WorldWideScience

Sample records for ground based field

  1. Real-time Gaussian Markov random-field-based ground tracking for ground penetrating radar data

    Science.gov (United States)

    Bradbury, Kyle; Torrione, Peter A.; Collins, Leslie

    2009-05-01

    Current ground penetrating radar algorithms for landmine detection require accurate estimates of the location of the air/ground interface to maintain high levels of performance. However, the presence of surface clutter, natural soil roughness, and antenna motion lead to uncertainty in these estimates. Previous work on improving estimates of the location of the air/ground interface have focused on one-dimensional filtering techniques to localize the air/ground interface. In this work, we propose an algorithm for interface localization using a 2- D Gaussian Markov random field (GMRF). The GMRF provides a statistical model of the surface structure, which enables the application of statistical optimization techniques. In this work, the ground location is inferred using iterated conditional modes (ICM) optimization which maximizes the conditional pseudo-likelihood of the GMRF at a point, conditioned on its neighbors. To illustrate the efficacy of the proposed interface localization approach, pre-screener performance with and without the proposed ground localization algorithm is compared. We show that accurate localization of the air/ground interface provides the potential for future performance improvements.

  2. Comparing Aerosol Retrievals from Ground-Based Instruments at the Impact-Pm Field Campaign

    Science.gov (United States)

    Kupinski, M.; Bradley, C. L.; Kalashnikova, O. V.; Xu, F.; Diner, D. J.; Clements, C. B.; Camacho, C.

    2016-12-01

    Detection of aerosol types, components having different size and chemical composition, over urban areas is important for understanding their impact on health and climate. In particular, sustained contact with size-differentiated airborne particulate matter: PM10 and PM2.5 can lead to adverse health effects such as asthma attacks, heart and lung diseases, and premature mortality. Multi-angular polarimetric measurements have been advocated in recent years as an additional tool to better understand and retrieve the aerosol properties needed for improved predictions of aerosol impart on air quality and climate. We deployed the ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) for accurate spectropolarimetric and radiance measurements co-located with the AERONET CIMEL sun photometer and a Halo Doppler 18 m resolution lidar from San José State University at the Garland-Fresno Air Quality supersite in Fresno, CA on July 7 during the Imaging Polarimetric Assessment and Characterization of Tropospheric Particulate Matter (ImPACT-PM) field experiment. GroundMSPI sampled the atmospheric scattering phase function in and 90 degrees out of the principal plane every 15 minutes in an automated manner, utilizing the 2-axis gimbal mount in elevation and azimuth. The goal of this work is verify atmospheric measurement of GroundMSPI with the coincident CIMEL sun photometer and ground-based lidar. Diffuse-sky radiance measurements of GroundMSPI are compared with the CIMEL sun photometer throughout the day. AERONET aerosol parameters such as size, shape, and index of refraction as well as lidar aerosol extinction profiles will be used in a forward radiative transfer model to compare with GroundMSPI observations and optimize these parameters to best match GroundMSPI data.

  3. Hail prevention by ground-based silver iodide generators: Results of historical and modern field projects

    Science.gov (United States)

    Dessens, J.; Sánchez, J. L.; Berthet, C.; Hermida, L.; Merino, A.

    2016-03-01

    The science of hail suppression by silver iodide (AgI) cloud seeding was developed during the second half of the 20th century in laboratory and tested in several research or operational projects using three delivery methods for the ice forming particles: ground generators, aircraft, and rockets. The randomization process for the seeding was often considered as the imperative method for a better evaluation but failed to give firm results, mostly because the projects did not last long enough considering the hazardous occurrence of severe hailfalls, and also probably due to the use of improper hail parameters. At the same time and until now, a continuous long-term research and operational field project (1952-2015) using ground generator networks has been conducted in France under the leadership of the Association Nationale d'Etude et de Lutte contre les Fléaux Atmosphériques (ANELFA), with a control initially based on annual insurance loss-to-risk ratios, then on hailpad data. More recently (2000-2009), a companion ground seeding project was developed in the north of Spain, with control mostly based on microphysical and hailpad data. The present paper, which focuses on hail suppression by ground seeding, reviews the production of the AgI nuclei, their dispersion and measurement in the atmosphere, as well as their observed or simulated effects in clouds. The paper summarizes the results of the main historical projects in Switzerland, Argentina, and North America, and finally concentrates on the current French and Spanish projects, with a review of already published results, complemented by new ones recently collected in Spain. The conclusion, at least for France and Spain, is that if ground seeding is performed starting 3 hours before the hail falls at the ground with a 10-km mesh AgI generator network located in the developing hailstorm areas, each generator burning about 9 g of AgI per hour, the hailfall energy of the most severe hail days is decreased by about 50%.

  4. Mixed-field GCR Simulations for Radiobiological Research Using Ground Based Accelerators

    Science.gov (United States)

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis A.

    2014-01-01

    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20% accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.

  5. Key Ground-Based and Space-Based Assets to Disentangle Magnetic Field Sources in the Earth's Environment

    Science.gov (United States)

    Chulliat, A.; Matzka, J.; Masson, A.; Milan, S. E.

    2016-10-01

    The magnetic field measured on the ground or in space is the addition of several sources: from flows within the Earth's core to electric currents in distant regions of the magnetosphere. Properly separating and characterizing these sources requires appropriate observations, both ground-based and space-based. In the present paper, we review the existing observational infrastructure, from magnetic observatories and magnetometer arrays on the ground to satellites in low-Earth (Swarm) and highly elliptical (Cluster) orbits. We also review the capability of SuperDARN to provide polar ionospheric convection patterns supporting magnetic observations. The past two decades have been marked by exciting new developments in all observation types. We review these developments, focusing on how they complement each other and how they have led or could lead in the near future to improved separation and modeling of the geomagnetic sources.

  6. Ground-based infrared surveys: imaging the thermal fields at volcanoes and revealing the controlling parameters.

    Science.gov (United States)

    Pantaleo, Michele; Walter, Thomas

    2013-04-01

    Temperature monitoring is a widespread procedure in the frame of volcano hazard monitoring. Indeed temperature changes are expected to reflect changes in volcanic activity. We propose a new approach, within the thermal monitoring, which is meant to shed light on the parameters controlling the fluid pathways and the fumarole sites by using infrared measurements. Ground-based infrared cameras allow one to remotely image the spatial distribution, geometric pattern and amplitude of fumarole fields on volcanoes at metre to centimetre resolution. Infrared mosaics and time series are generated and interpreted, by integrating geological field observations and modeling, to define the setting of the volcanic degassing system at shallow level. We present results for different volcano morphologies and show that lithology, structures and topography control the appearance of fumarole field by the creation of permeability contrasts. We also show that the relative importance of those parameters is site-dependent. Deciphering the setting of the degassing system is essential for hazard assessment studies because it would improve our understanding on how the system responds to endogenous or exogenous modification.

  7. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment

    Science.gov (United States)

    Brito, J.; Rizzo, L. V.; Morgan, W. T.; Coe, H.; Johnson, B.; Haywood, J.; Longo, K.; Freitas, S.; Andreae, M. O.; Artaxo, P.

    2014-11-01

    This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm), occasionally superimposed by intense (up to 2 ppm of CO), freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ~1000 cm-3 to peaks of up to 35 000 cm-3 (during biomass burning (BB) events, corresponding to an average submicron mass mean concentrations of 13.7 μg m-3 and peak concentrations close to 100 μg m-3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m-3. The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m-3, respectively. Equivalent black carbon (BCe) ranged from 0.2 to 5.5 μg m-3, with an average concentration of 1.3 μg m-3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe), among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA) using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol processing (O : C ≅ 0

  8. Ground based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA field experiment

    Directory of Open Access Journals (Sweden)

    J. Brito

    2014-05-01

    Full Text Available This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the Southwestern part of the Brazilian Amazon forest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA field experiment, which consisted of a combination of aircraft and ground based measurements over Brazil, aiming to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm, occasionally superimposed by intense (up to 2 ppm of CO, freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ∼1000 cm−3 to peaks of up to 35 000 cm−3 during biomass burning (BB events, corresponding to an average submicron mass mean concentrations of 13.7 μg m−3 and peak concentrations close to 100 μg m−3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m−3. The inorganic species, NH4, SO4, NO3, and Cl, were observed on average at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m−3, respectively. Equivalent Black Carbon (BCe ranged from 0.2 to 5.5 μg m−3, with an average concentration of 1.3 μg m−3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe, among the highest values described in the literature. We examined the ageing of Biomass Burning Organic Aerosol (BBOA using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol

  9. Overview of the DACCIWA ground-based field campaign in southern West Africa

    Science.gov (United States)

    Lohou, Fabienne; Kalthoff, Norbert; Brooks, Barbara; Jegede, Gbenga; Adler, Bianca; Ajao, Adewale; Ayoola, Muritala; Babić, Karmen; Bessardon, Geoffrey; Delon, Claire; Dione, Cheikh; Handwerker, Jan; Jambert, Corinne; Kohler, Martin; Lothon, Marie; Pedruzo-Bagazgoitia, Xabier; Smith, Victoria; Sunmonu, Lukman; Wieser, Andreas; Derrien, Solène

    2017-04-01

    During June and July 2016, a ground-based field campaign took place in southern West Africa within the framework of the Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) project. In the investigated region, extended low-level stratus clouds form very frequently during night-time and persist long into the following day influencing the diurnal cycle of the atmospheric boundary layer and, hence, the regional climate. The motivation for the measurements was to identify the meteorological controls on the whole process chain from the formation of nocturnal stratus clouds, via the daytime transition to convective clouds and the formation of deep precipitating clouds. During the measurement period, extensive remote sensing and in-situ measurements were performed at three supersites in Kumasi (Ghana), Savè (Benin) and Ile-Ife (Nigeria). The gathered observations included the energy-balance components at the Earth's surface, the mean and turbulent conditions in the nocturnal and daytime ABL as well as the de- and entrainment processes between the ABL and the free troposphere. The meteorological measurements were supplemented by aerosol and air-chemistry observations. We will give an overview of the conducted measurements including instrument availability and strategy during intensive observation periods.

  10. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment

    OpenAIRE

    De Brito, J.; Rizzo, L. V.; Morgan, W. T.; Coe, H.; Johnson, B; Haywood, J.; LONGO, K.; Freitas, S.; Andreae, M. O.; Artaxo, P.

    2014-01-01

    This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field ...

  11. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA field experiment

    Directory of Open Access Journals (Sweden)

    J. Brito

    2014-11-01

    Full Text Available This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm, occasionally superimposed by intense (up to 2 ppm of CO, freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ~1000 cm−3 to peaks of up to 35 000 cm−3 (during biomass burning (BB events, corresponding to an average submicron mass mean concentrations of 13.7 μg m−3 and peak concentrations close to 100 μg m−3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m−3. The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m−3, respectively. Equivalent black carbon (BCe ranged from 0.2 to 5.5 μg m−3, with an average concentration of 1.3 μg m−3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe, among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA using the changes in the H : C and O : C ratios, and found that throughout most of the

  12. Directional, horizontal inhomogeneities of cloud optical thickness fields retrieved from ground-based and airbornespectral imaging

    Science.gov (United States)

    Schäfer, Michael; Bierwirth, Eike; Ehrlich, André; Jäkel, Evelyn; Werner, Frank; Wendisch, Manfred

    2017-02-01

    Clouds exhibit distinct horizontal inhomogeneities of their optical and microphysical properties, which complicate their realistic representation in weather and climate models. In order to investigate the horizontal structure of cloud inhomogeneities, 2-D horizontal fields of optical thickness (τ) of subtropical cirrus and Arctic stratus are investigated with a spatial resolution of less than 10 m. The 2-D τ-fields are derived from (a) downward (transmitted) solar spectral radiance measurements from the ground beneath four subtropical cirrus and (b) upward (reflected) radiances measured from aircraft above 10 Arctic stratus. The data were collected during two field campaigns: (a) Clouds, Aerosol, Radiation, and tuRbulence in the trade wind regime over BArbados (CARRIBA) and (b) VERtical Distribution of Ice in Arctic clouds (VERDI). One-dimensional and 2-D autocorrelation functions, as well as power spectral densities, are derived from the retrieved τ-fields. The typical spatial scale of cloud inhomogeneities is quantified for each cloud case. Similarly, the scales at which 3-D radiative effects influence the radiance field are identified. In most of the investigated cloud cases considerable cloud inhomogeneities with a prevailing directional structure are found. In these cases, the cloud inhomogeneities favour a specific horizontal direction, while across this direction the cloud is of homogeneous character. The investigations reveal that it is not sufficient to quantify horizontal cloud inhomogeneities using 1-D inhomogeneity parameters; 2-D parameters are necessary.

  13. GravityCam: ground-based wide-field high-resolution imaging and high-speed photometry

    Science.gov (United States)

    Dominik, Martin; Mackay, Craig; Steele, Iain; Snodgrass, Colin; Hirsch, Michael; Gråe Jørgensen, Uffe; Hundertmark, Markus; Rebolo, Rafael; Horne, Keith; Bridle, Sarah; Sicardy, Bruno; Bramich, Daniel; Alsubai, Khalid

    2015-12-01

    The image blurring by the Earth's atmosphere generally poses a substantial limitation to ground-based observations. While opportunities in space are scarce, lucky imaging can correct over a much larger patch of sky and with much fainter reference stars. We propose the first of a new kind of versatile instruments, "GravityCam", composed of ~100 EMCCDs, that will open up two entirely new windows to ground-based astronomy: (1) wide-field high-resolution imaging, and (2) wide-field high-speed photometry. Potential applications include (a) a gravitational microlensing survey going 4 magnitudes deeper than current efforts, and thereby gaining a factor 100 in mass at the same sensitivity, which means probing down to Lunar mass or even below, (b) extra-solar planet hunting via transits in galactic bulge fields, with high time resolution well-suited for transit timing variation studies, (c) variable stars in crowded fields, with sensitivity to very short periods, (d) asteroseismology with many bright stars in one pointing, (e) serendipitous occultations of stars by small solar system bodies, giving access to the small end of the Kuiper Belt size distribution and potentially leading to the first detection of true Oort cloud objects, while predicted occultations at high time resolution can reveal atmospheres, satellites, or rings, (f) general data mining of the high-speed variable sky (down to 40 ms cadence).

  14. Preliminary Analysis of Ground-based Orbit Determination Accuracy for the Wide Field Infrared Survey Telescope (WFIRST)

    Science.gov (United States)

    Sease, Brad

    2017-01-01

    The Wide Field Infrared Survey Telescope is a 2.4-meter telescope planned for launch to the Sun-Earth L2 point in 2026. This paper details a preliminary study of the achievable accuracy for WFIRST from ground-based orbit determination routines. The analysis here is divided into two segments. First, a linear covariance analysis of early mission and routine operations provides an estimate of the tracking schedule required to meet mission requirements. Second, a simulated operations scenario gives insight into the expected behavior of a daily Extended Kalman Filter orbit estimate over the first mission year given a variety of potential momentum unloading schemes.

  15. Multi-point ground-based ULF magnetic field observations in Europe during seismic active periods in 2004 and 2005

    Directory of Open Access Journals (Sweden)

    G. Prattes

    2008-05-01

    Full Text Available We present the results of ground-based Ultra Low Frequency (ULF magnetic field measurements observed from June to August 2004 during the Bovec earthquake on 12 July 2004. Further we give information about the seismic activity in the local observatory region for an extended time span 2004 and 2005. ULF magnetic field data are provided by the South European Geomagnetic Array (SEGMA where the experience and heritage from the CHInese MAGnetometer (CHIMAG fluxgate magnetometer comes to application. The intensities of the horizontal H and vertical Z magnetic field and the polarization ratio R of the vertical and horizontal magnetic field intensity are analyzed taking into consideration three SEGMA observatories located at different close distances and directions from the earthquake epicenter. We observed a significant increase of high polarization ratios during strong seismic activity at the observatory nearest to the Bovec earthquake epicenter. Apart from indirect ionospheric effects electromagnetic noise could be emitted in the lithosphere due to tectonic effects in the earthquake focus region causing anomalies of the vertical magnetic field intensity. Assuming that the measured vertical magnetic field intensities are of lithospheric origin, we roughly estimate the amplitude of electromagnetic noise in the Earths crust considering an average electrical conductivity of <σ>=10−3 S/m and a certain distance of the observatory to the earthquake epicenter.

  16. Gully evolution in agricultural fields using ground-based LiDar

    Science.gov (United States)

    Meeting the increasing demand for agricultural products is dependent on maintaining productive soils. Gully erosion in agricultural fields, has been shown in many regions to be as significant as sheet and rill erosion in delivering sediment to streams, rivers and lakes. Soil loss from all erosion ...

  17. Ground-based complex for detection and investigation of fast optical transients in wide field

    Science.gov (United States)

    Molinari, Emilio; Beskin, Grigory; Bondar, Sergey; Karpov, Sergey; Plokhotnichenko, Vladimir; de-Bur, Vjacheslav; Greco, Guiseppe; Bartolini, Corrado; Guarnieri, Adriano; Piccioni, Adalberto

    2008-07-01

    To study short stochastic optical flares of different objects (GRBs, SNs, etc) of unknown localizations as well as NEOs it is necessary to monitor large regions of sky with high time resolution. We developed a system which consists of wide-field camera (FOW is 400-600 sq.deg.) using TV-CCD with time resolution of 0.13 s to record and classify optical transients, and a fast robotic telescope aimed to perform their spectroscopic and photometric investigation just after detection. Such two telescope complex TORTOREM combining wide-field camera TORTORA and robotic telescope REM operated from May 2006 at La Silla ESO observatory. Some results of its operation, including first fast time resolution study of optical transient accompanying GRB and discovery of its fine time structure, are presented. Prospects for improving the complex efficiency are given.

  18. Ground Vehicle Navigation Using Magnetic Field Variation

    Science.gov (United States)

    Shockley, Jeremiah A.

    The Earth's magnetic field has been the bedrock of navigation for centuries. The latest research highlights the uniqueness of magnetic field measurements based on position due to large scale variations as well as localized perturbations. These observable changes in the Earth's magnetic field as a function of position provide distinct information which can be used for navigation. This dissertation describes ground vehicle navigation exploiting variation in Earth's magnetic field using a self-contained navigation system consisting of only a magnetometer and magnetic field maps. In order to achieve navigation, effective calibration enables repeatable magnetic field measurements from different vehicles and facilitates mapping of the observable magnetic field as a function of position. A new modified ellipsoid calibration technique for strapdown magnetometers in large vehicles is described, as well as analysis of position measurement generation comparing a multitude of measurement compositions using existing and newly developed likelihood techniques. Finally, navigation solutions are presented using both a position measurement and direct incorporation of the magnetometer measurements via a particle filter to demonstrate road navigation in three different environments. Emphatically, the results affirm that navigation using magnetic field variation in ground vehicles is viable and achieves adequate performance for road level navigation.

  19. Measuring galaxy [OII] emission line doublet with future ground-based wide-field spectroscopic surveys

    CERN Document Server

    Comparat, Johan; Bacon, Roland; Mostek, Nick J; Newman, Jeffrey A; Schlegel, David J; Yèche, Christophe

    2013-01-01

    The next generation of wide-field spectroscopic redshift surveys will map the large-scale galaxy distribution in the redshift range 0.7< z<2 to measure baryonic acoustic oscillations (BAO). The primary optical signature used in this redshift range comes from the [OII] emission line doublet, which provides a unique redshift identification that can minimize confusion with other single emission lines. To derive the required spectrograph resolution for these redshift surveys, we simulate observations of the [OII] (3727,3729) doublet for various instrument resolutions, and line velocities. We foresee two strategies about the choice of the resolution for future spectrographs for BAO surveys. For bright [OII] emitter surveys ([OII] flux ~30.10^{-17} erg /cm2/s like SDSS-IV/eBOSS), a resolution of R~3300 allows the separation of 90 percent of the doublets. The impact of the sky lines on the completeness in redshift is less than 6 percent. For faint [OII] emitter surveys ([OII] flux ~10.10^{-17} erg /cm2/s like ...

  20. Flare-induced changes of the photospheric magnetic field in a δ-spot deduced from ground-based observations

    Science.gov (United States)

    Gömöry, P.; Balthasar, H.; Kuckein, C.; Koza, J.; Veronig, A. M.; González Manrique, S. J.; Kučera, A.; Schwartz, P.; Hanslmeier, A.

    2017-06-01

    Aims: Changes of the magnetic field and the line-of-sight velocities in the photosphere are being reported for an M-class flare that originated at a δ-spot belonging to active region NOAA 11865. Methods: High-resolution ground-based near-infrared spectropolarimetric observations were acquired simultaneously in two photospheric spectral lines, Fe i 10783 Å and Si i 10786 Å, with the Tenerife Infrared Polarimeter at the Vacuum Tower Telescope (VTT) in Tenerife on 2013 October 15. The observations covered several stages of the M-class flare. Inversions of the full-Stokes vector of both lines were carried out and the results were put into context using (extreme)-ultraviolet filtergrams from the Solar Dynamics Observatory (SDO). Results: The active region showed high flaring activity during the whole observing period. After the M-class flare, the longitudinal magnetic field did not show significant changes along the polarity inversion line (PIL). However, an enhancement of the transverse magnetic field of approximately 550 G was found that bridges the PIL and connects umbrae of opposite polarities in the δ-spot. At the same time, a newly formed system of loops appeared co-spatially in the corona as seen in 171 Å filtergrams of the Atmospheric Imaging Assembly (AIA) on board SDO. However, we cannot exclude that the magnetic connection between the umbrae already existed in the upper atmosphere before the M-class flare and became visible only later when it was filled with hot plasma. The photospheric Doppler velocities show a persistent upflow pattern along the PIL without significant changes due to the flare. Conclusions: The increase of the transverse component of the magnetic field after the flare together with the newly formed loop system in the corona support recent predictions of flare models and flare observations. The movie associated to Figs. 4 and 5 is available at http://www.aanda.org

  1. Ground-based measurements of the vertical E-field in mountainous regions and the "Austausch" effect

    Science.gov (United States)

    Yaniv, Roy; Yair, Yoav; Price, Colin; Mkrtchyan, Hripsime; Lynn, Barry; Reymers, Artur

    2017-06-01

    Past measurements of the atmospheric vertical electric field (Ez or potential gradient) at numerous land stations showed a strong response of the daily electric field to a morning local effect known as ;Austausch; - the transport of electrical charges due to increased turbulence. In mountainous regions, nocturnal charge accumulation, followed by an attachment process to aerosols near the surface in valleys, known as the electrode effect, is lifted as a charged aerosol layer by anabatic (upslope) winds during the morning hours due to solar heating. Ground-based measurements during fair weather days were conducted at three mountain stations in Israel and Armenia. We present results of the mean diurnal variation of Ez and make comparisons with the well-known Carnegie curve and with past measurements of Ez on mountains. We report a good agreement between the mean diurnal curves of Ez at various mountain stations and the time of local sunrise when the Ez is found to increase. We attribute this morning maximum to the Austausch (or exchange) layer effect. We support our findings with conduction and turbulent current measurements showing high values of ions and charged aerosols being transported by winds from morning to noon local time, and by model simulations showing the convergence of winds in the early morning hours toward the mountain peak.

  2. Automatic segmentation of ground-glass opacities in lung CT images by using Markov random field-based algorithms.

    Science.gov (United States)

    Zhu, Yanjie; Tan, Yongqing; Hua, Yanqing; Zhang, Guozhen; Zhang, Jianguo

    2012-06-01

    Chest radiologists rely on the segmentation and quantificational analysis of ground-glass opacities (GGO) to perform imaging diagnoses that evaluate the disease severity or recovery stages of diffuse parenchymal lung diseases. However, it is computationally difficult to segment and analyze patterns of GGO while compared with other lung diseases, since GGO usually do not have clear boundaries. In this paper, we present a new approach which automatically segments GGO in lung computed tomography (CT) images using algorithms derived from Markov random field theory. Further, we systematically evaluate the performance of the algorithms in segmenting GGO in lung CT images under different situations. CT image studies from 41 patients with diffuse lung diseases were enrolled in this research. The local distributions were modeled with both simple and adaptive (AMAP) models of maximum a posteriori (MAP). For best segmentation, we used the simulated annealing algorithm with a Gibbs sampler to solve the combinatorial optimization problem of MAP estimators, and we applied a knowledge-guided strategy to reduce false positive regions. We achieved AMAP-based GGO segmentation results of 86.94%, 94.33%, and 94.06% in average sensitivity, specificity, and accuracy, respectively, and we evaluated the performance using radiologists' subjective evaluation and quantificational analysis and diagnosis. We also compared the results of AMAP-based GGO segmentation with those of support vector machine-based methods, and we discuss the reliability and other issues of AMAP-based GGO segmentation. Our research results demonstrate the acceptability and usefulness of AMAP-based GGO segmentation for assisting radiologists in detecting GGO in high-resolution CT diagnostic procedures.

  3. Comparison of Ground- and Space-based Radar Observations with Disdrometer Measurements During the PECAN Field Campaign

    Science.gov (United States)

    Torres, A. D.; Rasmussen, K. L.; Bodine, D. J.; Dougherty, E.

    2015-12-01

    Plains Elevated Convection At Night (PECAN) was a large field campaign that studied nocturnal mesoscale convective systems (MCSs), convective initiation, bores, and low-level jets across the central plains in the United States. MCSs are responsible for over half of the warm-season precipitation across the central U.S. plains. The rainfall from deep convection of these systems over land have been observed to be underestimated by satellite radar rainfall-retrieval algorithms by as much as 40 percent. These algorithms have a strong dependence on the generally unmeasured rain drop-size distribution (DSD). During the campaign, our group measured rainfall DSDs, precipitation fall velocities, and total precipitation in the convective and stratiform regions of MCSs using Ott Parsivel optical laser disdrometers. The disdrometers were co-located with mobile pod units that measured temperature, wind, and relative humidity for quality control purposes. Data from the operational NEXRAD radar in LaCrosse, Wisconsin and space-based radar measurements from a Global Precipitation Measurement satellite overpass on July 13, 2015 were used for the analysis. The focus of this study is to compare DSD measurements from the disdrometers to radars in an effort to reduce errors in existing rainfall-retrieval algorithms. The error analysis consists of substituting measured DSDs into existing quantitative precipitation estimation techniques (e.g. Z-R relationships and dual-polarization rain estimates) and comparing these estimates to ground measurements of total precipitation. The results from this study will improve climatological estimates of total precipitation in continental convection that are used in hydrological studies, climate models, and other applications.

  4. Space-based monitoring of ground deformation

    Science.gov (United States)

    Nobakht Ersi, Fereydoun; Safari, Abdolreza; Gamse, Sonja

    2016-07-01

    Ground deformation monitoring is valuable to understanding of the behaviour of natural phenomena. Space-Based measurement systems such as Global Positioning System are useful tools for continuous monitoring of ground deformation. Ground deformation analysis based on space geodetic techniques have provided a new, more accurate, and reliable source of information for geodetic positioning which is used to detect deformations of the Ground surface. This type of studies using displacement fields derived from repeated measurments of space-based geodetic networks indicates how crucial role the space geodetic methods play in geodynamics. The main scope of this contribution is to monitor of ground deformation by obtained measurements from GPS sites. We present ground deformation analysis in three steps: a global congruency test on daily coordinates of permanent GPS stations to specify in which epochs deformations occur, the localization of the deformed GPS sites and the determination of deformations.

  5. Ground-based astrometry with wide field imagers. V. Application to near-infrared detectors: HAWK-I@VLT/ESO

    Science.gov (United States)

    Libralato, M.; Bellini, A.; Bedin, L. R.; Piotto, G.; Platais, I.; Kissler-Patig, M.; Milone, A. P.

    2014-03-01

    High-precision astrometry requires accurate point-spread function modeling and accurate geometric-distortion corrections. This paper demonstrates that it is possible to achieve both requirements with data collected at the high acuity wide-field K-band imager (HAWK-I), a wide-field imager installed at the Nasmyth focus of UT4/VLT ESO 8 m telescope. Our final astrometric precision reaches ~3 mas per coordinate for a well-exposed star in a single image with a systematic error less than 0.1 mas. We constructed calibrated astro-photometric catalogs and atlases of seven fields: the Baade's window, NGC 6656, NGC 6121, NGC 6822, NGC 6388, NGC 104, and the James Webb Space Telescope calibration field (in the Large Magellanic Cloud). We make these catalogs and images electronically available to the community. Furthermore, as a demonstration of the efficacy of our approach, we combined archival material taken with the optical wide-field imager at the MPI/ESO 2.2 m with HAWK-I observations. We showed that we are able to achieve an excellent separation between cluster members and field objects for NGC 6656 and NGC 6121 with a time base-line of about 8 years. Using both HST and HAWK-I data, we also study the radial distribution of the SGB populations in NGC 6656 and conclude that the radial trend is flat within our uncertainty. We also provide membership probabilities for most of the stars in NGC 6656 and NGC 6121 catalogs and estimate membership for the published variable stars in these two fields. Catalogs, fortran code, and distortion maps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/A80Based on observations with the 8 m VLT ESO telescope.

  6. [Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio]. Volume 4, Health and Safety Plan (HSP); Phase 1, Task 4 Field Investigation report: Draft

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  7. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 3, Sampling and analysis plan (SAP): Phase 1, Task 4, Field Investigation: Draft

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

  8. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 3, Appendix A, Draft standard operating procedures and elements: Sampling and Analysis Plan (SAP): Phase 1, Task 4, Field Investigation, Draft

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report presents information concerning field procedures employed during the monitoring, well construction, well purging, sampling, and well logging at the Wright-Patterson Air Force Base. Activities were conducted in an effort to evaluate ground water contamination.

  9. Research into a Single-aperture Light Field Camera System to Obtain Passive Ground-based 3D Imagery of LEO Objects

    Science.gov (United States)

    Bechis, K.; Pitruzzello, A.

    2014-09-01

    This presentation describes our ongoing research into using a ground-based light field camera to obtain passive, single-aperture 3D imagery of LEO objects. Light field cameras are an emerging and rapidly evolving technology for passive 3D imaging with a single optical sensor. The cameras use an array of lenslets placed in front of the camera focal plane, which provides angle of arrival information for light rays originating from across the target, allowing range to target and 3D image to be obtained from a single image using monocular optics. The technology, which has been commercially available for less than four years, has the potential to replace dual-sensor systems such as stereo cameras, dual radar-optical systems, and optical-LIDAR fused systems, thus reducing size, weight, cost, and complexity. We have developed a prototype system for passive ranging and 3D imaging using a commercial light field camera and custom light field image processing algorithms. Our light field camera system has been demonstrated for ground-target surveillance and threat detection applications, and this paper presents results of our research thus far into applying this technology to the 3D imaging of LEO objects. The prototype 3D imaging camera system developed by Northrop Grumman uses a Raytrix R5 C2GigE light field camera connected to a Windows computer with an nVidia graphics processing unit (GPU). The system has a frame rate of 30 Hz, and a software control interface allows for automated camera triggering and light field image acquisition to disk. Custom image processing software then performs the following steps: (1) image refocusing, (2) change detection, (3) range finding, and (4) 3D reconstruction. In Step (1), a series of 2D images are generated from each light field image; the 2D images can be refocused at up to 100 different depths. Currently, steps (1) through (3) are automated, while step (4) requires some user interaction. A key requirement for light field camera

  10. Ground-based astrometry with wide field imagers. V. Application to near-infrared detectors: HAWK-I@VLT/ESO

    CERN Document Server

    Libralato, M; Bedin, L R; Piotto, G; Platais, I; Kissler-Patig, M; Milone, A P; .,

    2014-01-01

    High-precision astrometry requires accurate point-spread function modeling and accurate geometric-distortion corrections. This paper demonstrates that it is possible to achieve both requirements with data collected at the high acuity wide-field K-band imager (HAWK-I), a wide-field imager installed at the Nasmyth focus of UT4/VLT ESO 8m telescope. Our final astrometric precision reaches ~3 mas per coordinate for a well-exposed star in a single image with a systematic error less than 0.1 mas. We constructed calibrated astro-photometric catalogs and atlases of seven fields: the Baade's Window, NGC 6656, NGC 6121, NGC 6822, NGC 6388, NGC 104, and the James Webb Space Telescope calibration field in the Large Magellanic Cloud. We make these catalogs and images electronically available to the community. Furthermore, as a demonstration of the efficacy of our approach, we combined archival material taken with the optical wide-field imager at the MPI/ESO 2.2m with HAWK-I observations. We showed that we are able to achi...

  11. Ground-based instrumentation for measurements of atmospheric conduction current and electric field at the South Pole

    Science.gov (United States)

    Byrne, G. J.; Benbrook, J. R.; Bering, E. A.; Few, A. A.; Morris, G. A.; Trabucco, W. J.; Paschal, E. W.

    1993-01-01

    Attention is given to instruments constructed to measure the atmospheric conduction current and the atmospheric electric field - two fundamental parameters of the global-electric circuit. The instruments were deployed at the Amundsen-Scott South Pole Station in January 1991 and are designed to operate continuously for up to one year without operator intervention. The atmospheric current flows into one hemisphere, through the electronics where it is measured, and out the other hemisphere. The electric field is measured by a field mill of the rotating dipole type. Sample data from the first days of operation at the South Pole indicate variations in the global circuit over time scales from minutes to hours to days.

  12. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  13. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 5, Appendix A, Part 1, Field Investigation report

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.

  14. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  15. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  16. Thermospheric wind and temperature fields observed using two ground based all-sky imaging Fabry-Perot spectrometers in Antarctica

    Science.gov (United States)

    Conde, M.; Bristow, W. A.; Hampton, D. L.; Kosch, M. J.; Ishii, M.; Paxton, L. J.; Davies, T.

    2016-12-01

    During the austral summer of 2015-2016 two new all-sky imaging Fabry-Perot spectrometers were installed in Antarctica to measure wind and temperature fields in the lower and middle thermosphere, at heights spanning a range from approximately 110 to 240 km altitude. The instruments are located at McMurdo and South Pole stations, both of which are typically near the equatorward edge of the polar cap under quiet to moderate levels of activity. Automated nightly observations began in March (McMurdo) and April (South Pole) of 2016. The instruments record Doppler spectra of the thermospheric oxygen 558 nm green line and 630 nm red line emissions. They view the sky down to around 70 degrees zenith angle, with this field being divided in software into 115 sub-regions, each of which gives an independent measure of Doppler temperature and line-of-sight wind. Typical integration times are one to several minutes. Here we will present an overview of the results obtained during this first season, including both climatological averages and examples of data from individual days. The overall behavior is generally as expected, with winds blowing approximately antisunward at all local times. However substantial local perturbations about this mean flow occur frequently, and are seen to be collocated with regions of strong ion convection observed by the SuperDARN radar network, and with regions of bright aurora, as observed by the Fabry-Perot instruments themselves, and by the SSUSI instruments aboard the DMSP F16 to F18 satellites. F-region neutral temperatures recorded on most days are spatially uniform and slowly varying in time. However very significant spatial and temporal temperature variations are observed during times of geomagnetic disturbance. Wave activity is also very a very common feature of the observed wind fields. These results are morphologically quite different to the behavior seen by similar instruments located in the northern hemisphere auroral zone. Reasons for

  17. A Gaussian Random Field Approach for Merging Radar and Ground-Based Rainfall Data on Small Spatial and Temporal Scales

    Science.gov (United States)

    Krebsbach, K.; Friederichs, P.

    2014-12-01

    The generation of reliable precipitation products that explicitly account for spatial and temporal structures of precipitation events requires a combination of data with a variety of error structures and temporal resolutions. In-situ measurements are relatively accurate, but available only at sparse and irregularly distributed locations, whereas remote measurements cover areas but suffer from spatially and temporally inhomogeneous systematic errors. Besides gauge measurements are available on coarser spatial and temporal resolution in contrast to remote sensing measurements which are given on a fine spatial and temporal resolution. In our study we use precipitation rates from the composit of two X-band radars in Bonn and Jülich in Germany. Our aim is to formulate a statistical space-time model that aggregates and disaggregates precipitation rates from radar and gauge observations. We model a Gaussian random field as underlying process, where we face the task of dealing with a large non-Gaussian data set. To start the analysis of the unadjusted radar rainfall rates, we follow the work of D. Allcroft and C. Glasbey (2003) and transform the data to a truncated Gaussian distribution. The advantage of the latent variable approach is that it takes account of the occurence of rainfall and the intensity using a single process. We proceed by estimating the empirical correlation from these transformed values with maximum likelihood methods and fit a parametric correlation function that gives rise to a Gaussian random field. Since the transformation gives censored values to dry locations, we simulate values for this area that lie below some threshold and extend the Gaussian field to the whole domain. In order to merge gauge and radar data for precipitation, we first aggregate the data to a scale on which the comparison is reasonable and then disaggregate again back to smaller desirable scales. The disaggregation step consists of calculating the difference between radar

  18. Exploring the Potential of Integral Field Spectroscopy for Observing Extrasolar Planet Transits: Ground-based Observations of the Atmospheric Na in HD 209458b

    Science.gov (United States)

    Arribas, Santiago; Gilliland, Ronald L.; Sparks, William B.; López-Martín, Luis; Mediavilla, Evencio; Gómez-Alvarez, Pedro

    2006-01-01

    We explore the use of integral field spectroscopy (IFS) for observing extrasolar planet transits. Although this technique should find its full potential in space-based observations (e.g., James Webb Space Telescope, Terrestrial Planet Finder), we have tested its basics with ground-based time-series observations of HD 209458b obtained with the William Herschel Telescope optical fiber system INTEGRAL during a transit in 2004 August 17/18. For this analysis we have used 5550 spectra (from a potential of ~30,000) obtained in 150 exposures during a period of more than 7 hr. We have found that IFS offers three fundamental advantages with respect to previously used methods (based on imaging or standard slit spectroscopy). First, it improves the effective signal-to-noise ratio in photon-limited observations by distributing the light coming from the star into the two dimensions of the detector. Second, this type of IFS data allows us to ``autocalibrate'' instrumental and background effects. Third, since the star image characteristics (i.e., seeing, spatial shifts, etc.) as well as its photometric properties are extracted from the same data cube, it is possible to decorrelate photometric instabilities induced by point-spread function (or instrument) variations. These data have also allowed us to explore the accuracy limits of ground-based relative spectrophotometry. This was done using a photometric index that probes the Na D lines, for which we obtained a nominal 1 σ error of ~1.0 × 10-4. This result, based on observations of only one transit, indicates that this type of ground observation can constrain the characterization of the transmission spectrum of extrasolar planets, especially if they cover multiple transits under good weather conditions. The present observations are compatible with no extra Na D depression during the transit. Although this result seems to be inconsistent with the recently reported Hubble Space Telescope STIS findings, we point out its limited

  19. Airborne ground penetrating radar: practical field experiments

    CSIR Research Space (South Africa)

    Van Schoor, Michael

    2013-10-01

    Full Text Available The performance of ground penetrating radar (GPR) under conditions where the ground coupling of the antenna is potentially compromised is investigated. Of particular interest is the effect of increasing the distance between the antennae...

  20. Dynamic Time Warping Distance Method for Similarity Test of Multipoint Ground Motion Field

    Directory of Open Access Journals (Sweden)

    Yingmin Li

    2010-01-01

    Full Text Available The reasonability of artificial multi-point ground motions and the identification of abnormal records in seismic array observations, are two important issues in application and analysis of multi-point ground motion fields. Based on the dynamic time warping (DTW distance method, this paper discusses the application of similarity measurement in the similarity analysis of simulated multi-point ground motions and the actual seismic array records. Analysis results show that the DTW distance method not only can quantitatively reflect the similarity of simulated ground motion field, but also offers advantages in clustering analysis and singularity recognition of actual multi-point ground motion field.

  1. Determining Earth's magnetic field strength during magnetically quiet and stormy times and predict the location of dancing Auroras using THEMIS Mission Educators ground based magnetometer data.

    Science.gov (United States)

    Craig, N.; Peticolas, L.; Trautman, V.

    2006-12-01

    The Education and Public Outreach program of the THEMIS Mission has deployed 10 ground-based observatories with science-grade magnetometers in schools in the Northern U.S. This network of schools, called Geomagnetic Event Observation Network by Students (GEONS), monitors local magnetic disturbances. The magnetometers are receiving local data; data are archived and available at the THEMIS E/PO Website. The E/PO program conducts teacher professional development workshops for the teachers of these schools. During the third year of the project, teachers from Alaska and Wisconsin started their classroom research using magnetometers that are installed in their classrooms. We will describe how with highly committed and enthusiastic teachers a research project developed to determine the strength of the local magnetic field in locations such as AK and WI and to compare these results with "companion schools" at lower latitudes. The GEONS teachers not only learned science and research tools, but they also conducted workshops in their own states, influenced the science curricula in their districts, and also started student research in their classrooms. We will discuss the challenges, give the results of their research, and encourage other teachers who wish to use real data in their classrooms to participate in this exciting project.

  2. Estimating ionospheric currents by inversion from ground-based geomagnetic data and calculating geoelectric fields for studies of geomagnetically induced currents

    Science.gov (United States)

    de Villiers, J. S.; Pirjola, R. J.; Cilliers, P. J.

    2016-09-01

    This research focuses on the inversion of geomagnetic variation field measurements to obtain the source currents in the ionosphere and magnetosphere, and to determine the geoelectric fields at the Earth's surface. During geomagnetic storms, the geoelectric fields create geomagnetically induced currents (GIC) in power networks. These GIC may disturb the operation of power systems, cause damage to power transformers, and even result in power blackouts. In this model, line currents running east-west along given latitudes are postulated to exist at a certain height above the Earth's surface. This physical arrangement results in the fields on the ground being composed of a zero magnetic east component and a nonzero electric east component. The line current parameters are estimated by inverting Fourier integrals (over wavenumber) of elementary geomagnetic fields using the Levenberg-Marquardt technique. The output parameters of the model are the ionospheric current strength and the geoelectric east component at the Earth's surface. A conductivity profile of the Earth is adapted from a shallow layered-Earth model for one observatory, together with a deep-layer model derived from satellite observations. This profile is used to obtain the ground surface impedance and therefore the reflection coefficient in the integrals. The inputs for the model are a spectrum of the geomagnetic data for 31 May 2013. The output parameters of the model are spectrums of the ionospheric current strength and of the surface geoelectric field. The inverse Fourier transforms of these spectra provide the time variations on the same day. The geoelectric field data can be used as a proxy for GIC in the prediction of GIC for power utilities. The current strength data can assist in the interpretation of upstream solar wind behaviour.

  3. Hydrogeologic setting, hydraulic properties, and ground-water flow at the O-Field area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Banks, W.S.; Smith, B.S.; Donnelly, C.A.

    1996-01-01

    The U.S. Army disposed chemical agents, laboratory materials, and unexploded ordnance at O-Field in the Edgewood area of Aberdeen Proving Ground, Maryland, from before World War II until at least the 1950's. Soil, ground water, surface water,and wetland sediments in the O-Field area were contaminated from the disposal activity. A ground-water-flow model of the O-Field area was constructed by the U.S. Geological Survey (USGS) in 1989 to simulate flow in the central and southern part of the Gunpowder Neck. The USGS began an additional study of the contamination in the O-Field area in cooperation with the U.S. Army in 1990 to (1) further define the hydrogeologic framework of the O-Field area, (2) characterize the hydraulic properties of the aquifers and confining units, and (3) define ground-water flow paths at O-Field based on the current data and simulations of ground-water flow. A water-table aquifer, an upper confining unit, and an upper confined aquifer comprise the shallow ground-water aquifer system of the O-Field area. A lower confining unit, through which ground-water movement is negligible, is considered a lower boundary to the shallow aquifer system. These units are all part of the Pleistocene Talbot Formation. The model developed in the previous study was redesigned using the data collected during this study and emphasized New O-Field. The current steady-state model was calibrated to water levels of June 1993. The rate of ground-water flow calculated by the model was approximately 0.48 feet per day (ft/d) and the rate determined from chlorofluorocarbon dates was approximately 0.39 ft/d.

  4. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  5. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  6. Space vehicle field unit and ground station system

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Stephen; Dallmann, Nicholas; Delapp, Jerry; Proicou, Michael; Seitz, Daniel; Michel, John; Enemark, Donald

    2017-09-19

    A field unit and ground station may use commercial off-the-shelf (COTS) components and share a common architecture, where differences in functionality are governed by software. The field units and ground stations may be easy to deploy, relatively inexpensive, and be relatively easy to operate. A novel file system may be used where datagrams of a file may be stored across multiple drives and/or devices. The datagrams may be received out of order and reassembled at the receiving device.

  7. Space vehicle field unit and ground station system

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Delapp, Jerry; Proicou, Michael; Seitz, Daniel; Michel, John; Enemark, Donald

    2016-10-25

    A field unit and ground station may use commercial off-the-shelf (COTS) components and share a common architecture, where differences in functionality are governed by software. The field units and ground stations may be easy to deploy, relatively inexpensive, and be relatively easy to operate. A novel file system may be used where datagrams of a file may be stored across multiple drives and/or devices. The datagrams may be received out of order and reassembled at the receiving device.

  8. Lightning electromagnetic field generated by grounding electrode considering soil ionization

    Institute of Scientific and Technical Information of China (English)

    ZENG Rong; HE Jinliang; ZHANG Bo; GAO Yanqing

    2006-01-01

    A circuit model with lumped time-variable parameter is proposed to calculate the transient characteristic of grounding electrode under lightning current, which takes into consideration the dynamic and nonlinear effect of soil ionization around the grounding electrode. The ionization phenomena in the soil are simulated by means of time-variable parameters under appropriate conditions. The generated electromagnetic field in the air is analyzed by using electrical dipole theory and image theory when the lightning current flows into the grounding electrode. The influence of soil ionization on the electromagnetic field is investigated.

  9. Electrical Grounding - a Field for Geophysicists and Electrical Engineers Partnership

    Science.gov (United States)

    Freire, P. F.; Pane, E.; Guaraldo, N.

    2012-12-01

    Technology for designing ground electrodes for high-voltage direct current transmission systems (HVDC) has being using in the last years, deep soil models based on a wide range of geophysical methods. These models shall include detailed representation of shallow soil, down to 100 meters, in order to allow the evaluation of the soil conditions where the ground electrodes will be buried. Also deep soil models are needed, to be used for the interference studies, which shall represent a soil volume of about 15 km deep and a surface area of about 15 to 30 km radius. Large facilities for power plants (hydroelectric and wind farms, for example) and industrial complexes (such as petrochemical plants) has become usual at the current stage of Brazil industrialization. Grounding mats for these facilities are made of a buried cooper mesh, interconnected to a wide variety of metallic masses, such as steel reinforced concrete foundations, ducts in general etc. These grounding systems may present dimensions with the order of hundreds of meters, and, at least in Brazil, are usually calculated by using electrical resistivity soil models, based on short spacing Wenner measurements (with maximum spacing of about 64 m.). The soil model shall be the best possible representation of the environment in which the grounding electrodes are immersed, for the purpose of calculation of resistance or for digital simulation. The model to be obtained is limited by the amount and quality of soil resistivity measurements are available, and the resources to be used in the calculations and simulations. Geophysics uses a wide range of technologies for exploring subsoil, ranging from surface measurements to wells logging - seismic, gravimetric, magnetic, electrical, electromagnetic and radiometric. The electrical and electromagnetic methods includes various measurement techniques (Wenner, Schlumberger, TDEM, Magneto-telluric etc.), which together allow the development of complex resistivity soil models

  10. Ground Vehicle Navigation Using Magnetic Field Variation

    Science.gov (United States)

    2012-09-13

    using three-axis magnetic field measurements for navigation. While Storms innovative work exposed the ability to navigate using three-axis magnetometer...level of difficulty, Ascher et al. combine a magnetometer with a pair of inertial measurement units, a barometer , and a laser for precise indoor

  11. Fresnel zones for ground-based antennas

    DEFF Research Database (Denmark)

    Andersen, J. Bach

    1964-01-01

    The ordinary Fresnel zone concept is modified to include the influence of finite ground conductivity. This is important for ground-based antennas because the influence on the radiation pattern of irregularities near the antenna is determined by the amplitude and phase of the groundwave. A new...

  12. Apparatus for ground water chemistry investigations in field caissons

    Energy Technology Data Exchange (ETDEWEB)

    Cokal, E.J.; Stallings, E.; Walker, R.; Nyhan, J.W.; Polzer, W.L.; Essington, E.H.

    1985-01-01

    Los Alamos is currently in its second season of ground water chemistry and hydrology experimentation in a field facility that incorporates clusters of six, 3-meter-diameter by 6-meter-deep, soil-filled caissons and required ancillaries. Initial experience gained during the 1983 field season indicated the need for further development of the technology of this type of experimentation supporting hydrologic waste management research. Uniform field application of water/matrix solutions to the caisson, matrix and tracer solution blending/storage, and devices for ground water sampling are discussed.

  13. First continuous ground-based observations of long period oscillations in the vertically resolved wind field of the stratosphere and mesosphere

    Science.gov (United States)

    Rüfenacht, Rolf; Hocke, Klemens; Kämpfer, Niklaus

    2016-04-01

    Direct measurements of middle-atmospheric wind oscillations with periods between 5 and 50 days in the altitude range between mid-stratosphere (5 hPa) and upper mesosphere (0.02 hPa) have been made using a novel ground-based Doppler wind radiometer. The oscillations were not inferred from tracer measurements, as the radiometer offers the unique capability of near-continuous horizontal wind profile measurements. Observations from four campaigns at high, middle and low latitudes with an average duration of 10 months have been analyzed. The dominant oscillation has mostly been found to lie in the extra-long period range (20-50 days), while the well-known atmospheric normal modes around 5, 10 and 16 days have also been observed. Comparisons of our results with ECMWF operational analysis data revealed remarkably good agreement below 0.3 hPa but discrepancies above.

