directory of Open Access Journals (Sweden)

    Lung-Chih Tsai

    2009-01-01

    Full Text Available The Global Positioning System (GPS radio occultation (RO technique has been used to receive multi-channel GPS carrier phase signals from low Earth or biting (LEO satellites and demon strate active limb sounding of the Earth¡¦s ionosphere. Apply ing Abel inversion through compen sated total electron content (TEC values, the GPS RO observations can obtainion o spheric electron density (ne profiles and then scale F2-layer characteristics including foF2 and hmF2, especially, hmF2 that can not be directly deduced from ionosonde observations. From the GPS/MET and FS3/COS MIC mis sions, we can col lect on average two hundred and eighteen hundred vertical neprofiles, respectively, within one day. The retrieved foF2 and hmF2 re sults have been used to produce numerical maps representing complex prop erties on a world-wide scale. This paperpresents aphysically appeal ing represen tation of foF2 and hmF2 medians based on GPS RO data. The derived numerical maps have also been examined by ground-based ionosonde data.

  11. Lightweight GPS-tags, one giant leap for wildlife tracking? An assessment approach.

    Directory of Open Access Journals (Sweden)

    Mariano R Recio

    Full Text Available Recent technological improvements have made possible the development of lightweight GPS-tagging devices suitable to track medium-to-small sized animals. However, current inferences concerning GPS performance are based on heavier designs, suitable only for large mammals. Lightweight GPS-units are deployed close to the ground, on species selecting micro-topographical features and with different behavioural patterns in comparison to larger mammal species. We assessed the effects of vegetation, topography, motion, and behaviour on the fix success rate for lightweight GPS-collar across a range of natural environments, and at the scale of perception of feral cats (Felis catus. Units deployed at 20 cm above the ground in sites of varied vegetation and topography showed that trees (native forest and shrub cover had the largest influence on fix success rate (89% on average; whereas tree cover, sky availability, number of satellites and horizontal dilution of position (HDOP were the main variables affecting location error (±39.5 m and ±27.6 m before and after filtering outlier fixes. Tests on HDOP or number of satellites-based screening methods to remove inaccurate locations achieved only a small reduction of error and discarded many accurate locations. Mobility tests were used to simulate cats' motion, revealing a slightly lower performance as compared to the fixed sites. GPS-collars deployed on 43 cats showed no difference in fix success rate by sex or season. Overall, fix success rate and location error values were within the range of previous tests carried out with collars designed for larger species. Lightweight GPS-tags are a suitable method to track medium to small size species, hence increasing the range of opportunities for spatial ecology research. However, the effects of vegetation, topography and behaviour on location error and fix success rate need to be evaluated prior to deployment, for the particular study species and their habitats.

  12. GPS Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  13. Tissue Engineering of Cartilage on Ground-Based Facilities

    Science.gov (United States)

    Aleshcheva, Ganna; Bauer, Johann; Hemmersbach, Ruth; Egli, Marcel; Wehland, Markus; Grimm, Daniela

    2016-06-01

    Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free three-dimensional (3D) tissue formation. To investigate the short-term influence, human chondrocytes were cultivated for 2 h, 4 h, 16 h, and 24 h on a 2D Fast-Rotating Clinostat (FRC) in DMEM/F-12 medium supplemented with 10 % FCS. We detected holes in the vimentin network, perinuclear accumulations of vimentin after 2 h, and changes in the chondrocytes shape visualised by F-actin staining after 4 h of FRC-exposure. Scaffold-free cultivation of chondrocytes for 7 d on the Random Positioning Machine (RPM), the FRC and the Rotating Wall Vessel (RWV) resulted in spheroid formation, a phenomenon already known from spaceflight experiments with chondrocytes (MIR Space Station) and thyroid cancer cells (SimBox/Shenzhou-8 space mission). The experiments enabled by the ESA-CORA-GBF programme gave us an optimal opportunity to study gravity-related cellular processes, validate ground-based facilities for our chosen cell system, and prepare long-term experiments under real microgravity conditions in space

  14. Theoretical validation of ground-based microwave ozone observations

    Directory of Open Access Journals (Sweden)