  14. Ground based characterization of biomass burning aerosols during the South American Biomass Burning Analysis (SAMBBA) field experiment in Brazil during Sept - Oct 2012

    Science.gov (United States)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Johnson, Ben; Haywood, Jim; Longo, Karla; Freitas, Saulo; Coe, Hugh

    2013-04-01

    Biomass burning is one of the major drivers for atmospheric composition in the Southern hemisphere. In Amazonia, deforestation rates have been steadily decreasing, from 27,000 Km² in 2004 to about 5,000 Km² in 2011. This large reduction (by factor 5) was not followed by similar reduction in aerosol loading in the atmosphere due to the increase in agricultural fires. AERONET measurements from 5 sites show a large year-to year variability due to climatic and socio-economic issues. Besides this strong reduction in deforestation rate, biomass burning emissions in Amazonia increases concentrations of aerosol particles, CO, ozone and other species, and also change the surface radiation balance in a significant way. To complement the long term biomass burning measurements in Amazonia, it was organized in 2012 the intensive campaign of the South American Biomass Burning Analysis (SAMBBA) experiment with an airborne and a ground based components. A sampling site was set up at Porto Velho, with measurements of aerosol size distribution, optical properties such as absorption and scattering at several wavelengths, organic aerosol characterization with an ACSM - Aerosol Chemical Speciation Monitor. CO, CO2 and O3 were also measured to characterize combustion efficiency and photochemical processes. Filters for trace elements measured by XRF and for OC/EC determined using a Sunset instrument were also collected. An AERONET CIMEL sunphotometer was operated in parallel with a multifilter radiometer (MFR). A large data set was collected from August to October 2012. PM2.5 aerosol concentrations up to 250 ug/m3 were measured, with up to 20 ug/m3 of black carbon. Ozone went up to 60 ppb at mid-day in August. At night time ozone was consumed completely most of the time. ACSM shows that more than 85% of the aerosol mass was organic with a clear diurnal pattern. The organic aerosol volatility was very variable depending on the air mass sampled over Porto Velho. Aerosol optical depth at

  15. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...

  16. Methods for Autonomous Ground-based Real-Time Monitoring and Mapping of CO2 Concentrations Over Extended Two-Dimensional Fields of Interest

    Science.gov (United States)

    Zaccheo, T. S.; Pernini, T.; Botos, C.; Dobler, J. T.; Blume, N.

    2015-12-01

    The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) combines real-time differential Laser Absorption Spectroscopy (LAS) measurements with a lightweight web-based data acquisition and product generation system to provide autonomous 24/7 monitoring of CO2. The current GreenLITE system is comprised of two transceivers and a series of retro-reflectors that continuously measure the differential transmission over a user-defined set of intersecting line-of-site paths or "chords" that form the plane of interest. These observations are first combined with in situ surface measurements of temperature (T), pressure (P) and relative humidity (RH) to compute the integrated CO2 mixing ratios based on an iterative radiative transfer modeling approach. The retrieved CO2 mixing ratios are then grouped based on observation time and employed in a sparse sample reconstruction method to provide a tomographic- like representation of the 2-D distribution of CO2 over the field of interest. This reconstruction technique defines the field of interest as a set of idealized plumes whose integrated values best match the observations. The GreenLITE system has been deployed at two primary locations; 1) the Zero Emissions Research and Technology (ZERT) center in Bozeman, Montana, in Aug-Sept 2014, where more than 200 hours of data were collected over a wide range of environmental conditions while utilizing a controlled release of CO2 into a segmented underground pipe, and 2) continuously at a carbon sequestration test facility in Feb-Aug 2015. The system demonstrated the ability to identify persistent CO2 sources at the ZERT test facility and showed strong correlation with an independent measurement using a LI-COR based system. Here we describe the measurement approach, algorithm design and extended study results.

  17. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...... of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical example in which the scan plane is finite validates the expressions for the spectrum of the GPR antenna....

  18. Two-Column Aerosol Project (TCAP): Ground-Based Radiation and Aerosol Validation Using the NOAA Mobile SURFRAD Station Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, Joseph [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Lantz, Kathy [Univ. of Colorado, Boulder, CO (United States)

    2016-05-01

    The National Oceanic and Atmospheric Administration (NOAA) is preparing for the launch of the Geostationary Operational Environmental Satellite R-Series (GOES-R) satellite in 2015. This satellite will feature higher time (5-minute versus 30-minute sampling) and spatial resolution (0.5 km vs 1 km in the visible channel) than current GOES instruments provide. NOAA’s National Environmental Satellite Data and Information Service has funded the Global Monitoring Division at the Earth System Research Laboratory to provide ground-based validation data for many of the new and old products the new GOES instruments will retrieve specifically related to radiation at the surface and aerosol and its extensive and intensive properties in the column. The Two-Column Aerosol Project (TCAP) had an emphasis on aerosol; therefore, we asked to be involved in this campaign to de-bug our new instrumentation and to provide a new capability that the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Mobile Facilities (AMF) did not possess, namely surface albedo measurement out to 1625 nm. This gave us a chance to test remote operation of our new multi-filter rotating shadowband radiometer/multi-filter radiometer (MFRSR/MFR) combination. We did not deploy standard broadband shortwave and longwave radiation instrumentation because ARM does this as part of every AMF deployment. As it turned out, the ARM standard MFRSR had issues, and we were able to provide the aerosol column data for the first 2 months of the campaign covering the summer flight phase of the deployment. Using these data, we were able to work with personnel at Pacific Northwest National Laboratory (PNNL) to retrieve not only aerosol optical depth (AOD), but single scattering albedo and asymmetry parameter, as well.

  19. Field Evaporation of Grounded Arsenic Doped Silicon Clusters

    CERN Document Server

    Deng, Zexiang; Li, Zhibing; WeiliangWang,

    2014-01-01

    We have investigated field evaporation of grounded arsenic (As) doped silicon (Si) clusters consist of 52 atoms with density functional theory to mimic Si nano structures of hundreds of nanometers long standing on a substrate. Six cluster structures with different As doping concentrations and dopant locations are studied. The critical evaporation electric fields are found to be lower for clusters with higher doping concentrations and doping sites closer to the surface. We attribute the difference to the difference in binding energies corresponding to the different As-doping concentrations and to the doping locations. Our theoretical study could shed light on the stability of nano apexs under high electric field.

  20. Ground based spectroscopy of hot Jupiters

    Science.gov (United States)

    Waldmann, Ingo

    2010-05-01

    It has been shown in recent years with great success that spectroscopy of exoplanetary atmospheres is feasible using space based observatories such as the HST and Spitzer. However, with the end of the Spitzer cold-phase, space based observations in the near to mid infra-red are limited, which will remain true until the the onset of the JWST. The importance of developing methods of ground based spectroscopic analysis of known hot Jupiters is therefore apparent. In the past, various groups have attempted exoplanetary spectroscopy using ground based facilities and various techniques. Here I will present results using a novel spectral retrieval method for near to mid infra-red emission and transmission spectra of exoplanetary atmospheres taken from the ground and discuss the feasibility of future ground-based spectroscopy in a broader context. My recently commenced PhD project is under the supervision of Giovanna Tinetti (University College London) and in collaboration with J. P. Beaulieu (Institut d'Astrophysique de Paris), Mark Swain and Pieter Deroo (Jet Propulsion Laboratory, Caltech).

  1. Engineering uses of physics-based ground motion simulations

    Science.gov (United States)

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  2. Ground tilt monitoring at Phlegraean Fields (Italy: a methodological approach

    Directory of Open Access Journals (Sweden)

    C. Del Gaudio

    2003-06-01

    Full Text Available Among geodetic methods used for monitoring ground deformation in volcanic areas, tiltmetry represents the most rapid technique and therefore it is used by almost all the volcanological observatories in the world. The deformation of volcanic building is not only the result of endogenous causes (i.e. dykes injection or magma rising, but also non-tectonic environmental factors. Such troubles cannot be removed completely but they can be reduce. This article outlines the main source of errors affecting the signals recorded by Phlegraean tilt, network, such as the dependence of the tilt response on temperature and to the thermoelastic effect on ground deformation. The analytical procedure used to evaluate about such errors and their reduction is explained. An application to data acquired from the tilt network during two distinct phases of ground uplift and subsidence of the Phlegraean Fields is reported.

  3. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  4. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  5. EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements

    NARCIS (Netherlands)

    Gallaun, H.; Zanchi, G.; Nabuurs, G.J.; Hengeveld, G.M.; Schardt, M.; Verkerk, P.J.

    2010-01-01

    The overall objective of this study was to combine national forest inventory data and remotely sensed data to produce pan-European maps on growing stock and above-ground woody biomass for the two species groups " broadleaves" and " conifers" An automatic up-scaling approach making use of satellite

  6. FGMOS Based Voltage-Controlled Grounded Resistor

    Directory of Open Access Journals (Sweden)

    R. Pandey

    2010-09-01

    Full Text Available This paper proposes a new floating gate MOSFET (FGMOS based voltage-controlled grounded resistor. In the proposed circuit FGMOS operating in the ohmic region is linearized by another conventional MOSFET operating in the saturation region. The major advantages of FGMOS based voltage-controlled grounded resistor (FGVCGR are simplicity, low total harmonic distortion (THD, and low power consumption. A simple application of this FGVCGR as a tunable high-pass filter is also suggested. The proposed circuits operate at the supply voltages of +/-0.75 V. The circuits are designed and simulated using SPICE in 0.25-µm CMOS technology. The simulation results of FGVCGR demonstrate a THD of 0.28% for the input signal 0.32 Vpp at 45 kHz, and a maximum power consumption of 254 µW.

  7. Space and Ground-Based Infrastructures

    Science.gov (United States)

    Weems, Jon; Zell, Martin

    This chapter deals first with the main characteristics of the space environment, outside and inside a spacecraft. Then the space and space-related (ground-based) infrastructures are described. The most important infrastructure is the International Space Station, which holds many European facilities (for instance the European Columbus Laboratory). Some of them, such as the Columbus External Payload Facility, are located outside the ISS to benefit from external space conditions. There is only one other example of orbital platforms, the Russian Foton/Bion Recoverable Orbital Capsule. In contrast, non-orbital weightless research platforms, although limited in experimental time, are more numerous: sounding rockets, parabolic flight aircraft, drop towers and high-altitude balloons. In addition to these facilities, there are a number of ground-based facilities and space simulators, for both life sciences (for instance: bed rest, clinostats) and physical sciences (for instance: magnetic compensation of gravity). Hypergravity can also be provided by human and non-human centrifuges.

  8. Development of Ground-Based Plant Sentinels

    Science.gov (United States)

    2007-11-02

    plants in response to different strains of Pseudomonas syringae. Planta . 217:767-775. De Moraes CM, Schultz JC, Mescher MC, Tumlinson JH. (2004...09-30-2004 Final Technical _ April 2001 - April 2003 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Developing Plants as Ground-based Sentinels 5b. GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT 9 "Z Plants emit volatile mixes characteristic of exposure to both plant and animal (insect) pathogens (bacteria and fungi). The

  9. Field trial of composite fiber-optic overhead ground wire

    Science.gov (United States)

    Kubota, S.; Kawahira, H.; Nakajima, T.; Matsubara, I.; Saito, Y.; Kitayama, Y.

    A composite fiber-optic ground wire (OPGW), which provides additional communication capabilities for system protection and control of overhead power transmission systems has been developed. After laboratory tests, the OPGW was strung along a live power transmission line in a mountainous region and has been confirmed to have sufficient performance to establish a high-speed digital transmission network able to withstand actual conditions. The field line, constructed substantially by existing techniques, has proved that the new OPGW, accessories such as clamps and joint boxes, installation technique, and on-tower splicing method can be effectively utilized to produce a protection and control system with extremely stable characteristics.

  10. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  11. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  12. Ground-State Phase Diagram of Transverse Spin-2 Ising Model with Longitudinal Crystal-Field

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The transverse spin-2 Ising ferromagnetic model with a longitudinal crystal-field is studied within the mean-field theory based on Bogoliubov inequality for the Gibbs free energy. The ground-state phase diagram and the tricritical point are obtained in the transverse field Ω/z J-longitudinal crystal D/zJ field plane. We find that there are the first order-order phase transitions in a very smallrange of D/zJ besides the usual first order-disorder phase transitions and the second order-disorder phase transitions.

  13. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  14. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of a test of a ground-based lidar of other type. The test was performed at DTU’s test site for large wind turbines at Høvsøre, Denmark. The result as an establishment of a relation between the reference wind speed measurements with measurement uncertainties provided...... by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The comparison of the lidar measurements of the wind direction with that from the wind vanes is also given....

  15. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  16. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  17. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Georgieva Yankova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  18. Applications of FBG-based sensors to ground stability monitoring

    Institute of Scientific and Technical Information of China (English)

    An-Bin Huang; Chien-Chih Wang; Jui-Ting Lee; Yen-Te Ho

    2016-01-01

    Over the past few decades, many optical fiber sensing techniques have been developed. Among these available sensing methods, optical fiber Bragg grating (FBG) is probably the most popular one. With its unique capabilities, FBG-based geotechnical sensors can be used as a sensor array for distributive (profile) measurements, deployed under water (submersible), for localized high resolution and/or dif-ferential measurements. The authors have developed a series of FBG-based transducers that include inclination, linear displacement and gauge/differential pore pressure sensors. Techniques that involve the field deployment of FBG inclination, extension and pore-pressure sensor arrays for automated slope stability and ground subsidence monitoring have been developed. The paper provides a background of FBG and the design concepts behind the FBG-based field monitoring sensors. Cases of field monitoring using the FBG sensor arrays are presented, and their practical implications are discussed.

  19. Changing anyonic ground degeneracy with engineered gauge fields

    Science.gov (United States)

    Cobanera, Emilio; Ulrich, Jascha; Hassler, Fabian

    2016-09-01

    For systems of lattice anyons such as Majoranas and parafermions, the unconventional quantum statistics determines a set of global symmetries (e.g., fermion parity for Majoranas) admitting no relevant perturbations. Any operator that breaks these symmetries explicitly would violate locality if added to the Hamiltonian. As a consequence, the associated quasidegeneracy of topologically nontrivial phases is protected, at least partially, by locality via the symmetries singled out by quantum statistics. We show that it is possible to bypass this type of protection by way of specifically engineered gauge fields, in order to modify the topological structure of the edge of the system without destroying the topological order completely. To illustrate our ideas in a concrete setting, we focus on the Z6 parafermion chain. Starting in the topological phase of the chain (sixfold ground degeneracy), we show that a gauge field with restricted dynamics acts as a relevant perturbation, driving a transition to a phase with threefold degeneracy and Z3 parafermion edge modes. The transition from the Z3 to the topologically trivial phase occurs on a critical line in the three-state Potts universality class. We also investigate numerically the emergence of Majorana edge modes when the Z6 chain is coupled to a differently restricted gauge field.

  20. 基于Hooke—Jeeves算法的渤海现今应力场优化反演%OPTIMIZATION INVERSION OF THE PRESENT GROUND STRESS FIELD OF BOHAI SEA BASED ON HOOKE-JEEVES ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    解秋红; 刘保华; 李西双; 刘晨光; 裴彦良; 华清峰

    2012-01-01

    An optimization inversion model of 3D ground stress field of the Bohai Sea was established based on the in-situ stress data from the existing measuring points in the study area and the analyses of tectonic evolution background and characteristics of Bohai Sea. By comparing the stress values and directions obtained at measuring points by means of finite element method with the in-situ measured data, an error function was established and taken as the optimization object function. The optimization inversion analysis was carried out by combining the Hooke-Jeeves optimization algorithm and the finite element method. The optimization inversion calculation process was completed by taking the finite element analysis program ANSYS as a calculation module and calling circularly the batch model through the Matlab platform, thus obtaining the distribution law of the present shallow ground stress field in Bohai Sea. The research results have shown that the method presented in the paper can be used to inverse a more reasonable stress field distribution by using the data from less measuring points, thus offering a reference for further study of the tectonic activity in Bohai Sea.%在分析渤海构造演化背景和地质构造特征的基础上,根据区域内已有测点的地应力资料,建立渤海三维应力场优化反演分析模型。通过由有限元法得到的测点处应力值大小及方向与现场实际数据的比较,构建误差函数作为优化目标函数,采用Hooke.Jeeves优化算法与有限元计算相结合的方法进行优化反演分析,将ANSYS有限元程序作为一个计算模块并通过Matlab实现其批处理模式下的循环调用,完成优化反演计算过程,得到了渤海浅部的现今应力场分布规律。优化结果分析表明,该文方法可以通过较少的测点数据优化反演得到较合理的构造应力分布,能够为进一步研究渤海海域现今构造活动提供一定参考。

  1. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report presents information concerning field procedures employed during the monitoring, well construction, well purging, sampling, and well logging at the Wright-Patterson Air Force Base. Activities were conducted in an effort to evaluate ground water contamination.

  2. A coherency function model of ground motion at base rock corresponding to strike-slip fault

    Institute of Scientific and Technical Information of China (English)

    丁海平; 刘启方; 金星; 袁一凡

    2004-01-01

    At present, the method to study spatial variation of ground motions is statistic analysis based on dense array records such as SMART-1 array, etc. For lacking of information of ground motions, there is no coherency function model of base rock and different style site. Spatial variation of ground motions in elastic media is analyzed by deterministic method in this paper. Taking elastic half-space model with dislocation source of fault, near-field ground motions are simulated. This model takes strike-slip fault and earth media into account. A coherency function is proposed for base rock site.

  3. Seismic Responses of Asymmetric Base-Isolated Structures under Near-Fault Ground Motion

    Institute of Scientific and Technical Information of China (English)

    YE Kun; LI Li; FANG Qin-han

    2008-01-01

    An inter-story shear model of asymmetric base-isolated structures incorporating deformation of each isolation bearing was built, and a method to simultaneously simulate bi-directional near-fault and far-field ground motions was proposed. A comparative study on the dynamic responses of asymmetric base-isolated structures under near-fault and far-field ground motions were conducted to investigate the effects of eccentricity in the isolation system and in the superstructures, the ratio of the uncoupled torsional to lateral frequency of the superstructure and the pulse period of near-fault ground motions on the nonlinear seismic response of asymmetric base-isolated structures. Numerical results show that eccentricity in the isolation system makes asymmetric base-isolated structure more sensitive to near-fault ground motions, and the pulse period of near-fault ground motions plays an import role in governing the seismic responses of asymmetric base-isolated structures.

  4. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    Science.gov (United States)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  5. Statistical Studies of Ground-Based Optical Lightning Signatures

    Science.gov (United States)

    Hunt, C. R.; Nemzek, R. J.; Suszcynsky, D. M.

    2005-12-01

    Most extensive optical studies of lightning have been conducted from orbit, and the statistics of events collected from earth are relatively poorly documented. The time signatures of optical power measured in the presence of clouds are inevitably affected by scattering,which can distort the signatures by extending and delaying the amplitude profile in time. We have deployed two all-sky photodiode detectors, one in New Mexico and one in Oklahoma, which are gathering data alongside electric field change monitors as part of the LANL EDOTX Great Plains Array. Preliminary results show that the photodiode is sensitive to approximately 50% or more of RF events detected at ranges of up to 30 km, and still has some sensitivity at ranges in excess of 60 km (distances determined by the EDOTX field-change array). The shapes of events within this range were assessed, with focus on rise time, width, peak power, and their correlation to corresponding electric field signatures, and these are being compared with published on-orbit and ground-based data. Initial findings suggest a mean characteristic width (ratio of total detected optical energy to peak power) of 291 +/- 12 microseconds and a mean delay between the RF signal peak and optical peak of 121 +/- 17 microseconds. These values fall between prior ground-based measurements of direct return stroke emissions, and scattering-dominated on-orbit measurements. This work will promote better understanding of the correspondence between radio and optical measurements of lightning.

  6. Calculation of Electric Field at Ground Surface and ADSS Cable Prepared Hanging Point near EHV Power Transmission Tower

    Directory of Open Access Journals (Sweden)

    Xu Bao-Qing

    2016-01-01

    Full Text Available A simplified model of the 750kV tower is established by CDEGS software which is based on the Method Of Moment. The power frequency electric field distribution on the ground is achieved by software calculation and field-measuring. The validity of the calculation is proved when compare the calculation and experiment results. The model also can be used to calculate the electric field in prepared hanging points on the tower. Results show that the electric field distribution on the ground surface around the tower and prepared hanging points are meet the standard by calculation and experiment.

  7. Current trends in ground based solar magnetometry

    Science.gov (United States)

    Gosain, Sanjay

    2016-07-01

    Continuous observations of the sun, over more than a century, have led to several important discoveries in solar astronomy. These include the discovery of the solar magnetism and its cyclic modulation, active region formation and decay and their role in energetic phenomena such as fares and coronal mass ejections (CMEs), fine structure and dynamics of the sunspots and small-scale organization of the magnetic flux in the form of flux tubes and so forth. In this article we give a brief overview of advancements in solar observational techniques in recent decades and the results obtained from the such observations. These include techniques to achieve high angular resolution, high spectral and polarimetric sensitivity and innovative new detectors. A wide range of spatial, temporal and spectral domains exploited by solar astronomers to understand the solar phenomena are discussed. Many new upcoming telescopes and instruments that are designed to address different aspects of solar physics problems are briefly described. Finally, we discuss the advantages of observing from the ground and how they can complement space-based observations.

  8. Database Dictionary for Ethiopian National Ground-Water DAtabase (ENGDA) Data Fields

    Science.gov (United States)

    Kuniansky, Eve L.; Litke, David W.; Tucci, Patrick

    2007-01-01

    Introduction This document describes the data fields that are used for both field forms and the Ethiopian National Ground-water Database (ENGDA) tables associated with information stored about production wells, springs, test holes, test wells, and water level or water-quality observation wells. Several different words are used in this database dictionary and in the ENGDA database to describe a narrow shaft constructed in the ground. The most general term is borehole, which is applicable to any type of hole. A well is a borehole specifically constructed to extract water from the ground; however, for this data dictionary and for the ENGDA database, the words well and borehole are used interchangeably. A production well is defined as any well used for water supply and includes hand-dug wells, small-diameter bored wells equipped with hand pumps, or large-diameter bored wells equipped with large-capacity motorized pumps. Test holes are borings made to collect information about the subsurface with continuous core or non-continuous core and/or where geophysical logs are collected. Test holes are not converted into wells. A test well is a well constructed for hydraulic testing of an aquifer in order to plan a larger ground-water production system. A water-level or water-quality observation well is a well that is used to collect information about an aquifer and not used for water supply. A spring is any naturally flowing, local, ground-water discharge site. The database dictionary is designed to help define all fields on both field data collection forms (provided in attachment 2 of this report) and for the ENGDA software screen entry forms (described in Litke, 2007). The data entered into each screen entry field are stored in relational database tables within the computer database. The organization of the database dictionary is designed based on field data collection and the field forms, because this is what the majority of people will use. After each field, however, the

  9. Design and Application of a Field Sensing System for Ground Anchors in Slopes

    Directory of Open Access Journals (Sweden)

    Hyo Seon Park

    2013-03-01

    Full Text Available In a ground anchor system, cables or tendons connected to a bearing plate are used for stabilization of slopes. Then, the stability of a slope is dependent on maintaining the tension levels in the cables. So far, no research on a strain-based field sensing system for ground anchors has been reported. Therefore, in this study, a practical monitoring system for long-term sensing of tension levels in tendons for anchor-reinforced slopes is proposed. The system for anchor-reinforced slopes is composed of: (1 load cells based on vibrating wire strain gauges (VWSGs, (2 wireless sensor nodes which receive and process the signals from load cells and then transmit the result to a master node through local area communication, (3 master nodes which transmit the data sent from sensor nodes to the server through mobile communication, and (4 a server located at the base station. The system was applied to field sensing of ground anchors in the 62 m-long and 26 m-high slope at the side of the highway. Based on the long-term monitoring, the safety of the anchor-reinforced slope can be secured by the timely applications of re-tensioning processes in tendons.

  10. Curl-meter of Electrical Fields In The Ground.

    Science.gov (United States)

    Krylov, S. M.; Maibuk, Z.-Ju. Ja.; Nikiforova, N. N.

    A special instrument U curl-meter was designed and manufactured in the Institute of Physics of the Earth of RAS for measuring of variable electric fields during alternation of stressedly-deformed state in rock mass. The instrument consist the four-electrode unit and a circuit of analogue signal processing for separation of E U circulations or according to the StokesSs theorem, Curl E in absence of indirect sources. Four electrodes are laied out in rocks on angles of square and they are affixed by ring-type circuit to uninverting inputs of precision operational amplifiers. First input is connected to electrode N1, the second one is connected to N2 and so on. The independent inputs are grounded to a arbitrary point (the fifth electrode is SzeroT). The transmission factors of the circuit are set by resistors accurate to within 0.25 %. First and third, and also second and fourth outputs of the amplifiers are connected to the grad EX and grad EY calculation circuit (deduction circuits). So, if the vector components have different signs of both two EX values and two values EY, the gradient calculation circuit generates signal extremums. If in this case the signs inside pairs are identical , that means that the signal not- ring-type and it is absent on output (difference of the equal values with equal signs). The signals from outputs of the gradient calculations act into adding device for calculation of Curl E (circulation). Curl-meter differs by high security from clutters and from cues on any of inputs rather of "zero point" (ground) reacting only on a ring-type current, thus it is essential (on the order) the noise level and drift of operational amplifiers is moderated. Curl-meter works in a complex of measuring devices on Obninsk seismological polygon for study of behavior of superlow frequency of tectonic genesis electromagnetic emission. Through four inputs (electrode spacing 7x7 2, resistance between welding rods 0.8 - 1.1 kOm), manufactured from fine- dyspersated

  11. Ground state correlations and mean field in 16O

    Science.gov (United States)

    Heisenberg, Jochen H.; Mihaila, Bogdan

    1999-03-01

    We use the coupled cluster expansion [exp(S) method] to generate the complete ground state correlations due to the NN interaction. Part of this procedure is the calculation of the two-body G matrix inside the nucleus in which it is being used. This formalism is being applied to 16O in a configuration space of 50ħω. The resulting ground state wave function is used to calculate the binding energy and one- and two-body densities for the ground state of 16O.

  12. Ground state correlations and mean-field in $^{16}$O

    CERN Document Server

    Heisenberg, J H; Heisenberg, Jochen H.; Mihaila, Bogdan.

    1999-01-01

    We use the coupled cluster expansion ($\\exp(S)$ method) to generate the complete ground state correlations due to the $NN$ interaction. Part of this procedure is the calculation of the two-body ${\\mathbf G}$ matrix inside the nucleus in which it is being used. This formalism is being applied to $^{16}$O in a configuration space of 35 $\\hbar\\omega$. The resulting ground state wave function is used to calculate the binding energy and one- and two-body densities for the ground state of~$^{16}$O.

  13. Prediction of near-field strong ground motions for scenario earthquakes on active fault

    Institute of Scientific and Technical Information of China (English)

    Wang Haiyun; Xie Lili; Tao Xiaxin; Li Jie

    2006-01-01

    A method to predict near-field strong ground motions for scenario earthquakes on active faults is proposed. First,macro-source parameters characterizing the entire source area, i.e., global source parameters, including fault length, fault width,rupture area, average slip on the fault plane, etc., are estimated by seismogeology survey, seismicity and seismic scaling laws.Second, slip distributions characterizing heterogeneity or roughness on the fault plane, i.e., local source parameters, are reproduced/evaluated by the hybrid slip model. Finally, the finite fault source model, developed from both the global and local source parameters, is combined with the stochastically synthetic technique of ground motion using the dynamic corner frequency based on seismology. The proposed method is applied to simulate the acceleration time histories on three base-rock stations during the 1994 Northridge earthquake. Comparisons between the predicted and recorded acceleration time histories show that the method is feasible and practicable.

  14. Ground-water flow and the possible effects of remedial actions at J-Field, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Hughes, W.B.

    1995-01-01

    J-Field, located in the Edgewood Area of Aberdeen Proving Ground, Md, has been used since World War II to test and dispose of explosives, chemical warfare agents, and industrial chemicals resulting in ground-water, surface-water, and soil contami- nation. The U.S. Geological Survey finite-difference model was used to better understand ground-water flow at the site and to simulate the effects of remedial actions. A surficial aquifer and a confined aquifer were simulated with the model. A confining unit separates these units and is represented by leakance between the layers. The area modeled is 3.65 mi2; the model was constructed with a variably spaced 40 X 38 grid. The horizontal and lower boundaries of the model are all no-flow boundaries. Steady-state conditions were used. Ground water at the areas under investigation flows from disposal pit areas toward discharge areas in adjacent estuaries or wetlands. Simulations indicate that capping disposal areas with an impermeable cover effectively slows advective ground water flow by 0.7 to 0.5 times. Barriers to lateral ground-water flow were simulated and effectively prevented the movement of ground water toward discharge areas. Extraction wells were simulated as a way to contain ground-water contamination and to extract ground water for treatment. Two wells pumping 5 gallons per minute each at the toxic-materials disposal area and a single well pumping 2.5 gallons per minute at the riot-control-agent disposal area effectively contained contamination at these sites. A combi- nation of barriers to horizontal flow east and south of the toxic-materials disposal area, and a single extraction well pumping at 5 gallons per minute can extract contaminated ground water and prevent pumpage of marsh water.

  15. Characterization of deep ground geothermal field in Jiahe Coal Mine

    Institute of Scientific and Technical Information of China (English)

    Zhang Yi; Guo Dongming; He Manchao; Jiang Yaodong; Yang Qing

    2011-01-01

    Research into the characteristics of geothermal fields is important for the control of heat damage in mines.Based on measured geothermal data of boreholes from -200 m to -1200 m in a Jiahe Coal Mine,we demonstrate non-linear but increasing relations of both geo-temperatures and geothermal gradients with increases depth.Numerically,we fitted the relationship between geo-temperatures and depth,a first-order exponential decay curve,formulated as:T(h) - -4.975 + 23.08 × exp(-h/1736.1 ).

  16. Ground-based observations of Kepler asteroseismic targets

    DEFF Research Database (Denmark)

    Uyttterhoeven , K.; Karoff, Christoffer

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising...

  17. Spatial-angular modeling of ground-based biaxial lidar

    Science.gov (United States)

    Agishev, Ravil R.

    1997-10-01

    Results of spatial-angular LIDAR modeling based on an efficiency criterion introduced are represented. Their analysis shows that a low spatial-angular efficiency of traditional VIS and NIR systems is a main cause of a low S/BR ratio at the photodetector input. It determines the considerable measurements errors and the following low accuracy of atmospheric optical parameters retrieval. As we have shown, the most effective protection against intensive sky background radiation for ground-based biaxial LIDAR's consist in forming of their angular field according to spatial-angular efficiency criterion G. Some effective approaches to high G-parameter value achievement to achieve the receiving system optimization are discussed.

  18. Power Gating Based Ground Bounce Noise Reduction

    Directory of Open Access Journals (Sweden)

    M. Uma Maheswari

    2014-08-01

    Full Text Available As low power circuits are most popular the decrease in supply voltage leads to increase in leakage power with respect to the technology scaling. So for removing this kind of leakages and to provide a better power efficiency many power gating techniques are used. But the leakage due to ground connection to the active part of the circuit is very high rather than all other leakages. As it is mainly due to the back EMF of the ground connection it was called it as ground bounce noise. To reduce this noise different methodologies are designed. In this paper the design of such an efficient technique related to ground bounce noise reduction using power gating circuits and comparing the results using DSCH and Microwind low power tools. In this paper the analysis of adders such as full adders using different types of power gated circuits using low power VLSI design techniques and to present the comparison results between different power gating methods.

  19. Upper Bounds on the Degeneracy of the Ground State in Quantum Field Models

    Directory of Open Access Journals (Sweden)

    Asao Arai

    2016-01-01

    Full Text Available Axiomatic abstract formulations are presented to derive upper bounds on the degeneracy of the ground state in quantum field models including massless ones. In particular, given is a sufficient condition under which the degeneracy of the ground state of the perturbed Hamiltonian is less than or equal to the degeneracy of the ground state of the unperturbed one. Applications of the abstract theory to models in quantum field theory are outlined.

  20. Movable Ground Based Recovery System for Reuseable Space Flight Hardware

    Science.gov (United States)

    Sarver, George L. (Inventor)

    2013-01-01

    A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.

  1. Ground-based Measurements of Next Generation Spectroradiometric Standard Stars

    Science.gov (United States)

    McGraw, John T.

    2013-01-01

    Accurate, radiometric standards are essential to the future of ground- and space-based astronomy and astrophysics. While astronomers tend to think of “standard stars” as available calibration sources, progress at NIST to accurately calibrate inexpensive, easy to use photodiode detectors as spectroradiometric standards from 200 nm to 1800 nm allows referencing astronomical measurements to these devices. Direction-, time-, and wavelength-dependent transmission of Earth’s atmosphere is the single largest source of error for ground-based radiometric measurement of astronomical objects. Measurements and impacts of atmospheric extinction - scattering and absorption - on imaging radiometric and spectroradiometric measurements are described. The conclusion is that accurate real-time measurement of extinction in the column of atmosphere through which standard star observations are made, over the spectral region being observed and over the field of view of the telescope are required. New techniques to directly and simultaneously measure extinction in the column of atmosphere through which observations are made are required. Our direct extinction measurement solution employs three small facility-class instruments working in parallel: a lidar to measure rapidly time variable transmission at three wavelengths with uncertainty of 0.25% per airmass, a spectrophotometer to measure rapidly wavelength variable extinction with sub-1% precision per nanometer resolution element from 350 to 1050nm, and a wide-field camera to measure angularly variable extinction over the field of view. These instruments and their operation will be described. We assert that application of atmospheric metadata provided by this instrument suite corrects for a significant fraction of systematic errors currently limiting radiometric precision, and provides a major step towards measurements that are provably dominated by random noise.

  2. Estimation of above ground biomass in boreal forest using ground-based Lidar

    Science.gov (United States)

    Taheriazad, L.; Moghadas, H.; Sanchez-Azofeifa, A.

    2017-05-01

    Assessing above ground biomass of forest is important for carbon storage monitoring in boreal forest. In this study, a new model is developed to estimate the above ground biomass using ground based Lidar data. 21 trees were measured and scanned across the plot area study in boreal forests of Alberta, Canada. The study area was scanned in the summer season 2014 to quantify the green biomass. The average of total crown biomass and green biomass in this study was 377 kg (standard deviation, S.D. = 243 kg) and 6.42 kg (S.D. = 2.69 m), respectively.

  3. Low-field (1)H NMR spectroscopy for distinguishing between arabica and robusta ground roast coffees.

    Science.gov (United States)

    Defernez, Marianne; Wren, Ella; Watson, Andrew D; Gunning, Yvonne; Colquhoun, Ian J; Le Gall, Gwénaëlle; Williamson, David; Kemsley, E Kate

    2017-02-01

    This work reports a new screening protocol for addressing issues of coffee authenticity using low-field (60MHz) bench-top (1)H NMR spectroscopy. Using a simple chloroform-based extraction, useful spectra were obtained from the lipophilic fraction of ground roast coffees. It was found that 16-O-methylcafestol (16-OMC, a recognized marker compound for robusta beans) gives rise to an isolated peak in the 60MHz spectrum, which can be used as an indicator of the presence of robusta beans in the sample. A total of 81 extracts from authenticated coffees and mixtures were analysed, from which the detection limit of robusta in arabica was estimated to be between 10% and 20% w/w. Using the established protocol, a surveillance exercise was conducted of 27 retail samples of ground roast coffees which were labelled as "100% arabica". None were found to contain undeclared robusta content above the estimated detection limit.

  4. Ground motion prediction for the Vienna Basin area using the ambient seismic field

    Science.gov (United States)

    Schippkus, Sven; Zigone, Dimitri; Bokelmann, Götz; AlpArray Working Group

    2016-04-01

    The Vienna Basin is one of the most seismically active regions in Austria. Because of the population density and sensitive infrastructure, seismic hazard assessment in this area is of critical importance. An important part of seismic hazard analysis is ground motion prediction, which can in principle be done using either empirical studies to derive ground motion prediction equations (GMPEs) or using a physics-based approach to simulate ground motion by modelling surface wave propagation. Recently a new method has been presented that is based on the emergence of the inter-station Green's function from ambient noise cross-correlations (Denolle et al. 2013), which provides the impulse response of the Earth from a point source at the surface (from the site of one of the two receivers to the other). These impulse responses are dominated by surface waves, which would, in the case of a real earthquake, cause the major damages. The Green's function can in principle be modified to simulate a double couple dislocation at depth, i.e., a virtual earthquake. Using an adapted pre-processing method, the relative amplitudes of the ambient noise records of different inter-station paths are preserved in the correlation functions, and effects like attenuation and amplification of surface waves in sedimentary basins can be studied. This provides more precise information that will help improve seismic hazard evaluations. Here we present a preliminary study of such ground motion prediction for the Vienna Basin using about two dozen broadband stations from available networks in the area, e.g., stations from the University of Vienna (AlpArray) and Vienna Technical University. References Denolle, M. A., E. M. Dunham, G. A. Prieto, and G. C. Beroza (2013), Ground motion prediction of realistic earthquake sources using the ambient seismic field, J. Geophys. Res. Solid Earth, 118, 2102-2118, doi:10.1029/2012JB009603.

  5. Effect of near-earth thunderstorms electric field on the intensity of ground cosmic ray positrons/electrons in Tibet

    Science.gov (United States)

    Zhou, X. X.; Wang, X. J.; Huang, D. H.; Jia, H. Y.

    2016-11-01

    Monte Carlo simulations are performed to study the correlation between the ground cosmic ray intensity and near-earth thunderstorms electric field at YBJ (located at YangBaJing, Tibet, China, 4300 m a. s. l.). The variations of the secondary cosmic ray intensity are found to be highly dependent on the strength and polarity of the electric field. In negative fields and in positive fields greater than 600 V/cm, the total number of ground comic ray positrons and electrons increases with increasing electric field strength. And these values increase more obviously when involving a shower with lower primary energy or a higher zenith angle. While in positive fields ranging from 0 to 600 V/cm, the total number of ground comic ray positrons and electrons declines and the amplitude is up to 3.1% for vertical showers. A decrease of intensity occurs in inclined showers within the range of 0-500 V/cm, which is accompanied by smaller amplitudes. In this paper, the intensity changes are analyzed, especially concerning those decreasing phenomena in positive electric fields. Our simulation results could be helpful in understanding the decreases observed in some ground-based experiments (such as the Carpet air shower array and ARGO-YBJ), and also be useful in understanding the acceleration mechanisms of secondary charged particles caused by an atmospheric electric field.

  6. Effects of gully terrain on stress field distribution and ground pressure behavior in shallow seam mining

    Institute of Scientific and Technical Information of China (English)

    Li Jianwei; Liu Changyou; Zhao Tong

    2016-01-01

    This study proposes a novel approach to study stress field distribution and overlying ground pressure behavior in shallow seam mining in gully terrain. This approach combines numerical simulations and field tests based on the conditions of gully terrain in the Chuancao Gedan Mine. The effects of gully ter-rain on the in situ stress field of coal beds can be identified by the ratio of self-weight stress to vertical stress (g) at the location corresponding to the maximum vertical stress. Based on the function g=f(h), the effect of gully terrain on the stress field of overlying strata of the entire field can be characterized as a significantly affected area, moderately affected area, or non-affected area. Working face 6106 in the Chuancao Gedan Mine had a coal bed depth<80 m and was located in what was identified as a signifi-cantly affected area. Hence, mining may cause sliding of the gully slope and increased loading (including significant dynamic loading) on the roof strata. Field tests suggest that significant dynamic pressures were observed at the body and foot of the gully slope, and that dynamic loadings were observed upslope of the working face expansion, provided that the expanding direction of the working face is parallel to the gully.

  7. Numerical Simulations of Blast Loads from Near-Field Ground Explosions in Air

    Science.gov (United States)

    Dobrociński, Stanisław; Flis, Leszek

    2015-12-01

    Numerical simulations of air blast loading in the near-field acting on the ground have been performed. A simplified blast model based on empirical blast loading data representing spherical and hemispherical explosive shapes has been simulated. Conwep is an implementation of the empirical blast models presented by Kingery and Bulmash, which is also implemented in the commercial code LS-DYNA based on work done by Rahnders-Pehrson and Bannister. This makes it possible to simulate blast loads acting on structures representing spherical and hemispherical explosive shapes of TNT with reasonable computational effort as an alternative to the SPH and Eulerian model. The CPU time for the simplified blast model is however considerably shorter and may still be useful in time consuming concept studies. Reasonable numerical results using reasonable model sizes can be achieved not only for modelling near-field explosions in air but most areas of geotechnical. Calculation was compared with blast SPH and Eulerian model.

  8. Numerical Simulations of Blast Loads from Near-Field Ground Explosions in Air

    Directory of Open Access Journals (Sweden)

    Dobrociński Stanisław

    2015-12-01

    Full Text Available Numerical simulations of air blast loading in the near-field acting on the ground have been performed. A simplified blast model based on empirical blast loading data representing spherical and hemispherical explosive shapes has been simulated. Conwep is an implementation of the empirical blast models presented by Kingery and Bulmash, which is also implemented in the commercial code LS-DYNA based on work done by Rahnders-Pehrson and Bannister. This makes it possible to simulate blast loads acting on structures representing spherical and hemispherical explosive shapes of TNT with reasonable computational effort as an alternative to the SPH and Eulerian model. The CPU time for the simplified blast model is however considerably shorter and may still be useful in time consuming concept studies. Reasonable numerical results using reasonable model sizes can be achieved not only for modelling near-field explosions in air but most areas of geotechnical. Calculation was compared with blast SPH and Eulerian model.

  9. Ground-Based Lidar Measurements During the CALIPSO and Twilight Zone (CATZ) Campaign

    Science.gov (United States)

    Berkoff, Timothy; Qian, Li; Kleidman, Richard; Stewart, Sebastian; Welton, Ellsworth; Li, Zhu; Holbem, Brent

    2008-01-01

    The CALIPSO and Twilight Zone (CATZ) field campaign was carried out between June 26th and August 29th of 2007 in the multi-state Maryland-Virginia-Pennsylvania region of the U.S. to study aerosol properties and cloud-aerosol interactions during overpasses of the CALIPSO satellite. Field work was conducted on selected days when CALIPSO ground tracks occurred in the region. Ground-based measurements included data from multiple Cimel sunphotometers that were placed at intervals along a segment of the CALIPSO ground-track. These measurements provided sky radiance and AOD measurements to enable joints inversions and comparisons with CALIPSO retrievals. As part of this activity, four ground-based lidars provided backscatter measurements (at 523 nm) in the region. Lidars at University of Maryland Baltimore County (Catonsville, MD) and Goddard Space Flight Center (Greenbelt, MD) provided continuous data during the campaign, while two micro-pulse lidar (MPL) systems were temporarily stationed at various field locations directly on CALIPSO ground-tracks. As a result, thirteen on-track ground-based lidar observations were obtained from eight different locations in the region. In some cases, nighttime CALIPSO coincident measurements were also obtained. In most studies reported to date, ground-based lidar validation efforts for CALIPSO rely on systems that are at fixed locations some distance away from the satellite ground-track. The CATZ ground-based lidar data provide an opportunity to examine vertical structure properties of aerosols and clouds both on and off-track simultaneously during a CALIPSO overpass. A table of available ground-based lidar measurements during this campaign will be presented, along with example backscatter imagery for a number of coincident cases with CALIPSO. Results indicate that even for a ground-based measurements directly on-track, comparisons can still pose a challenge due to the differing spatio-temporal properties of the ground and satellite

  10. Field-based transformation optics

    DEFF Research Database (Denmark)

    Novitsky, Andrey

    2011-01-01

    Instead of common definition of the transformation-optics devices via the coordinate transformation we offer the approach founded on boundary conditions for the fields. We demonstrate the effectiveness of the approach by two examples: two-shell cloak and concentrator of electric field. We believe...... that the field-based approach is quite important for effective field control....

  11. Managing electromagnetic fields from residential electrode grounding systems: a predecision analysis.

    Science.gov (United States)

    von Winterfeldt, D; Trauger, T

    1996-01-01

    Several epidemiological studies have linked exposure to electromagnetic fields (EMFs) with health effects, including leukemia and brain cancer, but the research is still inconclusive. In particular, no clear causal mechanism has been identified by which EMFs may promote cancers. Nevertheless, the concerns raised by the positive epidemiological studies have led to increasing efforts to reduce EMFs from a number of sources. One source of EMFs are home grounding systems that are connected through water pipes in homes to water mains. This paper analyzes whether home owners who are concerned about electromagnetic fields exposure from home grounding systems should take any action to reduce fields. Assuming that the grounding system produces elevated magnetic fields (e.g., 2-3 mG or higher), this study investigates several readily available alternatives and evaluates them with respect to five criteria: risk reduction, cost, fire risk increase, worker risk, and electrical shock risk. Because of the lack of conclusive evidence about an EMF-cancer relationship, this study uses a parameterized approach that makes conditional estimates of health risk depending on future research outcomes and on the nature of the EMF/health effects relationship. This type of analysis, which is called predecision analysis because of its preliminary nature, is therefore highly dependent on a set of assumptions. Nevertheless, this predecision analysis had some fairly clear results. First, waiting for more research or taking a fairly inexpensive corrective action (insulating the water pipe to reduce ground current flow) seem to be the main contenders for the best decision for many different assumptions and parameters. Second, the choice between these two actions is very sensitive to variations in assumptions and parameters. Homeowners who accept the base-case assumptions and parameters of this study should prefer to wait. If any of the base-case parameters are changed to more pessimistic estimates

  12. Ground state correlations and mean field using the exp(S) method

    CERN Document Server

    Heisenberg, J H; Heisenberg, Jochen H.; Mihaila, Bogdan

    1999-01-01

    This document gives a detailed account of the terms used in the computation of the ground state mean field and the ground state correlations. While the general approach to this description is given in a separate paper (nucl-th/9802029) we give here the explicite expressions used.

  13. Optimization of ground-water withdrawal at the old O-Field area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Banks, William S.L.; Dillow, Jonathan J.A.

    2001-01-01

    The U.S. Army disposed of chemical agents, laboratory materials, and unexploded ordnance at the Old O-Field landfill at Aberdeen Proving Ground, Maryland, beginning prior to World War II and continuing until at least the 1950?s. Soil, ground water, surface water, and wetland sediments in the Old O-Field area were contaminated by the disposal of these materials. The site is in the Atlantic Coastal Plain, and is characterized by a complex series of Pleistocene and Holocene sediments formed in various fluvial, estuarine, and marine-marginal hydrogeologic environments. A previously constructed transient finite-difference ground-water-flow model was used to simulate ground-water flow and the effects of a pump-and-treat remediation system designed to prevent contaminated ground water from flowing into Watson Creek (a tidal estuary and a tributary to the Gunpowder River). The remediation system consists of 14 extraction wells located between the Old O-Field landfill and Watson Creek.Linear programming techniques were applied to the results of the flow-model simulations to identify optimal pumping strategies for the remediation system. The optimal management objective is to minimize total withdrawal from the water-table aquifer, while adhering to the following constraints: (1) ground-water flow from the landfill should be prevented from reaching Watson Creek, (2) no extraction pump should be operated at a rate that exceeds its capacity, and (3) no extraction pump should be operated at a rate below its minimum capacity, the minimum rate at which an Old O-Field pump can function. Water withdrawal is minimized by varying the rate and frequency of pumping at each of the 14 extraction wells over time. This minimizes the costs of both pumping and water treatment, thus providing the least-cost remediation alternative while simultaneously meeting all operating constraints.The optimal strategy identified using this objective and constraint set involved operating 13 of the 14

  14. Field demonstration of on-site analytical methods for TNT and RDX in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Craig, H. [Environmental Protection Agency Region 10, Portland, OR (United States); Ferguson, G.; Markos, A. [Black and Veatch Special Projects Corp., Tacoma, WA (United States); Kusterbeck, A.; Shriver-Lake, L. [Naval Research Lab., Washington, DC (United States). Center for Bio/Molecular Science and Engineering; Jenkins, T.; Thorne, P. [Army Corps of Engineers, Hanover, NH (United States). Cold Regions Research and Engineering Lab.

    1996-12-31

    A field demonstration was conducted to assess the performance of eight commercially-available and emerging colorimetric, immunoassay, and biosensor on-site analytical methods for explosives 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in ground water and leachate at the Umatilla Army Depot Activity, Hermiston, Oregon and US Naval Submarine Base, Bangor, Washington, Superfund sites. Ground water samples were analyzed by each of the on-site methods and results compared to laboratory analysis using high performance liquid chromatography (HPLC) with EPA SW-846 Method 8330. The commercial methods evaluated include the EnSys, Inc., TNT and RDX colorimetric test kits (EPA SW-846 Methods 8515 and 8510) with a solid phase extraction (SPE) step, the DTECH/EM Science TNT and RDX immunoassay test kits (EPA SW-846 Methods 4050 and 4051), and the Ohmicron TNT immunoassay test kit. The emerging methods tested include the antibody-based Naval Research Laboratory (NRL) Continuous Flow Immunosensor (CFI) for TNT and RDX, and the Fiber Optic Biosensor (FOB) for TNT. Accuracy of the on-site methods were evaluated using linear regression analysis and relative percent difference (RPD) comparison criteria. Over the range of conditions tested, the colorimetric methods for TNT and RDX showed the highest accuracy of the emerging methods for TNT and RDX. The colorimetric method was selected for routine ground water monitoring at the Umatilla site, and further field testing on the NRL CFI and FOB biosensors will continue at both Superfund sites.

  15. Evaluation of Horizontal Electric Field Under Different Lightning Current Models by Perfect Ground Assumption

    Institute of Scientific and Technical Information of China (English)

    LIANG Jianfeng; LI Yanming

    2012-01-01

    Lightning electromagnetics can affect the reliability of the power system or communication system.Therefore,evaluation of electromagnetic fields generated by lightning return stroke is indispensable.Arnold sommerfeld proposed a model to calculate the electromagnetic field,but it involved the time-consuming sommerfeld integral.However,perfect conductor ground assumption can account for fast calculation,thus this paper reviews the perfect ground equation for evaluation of lightning electromagnetic fields,presents three engineering lightning return stroke models,and calculates the horizontal electric field caused by three lightning return stroke models.According to the results,the amplitude of lightning return stroke has a strong impact on horizontal electric fields,and the steepness of lightning return stroke influences the horizontal electric fields.Moreover,the perfect ground method is faster than the sommerfeld integral method.

  16. The Use of Solar Cell in Ground Water Irrigation to Support Agricultural Cultivation in Rainfed Field

    Directory of Open Access Journals (Sweden)

    Delvi Yanti

    2016-02-01

    Full Text Available This research aims at developing the use of solar cell to water the ground water irrigation in order to support agricultural cultivation in rain-fed field. The location of this research was agricultural land (ricefield in Singkarak village, X Koto Singkarak sub-district, Solok district. This research was conducted with the design and technical test of ground water irrigation with solar cell, the analysis of irrigation water demand with crop-wat and the analysis of financial feasibility. The result of analysis showed that the potential of solar energy in Singkarak village could be used to activate the water pump of irrigation. The result of measurement showed that battery which its capacity was 12 V and 100 Ah needed four hours to be charged by five units of 50 Wp panel PV. Battery as the source of power was able to activate water pump of 125 Watt for 7,52 hours and mean debit that was able to be pumped is 17,45 litre/minute. From 24 periods of plantation time planned in rain-fed field, there were only three periods of plantation that the operational hours of their water pumps were able to be covered by the battery namely January 2, February 2, and November 2. Based on the result of financial analysis, these three periods of plantation were financially feasible in their implementation because the value of B/C ratio > 1 and NPV > 0.

  17. A Quarter Active Suspension System Based Ground-Hook Controller

    OpenAIRE

    Turnip Arjon

    2016-01-01

    An alternative design technique for active suspension system of vehicle using a developved ground-hook damping system as a reference is proposed. The controller parameters are determined using Lyapunov method and can be tuned to precisely achieve the type of desired response which given by reference model. The simulation result show that the designed active suspension system based ground-hook reference model is able to significantly improve the ride comfort and the road holding compared with ...

  18. Ground Based Investigation of Electrostatic Accelerometer in HUST

    Science.gov (United States)

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L

  19. Measured ground-surface movements, Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Massey, B.L.

    1981-01-01

    The Cerro Prieto geothermal area in the Mexicali Valley, 30 kilometers southeast of Mexicali, Baja California, incurred slight deformation because of the extraction of hot water and steam, and probably, active tectonism. During 1977 to 1978, the US Geological Survey established and measured two networks of horizontal control in an effort to define both types of movement. These networks consisted of: (1) a regional trilateration net brought into the mountain ranges west of the geothermal area from stations on an existing US Geological Survey crustal-strain network north of the international border; and (2) a local net tied to stations in the regional net and encompassing the present and planned geothermal production area. Electronic distance measuring instruments were used to measure the distances between stations in both networks in 1978, 1979 and 1981. Lines in the regional net averaged 25 km. in length and the standard deviation of an individual measurement is estimated to be approx. 0.3 part per million of line length. The local network was measured using different instrumentation and techniques. The average line length was about 5 km. and the standard deviation of an individual measurement approached 3 parts per million per line length. Ground-surface movements in the regional net, as measured by both the 1979 and 1981 resurveys, were small and did not exceed the noise level. The 1979 resurvey of the local net showed an apparent movement of 2 to 3 centimeters inward toward the center of the production area. This apparent movement was restricted to the general limits of the production area. The 1981 resurvey of the local net did not show increased movement attributable to fluid extraction.

  20. Hybrid modelling of near-field coupling onto grounded wire under ultra-short duration perturbation

    Science.gov (United States)

    Ravelo, B.; Liu, Y.

    2014-10-01

    A time-frequency (TF) hybrid model (HM) for investigating the interaction between EM near-field (NF) aggression and grounded wire is addressed. The HM is based on the combination of techniques for extracting the EM NF radiated by electronic structures and the calculation of electrical disturbances across the wire due to EM coupling. The computation method is fundamentally inspired from transmission line (TL) theory under EM illumination. The methodology including flow chart interpreting the routine algorithm based on the combination of frequency and time domain approaches is featured. An experimental result showing the EM coupling between patch antenna-wire from 1.5-3.5GHz reveals the efficiency of the HM in frequency domain. The relevance of this HM was illustrated with a structure comprised of 20cm aggressor and 5cm victim I-shaped wires placed above a planar ground plane. The aggressor was excited with 40ns duration perturbation signal. After Matlab implementation of the HM, the disturbance voltages across the extremity of the victim wire were extracted. This simple and fast HM is useful for the EMC engineering during the design and fabrication phases of electrical and electronic systems.

  1. Laser based bi-directional Gbit ground links with the Tesat transportable adaptive optical ground station

    Science.gov (United States)

    Heine, Frank; Saucke, Karen; Troendle, Daniel; Motzigemba, Matthias; Bischl, Hermann; Elser, Dominique; Marquardt, Christoph; Henninger, Hennes; Meyer, Rolf; Richter, Ines; Sodnik, Zoran

    2017-02-01

    Optical ground stations can be an alternative to radio frequency based transmit (forward) and receive (return) systems for data relay services and other applications including direct to earth optical communications from low earth orbit spacecrafts, deep space receivers, space based quantum key distribution systems and Tbps capacity feeder links to geostationary spacecrafts. The Tesat Transportable Adaptive Optical Ground Station is operational since September 2015 at the European Space Agency site in Tenerife, Spain.. This paper reports about the results of the 2016 experimental campaigns including the characterization of the optical channel from Tenerife for an optimized coding scheme, the performance of the T-AOGS under different atmospheric conditions and the first successful measurements of the suitability of the Alphasat LCT optical downlink performance for future continuous variable quantum key distribution systems.

  2. Cultivating Kuumba: Applying Art Based Strategies to Any Field

    Science.gov (United States)

    Ellis, Auburn Elizabeth

    2015-01-01

    There are many contemporary issues to address in adult education. This paper explores art-based strategies and the utilization of creativity (Kuumba) to expand learning for global communities in any field of practice. Benefits of culturally grounded approaches to adult education are discussed. Images from ongoing field research can be viewed at…

  3. Ground point filtering of UAV-based photogrammetric point clouds

    Science.gov (United States)

    Anders, Niels; Seijmonsbergen, Arie; Masselink, Rens; Keesstra, Saskia

    2016-04-01

    Unmanned Aerial Vehicles (UAVs) have proved invaluable for generating high-resolution and multi-temporal imagery. Based on photographic surveys, 3D surface reconstructions can be derived photogrammetrically so producing point clouds, orthophotos and surface models. For geomorphological or ecological applications it may be necessary to separate ground points from vegetation points. Existing filtering methods are designed for point clouds derived using other methods, e.g. laser scanning. The purpose of this paper is to test three filtering algorithms for the extraction of ground points from point clouds derived from low-altitude aerial photography. Three subareas were selected from a single flight which represent different scenarios: 1) low relief, sparsely vegetated area, 2) low relief, moderately vegetated area, 3) medium relief and moderately vegetated area. The three filtering methods are used to classify ground points in different ways, based on 1) RGB color values from training samples, 2) TIN densification as implemented in LAStools, and 3) an iterative surface lowering algorithm. Ground points are then interpolated into a digital terrain model using inverse distance weighting. The results suggest that different landscapes require different filtering methods for optimal ground point extraction. While iterative surface lowering and TIN densification are fully automated, color-based classification require fine-tuning in order to optimize the filtering results. Finally, we conclude that filtering photogrammetric point clouds could provide a cheap alternative to laser scan surveys for creating digital terrain models in sparsely vegetated areas.

  4. Theoretical validation of ground-based microwave ozone observations

    Directory of Open Access Journals (Sweden)

    P. Ricaud

    Full Text Available Ground-based microwave measurements of the diurnal and seasonal variations of ozoneat 42±4.5 and 55±8 km are validated by comparing with results from a zero-dimensional photochemical model and a two-dimensional (2D chemical/radiative/dynamical model, respectively. O3 diurnal amplitudes measured in Bordeaux are shown to be in agreement with theory to within 5%. For the seasonal analysis of O3 variation, at 42±4.5 km, the 2D model underestimates the yearly averaged ozone concentration compared with the measurements. A double maximum oscillation (~3.5% is measured in Bordeaux with an extended maximum in September and a maximum in February, whilst the 2D model predicts only a single large maximum (17% in August and a pronounced minimum in January. Evidence suggests that dynamical transport causes the winter O3 maximum by propagation of planetary waves, phenomena which are not explicitly reproduced by the 2D model. At 55±8 km, the modeled yearly averaged O3 concentration is in very good agreement with the measured yearly average. A strong annual oscillation is both measured and modeled with differences in the amplitude shown to be exclusively linked to temperature fields.

  5. Analysis of Local Variations in Free Field Seismic Ground Motion.

    Science.gov (United States)

    1981-01-01

    bw Im .4-P 44൒ 4! . q’S ,W*4* &te r WW -4.. *𔃻 -, ~ ~ ~ ~ ~ ~ o- q*~ 9*v q.*qm -* 1 iq~ 444l * 4-4 q0WFv EPr.4 a% qw * A144 SAP 0 ft 60 q4tow P...All materials with V >11,000 fps may be treated as linear elastic materials. bI old CL C, 23 c. A material vith 3000 fPs<V<llOOO fps is treated as a...W U , Uz -Uz I U xz T , zz azz I I at z - -H: T - 0, a 22 0 Incident SV-Wave From the Base By setting A1 a 0 and normalizing all coefficients by BI

  6. Hydrogeologic and chemical data for the O-Field area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Nemoff, P.R.; Vroblesky, D.A.

    1989-01-01

    O-Field, located at the Edgewood area of Aberdeen Proving Ground , Maryland, was periodically used for disposal of munitions, waste chemicals, and chemical-warfare agents from World War II through the 1950' s. This report includes various physical, geologic, chemical, and hydrologic data obtained from well-core, groundwater, surface water, and bottom-sediment sampling sites at and near the O-Field disposal area. The data are presented in tables and hydrographs. Three site-location maps are also included. Well-core data include lithologic logs for 11 well- cluster sites, grain-size distributions, various chemical characteristics, and confining unit characteristics. Groundwater data include groundwater chemistry, method blanks for volatile organic carbon, available data on volatile and base/neutral organics, and compilation of corresponding method blanks, chemical-warfare agents, explosive-related products, radionuclides, herbicides, and groundwater levels. Surface-water data include field-measured characteristics; concentrations of various inorganic constituents including arsenic; selected organic constituents with method blanks; detection limits of organics; and a compilation of information on corresponding acids, volatiles, and semivolatiles. Bottom- sediment data include inorganic properties and constituents; organic chemistry; detection limits for organic chemicals; a compilation of information on acids, volatiles, and semivolatiles; and method blanks corresponding to acids, volatiles, and semivolatiles. A set of 15 water- level hydrographs for the period March 1986 through September 1987 also is included in the report. (USGS)

  7. Spectral invariance hypothesis study of polarized reflectance with Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI)

    Science.gov (United States)

    Bradley, Christine L.; Kupinski, Meredith; Diner, David J.; Xu, Feng; Chipman, Russell A.

    2015-09-01

    Many models used to represent the boundary condition for the separation of atmospheric scattering from the surface reflectance in polarized remote sensing measurements assume that the polarized surface reflectance is spectrally neutral. The Spectral Invariance Hypothesis asserts that the magnitude and shape of the polarized bidirectional reflectance factor (pBRF) is equal for all wavelengths. In order to test this hypothesis, JPL's Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) is used to measure polarization information of different outdoor surface types. GroundMSPI measures the linear polarization Stokes parameters (I, Q, U), at three wavelengths, 470 nm, 660 nm, and 865 nm. The camera is mounted on a two-axis gimbal to accurately select the view azimuth and elevation directions. On clear sky days we acquired day-long scans of scenes that contain various surface types such as grass, dirt, cement, brick, and asphalt and placed a Spectralon panel in the camera field of view to provide a reflectance reference. Over the course of each day, changing solar position in the sky provides a large range of scattering angles for this study. The polarized bidirectional reflectance factor (pBRF) is measured for the three wavelengths and the best fit slope of the spectral correlation is reported. This work reports the range of best fit slopes measured for five region types.

  8. A Quarter Active Suspension System Based Ground-Hook Controller

    Directory of Open Access Journals (Sweden)

    Turnip Arjon

    2016-01-01

    Full Text Available An alternative design technique for active suspension system of vehicle using a developved ground-hook damping system as a reference is proposed. The controller parameters are determined using Lyapunov method and can be tuned to precisely achieve the type of desired response which given by reference model. The simulation result show that the designed active suspension system based ground-hook reference model is able to significantly improve the ride comfort and the road holding compared with semi-active suspension.

  9. BigBOSS: The Ground-Based Stage IV BAO Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, David; Bebek, Chris; Heetderks, Henry; Ho, Shirley; Lampton, Michael; Levi, Michael; Mostek, Nick; Padmanabhan, Nikhil; Perlmutter, Saul; Roe, Natalie; Sholl, Michael; Smoot, George; White, Martin; Dey, Arjun; Abraham, Tony; Jannuzi, Buell; Joyce, Dick; Liang, Ming; Merrill, Mike; Olsen, Knut; Salim, Samir

    2009-04-01

    The BigBOSS experiment is a proposed DOE-NSF Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with an all-sky galaxy redshift survey. The project is designed to unlock the mystery of dark energy using existing ground-based facilities operated by NOAO. A new 4000-fiber R=5000 spectrograph covering a 3-degree diameter field will measure BAO and redshift space distortions in the distribution of galaxies and hydrogen gas spanning redshifts from 0.2< z< 3.5. The Dark Energy Task Force figure of merit (DETF FoM) for this experiment is expected to be equal to that of a JDEM mission for BAO with the lower risk and cost typical of a ground-based experiment.

  10. Numerical methods for computing the ground state of spin-1 Bose-Einstein condensates in a uniform magnetic field.

    Science.gov (United States)

    Lim, Fong Yin; Bao, Weizhu

    2008-12-01

    We propose efficient and accurate numerical methods for computing the ground-state solution of spin-1 Bose-Einstein condensates subjected to a uniform magnetic field. The key idea in designing the numerical method is based on the normalized gradient flow with the introduction of a third normalization condition, together with two physical constraints on the conservation of total mass and conservation of total magnetization. Different treatments of the Zeeman energy terms are found to yield different numerical accuracies and stabilities. Numerical comparison between different numerical schemes is made, and the best scheme is identified. The numerical scheme is then applied to compute the condensate ground state in a harmonic plus optical lattice potential, and the effect of the periodic potential, in particular to the relative population of each hyperfine component, is investigated through comparison to the condensate ground state in a pure harmonic trap.

  11. GEARS: An Enterprise Architecture Based On Common Ground Services

    Science.gov (United States)

    Petersen, S.

    2014-12-01

    Earth observation satellites collect a broad variety of data used in applications that range from weather forecasting to climate monitoring. Within NOAA the National Environmental Satellite Data and Information Service (NESDIS) supports these applications by operating satellites in both geosynchronous and polar orbits. Traditionally NESDIS has acquired and operated its satellites as stand-alone systems with their own command and control, mission management, processing, and distribution systems. As the volume, velocity, veracity, and variety of sensor data and products produced by these systems continues to increase, NESDIS is migrating to a new concept of operation in which it will operate and sustain the ground infrastructure as an integrated Enterprise. Based on a series of common ground services, the Ground Enterprise Architecture System (GEARS) approach promises greater agility, flexibility, and efficiency at reduced cost. This talk describes the new architecture and associated development activities, and presents the results of initial efforts to improve product processing and distribution.

  12. Integrated Train Ground Radio Communication System Based TD-LTE

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hongli; CAO Yuan; ZHU Li; XU Wei

    2016-01-01

    In existing metro systems, the train ground radio communication system for different applications are deployed independently. Investing and constructing the communication infrastructures repeatedly wastes substan-tial social resources, and it brings difficulties to maintain all these infrastructures. We present the communication Quality of service (QoS) requirement for different train ground radio applications. An integrated TD-LTE based train ground radio communication system for the metro system (LTE-M) is designed next. In order to test the LTE-M system performance, an indoor testing environment is set up. The channel simulator and programmable attenua-tors are used to simulate the real metro environment. Ex-tensive test results show that the designed LTE-M system performance satisfies metro communication requirements.

  13. Ground-based observations of Kepler asteroseismic targets

    CERN Document Server

    Uytterhoeven, K; Southworth, J; Randall, S; Ostensen, R; Molenda-Zakowicz, J; Marconi, M; Kurtz, D W; Kiss, L; Gutierrez-Soto, J; Frandsen, S; De Cat, P; Bruntt, H; Briquet, M; Zhang, X B; Telting, J H; Steslicki, M; Ripepi, V; Pigulski, A; Paparo, M; Oreiro, R; Choong, Ngeow Chow; Niemczura, E; Nemec, J; Narwid, A; Mathias, P; Martin-Ruiz, S; Lehman, H; Kopacki, G; Karoff, C; Jackiewicz, J; Henden, A A; Handler, G; Grigachene, A; Green, E M; Garrido, R; Machado, L Fox; Debosscher, J; Creevey, O L; Catanzaro, G; Bognar, Z; Biazzo, K; Bernabei, S

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising Kepler pulsators. So far, 35 different instruments at 30 telescopes on 22 different observatories in 12 countries are in use, and a total of more than 530 observing nights has been awarded. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observato...

  14. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  15. Ground-based lidar for atmospheric boundary layer ozone measurements.

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  16. Ground-Based Calibration Of A Microwave Landing System

    Science.gov (United States)

    Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando

    1996-01-01

    System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.

  17. FIELD GROUND TRUTHING DATA COLLECTOR – A MOBILE TOOLKIT FOR IMAGE ANALYSIS AND PROCESSING

    Directory of Open Access Journals (Sweden)

    X. Meng

    2012-07-01

    Full Text Available Field Ground Truthing Data Collector is one of the four key components of the NASA funded ICCaRS project, being developed in Southeast Michigan. The ICCaRS ground truthing toolkit entertains comprehensive functions: 1 Field functions, including determining locations through GPS, gathering and geo-referencing visual data, laying out ground control points for AEROKAT flights, measuring the flight distance and height, and entering observations of land cover (and use and health conditions of ecosystems and environments in the vicinity of the flight field; 2 Server synchronization functions, such as, downloading study-area maps, aerial photos and satellite images, uploading and synchronizing field-collected data with the distributed databases, calling the geospatial web services on the server side to conduct spatial querying, image analysis and processing, and receiving the processed results in field for near-real-time validation; and 3 Social network communication functions for direct technical assistance and pedagogical support, e.g., having video-conference calls in field with the supporting educators, scientists, and technologists, participating in Webinars, or engaging discussions with other-learning portals. This customized software package is being built on Apple iPhone/iPad and Google Maps/Earth. The technical infrastructures, data models, coupling methods between distributed geospatial data processing and field data collector tools, remote communication interfaces, coding schema, and functional flow charts will be illustrated and explained at the presentation. A pilot case study will be also demonstrated.

  18. Pseudo-field line resonances in ground Pc5 pulsation events

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2005-02-01

    Full Text Available In this work we study four representative cases of Pc5 ground pulsation events with discrete and remarkably stable frequencies extended at least in a high-latitude range of ~20°; a feature that erroneously gives the impression for an oscillation mode with "one resonant field line". Additionally, the presented events show characteristic changes in polarization sense, for a meridian chain of stations from the IMAGE array, and maximize their amplitude at or close to the supposed resonant magnetic field shell, much like the typical FLR. Nevertheless, they are not authentic FLRs, but pseudo-FLRs, as they are called. These structures are produced by repetitive and tilted twin-vortex structures caused by magnetopause surface waves, which are probably imposed by solar wind pressure waves. The latter is confirmed with in-situ measurements obtained by the Cluster satellites, as well as the Geotail, Wind, ACE, and LANL 1994-084 satellites. This research effort is largely based on two recent works: first, Sarafopoulos (2004a has observationally established that a solar wind pressure pulse (stepwise pressure variation produces a twin-vortex (single vortex current system over the ionosphere; second, Sarafopoulos (2004b has studied ground events with characteristic dispersive latitude-dependent structures and showed that these are associated with twin-vortex ionosphere current systems. In this work, we show that each pseudo-FLR event is associated with successive and tilted large-scale twin-vortex current systems corresponding to a magnetopause surface wave with wavelength 10-20RE. We infer that between an authentic FLR, which is a spatially localized structure with an extent 0.5RE in the magnetospheric equatorial plane, and the magnetopause surface wavelength, there is a scale factor of 20-40. A chief observational finding, in this work, is that there are Pc5 ground pulsation events showing two gradual and latitude

  19. A novel technique for extracting clouds base height using ground based imaging

    Directory of Open Access Journals (Sweden)

    E. Hirsch

    2011-01-01

    Full Text Available The height of a cloud in the atmospheric column is a key parameter in its characterization. Several remote sensing techniques (passive and active, either ground-based or on space-borne platforms and in-situ measurements are routinely used in order to estimate top and base heights of clouds. In this article we present a novel method that combines thermal imaging from the ground and sounded wind profile in order to derive the cloud base height. This method is independent of cloud types, making it efficient for both low boundary layer and high clouds. In addition, using thermal imaging ensures extraction of clouds' features during daytime as well as at nighttime. The proposed technique was validated by comparison to active sounding by ceilometers (which is a standard ground based method, to lifted condensation level (LCL calculations, and to MODIS products obtained from space. As all passive remote sensing techniques, the proposed method extracts only the height of the lowest cloud layer, thus upper cloud layers are not detected. Nevertheless, the information derived from this method can be complementary to space-borne cloud top measurements when deep-convective clouds are present. Unlike techniques such as LCL, this method is not limited to boundary layer clouds, and can extract the cloud base height at any level, as long as sufficient thermal contrast exists between the radiative temperatures of the cloud and its surrounding air parcel. Another advantage of the proposed method is its simplicity and modest power needs, making it particularly suitable for field measurements and deployment at remote locations. Our method can be further simplified for use with visible CCD or CMOS camera (although nighttime clouds will not be observed.

  20. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  1. Adiabatic mixed-field orientation of ground-state-selected carbonyl sulfide molecules

    CERN Document Server

    Kienitz, Jens S; Mullins, Terry; Długołęcki, Karol; González-Férez, Rosario; Küpper, Jochen

    2016-01-01

    We experimentally demonstrated strong adiabatic mixed-field orientation of carbonyl sulfide molecules (OCS) in their absolute ground state of $\\text{N}_{\\text{up}}/\\text{N}_{\\text{tot}}=0.882$. OCS was oriented in combined non-resonant laser and static electric fields inside a two-plate velocity map imaging spectrometer. The transition from non-adiabatic to adiabatic orientation for the rotational ground state was studied by varying the applied laser and static electric field. Above static electric field strengths of 10~kV/cm and laser intensities of $10^{11} \\text{W/cm}^2$ the observed degree of orientation reached a plateau. These results are in good agreement with computational solutions of the time-dependent Schr\\"odinger equation.

  2. 基于恒流场理论的山岩地区输电线路杆塔接地降阻的新方法%A New Method to Reduce Grounding Resistance of Power Transmission Tower in Rocky Region Based on the Constant Current Field Theory

    Institute of Scientific and Technical Information of China (English)

    杨廷方; 李景禄; 周力行; 杨鑫

    2011-01-01

    为了减少输电线路的雷击跳闸率,基于恒流场理论,提出了一种直接利用输电线路杆塔基础进行降阻的新方法。该方法将特制钢筋笼与相应比例的高效防腐降阻剂结合,对杆塔基础进行集中接地。该装置占地空间少,需要土量少,解决了水平射线因受地形限制而降阻困难的问题。其冲击系数小和冲击电阻小的特性,大大提高了线路的耐雷水平以及供电可靠性。实例和实践结果都表明了该方法的可行性及有效性。%To decrease the lightning trip-out rate of transmission line,a new method therefore was put forward to reduce the grounding resistance of transmission tower foundation based on the constant current field theory.This method combined special reinforcing cage with proportional effective anti-corrosion resistance reduction agent to make tower foundation ground tightly,and took up a little space and soil.And all the problems such as reducing grounding resistance by horizontal radial grounding method because of topography were solved.The characteristic of small impulse coefficient and impulse grounding resistance of this device increased the lightning withstand level and power supply reliability of transmission line greatly.Results of instances and practices showed that this method is feasible and validated.

  3. Project management for complex ground-based instruments: MEGARA plan

    Science.gov (United States)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  4. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 3: Ecological risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hlohowskyj, I.; Hayse, J.; Kuperman, R.; Van Lonkhuyzen, R.

    2000-02-25

    The Environmental Management Division of the U.S. Army Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation (RI) and feasibility study (FS) of the J-Field area at APG, pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. As part of that activity, Argonne National Laboratory (ANL) conducted an ecological risk assessment (ERA) of the J-Field site. This report presents the results of that assessment.

  5. The ACE-DTU Planar Near-Field Ground Penetrating Radar Antenna Test Facility

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    The ACE-DTU planar near-field ground penetrating radar (GPR) antenna test facility is used to measure the plane-wave transmitting spectrum of a GPR loop antenna close to the air-soil interface by means of a probe buried in soil. Probe correction is implemented using knowledge about the complex...

  6. Density-matrix-functional calculations for matter in strong magnetic fields: Ground states of heavy atoms

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Yngvason, Jakob

    1996-01-01

    and the electron number N tend to infinity with N/Z fixed, and the magnetic field B tends to infinity in such a way that B/Z4/3→∞. We have calculated electronic density profiles and ground-state energies for values of the parameters that prevail on neutron star surfaces and compared them with results obtained...

  7. The ACE-DTU Planar Near-Field Ground Penetrating Radar Antenna Test Facility

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    The ACE-DTU planar near-field ground penetrating radar (GPR) antenna test facility is used to measure the plane-wave transmitting spectrum of a GPR loop antenna close to the air-soil interface by means of a probe buried in soil. Probe correction is implemented using knowledge about the complex...

  8. Action Learning and Constructivist Grounded Theory: Powerfully Overlapping Fields of Practice

    Science.gov (United States)

    Rand, Jane

    2013-01-01

    This paper considers the shared characteristics between action learning (AL) and the research methodology constructivist grounded theory (CGT). Mirroring Edmonstone's [2011. "Action Learning and Organisation Development: Overlapping Fields of Practice." "Action Learning: Research and Practice" 8 (2): 93-102] article, which…

  9. CRRES/Ground-based multi-instrument observations of an interval of substorm activity

    Directory of Open Access Journals (Sweden)

    T. K. Yeoman

    Full Text Available Observations are presented of data taken during a 3-h interval in which five clear substorm onsets/intensifications took place. During this interval ground-based data from the EISCAT incoherent scatter radar, a digital CCD all sky camera, and an extensive array of magnetometers were recorded. In addition data from the CRRES and DMSP spacecraft, whose footprints passed over Scandinavia very close to most of the ground-based instrumentation, are available. The locations and movements of the substorm current system in latitude and longitude, determined from ground and spacecraft magnetic field data, have been correlated with the locations and propagation of increased particle precipitation in the E-region at EISCAT, increased particle fluxes measured by CRRES and DMSP, with auroral luminosity and with ionospheric convection velocities. The onsets and propagation of the injection of magnetospheric particle populations and auroral luminosity have been compared. CRRES was within or very close to the substorm expansion phase onset sector during the interval. The onset region was observed at low latitudes on the ground, and has been confirmed to map back to within L=7 in the magnetotail. The active region was then observed to propagate tailward and poleward. Delays between the magnetic signature of the substorm field aligned currents and field dipolarisation have been measured. The observations support a near-Earth plasma instability mechanism for substorm expansion phase onset.

  10. Ecological survey of M-Field, Edgewood Area Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J.L.; Eberhardt, L.E.; Fitzner, R.E.; Rogers, L.E.

    1991-12-01

    An ecological survey was conducted on M-Field, at the Edgewood Area, Aberdeen Proving Ground, Maryland. M-Field is used routinely to test army smokes and obscurants, including brass flakes, carbon fibers, and fog oils. The field has been used for testing purposes for the past 40 years, but little documented history is available. Under current environmental regulations, the test field must be assessed periodically to document the presence or potential use of the area by threatened and endangered species. The M-Field area is approximately 370 acres and is part of the US Army`s Edgewood Area at Aberdeen Proving Ground in Harford County, Maryland. The grass-covered field is primarily lowlands with elevations from about 1.0 to 8 m above sea level, and several buildings and structures are present on the field. The ecological assessment of M-Field was conducted in three stages, beginning with a preliminary site visit in May to assess sampling requirements. Two field site visits were made June 3--7, and August 12--15, 1991, to identify the biota existing on the site. Data were gathered on vegetation, small mammals, invertebrates, birds, large mammals, amphibians, and reptiles.

  11. Ecological survey of M-Field, Edgewood Area Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J.L.; Eberhardt, L.E.; Fitzner, R.E.; Rogers, L.E.

    1991-12-01

    An ecological survey was conducted on M-Field, at the Edgewood Area, Aberdeen Proving Ground, Maryland. M-Field is used routinely to test army smokes and obscurants, including brass flakes, carbon fibers, and fog oils. The field has been used for testing purposes for the past 40 years, but little documented history is available. Under current environmental regulations, the test field must be assessed periodically to document the presence or potential use of the area by threatened and endangered species. The M-Field area is approximately 370 acres and is part of the US Army's Edgewood Area at Aberdeen Proving Ground in Harford County, Maryland. The grass-covered field is primarily lowlands with elevations from about 1.0 to 8 m above sea level, and several buildings and structures are present on the field. The ecological assessment of M-Field was conducted in three stages, beginning with a preliminary site visit in May to assess sampling requirements. Two field site visits were made June 3--7, and August 12--15, 1991, to identify the biota existing on the site. Data were gathered on vegetation, small mammals, invertebrates, birds, large mammals, amphibians, and reptiles.

  12. Numerical Study on the Impact of Ground Heating and Ambient Wind Speed on Flow Fields in Street Canyons

    Institute of Scientific and Technical Information of China (English)

    LI Lei; YANG Lin; ZHANG Li-Jie; JIANG Yin

    2012-01-01

    The impact of ground heating on flow fields in street canyons under different ambient wind speed conditions was studied based on numerical methods.A series of numerical tests were performed,and three factors including height-to-width (H/W) ratio,ambient wind speed and ground heating intensity were taken into account.Three types of street canyon with H/W ratios of 0.5,1.0 and 2.0,respectively,were used in the simulation and seven speed values ranging from 0.0 to 3.0 m s-1 were set for the ambient wind speed.The ground heating intensity,which was defined as the difference between the ground temperature and air temperature,ranged from 10 to 40 K with an increase of 10 K in the tests.The results showed that under calm conditions,ground heating could induce circulation with a wind speed of around 1.0 m s-1,which is enough to disperse pollutants in a street canyon.It was also found that an ambient wind speed threshold may exist for street canyons with a fixed H/W ratio.When ambient wind speed was lower than the threshold identified in this study,the impact of the thermal effect on the flow field was obvious,and there existed a multi-vortex flow pattern in the street canyon.When the ambient wind speed was higher than the threshold,the circulation pattern was basically determined by dynamic effects.The tests on the impact of heating intensity showed that a higher ground heating intensity could strengthen the vortical flow within the street canyon,which would help improve pollutant diffusion capability in street canyons.

  13. Future space missions and ground observatory for measurements of coronal magnetic fields

    Science.gov (United States)

    Fineschi, Silvano; Gibson, Sarah; Bemporad, Alessandro; Zhukov, Andrei; Damé, Luc; Susino, Roberto; Larruquert, Juan

    2016-07-01

    This presentation gives an overview of the near-future perspectives for probing coronal magnetism from space missions (i.e., SCORE and ASPIICS) and ground-based observatory (ESCAPE). Spectro-polarimetric imaging of coronal emission-lines in the visible-light wavelength-band provides an important diagnostics tool of the coronal magnetism. The interpretation in terms of Hanle and Zeeman effect of the line-polarization in forbidden emission-lines yields information on the direction and strength of the coronal magnetic field. As study case, this presentation will describe the Torino Coronal Magnetograph (CorMag) for the spectro-polarimetric observation of the FeXIV, 530.3 nm, forbidden emission-line. CorMag - consisting of a Liquid Crystal (LC) Lyot filter and a LC linear polarimeter. The CorMag filter is part of the ESCAPE experiment to be based at the French-Italian Concordia base in Antarctica. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV)can be modified by magnetic fields through the Hanle effect. Space-based UV spectro-polarimeters would provide an additional tool for the disgnostics of coronal magnetism. As a case study of space-borne UV spectro-polarimeters, this presentation will describe the future upgrade of the Sounding-rocket Coronagraphic Experiment (SCORE) to include new generation, high-efficiency UV polarizer with the capability of imaging polarimetry of the HI Lyman-α, 121.6 nm. SCORE is a multi-wavelength imager for the emission-lines, HeII 30.4 nm and HI 121.6 nm, and visible-light broad-band emission of the polarized K-corona. SCORE has flown successfully in 2009. The second lauch is scheduled in 2016. Proba-3 is the other future solar mission that would provide the opportunity of diagnosing the coronal magnetic field. Proba-3 is the first precision formation-flying mission to launched in 2019). A pair of satellites will fly together maintaining a fixed configuration as a 'large rigid

  14. Ground-based measurement of surface temperature and thermal emissivity

    Science.gov (United States)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  15. A comparative study of satellite and ground-based phenology.

    Science.gov (United States)

    Studer, S; Stöckli, R; Appenzeller, C; Vidale, P L

    2007-05-01

    Long time series of ground-based plant phenology, as well as more than two decades of satellite-derived phenological metrics, are currently available to assess the impacts of climate variability and trends on terrestrial vegetation. Traditional plant phenology provides very accurate information on individual plant species, but with limited spatial coverage. Satellite phenology allows monitoring of terrestrial vegetation on a global scale and provides an integrative view at the landscape level. Linking the strengths of both methodologies has high potential value for climate impact studies. We compared a multispecies index from ground-observed spring phases with two types (maximum slope and threshold approach) of satellite-derived start-of-season (SOS) metrics. We focus on Switzerland from 1982 to 2001 and show that temporal and spatial variability of the multispecies index correspond well with the satellite-derived metrics. All phenological metrics correlate with temperature anomalies as expected. The slope approach proved to deviate strongly from the temporal development of the ground observations as well as from the threshold-defined SOS satellite measure. The slope spring indicator is considered to indicate a different stage in vegetation development and is therefore less suited as a SOS parameter for comparative studies in relation to ground-observed phenology. Satellite-derived metrics are, however, very susceptible to snow cover, and it is suggested that this snow cover should be better accounted for by the use of newer satellite sensors.

  16. Nonlinear seismic behavior of a CANDU containment building subjected to near-field ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, In Kil; Ahn, Seong Moon; Choun, Young Sun; Seo, Jeong Moon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. A survey on some of the Quaternary fault segments near Korean nuclear power plants is ongoing. It is likely that these faults will be identified as active ones. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near the fault. Near-fault ground motions are the ground motions that occur near an earthquake fault. In general, the near-fault ground motion records exhibit a distinctive long period pulse like time history with very high peak velocities. These features are induced by the slip of the earthquake fault. Near-fault ground motions, which have caused much of the damage in recent major earthquakes, can be characterized by a pulse-like motion that exposes the structure to a high input energy at the beginning of the motion. In this study, nonlinear dynamic time-history analyses were performed to investigate the seismic behavior of a CANDU containment structure subjected to various earthquake ground motions including the near-field ground motions.

  17. Ground-based Remote Sensing of Cloud Liquid Water Path

    Science.gov (United States)

    Crewell, S.; Loehnert, U.

    Within the BALTEX Cloud LIquid WAter NETwork (CLIWA-NET) measurements of cloud parameters were performed to improve/evaluate cloud parameterizations in numerical weather prediction and climate models. The key variable is the cloud liq- uid water path (LWP) which is measured by passive microwave radiometry from the ground during three two-month CLIWA-NET observational periods. Additionally to the high temporal resolution time series from the ground, LWP fields are derived from satellite measurements. During the first two campaigns a continental scale network consisting of 12 stations was established. Most stations included further cloud sen- sitive instruments like infrared radiometer and lidar ceilometer. The third campaign started with a two-week long microwave intercomparison campaign (MICAM) in Cabauw, The Netherlands, and proceeded with a regional network within a 100 by 100 km area. The presentation will focus on the accuracy of LWP derived from the ground by in- vestigating the accuracy of the microwave brightness temperature measurement and examining the LWP retrieval uncertainty. Up to now microwave radiometer are no standard instruments and the seven radiometer involved in MICAM differ in frequen- cies, bandwidths, angular resolution, integration time etc. The influence of this instru- ment specifications on the LWP retrieval will be discussed.

  18. Application of Markov random fields to landmine detection in ground penetrating radar data

    Science.gov (United States)

    Torrione, Peter A.; Collins, Leslie

    2008-04-01

    Recent advances in ground penetrating radar (GPR) design and fabrication have resulted in improved fidelity responses from relatively small, shallow-buried objects like landmines and improvised explosive devices. As the responses measured with GPR improve, more and more advanced processing techniques can be brought to bear on the problem of target identification in GPR data. From an electromagnetic point of view, the problem of target detection in GPR signal processing is reducible to inferring the presence or absence of changes in the electromagnetic properties of soils and thus the presence or absence of buried targets. Problems arise because the algorithms required for the full electromagnetic inversion of GPR signals are extremely computationally expensive, and usually rely on assumptions of electromagnetically constant transmission media; these problems typically make the real-time implementation of purely electromagnetic-inspired algorithms infeasible. On the other hand, purely statistical or signal-processing inspired approaches to target identification in GPR often lack a solid theoretical basis in the underlying physics, which is fundamental to understanding responses in GPR. In this work, we propose a model for responses in time-domain ground penetrating radar that attempts to incorporate the underlying physics of the problem, but avoids several of the issues inherent in assuming constant media with known electrical parameters by imposing a statistical model over the observed parameters of interest in A-scans - namely the signal gains, times of arrival, etc. The spatial requirements of the proposed statistical model suggests the application of Markov random field (MRF) distributions which provide expressive, but computationally simple models of spatial interactions. In this work we will explore the application of physics-based MRF's as generative models for time-domain GPR data, the pre-screening algorithms that this model motivates, and discuss how the

  19. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, William [Brooks Engineering, Vacaville, CA (United States); Basso, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Coddington, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  20. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    Directory of Open Access Journals (Sweden)

    Sungdae Sim

    2012-12-01

    Full Text Available Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  1. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    Science.gov (United States)

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-12-12

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  2. Exchange field effect in the crystal field ground state of CeMAl{sub 4}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kai; Strigari, Fabio; Sundermann, Martin; Severing, Andrea [University of Cologne, Cologne (Germany); Agrestini, Stefano [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Bauer, Eric D.; Sarrao, John L.; Thompson, Joe D. [Los Alamos National Laboratory, Los Alamos, NM (United States); Otero, Edwige [Synchrotron Soleil, Gif-sur-Yvette (France); Tanaka, Arata [Hiroshima University, Higashi-Hiroshima (Japan)

    2016-07-01

    The crystal-field ground state wave functions of the tetragonal Kondo lattice materials CeMAl{sub 4}Si{sub 2}(M = Rh, Ir and Pt), as well as the crystal-field splittings, are determined with low temperature linear polarized soft x-ray absorption spectroscopy. Surprisingly, at T < 20 K, which is far below the first excited crystal-field level at 200 K, a change in linear dichroism was observed that cannot be accounted for by population of crystal-field states. Adding an exchange field to the ionic full multiplet calculations below 20 K leads to a splitting to the ground state doublet and modification of J{sub z} admixture, thus accounting for the change in low temperature linear dichroism. The direction of the required exchange field is parallel along c-axis for the antiferromagnetic Rh and Ir compounds, and perpendicular to c-axis for ferromagnetic CePtAl{sub 4}Si{sub 2}.

  3. Precision simulation of ground-based lensing data using observations from space

    CERN Document Server

    Mandelbaum, Rachel; Leauthaud, Alexie; Massey, Richard J; Rhodes, Jason

    2011-01-01

    Current and upcoming wide-field, ground-based, broad-band imaging surveys promise to address a wide range of outstanding problems in galaxy formation and cosmology. Several such uses of ground-based data, especially weak gravitational lensing, require highly precise measurements of galaxy image statistics with careful correction for the effects of the point-spread function (PSF). In this paper, we introduce the SHERA (SHEar Reconvolution Analysis) software to simulate ground-based imaging data with realistic galaxy morphologies and observing conditions, starting from space-based data (from COSMOS, the Cosmological Evolution Survey) and accounting for the effects of the space-based PSF. This code simulates ground-based data, optionally with a weak lensing shear applied, in a model-independent way using a general Fourier space formalism. The utility of this pipeline is that it allows for a precise, realistic assessment of systematic errors due to the method of data processing, for example in extracting weak len...

  4. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    Science.gov (United States)

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  5. Theoretical investigation of boundary contours of ground-state atoms in uniform electric fields

    Science.gov (United States)

    Shi, Hua; Zhao, Dong-Xia; Yang, Zhong-Zhi

    2015-12-01

    The boundary contours were investigated for first 54 ground-state atoms of the periodic table when they are in uniform electric fields of strengths 106, 107 and 108 V/m. The atomic characteristic boundary model in combination with an ab-initio method was employed. Some regularities of the deformation of atoms, ΔR, in above electric fields are revealed. Furthermore, atomic polarisabilities of the first 54 elements of the periodic table are shown to correlate strongly with the mean variation rate of atomic radial size divided by the strength of the electric field F, ?, which provides a predictive method of calculating atomic polarisabilities of 54 atoms.

  6. Field theory of unification in nonlinear and linear network (I)——Theoretical grounds of field theory

    Institute of Scientific and Technical Information of China (English)

    陈燊年; 何煜光; 王建成

    1995-01-01

    A field theory has been proposed. The laws of conservation of charge and energy can be obtained from the Maxwell’s equations, which are placed in nonlinear network for simultaneous solution, and therefore the Kirchhoff’s law with its most fundamental integral formulae in nonlinear network can be obtained. Thus, it will strictly push forward the total basic equations from non-linear network to linear network as well as other important new relationships to provide the theoretical grounds for the field theory.

  7. Ground-based complex for checking the optical system

    Science.gov (United States)

    Grebenyuk, V.; Boreiko, V.; Dmitrotsa, A.; Gorbunov, N.; Khrenov, B.; Klimov, P.; Lavrova, M.; Popescu, E. M.; Sabirov, B.; Tkachenko, A.; Tkachev, L.; Volvach, A.; Yashin, I.

    2016-09-01

    The purpose TUS space experiment is to study cosmic rays of ultrahigh energies produced by extensive air showers from space. The concentrator is located on satellite, made in the form of the Fresnel mirror towards the earth's atmosphere, the focus of which is a photodetector. The angle of view of the mirror is ±4.5° that for a given height of the orbit corresponds to the area 80 × 80 km2 on ground. The ground complex consisting of a number of stations, to check the optical system of the experiment is created, (their location and the amount will be determined after the launch of the satellite based on its actual orbit).

  8. Ground extraction from airborne laser data based on wavelet analysis

    Science.gov (United States)

    Xu, Liang; Yang, Yan; Jiang, Bowen; Li, Jia

    2007-11-01

    With the advantages of high resolution and accuracy, airborne laser scanning data are widely used in topographic mapping. In order to generate a DTM, measurements from object features such as buildings, vehicles and vegetation have to be classified and removed. However, the automatic extraction of bare earth from point clouds acquired by airborne laser scanning equipment remains a problem in LIDAR data filtering nowadays. In this paper, a filter algorithm based on wavelet analysis is proposed. Relying on the capability of detecting discontinuities of continuous wavelet transform and the feature of multi-resolution analysis, the object points can be removed, while ground data are preserved. In order to evaluate the performance of this approach, we applied it to the data set used in the ISPRS filter test in 2003. 15 samples have been tested by the proposed approach. Results showed that it filtered most of the objects like vegetation and buildings, and extracted a well defined ground model.

  9. Single Phase-to-Ground Fault Line Identification and Section Location Method for Non-Effectively Grounded Distribution Systems Based on Signal Injection

    Institute of Scientific and Technical Information of China (English)

    PAN Zhencun; WANG Chengshan; CONG Wei; ZHANG Fan

    2008-01-01

    A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in thisi oaper. A special diagnostic signal current is injected into the fault distribution system, and then it is de- tected at the outlet terminals to identify the fault line and at the sectionalizing or branching point along the fault line to locate the fault section. The method has been put into application in actual distribution network and field experience shows that it can identify the fault line and locate the fault section correctly and effectively.

  10. On-Ground Processing of Yaogan-24 Remote Sensing Satellite Attitude Data and Verification Using Geometric Field Calibration.

    Science.gov (United States)

    Wang, Mi; Fan, Chengcheng; Yang, Bo; Jin, Shuying; Pan, Jun

    2016-07-30

    Satellite attitude accuracy is an important factor affecting the geometric processing accuracy of high-resolution optical satellite imagery. To address the problem whereby the accuracy of the Yaogan-24 remote sensing satellite's on-board attitude data processing is not high enough and thus cannot meet its image geometry processing requirements, we developed an approach involving on-ground attitude data processing and digital orthophoto (DOM) and the digital elevation model (DEM) verification of a geometric calibration field. The approach focuses on three modules: on-ground processing based on bidirectional filter, overall weighted smoothing and fitting, and evaluation in the geometric calibration field. Our experimental results demonstrate that the proposed on-ground processing method is both robust and feasible, which ensures the reliability of the observation data quality, convergence and stability of the parameter estimation model. In addition, both the Euler angle and quaternion could be used to build a mathematical fitting model, while the orthogonal polynomial fitting model is more suitable for modeling the attitude parameter. Furthermore, compared to the image geometric processing results based on on-board attitude data, the image uncontrolled and relative geometric positioning result accuracy can be increased by about 50%.

  11. Exponentially Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians

    Science.gov (United States)

    Mandrà, Salvatore; Zhu, Zheng; Katzgraber, Helmut G.

    2017-02-01

    We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated with a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009), 10.1088/1367-2630/11/7/073021]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.

  12. Properties of the ground state in a spin-2 transverse Ising model with the presence of a crystal field

    Institute of Scientific and Technical Information of China (English)

    姜伟; 魏国柱; 杜安; 张起

    2002-01-01

    The properties of the ground state in the spin-2 transverse Ising model with the presence of a crystal field arestudied by using the effective-field theory with correlations. The longitudinal and transverse magnetizations, the phasediagram and the internal energy in the ground state are given numerically for a honeycomb lattice (z=3).

  13. Properties of the ground state in a spin—2 transverse Ising model with the presence of a srystal field

    Institute of Scientific and Technical Information of China (English)

    姜伟; 魏国柱; 等

    2002-01-01

    The properties of the ground state in the spin-2 transverse Ising model with the presence of a crystal of a crystal field are studied by using the effective-field theory with correlations,The longitudinal and transverse magnetizations,the phase diagram and the internal energy in the ground state are given numerically for a honeycomb lattice(z=3).

  14. Ground-Based Observing Campaign of Briz-M Debris

    Science.gov (United States)

    Lederer, S. M.; Buckalew, B.; Frith, J.; Cowardin, H. M.; Hickson, P.; Matney, M.; Anz-Meador, P.

    2017-01-01

    In 2015, NASA's Orbital Debris Program Office (ODPO) completed the installation of the Meter Class Autonomous Telescope (MCAT) on Ascension Island. MCAT is a 1.3m optical telescope designed with a fast tracking capability for observing orbital debris at all orbital regimes (Low-Erath orbits to Geosyncronous (GEO) orbits) from a low latitude site. This new asset is dedicated year-round for debris observations, and its location fills a geographical gap in the Ground-based Electro Optical Space Surveillance (GEODSS) network. A commercial off the shelf (COTS) research grade 0.4m telescope (named the Benbrook telescope) will also be installed on Ascension at the end of 2016. This smaller version is controlled by the same master software, designed by Euclid Research, and can be tasked to work independently or in concert with MCAT. Like MCAT, it has a the same suite of filters, a similar field of view, and a fast-tracking Astelco mount, and is also capable of tracking debris at all orbital regimes. These assets are well suited for targeted campagins or surveys of debris. Since 2013, NASA's ODPO has also had extensive access to the 3.8m infrared UKIRT telescope, located on Mauna Kea. At nearly 14,000-ft, this site affords excellent conditions for collecting both photometery and spectroscopy at near-IR (0.9 - 2.5 micrometers SWIR) and thermal-IR (8 - 25 micrometers; LWIR) regimes, ideal for investigating material properties as well as thermal characteristics and sizes of debris. For the purposes of understanding orbital debris, taking data in both survey mode as well as targeting individual objects for more in-depth characterizations are desired. With the recent break-ups of Briz-M rocket bodies, we have collected a suite of data in the optical, near-infrared, and mid-infrared of in-tact objects as well as those classified as debris. A break-up at GEO of a Briz-M rocket occurred in January, 2016, well timed for the first remote observing survey-campaign with MCAT. Access to

  15. Ground-penetrating radar reveals ice thickness and undisturbed englacial layers at Kilimanjaro's Northern Ice Field

    Science.gov (United States)

    Bohleber, Pascal; Sold, Leo; Hardy, Douglas R.; Schwikowski, Margit; Klenk, Patrick; Fischer, Andrea; Sirguey, Pascal; Cullen, Nicolas J.; Potocki, Mariusz; Hoffmann, Helene; Mayewski, Paul

    2017-02-01

    Although its Holocene glacier history is still subject to debate, the ongoing iconic decline of Kilimanjaro's largest remaining ice body, the Northern Ice Field (NIF), has been documented extensively based on surface and photogrammetric measurements. The study presented here adds, for the first time, ground-penetrating radar (GPR) data at centre frequencies of 100 and 200 MHz to investigate bed topography, ice thickness and internal stratigraphy at NIF. The direct comparison of the GPR signal to the visible glacier stratigraphy at NIF's vertical walls is used to validate ice thickness and reveals that the major internal reflections seen by GPR can be associated with dust layers. Internal reflections can be traced consistently within our 200 MHz profiles, indicating an uninterrupted, spatially coherent internal layering within NIF's central flat area. We show that, at least for the upper 30 m, it is possible to follow isochrone layers between two former NIF ice core drilling sites and a sampling site on NIF's vertical wall. As a result, these isochrone layers provide constraints for future attempts at linking age-depth information obtained from multiple locations at NIF. The GPR profiles reveal an ice thickness ranging between (6.1 ± 0.5) and (53.5 ± 1.0) m. Combining these data with a very high resolution digital elevation model we spatially extrapolate ice thickness and give an estimate of the total ice volume remaining at NIF's southern portion as (12.0 ± 0.3) × 106 m3.

  16. Apparent apertures from ground penetrating radar data and their relation to heterogeneous aperture fields

    Science.gov (United States)

    Shakas, A.; Linde, N.

    2017-06-01

    Considering fractures with heterogeneous aperture distributions, we explore the reliability of constant-aperture estimates derived from ground penetrating radar (GPR) reflection data. We generate geostatistical fracture aperture realizations that are characterized by the same mean-aperture and variance, but different Hurst exponents and cut-off lengths. For each of the 16 classes of heterogeneity considered, we generate 1000 fracture realizations from which we compute GPR reflection data using our recent effective-dipole forward model. We then use each (noise-contaminated) data set individually to invert for a single 'apparent' aperture, that is, we assume that the fracture aperture is homogeneous. We find that the inferred 'apparent' apertures are only reliable when fracture heterogeneity is non-fractal (the Hurst exponent is close to 1) and the scale of the dominant aperture heterogeneities is larger than the first Fresnel zone. These results are a direct consequence of the nonlinear character of the thin-bed reflection coefficients. As fracture heterogeneity is ubiquitous and often fractal, our results suggest that robust field-based inference of fracture aperture can only be achieved by accounting for the nonlinear response of fracture heterogeneity on GPR data.