    P. Ricaud

    Full Text Available Ground-based microwave measurements of the diurnal and seasonal variations of ozoneat 42±4.5 and 55±8 km are validated by comparing with results from a zero-dimensional photochemical model and a two-dimensional (2D chemical/radiative/dynamical model, respectively. O3 diurnal amplitudes measured in Bordeaux are shown to be in agreement with theory to within 5%. For the seasonal analysis of O3 variation, at 42±4.5 km, the 2D model underestimates the yearly averaged ozone concentration compared with the measurements. A double maximum oscillation (~3.5% is measured in Bordeaux with an extended maximum in September and a maximum in February, whilst the 2D model predicts only a single large maximum (17% in August and a pronounced minimum in January. Evidence suggests that dynamical transport causes the winter O3 maximum by propagation of planetary waves, phenomena which are not explicitly reproduced by the 2D model. At 55±8 km, the modeled yearly averaged O3 concentration is in very good agreement with the measured yearly average. A strong annual oscillation is both measured and modeled with differences in the amplitude shown to be exclusively linked to temperature fields.

  15. Atmospheric Refraction Path Integrals in Ground-Based Interferometry

    CERN Document Server

    Mathar, R J

    2004-01-01

    The basic effect of the earth's atmospheric refraction on telescope operation is the reduction of the true zenith angle to the apparent zenith angle, associated with prismatic aberrations due to the dispersion in air. If one attempts coherent superposition of star images in ground-based interferometry, one is in addition interested in the optical path length associated with the refracted rays. In a model of a flat earth, the optical path difference between these is not concerned as the translational symmetry of the setup means no net effect remains. Here, I evaluate these interferometric integrals in the more realistic arrangement of two telescopes located on the surface of a common earth sphere and point to a star through an atmosphere which also possesses spherical symmetry. Some focus is put on working out series expansions in terms of the small ratio of the baseline over the earth radius, which allows to bypass some numerics which otherwise is challenged by strong cancellation effects in building the opti...

  16. Experiments on a Ground-Based Tomographic Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Hoonyol Lee

    2016-08-01

    Full Text Available This paper presents the development and experiment of three-dimensional image formation by using a ground-based tomographic synthetic aperture radar (GB-TomoSAR system. GB-TomoSAR formulates two-dimensional synthetic aperture by the motion of antennae, both in azimuth and vertical directions. After range compression, three-dimensional image focusing is performed by applying Deramp-FFT (Fast Fourier Transform algorithms, both in azimuth and vertical directions. Geometric and radiometric calibrations were applied to make an image cube, which is then projected into range-azimuth and range-vertical cross-sections for visualization. An experiment with a C-band GB-TomoSAR system with a scan length of 2.49 m and 1.86 m in azimuth and vertical-direction, respectively, shows distinctive three-dimensional radar backscattering of stable buildings and roads with resolutions similar to the theoretical values. Unstable objects such as trees and moving cars generate severe noise due to decorrelation during the eight-hour image-acquisition time.

  17. Satellite Type Estination from Ground-based Photometric Observation

    Science.gov (United States)

    Endo, T.; Ono, H.; Suzuki, J.; Ando, T.; Takanezawa, T.

    2016-09-01

    The optical photometric observation is potentially a powerful tool for understanding of the Geostationary Earth Orbit (GEO) objects. At first, we measured in laboratory the surface reflectance of common satellite materials, for example, Multi-layer Insulation (MLI), mono-crystalline silicon cells, and Carbon Fiber Reinforced Plastic (CFRP). Next, we calculated visual magnitude of a satellite by simplified shape and albedo. In this calculation model, solar panels have dimensions of 2 by 8 meters, and the bus area is 2 meters squared with measured optical properties described above. Under these conditions, it clarified the brightness can change the range between 3 and 4 magnitudes in one night, but color index changes only from 1 to 2 magnitudes. Finally, we observed the color photometric data of several GEO satellites visible from Japan multiple times in August and September 2014. We obtained that light curves of GEO satellites recorded in the B and V bands (using Johnson filters) by a ground-base optical telescope. As a result, color index changed approximately from 0.5 to 1 magnitude in one night, and the order of magnitude was not changed in all cases. In this paper, we briefly discuss about satellite type estimation using the relation between brightness and color index obtained from the photometric observation.