  17. An Airborne and Ground-based Study of a Long-lived and Intense Atmospheric River Impacting California during the CalWater-2014 Early-Start Field Campaign

    Science.gov (United States)

    Neiman, P. J.; Benjamin, M.; White, A. B.; Wick, G. A.; Aikins, J.; Jackson, D. L.; Spackman, J. R.; Ralph, F. M.

    2015-12-01

    During the CalWater-2014 Early Start winter field campaign, the wettest period occurred with a long-lived, intense atmospheric river (AR) impacting California on 7-10 February. SSMIS satellite imagery of integrated water vapor (see figure) provides a large-scale overview of the event. Based on Lagrangian trajectories, the AR tapped into the tropical water-vapor reservoir, and the water vapor subsequently advected to California. Widespread heavy precipitation (200-400 mm) fell across the coastal mountain ranges northwest of San Francisco and across the northern Sierra Nevada, although only modest flooding ensued due to anomalously dry antecedent conditions. The NOAA G-IV aircraft - which represents the cornerstone observing platform for this study - flew through two mesoscale frontal waves in the AR environment offshore in a ~24-h period. Parallel dropsonde curtains documented key three-dimensional thermodynamic and kinematic characteristics across the AR and frontal waves prior to landfall. Different AR characteristics were evident, depending on the location of the cross section through the frontal waves. A newly-implemented tail-mounted Doppler radar on the G-IV simultaneously captured coherent precipitation features. Along the coast, a 449-MHz wind profiler and collocated global positioning system (GPS) receiver monitored tropospheric winds and water vapor during the AR landfall. These instruments also observed the transient frontal waves - which prolonged AR conditions and heavy precipitation - and highlighted the orographic character of the rainfall in the coastal mountains. A vertically pointing S-PROF radar in the coastal mountains provided detailed information on the bulk microphysical characteristics of the rainfall. Farther inland, a pair of 915-MHz wind profilers and GPS receivers quantified the orographic precipitation forcing as the AR ascended the Sierra Nevada, and as the terrain-induced Sierra barrier jet ascended the northern terminus of California

  18. Coastal wind study based on Sentinel-1 and ground-based scanning lidar

    DEFF Research Database (Denmark)

    Ahsbahs, Tobias Torben; Badger, Merete; Pena Diaz, Alfredo

    , the project "Reducing the Uncertainty of Near-shore Energy estimates from meso- and micro-scale wind models" (RUNE) was established. The lidar measurement campaign started November 2015 and ended in February 2016 at the Danish North Sea coast at around 56.5 ◦N, 8.2 ◦E. 107 satellite SAR scenes were collected...... fields from the Sentinel-1A satellite using APL/NOAA’s SAROPS system with GFS model wind directions as input. For the presented cases CMOD5.n is used. Ground-based scanning lidar located on land can also cover near shore areas. In order to improve wind farm planning for near-shore coastal areas...

  19. SUPPORTING PROCEDURE AND FIELD MEASUREMENT IN THE SHAFT THROUGH GLIDING TECTONIC GROUND

    Institute of Scientific and Technical Information of China (English)

    XIAJianzhong; TENGNianbao

    1995-01-01

    The paper describes mechanical properties and deformation features of shaft adjoining rocks in gliding tectonic ground and presents the shaft-fupporting procedure of smooth-wall cushion blasting ,preliminary bolting and shotcreting and pouring reinforced concrete liner in one-time-whole-section in the basis of adjoining rock deformations measured dynamically in site ,Field measurements of the pressure exerted on shaft wall show that this supporting procedure has enough safety reserve to meet the safety repuirements in mining production.

  20. Database Dictionary for Ethiopian National Ground-Water Database (ENGDA) Data Fields

    Science.gov (United States)

    2007-01-01

    Water Field Methods classes taught at the MoWR/Japanese International Cooperative Association ( JICA ) ground-water training facility in Addis Ababa...Technology Agency (ESTA) helped coordinate the development of ENGDA, by coordinating with IAEA, MoWR, GSE, JICA , and AAU. During USGS missions to...Tadesse, General Manager of GSE and Ato Mesfin Tegene, Vice Minister of MoWR and Ato Markos Tefera and Dr. Yuji Maruo, of the MoWR/ JICA training

  1. Evidence of transverse magnetospheric field line oscillations as observed from Cluster and ground magnetometers

    Directory of Open Access Journals (Sweden)

    A. K. Sinha

    2005-03-01

    Full Text Available The dynamic spectrum of ULF waves from magnetic field data obtained by the elliptically orbiting Cluster satellites (with an apogee of 119000km, perigee of 19000km and the orbital period of 57h have been prepared in the frequency range 0 to 120mHz when the satellite was near its perigee. The existence of field line oscillations, with increasing frequency in the inbound sector and decreasing frequency in the outbound sector, is seen in the transverse components, indicating the presence of independently oscillating local magnetic flux tubes in the form of transverse standing Alfvén waves. The results show that toroidal and poloidal modes are excited simultaneously. The analysis of simultaneous ground magnetometer data at the footprint of the satellite suggests that these modes are also excited due to coupling to magnetospheric waveguide modes. The clear signature of a resonant fundamental mode is seen in the ground data whereas Cluster detects a harmonic of this frequency. Lower frequency modes indicative of waveguide oscillations are seen in both the ground data and the compressional field at Cluster.

  2. Empirically Grounded Agent-Based Models of Innovation Diffusion: A Critical Review

    CERN Document Server

    Zhang, Haifeng

    2016-01-01

    Innovation diffusion has been studied extensively in a variety of disciplines, including sociology, economics, marketing, ecology, and computer science. Traditional literature on innovation diffusion has been dominated by models of aggregate behavior and trends. However, the agent-based modeling (ABM) paradigm is gaining popularity as it captures agent heterogeneity and enables fine-grained modeling of interactions mediated by social and geographic networks. While most ABM work on innovation diffusion is theoretical, empirically grounded models are increasingly important, particularly in guiding policy decisions. We present a critical review of empirically grounded agent-based models of innovation diffusion, developing a categorization of this research based on types of agent models as well as applications. By connecting the modeling methodologies in the fields of information and innovation diffusion, we suggest that the maximum likelihood estimation framework widely used in the former is a promising paradigm...

  3. The STACEE-32 Ground Based Gamma-ray Detector

    CERN Document Server

    Hanna, D S; Boone, L M; Chantell, M C; Conner, Z; Covault, C E; Dragovan, M; Fortin, P; Gregorich, D T; Hinton, J A; Mukherjee, R; Ong, R A; Oser, S; Ragan, K; Scalzo, R A; Schütte, D R; Theoret, C G; Tümer, T O; Williams, D A; Zweerink, J A

    2002-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment detector in its initial configuration (STACEE-32). STACEE is a new ground-based gamma ray detector using the atmospheric Cherenkov technique. In STACEE, the heliostats of a solar energy research array are used to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous detectors.

  4. The STACEE Ground-Based Gamma-Ray Detector

    CERN Document Server

    Gingrich, D M; Bramel, D; Carson, J; Covault, C E; Fortin, P; Hanna, D S; Hinton, J A; Jarvis, A; Kildea, J; Lindner, T; Müller, C; Mukherjee, R; Ong, R A; Ragan, K; Scalzo, R A; Theoret, C G; Williams, D A; Zweerink, J A

    2005-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) in its complete configuration. STACEE uses the heliostats of a solar energy research facility to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The light is concentrated onto an array of photomultiplier tubes located near the top of a tower. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous ground-based detectors. STACEE is being used to observe pulsars, supernova remnants, active galactic nuclei, and gamma-ray bursts.

  5. Research on target accuracy for ground-based lidar

    Science.gov (United States)

    Zhu, Ling; Shi, Ruoming

    2009-05-01

    In ground based Lidar system, the targets are used in the process of registration, georeferencing for point cloud, and also can be used as check points. Generally, the accuracy of capturing the flat target center is influenced by scanning range and scanning angle. In this research, the experiments are designed to extract accuracy index of the target center with 0-90°scan angles and 100-195 meter scan ranges using a Leica HDS3000 laser scanner. The data of the experiments are listed in detail and the related results are analyzed.

  6. Space- and ground-based particle physics meet at CERN

    CERN Document Server

    CERN Bulletin

    2012-01-01

    The fourth international conference on Particle and Fundamental Physics in Space (SpacePart12) will take place at CERN from 5 to 7 November. The conference will bring together scientists working on particle and fundamental physics in space and on ground, as well as space policy makers from around the world.   One hundred years after Victor Hess discovered cosmic rays using hot air balloons, the experimental study of particle and fundamental physics is still being pursued today with extremely sophisticated techniques: on the ground, with state-of-the-art accelerators like the LHC; and in space, with powerful observatories that probe, with amazing accuracy, the various forms of cosmic radiation, charged and neutral, which are messengers of the most extreme conditions of matter and energy. SpacePart12 will be the opportunity for participants to exchange views on the progress of space-related science and technology programmes in the field of particle and fundamental physics in space. SpacePar...

  7. Analysis on Calculation and Characteristic of Ground Lightning Electromagnetic Field Based on Vertical Discharge Channel%基于垂直放电通道的地面雷电电磁场的计算与特征分析

    Institute of Scientific and Technical Information of China (English)

    徐兴发

    2015-01-01

    In order to protect sensitive equipments from harms of lightning electromagnetic impulse field and select suitable safeguard procedures,field intensity and distribution regularity of lightning return-stroke electromagnetic field under vertical discharge channel is required to be analyzed. Therefore,impulse function was used for expressing bottom current of the channel,meanwhile,combining modified transmission line exponential model and according to dipole technique,Maxwell e-quation set was worked out as well as analytical expressions of electric field and electromagnetic field of vertical channel in space were deduced. By means of Cooray-Rubinstein formula,horizontal electric field component under the condition of considering conductivity of the earth was worked out and computation expressions of horizontal electric field component, vertical electric field component and lateral electromagnetic field component of random field points around the channel were obtained. Furthermore,transformation laws of electromagnetic field of random field points around lightning channel with different horizontal distance,height and conductivity of the earth were studied. The results indicate that waveforms and am-plitudes of electric field and electromagnetic field are obviously affected by horizontal distance,height and conductivity of the earth which might provide reliable basis for selecting suitable safeguard procedures.%为保护敏感设备免受雷电电磁脉冲场的危害并选择合适的防护措施,需分析垂直放电通道下雷电回击电磁场的场强及分布规律,为此,利用脉冲函数表示通道底部电流,结合回击电磁场的传输线回击电磁场的传输线(modified transmission line exponential model,MTLE)模型,根据偶极子法求解 Maxwell 方程组,推导垂直通道在空间产生电场与磁场的解析表达式,借助 Cooray-Rubinstein 公式计算在考虑大地电导率的情况下的水平电场分量,

  8. Spin-Exchange Collisions of the Ground State of Cs Atoms in a High Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    FU Li-Ping; LUO Jun; ZENG Xi-Zhi

    2000-01-01

    Cs atoms were optically pumped with a Ti:sapphire laser in a magnetic field of 1.516 T. Steady absorption spectra and populations of Zeeman sublevels of the ground state of Cs in N2 gas at various pressures (5, 40, and 80 Torr)were obtained. The results show that in a high magnetic field, the combined electron-nuclear spin transition(flip-flop transition), which is mainly induced by the collision modification δa( J.I)of hyperfine interaction, is an important relaxation mechanism at high buffer-gas pressures.

  9. Magnetism of Rare-Earth Compounds with Non-Magnetic Crystal-Field Ground Levels

    Institute of Scientific and Technical Information of China (English)

    LIU Zhao-Sen

    2007-01-01

    @@ Among rare-earth compounds, there are many materials having non-magnetic crystal-field (CF) ground levels.To understand their magnetic behaviour at low temperatures, we study the effects of the CF levels and the Heisenberg-like coupling on the magnetic process of such a crystalline with mean-field and CF theory. It is found that the material can be magnetically ordered if the Heisenberg exchange is sufficiently strong. Additionally we obtain a condition for initial magnetic ordering, and derive a formula for estimating the Curie temperature if the ordering occurs.

  10. Ground state of an antiferromagnetic superconductor in the presence of a homogeneous magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Suzumura, Y.; Naji, A.D.S. (Waterloo Univ., Ontario (Canada). Dept. of Physics)

    1981-11-01

    The effect of a homogeneous magnetic field, H/sub 0/. on the ground state of an antiferromagnetic superconductor has been investigated. Assuming a one-dimensional like half-filled band, a new state has been found having gapless superconductivity and H/sub 0/-dependent order parameter. This state exists for Hsub(Q)/..delta../sub 0/ > 0.22 and when ..delta.. - Hsub(Q) <= H/sub 0/ < ..delta.. + Hsub(Q) Hsub(Q) is the staggered magnetic field, ..delta.. is the superconducting order parameter and ..delta../sub 0/ is ..delta.. in the absence of Hsub(Q) and H/sub 0/.

  11. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  12. Settlement process of radioactive dust to the ground inferred from the atmospheric electric field measurement

    Directory of Open Access Journals (Sweden)

    M. Yamauchi

    2012-01-01

    Full Text Available Radioactive materials from the accident at Fukushima Dai-ichi nuclear power plant (FNPP in March 2011 spread over a large area, increasing the atmospheric electric conductivity by their ionizing effect, and reducing the vertical (downward component of the DC electric field near the ground, or potential gradient (PG. PG data at Kakioka, 150 km away from the FNPP, showed independent changes compared to the radiation dose rate, and a comparison of these data revealed the local dynamics of the radioactive dust.

    (1 The initial drop of the PG to almost zero during 14–15 March is most likely due to radioactive dust suspended in the air near the ground during cloudy weather. (2 An episode of PG increase to more than 50 V m−1 on 16 March is most likely due to the re-suspension of the radioactive dust from the surface and subsequent removal from Kakioka by the strong wind from the non-contaminated area. (3 Low but finite values of the PG during 16–20 March most likely reflect a reduced amount of radioactive material near the ground after the above wind transported away the majority of the suspended radioactive dust. (4 Very low values of the PG after substantial rain on 20–22 March most likely reflect settlement of the radioactive material by rain-induced fallout. (5 Temporal recovery of daily variations from the end of March to the middle of April with low nighttime fair-weather baseline PG most likely reflects re-suspension of the radioactive dust into the air from the ground and trees, and subsequent transport to the other region or fallout to the ground until late April. (6 Weakening of the daily variation and gradual recovery of the nighttime fair-weather baseline after mid-April suggests a complete settlement of the radioactive material to the ground with partial migration to the subsurface.

  13. Settlement process of radioactive dust to the ground inferred from the atmospheric electric field measurement

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, M. [Swedish Institute of Space Physics, Kiruna (Sweden); Takeda, M. [Kyoto Univ. (Japan). Data Analysis Center for Geomagnetism and Space Magnetism; Makino, M.; Miyagi, I. [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Owada, T. [Japan Meteorological Agency, Ishioka (Japan). Kakioka Magnetic Observatory

    2012-07-01

    Radioactive materials from the accident at Fukushima Dai-ichi nuclear power plant (FNPP) in March 2011 spread over a large area, increasing the atmospheric electric conductivity by their ionizing effect, and reducing the vertical (downward) component of the DC electric field near the ground, or potential gradient (PG). PG data at Kakioka, 150 km away from the FNPP, showed independent changes compared to the radiation dose rate, and a comparison of these data revealed the local dynamics of the radioactive dust. (1) The initial drop of the PG to almost zero during 14-15 March is most likely due to radioactive dust suspended in the air near the ground during cloudy weather. (2) An episode of PG increase to more than 50Vm{sup -1} on 16 March is most likely due to the re-suspension of the radioactive dust from the surface and subsequent removal from Kakioka by the strong wind from the non-contaminated area. (3) Low but finite values of the PG during 16-20 March most likely reflect a reduced amount of radioactive material near the ground after the above wind transported away the majority of the suspended radioactive dust. (4) Very low values of the PG after substantial rain on 20-22 March most likely reflect settlement of the radioactive material by rain-induced fallout. (5) Temporal recovery of daily variations from the end of March to the middle of April with low nighttime fair-weather baseline PG most likely reflects re-suspension of the radioactive dust into the air from the ground and trees, and subsequent transport to the other region or fallout to the ground until late April. (6) Weakening of the daily variation and gradual recovery of the nighttime fair-weather baseline after mid-April suggests a complete settlement of the radioactive material to the ground with partial migration to the subsurface. (orig.)

  14. Settlement process of radioactive dust to the ground inferred from the atmospheric electric field measurement

    Science.gov (United States)

    Yamauchi, M.; Takeda, M.; Makino, M.; Owada, T.; Miyagi, I.

    2012-01-01

    Radioactive materials from the accident at Fukushima Dai-ichi nuclear power plant (FNPP) in March 2011 spread over a large area, increasing the atmospheric electric conductivity by their ionizing effect, and reducing the vertical (downward) component of the DC electric field near the ground, or potential gradient (PG). PG data at Kakioka, 150 km away from the FNPP, showed independent changes compared to the radiation dose rate, and a comparison of these data revealed the local dynamics of the radioactive dust. (1) The initial drop of the PG to almost zero during 14-15 March is most likely due to radioactive dust suspended in the air near the ground during cloudy weather. (2) An episode of PG increase to more than 50 V m-1 on 16 March is most likely due to the re-suspension of the radioactive dust from the surface and subsequent removal from Kakioka by the strong wind from the non-contaminated area. (3) Low but finite values of the PG during 16-20 March most likely reflect a reduced amount of radioactive material near the ground after the above wind transported away the majority of the suspended radioactive dust. (4) Very low values of the PG after substantial rain on 20-22 March most likely reflect settlement of the radioactive material by rain-induced fallout. (5) Temporal recovery of daily variations from the end of March to the middle of April with low nighttime fair-weather baseline PG most likely reflects re-suspension of the radioactive dust into the air from the ground and trees, and subsequent transport to the other region or fallout to the ground until late April. (6) Weakening of the daily variation and gradual recovery of the nighttime fair-weather baseline after mid-April suggests a complete settlement of the radioactive material to the ground with partial migration to the subsurface.

  15. Lightning return stroke current radiation in presence of a conducting ground: 1. Theory and numerical evaluation of the electromagnetic fields

    Science.gov (United States)

    Delfino, Federico; Procopio, Renato; Rossi, Mansueto

    2008-03-01

    The general theory describing the electromagnetic field radiated by a lightning stroke over a conducting ground is presented in this paper. The derivation of the Green functions necessary to solve the problem is discussed in detail, and the determination of the expressions for the electromagnetic field components is carried out in a form that minimizes the final computational costs. A method for the numerical evaluation of the electromagnetic field is then proposed, and it is shown that it can be used starting from any "engineering model" representation for the lightning current distribution along the channel. Such method is based on a new efficient evaluation of the so-called Sommerfeld's integrals appearing in the electromagnetic field expressions, without resorting to any kind of approximated formulas for them. The numerical treatment of the Sommerfeld's integrals is characterized by a proper subdivision of the integration domain, the use of the Romberg technique and the determination of a suitable upper bound for the error due to the integral truncation. In the second part of this work it will be shown how the results provided by the developed theory can be used in order to assess the validity of the most common simplified approach for the calculation of the lightning radiation over a lossy ground plane.

  16. Simulation of near-fault bedrock strong ground-motion field by explicit finite element method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-zhi; HU Jin-jun; XIE Li-li; WANG Hai-yun

    2006-01-01

    Based on presumed active fault and corresponding model, this paper predicted the near-fault ground motion filed of a scenario earthquake (Mw=6 3/4 ) in an active fault by the explicit finite element method in combination with the source time function with improved transmitting artificial boundary and with high-frequency vibration contained.The results indicate that the improved artificial boundary is stable in numerical computation and the predicted strong ground motion has a consistent characteristic with the observed motion.

  17. Configurable adaptive optical system for imaging of ground-based targets from space

    Science.gov (United States)

    McComas, Brian K.; Friedman, Edward J.; Hooker, R. Brian; Cermak, Michael A.

    2003-03-01

    Space-based, high resolution, Earth remote sensing systems, that employ large, flexible, lightweight primary mirrors, will require active wavefront correction, in the form of active and adaptive optics, to correct for thermally and vibrationally induced deformations in the optics. These remote sensing systems typically have a large field-of-view. Unlike the adaptive optics on ground-based astronomical telescopes, which have a negligible field-of-view, the adaptive optics on these space-based remote sensing systems will be required to correct the wavefront over the entire field-of-view, which can be several degrees. The error functions for astronomical adaptive optics have been developed for the narrow field-of-view correction of atmospheric turbulence and do not address the needs of wide field space-based systems. To address these needs, a new wide field adaptive optics theory and a new error function are developed. Modeling and experimental results demonstrate the validity of the wide field adaptive optics theory and new error function. This new error function, which is a new extension of conventional adaptive optics, lead to the development of three new types of imaging systems: wide field-of-view, selectable field-of-view, and steerable field-of-view. These new systems can have nearly diffraction-limited performance across the entire field-of-view or a narrow movable region of high-resolution imaging. The factors limiting system performance will be shown. The range of applicability of the wide field adaptive optics theory is shown. The range of applicability is used to avoid limitations in system performance and to estimate the optical systems parameters, which will meet the system"s performance requirements.

  18. Ground-based Space Weather Monitoring with LOFAR

    Science.gov (United States)

    Wise, Michael; van Haarlem, Michiel; Lawrence, Gareth; Reid, Simon; Bos, Andre; Rawlings, Steve; Salvini, Stef; Mitchell, Cathryn; Soleimani, Manuch; Amado, Sergio; Teresa, Vital

    As one of the first of a new generation of radio instruments, the International LOFAR Telescope (ILT) will provide a number of unique and novel capabilities for the astronomical community. These include remote configuration and operation, dynamic real-time processing and system response, and the ability to provide multiple simultaneous streams of data to a community whose scientific interests run the gamut from lighting in the atmospheres of distant planets to the origins of the universe itself. The LOFAR (LOw Frequency ARray) system is optimized for a frequency range from 30-240 MHz and consists of multiple antenna fields spread across Europe. In the Netherlands, a total 36 LOFAR stations are nearing completion with an initial 8 international stations currently being deployed in Germany, France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR has the potential to achieve unparalleled sensitivity and spatial resolution in the low frequency radio regime. LOFAR will also be one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. As we discuss in this presentation, the same capabilities that make LOFAR a powerful tool for radio astronomy also provide an excellent platform upon which to build a ground-based monitoring system for space weather events. For example, the ability to monitor Solar activity in near real-time is one of the key scientific capabilities being developed for LOFAR. With only a fraction of its total observing capacity, LOFAR will be able to provide continuous monitoring of the Solar spectrum over the entire 10-240 MHz band down to microsecond timescales. Autonomous routines will scan these incoming spectral data for evidence of Solar flares and be

  19. GROUND-STATE ALIGNMENT OF ATOMS AND IONS: NEW DIAGNOSTICS OF ASTROPHYSICAL MAGNETIC FIELD IN DIFFUSE MEDIUM

    Directory of Open Access Journals (Sweden)

    H. Yan

    2009-01-01

    that the corresponding studies of magnetic fields can be performed with optical and UV polarimetry. A unique feature of these studies is that they can reveal the 3D orientation of magnetic field. In addition, we point out that the polarization of the radiation arising from the transitions between fine and hyperfine states of the ground level can provide yet another promising diagnostic of magnetic fields, including the magnetic fields in the Early Universe. We mention several cases of interplanetary, circumstellar and interstellar magnetic fields for which the studies of magnetic fields using ground state atomic alignment effect are promising.

  20. Remedial investigation sampling and analysis plan for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Field Sampling Plan

    Energy Technology Data Exchange (ETDEWEB)

    Benioff, P.; Biang, R.; Dolak, D.; Dunn, C.; Martino, L.; Patton, T.; Wang, Y.; Yuen, C.

    1995-03-01

    The Environmental Management Division (EMD) of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study (RI/FS) of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. J-Field is within the Edgewood Area of APG in Harford County, Maryland (Figure 1. 1). Since World War II activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). Considerable archival information about J-Field exists as a result of efforts by APG staff to characterize the hazards associated with the site. Contamination of J-Field was first detected during an environmental survey of the Edgewood Area conducted in 1977 and 1978 by the US Army Toxic and Hazardous Materials Agency (USATHAMA) (predecessor to the US Army Environmental Center [AEC]). As part of a subsequent USATHAMA -environmental survey, 11 wells were installed and sampled at J-Field. Contamination at J-Field was also detected during a munitions disposal survey conducted by Princeton Aqua Science in 1983. The Princeton Aqua Science investigation involved the installation and sampling of nine wells and the collection and analysis of surficial and deep composite soil samples. In 1986, a Resource Conservation and Recovery Act (RCRA) permit (MD3-21-002-1355) requiring a basewide RCRA Facility Assessment (RFA) and a hydrogeologic assessment of J-Field was issued by the US Environmental Protection Agency (EPA). In 1987, the US Geological Survey (USGS) began a two-phased hydrogeologic assessment in data were collected to model, groundwater flow at J-Field. Soil gas investigations were conducted, several well clusters were installed, a groundwater flow model was developed, and groundwater and surface water monitoring programs were established that continue today.

  1. New Shell Structures and Their Ground Electronic States in Spherical Quantum Dots (II) under Magnetic Field

    Science.gov (United States)

    Asari, Yusuke; Takeda, Kyozaburo; Tamura, Hiroyuki

    2005-04-01

    We theoretically studied the electronic structure of the three-dimensional spherical parabolic quantum dot (3D-SPQD) under a magnetic field. We obtained the quantum dot orbitals (QDOs) and determined the ground state by using the extended UHF approach where the expectation values of the z component of the total orbital angular momentum are conserved during the scf-procedure. The single-electron treatment predicts that the applied magnetic field (B) creates k-th new shells at the magnetic field of Bk=k(k+2)/(k+1)ω0 with the shell-energy interval of \\hbarω0/(k+1), where ω0(=\\hbar/m*l02) is the characteristic frequency originating from the spherical parabolic confinement potential. These shells are formed by the level crossing among multiple QDOs. The interelectron interaction breaks the simple level crossing but causes complicated dependences among the total energy, the chemical potential and their differences (magic numbers) with the magnetic field or the number of confinement electrons. The ground state having a higher spin multiplicity is theoretically predicted on the basis of the \\textit{quasi}-degeneracies of the QDOs around these shells.

  2. Identification of rainy periods from ground based microwave radiometry

    Directory of Open Access Journals (Sweden)

    Ada Vittoria Bosisio

    2012-03-01

    Full Text Available In this paper the authors present the results of a study aiming at detecting rainy data in measurements collected by a dual band ground-based radiometer. The proposed criterion is based on the ratio of the brightness temperatures observed in the 20-30 GHz band without need of any ancillary information. A major result obtained from the probability density of the ratio computed over one month of data is the identification of threshold values between clear sky, cloudy sky and rainy sky, respectively. A linear fit performed by using radiometric data and concurrent rain gauge measurements shows a correlation coefficient equal to 0.56 between the temperature ratio and the observed precipitation.

  3. Unique cell culture systems for ground based research

    Science.gov (United States)

    Lewis, Marian L.

    1990-01-01

    The horizontally rotating fluid-filled, membrane oxygenated bioreactors developed at NASA Johnson for spacecraft applications provide a powerful tool for ground-based research. Three-dimensional aggregates formed by cells cultured on microcarrier beads are useful for study of cell-cell interactions and tissue development. By comparing electron micrographs of plant seedlings germinated during Shuttle flight 61-C and in an earth-based rotating bioreactor it is shown that some effects of microgravity are mimicked. Bioreactors used in the UAH Bioreactor Laboratory will make it possible to determine some of the effects of altered gravity at the cellular level. Bioreactors can be valuable for performing critical, preliminary-to-spaceflight experiments as well as medical investigations such as in vitro tumor cell growth and chemotherapeutic drug response; the enrichment of stem cells from bone marrow; and the effect of altered gravity on bone and muscle cell growth and function and immune response depression.

  4. DDCC-Based Quadrature Oscillator with Grounded Capacitors and Resistors

    Directory of Open Access Journals (Sweden)

    Montree Kumngern

    2009-01-01

    Full Text Available A new voltage-mode quadrature oscillator using two differential difference current conveyors (DDCCs, two grounded capacitors, and three grounded resistors is presented. The proposed oscillator provides the following advantages: the oscillation condition and oscillation frequency are orthogonally controlled; the oscillation frequency is controlled through a single grounded resistor; the use of only grounded capacitors and resistors makes the proposed circuit ideal for IC implementation; low passive and active sensitivities. Simulation results verifying the theoretical analysis are also included.

  5. (Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  6. Climatologies of nighttime upper thermospheric winds measured by ground-based Fabry-Perot interferometers during geomagnetically quiet conditions: 2. High-latitude circulation and interplanetary magnetic field dependence

    DEFF Research Database (Denmark)

    Emmert, J.T.; Hernandez, G.; Jarvis, M.J.;

    2006-01-01

    Stromfjord (67 degrees N, 51 degrees W), and Thule (77 degrees N, 68 degrees W). We examine the wind patterns as a function of magnetic local time and latitude, solar cycle, day of year, and the dawn-dusk and north-south components of the interplanetary magnetic field (IMF B-y and B-z). In magnetic...... at latitudes as low as that of Millstone Hill ( magnetic latitude 53 degrees N). Quiet time Bz effects are negligible except over the magnetic polar cap station of Thule....

  7. Pc5 Oscillation Analysis by the Satellite and Ground-Based Data

    Institute of Scientific and Technical Information of China (English)

    A. Potapov; T. Polyushkina; T. L. Zhang; H. Zhao; A. Guglielmi; J. Kultima

    2005-01-01

    Large amplitude Pc5 event was observed in the space and on ground on August 3, 2001, about three hours after contact of the strong discontinuity in the solar wind with the magnetosphere according to data from ACE and Wind satellites. The Pc5 amplitude was as high as 15 nT in the tail of magnetosphere and about 5 nT at the ground based stations. In the magnetosphere Pc5 waves were observed by Cluster and Polar satellites, which occupied positions in the morning part of the near tail at the close field lines but were parted by distance of 11.5 Re, mainly along the x-axis of the GSM coordinate system. Both compressional and transverse components of the Pc5 wave activity were observed in the space, with the transverse component having the larger amplitude. Time delay between the Cluster and Polar satellites was about 8 minutes, which could be interpreted as a wave propagation from the geomagnetic tail to the Earth with the 150km/s group velocity.The ground-based Pc5 activity was analysed by using data from the Image magnetometer network. Doubtless demonstrations of a field line resonant structure were found in variations of amplitude and polarization with latitude. Finnish chain of search coil magnetometers observed modulated Pc1 emission simultaneously with the Pc5 wave train. A possibility of non-linear impact of Pc5 wave energy on the plasma and waves in the magnetosphere is discussed.

  8. Ground-based CCD astrometry with wide field imagers. II. A star catalogue for M67: WFI@2.2m MPG/ESO astrometry, FLAMES@VLT radial velocities

    CERN Document Server

    Yadav, R K S; Piotto, G; Anderson, J; Cassisi, S; Villanova, S; Platais, I; Pasquini, L; Momany, Y; Sagar, R

    2008-01-01

    The solar-age open cluster M67 (C0847+120, NGC2682) is a touchstone in studies of the old Galactic disk. Despite its outstanding role, the census of cluster membership for M67 at fainter magnitudes and their properties are not well-established. Using the proprietary and archival ESO data, we have obtained astrometric, photometric, and radial velocities of stars in a 34'x 33' field centered on the old open cluster M67. The two-epoch archival observations separated by 4 years and acquired with the Wide Field Imager at the 2.2m MPG/ESO telescope have been reduced with our new astrometric techniques, as described in the first paper of this series. The same observations served to derive calibrated BVI photometry in M67. Radial velocities were measured using the archival and new spectroscopic data obtained at VLT. We have determined relative proper motions and membership probabilities for ~2,400 stars. The precision of proper motions for optimally exposed stars is ~2 mas/yr, gradually degrading down to ~5 mas/yr at...

  9. Integrated water vapor from IGS ground-based GPS observations. Initial results from a global 5-min data set

    Energy Technology Data Exchange (ETDEWEB)

    Heise, S.; Dick, G.; Gendt, G.; Schmidt, T.; Wickert, J. [GFZ German Research Centre for Geosciences, Potsdam (Germany). Dept. 1 Geodesy and Remote Sensing

    2009-07-01

    Ground based GPS zenith path delay (ZPD) measurements are well established as a powerful tool for integrated water vapor (IWV) observation. The International GNSS Service (IGS) provides ZPD data of currently more than 300 globally distributed GPS stations. To derive IWV from these data, meteorological information (ground pressure and mean temperature above the station) are needed. Only a limited number of IGS stations is equipped with meteorological ground sensors up to now. Thus, meteorological data for IWV conversion are usually derived from nearby ground meteorological observations (ground pressure) and meteorological analyses (mean temperature). In this paper we demonstrate for the first time the applicability of ground pressure data from ECMWF meteorological analysis fields in this context. Beside simplified data handling (no single station data and quality control) this approach allows for IWV derivation if nearby meteorological stations are not available. Using ECMWF ground pressure and mean temperature data the new IGS 5-min ZPD data set has been converted to IWV for the first time. We present initial results from selected stations with ground meteorological sensors including pressure and temperature comparisons between ECMWF and local measurements. The GPS IWV is generally validated by comparison with ECMWF IWV. The ECMWF derived station meteorological data are compared with local measurements at all accordingly equipped stations. Based on this comparison, the mean error (in terms of standard deviation) introduced by time interpolation of the 6-hourly ECMWF data is estimated below 0.2 mm IWV. (orig.)

  10. FSR: a field portable spectral reflectometer to measure ground from NIR to LWIR

    Science.gov (United States)

    Moreau, Louis; Bourque, Hugo; Ouellet, Réal; Prel, Florent; Roy, Claude; Vallieres, Christian; Thériault, Guillaume

    2011-11-01

    ABB Bomem has recently designed a field-deployable reflectometer. The Full Spectrum Reflectometer (FSR) measures the diffuse reflectance of surfaces in the 0.7 μm to 13.5 μm spectral range. The spectral resolution is adjustable from 32 to 4 cm-1. The instrument is portable, battery-operated and designed for field usage in a single, lightweight and ruggedized package. In its simplest mode, the instrument is automated and can be operated by non-specialist personnel with minimal training. The FSR has a laboratory mode to measure targets brought to the instrument in a sampling cup and a field mode with automated measurement sequence. To facilitate the measurement of various ground surfaces, the instrument is packaged in a three-point mount for easy target access and stability. One of the mount is the sampling port. The instrument has its own built-in NIR and LWIR infrared sources to illuminate the ground area to be measured. The instrument includes two built-in references for calibration: a Spectralon diffuser and an Infragold diffuser. The first units were commissioned to build a spectral database of surfaces in various conditions (humidity, temperature, texture, mixing, etc.) and in the presence of interfering chemicals (oils, solvents, etc.) but the instrument can also serve other purposes such as the identification of unknown materials.

  11. Flow Characteristics of Tidewater Glaciers in Greenland and Alaska using Ground-Based LiDAR

    Science.gov (United States)

    Finnegan, D. C.; Stearns, L. A.; Hamilton, G. S.; O'Neel, S.

    2010-12-01

    LiDAR scanning systems have been employed to characterize and quantify multi-temporal glacier and ice sheet changes for nearly three decades. Until recently, LiDAR scanning systems were limited to airborne and space-based platforms which come at a significant cost to deploy and are limited in spatial and temporal sampling capabilities necessary to compare with in-situ field measurements. Portable ground-based LiDAR scanning systems are now being used as a glaciological tool. We discuss research efforts to employ ground-based near-infrared LiDAR systems at two differing tidewater glacier systems in the spring of 2009; Helheim Glacier in southeast Greenland and Columbia Glacier in southeast Alaska. Preliminary results allow us to characterize short term displacement rates and detailed observations of calving processes. These results highlight the operational limitations and capabilities of commercially available LiDAR systems, and allow us to identify optimal operating characteristics for monitoring small to large-scale tidewater glaciers in near real-time. Furthermore, by identifying the operational limitations of these sensors it allows for optimal design characteristics of new sensors necessary to meet ground-based calibration and validation requirements of ongoing scientific missions.

  12. The STACEE Ground-Based Gamma-ray Observatory

    Science.gov (United States)

    Ragan, Ken

    2002-04-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a ground-based instrument designed to study astrophysical sources of gamma rays in the energy range from 50 to 500 GeV using an array of heliostat mirrors at the National Solar Thermal Test Facility in New Mexico. The mirrors collect Cherenkov light generated by gamma-ray air showers and concentrate it onto cameras composed of photomultiplier tubes. The STACEE instrument is now complete, and uses a total of 64 heliostats. Prototype instruments, using smaller numbers of heliostats, have previously detected gamma emission from both the Crab Nebula and the Active Galactic Nucleus Mrk421. The complete instrument has a lower threshold -- approximately 50 GeV -- than those prototypes due to superior triggering and electronics, including flash ADCs for every channel.We will discuss the performance of the complete instrument in its first full season of operation, and present preliminary results of selected observations.

  13. Atmospheric contamination for CMB ground-based observations

    CERN Document Server

    Errard, J; Akiba, Y; Arnold, K; Atlas, M; Baccigalupi, C; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Cukierman, A; Delabrouille, J; Dobbs, M; Ducout, A; Elleflot, T; Fabbian, G; Feng, C; Feeney, S; Gilbert, A; Goeckner-Wald, N; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Hill, C; Holzapfel, W L; Hori, Y; Inoue, Y; Jaehnig, G C; Jaffe, A H; Jeong, O; Katayama, N; Kaufman, J; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Jeune, M Le; Lee, A T; Leitch, E M; Leon, D; Linder, E; Matsuda, F; Matsumura, T; Miller, N J; Myers, M J; Navaroli, M; Nishino, H; Okamura, T; Paar, H; Peloton, J; Poletti, D; Puglisi, G; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K M; Schenck, D E; Sherwin, B D; Siritanasak, P; Smecher, G; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Tajima, O; Takakura, S; Tikhomirov, A; Tomaru, T; Whitehorn, N; Wilson, B; Yadav, A; Zahn, O

    2015-01-01

    Atmosphere is one of the most important noise sources for ground-based Cosmic Microwave Background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3d-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive an analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the POLARBEAR-I project first season data set. We compare our results to previous st...

  14. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    CERN Document Server

    Chen, Hsin-Yu; Vitale, Salvatore; Holz, Daniel E; Katsavounidis, Erik

    2016-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over $80\\%$ of the localization probability, while mid-latitudes will access closer to $70\\%$. Facilities located near the two LIGO sites can obser...

  15. Progress in the ULTRA 1-m ground-based telescope

    Science.gov (United States)

    Romeo, Robert C.; Martin, Robert N.; Twarog, Bruce; Anthony-Twarog, Barbara; Taghavi, Ray; Hale, Rick; Etzel, Paul; Fesen, Rob; Shawl, Steve

    2006-06-01

    We present the technical status of the Ultra Lightweight Telescope for Research in Astronomy (ULTRA) program. The program is a 3-year Major Research Instrumentation (MRI) program funded by NSF. The MRI is a collaborative effort involving Composite Mirror Applications, Inc. (CMA), University of Kansas, San Diego State University and Dartmouth College. Objectives are to demonstrate the feasibility of carbon fiber reinforced plastic (CFRP) composite mirror technology for ground-based optical telescopes. CMA is spearheading the development of surface replication techniques to produce the optics, fabricating the 1m glass mandrel, and constructing the optical tube assembly (OTA). Presented will be an overview and status of the 1-m mandrel fabrication, optics development, telescope design and CFRP telescope fabrication by CMA for the ULTRA Telescope.

  16. Ground-based optical observation system for LEO objects

    Science.gov (United States)

    Yanagisawa, T.; Kurosaki, H.; Oda, H.; Tagawa, M.

    2015-08-01

    We propose a ground-based optical observation system for monitoring LEO objects, which uses numerous optical sensors to cover a vast region of the sky. Its potential in terms of detection and orbital determination were examined. About 30 cm LEO objects at 1000 km altitude are detectable using an 18 cm telescope, a CCD camera and the analysis software developed. Simulations and a test observation showed that two longitudinally separate observation sites with arrays of optical sensors can identify the same objects from numerous data sets and determine their orbits precisely. The proposed system may complement or replace the current radar observation system for monitoring LEO objects, like space-situation awareness, in the near future.

  17. Optical vortex coronagraphs on ground-based telescopes

    CERN Document Server

    Jenkins, Charles

    2007-01-01

    The optical vortex coronagraph is potentially a remarkably effective device, at least for an ideal unobstructed telescope. Most ground-based telescopes however suffer from central obscuration and also have to operate through the aberrations of the turbulent atmosphere. This note analyzes the performance of the optical vortex in these circumstances and compares to some other designs, showing that it performs similarly in this situation. There is a large class of coronagraphs of this general type, and choosing between them in particular applications depends on details of performance at small off-axis distances and uniformity of response in the focal plane. Issues of manufacturability to the necessary tolerances are also likely to be important.

  18. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. These effects can inform electromagnetic follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  19. Long-range magnetic fields in the ground state of the Standard Model plasma

    CERN Document Server

    Boyarsky, Alexey; Shaposhnikov, Mikhail

    2012-01-01

    In thermal equilibrium the ground state of the plasma of Standard Model particles is determined by temperature and exactly conserved combinations of baryon and lepton numbers. We show that at non-zero values of the global charges a translation invariant and homogeneous state of the plasma becomes unstable and the system transits into a new state, containing a large-scale magnetic field. The origin of this effect is the parity-breaking character of weak interactions and chiral anomaly. This situation can occur in the early Universe and may play an important role in its subsequent evolution.

  20. Long-Range Magnetic Fields in the Ground State of the Standard Model Plasma

    Science.gov (United States)

    Boyarsky, Alexey; Ruchayskiy, Oleg; Shaposhnikov, Mikhail

    2012-09-01

    In thermal equilibrium the ground state of the plasma of Standard Model particles is determined by temperature and exactly conserved combinations of baryon and lepton numbers. We show that at nonzero values of the global charges a translation invariant and homogeneous state of the plasma becomes unstable and the system transits into a new equilibrium state, containing a large-scale magnetic field. The origin of this effect is the parity-breaking character of weak interactions and chiral anomaly. This situation could occur in the early Universe and may play an important role in its subsequent evolution.

  1. Ground State Transitions of Four-Electron Quantum Dots in Zero Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    KANG Shuai; XIE Wen-Fang; LIU Yi-Ming; SHI Ting-Yun

    2008-01-01

    In this paper, we study four electrons confined in a parabolic quantum dot in the absence of magnetic field, by the exact diagonalization method. The ground-state electronic structures and orbital and spin angular momenta transitions as a function of the confined strength are investigated. We find that the confinement may cause accidental degeneracies between levels with different low-lying states and the inversion of the energy values. The present results are useful to understand the optical properties and internal electron-electron correlations of quantum dot materials.

  2. Ground state properties of La isotopes in reflection asymmetric relativistic mean field theory

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The ground state properties of La isotopes are investigated with the reflection asymmetric relativistic mean field(RAS-RMF) model.The calculation results of binding energies and the quadrupole moments are in good agreements with the experiment.The calculation results indicate the change of the quadrupole deformation with the nuclear mass number.The "kink" on the isotope shifts is observed at A = 139 where the neutron number is the magic number N = 82.It is also found that the octupole deformations may exist in the La isotopes with mass number A ~ 145-155.

  3. Ground state properties of La isotopes in reflection asymmetric relativistic mean field theory

    Institute of Scientific and Technical Information of China (English)

    WANG Nan; GUO Lu

    2009-01-01

    The ground state properties of La isotopes are investigated with the reflection asymmetric relativistic mean field (RAS-RMF) model.The calculation results of binding energies and the quadrupole moments are in good agreements with the experiment.The calculation results indicate the change of the quadrupole deformation with the nuclear mass number.The "kink" on the isotope shifts is observed at A=139 where the neutron number is the magic number N=82.It is also found that the octupole deformations may exist in the La isotopes with mass number A~ 145-155.

  4. Probing the ground state and zero-field cooled exchange bias by magnetoresistance measurement in Mn50Ni41Sn9 ribbon

    Science.gov (United States)

    Chen, Jiyun; Tu, Ruikang; Fang, Xiaoting; Gu, Quanchao; Zhou, Yanying; Cui, Rongjing; Han, Zhida; Zhang, Lei; Fang, Yong; Qian, Bin; Zhang, Chengliang; Jiang, Xuefan

    2017-03-01

    Recently, a new type of exchange bias (EB) after zero-field cooling has attracted considerable interest mainly in bulk magnetic competing systems. Here, we use a detailed magnetotransport investigation to probe the ground state and zero-field cooled EB (ZEB) in Mn50Ni41Sn9 ribbon. Both ZEB and field cooled EB were detected in magnetoresistance results consistent with magnetic measurement. A pure spin-glass ground state is proposed based on parabolic shape of low-field magnetoresistance combined with AC magnetization, memory effect. The appearance of ZEB is attributed to the field-induced nucleation and growth of ferromagnetic domains in the spin glass matrix forming unidirectional anisotropy at the interface.

  5. Work plan for conducting an ecological risk assessment at J-Field, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Hlohowskyj, I.; Hayse, J.; Kuperman, R. [Argonne National Lab., IL (United States). Environmental Assessment Div.] [and others

    1995-03-01

    The Environmental Management Division of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study (RI/FS) of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. J-Field is within the Edgewood Area of APG in Harford County, Maryland, and activities at the Edgewood Area since World War II have included the development, manufacture, testing, and destruction of chemical agents and munitions. The J-Field site was used to destroy chemical agents and munitions by open burning and open detonation. This work plan presents the approach proposed to conduct an ecological risk assessment (ERA) as part of the RI/FS program at J-Field. This work plan identifies the locations and types of field studies proposed for each area of concern (AOC), the laboratory studies proposed to evaluate toxicity of media, and the methodology to be used in estimating doses to ecological receptors and discusses the approach that will be used to estimate and evaluate ecological risks at J-Field. Eight AOCs have been identified at J-Field, and the proposed ERA is designed to evaluate the potential for adverse impacts to ecological receptors from contaminated media at each AOC, as well as over the entire J-Field site. The proposed ERA approach consists of three major phases, incorporating field and laboratory studies as well as modeling. Phase 1 includes biotic surveys of the aquatic and terrestrial habitats, biological tissue sampling and analysis, and media toxicity testing at each AOC and appropriate reference locations. Phase 2 includes definitive toxicity testing of media from areas of known or suspected contamination or of media for which the Phase 1 results indicate toxicity or adverse ecological effects. In Phase 3, the uptake models initially developed in Phase 2 will be finalized, and contaminant dose to each receptor from all complete pathways will be estimated.

  6. Ground States of the Lithium Atom and its Ions up to Z = 10 in the Presence of Magnetic Field using Variational Monte Carlo Technique

    CERN Document Server

    Doma, S B; Farag, A M; El-Gammal, F N

    2016-01-01

    The variational Monte Carlo method is applied to investigate the ground state energy of the lithium atom and its ions up to Z=10 in the presence of an external magnetic field regime. Our calculations are based on using three forms of compact and accurate trial wave functions, which were put forward in calculating energies in the absence of magnetic field. The obtained results are in good agreement with the most recent accurate values and also with the exact values.

  7. Airborne and ground based lidar measurements of the atmospheric pressure profile

    Science.gov (United States)

    Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

    1989-01-01

    The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

  8. Ground-based hyperspectral analysis of the urban nightscape

    Science.gov (United States)

    Alamús, Ramon; Bará, Salvador; Corbera, Jordi; Escofet, Jaume; Palà, Vicenç; Pipia, Luca; Tardà, Anna

    2017-02-01

    Airborne hyperspectral cameras provide the basic information to estimate the energy wasted skywards by outdoor lighting systems, as well as to locate and identify their sources. However, a complete characterization of the urban light pollution levels also requires evaluating these effects from the city dwellers standpoint, e.g. the energy waste associated to the excessive illuminance on walls and pavements, light trespass, or the luminance distributions causing potential glare, to mention but a few. On the other hand, the spectral irradiance at the entrance of the human eye is the primary input to evaluate the possible health effects associated with the exposure to artificial light at night, according to the more recent models available in the literature. In this work we demonstrate the possibility of using a hyperspectral imager (routinely used in airborne campaigns) to measure the ground-level spectral radiance of the urban nightscape and to retrieve several magnitudes of interest for light pollution studies. We also present the preliminary results from a field campaign carried out in the downtown of Barcelona.

  9. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Bill

    1991-10-01

    In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

  10. Interactive dynamic three-dimensional scene for the ground-based three-dimensional display

    Science.gov (United States)

    Hou, Peining; Sang, Xinzhu; Guo, Nan; Chen, Duo; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    Three-dimensional (3D) displays provides valuable tools for many fields, such as scientific experiment, education, information transmission, medical imaging and physical simulation. Ground based 360° 3D display with dynamic and controllable scene can find some special applications, such as design and construction of buildings, aeronautics, military sand table and so on. It can be utilized to evaluate and visualize the dynamic scene of the battlefield, surgical operation and the 3D canvas of art. In order to achieve the ground based 3D display, the public focus plane should be parallel to the camera's imaging planes, and optical axes should be offset to the center of public focus plane in both vertical and horizontal directions. Virtual cameras are used to display 3D dynamic scene with Unity 3D engine. Parameters of virtual cameras for capturing scene are designed and analyzed, and locations of virtual cameras are determined by the observer's eye positions in the observing space world. An interactive dynamic 3D scene for ground based 360° 3D display is demonstrated, which provides high-immersion 3D visualization.

  11. Probabilistic analysis of embankment slope stability in frozen ground regions based on random finite element method

    Institute of Scientific and Technical Information of China (English)

    Xi Chen; JianKun Liu; Nan Xie; HuiJing Sun

    2015-01-01

    Prediction on the coupled thermal-hydraulic fields of embankment and cutting slopes is essential to the assessment on evolution of melting zone and natural permafrost table, which is usually a key factor for permafrost embankment design in frozen ground regions. The prediction may be further complicated due to the inherent uncertainties of material properties. Hence, stochastic analyses should be conducted. Firstly, Karhunen-Loeve expansion is applied to attain the random fields for hydraulic and thermal conductions. Next, the mixed-form modified Richards equation for mass transfer (i.e., mass equation) and the heat transport equation for heat transient flow in a variably saturated frozen soil are combined into one equation with temperature unknown. Furthermore, the finite element formulation for the coupled thermal-hydraulic fields is derived. Based on the random fields, the stochastic finite element analyses on stability of embankment are carried out. Numerical results show that stochastic analyses of embankment stability may provide a more rational picture for the distribution of factors of safety (FOS), which is definitely useful for embankment design in frozen ground regions.