  18. VME-based remote instrument control without ground loops

    CERN Document Server

    Belleman, J; González, J L

    1997-01-01

    New electronics has been developed for the remote control of the pick-up electrodes at the CERN Proton Synchrotron (PS). Communication between VME-based control computers and remote equipment is via full duplex point-to-point digital data links. Data are sent and received in serial format over simple twisted pairs at a rate of 1 Mbit/s, for distances of up to 300 m. Coupling transformers are used to avoid ground loops. The link hardware consists of a general-purpose VME-module, the 'TRX' (transceiver), containing four FIFO-buffered communication channels, and a dedicated control card for each remote station. Remote transceiver electronics is simple enough not to require micro-controllers or processors. Currently, some sixty pick-up stations of various types, all over the PS Complex (accelerators and associated beam transfer lines) are equipped with the new system. Even though the TRX was designed primarily for communication with pick-up electronics, it could also be used for other purposes, for example to for...

  19. Ground-based measurements of UV Index (UVI at Helwan

    Directory of Open Access Journals (Sweden)

    H. Farouk

    2012-12-01

    Full Text Available On October 2010 UV Index (UVI ground-based measurements were carried out by weather station at solar laboratory in NRIAG. The daily variation has maximum values in spring and summer days, while minimum values in autumn and winter days. The low level of UVI between 2.55 and 2.825 was found in December, January and February. The moderate level of UVI between 3.075 and 5.6 was found in March, October and November. The high level of UVI between 6.7 and 7.65 was found in April, May and September. The very high level of UVI between 8 and 8.6 was found in June, July and August. High level of radiation over 6 months per year including 3 months with a very high level UVI. According to the equation {UVI=a[SZA]b} the UVI increases with decreasing SZA by 82% on a daily scale and 88% on a monthly scale. Helwan exposure to a high level of radiation over 6 months per year including 3 months with a very high level UVI, so it is advisable not to direct exposure to the sun from 11 am to 2:00 pm.

  20. Very long-period GPS waveforms. What can GPS bring to Earth seismic velocity models?

    Science.gov (United States)

    Kelevitz, K.; Houlie, N.; Nissen-Meyer, T.; Boschi, L.; Giardini, D.; Rothacher, M.

    2014-12-01

    It is now admitted that high rate GPS observations can provide reliable surface displacement waveforms. For long-period (T > 5s) transients, it was shown that GPS and seismometer (STS-1) displacements are in agreement at least for vertical component [Houlié et al., 2011]. We propose here to supplement existing long-period seismic networks with high rate (>= 1Hz) GPS data in order to improve the resolution of global seismic velocity models. We aim at extending the use of GPS measurements beyond the range of STS-1 in the low frequency end (T>1000s). We present the results of the processing of 1Hz GPS records of the Hokkaido, Sumatra and Tohoku earthquakes (25th of September, 2003, Mw = 8.3; 26th of December, 2004, Mw = 8.9; 11th of March, 2011, Mw = 9.1, respectively). 3D waveforms phase time-series have been used to recover the ground motion histories at the GPS sites. Through the better resolution of inversion of the GPS phase observations, we determine displacement waveforms of periods ranging from 30 seconds to 1300 seconds for a selection of sites. We compare inverted GPS waveforms with STS-1 waveforms, superconducting gravity waveforms and synthetic waveforms computed using 3D global wave propagation with SPECFEM. We find that the GPS waveforms are in agreement with the SPECFEM synthetic data and are able to fill the period-gap between the broadband seismometer STS-1 data and the normal mode period range detected by the superconducting gravimeters. References: Houlié, N., G. Occhipinti, T. Blanchard, N. Shapiro, P. Lognonne, and M. Murakami (2011), New approach to detect seismic surface waves in 1Hz-sampled GPS time series, Scientific reports, 1, 44.

  1. Ground-based monitoring of solar radiation in Moldova

    Science.gov (United States)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Integrated measurements of solar radiation in Kishinev, Moldova have been started by Atmospheric Research Group (ARG) at the Institute of Applied Physics from 2003. Direct, diffuse and total components of solar and atmospheric long-wave radiation are measured by using of the radiometric complex at the ground-based solar radiation monitoring station. Measurements are fulfilled at the stationary and moving platforms equipped with the set of 9 broadband solar radiation sensors overlapping wavelength range from UV-B to IR. Detailed description of the station can be found at the site http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E). Summary of observation data acquired at the station in the course of short-term period from 2004 to 2009 are presented below. Solar radiation measurements were fulfilled by using CM11(280-3000 nm) and CH1 sensors (Kipp&Zonen). In the course of a year maximum and minimum of monthly sums of total radiation was ~706.4 MJm-2 in June and ~82.1MJm-2 in December, respectively. Monthly sums of direct solar radiation (on horizontal plane) show the maximum and minimum values of the order ~456.9 MJm-2 in July and ~25.5MJm-2 in December, respectively. In an average, within a year should be marked the predominance of direct radiation over the scattered radiation, 51% and 49%, respectively. In the course of a year, the percentage contribution of the direct radiation into the total radiation is ~55-65% from May to September. In the remaining months, the percentage contribution decreases and takes the minimum value of ~ 28% in December. In an average, annual sum of total solar radiation is ~4679.9 MJm-2. For the period from April to September accounts for ~76% of the annual amount of total radiation. Annual sum of sunshine duration accounts for ~2149 hours, which is of ~ 48% from the possible sunshine duration. In an average, within a year maximum and minimum of sunshine duration is ~ 304 hours in

  2. Inversion of Ionospheric Electron Density from GPS Beacon Observations

    Institute of Scientific and Technical Information of China (English)

    ZouYu-hua; XuJi-sheng

    2003-01-01

    This paper studies the mathematical foundation of time-dependent three-dimensional (3-D) computerized ionospheric tomography (CIT) for reconstructing ionospheric electron density, N~, from ground-based GPS beacon observations. After simplifying the relation between N. and time,the time-dependent 3-D inversion in consideration is reduced to a 3-D tomography with incomplete projections. To see clearly the effects of the incompleteness on the quality of reconstruction under 3-D condition, the formula of 3-D parallelbeam tomogtTaphy is deduced theoretically. After establishing the mathematical foundation, simulations based on actual GPS ray paths with the help of the IRI-90 model are performed,and reasonable time-dependent 3-D distribution images of Ne are obtained when taking proper layout of the network and allowing variable resolutions. The quality of the reconstruction is rather good when compared with the images from the IRI-90 model directly. Therefore, results in this paper demonstrate that imaging of the ionospheric electron density distribution from GPS beacon observations is reasonable in theor yand feasible in practice.

  3. Inversion of Ionospheric Electron Density from GPS Beacon Observations

    Institute of Scientific and Technical Information of China (English)

    Zou Yu-hua; Xu Ji-sheng

    2003-01-01

    This paper studies the mathematical foundation of time-dependent three-dimensional (3-D) computerized ionospheric tomography (CIT) for reconstructing ionospheric electron density, Ne, from ground-based GPS beacon observations. After simplifying the relation between Ne and time,the time-dependent 3-D inversion in consideration is reduced to a 3-D tomography with incomplete projections.To see clearly the effects of the incompleteness on the quality of reconstruction under 3-D condition, the formula of 3-D parallel-beam tomography is deduced theoretically. After establishing the mathematical foundation, simulations based on actual GPS ray paths with the help of the IRI-90 model are performed,and reasonable time-dependent 3-D distribution images of Neare obtained when taking proper layout of the network and allowing variable resolutions. The quality of the reconstruction is rather good when compared with the images from the IRI-90 model directly. Therefore, results in this paper demon-strate that imaging of the ionospheric electron density distri-bution from GPS beacon observations is reasonable in theory and feasible in practice.

  4. GVT-Based Ground Flutter Test without Wind Tunnel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc (ZONA) and Arizona State University (ASU) propose a R&D effort to develop a ground flutter testing system without wind tunnel, called the...

  5. GVT-Based Ground Flutter Test without Wind Tunnel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc (ZONA) and Arizona State University (ASU) propose a R&D effort to further develop the ground flutter testing system in place of a wind...