  12. Residential magnetic field: Accounting for external sources and residential grounding circuits

    Energy Technology Data Exchange (ETDEWEB)

    Barrow, D.A.

    1989-06-14

    A project to characterize the sources of magnetic fields in residential locations was established as part of Ontario Hydro's program to assess the risks, if any, posed by fields due to the electric power system. In this report, a simple model for the strength of the magnetic field at 60 Hz found inside houses is developed to account for the house wiring, and for sources external to the house. In the model the house wiring is reduced to a single circuit carrying the net current on the service drop to the house and the service grounding current. All sources external to the house are combined and represented as a single ambient field assumed to be spatially uniform throughout the volume of the house. This model and a measurmement procedure were tested on 5 houses in locations inside the houses remote from appliances, which were not included in the model. In the main, good agreement was found between actual measured field strengths and those predicted by the model. 4 refs., 10 figs., 6 tabs.

  13. Operation of an array of field-change detectors to provide ground truth for FORTE data

    Energy Technology Data Exchange (ETDEWEB)

    Massey, R.S.; Eack, K.B.; Eberle, M.H.; Shao, X.M.; Smith, D.A. [Los Alamos National Lab., NM (United States). Space and Atmospheric Sciences Group; Wiens, K.C. [New Mexico Inst. of Tech., Socorro, NM (United States)

    1999-06-01

    The authors have deployed an array of fast electric-field-change sensors around the state of New Mexico to help identify the lightning processes responsible for the VHF RF signals detected by the FORTE satellite`s wide-band transient radio emission receivers. The array provides them with locations and electric-field waveforms for events within New Mexico and into surrounding states, and operates continuously. They are particularly interested in events for which there are coincident FORTE observations. For these events, they can correct both the array and FORTE waveforms for time of flight, and can plot the two waveforms on a common time axis. Most of the coincident events are from cloud-go-ground discharges, but the most powerful are from a little-studied class of events variously called narrow bipolar events and compact intra-cloud discharges. They have therefore focused their attention on these events whether or not FORTE was in position to observe them.

  14. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  15. Ground-State Behavior of the Quantum Compass Model in an External Field

    Institute of Scientific and Technical Information of China (English)

    SUN Ke-Wei; CHEN Qing-Hu

    2011-01-01

    @@ Ground-state(GS)properties of the two-dimensional(2D)quantum compass model in an external field on a square 5×5 lattice are investigated by using the exact diagonalization(ED)method.We obtain the GS energy and evaluate quantities such as its correlation functions,nearest-neighbor entanglement and local order parameter.As the external field is presented,the first-order quantum phase point is absent and the system exhibits the behaviors of the second-order phase transition.%Ground-state (GS) properties of the two-dimensional (2D) quantum compass model in an external Geld on a square 5x5 lattice are investigated by using the exact diagonalization (ED) method. We obtain the GS energy and evaluate quantities such as its correlation functions, nearest-neighbor entanglement and local order parameter. As the external Geld is presented, the first-order quantum phase point is absent and the system exhibits the behaviors of the second-order phase transition.

  16. Solid state magnetic field sensors for micro unattended ground networks using spin dependent tunneling

    Science.gov (United States)

    Tondra, Mark; Nordman, Catherine A.; Lange, Erik H.; Reed, Daniel; Jander, Albrect; Akou, Seraphin; Daughton, James

    2001-09-01

    Micro Unattended Ground Sensor Networks will likely employ magnetic sensors, primarily for discrimination of objects as opposed to initial detection. These magnetic sensors, then, must fit within very small cost, size, and power budgets to be compatible with the envisioned sensor suites. Also, a high degree of sensitivity is required to minimize the number of sensor cells required to survey a given area in the field. Solid state magnetoresistive sensors, with their low cost, small size, and ease of integration, are excellent candidates for these applications assuming that their power and sensitivity performance are acceptable. SDT devices have been fabricated into prototype magnetic field sensors suitable for use in micro unattended ground sensor networks. They are housed in tiny SOIC 8-pin packages and mounted on a circuit board with required voltage regulation, signal amplification and conditioning, and sensor control and communications functions. The best sensitivity results to date are 289 pT/rt. Hz at 1 Hz, and and 7 pT/rt. Hz at f > 10 kHz. Expected near term improvements in performance would bring these levels to approximately 10 pT/rt Hz at 1 Hz and approximately 1 pT/rt. Hz at > 1 kHz.

  17. Independet Component Analyses of Ground-based Exoplanetary Transits

    Science.gov (United States)

    Silva Martins-Filho, Walter; Griffith, Caitlin Ann; Pearson, Kyle; Waldmann, Ingo; Biddle, Lauren; Zellem, Robert Thomas; Alvarez-Candal, Alvaro

    2016-10-01

    Most observations of exoplanetary atmospheres are conducted when a "Hot Jupiter" exoplanet transits in front of its host star. These Jovian-sized planets have small orbital periods, on the order of days, and therefore a short transit time, making them more ameanable to observations. Measurements of Hot Jupiter transits must achieve a 10-4 level of accuracy in the flux to determine the spectral modulations of the exoplanetary atmosphere. In order to accomplish this level of precision, we need to extract systematic errors, and, for ground-based measurements, the effects of Earth's atmosphere, from the signal due to the exoplanet, which is several orders of magnitudes smaller. Currently, the effects of the terrestrial atmosphere and the some of the time-dependent systematic errors are treated by dividing the host star by a reference star at each wavelength and time step of the transit. More recently, Independent Component Analyses (ICA) have been used to remove systematic effects from the raw data of space-based observations (Waldmann 2014,2012; Morello et al.,2015,2016). ICA is a statistical method born from the ideas of the blind-source separation studies, which can be used to de-trend several independent source signals of a data set (Hyvarinen and Oja, 2000). One strength of this method is that it requires no additional prior knowledge of the system. Here, we present a study of the application of ICA to ground-based transit observations of extrasolar planets, which are affected by Earth's atmosphere. We analyze photometric data of two extrasolar planets, WASP-1b and GJ3470b, recorded by the 61" Kuiper Telescope at Stewart Observatory using the Harris B and U filters. The presentation will compare the light curve depths and their dispersions as derived from the ICA analysis to those derived by analyses that ratio of the host star to nearby reference stars.References: Waldmann, I.P. 2012 ApJ, 747, 12, Waldamann, I. P. 2014 ApJ, 780, 23; Morello G. 2015 ApJ, 806

  18. Ground and aircraft lidar measurements of sea salt and dust plumes with a small wide-field-of-view system

    Science.gov (United States)

    Porter, John N.

    2004-12-01

    A small portable lidar system was recently used to derive aerosol optical concentrations from ground and aircraft platforms. The mini lidar uses a telescope setup with a relatively wide field of view allowing for measurements from close in (~60 m range) with no near field correction. In order to account for the large dynamic range, a custom logarithmic amplifier is used. Lidar measurements have been made in Hawaii and examples will be shown. More recently the Lidar was mounted on an aircraft for an experiment in the United Arab Emirates. In this case, the Lidar system was used to looking up, forward and down. The Lidar measurements looking up and down provided vertical profiles of aerosol concentrations. The lidar looking forward were used to derive quantitative aerosol extinction values using an existing and a new approach. Preliminary examples of this UAE data are shown. Being able to model aerosol phase functions is important for both satellite and Lidar aerosol retrievals. Mie theory is adequate for spherical particles but complex aerosols such as dust and organics are more difficult to model. Here we discuss phase function measurements we have made with our ground based polar nephelometer for sea salt and more recently for dust in the United Arab Emirates.

  19. Models of ionospheric VLF absorption of powerful ground based transmitters

    Science.gov (United States)

    Cohen, M. B.; Lehtinen, N. G.; Inan, U. S.

    2012-12-01

    Ground based Very Low Frequency (VLF, 3-30 kHz) radio transmitters play a role in precipitation of energetic Van Allen electrons. Initial analyses of the contribution of VLF transmitters to radiation belt losses were based on early models of trans-ionospheric propagation known as the Helliwell absorption curves, but some recent studies have found that the model overestimates (by 20-100 dB) the VLF energy reaching the magnetosphere. It was subsequently suggested that conversion of wave energy into electrostatic modes may be responsible for the error. We utilize a newly available extensive record of VLF transmitter energy reaching the magnetosphere, taken from the DEMETER satellite, and perform a direct comparison with a sophisticated full wave model of trans-ionospheric propagation. Although the model does not include the effect of ionospheric irregularities, it correctly predicts the average total power injected into the magnetosphere within several dB. The results, particularly at nighttime, appear to be robust against the variability of the ionospheric electron density. We conclude that the global effect of irregularity scattering on whistler mode conversion to quasi-electrostatic may be no larger than 6 dB.

  20. Interplanetary Charged Dust Magnetic Clouds Striking the Magnetosphere: Coordinated Space-based and Ground-based Observations

    Science.gov (United States)

    Russell, C. T.; Chi, Peter; Lai, Hairong

    In general, asteroids, meteoroids and dust do not interact with the plasma structures in the solar system, but after a collision between fast moving bodies the debris cloud contains nanoscale dust particles that are charged and behave like heavy ions. Dusty magnetic clouds are then accelerated to the solar wind speed. While they pose no threat to spacecraft because of the particle size, the coherency imposed by the magnetization of the cloud allows the cloud to interact with the Earth’s magnetosphere as well as the plasma in the immediate vicinity of the cloud. We call these clouds Interplanetary Field Enhancements (IFEs). These IFEs are a unique class of interplanetary field structures that feature cusp-shaped increases and decreases in the interplanetary magnetic field and a thin current sheet. The occurrence of IFEs is attributed to the interaction between the solar wind and dust particles produced in inter-bolide collisions. Previous spacecraft observations have confirmed that IFEs move with the solar wind. When IFEs strike the magnetosphere, they may distort the magnetosphere in several possible ways, such as producing a small indentation, a large scale compression, or a glancing blow. In any event if the IFE is slowed by the magnetosphere, the compression of the Earth’s field should be seen in the ground-based magnetic records that are continuously recorded. Thus it is important to understand the magnetospheric response to IFE arrival. In this study, we investigate the IFE structure observed by spacecraft upstream of the magnetosphere and the induced magnetic field perturbations observed by networks of ground magnetometers, including the THEMIS, CARISMA, McMAC arrays in North America and the IMAGE array in Europe. We find that, in a well-observed IFE event on December 24, 2006, all ground magnetometer stations observed an impulse at approximately 1217 UT when the IFE was expected to arrive at the Earth’s magnetopause. These ground stations spread across

  1. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    Energy Technology Data Exchange (ETDEWEB)

    Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

    2000-03-14

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

  2. Probing Pluto's Atmosphere Using Ground-Based Stellar Occultations

    Science.gov (United States)

    Sicardy, Bruno; Rio de Janeiro Occultation Team, Granada Team, International Occultation and Timing Association, Royal Astronomical Society New Zealand Occultation Section, Lucky Star associated Teams

    2016-10-01

    Over the last three decades, some twenty stellar occultations by Pluto have been monitored from Earth. They occur when the dwarf planet blocks the light from a star for a few minutes as it moves on the sky. Such events led to the hint of a Pluto's atmosphere in 1985, that was fully confirmed during another occultation in 1988, but it was only in 2002 that a new occultation could be recorded. From then on, the dwarf planet started to move in front of the galactic center, which amplified by a large factor the number of events observable per year.Pluto occultations are essentially refractive events during which the stellar rays are bent by the tenuous atmosphere, causing a gradual dimming of the star. This provides the density, pressure and temperature profiles of the atmosphere from a few kilometers above the surface up to about 250 km altitude, corresponding respectively to pressure levels of about 10 and 0.1 μbar. Moreover, the extremely fine spatial resolution (a few km) obtained through this technique allows the detection of atmospheric gravity waves, and permits in principle the detection of hazes, if present.Several aspects make Pluto stellar occultations quite special: first, they are the only way to probe Pluto's atmosphere in detail, as the dwarf planet is far too small on the sky and the atmosphere is far too tenuous to be directly imaged from Earth. Second, they are an excellent example of participative science, as many amateurs have been able to record those events worldwide with valuable scientific returns, in collaboration with professional astronomers. Third, they reveal Pluto's climatic changes on decade-scales and constrain the various seasonal models currently explored.Finally, those observations are fully complementary to space exploration, in particular with the New Horizons (NH) mission. I will show how ground-based occultations helped to better calibrate some NH profiles, and conversely, how NH results provide some key boundary conditions

  3. Spatio-temporal monitoring of cotton cultivation using ground-based and airborne multispectral sensors in GIS environment.

    Science.gov (United States)

    Papadopoulos, Antonis; Kalivas, Dionissios; Theocharopoulos, Sid

    2017-07-01

    Multispectral sensor capability of capturing reflectance data at several spectral channels, together with the inherent reflectance responses of various soils and especially plant surfaces, has gained major interest in crop production. In present study, two multispectral sensing systems, a ground-based and an aerial-based, were applied for the multispatial and temporal monitoring of two cotton fields in central Greece. The ground-based system was Crop Circle ACS-430, while the aerial consisted of a consumer-level quadcopter (Phantom 2) and a modified Hero3+ Black digital camera. The purpose of the research was to monitor crop growth with the two systems and investigate possible interrelations between the derived well-known normalized difference vegetation index (NDVI). Five data collection campaigns were conducted during the cultivation period and concerned scanning soil and plants with the ground-based sensor and taking aerial photographs of the fields with the unmanned aerial system. According to the results, both systems successfully monitored cotton growth stages in terms of space and time. The mean values of NDVI changes through time as retrieved by the ground-based system were satisfactorily modelled by a second-order polynomial equation (R (2) 0.96 in Field 1 and 0.99 in Field 2). Further, they were highly correlated (r 0.90 in Field 1 and 0.74 in Field 2) with the according values calculated via the aerial-based system. The unmanned aerial system (UAS) can potentially substitute crop scouting as it concerns a time-effective, non-destructive and reliable way of soil and plant monitoring.

  4. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  5. Tissue Engineering of Cartilage on Ground-Based Facilities

    Science.gov (United States)

    Aleshcheva, Ganna; Bauer, Johann; Hemmersbach, Ruth; Egli, Marcel; Wehland, Markus; Grimm, Daniela

    2016-06-01

    Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free three-dimensional (3D) tissue formation. To investigate the short-term influence, human chondrocytes were cultivated for 2 h, 4 h, 16 h, and 24 h on a 2D Fast-Rotating Clinostat (FRC) in DMEM/F-12 medium supplemented with 10 % FCS. We detected holes in the vimentin network, perinuclear accumulations of vimentin after 2 h, and changes in the chondrocytes shape visualised by F-actin staining after 4 h of FRC-exposure. Scaffold-free cultivation of chondrocytes for 7 d on the Random Positioning Machine (RPM), the FRC and the Rotating Wall Vessel (RWV) resulted in spheroid formation, a phenomenon already known from spaceflight experiments with chondrocytes (MIR Space Station) and thyroid cancer cells (SimBox/Shenzhou-8 space mission). The experiments enabled by the ESA-CORA-GBF programme gave us an optimal opportunity to study gravity-related cellular processes, validate ground-based facilities for our chosen cell system, and prepare long-term experiments under real microgravity conditions in space

  6. Atmospheric Refraction Path Integrals in Ground-Based Interferometry

    CERN Document Server

    Mathar, R J

    2004-01-01

    The basic effect of the earth's atmospheric refraction on telescope operation is the reduction of the true zenith angle to the apparent zenith angle, associated with prismatic aberrations due to the dispersion in air. If one attempts coherent superposition of star images in ground-based interferometry, one is in addition interested in the optical path length associated with the refracted rays. In a model of a flat earth, the optical path difference between these is not concerned as the translational symmetry of the setup means no net effect remains. Here, I evaluate these interferometric integrals in the more realistic arrangement of two telescopes located on the surface of a common earth sphere and point to a star through an atmosphere which also possesses spherical symmetry. Some focus is put on working out series expansions in terms of the small ratio of the baseline over the earth radius, which allows to bypass some numerics which otherwise is challenged by strong cancellation effects in building the opti...

  7. Experiments on a Ground-Based Tomographic Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Hoonyol Lee

    2016-08-01

    Full Text Available This paper presents the development and experiment of three-dimensional image formation by using a ground-based tomographic synthetic aperture radar (GB-TomoSAR system. GB-TomoSAR formulates two-dimensional synthetic aperture by the motion of antennae, both in azimuth and vertical directions. After range compression, three-dimensional image focusing is performed by applying Deramp-FFT (Fast Fourier Transform algorithms, both in azimuth and vertical directions. Geometric and radiometric calibrations were applied to make an image cube, which is then projected into range-azimuth and range-vertical cross-sections for visualization. An experiment with a C-band GB-TomoSAR system with a scan length of 2.49 m and 1.86 m in azimuth and vertical-direction, respectively, shows distinctive three-dimensional radar backscattering of stable buildings and roads with resolutions similar to the theoretical values. Unstable objects such as trees and moving cars generate severe noise due to decorrelation during the eight-hour image-acquisition time.

  8. Satellite Type Estination from Ground-based Photometric Observation

    Science.gov (United States)

    Endo, T.; Ono, H.; Suzuki, J.; Ando, T.; Takanezawa, T.

    2016-09-01

    The optical photometric observation is potentially a powerful tool for understanding of the Geostationary Earth Orbit (GEO) objects. At first, we measured in laboratory the surface reflectance of common satellite materials, for example, Multi-layer Insulation (MLI), mono-crystalline silicon cells, and Carbon Fiber Reinforced Plastic (CFRP). Next, we calculated visual magnitude of a satellite by simplified shape and albedo. In this calculation model, solar panels have dimensions of 2 by 8 meters, and the bus area is 2 meters squared with measured optical properties described above. Under these conditions, it clarified the brightness can change the range between 3 and 4 magnitudes in one night, but color index changes only from 1 to 2 magnitudes. Finally, we observed the color photometric data of several GEO satellites visible from Japan multiple times in August and September 2014. We obtained that light curves of GEO satellites recorded in the B and V bands (using Johnson filters) by a ground-base optical telescope. As a result, color index changed approximately from 0.5 to 1 magnitude in one night, and the order of magnitude was not changed in all cases. In this paper, we briefly discuss about satellite type estimation using the relation between brightness and color index obtained from the photometric observation.

  9. VME-based remote instrument control without ground loops

    CERN Document Server

    Belleman, J; González, J L

    1997-01-01

    New electronics has been developed for the remote control of the pick-up electrodes at the CERN Proton Synchrotron (PS). Communication between VME-based control computers and remote equipment is via full duplex point-to-point digital data links. Data are sent and received in serial format over simple twisted pairs at a rate of 1 Mbit/s, for distances of up to 300 m. Coupling transformers are used to avoid ground loops. The link hardware consists of a general-purpose VME-module, the 'TRX' (transceiver), containing four FIFO-buffered communication channels, and a dedicated control card for each remote station. Remote transceiver electronics is simple enough not to require micro-controllers or processors. Currently, some sixty pick-up stations of various types, all over the PS Complex (accelerators and associated beam transfer lines) are equipped with the new system. Even though the TRX was designed primarily for communication with pick-up electronics, it could also be used for other purposes, for example to for...

  10. Ground-based measurements of UV Index (UVI at Helwan

    Directory of Open Access Journals (Sweden)

    H. Farouk

    2012-12-01

    Full Text Available On October 2010 UV Index (UVI ground-based measurements were carried out by weather station at solar laboratory in NRIAG. The daily variation has maximum values in spring and summer days, while minimum values in autumn and winter days. The low level of UVI between 2.55 and 2.825 was found in December, January and February. The moderate level of UVI between 3.075 and 5.6 was found in March, October and November. The high level of UVI between 6.7 and 7.65 was found in April, May and September. The very high level of UVI between 8 and 8.6 was found in June, July and August. High level of radiation over 6 months per year including 3 months with a very high level UVI. According to the equation {UVI=a[SZA]b} the UVI increases with decreasing SZA by 82% on a daily scale and 88% on a monthly scale. Helwan exposure to a high level of radiation over 6 months per year including 3 months with a very high level UVI, so it is advisable not to direct exposure to the sun from 11 am to 2:00 pm.

  11. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    Science.gov (United States)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the

  12. Ground-based monitoring of solar radiation in Moldova

    Science.gov (United States)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Integrated measurements of solar radiation in Kishinev, Moldova have been started by Atmospheric Research Group (ARG) at the Institute of Applied Physics from 2003. Direct, diffuse and total components of solar and atmospheric long-wave radiation are measured by using of the radiometric complex at the ground-based solar radiation monitoring station. Measurements are fulfilled at the stationary and moving platforms equipped with the set of 9 broadband solar radiation sensors overlapping wavelength range from UV-B to IR. Detailed description of the station can be found at the site http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E). Summary of observation data acquired at the station in the course of short-term period from 2004 to 2009 are presented below. Solar radiation measurements were fulfilled by using CM11(280-3000 nm) and CH1 sensors (Kipp&Zonen). In the course of a year maximum and minimum of monthly sums of total radiation was ~706.4 MJm-2 in June and ~82.1MJm-2 in December, respectively. Monthly sums of direct solar radiation (on horizontal plane) show the maximum and minimum values of the order ~456.9 MJm-2 in July and ~25.5MJm-2 in December, respectively. In an average, within a year should be marked the predominance of direct radiation over the scattered radiation, 51% and 49%, respectively. In the course of a year, the percentage contribution of the direct radiation into the total radiation is ~55-65% from May to September. In the remaining months, the percentage contribution decreases and takes the minimum value of ~ 28% in December. In an average, annual sum of total solar radiation is ~4679.9 MJm-2. For the period from April to September accounts for ~76% of the annual amount of total radiation. Annual sum of sunshine duration accounts for ~2149 hours, which is of ~ 48% from the possible sunshine duration. In an average, within a year maximum and minimum of sunshine duration is ~ 304 hours in

  13. GVT-Based Ground Flutter Test without Wind Tunnel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc (ZONA) and Arizona State University (ASU) propose a R&D effort to develop a ground flutter testing system without wind tunnel, called the...

  14. GVT-Based Ground Flutter Test without Wind Tunnel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc (ZONA) and Arizona State University (ASU) propose a R&D effort to further develop the ground flutter testing system in place of a wind...

  15. System of gait analysis based on ground reaction force assessment

    Directory of Open Access Journals (Sweden)

    František Vaverka

    2015-12-01

    Full Text Available Background: Biomechanical analysis of gait employs various methods used in kinematic and kinetic analysis, EMG, and others. One of the most frequently used methods is kinetic analysis based on the assessment of the ground reaction forces (GRF recorded on two force plates. Objective: The aim of the study was to present a method of gait analysis based on the assessment of the GRF recorded during the stance phase of two steps. Methods: The GRF recorded with a force plate on one leg during stance phase has three components acting in directions: Fx - mediolateral, Fy - anteroposterior, and Fz - vertical. A custom-written MATLAB script was used for gait analysis in this study. This software displays instantaneous force data for both legs as Fx(t, Fy(t and Fz(t curves, automatically determines the extremes of functions and sets the visual markers defining the individual points of interest. Positions of these markers can be easily adjusted by the rater, which may be necessary if the GRF has an atypical pattern. The analysis is fully automated and analyzing one trial takes only 1-2 minutes. Results: The method allows quantification of temporal variables of the extremes of the Fx(t, Fy(t, Fz(t functions, durations of the braking and propulsive phase, duration of the double support phase, the magnitudes of reaction forces in extremes of measured functions, impulses of force, and indices of symmetry. The analysis results in a standardized set of 78 variables (temporal, force, indices of symmetry which can serve as a basis for further research and diagnostics. Conclusions: The resulting set of variable offers a wide choice for selecting a specific group of variables with consideration to a particular research topic. The advantage of this method is the standardization of the GRF analysis, low time requirements allowing rapid analysis of a large number of trials in a short time, and comparability of the variables obtained during different research measurements.

  16. Hydrogeology and soil gas at J-Field, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Hughes, W.B.

    1993-01-01

    Disposal of chemical warfare agents, munitions, and industrial chemicals in J-Field, Aberdeen Proving Ground, Maryland, has contaminated soil, groundwater and surface water. Seven exploratory borings and 38 observation wells were drilled to define the hydrogeologic framework at J-Field and to determine the type, extent, and movement of contaminants. The geologic units beneath J-Field consist of Coastal Plain sediments of the Cretaceous Patapsco Formation and Pleistocene Talbot Formation. The Patapsco Formation contains several laterally discontinuous aquifers and confining units. The Pleistocene deposits were divided into 3 hydrogeologic units--a surficial aquifer, a confining unit, and a confined aquifer. Water in the surficial aquifer flows laterally from topographically high areas to discharge areas in marshes and streams, and vertically to the underlying confined aquifer. In offshore areas, water flows from the deeper confined aquifers upward toward discharge areas in the Gunpowder River and Chesapeake Bay. Analyses of soil-gas samples showed high relative-flux values of chlorinated solvents, phthalates, and hydrocarbons at the toxic-materials disposal area, white-phosphorus disposal area, and riot-control-agent disposal area. The highest flux values were located downgradient of the toxic materials and white phosphorus disposal areas, indicating that groundwater contaminants are moving from source areas beneath the disposal pits toward discharge points in the marshes and estuaries. Elevated relative-flux values were measured upgradient and downgradient of the riot-control agent disposal area, and possibly result from soil and (or) groundwater contamination.

  17. Possible ground states and parallel magnetic-field-driven phase transitions of collinear antiferromagnets

    Science.gov (United States)

    Li, Hai-Feng

    2016-10-01

    Understanding the nature of all possible ground states and especially magnetic-field-driven phase transitions of antiferromagnets represents a major step towards unravelling the real nature of interesting phenomena such as superconductivity, multiferroicity or magnetoresistance in condensed-matter science. Here a consistent mean-field calculation endowed with antiferromagnetic (AFM) exchange interaction (J), easy axis anisotropy (γ), uniaxial single-ion anisotropy (D) and Zeeman coupling to a magnetic field parallel to the AFM easy axis consistently unifies the AFM state, spin-flop (SFO) and spin-flip transitions. We reveal some mathematically allowed exotic spin states and fluctuations depending on the relative coupling strength of (J, γ and D). We build the three-dimensional (J, γ and D) and two-dimensional (γ and D) phase diagrams clearly displaying the equilibrium phase conditions and discuss the origins of various magnetic states as well as their transitions in different couplings. Besides the traditional first-order type one, we unambiguously confirm an existence of a second-order type SFO transition. This study provides an integrated theoretical model for the magnetic states of collinear antiferromagnets with two interpenetrating sublattices and offers a practical approach as an alternative to the estimation of magnetic exchange parameters (J, γ and D), and the results may shed light on nontrivial magnetism-related properties of bulks, thin films and nanostructures of correlated electron systems.

  18. Tomographic airborne ground penetrating radar imaging: Achievable spatial resolution and on-field assessment

    Science.gov (United States)

    Catapano, Ilaria; Crocco, Lorenzo; Krellmann, Yvonne; Triltzsch, Gunnar; Soldovieri, Francesco

    2014-06-01

    Ground Penetrating Radar (GPR) airborne systems are gaining an increasing attention as effective monitoring tools capable of underground investigation of wide areas. With respect to this frame, the paper deals with a reconstruction approach specifically designed to image buried targets from airborne gathered scattered field data. The role of the measurement configuration is investigated in order to address the practical problem of how multi-monostatic and multi-frequency data should be gathered, in terms of synthetic aperture length and frequency range, and how the available data affect the achievable reconstruction capabilities. Such an analysis allows us to evaluate the performance of the reconstruction approach in terms of transversal and depth resolution limits. Finally, an experimental validation of the approach is performed by processing real data.

  19. Ground State Properties of Ds Isotopes Within the Relativistic Mean Field Theory

    Institute of Scientific and Technical Information of China (English)

    张海飞; 张鸿飞; 李君清

    2012-01-01

    The ground state properties of Ds (Z=110) isotopes (N=151-195) are studied in the framework of the relativistic mean field (RMF) theory with the effective interaction NL-Z2.The pairing correlation is treated within the conventional BCS approximation.The calculated binding energies are consistent with the results from finite-range droplet model (FRDM) and Macroscopic-microscopic method (MMM).The quadrupole deformation,α-decay energy,α-decay half-live,charge radius,two-neutron separation energy and single-particle spectra are analyzed for Ds isotopes to find new characteristics of superheavy nuclei (SHN).Among the calculated results it is rather distinct that the isotopic shift appears evidently at neutron number N=184.

  20. Ground-State Properties of Z = 59 Nuclei in the Relativistic Mean-Field Theory

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yong; MA Zhong-Yu; CHEN Bao-Qiu; LI Jun-Qing

    2000-01-01

    Ground-state properties of Pr isotopes are studied in a framework of the relativistic mean-field (RMF) theory using the recently proposed parameter set TM1. Bardeen-Cooper-Schrieffer (BCS) pproximation and blocking method is adopted to deal with pairing interaction and the odd nucleon, respectively. The pairing forces are taken to be isospin dependent. The domain of the validity of the BCS theory and the positions of neutron and proton drip lines are studied. It is shown that RMF theory has provided a good description of the binding energy,isotope shifts and deformation of nuclei over a large range of Pr isotopes, which are in good agreement with those obtained in the finite-range droplet model.

  1. Towards the development of tamper-resistant, ground-based mobile sensor nodes

    Science.gov (United States)

    Mascarenas, David; Stull, Christopher; Farrar, Charles

    2011-11-01

    Mobile sensor nodes hold great potential for collecting field data using fewer resources than human operators would require and potentially requiring fewer sensors than a fixed-position sensor array. It would be very beneficial to allow these mobile sensor nodes to operate unattended with a minimum of human intervention. In order to allow mobile sensor nodes to operate unattended in a field environment, it is imperative that they be capable of identifying and responding to external agents that may attempt to tamper with, damage or steal the mobile sensor nodes, while still performing their data collection mission. Potentially hostile external agents could include animals, other mobile sensor nodes, or humans. This work will focus on developing control policies to help enable a mobile sensor node to identify and avoid capture by a hostile un-mounted human. The work is developed in a simulation environment, and demonstrated using a non-holonomic, ground-based mobile sensor node. This work will be a preliminary step toward ensuring the cyber-physical security of ground-based mobile sensor nodes that operate unattended in potentially unfriendly environments.

  2. Investigation of Rainfall Characteristics Using TRMM PR and Ground Based Radar

    Science.gov (United States)

    Dolan, B.; Lang, T. J.; Nesbitt, S. W.; Cifelli, R.; Rutledge, S. A.

    2011-12-01

    Despite relatively good agreement between reflectivity profiles, comparisons of rainfall statistics derived from TRMM Precipitation Radar (PR) deviate from ground-based radar (GR) observations in various field locations across the globe. TRMM PR rain rate probability distribution functions underestimate the occurrence of high rain rates (> 80 mm hr-1) compared with similar ground-based statistics, and similarly, GR distributes the total rain volume over a larger range of rain rates. Analysis of ten years of TRMM data over three field sites has shown that the greatest disagreements occur in the most intense convection, such as over land and during the east and break wind regimes over the Amazon and Australia, respectively. These differences are investigated further in this study. Ten years of TRMM PR data are analyzed in conjunction with data collected during two field experiments involving the NCAR S-Pol radar. S-Pol was deployed in Brazil in the Amazon during TRMM LBA in 1998-1999 and near Mazatlan, Mexico as part of the North American Monsoon Experiment (NAME) in 2004. Additionally, multiple years of data from the Australian Bureau of Meteorology CPOL radar located in Darwin, Australia, are examined to extend the robustness of the GR observations beyond the relatively short field campaigns. Polarimetric data collected by the two radars are used to characterize the differences between TRMM PR and GR observations as a function of bulk hydrometeor type. For example, profiles with significant graupel, as identified by GR, are analyzed to investigate the role of mixed phase in the PR retrievals. The vertical variability of D0 is examined as a function of reflectivity and related to the underlying microphysical conditions using the polarimetric data provided by the GR observations. Spatial variability of D0 is also explored by correlating D0 values derived from GR at different heights. Several significant changes were made to the TRMM processing algorithms in the

  3. Field Determination Of Ground Water Contamination Using Laser Fluorescence And Fiber Optics

    Science.gov (United States)

    Chudyk, Wayne; Pohlig, Kenneth; Wolf, Lisa; Fordiani, Rita

    1990-02-01

    Experience at over sixteen sites containing over one hundred wells has shown the feasibility of using fiber optic systems for in situ measurement of aromatic ground water contaminants. Aromatic solvents, as well as the benzene, ethylbenzene, toluene, and xylenes (BTEX) fraction of gasoline, have been detected using a prototype field instrument. Well depths have varied from 5 m to 30 m, and limits of detection at 10 m have been in the ppb range. We are routinely using two separate clear tefzel-coated optical fibers bound in a black teflon tubing for in situ sensing of aromatic organic ground water contaminants via laser-induced fluorescence. One fiber, the excitation fiber, carries the 266 nm, 15 nanosecond, laser pulse down to the sensor. The other fiber, used for detection, carries collected fluorescence plus scattered laser light back up to the surface to the detector. Optical crosstalk has been observed to occur along the entire length of the sensor tubing. This may be due to fiber fluorescence. The fiber crosstalk is eliminated by use of a 320 nm cutoff filter in the detector optics. Black tefzel-coated fibers are also commercially available which could eliminate this potential problem. Evaluation of fluorescence emission versus concentration using serial dilution of standards shows that fluorescence lifetimes are important when evaluating different concentrations as well as in evaluation of mixtures. Minimization of signal-to-noise ratios in the detector electronics involves tuning the gate width used in measuring the fluorescent pulse, in order to include the full fluorescent signal returning from the contaminants. Field tests of the modular prototype instrument have been successful in their demonstration of the feasibility of this new technology. Results at a variety of types of sites are presented, showing the flexibility of the modular approach used in the design and operation of this new instrument.

  4. Ground flora, small mammal and bird species diversity in miscanthus (Miscanthusxgiganteus) and reed canary-grass (Phalaris arundinacea) fields

    Energy Technology Data Exchange (ETDEWEB)

    Semere, T.; Slater, F.M. [Cardiff University, School of Biosciences, Llysdinam Field Centre, Newbridge-on-Wye, Llandrindod Wells, Powys LD1 6NB (United Kingdom)

    2007-01-15

    Wildlife monitoring of two miscanthus and two reed canary-grass fields in Herefordshire, England was carried out in 2002, 2003 and 2004 to investigate the ecological impact of perennial biomass grass crops on ground flora, small mammals and birds. Quadrats were used to record percentage ground vegetation cover within and around the periphery of each crop. Small mammals were sampled by live trapping using Longworth traps. The common bird census technique was used to monitor populations of birds. Miscanthus fields were richer in weed vegetation than reed canary-grass or arable fields. Bird use of the biomass crop fields varied depending on species. There were considerably more open-ground bird species such as skylarks (Alauda arvensis), lapwings (Vanellus vanellus) and meadow pipits (Anthus pratensis) within miscanthus than within reed canary-grass fields. There was no particular crop-type preference by the small mammal species, but rather a preference for good ground cover and little land disturbance, which was provided by both biomass crops. Ground flora, small mammals and most of the bird species (except open-ground birds) were found more abundantly within field margins and boundaries than in crop fields indicating the importance of retaining field structure when planting biomass crops. The miscanthus work relates entirely to young crops, which may be representative of part of the national crop if large areas are cultivated for rhizomes. The findings from the current project indicate that perennial biomass grass crops can provide substantially improved habitat for many forms of native wildlife, due to the low intensity of the agricultural management system and the untreated headlands. (author)

  5. The variation of the ground electric field associated with the Mei-Nung earthquake on Feb. 6, 2016

    Science.gov (United States)

    Bing-Chih Chen, Alfred; Yeh, Er-Chun; Chuang, Chia-Wen

    2017-04-01

    Recent studies show that a strong coupling exists between lithosphere, atmosphere and extending up to the ionosphere. Natural phenomena on the ground surface such as oceans variation, volcanic and seismic activities such as earthquakes, and lightning possibly generate significant impacts at ionosphere immediately by electrodynamic processes. The electric field near the ground is one of the potential quantities to explore this coupling process, especially caused by earthquake. Unfortunately, thunderstorm, dust storm or human activities also affect the measured electric field at ground. To investigate the feasibility of a network to monitor the variation of the ground electric field driven by the lightning and earthquake, a filed mill has been deployed in the NCKU campus since Dec. 2015, and luckily experienced the earthquake with a moment magnitude of 6.4 struck 28 km on 6 Feb. 2016. The recorded ground electric field deceased steadily since 1.5 days before the earthquake, and returned to normal level gradually. Moreover, this special feature can not be identified in the other period of the field test. The detail analysis is reported in this presentation.

  6. 3D Ground Penetrating Radar to Detect Tree Roots and Estimate Root Biomass in the Field

    Directory of Open Access Journals (Sweden)

    Shiping Zhu

    2014-06-01

    Full Text Available The objectives of this study were to detect coarse tree root and to estimate root biomass in the field by using an advanced 3D Ground Penetrating Radar (3D GPR system. This study obtained full-resolution 3D imaging results of tree root system using 500 MHz and 800 MHz bow-tie antennas, respectively. The measurement site included two larch trees, and one of them was excavated after GPR measurements. In this paper, a searching algorithm, based on the continuity of pixel intensity along the root in 3D space, is proposed, and two coarse roots whose diameters are more than 5 cm were detected and delineated correctly. Based on the detection results and the measured root biomass, a linear regression model is proposed to estimate the total root biomass in different depth ranges, and the total error was less than 10%. Additionally, based on the detected root samples, a new index named “magnitude width” is proposed to estimate the root diameter that has good correlation with root diameter compared with other common GPR indexes. This index also provides direct measurement of the root diameter with 13%–16% error, providing reasonable and practical root diameter estimation especially in the field.

  7. Characterization of subarctic vegetation using ground based remote sensing methods

    Science.gov (United States)

    Finnell, D.; Garnello, A.; Palace, M. W.; Sullivan, F.; Herrick, C.; Anderson, S. M.; Crill, P. M.; Varner, R. K.

    2014-12-01

    Stordalen mire is located at 68°21'N and 19°02'E in the Swedish subarctic. Climate monitoring has revealed a warming trend spanning the past 150 years affecting the mires ability to hold stable palsa/hummock mounds. The micro-topography of the landscape has begun to degrade into thaw ponds changing the vegetation cover from ombrothrophic to minerotrophic. Hummocks are ecologically important due to their ability to act as a carbon sinks. Thaw ponds and sphagnum rich transitional zones have been documented as sources of atmospheric CH4. An objective of this project is to determine if a high resolution three band camera (RGB) and a RGNIR camera could detect differences in vegetation over five different site types. Species composition was collected for 50 plots with ten repetitions for each site type: palsa/hummock, tall shrub, semi-wet, tall graminoid, and wet. Sites were differentiated based on dominating species and features consisting of open water presence, sphagnum spp. cover, graminoid spp. cover, or the presence of dry raised plateaus/mounds. A pole based camera mount was used to collect images at a height of ~2.44m from the ground. The images were cropped in post-processing to fit a one-square meter quadrat. Texture analysis was performed on all images, including entropy, lacunarity, and angular second momentum. Preliminary results suggested that site type influences the number of species present. The p-values for the ability to predict site type using a t-test range from <0.0001 to 0.0461. A stepwise discriminant analysis on site type vs. texture yielded a 10% misclassification rate. Through the use of a stepwise regression of texture variables, actual vs. predicted percent of vegetation coverage provided R squared values of 0.73, 0.71, 0.67, and 0.89 for C. bigelowii, R. chamaemorus, Sphagnum spp., and open water respectively. These data have provided some support to the notion that texture analyses can be used for classification of mire site types. Future

  8. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel E.; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  9. Ozone profiles above Kiruna from two ground-based radiometers

    Science.gov (United States)

    Ryan, Niall J.; Walker, Kaley A.; Raffalski, Uwe; Kivi, Rigel; Gross, Jochen; Manney, Gloria L.

    2016-09-01

    This paper presents new atmospheric ozone concentration profiles retrieved from measurements made with two ground-based millimetre-wave radiometers in Kiruna, Sweden. The instruments are the Kiruna Microwave Radiometer (KIMRA) and the Millimeter wave Radiometer 2 (MIRA 2). The ozone concentration profiles are retrieved using an optimal estimation inversion technique, and they cover an altitude range of ˜ 16-54 km, with an altitude resolution of, at best, 8 km. The KIMRA and MIRA 2 measurements are compared to each other, to measurements from balloon-borne ozonesonde measurements at Sodankylä, Finland, and to measurements made by the Microwave Limb Sounder (MLS) aboard the Aura satellite. KIMRA has a correlation of 0.82, but shows a low bias, with respect to the ozonesonde data, and MIRA 2 shows a smaller magnitude low bias and a 0.98 correlation coefficient. Both radiometers are in general agreement with each other and with MLS data, showing high correlation coefficients, but there are differences between measurements that are not explained by random errors. An oscillatory bias with a peak of approximately ±1 ppmv is identified in the KIMRA ozone profiles over an altitude range of ˜ 18-35 km, and is believed to be due to baseline wave features that are present in the spectra. A time series analysis of KIMRA ozone for winters 2008-2013 shows the existence of a local wintertime minimum in the ozone profile above Kiruna. The measurements have been ongoing at Kiruna since 2002 and late 2012 for KIMRA and MIRA 2, respectively.

  10. Establishing common ground in community-based arts in health.

    Science.gov (United States)

    White, Mike

    2006-05-01

    This article originates in current research into community-based arts in health. Arts in health is now a diverse field of practice, and community-based arts in health interventions have extended the work beyond healthcare settings into public health. Examples of this work can now be found internationally in different health systems and cultural contexts. The paper argues that researchers need to understand the processes through which community-based arts in health projects evolve, and how they work holistically in their attempt to produce therapeutic and social benefits for both individuals and communities, and to connect with a cultural base in healthcare services themselves. A development model that might be adapted to assist in analysing this is the World Health Organisation Quality of Life Index (WHOQOL). Issues raised in the paper around community engagement, healthy choice and self-esteem are then illustrated in case examples of community-based arts in health practice in South Africa and England; namely the DramAide and Siyazama projects in KwaZulu-Natal, and Looking Well Healthy Living Centre in North Yorkshire. In South Africa there are arts and media projects attempting to raise awareness about HIV/AIDS through mass messaging, but they also recognize that they lack models of longer-term community engagement. Looking Well by contrast addresses health issues identified by the community itself in ways that are personal, empathic and domesticated. But there are also similarities among these projects in their aims to generate a range of social, educational and economic benefits within a community-health framework, and they are successfully regenerating traditional cultural forms to create public participation in health promotion. Process evaluation may provide a framework in which community-based arts in health projects, especially if they are networked together to share practice and thinking, can assess their ability to address health inequalities and focus

  11. High-precision ground-based photometry of exoplanets

    Directory of Open Access Journals (Sweden)

    de Mooij Ernst J.W.

    2013-04-01

    Full Text Available High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana. The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level, this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  12. Solar wind driven empirical forecast models of the time derivative of the ground magnetic field

    Directory of Open Access Journals (Sweden)

    Wintoft Peter

    2015-01-01

    Full Text Available Empirical models are developed to provide 10–30-min forecasts of the magnitude of the time derivative of local horizontal ground geomagnetic field (|dBh/dt| over Europe. The models are driven by ACE solar wind data. A major part of the work has been devoted to the search and selection of datasets to support the model development. To simplify the problem, but at the same time capture sudden changes, 30-min maximum values of |dBh/dt| are forecast with a cadence of 1 min. Models are tested both with and without the use of ACE SWEPAM plasma data. It is shown that the models generally capture sudden increases in |dBh/dt| that are associated with sudden impulses (SI. The SI is the dominant disturbance source for geomagnetic latitudes below 50° N and with minor contribution from substorms. However, at occasions, large disturbances can be seen associated with geomagnetic pulsations. For higher latitudes longer lasting disturbances, associated with substorms, are generally also captured. It is also shown that the models using only solar wind magnetic field as input perform in most cases equally well as models with plasma data. The models have been verified using different approaches including the extremal dependence index which is suitable for rare events.

  13. Scaling earthquake ground motions for performance-based assessment of buildings

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.; Hamburger, R.O.

    2011-01-01

    The impact of alternate ground-motion scaling procedures on the distribution of displacement responses in simplified structural systems is investigated. Recommendations are provided for selecting and scaling ground motions for performance-based assessment of buildings. Four scaling methods are studied, namely, (1)geometric-mean scaling of pairs of ground motions, (2)spectrum matching of ground motions, (3)first-mode-period scaling to a target spectral acceleration, and (4)scaling of ground motions per the distribution of spectral demands. Data were developed by nonlinear response-history analysis of a large family of nonlinear single degree-of-freedom (SDOF) oscillators that could represent fixed-base and base-isolated structures. The advantages and disadvantages of each scaling method are discussed. The relationship between spectral shape and a ground-motion randomness parameter, is presented. A scaling procedure that explicitly considers spectral shape is proposed. ?? 2011 American Society of Civil Engineers.

  14. a Universal De-Noising Algorithm for Ground-Based LIDAR Signal

    Science.gov (United States)

    Ma, Xin; Xiang, Chengzhi; Gong, Wei

    2016-06-01

    Ground-based lidar, working as an effective remote sensing tool, plays an irreplaceable role in the study of atmosphere, since it has the ability to provide the atmospheric vertical profile. However, the appearance of noise in a lidar signal is unavoidable, which leads to difficulties and complexities when searching for more information. Every de-noising method has its own characteristic but with a certain limitation, since the lidar signal will vary with the atmosphere changes. In this paper, a universal de-noising algorithm is proposed to enhance the SNR of a ground-based lidar signal, which is based on signal segmentation and reconstruction. The signal segmentation serving as the keystone of the algorithm, segments the lidar signal into three different parts, which are processed by different de-noising method according to their own characteristics. The signal reconstruction is a relatively simple procedure that is to splice the signal sections end to end. Finally, a series of simulation signal tests and real dual field-of-view lidar signal shows the feasibility of the universal de-noising algorithm.

  15. What Are Special About Ground-Level Events? Flares, CMEs, Active Regions And Magnetic Field Connection

    CERN Document Server

    Nitta, N V; DeRosa, M L; Nightingale, R W

    2012-01-01

    Ground level events (GLEs) occupy the high-energy end of gradual solar energetic particle (SEP) events. They are associated with coronal mass ejections (CMEs) and solar flares, but we still do not clearly understand the special conditions that produce these rare events. During Solar Cycle 23, a total of 16 GLEs were registered, using ground-based neutron monitor data. We first ask if these GLEs are clearly distinguishable from other SEP events observed from space. Setting aside possible difficulties in identifying all GLEs consistently, we then try to find observables which may unmistakably isolate these GLEs by studying the basic properties of the associated eruptions and the active regions (ARs) that produced them. It is found that neither the magnitudes of the CMEs and flares nor the complexities of the ARs give sufficient conditions for GLEs. It is possible to find CMEs, flares or ARs that are not associated with GLEs but that have more extreme properties than those associated with GLEs. We also try to ev...

  16. Ground-based gamma-ray telescopes as ground stations in deep-space lasercom

    CERN Document Server

    Carrasco-Casado, Alberto; Vergaz, Ricardo

    2016-01-01

    As the amount of information to be transmitted from deep-space rapidly increases, the radiofrequency technology has become a bottleneck in space communications. RF is already limiting the scientific outcome of deep-space missions and could be a significant obstacle in the developing of manned missions. Lasercom holds the promise to solve this problem, as it will considerably increase the data rate while decreasing the energy, mass and volume of onboard communication systems. In RF deep-space communications, where the received power is the main limitation, the traditional approach to boost the data throughput has been increasing the receiver's aperture, e.g. the 70-m antennas in the NASA's Deep Space Network. Optical communications also can benefit from this strategy, thus 10-m class telescopes have typically been suggested to support future deep-space links. However, the cost of big telescopes increase exponentially with their aperture, and new ideas are needed to optimize this ratio. Here, the use of ground-...

  17. A six-beam method to measure turbulence statistics using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Vasiljevic, Nikola

    2015-01-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the centre of the scanning circle...... lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89m height under different atmospheric stabilities. The measurements show that in comparison to the reference...... cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85 and 101% of the reference turbulence, whereas the VAD method measures between 66 and 87% of the reference turbulence....

  18. A six-beam method to measure turbulence statistics using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Vasiljevic, Nikola

    2014-01-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the center of the scanning circle...... lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89m height under different atmospheric stabilities. The measurements show that in comparison to the reference...... cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85–101% of the reference turbulence, whereas the VAD method measures between 66–87% of the reference turbulence....

  19. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  20. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  1. Ground-based SMART-COMMIT Measurements for Studying Aerosol and Cloud Properties

    Science.gov (United States)

    Tsay, Si-Chee

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations cover large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite data sets. The development and deployment of SMARTCOMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile facilities are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instruments fall into three categories: flux radiometer, radiance sensor and in-situ probe. In this paper, we will demonstrate the capability of SMART-COMMIT in recent field campaigns (e.g., CRYSTAL-FACE, UAE 2, BASEASIA, NAMMA) that were designed and executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., biomass-burning smoke, airborne dust) and cirrus clouds. We envision robust approaches in which well-collocated ground-based measurements and space-borne observations will greatly advance our knowledge of extensive aerosols and clouds.

  2. Hydrogeologic, soil, and water-quality data for j-field, Aberdeen Proving Ground, Maryland, 1989-94

    Science.gov (United States)

    Phelan, D.J.

    1996-01-01

    Disposal of chemical-warfare agents, munitions, and industrial chemicals in J-Field, Aberdeen Proving Ground, Maryland, has resulted in ground-water, surface-water, and soil contamination. This report presents data collected by the U.S. Geological Survey from Novembr 1989 through September 1994 as part of a remedial investigation of J-Field in response to the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Hydrogeologic data, soil-gas and soil-quality data, and water-qualtiy data are included.

  3. The comparison between a ground based and a space based probabilistic landslide susceptibility assessment

    Science.gov (United States)

    Reichenbach, P.; Mondini, A.; Guzzetti, F.; Rossi, M.; Ardizzone, F.; Cardinali, M.

    2009-04-01

    , thematic maps obtained processing satellite data can be an effective alternative to maps prepared using more traditional, ground based methods.