  6. System of gait analysis based on ground reaction force assessment

    Directory of Open Access Journals (Sweden)

    František Vaverka

    2015-12-01

    Full Text Available Background: Biomechanical analysis of gait employs various methods used in kinematic and kinetic analysis, EMG, and others. One of the most frequently used methods is kinetic analysis based on the assessment of the ground reaction forces (GRF recorded on two force plates. Objective: The aim of the study was to present a method of gait analysis based on the assessment of the GRF recorded during the stance phase of two steps. Methods: The GRF recorded with a force plate on one leg during stance phase has three components acting in directions: Fx - mediolateral, Fy - anteroposterior, and Fz - vertical. A custom-written MATLAB script was used for gait analysis in this study. This software displays instantaneous force data for both legs as Fx(t, Fy(t and Fz(t curves, automatically determines the extremes of functions and sets the visual markers defining the individual points of interest. Positions of these markers can be easily adjusted by the rater, which may be necessary if the GRF has an atypical pattern. The analysis is fully automated and analyzing one trial takes only 1-2 minutes. Results: The method allows quantification of temporal variables of the extremes of the Fx(t, Fy(t, Fz(t functions, durations of the braking and propulsive phase, duration of the double support phase, the magnitudes of reaction forces in extremes of measured functions, impulses of force, and indices of symmetry. The analysis results in a standardized set of 78 variables (temporal, force, indices of symmetry which can serve as a basis for further research and diagnostics. Conclusions: The resulting set of variable offers a wide choice for selecting a specific group of variables with consideration to a particular research topic. The advantage of this method is the standardization of the GRF analysis, low time requirements allowing rapid analysis of a large number of trials in a short time, and comparability of the variables obtained during different research measurements.

  7. A drift line bias estimator: ARMA-based filter or calibration method, and its application in BDS/GPS-based attitude determination

    Science.gov (United States)

    Liang, Zhang; Yanqing, Hou; Jie, Wu

    2016-06-01

    The multi-antenna synchronized receiver (using a common clock) is widely applied in GNSS-based attitude determination (AD) or terrain deformations monitoring, and many other applications, since the high-accuracy single-differenced carrier phase can be used to improve the positioning or AD accuracy. Thus, the line bias (LB) parameter (fractional bias isolating) should be calibrated in the single-differenced phase equations. In the past decades, all researchers estimated the LB as a constant parameter in advance and compensated it in real time. However, the constant LB assumption is inappropriate in practical applications because of the physical length and permittivity changes of the cables, caused by the environmental temperature variation and the instability of receiver-self inner circuit transmitting delay. Considering the LB drift (or colored LB) in practical circumstances, this paper initiates a real-time estimator using auto regressive moving average-based (ARMA) prediction/whitening filter model or Moving average-based (MA) constant calibration model. In the ARMA-based filter model, four cases namely AR(1), ARMA(1, 1), AR(2) and ARMA(2, 1) are applied for the LB prediction. The real-time relative positioning model using the ARMA-based predicting LB is derived and it is theoretically proved that the positioning accuracy is better than the traditional double difference carrier phase (DDCP) model. The drifting LB is defined with a phase temperature changing rate integral function, which is a random walk process if the phase temperature changing rate is white noise, and is validated by the analysis of the AR model coefficient. The auto covariance function shows that the LB is indeed varying in time and estimating it as a constant is not safe, which is also demonstrated by the analysis on LB variation of each visible satellite during a zero and short baseline BDS/GPS experiment. Compared to the DDCP approach, in the zero-baseline experiment, the LB constant

  8. A drift line bias estimator: ARMA-based filter or calibration method, and its application in BDS/GPS-based attitude determination

    Science.gov (United States)