  4. Issues for Simulation of Galactic Cosmic Ray Exposures for Radiobiological Research at Ground Based Accelerators

    Directory of Open Access Journals (Sweden)

    Myung-Hee Y Kim

    2015-06-01

    Full Text Available For research on the health risks of galactic cosmic rays (GCR ground-based accelerators have been used for radiobiology research with mono-energetic beams of single high charge, Z and energy, E (HZE particles. In this paper we consider the pros and cons of a GCR reference field at a particle accelerator. At the NASA Space Radiation Laboratory (NSRL we have proposed a GCR simulator, which implements a new rapid switching mode and higher energy beam extraction to 1.5 GeV/u, in order to integrate multiple ions into a single simulation within hours or longer for chronic exposures. After considering the GCR environment and energy limitations of NSRL, we performed extensive simulation studies using the stochastic transport code, GERMcode (GCR Event Risk Model to define a GCR reference field using 9 HZE particle beam-energy combinations each with a unique absorber thickness to provide fragmentation and 10 or more energies of proton and 4He beams. The reference field is shown to well represent the charge dependence of GCR dose in several energy bins behind shielding compared to a simulated GCR environment. However a more significant challenge for space radiobiology research is to consider chronic GCR exposure of up to 3 years in relation to simulations with animal models of human risks. We discuss issues in approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks using chronic or fractionation exposures. A kinetics model of HZE particle hit probabilities suggests that experimental simulations of several weeks will be needed to avoid high fluence rate artifacts, which places limitations on the experiments to be performed. Ultimately risk estimates are limited by theoretical understanding, and focus on improving understanding of mechanisms and development of experimental models to improve this understanding should remain the highest priority for space radiobiology

  5. NO2 DOAS measurements from ground and space: comparison of ground based measurements and OMI data in Mexico City

    Science.gov (United States)

    Rivera, C.; Stremme, W.; Grutter, M.

    2012-04-01

    The combination of satellite data and ground based measurements can provide valuable information about atmospheric chemistry and air quality. In this work we present a comparison between measured ground based NO2 differential columns at the Universidad Nacional Autónoma de México (UNAM) in Mexico City, using the Differential Optical Absorption Spectroscopy (DOAS) technique and NO2 total columns measured by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite using the same measurement technique. From these data, distribution maps of average NO2 above the Mexico basin were constructed and hot spots inside the city could be identified. In addition, a clear footprint was detected from the Tula industrial area, ~50 km northwest of Mexico City, where a refinery, a power plant and other industries are located. A less defined footprint was identified in the Cuernavaca basin, South of Mexico City, and the nearby cities of Toluca and Puebla do not present strong enhancements in the NO2 total columns. With this study we expect to cross-validate space and ground measurements and provide useful information for future studies.

  6. An empirical RBF model of the magnetosphere parameterized by interplanetary and ground-based drivers

    Science.gov (United States)

    Tsyganenko, N. A.; Andreeva, V. A.

    2016-11-01

    In our recent paper (Andreeva and Tsyganenko, 2016), a novel method was proposed to model the magnetosphere directly from spacecraft data, with no a priori knowledge nor ad hoc assumptions about the geometry of the magnetic field sources. The idea was to split the field into the toroidal and poloidal parts and then expand each part into a weighted sum of radial basis functions (RBF). In the present work we take the next step forward by having developed a full-fledged model of the near magnetosphere, based on a multiyear set of space magnetometer data (1995-2015) and driven by ground-based and interplanetary input parameters. The model consolidates the largest ever amount of data and has been found to provide the best ever merit parameters, in terms of both the overall RMS residual field and record-high correlation coefficients between the observed and model field components. By experimenting with different combinations of input parameters and their time-averaging intervals, we found the best so far results to be given by the ram pressure Pd, SYM-H, and N-index by Newell et al. (2007). In addition, the IMF By has also been included as a model driver, with a goal to more accurately represent the IMF penetration effects. The model faithfully reproduces both externally and internally induced variations in the global distribution of the geomagnetic field and electric currents. Stronger solar wind driving results in a deepening of the equatorial field depression and a dramatic increase of its dawn-dusk asymmetry. The Earth's dipole tilt causes a consistent deformation of the magnetotail current sheet and a significant north-south asymmetry of the polar cusp depressions on the dayside. Next steps to further develop the new approach are also discussed.

  7. A Direct Approach to Determine the External Disturbing Gravity Field by Applying Green Integral with the Ground Boundary Value

    Directory of Open Access Journals (Sweden)

    TIAN Jialei

    2015-11-01

    Full Text Available By using the ground as the boundary, Molodensky problem usually gets the solution in form of series. Higher order terms reflect the correction between a smooth surface and the ground boundary. Application difficulties arise from not only computational complexity and stability maintenance, but also data-intensiveness. Therefore, in this paper, starting from the application of external gravity disturbance, Green formula is used on digital terrain surface. In the case of ignoring the influence of horizontal component of the integral, the expression formula of external disturbance potential determined by boundary value consisted of ground gravity anomalies and height anomaly difference are obtained, whose kernel function is reciprocal of distance and Poisson core respectively. With this method, there is no need of continuation of ground data. And kernel function is concise, and suitable for the stochastic computation of external disturbing gravity field.

  8. Zero-Magnetic-Field Spin Splitting of Polaron's Ground State Energy Induced by Rashba Spin-Orbit Interaction

    Institute of Scientific and Technical Information of China (English)

    LIU Jia; XIAO Jing-Ling

    2006-01-01

    We study theoretically the ground state energy of a polaron near the interface of a polar-polar semiconductor by considering the Rashba spin-orbit (SO) coupling with the Lee-Low-Pines intermediate coupling method. Our numerical results show that the Rashba SO interaction originating from the inversion asymmetry in the heterostructure splits the ground state energy of the polaron. The electron arealdensity and vector dependence of the ratio of the SO interaction to the total ground state energy or other energy composition are obvious. One can see that even without any external magnetic field, the ground state energy can be split by the Rashba SO interaction, and this split is not a single but a complex one. Since the presents of the phonons, whose energy gives negative contribution to the polaron's,the spin-splitting states of the polaron are more stable than electron's.

  9. Augmenting WFIRST Microlensing with a Ground-based Optical Telescope Network

    CERN Document Server

    Zhu, Wei

    2016-01-01

    Augmenting the WFIRST microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable one-dimensional (1-D) microlens parallax measurements over the entire mass range $M\\gtrsim M_\\oplus$. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging a few years after the observations. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. The addition of such a ground-based survey would also yield full 2-D vector parallax measurements, with largest sensitivity to low-mass lenses, which (being non-luminous) are not subject to followup imaging. These 2-D parallax measurements will directly yield mass and distance measurements for most planetary and binary events. It would also yield additional complete solutions for single-len...

  10. Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument

    Directory of Open Access Journals (Sweden)

    G. van Harten

    2014-06-01

    Full Text Available Characterization of atmospheric aerosols is important for understanding their impact on health and climate. A wealth of aerosol parameters can be retrieved from multi-angle, multi-wavelength radiance and polarization measurements of the clear sky. We developed a ground-based SPEX instrument (groundSPEX for accurate spectropolarimetry, based on the passive, robust, athermal and snapshot spectral polarization modulation technique, and hence ideal for field deployment. It samples the scattering phase function in the principal plane in an automated fashion, using a motorized pan/tilt unit and automatic exposure time detection. Extensive radiometric and polarimetric calibrations were performed, yielding values for both random noise and systematic uncertainties. The absolute polarimetric accuracy at low degrees of polarization is established to be ~ 5 × 10−3. About 70 measurement sequences have been performed throughout four clear-sky days at Cabauw, the Netherlands. Several aerosol parameters were retrieved: aerosol optical thickness, effective radius, and complex refractive index for fine and coarse mode. The results are in good agreement with the co-located AERONET products, with a correlation coefficient of ρ = 0.932 for the total aerosol optical thickness at 550 nm.

  11. Coordinated studies of the geospace environment using Cluster, satellite and ground-based data: an interim review

    Directory of Open Access Journals (Sweden)

    O. Amm

    2005-09-01

    Full Text Available A little more than four years after its launch, the first magnetospheric, multi-satellite mission Cluster has already tremendously contributed to our understanding about the coupled solar wind - magnetosphere - ionosphere system. This is mostly due to its ability, for the first time, to provide instantaneous spatial views of structures in the system, to separate temporal and spatial variations, and to derive velocities and directions of moving structures. Ground-based data have an important complementary impact on Cluster-related research, as they provide a larger-scale context to put the spacecraft data in, allow to virtually enlarge the spacecrafts' field of view, and make it possible to study in detail the coupling between the magnetosphere and the ionosphere in a spatially extended domain. With this paper we present an interim review of cooperative research done with Cluster and ground-based instruments, including the support of other space-based data. We first give a short overview of the instrumentation used, and present some specific data analysis and modeling techniques that have been devised for the combined analysis of Cluster and ground-based data. Then we review highlighted results of the research using Cluster and ground-based data, ordered into dayside and nightside processes. Such highlights include, for example, the identification of the spatio-temporal signatures of the different modes of reconnection on the dayside, and the detailed analysis of the electrodynamic magnetosphere-ionosphere coupling of bursty bulk flows in the tail plasma sheet on the nightside. The aim of this paper is to provide a "sourcebook" for the Cluster and ground-based community that summarises the work that has been done in this field of research, and to identify open questions and possible directions for future studies.

    Keywords. Ionosphere (Auroral ionosphere – Magnetospheric physics (Magnetosphere-ionosphere interactions; General or

  12. Effect of near-earth thunderstorms electric field on the intensity of ground cosmic ray positrons/electrons in Tibet

    CERN Document Server

    Zhou, X X; Huang, D H; Jia, H Y

    2016-01-01

    Monte Carlo simulations are performed to study the correlation between the ground cosmic ray intensity and near-earth thunderstorms electric field at YBJ (4300 m a.s.l., Tibet, China). The variations of the secondary cosmic ray intensity are found to be highly dependent on the strength and polarity of the electric field. In negative fields and in positive fields greater than 600 V/cm, the total number of ground comic ray positrons and electrons increases with increasing electric field strength. And these values increase more obviously when involving a shower with lower primary energy or a higher zenith angle. While in positive fields ranging from 0 to 600 V/cm, the total number of ground comic ray positrons and electrons declines and the amplitude is up to 3.1% for vertical showers. A decrease of intensity occurs for inclined showers in positive fields less than 500 V/cm, which is accompanied by smaller amplitudes. In this paper, the intensity changes are discussed, especially concerning the decreases in posi...

  13. Analyses of Cryogenic Propellant Tank Pressurization based upon Ground Experiments

    OpenAIRE

    Ludwig, Carina; Dreyer, Michael

    2012-01-01

    The pressurization system of cryogenic propellant rockets requires on-board pressurant gas. The objective of this study was to analyze the influence of the pressurant gas temperature on the required pressurant gas mass in terms of lowering the launcher mass. First, ground experiments were performed in order to investigate the pressurization process with regard to the influence of the pressurant gas inlet temperature. Second, a system study for the cryogenic upper stage of a sma...

  14. Ground-based RGB imaging to determine the leaf water potential of potato plants

    Science.gov (United States)

    Zakaluk, Robert F.

    The determination of plant water status from leaf water potential (Psi L) data obtained by conventional methods is impractical for meeting real time irrigation monitoring requirements. This research, undertaken first, in a greenhouse and then in the field, examined the use of artificial neural network (ANN) modeling of RGB (red green blue) images, captured by a ground-based, five mega pixel digital camera, to predict the leaf water potential of potato (Solanum tuberosum L). The greenhouse study examined cv. Russet Burbank, while the field study examined cv. Sangre. The protocol was similar in both studies: (1) images were acquired over different soil nitrate (N) and volumetric water content levels, (2) images were radiometrically calibrated, (3) green foliage was classified and extracted from the images, and (4) image transformations, and vegetation indices were calculated and transformed using principal components analysis (PCA). The findings from both studies were similar: (1) the R and G bands were more important than the B image band in the classification of green leaf pigment, (2) soil N showed an inverse linear relationship against leaf reflectance in the G image band, (3) the ANN model input neuron weights with more separation between soil N and PsiL were more important than other input neurons in predicting PsiL, and (4) the measured and predicted PsiL validation datasets were normally distributed with equal variances and means that were not significantly different. Based on these research findings, the ground-based digital camera proved to be an adequate sensor for image acquisition and a practical tool for acquiring data for predicting the PsiL of potato plants. Keywords: nitrogen, IHS transformation, chromaticity transformation, principal components, vegetation indices, remote sensing, artificial neural network, digital camera.

  15. Random-field Ising model on isometric lattices: Ground states and non-Porod scattering

    Science.gov (United States)

    Bupathy, Arunkumar; Banerjee, Varsha; Puri, Sanjay

    2016-01-01

    We use a computationally efficient graph cut method to obtain ground state morphologies of the random-field Ising model (RFIM) on (i) simple cubic (SC), (ii) body-centered cubic (BCC), and (iii) face-centered cubic (FCC) lattices. We determine the critical disorder strength Δc at zero temperature with high accuracy. For the SC lattice, our estimate (Δc=2.278 ±0.002 ) is consistent with earlier reports. For the BCC and FCC lattices, Δc=3.316 ±0.002 and 5.160 ±0.002 , respectively, which are the most accurate estimates in the literature to date. The small-r behavior of the correlation function exhibits a cusp regime characterized by a cusp exponent α signifying fractal interfaces. In the paramagnetic phase, α =0.5 ±0.01 for all three lattices. In the ferromagnetic phase, the cusp exponent shows small variations due to the lattice structure. Consequently, the interfacial energy Ei(L ) for an interface of size L is significantly different for the three lattices. This has important implications for nonequilibrium properties.

  16. Hydrogeology, ground-water quality, and source of ground water causing water-quality changes in the Davis well field at Memphis, Tennessee

    Science.gov (United States)

    Parks, William S.; Mirecki, June E.; Kingsbury, James A.

    1995-01-01

    An investigation was conducted by the U.S. Geological Survey from 1992 to 1994 to collect and interpret hydrogeologic and water-quality data to determine the source of ground water causing water-quality changes in water from wells screened in the Memphis aquifer in the Davis well field at Memphis, Tennessee. Water-quality changes in aquifers used for water supply are of concern because these changes can indicate a potential for contamination of the aquifers by downward leakage from near-surface sources.

  17. Kinematic source model for simulation of near-fault ground motion field using explicit finite element method

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaozhi; Hu Jinjun; Xie Lili; Wang Haiyun

    2006-01-01

    This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the finite fault source modeling. A modified kinematic source model is presented, in which vibration with some high frequency components is introduced into the traditional slip time function to ensure that the source and ground motion include sufficient high frequency components. The model presented is verified through a simple modeling example. It is shown that the predicted near-fault ground motion field exhibits similar characteristics to those observed in strong motion records, such as the hanging wall effect, vertical effect, fling step effect and velocity pulse effect, etc.

  18. Ground state properties of spinless extended Falicov-Kimball model on a triangular lattice with finite magnetic field

    Science.gov (United States)

    Yadav, Umesh K.

    2017-07-01

    Combined effects of correlated electron hopping, electron correlations and orbital magnetic field are studied on ground state properties of spinless Falicov-Kimball model (FKM). Results are obtained for finite size triangular lattice with periodic boundary conditions using numerical diagonalization and Monte-Carlo simulation techniques. It is found that the ground state configurations of electrons strongly depend on correlated electron hopping, onsite Coulomb interaction and orbital magnetic field. Several interesting configurations e.g. regular, segregated, axial and diagonal striped and hexagonal phases are found with change in correlated hopping and magnetic field. Study of density of states reveals that magnetic field induces a metal to insulator transition accompanied by segregated phase to an ordered phase. These results are applicable to the systems of recent interest like GdI2, NaTiO2 and MgV2O4 and can also be seen experimentally in cold atomic set up.

  19. Knowledge-based flow field zoning

    Science.gov (United States)

    Andrews, Alison E.

    1988-01-01

    Automation flow field zoning in two dimensions is an important step towards easing the three-dimensional grid generation bottleneck in computational fluid dynamics. A knowledge based approach works well, but certain aspects of flow field zoning make the use of such an approach challenging. A knowledge based flow field zoner, called EZGrid, was implemented and tested on representative two-dimensional aerodynamic configurations. Results are shown which illustrate the way in which EZGrid incorporates the effects of physics, shape description, position, and user bias in a flow field zoning.

  20. Influence of transplant size on the above- and below-ground performance of four contrasting field-grown lettuce cultivars

    NARCIS (Netherlands)

    Kerbiriou, P.J.; Stomph, T.J.; Lammerts Van Bueren, E.; Struik, P.C.

    2013-01-01

    Background and aims: Modern lettuce cultivars underperform under conditions of variable temporal and spatial resource availability, common in organic or low-input production systems. Information is scarce on the impact of below-ground traits on such resource acquisition and performance of field-grow

  1. Influence of transplant size on the above- and below-ground performance of four contrasting field-grown lettuce cultivars

    NARCIS (Netherlands)

    Kerbiriou, P.J.; Stomph, T.J.; Lammerts Van Bueren, E.; Struik, P.C.

    2013-01-01

    Background and aims: Modern lettuce cultivars underperform under conditions of variable temporal and spatial resource availability, common in organic or low-input production systems. Information is scarce on the impact of below-ground traits on such resource acquisition and performance of field-grow

  2. Near-Field Characterization of a Printed Circuit Board in the Presence of a Finite-sized Metallic Ground Plane

    DEFF Research Database (Denmark)

    Franek, Ondrej; Sørensen, Morten; Ebert, Hans

    2012-01-01

    Model of a generic printed circuit board (PCB) in a presence of a finite-sized metallic ground plane is introduced as a commonly occurring scenario of electronic module whose electromagnetic fields are disturbed by a nearby object. Finite-difference time-domain simulations are performed...

  3. Magnitude Estimation for the 2011 Tohoku-Oki Earthquake Based on Ground Motion Prediction Equations

    Science.gov (United States)

    Eshaghi, Attieh; Tiampo, Kristy F.; Ghofrani, Hadi; Atkinson, Gail M.

    2015-08-01

    This study investigates whether real-time strong ground motion data from seismic stations could have been used to provide an accurate estimate of the magnitude of the 2011 Tohoku-Oki earthquake in Japan. Ultimately, such an estimate could be used as input data for a tsunami forecast and would lead to more robust earthquake and tsunami early warning. We collected the strong motion accelerograms recorded by borehole and free-field (surface) Kiban Kyoshin network stations that registered this mega-thrust earthquake in order to perform an off-line test to estimate the magnitude based on ground motion prediction equations (GMPEs). GMPEs for peak ground acceleration and peak ground velocity (PGV) from a previous study by Eshaghi et al. in the Bulletin of the Seismological Society of America 103. (2013) derived using events with moment magnitude ( M) ≥ 5.0, 1998-2010, were used to estimate the magnitude of this event. We developed new GMPEs using a more complete database (1998-2011), which added only 1 year but approximately twice as much data to the initial catalog (including important large events), to improve the determination of attenuation parameters and magnitude scaling. These new GMPEs were used to estimate the magnitude of the Tohoku-Oki event. The estimates obtained were compared with real time magnitude estimates provided by the existing earthquake early warning system in Japan. Unlike the current operational magnitude estimation methods, our method did not saturate and can provide robust estimates of moment magnitude within ~100 s after earthquake onset for both catalogs. It was found that correcting for average shear-wave velocity in the uppermost 30 m () improved the accuracy of magnitude estimates from surface recordings, particularly for magnitude estimates of PGV (Mpgv). The new GMPEs also were used to estimate the magnitude of all earthquakes in the new catalog with at least 20 records. Results show that the magnitude estimate from PGV values using

  4. Response of base isolation system excited by spectrum compatible ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Han; Kim, Min Kyu; Choi, In Kil [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Structures in a nuclear power system are designed to be elastic even under an earthquake excitation. However a structural component such as an isolator shows inelastic behavior inherently. For the seismic assessment of nonlinear structures, the response history analysis should be performed. Especially for the performance based design, where the failure probability of a system needs to be evaluated, the variation of response should be evaluated. In this study, the spectrum compatible ground motions, the artificial ground motion and the modified ground motion, were generated. Using these ground motions, the variations of seismic responses of a simplified isolation system were evaluated.

  5. Ground-Based Sub-Millimagnitude CCD Photometry of Bright Stars using Snapshot Observations

    CERN Document Server

    Mann, Andrew W; Aldering, Greg

    2011-01-01

    We demonstrate ground-based sub-millimagnitude (10^7 electrons) to be acquired in a single integration; (iii) pointing the telescope so that all stellar images fall on the same detector pixels; and (iv) using a region of the CCD detector that is free of non-linear or aberrant pixels. We describe semi-automated observations with the Supernova Integrated Field Spectrograph (SNIFS) on the University of Hawaii 2.2m telescope on Mauna Kea, with which we achieved photometric precision as good as 5.2x10^-4 (0.56 mmag) with a 5 minute cadence over a two hour interval. In one experiment, we monitored 8 stars, each separated by several degrees, and achieved sub-mmag precision with a cadence (per star) of ~17 min. Our snapshot technique is suitable for automated searches for planetary transits among multiple, bright-stars.

  6. Quantitative analysis results of CE-1 X-ray fluorescence spectrometer ground base experiment

    Institute of Scientific and Technical Information of China (English)

    CUI Xing-Zhu; GAO Min; YANG Jia-Wei; WANG Huan-Yu; ZHANG Cheng-Mo; CHEN Yong; ZHANG Jia-Yu; PENG Wen-Xi; CAO Xue-Lei; LIANG Xiao-Hua; WANG Jin-Zhou

    2008-01-01

    As the nearest celestial body to the earth, the moon has become a hot spot again in astronomy field recently. The element analysis is a much important subject in many lunar projects. Remote X-ray spectrometry plays an important role in the geochemical exploration of the solar bodies. Because of th equasi-vacuum atmosphere on the moon, which has no absorption of X-ray, the X-ray fluorescence analysis is an effective way to determine the elemental abundance of lunar surface. The CE-1 X-ray fluorescence spectrometer (CE-1/XFS) aims to map the major elemental compositions on the lunar surface. This paper describes a method for quantitative analysis of elemental compositions. A series of ground base experiments are done to examine the capability of XFS. The obtained results, which show a reasonable agreement with the certified values at a 30% uncertainty level for major elements, are presented.

  7. Ground-based Gamma-Ray Observations of Pulsars and their Nebulae: Towards a New Order

    CERN Document Server

    De Jager, O C

    2005-01-01

    The excellent sensitivity and high resolution capability of wide FoV ground-based imaging atmospheric Cerenkov telescopes allow us for the first time to resolve the morphological structures of pulsar wind nebulae (PWN) which are older and more extended than the Crab Nebula. VHE gamma-ray observations of such extended nebulae (with field strengths below ~ 20 micro Gauss) probe the electron component corresponding to the unseen extreme ultraviolet (EUV) synchrotron component, which measures electron injection from earlier evolutionary epochs. VHE observations of PWN therefore introduce a new window on PWN research. This review paper also identifies conditions for maximal VHE visbility of PWN. Regarding pulsar pulsed emission, it is becoming clear that the threshold energies of current telescopes are not sufficient to probe the pulsed gamma-ray component from canonical pulsars. Theoretical estimates of pulsed gamma-ray emission from millisecond pulsars seem to converge and it becomes clear that such detections w...

  8. Precision in ground based solar polarimetry: Simulating the role of adaptive optics

    CERN Document Server

    Nagaraju, K

    2012-01-01

    Accurate measurement of polarization in spectral lines is important for the reliable inference of magnetic fields on the Sun. For ground based observations, polarimetric precision is severely limited by the presence of Earth's atmosphere. Atmospheric turbulence (seeing) produces signal fluctuations which combined with the non-simultaneous nature of the measurement process cause intermixing of the Stokes parameters known as seeing induced polarization cross-talk. Previous analysis of this effect (Judge et al., 2004) suggests that cross-talk is reduced not only with increase in modulation frequency but also by compensating the seeing induced image aberrations by an Adaptive Optics (AO) system. However, in those studies the effect of higher order image aberrations than those corrected by the AO system was not taken into account. We present in this paper an analysis of seeing induced cross-talk in the presence of higher order image aberrations through numerical simulation. In this analysis we find that the amount...

  9. Signature of magmatic processes in ground deformation signals from Phlegraean Fields (Italy)

    Science.gov (United States)

    Bagagli, Matteo; Montagna, Chiara Paola; Longo, Antonella; Papale, Paolo

    2016-04-01

    Ground deformation signals such as dilatometric and tiltmetric ones, are nowadays well studied from the vulcanological community all over the world. These signals can be used to retrieve information on volcanoes state and to study the magma dynamics in their plumbing system. We compared synthetic signals in the Very Long Period (VLP, 10-2 - 10-1 Hz) and Ultra Long Period (ULP, 10-4 - 10-2 Hz) bands obtained from the simulation of magma mixing in shallow reservoirs ([3],[4]) with real data obtained from the dilatometers and tiltmeters network situated in the Phlegraean Fields near Naples (Italy), in order to define and constrain the relationships between them. Analyses of data from the October 2006 seismic swarm in the area show that the frequency spectrum of the synthetics is remarkably similar to the transient present in the real signals. In depth studies with accurated techniques for spectral analysis (i.e wavelet transform) and application of this method to other time windows have identified in the bandwidth around 10-4Hz (between 1h30m and 2h45m) peaks that are fairly stable and independent from the processing carried out on the full-band signal. These peaks could be the signature of ongoing convection at depth. It is well known that re-injection of juvenile magmas can reactivate the eruption dynamics ([1],[2]), thus being able to define mixing markers and detect them in the ground deformation signals is a relevant topic in order to understand the dynamics of active and quiescent vulcanoes and to eventually improve early-warning methods for impending eruptions. [1] Arienzo, I. et al. (2010). "The feeding system of Agnano-Monte Spina eruption (Campi Flegrei, Italy): dragging the past into present activity and future scenarios". In: Chemical Geology 270.1, pp. 135-147. [2] Bachmann, Olivier and George Bergantz (2008). "The magma reservoirs that feed supereruptions". In: Elements 4.1, pp. 17-21. [3] Longo, Antonella et al. (2012). "Magma convection and mixing

  10. Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data

    Directory of Open Access Journals (Sweden)

    M. Ashrafi

    2005-01-01

    Full Text Available Energy maps are important for ionosphere-magnetosphere coupling studies, because quantitative determination of field-aligned currents requires knowledge of the conductances and their spatial gradients. By combining imaging riometer absorption and all-sky auroral optical data it is possible to produce high temporal and spatial resolution maps of the Maxwellian characteristic energy of precipitating electrons within a 240240 common field of view. These data have been calibrated by inverting EISCAT electron density profiles into equivalent energy spectra. In this paper energy maps produced by ground-based instruments (optical and riometer are compared with DMSP satellite data during geomagnetic conjunctions. For the period 1995-2002, twelve satellite passes over the ground-based instruments' field of view for the cloud-free conditions have been considered. Four of the satellite conjunctions occurred during moderate geomagnetic, steady-state conditions and without any ion precipitation. In these cases with Maxwellian satellite spectra, there is 71% agreement between the characteristic energies derived from the satellite and the ground-based energy map method.

  11. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.

  12. A knowledge base system for ground control over abandoned mines

    Energy Technology Data Exchange (ETDEWEB)

    Nazimko, V.V.; Zviagilsky, E.L. [Donetsk State Technical University, Donetsk (Ukraine)

    1999-07-01

    The knowledge of engineering systems has been developed to choose optimal technology for subsidence prevention over abandoned mines. The expert system treats a specific case, maps consequences of actions and derives relevant technology (or a set of technologies) that should be used to prevent ground subsidence. Input parameters that characterise the case are treated using fuzzy logic and are then fed to a neural network. The network has been successfully trained by a backpropagation algorithm on the basis of three fuzzy rules. 5 refs., 2 figs., 3 tabs.

  13. Commercial off the Shelf Ground Control Supports Calibration and Conflation from Ground to Space Based Sensors

    Science.gov (United States)

    Danielová, M.; Hummel, P.

    2016-06-01

    The need for rapid deployment of aerial and satellite imagery in support of GIS and engineering integration projects require new sources of geodetic control to ensure the accuracy for geospatial projects. In the past, teams of surveyors would need to deploy to project areas to provide targeted or photo identifiable points that are used to provide data for orthorecificaion, QA/QC and calibration for multi-platform sensors. The challenge of integrating street view, UAS, airborne and Space based sensors to produce the common operational picture requires control to tie multiple sources together. Today commercial off the shelf delivery of existing photo identifiable control is increasing the speed of deployment of this data without having to revisit sites over and over again. The presentation will discuss the processes developed by CompassData to build a global library of 40,000 control points available today. International Organization for Standardization (ISO) based processes and initiatives ensure consistent quality of survey data, photo identifiable features selected and meta data to support photogrammetrist, engineers and GIS professionals to quickly deliver projects with better accuracy.

  14. Principle and Design of a Single-phase Inverter Based Grounding System for Neutral-to-ground Voltage Compensation in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, Lingjie; Zeng, Xiangjun

    2017-01-01

    Neutral-to-ground overvoltage may occur in non-effectively grounded power systems because of the distributed parameters asymmetry and resonance between Petersen coil and distributed capacitances. Thus, the constraint of neutral-to-ground voltage is critical for the safety of distribution networks....... In this paper, an active grounding system based on single-phase inverter and its control parameter design method is proposed to achieve this objective. Relationship between its output current and neutral-to-ground voltage is derived to explain the principle of neutral-to-ground voltage compensation. Then...... margin subjecting to large range of load change. The PI method is taken as the comparative method and the performances of both control methods are presented in detail. Experimental results prove the effectiveness and novelty of the proposed grounding system and control method....

  15. Microstrip Resonator for High Field MRI with Capacitor-Segmented Strip and Ground Plane

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Boer, Vincent; Petersen, Esben Thade

    2017-01-01

    ) segmenting stripe and ground plane of the resonator with series capacitors. The design equations for capacitors providing symmetric current distribution are derived. The performance of two types of segmented resonators are investigated experimentally. To authors’ knowledge, a microstrip resonator, where both......, strip and ground plane are capacitor-segmented, is shown here for the first time....

  16. Overview and Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program

    Science.gov (United States)

    Fritts, D. C.

    2015-12-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements spanning a longer interval. The NSF/NCAR GV employed standard flight-level measurements and new airborne lidar and imaging measurements of gravity waves (GWs) from sources at lower altitudes throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-105 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) and two IR "wing" cameras imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar measuring radial winds below the Falcon. DEEPWAVE also included extensive ground-based measurements in New Zealand, Tasmania, and Southern Ocean Islands. DEEPWAVE performed 26 GV flights and 13 Falcon flights, and ground-based measurements occurred whether or not the aircraft were flying. Collectively, many diverse cases of GW forcing, propagation, refraction, and dissipation spanning altitudes of 0-100 km were observed. Examples include strong mountain wave (MW) forcing and breaking in the lower and middle stratosphere, weak MW forcing yielding MW penetration into the MLT having very large amplitudes and momentum fluxes, MW scales at higher altitudes ranging from ~10-250 km, large-scale trailing waves from orography refracting into the polar vortex and extending to high altitudes, GW generation by deep convection, large-scale GWs arising from jet stream sources, and strong MWs in the MLT arising from strong surface flow over a small island. DEEPWAVE yielded a number of surprises, among

  17. Simultaneous ground- and satellite-based observation of MF/HF auroral radio emissions

    Science.gov (United States)

    Sato, Yuka; Kumamoto, Atsushi; Katoh, Yuto; Shinbori, Atsuki; Kadokura, Akira; Ogawa, Yasunobu

    2016-05-01

    We report on the first simultaneous measurements of medium-high frequency (MF/HF) auroral radio emissions (above 1 MHz) by ground- and satellite-based instruments. Observational data were obtained by the ground-based passive receivers in Iceland and Svalbard, and by the Plasma Waves and Sounder experiment (PWS) mounted on the Akebono satellite. We observed two simultaneous appearance events, during which the frequencies of the auroral roar and MF bursts detected at ground level were different from those of the terrestrial hectometric radiation (THR) observed by the Akebono satellite passing over the ground-based stations. This frequency difference confirms that auroral roar and THR are generated at different altitudes across the F peak. We did not observe any simultaneous observations that indicated an identical generation region of auroral roar and THR. In most cases, MF/HF auroral radio emissions were observed only by the ground-based detector, or by the satellite-based detector, even when the satellite was passing directly over the ground-based stations. A higher detection rate was observed from space than from ground level. This can primarily be explained in terms of the idea that the Akebono satellite can detect THR emissions coming from a wider region, and because a considerable portion of auroral radio emissions generated in the bottomside F region are masked by ionospheric absorption and screening in the D/E regions associated with ionization which results from auroral electrons and solar UV radiation.

  18. Ground and river water quality monitoring using a smartphone-based pH sensor

    Directory of Open Access Journals (Sweden)

    Sibasish Dutta

    2015-05-01

    Full Text Available We report here the working of a compact and handheld smartphone-based pH sensor for monitoring of ground and river water quality. Using simple laboratory optical components and the camera of the smartphone, we develop a compact spectrophotometer which is operational in the wavelength range of 400-700 nm and having spectral resolution of 0.305 nm/pixel for our equipment. The sensor measures variations in optical absorption band of pH sensitive dye sample in different pH solutions. The transmission image spectra through a transmission grating gets captured by the smartphone, and subsequently converted into intensity vs. wavelengths. Using the designed sensor, we measure water quality of ground water and river water from different locations in Assam and the results are found to be reliable when compared with the standard spectrophotometer tool. The overall cost involved for development of the sensor is relatively low. We envision that the designed sensing technique could emerge as an inexpensive, compact and portable pH sensor that would be useful for in-field applications.

  19. Ground and river water quality monitoring using a smartphone-based pH sensor

    Science.gov (United States)

    Dutta, Sibasish; Sarma, Dhrubajyoti; Nath, Pabitra

    2015-05-01

    We report here the working of a compact and handheld smartphone-based pH sensor for monitoring of ground and river water quality. Using simple laboratory optical components and the camera of the smartphone, we develop a compact spectrophotometer which is operational in the wavelength range of 400-700 nm and having spectral resolution of 0.305 nm/pixel for our equipment. The sensor measures variations in optical absorption band of pH sensitive dye sample in different pH solutions. The transmission image spectra through a transmission grating gets captured by the smartphone, and subsequently converted into intensity vs. wavelengths. Using the designed sensor, we measure water quality of ground water and river water from different locations in Assam and the results are found to be reliable when compared with the standard spectrophotometer tool. The overall cost involved for development of the sensor is relatively low. We envision that the designed sensing technique could emerge as an inexpensive, compact and portable pH sensor that would be useful for in-field applications.

  20. Development of geothermal field following the 2000 eruption of Usu volcano as revealed by ground temperature, resistivity and self-potential variations

    Directory of Open Access Journals (Sweden)

    T. Mogi

    2007-06-01

    Full Text Available The 2000 eruption of Usu volcano, NE Japan, took place on the foot of the somma, and formed a cryptodome of 65 m high accompanying numerous faults. We made repeated measurements of ground temperature, Self-Potential (SP and electrical resistivity, in order to clarify the mechanism of development of the newly formed geothermal field on the fault zone. Prior to the expansion of the geothermal field, we detected a resistive zone at the center of the geothermal zone and it supposed to evidence that the zone involving dry steam phase had been formed beneath the fault zone. A rapid expansion of the geothermal field followed along the fault zone away from the craters. The place of maximum amplitude of the SP field also migrated following the expansion of the high ground temperature zone. The high resistive part has shrunk as a consequence of the progress of condensation to warm the surroundings. Based on the observations, we delineated the process of the hydrothermal circulation. Considering the topographic effect of the SP field observed on the highly permeable zone in the Usu somma, the potential flow along the slope of the soma was expected to play an important role to promote the rapid expansion of the geothermal field and the migration of the most active part.

  1. Ground based mobile isotopic methane measurements in the Front Range, Colorado

    Science.gov (United States)

    Vaughn, B. H.; Rella, C.; Petron, G.; Sherwood, O.; Mielke-Maday, I.; Schwietzke, S.

    2014-12-01

    Increased development of unconventional oil and gas resources in North America has given rise to attempts to monitor and quantify fugitive emissions of methane from the industry. Emission estimates of methane from oil and gas basins can vary significantly from one study to another as well as from EPA or State estimates. New efforts are aimed at reconciling bottom-up, or inventory-based, emission estimates of methane with top-down estimates based on atmospheric measurements from aircraft, towers, mobile ground-based vehicles, and atmospheric models. Attributing airborne measurements of regional methane fluxes to specific sources is informed by ground-based measurements of methane. Stable isotopic measurements (δ13C) of methane help distinguish between emissions from the O&G industry, Confined Animal Feed Operations (CAFO), and landfills, but analytical challenges typically limit meaningful isotopic measurements to individual point sampling. We are developing a toolbox to use δ13CH4 measurements to assess the partitioning of methane emissions for regions with multiple methane sources. The method was applied to the Denver-Julesberg Basin. Here we present data from continuous isotopic measurements obtained over a wide geographic area by using MegaCore, a 1500 ft. tube that is constantly filled with sample air while driving, then subsequently analyzed at slower rates using cavity ring down spectroscopy (CRDS). Pressure, flow and calibration are tightly controlled allowing precise attribution of methane enhancements to their point of collection. Comparisons with point measurements are needed to confirm regional values and further constrain flux estimates and models. This effort was made in conjunction with several major field campaigns in the Colorado Front Range in July-August 2014, including FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment), DISCOVER-AQ, and the Air Water Gas NSF Sustainability Research Network at the University of Colorado.

  2. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards: November 2012 - October 2013

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, W.

    2015-02-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  3. Ground Motions in the Near Field of the November 3, 2002 Denali Fault, Alaska, Earthquake

    Science.gov (United States)

    Ellsworth, W. L.; Celebi, M.; Evans, J. R.; Jensen, E. G.; Metz, M. C.; Nyman, D. J.; Roddick, J. W.; Stephens, C. D.; Spudich, P. A.

    2003-12-01

    A free-field strong-motion recording of the Denali Fault, Alaska, Earthquake was obtained by Alyeska Pipeline Service Company just 3 km from where the Denali Fault slipped over 5 m horizontally and 1 m vertically in the earthquake. The instrument was part of the monitoring and control system for the Trans-Alaska Pipeline and was located at Pump Station 10, approximately 84 km east of the epicenter. After correction for a 0.1 Hz high-pass filter, we recover a fault-parallel permanent displacement of the instrument of 2.3 m. Dynamic ground motions during the earthquake have relatively low acceleration (0.39 g) and very high velocity (1.86 m/s). The most intense motions occurred during a 1.5 s interval generated by the propagation of the rupture front past the site. Growth of the fault-parallel displacement is nearly monotonic, with over half of the permanent displacement occurring during this 1.5 s interval. Preliminary modeling suggests that the rupture velocity exceeded the shear wave velocity near the instrument, and that the peak slip velocity on the fault exceeds several m/s. The low accelerations and high velocities observed near the fault in this earthquake agree with observations from other recent large-magnitude earthquakes. Following the earthquake, the permanent displacement of the support structure for the pipeline and other geodetic reference points was determined by GPS survey along more than 50 miles of the pipeline route. These permanent displacement data display a clear signature of elastic rebound, with displacement amplitudes decreasing with increasing distance from the fault trace. The best-fitting model consisting of a uniform dislocation in an elastic half-space has 6 m of right-lateral fault slip from the surface to a depth of 11 km. This model predicts 2.4 m of displacement at Pump Station 10, in good agreement with the strong motion displacement measurement. At the fault crossing, additional displacements were determined from orthographically

  4. Ground state energy of dilute neutron matter at next-to-leading order in lattice chiral effective field theory

    CERN Document Server

    Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G

    2008-01-01

    We present lattice calculations for the ground state energy of dilute neutron matter at next-to-leading order in chiral effective field theory. This study follows a series of recent papers on low-energy nuclear physics using chiral effective field theory on the lattice. In this work we introduce an improved spin- and isospin-projected leading-order action which allows for a perturbative treatment of corrections at next-to-leading order and smaller estimated errors. Using auxiliary fields and Euclidean-time projection Monte Carlo, we compute the ground state of 8, 12, and 16 neutrons in a periodic cube, covering a density range from 2% to 10% of normal nuclear density.

  5. Theoretical Calculations of Thermal Shifts of Ground-State Zero-Field-Splitting for Ruby

    Institute of Scientific and Technical Information of China (English)

    MA Dong-Ping; CHEN Ju-Rong; MA Ning

    2001-01-01

    By taking into account all the irreducible representations and their components in the electron-phonon interaction (EPI) as well as all the levels and the admixtures of wavefunctions within d3 electronic configuration, the thermal shifts (TS) of the ground-state zero-field-splitting (GSZFS) due to EPI for ruby have microscopic-theoretically been calculated; the contribution to TS of GSZFS from thermal expansion has also been calculated. The results are in very good agreement with experiments. It is found that the contributions from the first-order perturbation of the second-order term in EPI Hamiltonian are dominant in the Raman term and optical-branch term for TS of GSZFS; the different between the TS due to EPI oft3 2 4A2 ± 1/2e2 (G2) level and the TS due to EPI oft32 4A2 ± 3/2e2 (Gl) level gives riseto the TS due to EPI of GSZFS, which is very small in comparison with the TS due to EPI of G2 or G1 level. Among various terms in TS of GSZFS, Raman term is the largest one and the signs of the Raman term and optical-branch term are opposite to the sign of the thermal-expansion term; the optical-branch term plays an important role in TS of GSZFS and increases rapidly with temperature; all various contributions to TS of GSZFS have to be taken into account, since the subtle balance among them determines the total result. The comparison between the features of TS of GSZFS and those of TS of R1 and R2 lines has been made. For TS of GSZFS, the contribution from thermal expansion is especially important; the neighbor-level term is insignificant.``

  6. Train-induced field vibration measurements of ground and over-track buildings.

    Science.gov (United States)

    Zou, Chao; Wang, Yimin; Moore, James A; Sanayei, Masoud

    2017-01-01

    Transit-oriented development, such as metro depot and over-track building complexes, has expanded rapidly over the last 5years in China. Over-track building construction has the advantage of comprehensive utilization of land resources, ease of commuting to work, and provide funds for subway construction. But the high frequency of subway operations into and out of the depots can generate excessive vibrations that transmit into the over track buildings, radiate noise within the buildings, hamper the operation of vibration sensitive equipment, and adversely affect the living quality of the building occupants. Field measurements of vibration during subway operations were conducted at Shenzhen, China, a city of 10.62 million people in southern China. Considering the metro depot train testing line and throat area train lines were the main vibration sources, vibration data were captured in five measurement setups. The train-induced vibrations were obtained and compared with limitation of FTA criteria. The structure-radiated noise was calculated using measured vibration levels. The vertical vibration energy directly passed through the columns on both sides of track into the platform, amplifying vibration on the platform by up to 6dB greater than ground levels at testing line area. Vibration amplification around the natural frequency in the vertical direction of over-track building made the peak values of indoor floor vibration about 16dB greater than outdoor platform vibration. We recommend to carefully examining design of new over-track buildings within 40m on the platform over the throat area to avoid excessive vertical vibrations and noise. For both buildings, the measured vertical vibrations were less than the FTA limit. However, it is demonstrated that the traffic-induced high-frequency noise has the potential to annoy occupants on the upper floors.

  7. Vehicle-mounted ground penetrating radar (Mine Stalker III) field evaluation in Angola

    Science.gov (United States)

    Laudato, Stephen; Hart, Kerry; Nevard, Michael; Lauziere, Steven; Grant, Shaun

    2014-05-01

    The U.S. Department of Defense Humanitarian Demining Research and Development (HD R&D) Program, Non-Intrusive Inspection Technology (NIITEK), Inc. and The HALO Trust have over the last decade funded, developed and tested various prototype vehicle mounted ground penetrating radar (GPR) systems named the Mine Stalker. The HD R&D Program and NIITEK developed the Mine Stalker to detect low metal anti-tank (LM-AT) mines in roads. The country of Angola is severely affected by LM-AT mines in and off road, some of which are buried beyond the effective range of detection sensors current used in country. The threat from LM-AT mines such as the South African Number 8 (No. 8) and the Chinese Type 72 (72AT) still persist from Angola's 30 years of civil war. These LM-AT threats are undetectable at depths greater than 5 to 10 centimeters using metal detection technology. Clearing commerce routes are a critical requirement before Angola can rebuild its infrastructure and improve safety conditions for the local populace. The Halo Trust, a non-governmental demining organization (NGO) focused on demining and clearance of unexploded ordnance (UXO), has partnered with the HD R&D Program to conduct an operational field evaluation (OFE) of the Mine Stalker III (MS3) in Angola. Preliminary testing and training efforts yielded encouraging results. This paper presents a review of the data collected, testing results, system limitations and deficiencies while operating in a real world environment. Our goal is to demonstrate and validate this technology in live minefield environments, and to collect data to prompt future developments to the system.

  8. Engineering characterization of ground motion. Task I. Effects of characteristics of free-field motion on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R.P.; Short, S.A.; Merz, K.L.; Tokarz, F.J.; Idriss, I.M.; Power, M.S.; Sadigh, K.

    1984-05-01

    This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage.

  9. Ground States of Ultracold Spin-1 Atoms in a Deep Double-Well Optical Superlattice in a Weak Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    ZHENG Gong-Ping; QIN Shuai-Feng; WANG Shou-Yang; JIAN Wen-Tian

    2013-01-01

    The ground states of the ultracold spin-1 atoms trapped in a deep one-dimensional double-well optical superlattice in a weak magnetic field are obtained.It is shown that the ground-state diagrams of the reduced doublewell model are remarkably different for the antiferromagnetic and ferromagnetic condensates.The transition between the singlet state and nematic state is observed for the antiferromagnetic interaction atoms,which can be realized by modulating the tunneling parameter or the quadratic Zeeman energy.An experiment to distinguish the different spin states is suggested.

  10. Improving the detection of explosive hazards with LIDAR-based ground plane estimation

    Science.gov (United States)

    Buck, A.; Keller, J. M.; Popescu, M.

    2016-05-01

    Three-dimensional point clouds generated by LIDAR offer the potential to build a more complete understanding of the environment in front of a moving vehicle. In particular, LIDAR data facilitates the development of a non-parametric ground plane model that can filter target predictions from other sensors into above-ground and below-ground sets. This allows for improved detection performance when, for example, a system designed to locate above-ground targets considers only the set of above-ground predictions. In this paper, we apply LIDAR-based ground plane filtering to a forward looking ground penetrating radar (FLGPR) sensor system and a side looking synthetic aperture acoustic (SAA) sensor system designed to detect explosive hazards along the side of a road. Additionally, we consider the value of the visual magnitude of the LIDAR return as a feature for identifying anomalies. The predictions from these sensors are evaluated independently with and without ground plane filtering and then fused to produce a combined prediction confidence. Sensor fusion is accomplished by interpolating the confidence scores of each sensor along the ground plane model to create a combined confidence vector at specified points in the environment. The methods are tested along an unpaved desert road at an arid U.S. Army test site.

  11. Microcontroller based ground weapon control system(Short Communication

    Directory of Open Access Journals (Sweden)

    M. Sankar Kishore

    2001-10-01

    Full Text Available Armoured vehicles and tanks generally consist of high resolution optical (both infrared and visible and display systems for recognition and identification of the targets. Different weapons/articles to engage the targets may be present. A fire control system (FCS controls all the above systems, monitors the status of the articles present and passes the information to the display system. Depending upon the health and availability of the articles, the FCS selects and fires the articles. Design and development of ground control unit which is the heart of the FCS, both in hardware and software, has been emphasised. The system has been developed using microcontroller and software developed in ASM 51 language. The system also has a facility to test all the systems and articles as initial power on condition. From the safety point of view, software and hardware interlocks have been provided in the critical operations, like firing sequence. "

  12. A six-beam method to measure turbulence statistics using ground-based wind lidars

    Directory of Open Access Journals (Sweden)

    A. Sathe

    2014-10-01

    Full Text Available A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the center of the scanning circle, i.e.using a vertical beam at the same height. The scanning configuration is optimized to minimize the sum of the random errors in the measurement of the second-order moments of the components (u,v, w of the wind field. We present this method as an alternative to the so-called velocity azimuth display (VAD method that is routinely used in commercial wind lidars, and which usually results in significant averaging effects of measured turbulence. In the VAD method, the high frequency radial velocity measurements are used instead of their variances. The measurements are performed using a pulsed lidar (WindScanner, and the derived turbulence statistics (using both methods such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89 m height under different atmospheric stabilities. The measurements show that in comparison to the reference cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85–101% of the reference turbulence, whereas the VAD method measures between 66–87% of the reference turbulence.

  13. A six-beam method to measure turbulence statistics using ground-based wind lidars

    Science.gov (United States)

    Sathe, A.; Mann, J.; Vasiljevic, N.; Lea, G.

    2015-02-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the centre of the scanning circle, i.e.using a vertical beam at the same height. The scanning configuration is optimized to minimize the sum of the random errors in the measurement of the second-order moments of the components (u,v, w) of the wind field. We present this method as an alternative to the so-called velocity azimuth display (VAD) method that is routinely used in commercial wind lidars, and which usually results in significant averaging effects of measured turbulence. In the VAD method, the high frequency radial velocity measurements are used instead of their variances. The measurements are performed using a pulsed lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89 m height under different atmospheric stabilities. The measurements show that in comparison to the reference cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85 and 101% of the reference turbulence, whereas the VAD method measures between 66 and 87% of the reference turbulence.

  14. Unattended instruments for ground-based hyperspectral measurements: development and application for plant photosynthesis monitoring

    Science.gov (United States)

    Cogliati, S.; Rossini, M.; Meroni, M.; Barducci, A.; Julitta, T.; Colombo, R.