    Liang, Zhang; Yanqing, Hou; Jie, Wu

    2016-12-01

    The multi-antenna synchronized receiver (using a common clock) is widely applied in GNSS-based attitude determination (AD) or terrain deformations monitoring, and many other applications, since the high-accuracy single-differenced carrier phase can be used to improve the positioning or AD accuracy. Thus, the line bias (LB) parameter (fractional bias isolating) should be calibrated in the single-differenced phase equations. In the past decades, all researchers estimated the LB as a constant parameter in advance and compensated it in real time. However, the constant LB assumption is inappropriate in practical applications because of the physical length and permittivity changes of the cables, caused by the environmental temperature variation and the instability of receiver-self inner circuit transmitting delay. Considering the LB drift (or colored LB) in practical circumstances, this paper initiates a real-time estimator using auto regressive moving average-based (ARMA) prediction/whitening filter model or Moving average-based (MA) constant calibration model. In the ARMA-based filter model, four cases namely AR(1), ARMA(1, 1), AR(2) and ARMA(2, 1) are applied for the LB prediction. The real-time relative positioning model using the ARMA-based predicting LB is derived and it is theoretically proved that the positioning accuracy is better than the traditional double difference carrier phase (DDCP) model. The drifting LB is defined with a phase temperature changing rate integral function, which is a random walk process if the phase temperature changing rate is white noise, and is validated by the analysis of the AR model coefficient. The auto covariance function shows that the LB is indeed varying in time and estimating it as a constant is not safe, which is also demonstrated by the analysis on LB variation of each visible satellite during a zero and short baseline BDS/GPS experiment. Compared to the DDCP approach, in the zero-baseline experiment, the LB constant

  9. GPS-corrected and GIS-based remapping of the Kalahari Gemsbok National Park and the adjacent area in Botswana

    Directory of Open Access Journals (Sweden)

    J. du P. Bothma

    1993-09-01

    Full Text Available GPS-equipment was used to map the interior roads, major pans and the location of all windmills and solar-equipped boreholes in the Kalahari Gemsbok National Park and the adjacent areas of Botswana. The final map was generated with GIS-equipment, and supplies managers and planners with the first error-free map of the area. The major errors of previous maps are indicated.

  10. High sensitive GPS signal acquisition algorithm based on stochastic resonance%基于随机共振的高灵敏度GPS信号捕获算法

    Institute of Scientific and Technical Information of China (English)

    莫建文; 欧阳缮; 肖海林; 孙希延

    2011-01-01

    针对微弱环境下全球定位系统(global position system,GPS)信号捕获问题,提出了基于随机共振(stochastic resonance,SR)的GPS信号捕获算法.该算法首先用部分匹配滤波器对GPS信号进行分段相关预处理,然后利用SR提高预处理后信号的信噪比(signal-to-noise ratio,SNR),SR中引入了二次采样和自适应技术,解决了传统SR不适合捕获大频率信号(频率远大于1 Hz的信号)及SR参数难以与被捕获信号匹配的难题,最后采用快速傅里叶变换(fast Fourier transform,FFT)谱分析技术,实现在较短的相关累积时间内获得较高的捕获灵敏度.实验表明,算法能明显提高系统捕获性能,在相关累积时间为10 ms,信号SNR为-38 dB的情况下,算法捕获GPS信号的正确检测率达到100%.%Aiming at the acquisition problem of weak global position system (GPS) signals, a GPS signal acquisition algorithm based on stochastic resonance (SR) is proposed. After a partial-matched filter is adopted in GPS signal pre-processing, the signal-to-noise ratio (SNR) is improved by employing SR. By introducing twice sampling and adaptive techniques in SR, signals with the large frequence can be acquired, and the parameters of SR can match up with the acquired siganls. Fast Fourier transform (FFT) spectrum analysis is used to realize higher sensitive acquisition of GPS signals in shorter coherent integration time. Experiment results show that the acquisition system improves acquiring performance obviously using the proposed algorithm, and it can be seen that correct detection probabilities achieve lOO% for a coherent integration time of 1O ms and SNR of -38 dB.

  11. Analysis of the 2008 heavy snowfall over South China using GPS PWV measurements from the Tibetan Plateau

    Science.gov (United States)

    Xie, Y.; Wei, F.; Chen, G.; Zhang, T.; Hu, L.

    2010-06-01

    Four successive storms with freezing rain and snow blanketed South China from 10 January-2 February 2008, when the precipitation increased more than 200%-300% above the average for the corresponding period. The unusual atmospheric circulation associated with these disasters was caused by many complex physical processes, one of which was the active southern branch of currents over low latitude ocean areas which provided plenty of water vapor for South China. The ground-based GPS Precipitable Water Vapor (PWV) measurements on the Tibetan Plateau, supported by the China and Japan Intergovernmental Cooperation Program (JICA), has compensated for the lack of conventional observations of atmospheric water vapor in this area and provided a good opportunity to analyze the character of the water vapor transport in the four heavy precipitation processes. It was found that the GPS stations located on the southeastern Tibetan Plateau were on the route of the water vapor transport during 25 January-29 January and 31 January-2 February when two heavy precipitation events occurred over South China. The increasing trend from the one to two days pre-observation by the GPS stations was then associated with the heavy precipitation. Precipitation during 10 January-16 January and 18 January-22 January was significantly related to the abnormal variation of the one day pre-observation by the GPS stations located on the northeastern Tibetan Plateau. This research indicates that ground-based GPS measurements are applicable to data assimilation in operational numerical models.