    2011-12-01

    The aim of the present work is the development of ground-based hyperspectral systems capable of collecting continuous and long-term hyperspectral measurements of the Earth-surface. The development of such instruments includes the optical design, the development of the data acquisition (Auto3S) and processing software as well as the definition of the calibration procedures. In particular an in-field calibration methodologie based on the comparison between field spectra and data modeled using Radiative Transfer (RT) approach has been proposed to regularly upgrade instrument calibration coefficients. Two different automatic spectrometric systems have been developed: the HyperSpectral Irradiometer (HSI) [Meroni et al., 2011] and the Multiplexer Radiometer Irradiometer (MRI) [Cogliati, 2011]. Both instruments are able to continuously measure: sun incoming irradiance (ETOT) and irradiance (ES, HSI)/radiance (LS, MRI) upwelling from the investigated surface. Both instruments employ two Ocean Optics HR4000 spectrometers sharing the same optical signal that allow to simultaneously collect "fine" (1 nm Full Width at Half Maximum, FWHM) spectra in the 400-1000 nm rangeand "ultra-fine" (0.1 nm FWHM) spectra within the 700-800 nm. The collected optical data allow to estimate biochemical/structural properties of vegetation (e.g. NDVI) as well as its photosynthetic efficiency through the Photochemical Reflectance Index (PRI) and the analysis of sun-induced chlorophyll Fluorescence in the O2-A Fraunhofer line (F@760). The automatic instruments were operated in coordination with eddy covariance flux tower measurements of carbon exchange in the framework of several field campaigns: HSI was employed in a subalpine pasture (2009-ongoing) (www.phenoalp.eu) while MRI was employed in 2009 in the Sen3Exp field survey promoted by the European Space Agency as consolidation study to the future mission Sentinel-3. Results show that the proposed instruments succeeded in collecting continuous

  15. Wave Superposition Based Sound Field Reconstruction

    Institute of Scientific and Technical Information of China (English)

    LI Jia-qing; CHEN Jin; YANG Chao

    2008-01-01

    In order to overcome the obstacle of singular integral in boundary element method (BEM), wepresented an efficient sound field reconstruction technique based on the wave superposition method (WSM). Itsprinciple includes three steps: first, the sound pressure field of an arbitrary shaped radiator is measured witha microphone array; then, the exterior sound field of the radiator is computed backward and forward using theWSM; at last, the final results are visualized in terms of sound pressure contours or animations. With thesevisualized contours or animations, noise sources can be easily located and quantified; also noise transmissionpath can be found out. By numerical simulation and experimental results, we proved that the technique aresuitable and accurate for sound field reconstruction. In addition, we presented a sound field reconstruction sys-tem prototype on the basis of this technique. It makes a foundation for the application of wave superpositionin the sound field reconstruction in industry situations.

  16. Ground-based Infrared Observations of Water Vapor and Hydrogen Peroxide in the Atmosphere of Mars

    Science.gov (United States)

    Encrenaz, T.; Greathouse, T. K.; Bitner, M.; Kruger, A.; Richter, M. J.; Lacy, J. H.; Bézard, B.; Fouchet, T.; Lefevre, F.; Forget, F.; Atreya, S. K.

    2008-11-01

    Ground-based observations of water vapor and hydrogen peroxide have been obtained in the thermal infrared range, using the TEXES instrument at the NASA Infrared Telescope Facility, for different times of the seasonal cycle.

  17. Informing hydrological models with ground-based time-lapse relative gravimetry: potential and limitations

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Christiansen, Lars; Rosbjerg, Dan

    2011-01-01

    Coupled hydrogeophysical inversion emerges as an attractive option to improve the calibration and predictive capability of hydrological models. Recently, ground-based time-lapse relative gravity (TLRG) measurements have attracted increasing interest because there is a direct relationship between ...

  18. Changes in ground-based solar ultraviolet radiation during fire episodes: a case study

    CSIR Research Space (South Africa)

    Wright, CY

    2013-09-01

    Full Text Available about the relationship between fires and solar UVR without local high-quality column or ground-based ambient air pollution (particulate matter in particular) data; however, the threat to public health from fires was acknowledged....

  19. Detection and quantification of localized groundwater inflow in small streams using ground-based infrared thermography

    Science.gov (United States)

    Schuetz, Tobias; Weiler, Markus

    2010-05-01

    Localized groundwater (GW) inflow into small streams can be a major source of runoff during low flow periods in headwater catchments. The localization and determination of the fraction of runoff corresponding to a certain area may give insights into aquifer type, flow processes, the composition of base-flow concerning the spatial distribution of catchment storage and water quality issues. Though GW temperature has a small amplitude during the year compared to surface water, a significant temperature difference between stream water and groundwater can be expected in summer and winter. As the technical development of infrared thermography is progressing (the spatial resolution of infrared camera systems is increasing and the measuring error is decreasing) we tested ground based infrared thermography as a non-invasive and remote applicable method to detect and quantify GW entries in small streams during baseflow periods (INFRATEC). In addition, water temperature and electric conductivity of the groundwater entering the stream and of the stream water up- and downstream of localized GW inflow were measured with temperature and EC sensors. Though the zones of complete mixing were identified, point measurements and surface radiation temperatures were taken from the same areas. Discharge measurements were conducted using the salt dilution method with continuous injection. End-member mixing calculations were done using the measured EC and water temperature data and compared to the results of mixing calculations of observed water surface radiation temperatures. The discharge observations were used to validate the fraction calculations. Calculated GW entries using thermogramms had comparable deviations from the measured runoff fractions to those from direct temperature and EC measurements. This leads to the conclusion that the use of ground-based infrared thermography for the detection and quantification of localized groundwater inflows into small streams is a valuable and

  20. Spectrally selective surfaces for ground and space-based instrumentation: support for a resource base

    Science.gov (United States)

    McCall, Susan H.; Sinclair, R. Lawrence; Pompea, Stephen M.; Breault, Robert P.

    1993-11-01

    The performance of space telescopes, space instruments, and space radiator systems depends critically upon the selection of appropriate spectrally selective surfaces. Many space programs have suffered severe performance limitations, schedule setbacks, and spent hundreds of thousands of dollars in damage control because of a lack of readily-accessible, accurate data on the properties of spectrally selective surfaces, particularly black surfaces. A Canadian effort is underway to develop a resource base (database and support service) to help alleviate this problem. The assistance of the community is required to make the resource base comprehensive and useful to the end users. The paper aims to describe the objectives of this project. In addition, a request for information and support is made for various aspects of the project. The resource base will be useful for both ground and space-based instrumentation.

  1. System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator

    Science.gov (United States)

    2006-08-01

    System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator Jae-Jun Kim∗ and Brij N. Agrawal † Department of...TITLE AND SUBTITLE System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator 5a. CONTRACT NUMBER 5b...and Dynamics, Vol. 20, No. 4, July-August 1997, pp. 625-632. 6Schwartz, J. L. and Hall, C. D., “ System Identification of a Spherical Air-Bearing

  2. Broad-band near-field ground motion simulations in 3-dimensional scattering media

    Science.gov (United States)

    Imperatori, W.; Mai, P. M.

    2013-02-01

    The heterogeneous nature of Earth's crust is manifested in the scattering of propagating seismic waves. In recent years, different techniques have been developed to include such phenomenon in broad-band ground-motion calculations, either considering scattering as a semi-stochastic or purely stochastic process. In this study, we simulate broad-band (0-10 Hz) ground motions with a 3-D finite-difference wave propagation solver using several 3-D media characterized by von Karman correlation functions with different correlation lengths and standard deviation values. Our goal is to investigate scattering characteristics and its influence on the seismic wavefield at short and intermediate distances from the source in terms of ground motion parameters. We also examine scattering phenomena, related to the loss of radiation pattern and the directivity breakdown. We first simulate broad-band ground motions for a point-source characterized by a classic ω2 spectrum model. Fault finiteness is then introduced by means of a Haskell-type source model presenting both subshear and super-shear rupture speed. Results indicate that scattering plays an important role in ground motion even at short distances from the source, where source effects are thought to be dominating. In particular, peak ground motion parameters can be affected even at relatively low frequencies, implying that earthquake ground-motion simulations should include scattering also for peak ground velocity (PGV) calculations. At the same time, we find a gradual loss of the source signature in the 2-5 Hz frequency range, together with a distortion of the Mach cones in case of super-shear rupture. For more complex source models and truly heterogeneous Earth, these effects may occur even at lower frequencies. Our simulations suggests that von Karman correlation functions with correlation length between several hundred metres and few kilometres, Hurst exponent around 0.3 and standard deviation in the 5-10 per cent range

  3. Broad-band near-field ground motion simulations in 3-dimensional scattering media

    KAUST Repository

    Imperatori, W.

    2012-12-06

    The heterogeneous nature of Earth\\'s crust is manifested in the scattering of propagating seismic waves. In recent years, different techniques have been developed to include such phenomenon in broad-band ground-motion calculations, either considering scattering as a semi-stochastic or purely stochastic process. In this study, we simulate broad-band (0–10 Hz) ground motions with a 3-D finite-difference wave propagation solver using several 3-D media characterized by von Karman correlation functions with different correlation lengths and standard deviation values. Our goal is to investigate scattering characteristics and its influence on the seismic wavefield at short and intermediate distances from the source in terms of ground motion parameters. We also examine scattering phenomena, related to the loss of radiation pattern and the directivity breakdown. We first simulate broad-band ground motions for a point-source characterized by a classic ω2 spectrum model. Fault finiteness is then introduced by means of a Haskell-type source model presenting both subshear and super-shear rupture speed. Results indicate that scattering plays an important role in ground motion even at short distances from the source, where source effects are thought to be dominating. In particular, peak ground motion parameters can be affected even at relatively low frequencies, implying that earthquake ground-motion simulations should include scattering also for peak ground velocity (PGV) calculations. At the same time, we find a gradual loss of the source signature in the 2–5 Hz frequency range, together with a distortion of the Mach cones in case of super-shear rupture. For more complex source models and truly heterogeneous Earth, these effects may occur even at lower frequencies. Our simulations suggests that von Karman correlation functions with correlation length between several hundred metres and few kilometres, Hurst exponent around 0.3 and standard deviation in the 5–10 per cent

  4. Fair Grounds, Located during MicroData field address collection 2004-2006. Kept in Spillman database for retrieval., Published in 2004, Vilas County Land Information/Mapping.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Fair Grounds dataset, was produced all or in part from Field Observation information as of 2004. It is described as 'Located during MicroData field address...

  5. Figure-ground organization based on three-dimensional symmetry

    Science.gov (United States)

    Michaux, Aaron; Jayadevan, Vijai; Delp, Edward; Pizlo, Zygmunt

    2016-11-01

    We present an approach to figure/ground organization using mirror symmetry as a general purpose and biologically motivated prior. Psychophysical evidence suggests that the human visual system makes use of symmetry in producing three-dimensional (3-D) percepts of objects. 3-D symmetry aids in scene organization because (i) almost all objects exhibit symmetry, and (ii) configurations of objects are not likely to be symmetric unless they share some additional relationship. No general purpose approach is known for solving 3-D symmetry correspondence in two-dimensional (2-D) camera images, because few invariants exist. Therefore, we present a general purpose method for finding 3-D symmetry correspondence by pairing the problem with the two-view geometry of the binocular correspondence problem. Mirror symmetry is a spatially global property that is not likely to be lost in the spatially local noise of binocular depth maps. We tested our approach on a corpus of 180 images collected indoors with a stereo camera system. K-means clustering was used as a baseline for comparison. The informative nature of the symmetry prior makes it possible to cluster data without a priori knowledge of which objects may appear in the scene, and without knowing how many objects there are in the scene.

  6. Exponentially-Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians

    CERN Document Server

    Mandrà, Salvatore; Katzgraber, Helmut G

    2016-01-01

    We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground-state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated to a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009)]. These results suggest that more complex driving Hamiltonians, which introduce transitions between all states with equal weights, are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.

  7. Geophysical assessment of near-field ground motion and the implications for the design of nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, D.L.

    1977-09-30

    This paper gives an in-depth discussion on the various methodologies currently available to predict the near-field ground motion from an earthquake. The limitations of the various methods are discussed in some detail in light of recently available data. It is shown that, (at least for California earthquakes) for an earthquake with a given magnitude a wide variation in the peak ground motion can occur. The change in the spectral content of the ground motion is given as a function of earthquake magnitude and peak ground acceleration. It is shown that the large g values associated with small earthquakes are relatively unimportant in the design provided the structures have a modest amount of ductility. Data recently obtained from the Friuli earthquake are also examined. Although not all the geophysical data are currently available, the provisional conclusion is reached that the relation between the strong ground motion from this earthquake and its source parameters is the same as for the western United States.

  8. DATA PROCESSING AND ANALYSIS TOOLS BASED ON GROUND-BASED SYNTHETIC APERTURE RADAR IMAGERY

    Directory of Open Access Journals (Sweden)

    M. Crosetto

    2017-09-01

    Full Text Available The Ground-Based SAR (GBSAR is a terrestrial remote sensing technique used to measure and monitor deformation. In this paper we describe two complementary approaches to derive deformation measurements using GBSAR data. The first approach is based on radar interferometry, while the second one exploits the GBSAR amplitude. In this paper we consider the so-called discontinuous GBSAR acquisition mode. The interferometric process is not always straightforward: it requires appropriate data processing and analysis tools. One of the main critical steps is phase unwrapping, which can critically affect the deformation measurements. In this paper we describe the procedure used at the CTTC to process and analyse discontinuous GBSAR data. In the second part of the paper we describe the approach based on GBSAR amplitude images and an image-matching method.

  9. Cloud Base Height and Effective Cloud Emissivity Retrieval with Ground-Based Infrared Interferometer

    Institute of Scientific and Technical Information of China (English)

    PAN Lin-Jun; LU Da-Ren

    2012-01-01

    Based on ground-based Atmospheric Emitted Radiance Interferometer (AERI) observations in Shouxian, Anhui province, China, the authors retrieve the cloud base height (CBH) and effective cloud emissivity by using the minimum root-mean-square difference method. This method was originally developed for satellite remote sensing. The high-temporal-resolution retrieval results can depict the trivial variations of the zenith clouds continu- ously. The retrieval results are evaluated by comparing them with observations by the cloud radar. The compari- son shows that the retrieval bias is smaller for the middle and low cloud, especially for the opaque cloud. When two layers of clouds exist, the retrieval results reflect the weighting radiative contribution of the multi-layer cloud. The retrieval accuracy is affected by uncertainties of the AERI radiances and sounding profiles, in which the role of uncertainty in the temperature profile is dominant.

  10. Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment

    Science.gov (United States)

    Rapoport, Yuriy G.; Cheremnykh, Oleg K.; Koshovy, Volodymyr V.; Melnik, Mykola O.; Ivantyshyn, Oleh L.; Nogach, Roman T.; Selivanov, Yuriy A.; Grimalsky, Vladimir V.; Mezentsev, Valentyn P.; Karataeva, Larysa M.; Ivchenko, Vasyl. M.; Milinevsky, Gennadi P.; Fedun, Viktor N.; Tkachenko, Eugen N.

    2017-01-01

    We develop theoretical basics of active experiments with two beams of acoustic waves, radiated by a ground-based sound generator. These beams are transformed into atmospheric acoustic gravity waves (AGWs), which have parameters that enable them to penetrate to the altitudes of the ionospheric E and F regions where they influence the electron concentration of the ionosphere. Acoustic waves are generated by the ground-based parametric sound generator (PSG) at the two close frequencies. The main idea of the experiment is to design the output parameters of the PSG to build a cascade scheme of nonlinear wave frequency downshift transformations to provide the necessary conditions for their vertical propagation and to enable penetration to ionospheric altitudes. The PSG generates sound waves (SWs) with frequencies f1 = 600 and f2 = 625 Hz and large amplitudes (100-420 m s-1). Each of these waves is modulated with the frequency of 0.016 Hz. The novelty of the proposed analytical-numerical model is due to simultaneous accounting for nonlinearity, diffraction, losses, and dispersion and inclusion of the two-stage transformation (1) of the initial acoustic waves to the acoustic wave with the difference frequency Δf = f2 - f1 in the altitude ranges 0-0.1 km, in the strongly nonlinear regime, and (2) of the acoustic wave with the difference frequency to atmospheric acoustic gravity waves with the modulational frequency in the altitude ranges 0.1-20 km, which then reach the altitudes of the ionospheric E and F regions, in a practically linear regime. AGWs, nonlinearly transformed from the sound waves, launched by the two-frequency ground-based sound generator can increase the transparency of the ionosphere for the electromagnetic waves in HF (MHz) and VLF (kHz) ranges. The developed theoretical model can be used for interpreting an active experiment that includes the PSG impact on the atmosphere-ionosphere system, measurements of electromagnetic and acoustic fields, study of

  11. Dynamic Interaction Behavior between Jumbo Container Crane and Pile-Supported Wharf under NearField and Far-Field Ground Motions

    Directory of Open Access Journals (Sweden)

    J. R. LI

    2016-02-01

    Full Text Available Playing an important role in local and national seaport activities, container wharves are susceptible to structural failure and damage during earthquake events. Therefore, factors that affect the seismic response of crane–wharf structures under different types of earthquake ground motions should be elucidated. In this paper, 3D finite element models were established to investigate the differences of natural vibration characteristics between the wharf and crane–wharf structures. The dynamic response of a typical pile-supported wharf structure and the interaction behavior of a crane and wharf structural system under seismic actions of near-field and far-field ground motions were studied by performing numerical simulation and time-history response analysis. Axial force–moment relation curves were adopted to analyze the elastic–plastic limit state of the wharf structure under different ground motions. Results showed that the consideration of the container crane increased the natural vibration period of the pile-supported wharf structure and affected the dynamic characteristics of the structure. Compared with the far-field earthquake ground motion, the nearfield earthquake exerted a more significant impact on the structural dynamic response that controlled the elastic–plastic limit state. With the presence of a crane, the moment and shear force of the pile-top decreased and the location of the extreme value moved down obviously. The findings demonstrated that considering the crane changed the failure mechanism of the wharf structure, and the eccentric effect of the crane may amplify the dynamic response as the peak ground acceleration increases. The results provide reference for the seismic design and the evaluation of the seismic response of container wharves.

  12. The study of single station inverting the sea surface current by HF ground wave radar based on adjoint assimilation technology

    Science.gov (United States)

    Han, Shuzong; Yang, Hua; Xue, Wenhu; Wang, Xingchi

    2017-06-01

    This paper introduces the assimilation technology in an ocean dynamics model and discusses the feasibility of inverting the sea surface current in the detection zone by assimilating the sea current radial velocity detected by single station HF ground wave radar in ocean dynamics model. Based on the adjoint assimilation and POM model, the paper successfully inverts the sea surface current through single station HF ground wave radar in the Zhoushan sea area. The single station HF radar inversion results are also compared with the bistatic HF radar composite results and the fixed point measured results by Annderaa current meter. The error analysis shows that acquisition of flow velocity and flow direction data from the single station HF radar based on adjoint assimilation and POM model is viable and the data obtained have a high correlation and consistency with the flow field observed by HF radar.

  13. Validity and reliability of pressure-measurement insoles for vertical ground reaction force assessment in field situations.

    Science.gov (United States)

    Koch, Markus; Lunde, Lars-Kristian; Ernst, Michael; Knardahl, Stein; Veiersted, Kaj Bo

    2016-03-01

    This study aimed to test the validity and reliability of pressure-measurement insoles (medilogic® insoles) when measuring vertical ground reaction forces in field situations. Various weights were applied to and removed from the insoles in static mechanical tests. The force values measured simultaneously by the insoles and force plates were compared for 15 subjects simulating work activities. Reliability testing during the static mechanical tests yielded an average interclass correlation coefficient of 0.998. Static loads led to a creeping pattern of the output force signal. An individual load response could be observed for each insole. The average root mean square error between the insoles and force plates ranged from 6.6% to 17.7% in standing, walking, lifting and catching trials and was 142.3% in kneeling trials. The results show that the use of insoles may be an acceptable method for measuring vertical ground reaction forces in field studies, except for kneeling positions.

  14. Dispatch from the field: ecology of ground-web-building spiders with description of a new species (Araneae, Symphytognathidae

    Directory of Open Access Journals (Sweden)

    Jeremy Miller

    2014-03-01

    Full Text Available Crassignatha danaugirangensis sp. n. (Araneae: Symphytognathidae was discovered during a tropical ecology field course held at the Danau Girang Field Centre in Sabah, Malaysia. A taxonomic description and accompanying ecological study were completed as course activities. To assess the ecology of this species, which belongs to the ground-web-building spider community, three habitat types were surveyed: riparian forest, recently inundated riverine forest, and oil palm plantation. Crassignatha danaugirangensis sp. n. is the most abundant ground-web-building spider species in riparian forest; it is rare or absent from the recently inundated forest and was not found in a nearby oil palm plantation. The availability of this taxonomic description may help facilitate the accumulation of data about this species and the role of inundated riverine forest in shaping invertebrate communities.

  15. Wavelet-Based Quantum Field Theory

    Directory of Open Access Journals (Sweden)

    Mikhail V. Altaisky

    2007-11-01

    Full Text Available The Euclidean quantum field theory for the fields $phi_{Delta x}(x$, which depend on both the position $x$ and the resolution $Delta x$, constructed in SIGMA 2 (2006, 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.

  16. Aerial Prefeeding Followed by Ground Based Toxic Baiting for More Efficient and Acceptable Poisoning of Invasive Small Mammalian Pests.

    Directory of Open Access Journals (Sweden)

    David Morgan

    Full Text Available Introduced brushtail possums (Trichosurus vulpecula and rat species (Rattus spp. are major vertebrate pests in New Zealand, with impacts on conservation and agriculture being managed largely through poisoning operations. Aerial distribution of baits containing sodium fluoroacetate (1080 has been refined to maximise cost effectiveness and minimise environmental impact, but this method is strongly opposed by some as it is perceived as being indiscriminate. Although ground based control enables precise placement of baits, operations are often more than twice as costly as aerial control, mainly due to the high labour costs. We investigated a new approach to ground based control that combined aerial distribution of non-toxic 'prefeed' baits followed by sparse distribution of toxic baits at regular intervals along the GPS tracked prefeeding flight paths. This approach was tested in two field trials in which both 1080 baits and cholecalciferol baits were used in separate areas. Effectiveness of the approach, assessed primarily using 'chewcards', was compared with that of scheduled aerial 1080 operations that were conducted in outlying areas of both trials. Contractors carrying out ground based control were able to follow the GPS tracks of aerial prefeeding flight lines very accurately, and with 1080 baits achieved very high levels of kill of possums and rats similar to those achieved by aerial 1080 baiting. Cholecalciferol was less effective in the first trial, but by doubling the amount of cholecalciferol bait used in the second trial, few possums or rats survived. By measuring the time taken to complete ground baiting from GPS tracks, we predicted that the method (using 1080 baits would be similarly cost effective to aerial 1080 operations for controlling possums and rats, and considerably less expensive than typical current costs of ground based control. The main limitations to the use of the method will be access to, and size of, the operational

  17. Aerial Prefeeding Followed by Ground Based Toxic Baiting for More Efficient and Acceptable Poisoning of Invasive Small Mammalian Pests.

    Science.gov (United States)

    Morgan, David; Warburton, Bruce; Nugent, Graham

    2015-01-01

    Introduced brushtail possums (Trichosurus vulpecula) and rat species (Rattus spp.) are major vertebrate pests in New Zealand, with impacts on conservation and agriculture being managed largely through poisoning operations. Aerial distribution of baits containing sodium fluoroacetate (1080) has been refined to maximise cost effectiveness and minimise environmental impact, but this method is strongly opposed by some as it is perceived as being indiscriminate. Although ground based control enables precise placement of baits, operations are often more than twice as costly as aerial control, mainly due to the high labour costs. We investigated a new approach to ground based control that combined aerial distribution of non-toxic 'prefeed' baits followed by sparse distribution of toxic baits at regular intervals along the GPS tracked prefeeding flight paths. This approach was tested in two field trials in which both 1080 baits and cholecalciferol baits were used in separate areas. Effectiveness of the approach, assessed primarily using 'chewcards', was compared with that of scheduled aerial 1080 operations that were conducted in outlying areas of both trials. Contractors carrying out ground based control were able to follow the GPS tracks of aerial prefeeding flight lines very accurately, and with 1080 baits achieved very high levels of kill of possums and rats similar to those achieved by aerial 1080 baiting. Cholecalciferol was less effective in the first trial, but by doubling the amount of cholecalciferol bait used in the second trial, few possums or rats survived. By measuring the time taken to complete ground baiting from GPS tracks, we predicted that the method (using 1080 baits) would be similarly cost effective to aerial 1080 operations for controlling possums and rats, and considerably less expensive than typical current costs of ground based control. The main limitations to the use of the method will be access to, and size of, the operational site, along with

  18. Ground-based grasslands data to support remote sensing and ecosystem modeling of terrestrial primary production

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R.J.; Turner, R.S. [Oak Ridge National Lab., TN (United States); Scurlock, J.M.O. [King`s College London, (England); Jennings, S.V. [Tennessee Univ., Knoxville, TN (United States)

    1995-12-31

    Estimating terrestrial net primary production (NPP) using remote- sensing tools and ecosystem models requires adequate ground-based measurements for calibration, parameterization, and validation. These data needs were strongly endorsed at a recent meeting of ecosystem modelers organized by the International Geosphere-Biosphere Programme`s (IGBP`s) Data and Information System (DIS) and its Global Analysis, Interpretation, and Modelling (GAIM) Task Force. To meet these needs, a multinational, multiagency project is being coordinated by the IGBP DIS to compile existing NPP data from field sites and to regionalize NPP point estimates to various-sized grid cells. Progress at Oak Ridge National Laboratory (ORNL) on compiling NPP data for grasslands as part of the IGBP DIS data initiative is described. Site data and associated documentation from diverse field studies are being acquired for selected grasslands and are being reviewed for completeness, consistency, and adequacy of documentation, including a description of sampling methods. Data are being compiled in a database with spatial, temporal, and thematic characteristics relevant to remote sensing and global modeling. NPP data are available from the ORNL Distributed Active Archive Center (DAAC) for biogeochemical dynamics. The ORNL DAAC is part of the Earth Observing System Data and Information System, of the US National Aeronautics and Space Administration.

  19. Monitoring ground-surface heating during expansion of the Casa Diablo production well field at Mammoth Lakes, California

    Science.gov (United States)

    Bergfeld, D.; Vaughan, R. Greg; Evans, William C.; Olsen, Eric

    2015-01-01

    The Long Valley hydrothermal system supports geothermal power production from 3 binary plants (Casa Diablo) near the town of Mammoth Lakes, California. Development and growth of thermal ground at sites west of Casa Diablo have created concerns over planned expansion of a new well field and the associated increases in geothermal fluid production. To ensure that all areas of ground heating are identified prior to new geothermal development, we obtained high-resolution aerial thermal infrared imagery across the region. The imagery covers the existing and proposed well fields and part of the town of Mammoth Lakes. Imagery results from a predawn flight on Oct. 9, 2014 readily identified the Shady Rest thermal area (SRST), one of two large areas of ground heating west of Casa Diablo, as well as other known thermal areas smaller in size. Maximum surface temperatures at 3 thermal areas were 26–28 °C. Numerous small areas with ground temperatures >16 °C were also identified and slated for field investigations in summer 2015. Some thermal anomalies in the town of Mammoth Lakes clearly reflect human activity.Previously established projects to monitor impacts from geothermal power production include yearly surveys of soil temperatures and diffuse CO2 emissions at SRST, and less regular surveys to collect samples from fumaroles and gas vents across the region. Soil temperatures at 20 cm depth at SRST are well correlated with diffuse CO2 flux, and both parameters show little variation during the 2011–14 field surveys. Maximum temperatures were between 55–67 °C and associated CO2 discharge was around 12–18 tonnes per day. The carbon isotope composition of CO2 is fairly uniform across the area ranging between –3.7 to –4.4 ‰. The gas composition of the Shady Rest fumarole however has varied with time, and H2S concentrations in the gas have been increasing since 2009.

  20. Model Predictions and Ground-based Observations for Jupiter's Magnetospheric Environment: Application to the JUICE and Juno Missions

    Science.gov (United States)

    Achilleos, Nicholas; Guio, Patrick; Arridge, Christopher S.; Ray, Licia C.; Yates, Japheth N.; Fossey, Stephen J.; Savini, Giorgio; Pearson, Mick; Fernando, Nathalie; Gerasimov, Roman; Murat, Thomas

    2016-10-01

    The advent of new missions to the Jovian system such as Juno (recently arrived) and JUICE (scheduled for 2022 launch) makes timely the provision of model-based predictions for the physical conditions to be encountered by these spacecraft; as well as the planning of simultaneous, ground-based observations of the Jovian system.Using the UCL Jovian magnetodisc model, which calculates magnetic field and plasma distributionsaccording to Caudal's (1986) force-balance formalism, we provide predictions of the following quantities along representative Juno / JUICE orbits through the middle magnetosphere: (i) Magnetic field strength and direction; (ii) Density and / or pressure of the 'cold' and 'hot' particle populations; (iii) Plasma angular velocity.The characteristic variation in these parameters is mainly influenced by the periodic approaches towards and recessions from the magnetodisc imposed on the 'synthetic spacecraft' by the planet's rotating, tilteddipole field. We also include some corresponding predictions for ionospheric / thermospheric conditions at the magnetic footpoint of the spacecraft, using the JASMIN model (Jovian Atmospheric Simulatorwith Magnetosphere, Ionosphere and Neutrals).We also present preliminary imaging results from 'IoSpot', a planned, ground-based programme of observations based at the University College London Observatory (UCLO) which targets ionized sulphur emissions from the Io plasma torus. Such programmes, conducted simultaneously with the above missions, will provide valuable context for the overall physical conditions within the Jovian magnetosphere, for which Io's volcanoes are the principal source of plasma.

  1. Sub-Seasonal Variability of Tropical Rainfall Observed by TRMM and Ground-based Polarimetric Radar

    Science.gov (United States)

    Dolan, Brenda; Rutledge, Steven; Lang, Timothy; Cifelli, Robert; Nesbitt, Stephen

    2010-05-01

    Studies of tropical precipitation characteristics from the TRMM-LBA and NAME field campaigns using ground-based polarimetric S-band data have revealed significant differences in microphysical processes occurring in the various meteorological regimes sampled in those projects. In TRMM-LMA (January-February 1999 in Brazil; a TRMM ground validation experiment), variability is driven by prevailing low-level winds. During periods of low-level easterlies, deeper and more intense convection is observed, while during periods of low-level westerlies, weaker convection embedded in widespread stratiform precipitation is common. In the NAME region (North American Monsoon Experiment, summer 2004 along the west coast of Mexico), strong terrain variability drives differences in precipitation, with larger drops and larger ice mass aloft associated with convection occurring over the coastal plain compared to convection over the higher terrain of the Sierra Madre Occidental, or adjacent coastal waters. Comparisons with the TRMM precipitation radar (PR) indicate that such sub-seasonal variability in these two regions are not well characterized by the TRMM PR reflectivity and rainfall statistics. TRMM PR reflectivity profiles in the LBA region are somewhat lower than S-Pol values, particularly in the more intense easterly regime convection. In NAME, mean reflectivities are even more divergent, with TRMM profiles below those of S-Pol. In both regions, the TRMM PR does not capture rain rates above 80 mm hr-1 despite much higher rain rates estimated from the S-Pol polarimetric data, and rain rates are generally lower for a given reflectivity from TRMM PR compared to S-Pol. These differences between TRMM PR and S-Pol may arise from the inability of Z-R relationships to capture the full variability of microphysical conditions or may highlight problems with TRMM retrievals over land. In addition to the TRMM-LBA and NAME regions, analysis of sub-seasonal precipitation variability and

  2. GROUND FILTERING LiDAR DATA BASED ON MULTI-SCALE ANALYSIS OF HEIGHT DIFFERENCE THRESHOLD

    Directory of Open Access Journals (Sweden)

    P. Rashidi

    2017-09-01

    Full Text Available Separating point clouds into ground and non-ground points is a necessary step to generate digital terrain model (DTM from LiDAR dataset. In this research, a new method based on multi-scale analysis of height difference threshold is proposed for ground filtering of LiDAR data. The proposed method utilizes three windows with different sizes in small, average and large to cover the entire LiDAR point clouds, then with a height difference threshold, point clouds can be separated to ground and non-ground in each local window. Meanwhile, the best threshold values for size of windows are considered based on physical characteristics of the ground surface and size of objects. Also, the minimum of height of object in each window selected as height difference threshold. In order to evaluate the performance of the proposed algorithm, two datasets in rural and urban area were applied. The overall accuracy in rural and urban area was 96.06% and 94.88% respectively. These results of the filtering showed that the proposed method can successfully filters non-ground points from LiDAR point clouds despite of the data area.

  3. Field observations of carbonyl sulfide deficit near the ground: Possible implication of vegetation

    Science.gov (United States)

    Mihalopoulos, N.; Bonsang, B.; Nguyen, B. C.; Kanakidou, M.; Belviso, S.

    In order to study carbonyl sulfide sources and sinks at ground level, two experiments were conducted in 1986 during temperature inversion events. In the first experiment, the samples were collected in a coastal area during land-breeze events. In the second experiment, COS vertical profiles were carried out in an agricultural area, within and above an inversion layer near the ground. Both stable atmospheric situations resulted in a deficit of COS near the ground which is attributed to the existence of a sink of COS at this level. Deposition onto vegetation seems to be the most likely mechanism for this COS uptake, a conclusion in agreement with the results of laboratory and soil flux chambers experiments.

  4. Masses, Deformations and Charge Radii--Nuclear Ground-State Properties in the Relativistic Mean Field Model

    CERN Document Server

    Geng, L S; Meng, J

    2005-01-01

    We perform a systematic study of the ground-state properties of all the nuclei from the proton drip line to the neutron drip line throughout the periodic table employing the relativistic mean field model. The TMA parameter set is used for the mean-field Lagrangian density, and a state-dependent BCS method is adopted to describe the pairing correlation. The ground-state properties of a total of 6969 nuclei with $Z,N\\ge 8$ and $Z\\le 100$ from the proton drip line to the neutron drip line, including the binding energies, the separation energies, the deformations, and the rms charge radii, are calculated and compared with existing experimental data and those of the FRDM and HFB-2 mass formulae. This study provides the first complete picture of the current status of the descriptions of nuclear ground-state properties in the relativistic mean field model. The deviations from existing experimental data indicate either that new degrees of freedom are needed, such as triaxial deformations, or that serious effort is ne...

  5. Low Power Ground-Based Laser Illumination for Electric Propulsion Applications

    Science.gov (United States)

    Lapointe, Michael R.; Oleson, Steven R.

    1994-01-01

    A preliminary evaluation of low power, ground-based laser powered electric propulsion systems is presented. A review of available and near-term laser, photovoltaic, and adaptive optic systems indicates that approximately 5-kW of ground-based laser power can be delivered at an equivalent one-sun intensity to an orbit of approximately 2000 km. Laser illumination at the proper wavelength can double photovoltaic array conversion efficiencies compared to efficiencies obtained with solar illumination at the same intensity, allowing a reduction in array mass. The reduced array mass allows extra propellant to be carried with no penalty in total spacecraft mass. The extra propellant mass can extend the satellite life in orbit, allowing additional revenue to be generated. A trade study using realistic cost estimates and conservative ground station viewing capability was performed to estimate the number of communication satellites which must be illuminated to make a proliferated system of laser ground stations economically attractive. The required number of satellites is typically below that of proposed communication satellite constellations, indicating that low power ground-based laser beaming may be commercially viable. However, near-term advances in low specific mass solar arrays and high energy density batteries for LEO applications would render the ground-based laser system impracticable.

  6. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    Science.gov (United States)

    Thein, Pyi Soe; Pramumijoyo, Subagyo; Brotopuspito, Kirbani Sri; Wilopo, Wahyu; Kiyono, Junji; Setianto, Agung; Putra, Rusnardi Rahmat

    2015-04-01

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green's function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  7. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Thein, Pyi Soe, E-mail: pyisoethein@yahoo.com [Geology Department, Yangon University (Myanmar); Pramumijoyo, Subagyo; Wilopo, Wahyu; Setianto, Agung [Geological Engineering Department, Gadjah Mada University (Indonesia); Brotopuspito, Kirbani Sri [Physics Department, Gadjah Mada University (Indonesia); Kiyono, Junji; Putra, Rusnardi Rahmat [Graduate School of Global Environmental Studies, Kyoto University (Japan)

    2015-04-24

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  8. Quantum annealing search of Ising spin glass ground state(s) with tunable transverse and longitudinal fields

    Science.gov (United States)

    Rajak, A.; Chakrabarti, B. K.

    2014-09-01

    Here we first discuss briefly the quantum annealing technique. We then study the quantum annealing of Sherrington-Kirkpatrick spin glass model with the tuning of both transverse and longitudinal fields. Both the fields are time-dependent and vanish adiabatically at the same time, starting from high values. We solve, for rather small systems, the time-dependent Schrodinger equation of the total Hamiltonian by employing a numerical technique. At the end of annealing we obtain the final state having high overlap with the exact ground state(s) of classical spin glass system (obtained independently).

  9. Remedial investigation sampling and analysis plan for J-Field, Aberdeen Proving Ground, Maryland: Volume 2, Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S.; Martino, L.; Patton, T.

    1995-03-01

    J-Field encompasses about 460 acres at the southern end of the Gunpowder Neck Peninsula in the Edgewood Area of APG (Figure 2.1). Since World War II, the Edgewood Area of APG has been used to develop, manufacture, test, and destroy chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). For the purposes of this project, J-Field has been divided into eight geographic areas or facilities that are designated as areas of concern (AOCs): the Toxic Burning Pits (TBP), the White Phosphorus Burning Pits (WPP), the Riot Control Burning Pit (RCP), the Robins Point Demolition Ground (RPDG), the Robins Point Tower Site (RPTS), the South Beach Demolition Ground (SBDG), the South Beach Trench (SBT), and the Prototype Building (PB). The scope of this project is to conduct a remedial investigation/feasibility study (RI/FS) and ecological risk assessment to evaluate the impacts of past disposal activities at the J-Field site. Sampling for the RI will be carried out in three stages (I, II, and III) as detailed in the FSP. A phased approach will be used for the J-Field ecological risk assessment (ERA).

  10. Magnetoseismology ground-based remote sensing of Earth's magnetosphere

    CERN Document Server

    Menk, Frederick W

    2013-01-01

    Written by a researcher at the forefront of the field, this first comprehensive account of magnetoseismology conveys the physics behind these movements and waves, and explains how to detect and investigate them. Along the way, it describes the principles as applied to remote sensing of near-Earth space and related remote sensing techniques, while also comparing and intercalibrating magnetoseismology with other techniques. The example applications include advanced data analysis techniques that may find wider used in areas ranging from geophysics to medical imaging, and remote sensing using radar systems that are of relevance to defense surveillance systems. As a result, the book not only reviews the status quo, but also anticipates new developments. With many figures and illustrations, some in full color, plus additional computational codes for analysis and evaluation. Aimed at graduate readers, the text assumes knowledge of electromagnetism and physical processes at degree level, but introductory chapters wil...

  11. Ground-based intercomparison of two isoprene measurement techniques

    Directory of Open Access Journals (Sweden)

    E. Leibrock

    2003-01-01

    Full Text Available An informal intercomparison of two isoprene (C5H8 measurement techniques was carried out during Fall of 1998 at a field site located approximately 3 km west of Boulder, Colorado, USA. A new chemical ionization mass spectrometric technique (CIMS was compared to a well-established gas chromatographic technique (GC. The CIMS technique utilized benzene cation chemistry to ionize isoprene. The isoprene levels measured by the CIMS were often larger than those obtained with the GC. The results indicate that the CIMS technique suffered from an anthropogenic interference associated with air masses from the Denver, CO metropolitan area as well as an additional interference occurring in clean conditions. However, the CIMS technique is also demonstrated to be sensitive and fast. Especially after introduction of a tandem mass spectrometric technique, it is therefore a candidate for isoprene measurements in remote environments near isoprene sources.

  12. Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux

    NARCIS (Netherlands)

    Bense, V.F.; Read, T.; Verhoef, A.

    2016-01-01

    We present one of the first studies of the use of distributed temperature sensing (DTS) along fibre-optic cables to purposely monitor spatial and temporal variations in ground surface temperature (GST) and soil temperature, and provide an estimate of the heat flux at the base of the canopy layer

  13. Analysis and field evaluation of an advanced ground-coupled heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, V.D. (Oak Ridge National Lab., TN (USA)); Catan, M.A. (Brookhaven National Lab., Upton, NY (USA)); Hughes, H.M. (Climate Master, Inc. (USA)); Hughes, P.J. (Fleming (W.S.) and Associates, Inc., Syracuse, NY (USA)); O' Neil, R.A. (Niagara Mohawk Power Corp., Syracuse, NY (USA))

    1986-01-01

    This paper addresses the performance of a ground-coupled heat pump (GCHP) system with a water-source heat pump (WSHP) package designed expressly for such systems for a northern climate. The research objective was to minimize the life-cycle cost (LCC) of a GCHP system by optimizing the design of both the heat pump package and the ground heat exchanger in concert. The LCC of a GCHP system with a horizontal ground heat exchanger was minimized over a seven-year economic life for an 1800 ft{sup 2} (167 m{sup 2}) house in Pittsburgh, PA, USA. Simple payback for the optimized system, relative to conventional air-source heat pumps (ASHPs), was less than three years. The resulting WSHP design is calculated to cost approximately 20% more than its conventional counterpart, but offers a 20% higher heating coefficient of performance (COP) and a 23% higher cooling COP. The major conclusion of this study is that by improving the WSHP package efficiency, the ground heat exchanger size can be reduced by at least 30% without sacrificing performance; this can yield significant improvement in the cost competitiveness of GCHP systems. 10 refs., 8 figs., 8 tabs.

  14. Phenomenography and Grounded Theory as Research Methods in Computing Education Research Field

    Science.gov (United States)

    Kinnunen, Paivi; Simon, Beth

    2012-01-01

    This paper discusses two qualitative research methods, phenomenography and grounded theory. We introduce both methods' data collection and analysis processes and the type or results you may get at the end by using examples from computing education research. We highlight some of the similarities and differences between the aim, data collection and…

  15. Phenomenography and Grounded Theory as Research Methods in Computing Education Research Field

    Science.gov (United States)

    Kinnunen, Paivi; Simon, Beth

    2012-01-01

    This paper discusses two qualitative research methods, phenomenography and grounded theory. We introduce both methods' data collection and analysis processes and the type or results you may get at the end by using examples from computing education research. We highlight some of the similarities and differences between the aim, data collection and…

  16. The ground state energy of the mean field spin glass model

    CERN Document Server

    Koukiou, Flora

    2008-01-01

    From the study of a functional equation of Gibbs measures we calculate the limiting free energy of the Sherrington-Kirkpatrick spin glass model at a particular value of (low) temperature. This implies the following lower bound for the ground state energy $\\epsilon_0$ \\[\\epsilon_0\\geq -0.7833...,\\] close to the replica symmetry breaking and numerical simulations values.

  17. Detection of the Zeeman effect in atmospheric O2 using a ground-based microwave radiometer

    Science.gov (United States)

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Murk, Axel; Larsson, Richard; Buehler, Stefan A.; Eriksson, Patrick

    2015-04-01

    In this work we study the Zeeman effect on stratospheric O2 using ground-based microwave radiometer measurements. The Zeeman effect is a phenomenon which occurs when an external magnetic field interacts with a molecule or an atom of total electron spin different from zero. Such an interaction will split an original energy level into several sub-levels [1]. In the atmosphere, oxygen is an abundant molecule which in its ground electronic state has a permanent magnetic dipole moment coming from two parallel electron spins. The interaction of the magnetic dipole moment with the Earth magnetic field leads to a Zeeman splitting of the O2 rotational transitions which polarizes the emission spectra. A special campaign was carried out in order to measure this effect in the oxygen emission line centered at 53.07 GHz in Bern (Switzerland). The measurements were possible using a Fast Fourier Transform (FFT) spectrometer with 1 GHz of band width to measure the whole oxygen emission line centered at 53.07 GHz and a narrow spectrometer (4 MHz) to measure the center of the line with a very high resolution (1 kHz). Both a fixed and a rotating mirror were incorporated to the TEMPERA (TEMPERature RAdiometer) radiometer in order to be able to measure under different observational angles. This new configuration allowed us to change the angle between the observational path and the Earth magnetic field direction. The measured spectra showed a clear polarized signature when the observational angles were changed evidencing the Zeeman effect in the oxygen molecule. In addition, simulations carried out with the Atmospheric Radiative Transfer Simulator (ARTS) [2] allowed us to verify the microwave measurements showing a very good agreement between model and measurements. The incorporation of this effect to the forward model will allow to extend the temperature retrievals beyond 50 km. This improvement in the forward model will be very useful for the assimilation of brightness temperatures in

  18. Analysis of meteorological variables in the Australasian region using ground- and space-based GPS techniques

    Science.gov (United States)

    Kuleshov, Yuriy; Choy, Suelynn; Fu, Erjiang Frank; Chane-Ming, Fabrice; Liou, Yuei-An; Pavelyev, Alexander G.

    2016-07-01

    Results of analysis of meteorological variables (temperature and moisture) in the Australasian region using the global positioning system (GPS) radio occultation (RO) and GPS ground-based observations verified with in situ radiosonde (RS) data are presented. The potential of using ground-based GPS observations for retrieving column integrated precipitable water vapour (PWV) over the Australian continent has been demonstrated using the Australian ground-based GPS reference stations network. Using data from the 15 ground-based GPS stations, the state of the atmosphere over Victoria during a significant weather event, the March 2010 Melbourne storm, has been investigated, and it has been shown that the GPS observations has potential for monitoring the movement of a weather front that has sharp moisture contrast. Temperature and moisture variability in the atmosphere over various climatic regions (the Indian and the Pacific Oceans, the Antarctic and Australia) has been examined using satellite-based GPS RO and in situ RS observations. Investigating recent atmospheric temperature trends over Antarctica, the time series of the collocated GPS RO and RS data were examined, and strong cooling in the lower stratosphere and warming through the troposphere over Antarctica has been identified, in agreement with outputs of climate models. With further expansion of the Global Navigation Satellite Systems (GNSS) system, it is expected that GNSS satellite- and ground-based measurements would be able to provide an order of magnitude larger amount of data which in turn could significantly advance weather forecasting services, climate monitoring and analysis in the Australasian region.

  19. Ground-Based Surveillance and Tracking System (GSTS)

    Science.gov (United States)

    1987-08-01

    reported availabilty of relatively high- paying jobs. The consequences of increased migration could be significant. No significant impacts at U.S. Army...Air Force Base are contributing to overdrawing the aquifers, and at current usage rates the aquifers could be depleted (44). The "Draft Environmental

  20. Influence of rotating magnetic fields on THM growth of CdZnTe crystals under microgravity and ground conditions

    Science.gov (United States)

    Stelian, Carmen; Duffar, Thierry

    2015-11-01

    The influence of rotating magnetic fields (RMF) on species transport and interface stability during the growth of Cd0.96Zn0.04Te:In crystals by using the traveling heater method (THM), under microgravity and terrestrial conditions, is numerically investigated. The numerical results are compared to ground and space experiments. The modeling of THM under ground conditions shows very deleterious effects of the natural convection on the morphological stability of the growth interface. The vertical flow transports the liquid of low Te concentration from the dissolution interface to the growth interface, which is consequently destabilized. The suppression of this flow, in low-gravity conditions, results in higher morphological stability of the growth interface. Application of RMF induces a two flow cell pattern, which has a destabilizing effect on the growth interface. Simulations performed by varying the magnetic field induction in the range of 1 - 3 mT show optimal conditions for the growth with a stable interface at low strength of the magnetic field (B = 1 mT). Computations of indium distribution show a better homogeneity of crystals grown under purely diffusive conditions. Rotating magnetic fields of B = 1 mT induce low intensity convection, which generates concentration gradients near the growth interface. These numerical results are in agreement with experiments performed during the FOTON M4 space mission, showing good structural quality of Cd0.96Zn0.04Te crystals grown at very low gravity level. Applying low intensity rotating magnetic fields in ground experiments has no significant influence on the flow pattern and solute distribution. At high intensity of RMF (B = 50 mT), the buoyancy convection is damped near the growth front, resulting in a more stable advancing interface. However, convection is strengthening in the upper part of the liquid zone, where the flow becomes unsteady. The multi-cellular unsteady flow generates temperature oscillations, having

  1. Influence of transplant size on the above- and below-ground performance of four contrasting field-grown lettuce cultivars

    Directory of Open Access Journals (Sweden)

    Pauline Julie Kerbiriou

    2013-09-01

    Full Text Available Background and aims: Modern lettuce cultivars underperform under conditions of variable temporal and spatial resource availability, common in organic or low-input production systems. Information is scarce on the impact of below-ground traits on such resource acquisition and performance of field-grown lettuce; exploring genetic variation in such traits might contribute to strategies to select for cultivars robust enough to perform well in the field, even under stress.Methods: To investigate the impact of below-ground (root development and resource capture on above-ground (shoot weight, leaf area traits, different combinations of shoot and root growth were created using transplants of different sizes in three field experiments. Genetic variation in morphological and physiological below- and above-ground responses to different types of transplant shocks was assessed using four cultivars. Results: Transplanting over-developed seedling did not affect final yield of any of the four cultivars. Small transplant size persistently impacted growth and delayed maturity. The cultivars with overall larger root weights and rooting depth, ‘Matilda’ and ‘Pronto’, displayed a slightly higher growth rate in the linear phase leading to better yields than ‘Mariska’ which had a smaller root system and a slower linear growth despite a higher maximal exponential growth rate. ‘Nadine’, which had the highest physiological nitrogen-use efficiency (NUE, g dry matter produced per g N accumulated in the head among the tested cultivars, gave most stable yields over seasons and locations. Conclusions: Robustness was conferred by a large root system exploring deep soil layers. More roots generally correlated with improved nitrate capture in a soil layer and cultivars with a larger root system may therefore perform better in harsh environmental conditions; increased NUE can also confer robustness at low cost for the plant, and secure stable yields under a wide

  2. Tracking of urban aerosols using combined lidar-based remote sensing and ground-based measurements

    Directory of Open Access Journals (Sweden)

    T.-Y. He

    2011-10-01

    Full Text Available A measuring campaign was performed over the neighboring towns of Nova Gorica in Slovenia and Gorizia in Italy on 24 and 25 May 2010, to investigate the concentration and distribution of urban aerosols. Tracking of two-dimensional spatial and temporal aerosol distributions was performed using scanning elastic lidar operating at 1064 nm. In addition, PM10 concentrations of particles, NOx and meteorological data were continuously monitored within the lidar scanning region. Based on the collected data, we investigated the flow dynamics and the aerosol concentrations within the lower troposphere and an evidence for daily aerosol cycles. We observed a number of cases with spatially localized increased lidar returns, which were found to be due to the presence of point sources of particulate matter. Daily aerosol concentration cycles were also clearly visible with a peak in aerosol concentration during the morning rush hours and daily maximum at around 17:00 Central European Time. We also found that the averaged horizontal atmospheric extinction within the scanning region 200 m above the ground is correlated to the PM10 concentration at the ground level with a correlation coefficient of 0.64, which may be due to relatively quiet meteorological conditions and basin-like terrain configuration.