  12. Analysis of the 2008 heavy snowfall over South China using GPS PWV measurements from the Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Y. [Texas A and M Univ., College Station, TX (United States). Dept. of Atmospheric Sciences; Wei, F.; Chen, G.; Zhang, T. [Chinese Academy of Meteorological Sciences, Beijing (China). State Key Lab. of Severe Weather; Hu, L. [Texas A and M Univ., College Station, TX (United States). Dept. of Oceanography

    2010-07-01

    Four successive storms with freezing rain and snow blanketed South China from 10 January-2 February 2008, when the precipitation increased more than 200%- 300% above the average for the corresponding period. The unusual atmospheric circulation associated with these disasters was caused by many complex physical processes, one of which was the active southern branch of currents over low latitude ocean areas which provided plenty of water vapor for South China. The ground-based GPS Precipitable Water Vapor (PWV) measurements on the Tibetan Plateau, supported by the China and Japan Intergovernmental Cooperation Program (JICA), has compensated for the lack of conventional observations of atmospheric water vapor in this area and provided a good opportunity to analyze the character of the water vapor transport in the four heavy precipitation processes. It was found that the GPS stations located on the southeastern Tibetan Plateau were on the route of the water vapor transport during 25 January-29 January and 31 January-2 February when two heavy precipitation events occurred over South China. The increasing trend from the one to two days pre-observation by the GPS stations was then associated with the heavy precipitation. Precipitation during 10 January-16 January and 18 January-22 January was significantly related to the abnormal variation of the one day preobservation by the GPS stations located on the northeastern Tibetan Plateau. This research indicates that ground-based GPS measurements are applicable to data assimilation in operational numerical models. (orig.)

  13. Analysis of the 2008 heavy snowfall over South China using GPS PWV measurements from the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Y. Xie

    2010-06-01

    Full Text Available Four successive storms with freezing rain and snow blanketed South China from 10 January–2 February 2008, when the precipitation increased more than 200%–300% above the average for the corresponding period. The unusual atmospheric circulation associated with these disasters was caused by many complex physical processes, one of which was the active southern branch of currents over low latitude ocean areas which provided plenty of water vapor for South China. The ground-based GPS Precipitable Water Vapor (PWV measurements on the Tibetan Plateau, supported by the China and Japan Intergovernmental Cooperation Program (JICA, has compensated for the lack of conventional observations of atmospheric water vapor in this area and provided a good opportunity to analyze the character of the water vapor transport in the four heavy precipitation processes. It was found that the GPS stations located on the southeastern Tibetan Plateau were on the route of the water vapor transport during 25 January–29 January and 31 January–2 February when two heavy precipitation events occurred over South China. The increasing trend from the one to two days pre-observation by the GPS stations was then associated with the heavy precipitation. Precipitation during 10 January–16 January and 18 January–22 January was significantly related to the abnormal variation of the one day pre-observation by the GPS stations located on the northeastern Tibetan Plateau. This research indicates that ground-based GPS measurements are applicable to data assimilation in operational numerical models.

  14. The GPS Troubleshooting of TD-SCDMA Base Station%TD站点GPS类故障告警处理

    Institute of Scientific and Technical Information of China (English)

    李雪

    2014-01-01

    This paper introduces the matters needing attention in installation of the GPS antenna system in TD-SCDMA network. There are many failure occurs in the daily maintenace of the TD-SCDMA GPS, such as card antenna fault alarm, alarm clock reference source, the system clock lost lock alarm, star card maintenance link alarm, star card clock output alarm, GPS alarm clock source state, state or phase locked loop alarm, articles on the causes of these common fault alarm is generated to analyze and propose solutions to the fault alarm.%文章介绍了TD-SCDMA网络中GPS天线系统安装时的注意事项。在日常的TD站点GPS类维护工作中出现的故障有很多种,如星卡天线故障告警,时钟参考源异常告警,系统时钟失锁告警,星卡维护链路异常告警,星卡时钟输出异常告警,GPS状态告警,时钟源状态或锁相环告警等,文章对这些常见故障告警产生的原因进行分析,并提出了故障告警的解决方法。

  15. Ground Validation GPS for American Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project is a cooperative effort among the National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Monitoring and Assessment; the...

  16. Characterization of subarctic vegetation using ground based remote sensing methods

    Science.gov (United States)

    Finnell, D.; Garnello, A.; Palace, M. W.; Sullivan, F.; Herrick, C.; Anderson, S. M.; Crill, P. M.; Varner, R. K.

    2014-12-01

    Stordalen mire is located at 68°21'N and 19°02'E in the Swedish subarctic. Climate monitoring has revealed a warming trend spanning the past 150 years affecting the mires ability to hold stable palsa/hummock mounds. The micro-topography of the landscape has begun to degrade into thaw ponds changing the vegetation cover from ombrothrophic to minerotrophic. Hummocks are ecologically important due to their ability to act as a carbon sinks. Thaw ponds and sphagnum rich transitional zones have been documented as sources of atmospheric CH4. An objective of this project is to determine if a high resolution three band camera (RGB) and a RGNIR camera could detect differences in vegetation over five different site types. Species composition was collected for 50 plots with ten repetitions for each site type: palsa/hummock, tall shrub, semi-wet, tall graminoid, and wet. Sites were differentiated based on dominating species and features consisting of open water presence, sphagnum spp. cover, graminoid spp. cover, or the presence of dry raised plateaus/mounds. A pole based camera mount was used to collect images at a height of ~2.44m from the ground. The images were cropped in post-processing to fit a one-square meter quadrat. Texture analysis was performed on all images, including entropy, lacunarity, and angular second momentum. Preliminary results suggested that site type influences the number of species present. The p-values for the ability to predict site type using a t-test range from <0.0001 to 0.0461. A stepwise discriminant analysis on site type vs. texture yielded a 10% misclassification rate. Through the use of a stepwise regression of texture variables, actual vs. predicted percent of vegetation coverage provided R squared values of 0.73, 0.71, 0.67, and 0.89 for C. bigelowii, R. chamaemorus, Sphagnum spp., and open water respectively. These data have provided some support to the notion that texture analyses can be used for classification of mire site types. Future

  17. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel E.; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  18. Ozone profiles above Kiruna from two ground-based radiometers

    Science.gov (United States)

    Ryan, Niall J.; Walker, Kaley A.; Raffalski, Uwe; Kivi, Rigel; Gross, Jochen; Manney, Gloria L.

    2016-09-01

    This paper presents new atmospheric ozone concentration profiles retrieved from measurements made with two ground-based millimetre-wave radiometers in Kiruna, Sweden. The instruments are the Kiruna Microwave Radiometer (KIMRA) and the Millimeter wave Radiometer 2 (MIRA 2). The ozone concentration profiles are retrieved using an optimal estimation inversion technique, and they cover an altitude range of ˜ 16-54 km, with an altitude resolution of, at best, 8 km. The KIMRA and MIRA 2 measurements are compared to each other, to measurements from balloon-borne ozonesonde measurements at Sodankylä, Finland, and to measurements made by the Microwave Limb Sounder (MLS) aboard the Aura satellite. KIMRA has a correlation of 0.82, but shows a low bias, with respect to the ozonesonde data, and MIRA 2 shows a smaller magnitude low bias and a 0.98 correlation coefficient. Both radiometers are in general agreement with each other and with MLS data, showing high correlation coefficients, but there are differences between measurements that are not explained by random errors. An oscillatory bias with a peak of approximately ±1 ppmv is identified in the KIMRA ozone profiles over an altitude range of ˜ 18-35 km, and is believed to be due to baseline wave features that are present in the spectra. A time series analysis of KIMRA ozone for winters 2008-2013 shows the existence of a local wintertime minimum in the ozone