  3. HMF sectors since 1926: Comparison of two ground-based data sets

    Science.gov (United States)

    Hiltula, T.; Mursula, K.

    In this paper, we compare two recent long-term data sets of daily HMF sector polarities since 1926 based on ground-based geomagnetic measurements: the combined data set by Echer and Svalgaard [Echer, E., Svalgaard, L. Asymmetry in the Rosenberg-Coleman effect around solar minimum revealed by wavelet analysis of the interplanetary magnetic field polarity data (1927-2002). Geophys. Res. Lett. 31, 12808, 2004] (ES data set) and a three-station data set derived by Vennerstroem et al. [Vennerstroem, S., Zieger, B., Friis-Christensen, E. An improved method of inferring interplanetary sector structure, 1905-present. J. Geophys. Res. 106 (15), 16011-16020, 2001] (VZF data set). The Rosenberg-Coleman rule is consistently valid in the ES data during the last 80 years, but fails in the VZF data set in the early cycles. There is a clear bias (T sector dominance) in the VZF data that is not observed in satellite measurements collected in the OMNI-2 data set, or in the ES data. Also, there is a difference on the success rates between the two sectors in the VZF data. Therefore, we conclude that the ES data set is more reliable, especially in cycles 16-18, in reproducing the HMF sector structure. Both data sets reproduce the southward shift of the heliospheric current sheet during the OMNI-2 interval. However, only the more reliable ES data set depicts this systematically also during the early cycles 16-18.

  4. Ground-based astronomical instrument for planetary protection

    Science.gov (United States)

    Kendrick, Richard L.; Bennett, Dave; Bold, Matthew

    2014-07-01

    Planetary protection consists of the measurement and characterization of near-earth objects including earth threatening asteroids and earth orbiting debris. The Lockheed Martin STAR Labs in Palo Alto California is developing new astronomical instruments for use in planetary protection. The observation of asteroids is standard for astronomical facilities and there are available instruments designed with this specific science mission in mind. Orbital debris observation and characterization has a somewhat different set of requirements and includes large fields of view with simultaneous spectro-polarimetric data on multiple closely spaced objects. Orbital debris is comprised of spent rocket bodies, rocket fairing covers, paint chips, various satellite components, debris from satellite collisions and explosions and nonoperational satellites. The debris is present in all orbital planes from Low Earth orbit out to the geosynchronous graveyard orbit. We concentrate our effort on the geosynchronous and nearby orbits. This is because typical groundbased astronomical telescopes are built to track at sidereal rates and not at the 1 degree per second rates that are required to track low earth orbiting objects. The orbital debris materials include aluminum, mylar, solar cell materials, composite matrix material and other materials that are used in the fabrication of satellites and launch vehicles. These materials typically have spectral features in different wavebands than asteroids which are mostly composed of materials with molecular absorption bands such as in H2O. This will drive an orbital debris material identification instrument to wavebands and resolutions that are typically not used in asteroid observations.

  5. Ground Based GPS Phase Measurements for Atmospheric Sounding

    Science.gov (United States)

    2016-06-14

    based GPS observations for the correction of radar observations. 6 REFERENCES Alber, C., R. Ware, C. Rocken, and J. Braun, A new method for sensing ...rocken@ucar.edu Award #: N00014-97-1-0258 LONG-TERM GOAL The goal is to develop GPS remote sensing techniques to determine atmospheric signal delay and...agrees best with the observations in a least squares sense is selected. The corresponding refractivity profile is then selected. • We tested this

  6. Constraint-based Ground contact handling in Humanoid Robotics Simulation

    OpenAIRE

    Martin Moraud, Eduardo; Hale, Joshua G.; Cheng, Gordon

    2008-01-01

    International audience; This paper presents a method for resolving contact in dynamic simulations of articulated figures. It is intended for humanoids with polygonal feet and incorporates Coulomb friction exactly. The proposed technique is based on a constraint selection paradigm. Its implementation offers an exact mode which guarantees correct behavior, as well as an efficiency optimized mode which sacrifices accuracy for a tightly bounded computational burden, thus facilitating batch simula...

  7. The thermo-vibrational convection in microgravity condition. Ground-based modelling.

    Science.gov (United States)

    Zyuzgin, A. V.; Putin, G. F.; Harisov, A. F.

    In 1995-2000 at orbital station "Mir" has been carried out the series of experiments with the equipment "Alice" for the studying regimes of heat transfer in the supercritical fluids under influence inertial microaccelerations. The experiments have found out existence of the thermo-vibrational and thermo-inertial convective movements in the real weightlessness[1] and controlling microgravity fields[2]. However regarding structures of thermovibrational convection the results of experiments have inconsistent character. Therefore carrying out the ground-based modeling of the given problem is actually. In this work in laboratory conditions were investigated the thermo-vibrational convective movements from the dot heat source at high-frequency vibrations of the cavity with the fluid and presence quasi-static microacceleration. As the result of ground-based modeling, the regimes of convective flows, similar observed in the space experiment are received. Evolution of the convective structures and the spatial-temporary characteristics of movements are investigated in a wide range of the problem parameters. The control criteria and its critical value are determined. The received results well coordinated to the data of space experiments and allow adding and expanding representation about thermo-vibrational effects in conditions of real weightlessness and remove the contradictions concerning structures thermo-vibrational convective flows, received at the analysis of the given orbital experiments. The research described in this publication was made possible in part by Russian Foundation for Basic Research and Administration of Perm Region, Russia, under grant 04-02-96038, and Award No. PE-009-0 of the U.S. Civilian Research & Development Foundation for the Independent States of the Former Soviet Union (CRDF). A.V. Zyuzgin, A. I. Ivanov, V. I. Polezhaev, G. F. Putin, E. B. Soboleva Convective Motions in Near-Critical Fluids under Real Zero-Gravity Conditions. Cosmic Research

  8. Suitability of ground-based SfM-MVS for monitoring glacial and periglacial processes

    Science.gov (United States)

    Piermattei, Livia; Carturan, Luca; de Blasi, Fabrizio; Tarolli, Paolo; Dalla Fontana, Giancarlo; Vettore, Antonio; Pfeifer, Norbert

    2016-05-01

    Photo-based surface reconstruction is rapidly emerging as an alternative survey technique to lidar (light detection and ranging) in many fields of geoscience fostered by the recent development of computer vision algorithms such as structure from motion (SfM) and dense image matching such as multi-view stereo (MVS). The objectives of this work are to test the suitability of the ground-based SfM-MVS approach for calculating the geodetic mass balance of a 2.1 km2 glacier and for detecting the surface displacement of a neighbouring active rock glacier located in the eastern Italian Alps. The photos were acquired in 2013 and 2014 using a digital consumer-grade camera during single-day field surveys. Airborne laser scanning (ALS, otherwise known as airborne lidar) data were used as benchmarks to estimate the accuracy of the photogrammetric digital elevation models (DEMs) and the reliability of the method. The SfM-MVS approach enabled the reconstruction of high-quality DEMs, which provided estimates of glacial and periglacial processes similar to those achievable using ALS. In stable bedrock areas outside the glacier, the mean and the standard deviation of the elevation difference between the SfM-MVS DEM and the ALS DEM was -0.42 ± 1.72 and 0.03 ± 0.74 m in 2013 and 2014, respectively. The overall pattern of elevation loss and gain on the glacier were similar with both methods, ranging between -5.53 and + 3.48 m. In the rock glacier area, the elevation difference between the SfM-MVS DEM and the ALS DEM was 0.02 ± 0.17 m. The SfM-MVS was able to reproduce the patterns and the magnitudes of displacement of the rock glacier observed by the ALS, ranging between 0.00 and 0.48 m per year. The use of natural targets as ground control points, the occurrence of shadowed and low-contrast areas, and in particular the suboptimal camera network geometry imposed by the morphology of the study area were the main factors affecting the accuracy of photogrammetric DEMs negatively

  9. Ground-based follow-up in relation to Kepler Asteroseismic Investigation

    CERN Document Server

    Uytterhoeven, K; Bruntt, H; De Cat, P; Frandsen, S; Gutierrez-Soto, J; Kiss, L; Kurtz, D W; Marconi, M; Molenda-Zakowicz, J; Ostensen, R; Randall, S; Southworth, J; Szabo, R

    2010-01-01

    The Kepler space mission, successfully launched in March 2009, is providing continuous, high-precision photometry of thousands of stars simultaneously. The uninterrupted time-series of stars of all known pulsation types are a precious source for asteroseismic studies. The Kepler data do not provide information on the physical parameters, such as effective temperature, surface gravity, metallicity, and vsini, which are crucial for successful asteroseismic modelling. Additional ground-based time-series data are needed to characterize mode parameters in several types of pulsating stars. Therefore, ground-based multi-colour photometry and mid/high-resolution spectroscopy are needed to complement the space data. We present ground-based activities within KASC on selected asteroseismic Kepler targets of several pulsation types. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-...

  10. Ka-band bistatic ground-based SAR using noise signals

    Science.gov (United States)

    Lukin, K.; Mogyla, A.; Vyplavin, P.; Palamarchuk, V.; Zemlyaniy, O.; Tarasenko, V.; Zaets, N.; Skretsanov, V.; Shubniy, A.; Glamazdin, V.; Natarov, M.; Nechayev, O.

    2008-01-01

    Currently, one of the actual problems is remote monitoring of technical state of large objects. Different methods can be used for that purpose. The most promising of them relies on application of ground based synthetic aperture radars (SAR) and differential interferometry. We have designed and tested Ground Based Noise Waveform SAR based on noise radar technology [1] and synthetic aperture antennas [2]. It enabled to build an instrument for precise all-weather monitoring of large objects in real-time. We describe main performance of ground-based interferometric SAR which uses continuous Ka-band noise waveform as a probe signal. Besides, results of laboratory trials and evaluation of its main performance are presented as well.

  11. Analysis of English Complex Sentences based on Figure-Ground Theory

    Institute of Scientific and Technical Information of China (English)

    侯皓

    2015-01-01

    English is a language featuring its complex sentences composed of main and sub-ordinate clauses. The subordinate clause conveys the unifnished messages in main clause and it becomes quite complicated. English complex sentence is a fair impor-tant sentence type and also of importance in English teaching. Analyzing complex sentence based on Figure-Ground Theory, especially the Adverbial Clause, is help-ful to learn English and translate it. The Figure-Ground Theory originated in psychol-ogy studies and it was introduced in cognitive linguistics to explain some language phenomena. From Figure-Ground perspective, the essay studies attributive clause, adverbial clause and nominal clause and some critical sentence types have been analyzed carefully and the major ifnding is Figure-Ground Theory is dynamic not static.

  12. Novel identification strategy for ground coffee adulteration based on UPLC-HRMS oligosaccharide profiling.

    Science.gov (United States)

    Cai, Tie; Ting, Hu; Jin-Lan, Zhang

    2016-01-01

    Coffee is one of the most common and most valuable beverages. According to International Coffee Organization (ICO) reports, the adulteration of coffee for financial reasons is regarded as the most serious threat to the sustainable development of the coffee market. In this work, a novel strategy for adulteration identification in ground coffee was developed based on UPLC-HRMS oligosaccharide profiling. Along with integrated statistical analysis, 17 oligosaccharide composition were identified as markers for the identification of soybeans and rice in ground coffee. This strategy, validated by manual mixtures, optimized both the reliability and authority of adulteration identification. Rice and soybean adulterants present in ground coffee in amounts as low as 5% were identified and evaluated. Some commercial ground coffees were also successfully tested using this strategy.

  13. Quantifying the effect of riming on snowfall using ground-based observations

    Science.gov (United States)

    Moisseev, Dmitri; von Lerber, Annakaisa; Tiira, Jussi

    2017-04-01

    Ground-based observations of ice particle size distribution and ensemble mean density are used to quantify the effect of riming on snowfall. The rime mass fraction is derived from these measurements by following the approach that is used in a single ice-phase category microphysical scheme proposed for the use in numerical weather prediction models. One of the characteristics of the proposed scheme is that the prefactor of a power law relation that links mass and size of ice particles is determined by the rime mass fraction, while the exponent does not change. To derive the rime mass fraction, a mass-dimensional relation representative of unrimed snow is also determined. To check the validity of the proposed retrieval method, the derived rime mass fraction is converted to the effective liquid water path that is compared to microwave radiometer observations. Since dual-polarization radar observations are often used to detect riming, the impact of riming on dual-polarization radar variables is studied for differential reflectivity measurements. It is shown that the relation between rime mass fraction and differential reflectivity is ambiguous, other factors such as change in median volume diameter need also be considered. Given the current interest on sensitivity of precipitation to aerosol pollution, which could inhibit riming, the importance of riming for surface snow accumulation is investigated. It is found that riming is responsible for 5% to 40% of snowfall mass. The study is based on data collected at the University of Helsinki field station in Hyytiälä during U.S. Department of Energy Biogenic Aerosols Effects on Clouds and Climate (BAECC) field campaign and the winter 2014/2015. In total 22 winter storms were analyzed, and detailed analysis of two events is presented to illustrate the study.

  14. NASA's Newest Orbital Debris Ground-based Telescope Assets: MCAT and UKIRT

    Science.gov (United States)

    Lederer, S. M.; Frith, J. M.; Pace, L. F.; Cowardin, H. M.; Cowardin, H. M.; Hickson, P.; Glesne, T.; Maeda, R.; Buckalew, B.; Nishimoto, D.; hide

    2014-01-01

    NASA's Orbital Debris Program Office (ODPO) will break ground on Ascension Island in 2014 to build the newest optical (0.30 - 1.06 micrometers) ground-based telescope asset dedicated to the study of orbital debris. The Meter Class Autonomous Telescope (MCAT) is a 1.3m optical telescope designed to track objects in orbits ranging from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO). Ascension Island is located in the South Atlantic Ocean, offering longitudinal sky coverage not afforded by the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) network. With a fast-tracking dome, a suite of visible wide-band filters, and a time-delay integration (TDI) capable camera, MCAT is capable of multiple observing modes ranging from tracking cataloged debris targets to surveying the overall debris environment. Access to the United Kingdom Infrared Telescope (UKIRT) will extend our spectral coverage into the near- (0.8-5 micrometers) and mid- to far-infrared (8-25 micrometers) regime. UKIRT is a 3.8m telescope located on Mauna Kea on the Big Island of Hawaii. At nearly 14,000-feet and above the atmospheric inversion layer, this is one of the premier astronomical sites in the world and is an ideal setting for an infrared telescope. An unprecedented one-third of this telescope's time has been allocated to collect orbital debris data for NASA's ODPO over a 2-year period. UKIRT has several instruments available to obtain low-resolution spectroscopy in both the near-IR and the mid/far-IR. Infrared spectroscopy is ideal for constraining the material types, albedos and sizes of debris targets, and potentially gaining insight into reddening effects caused by space weathering. In addition, UKIRT will be used to acquire broadband photometric imaging at GEO with the Wide Field Camera (WFCAM) for studying known objects of interest as well as collecting data in survey-mode to discover new targets. Results from the first stage of the debris campaign will be presented. The

  15. Ground state correlations and mean-field in $^{16}O$, 2

    CERN Document Server

    Mihaila, B; Mihaila, Bogdan; Heisenberg, Jochen H.

    2000-01-01

    We continue the investigations of the $^{16}$O ground state using the coupled-cluster expansion [$\\exp({\\bf S})$] method with realistic nuclear interaction. In this stage of the project, we take into account the three nucleon interaction, and examine in some detail the definition of the internal Hamiltonian, thus trying to correct for the center-of-mass motion. We show that this may result in a better separation of the internal and center-of-mass degrees of freedom in the many-body nuclear wave function. The resulting ground state wave function is used to calculate the "theoretical" charge form factor and charge density. Using the "theoretical" charge density, we generate the charge form factor in the DWBA picture, which is then compared with the available experimental data. The longitudinal response function in inclusive electron scattering for $^{16}$O is also computed.

  16. Dust optical properties retrieved from ground-based polarimetric measurements.

    Science.gov (United States)

    Li, Zhengqiang; Goloub, Philippe; Blarel, Luc; Damiri, Bahaiddin; Podvin, Thierry; Jankowiak, Isabelle

    2007-03-20

    We have systematically processed one year of sunphotometer measurements (recorded at five AERONET/PHOTONS sites in Africa) in order to assess mineral dust optical properties with the use of a new polarimetry-based algorithm. We consider the Cimel CE318 polarized sunphotometer version to obtain single-scattering albedo, scattering phase matrix elements F(11) and F(12) for dust aerosols selected with Angström exponents ranging from -0.05 to 0.25. Retrieved F(11) and F(12) differ significantly from those of spherical particles. The degree of linear polarization -F(12)/F(11) for single scattering of atmospheric total column dust aerosols in the case of unpolarized incident light is systematically retrieved for the first time to our knowledge from sunphotometer measurements and shows consistency with previous laboratory characterizations of nonspherical particles.

  17. Assessing post-fire ground cover in Mediterranean shrublands with field spectrometry and digital photography

    Science.gov (United States)

    Montorio Llovería, Raquel; Pérez-Cabello, Fernando; García-Martín, Alberto

    2016-09-01

    Fire severity can be assessed by identifying and quantifying the fractional abundance of post-fire ground cover types, an approach with great capacity to predict ecosystem response. Focused on shrubland formations of Mediterranean-type ecosystems, three burned areas (Ibieca and Zuera wildfires and Peñaflor experimental fire) were sampled in the summers of 2006 and 2007. Two different ground measurements were made for each of the 356 plots: (i) 3-band high spatial resolution photography (HSRP) and (ii) the hemispherical-conical reflectance factor (HCRF) in the visible to near-infrared spectral range (VNIR, 400-900 nm). Stepwise multiple lineal regression (SMLR) models were fitted to spectral variables (HCRF, first derivative spectra or FDS, and four absorption indices) to estimate the fractional cover of seven post-fire ground cover types (vegetation and soil - unburned and charred components - and ash - char and ash, individually and as a combined category). Models were developed and validated at the Peñaflor site (training, n = 217; validation, n = 88) and applied to the samples from the Ibieca and Zuera sites (n = 51). The best results were observed for the abundance estimations of green vegetation (Radj.20.70-0.90), unburned soil (Radj.20.40-0.75), and the combination of ashes (Radj.20.65-0.80). In comparison of spectral data, FDS outperforms reflectance or absorption data because of its higher accuracy levels and, importantly, its greater capacity to yield generalizable models. Future efforts should be made to improve the estimation of intermediate severity levels and upscaling the developed models. In the context of fire severity assessment, our study demonstrates the potential of hyperspectral data to estimate in a quick and objective manner post-fire ground cover fractions and thus provide valuable information to guide management responses.

  18. Analysis of the substorm trigger phase using multiple ground-based instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Kauristie, K.; Pulkkinen, T.I.; Pellinen, R.J. [Finnish Meteorological Institute, Helsinki (Finland)] [and others

    1995-08-01

    The authors discuss in detail the observation of an event of auroral activity fading during the trigger, or growth phase of a magnetic storm. This event was observed by all-sky cameras, EISCAT radar and magnetometers, riometers, and pulsation magnetometers, from ground based stations in Finland and Scandanavia. Based on their detailed analysis, they present a possible cause for the observed fading.

  19. Density and fledging success of ground-nesting passerines in Conservation Reserve Program fields in the northeastern Great Plains

    Science.gov (United States)

    Koford, Rolf R.

    1999-01-01

    The Conservation Reserve Program, initiated in 1985, was designed primarily to reduce soil erosion and crop surpluses. A secondary benefit was the provision of habitat for wildlife. Grassland bird populations, many of which declined in the decades prior to the Conservation Reserve Program, may have benefited from the Conservation Reserve Program if reproduction in this newly available habitat has been at least as high as it would have been in the absence of the Conservation Reserve Program. On study areas in North Dakota and Minnesota, I examined breeding densities and fledging success of grassland birds in Conservation Reserve Program fields and in an alternative habitat of similar structure, idle grassland fields on federal Waterfowl Production Areas. Fields were 10 to 25 hectares in size. The avifaunas of these two habitats were similar, although brush-dependent species were more abundant on Waterfowl Protection Areas. The common species in these habitats included ones whose continental populations have declined, such as Grasshopper Sparrow (Ammodramus savannarum), Savannah Sparrow (Passerculus sandwichensis), and Bobolink (Dolichonyx oryzivorus). These ground-nesting species were pooled with other ground nesters in an analysis of fledging success, which revealed no significant differences between habitats, between states, or among years (1991-1993). Predation was the primary cause of nest failure. I concluded that Conservation Reserve Program fields in this region were suitable breeding habitat for several species whose populations had declined prior to the Conservation Reserve Program era. This habitat appeared to be as secure for nests of ground-nesting birds as another suitable habitat in North Dakota and Minnesota.

  20. Plans of a test bed for ionospheric modelling based on Fennoscandian ground-based instrumentation

    Science.gov (United States)

    Kauristie, Kirsti; Kero, Antti; Verronen, Pekka T.; Aikio, Anita; Vierinen, Juha; Lehtinen, Markku; Turunen, Esa; Pulkkinen, Tuija; Virtanen, Ilkka; Norberg, Johannes; Vanhamäki, Heikki; Kallio, Esa; Kestilä, Antti; Partamies, Noora; Syrjäsuo, Mikko

    2016-07-01

    One of the recommendations for teaming among research groups in the COSPAR/ILWS roadmap is about building test beds in which coordinated observing supports model development. In the presentation we will describe a test bed initiative supporting research on ionosphere-thermosphere-magnetosphere interactions. The EISCAT incoherent scatter radars with their future extension, EISCAT3D, form the backbone of the proposed system. The EISCAT radars are surrounded by versatile and dense arrays of ground-based instrumentation: magnetometers and auroral cameras (the MIRACLE and IMAGE networks), ionospheric tomography receivers (the TomoScand network) and other novel technology for upper atmospheric probing with radio waves (e.g. the KAIRA facility, riometers and the ionosonde maintained by the Sodankylä Geophysical Observatory). As a new opening, close coordination with the Finnish national cubesat program is planned. We will investigate opportunities to establish a cost efficient nanosatellite program which would support the ground-based observations in a systematic and persistent manner. First experiences will be gathered with the Aalto-1 and Aalto-2 satellites, latter of which will be the Finnish contribution to the international QB50 mission. We envisage close collaboration also in the development of data analysis tools with the goal to integrate routines and models from different research groups to one system, where the different elements support each other. In the longer run we are aiming for a modelling framework with observational guidance which gives a holistic description on ionosphere-thermosphere processes and this way enables reliable forecasts on upper atmospheric space weather activity.

  1. A joint Cluster and ground-based instruments study of two magnetospheric substorm events on 1 September 2002

    Directory of Open Access Journals (Sweden)

    N. C. Draper

    2004-12-01

    Full Text Available We present a coordinated ground- and space-based multi-instrument study of two magnetospheric substorm events that occurred on 1 September 2002, during the interval from 18:00 UT to 24:00 UT. Data from the Cluster and Polar spacecraft are considered in combination with ground-based magnetometer and HF radar data. During the first substorm event the Cluster spacecraft, which were in the Northern Hemisphere lobe, are to the west of the main region affected by the expansion phase. Nevertheless, substorm signatures are seen by Cluster at 18:25 UT (just after the expansion phase onset as seen on the ground at 18:23 UT, despite the ~5 RE} distance of the spacecraft from the plasma sheet. The Cluster spacecraft then encounter an earthward-moving diamagnetic cavity at 19:10 UT, having just entered the plasma sheet boundary layer. The second substorm expansion phase is preceded by pseudobreakups at 22:40 and 22:56 UT, at which time thinning of the near-Earth, L=6.6, plasma sheet occurs. The expansion phase onset at 23:05 UT is seen simultaneously in the ground magnetic field, in the magnetotail and at Polar's near-Earth position. The response in the ionospheric flows occurs one minute later. The second substorm better fits the near-Earth neutral line model for substorm onset than the cross-field current instability model.

    Key words. Magnetospheric physics (Magnetosphereionosphere interactions; Magnetic reconnection; Auroral phenomenon

  2. Magnetic field mapper based on rotating coils

    CERN Document Server

    AUTHOR|(CDS)2087244; Arpaia, Pasquale

    This thesis presents a magnetic field mapper based on rotating coils. The requirements, the architecture, the conceptual design, and the prototype for straight magnets were shown. The proposed system is made up of a rotating coil transducer and a train-like system for longitudinal motion and positioning inside magnet bore. The mapper allows a localized measurement of magnetic fields and the variation of the harmonic multipole content in the magnet ends. The proof-of-principle demonstration and the experimental characterization of the rotating-coil transducer specifically conceived for mapping validated the main objective of satisfying the magnetic measurement needs of the next generation of compact accelerators.

  3. Gypsy moth (Lepidoptera: Lymantriidae) control with ground-based hydraulic applications of Gypchek, in vitro-produced virus, and Bacillus thuringiensis

    Science.gov (United States)

    Kevin W. Thorpe; John D. Podgwaite; James M. Slavicek; Ralph E. Webb

    1998-01-01

    Gypchek, a registered microbial insecticide for aerial and ground-based application against the gypsy moth, Lymantria dispar L., was field-tested in 1996 and 1997 at 2 doses (1011 and 1012 polyhedral inclusion bodies (PIB) per 379 liters (100 gallons) ) and with and without a sunscreen. An in vitro-...

  4. Tracing ground water input to base flow using sulfate (S, O) isotopes.

    Science.gov (United States)

    Gu, Ailiang; Gray, Floyd; Eastoe, Christopher J; Norman, Laura M; Duarte, Oscar; Long, Austin

    2008-01-01

    Sulfate (S and O) isotopes used in conjunction with sulfate concentration provide a tracer for ground water contributions to base flow. They are particularly useful in areas where rock sources of contrasting S isotope character are juxtaposed, where water chemistry or H and O isotopes fail to distinguish water sources, and in arid areas where rain water contributions to base flow are minimal. Sonoita Creek basin in southern Arizona, where evaporite and igneous sources of sulfur are commonly juxtaposed, serves as an example. Base flow in Sonoita Creek is a mixture of three ground water sources: A, basin ground water with sulfate resembling that from Permian evaporite; B, ground water from the Patagonia Mountains; and C, ground water associated with Temporal Gulch. B and C contain sulfate like that of acid rock drainage in the region but differ in sulfate content. Source A contributes 50% to 70%, with the remainder equally divided between B and C during the base flow seasons. The proportion of B generally increases downstream. The proportion of A is greatest under drought conditions.

  5. Tracing ground water input to base flow using sulfate (S, O) isotopes

    Science.gov (United States)

    Gu, A.; Gray, F.; Eastoe, C.J.; Norman, L.M.; Duarte, O.; Long, A.

    2008-01-01

    Sulfate (S and O) isotopes used in conjunction with sulfate concentration provide a tracer for ground water contributions to base flow. They are particularly useful in areas where rock sources of contrasting S isotope character are juxtaposed, where water chemistry or H and O isotopes fail to distinguish water sources, and in arid areas where rain water contributions to base flow are minimal. Sonoita Creek basin in southern Arizona, where evaporite and igneous sources of sulfur are commonly juxtaposed, serves as an example. Base flow in Sonoita Creek is a mixture of three ground water sources: A, basin ground water with sulfate resembling that from Permian evaporite; B, ground water from the Patagonia Mountains; and C, ground water associated with Temporal Gulch. B and C contain sulfate like that of acid rock drainage in the region but differ in sulfate content. Source A contributes 50% to 70%, with the remainder equally divided between B and C during the base flow seasons. The proportion of B generally increases downstream. The proportion of A is greatest under drought conditions.

  6. Ground based measurements of particulate emissions from supersonic transports. Concorde olympus engine

    Energy Technology Data Exchange (ETDEWEB)

    Whitefield, Ph.D.; Hagen, D.E. [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H.V. [McDonnell Douglas Corp., St. Louis, MO (United States)

    1997-12-31

    The application of a mobile aerosol monitoring facility, the Mobile Aerosol Sampling System (MASS) is described to characterize engine aerosol emissions from the Rolls Royce Olympus Engine. The multi-configurational MASS has been employed in both ground and airborne field operations. It has been successfully flown on research aircrafts. In ground tests the MASS has participated in numerous jet engine related ground tests, and has been deployed to resolve aerosol generation problems in a high power chemical laser system. In all cases the measurements were made on samples taken from a harsh physical and chemical environment, with both high and low temperature and pressure, and in the presence of highly reactive gases. (R.P.) 9 refs.

  7. A framework for recovery-oriented, COTS-based ground station networks

    Science.gov (United States)

    Cutler, James William

    The complexity of space communication has limited our access to space systems and kept mission operations costs high. Ultimately, this results in reduced mission capabilities and yields. In particular, ground stations, the access point between space and terrestrial networks, suffer from monolithic designs, narrow interfaces, and unreliability that raise significant financial barriers for low-cost, experimental satellite missions. This research reduces these barriers by developing technology for recovery-oriented, flexible access networks built from commercial-off-the-shelf (COTS) components. Based on our extensive small satellite experiences, we decomposed ground station services and captured them in an extensible framework that simplified reuse of ground station services and improved portability across heterogeneous installations. This capability, combined with selective customization through virtual machine technology, allowed us to deliver "just in time" ground stations for QuakeSat-1 at a fraction of the price of current commodity solutions. This decomposition is also informed by principles of robust system design. Thus, our ground station reference implementation called Mercury was a candidate for recursive recovery (RR), a high availability technique whose effectiveness in reducing recovery time has been demonstrated on research prototypes of Internet server systems. Augmenting Mercury to implement RR reduced recovery time of typical ground station software failures by a factor of four, dropping recovery time to within the "window of recovery" and effectively eliminating the adverse effects of these failures. Since the time of failures cannot be predicted, RR allowed us to mitigate the effects of the failures and greatly reduce their potential impact on ground station operations. Our ground station architecture harnessed the benefits of COTS components, including rapid prototyping and deployment, while overcoming the challenges of COTS reliability and mission

  8. Implementing ground surface deformation tools to characterize field-scale properties of a fractured aquifer during a short hydraulic test

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Boudin, Frédérick; Durand, Stéphane

    2016-04-01

    In naturally fractured reservoirs, fluid flow is governed by the structural and hydromechanical properties of fracture networks or conductive fault zones. In order to ensure a sustained exploitation of resources or to assess the safety of underground storage, it is necessary to evaluate these properties. As they generally form highly heterogeneous and anisotropic reservoirs, fractured media may be well characterized by means of several complementary experimental methods or sounding techniques. In this framework, the observation of ground deformation has been proved useful to gain insight of a fractured reservoir's geometry and hydraulic properties. Commonly, large conductive structures like faults can be studied from surface deformation from satellite methods at monthly time scales, whereas meter scale fractures have to be examined under short-term in situ experiments using high accuracy intruments like tiltmeters or extensometers installed in boreholes or at the ground's surface. To the best of our knowledge, the feasability of a field scale (~ 100 m) characterization of a fractured reservoir with geodetic tools in a short term experiment has not yet been addressed. In the present study, we implement two complementary ground surface geodetic tools, namely tiltmetry and optical leveling, to monitor the deformation induced by a hydraulic recovery test at the Ploemeur hydrological observatory (France). Employing a simple purely elastic modeling approach, we show that the joint use of time constraining data (tilt) and spatially constraining data (vertical displacement) makes it possible to evaluate the geometry (dip, root depth and lateral extent) and the storativity of a hydraulically active fault zone, in good agreement with previous studies. Hence we demonstrate that the adequate use of two complementary ground surface deformation methods offer a rich insight of large conductive structure's properties using a single short term hydraulic load. Ground surface

  9. Model Predictions and Ground-based Observations for Jupiter's Magnetospheric Environment: Application to the JUICE and Juno Missions

    Science.gov (United States)

    Achilleos, N. A.; Guio, P.; Arridge, C. S.; Ray, L. C.; Yates, J. N.; Fossey, S.; Savini, G.; Pearson, M.; Fernando, N.; Gerasimov, R.; Murat, T.

    2016-12-01

    The advent of new missions to the Jovian system such as Juno (recentlyarrived) and JUICE (scheduled for 2022 launch) makes timely the provision of model-based predictions for thephysical conditions to be encountered by these spacecraft; as well as the planning of simultaneous, ground-basedobservations of the Jovian system.Using the UCL Jovian magnetodisc model, which calculates magnetic field and plasma distributionsaccording to Caudal's (1986) force-balance formalism, we provide predictions of the following quantities alongrepresentative Juno / JUICE orbits through the middle magnetosphere: (i) Magnetic field strength and direction; (ii)Density and / or pressure of the 'cold' and 'hot' particle populations; (iii) Plasma angular velocity.The characteristic variation in these parameters is mainly influenced by the periodic approaches towards andrecessions from the magnetodisc imposed on the 'synthetic spacecraft' by the planet's rotating, tilteddipole field. We also include some corresponding predictions for ionospheric / thermospheric conditions at themagnetic footpoint of the spacecraft, using the JASMIN model (Jovian Atmospheric Simulatorwith Magnetosphere, Ionosphere and Neutrals).We also present preliminary imaging results from `IoSpot', a planned, ground-based programme of observationsbased at the University College London Observatory (UCLO) which targets ionized sulphur emissions from the Ioplasma torus. Such programmes, conducted simultaneously with the above missions, will provide valuable context forthe overall physical conditions within the Jovian magnetosphere, for which Io's volcanoes are the principal source ofplasma.

  10. A New Method of Desired Gait Synthesis for Biped Walking Robot Based on Ground Reaction Force

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new method of desired gait synthesis for biped walking robot based on the ground reaction force was proposed. The relation between the ground reaction force and joint motion is derived using the D'Almbert principle. In view of dynamic walking with high stability, the ZMP(Zero Moment Point)stability criterion must be considered in the desired gait synthesis. After that, the joint trajectories of biped walking robot are decided by substituting the ground reaction force into the aforesaid relation based on the ZMP criterion. The trajectory of desired ZMP is determined by a fuzzy logic based upon the body posture of biped walking robot. The proposed scheme is simulated and experimented on a 10 degree of freedom biped walking robot. The results indicate that the proposed method is feasible.

  11. Comparing Dawn, Hubble Space Telescope, and Ground-Based Interpretations of (4) Vesta

    CERN Document Server

    Reddy, Vishnu; Corre, Lucille Le; Scully, Jennifer E C; Gaskell, Robert; Russell, Christopher T; Park, Ryan S; Nathues, Andreas; Raymond, Carol; Gaffey, Michael J; Sierks, Holger; Becker, Kris J; McFadden, Lucy A

    2013-01-01

    Observations of asteroid 4 Vesta by NASA's Dawn spacecraft are interesting because its surface has the largest range of albedo, color and composition of any other asteroid visited by spacecraft to date. These hemispherical and rotational variations in surface brightness and composition have been attributed to impact processes since Vesta's formation. Prior to Dawn's arrival at Vesta, its surface properties were the focus of intense telescopic investigations for nearly a hundred years. Ground-based photometric and spectroscopic observations first revealed these variations followed later by those using Hubble Space Telescope. Here we compare interpretations of Vesta's rotation period, pole, albedo, topographic, color, and compositional properties from ground-based telescopes and HST with those from Dawn. Rotational spectral variations observed from ground-based studies are also consistent with those observed by Dawn. While the interpretation of some of these features was tenuous from past data, the interpretati...

  12. A Sphere-Scanning Radiometer for Rapid Directional Measurements of Sky and Ground Radiance: the PARABOLA Field Instrument

    Science.gov (United States)

    Deering, D. W.; Leone, P.

    1984-01-01

    A unique field instrument, called the PARABOLA, a collapsable support boom, which is self contained and easily transportable to remote sites to enable the acquisition of radiance data for almost the complete (4 pi) sky and ground-looking hemispheres in only 11 seconds was designed. The PARABOLA samples in 15 deg instantaneous field of view sectors in three narrow bandpass spectral channels simultaneously. Field measurement on a variety of earth surface cover types using a truck boom, a specially designed pickup truck mounting system, and a hot air balloon were studied. The PARABOLA instrument has potential for climatological and other studies which require characterization of the distribution of diffuse solar radiation within the sky hemisphere.

  13. Lightning-based propagation of convective rain fields

    Directory of Open Access Journals (Sweden)

    S. Dietrich

    2011-05-01

    Full Text Available This paper describes a new multi-sensor approach for continuously monitoring convective rain cells. It exploits lightning data from surface networks to propagate rain fields estimated from multi-frequency brightness temperature measurements taken by the AMSU/MHS microwave radiometers onboard NOAA/EUMETSAT low Earth orbiting operational satellites. Specifically, the method allows inferring the development (movement, morphology and intensity of convective rain cells from the spatial and temporal distribution of lightning strokes following any observation by a satellite-borne microwave radiometer. Obviously, this is particularly attractive for real-time operational purposes, due to the sporadic nature of the low Earth orbiting satellite measurements and the continuous availability of ground-based lightning measurements – as is the case in most of the Mediterranean region. A preliminary assessment of the lightning-based rainfall propagation algorithm has been successfully made by using two pairs of consecutive AMSU observations, in conjunction with lightning measurements from the ZEUS network, for two convective events. Specifically, we show that the evolving rain fields, which are estimated by applying the algorithm to the satellite-based rainfall estimates for the first AMSU overpass, show an overall agreement with the satellite-based rainfall estimates for the second AMSU overpass.

  14. Evaluation of Real-Time Ground-Based GPS Meteorology

    Science.gov (United States)

    Fang, P.; Bock, Y.; Gutman, S.

    2003-04-01

    We demonstrate and evaluate a system to estimate zenith tropospheric delays in real time (5-10 minute latency) based on the technique of instantaneous GPS positioning as described by Bock et al. [2000] using data from the Orange County Real Time GPS Network. OCRTN is an upgrade of a sub-network of SCIGN sites in southern California to low latency (1-2 sec), high-rate (1 Hz) data streaming. Currently, ten sites are streaming data (Ashtech binary MBEN format) by means of dedicated, point-to-point radio modems to a network hub that translates the asynchronous serial data to TCP/IP and onto a PC workstation residing on a local area network. Software residing on the PC allows multiple clients to access the raw data simultaneously though TCP/IP. One of the clients is a Geodetics RTD server that receives and archives (1) the raw 1 Hz network data, (2) estimates of instantaneous positions and zenith tropospheric delays, and (3) RINEX data to decimated to 30 seconds. The network is composed of ten sites. The distribution of nine of the sites approximates a right triangle with two 60 km legs, and a tenth site on Catalina Island a distance of about 50 km (over water) from the hypotenuse of the triangle. Relative zenith delays are estimated every second with a latency less than a second. Median values are computed at a user-specified interval (e.g., 10 minutes) with outliers greater than 4 times the interquartile range rejected. We describe the results with those generated by our operational system using the GAMIT software, with a latency of 30-60 minutes. Earlier results (from a similar network) comparing 30-minute median RTD values to GAMIT 30-minute estimates indicate that the two solutions differ by about 1 cm. We also describe our approach to determining absolute zenith delays. If an Internet connection is available we will present a real-time demonstration. [Bock, Y., R. Nikolaidis, P. J. de Jonge, and M. Bevis, Instantaneous resolution of crustal motion at medium

  15. Geospace Science from Ground-based Magnetometer Arrays: Advances in Sensors, Data Collection, and Data Integration

    Science.gov (United States)

    Mann, Ian; Chi, Peter

    2016-07-01

    Networks of ground-based magnetometers now provide the basis for the diagnosis of magnetic disturbances associated with solar wind-magnetosphere-ionosphere coupling on a truly global scale. Advances in sensor and digitisation technologies offer increases in sensitivity in fluxgate, induction coil, and new micro-sensor technologies - including the promise of hybrid sensors. Similarly, advances in remote connectivity provide the capacity for truly real-time monitoring of global dynamics at cadences sufficient for monitoring and in many cases resolving system level spatio-temporal ambiguities especially in combination with conjugate satellite measurements. A wide variety of the plasmaphysical processes active in driving geospace dynamics can be monitored based on the response of the electrical current system, including those associated with changes in global convection, magnetospheric substorms and nightside tail flows, as well as due to solar wind changes in both dynamic pressure and in response to rotations of the direction of the IMF. Significantly, any changes to the dynamical system must be communicated by the propagation of long-period Alfven and/or compressional waves. These wave populations hence provide diagnostics for not only the energy transport by the wave fields themselves, but also provide a mechanism for diagnosing the structure of the background plasma medium through which the waves propagate. Ultra-low frequency (ULF) waves are especially significant in offering a monitor for mass density profiles, often invisible to particle detectors because of their very low energy, through the application of a variety of magneto-seismology and cross-phase techniques. Renewed scientific interest in the plasma waves associated with near-Earth substorm dynamics, including magnetosphere-ionosphere coupling at substorm onset and their relation to magnetotail flows, as well the importance of global scale ultra-low frequency waves for the energisation, transport

  16. Mesoscale ionospheric electrodynamics of omega bands determined from ground-based electromagnetic and satellite optical observations

    Directory of Open Access Journals (Sweden)

    O. Amm

    2005-02-01

    Full Text Available We present ground-based electromagnetic data from the MIRACLE and BEAR networks and satellite optical observations from the UVI and PIXIE instruments on the Polar satellite of an omega band event over Northern Scandinavia on 26 June 1998, which occured close to the morning side edge of a substorm auroral bulge. Our analysis of the data concentrates on one omega band period from 03:18-03:27 UT, for which we use the method of characteristics combined with an analysis of the UVI and PIXIE data to derive a time series of instantaneous, solely data-based distributions of the mesoscale ionospheric electrodynamic parameters with a 1-min time resolution. In addition, the AMIE method is used to derive global Hall conductance patterns. Our results show that zonally alternating regions of enhanced ionospheric conductances ("tongues" up to ~60S and low conductance regions are associated with the omega bands. The tongues have a poleward extension of ~400km from their base and a zonal extension of ~380km. While they are moving coherently eastward with a velocity of ~770ms-1, the structures are not strictly stationary. The current system of the omega band can be described as a superposition of two parts: one consists of anticlockwise rotating Hall currents around the tongues, along with Pedersen currents, with a negative divergence in their centers. The sign of this system is reversing in the low conductance areas. It causes the characteristic ground magnetic signature. The second part consists of zonally aligned current wedges of westward flowing Hall currents and is mostly magnetically invisible below the ionosphere. This system dominates the field-aligned current (FAC pattern and causes alternating upward and downward FAC at the flanks of the tongues with maximum upward FAC of ~25µA m-2. The total FAC of ~2MA are comparable to the ones diverted inside a westward traveling surge. Throughout the event, the overwhelming part of the FAC

  17. The advances in airglow study and observation by the ground-based airglow observation network over China

    Science.gov (United States)

    Xu, Jiyao; Li, Qinzeng; Yuan, Wei; Liu, Xiao; Liu, Weijun; Sun, Longchang

    2017-04-01

    at 630.0 nm over Xinglong, we studied the evolution (generation, amplification, and dissipation) of mesoscale field-aligned irregularity structures (FAIs) ( 150 km) associated with a medium-scale traveling ionospheric disturbance (MSTID) event. We also investigates the statistical features of equatorial plasma bubbles (EPBs) using airglow images from 2012 to 2014 from a ground-based network of four imagers in the equatorial region of China.

  18. Estimation of ground water resources in exploration of water source fields in alluvial plain%冲积平原水源地资源量计算

    Institute of Scientific and Technical Information of China (English)

    冯斌

    2012-01-01

    Estimation of water resources is very important in the exploration of water source field. Base on estimation of the ground water resources of Xiao Li-zhuang water source field in new municipal area of Yongcheng, Henan province, the content and requirement of calculating the groundwater resources for the water source field of the alluvial plain are systematically expounded in this paper. Recharge of ground water includes infiltration of precipitation water and well irrigation. Groundwater excretion includes evaporation, pumping, lateral runoff, and lateral infiltration of surface water.%水源地资源量计算在水源地勘察中非常重要.本文结合河南省永城市新城水厂小李庄水源地的地下水资源量计算实践,系统地阐述了冲积平原水源地地下水资源量计算的内容及要求.其中,地下水补给量包括大气降水入渗补给量和农业井灌回渗补给量.地下水排泄量包括地下水的蒸发量、开采量、侧向径流排泄量和地表水侧渗排泄量.

  19. Ground-water-level monitoring, basin boundaries, and potentiometric surfaces of the aquifer system at Edwards Air Force Base, California, 1992

    Science.gov (United States)

    Rewis, D.L.

    1995-01-01

    A ground-water-level monitoring program was implemented at Edwards Air Force Base, California, from January through December 1992 to monitor spatial and temporal changes in poten-tiometric surfaces that largely are affected by ground-water pumping. Potentiometric-surface maps are needed to determine the correlation between declining ground- water levels and the distribution of land subsidence. The monitoring program focused on areas of the base where pumping has occurred, especially near Rogers Lake, and involved three phases of data collection: (1) well canvassing and selection, (2) geodetic surveys, and (3) monthly ground-water-level measurements. Construction and historical water- level data were compiled for 118 wells and pi-ezometers on or near the base, and monthly ground-water-level measurements were made in 82 wells and piezometers on the base. The compiled water-level data were used in conjunction with previously collected geologic data to identify three types of no-flow boundaries in the aquifer system: structural boundaries, a principal-aquifer boundary, and ground-water divides. Heads were computed from ground-water-level measurements and land-surface altitudes and then were used to map seasonal potentiometric surfaces for the principal and deep aquifers underlying the base. Pumping has created a regional depression in the potentiometric surface of the deep aquifer in the South Track, South Base, and Branch Park well-field area. A 15-foot decline in the potentiometric surface from April to September 1992 and 20- to 30-foot drawdowns in the three production wells in the South Track well field caused locally unconfined conditions in the deep aquifer.

  20. Field-balanced adaptive optics error function for wide field-of-view space-based systems

    Science.gov (United States)

    McComas, Brian K.; Friedman, Edward J.

    2002-03-01

    Adaptive optics are regularly used in ground-based astronomical telescopes. These applications are characterized by a very narrow (approximately 1 arcmin) field of view. For economic reasons, commercial space-based earth-observing optical systems must have a field of view as large as possible. We develop a new error function that is an extension of conventional adaptive optics for wide field-of-view optical systems and show that this new error function enables diffraction-limited performance across a large field of view with only one deformable mirror. This new error function allows for reprogramming of aberration control algorithms for particular applications by the use of an addressable weighting function.

  1. OGLE-2015-BLG-0196: Ground-based Gravitational Microlens Parallax Confirmed By Space-Based Observation

    CERN Document Server

    Han, C; Gould, A; Zhu, Wei; Szymański, M K; Soszyński, I; Skowron, J; Mróz, P; Poleski, R; Pietrukowicz, P; Kozłowski, S; Ulaczyk, K; Pawlak, M; Yee, J C; Beichman, C; Novati, S Calchi; Carey, S; Bryden, C; Fausnaugh, M; Gaudi, B S; Henderson, Calen B; Shvartzvald, Y; Wibking, B

    2016-01-01

    In this paper, we present the analysis of the binary gravitational microlensing event OGLE-2015-BLG-0196. The event lasted for almost a year and the light curve exhibited significant deviations from the lensing model based on the rectilinear lens-source relative motion, enabling us to measure the microlens parallax. The ground-based microlens parallax is confirmed by the data obtained from space-based microlens observations using the {\\it Spitzer} telescope. By additionally measuring the angular Einstein radius from the analysis of the resolved caustic crossing, the physical parameters of the lens are determined up to the two-fold degeneracy: $u_00$ solutions caused by the well-known "ecliptic" degeneracy. It is found that the binary lens is composed of two M dwarf stars with similar masses $M_1=0.38\\pm 0.04\\ M_\\odot$ ($0.50\\pm 0.05\\ M_\\odot)$ and $M_2=0.38\\pm 0.04\\ M_\\odot$ ($0.55\\pm 0.06\\ M_\\odot$) and the distance to the lens is $D_{\\rm L}=2.77\\pm 0.23$ kpc ($3.30\\pm 0.29$ kpc). Here the physical parameter...

  2. First ground-based FTIR-observations of methane in the tropics

    Directory of Open Access Journals (Sweden)

    A. K. Petersen

    2010-02-01

    Full Text Available Total column concentrations and volume mixing ratio profiles of methane have been retrieved from ground-based solar absorption FTIR spectra in the near-infrared recorded in Paramaribo (Suriname. The methane FTIR observations are compared with TM5 model simulations and satellite observations from SCIAMACHY, and represent the first validation of SCIAMACHY retrievals in the tropics using ground-based remote sensing techniques. Apart from local biomass burning features, our methane FTIR observations agree well with the SCIAMACHY retrievals and TM5 model simulations.

  3. Extended lateral heating of the nighttime ionosphere by ground-based VLF transmitters

    OpenAIRE

    İnan, Umran Savaş; Graf, K. L.; Spasojevic, M.; Marshall, R. A.; Lehtinen, N. G.; Foust, F. R.

    2013-01-01

    JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 7783–7797, doi:10.1002/2013JA019337, 2013 Extended lateral heating of the nighttime ionosphere by ground-based VLF transmitters K. L. Graf,1 M. Spasojevic,1 R. A. Marshall,2 N. G. Lehtinen,1 F. R. Foust,1 and U. S. Inan1,3 Received 16 August 2013; revised 9 October 2013; accepted 11 November 2013; published 3 December 2013. [1] The effects of ground-based very low frequency (VLF) transmitters on the lower ionospher...

  4. A transit timing analysis with combined ground- and space-based photometry

    Directory of Open Access Journals (Sweden)

    Raetz St.

    2015-01-01

    The CoRoT satellite looks back on six years of high precision photometry of a very high number of stars. Thousands of transiting events are detected from which 27 were confirmed to be transiting planets so far. In my research I search and analyze TTVs in the CoRoT sample and combine the unprecedented precision of the light curves with ground-based follow-up photometry. Because CoRoT can observe transiting planets only for a maximum duration of 150 days the ground-based follow-up can help to refine the ephemeris. Here we present first examples.

  5. Status of advanced ground-based laser interferometers for gravitational-wave detection

    CERN Document Server

    Dooley, Katherine L; Dwyer, Sheila; Puppo, Paola

    2014-01-01

    Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years' worth of science data at initial design sensitivities was completed. Upgrades to the initial detectors together with construction of brand new detectors are ongoing and feature advanced technologies to improve the sensitivity to GWs. This conference proceeding provides an overview of the common design features of ground-based laser interferometric GW detectors and establishes the context for the status updates of each of the four gravitational-wave detectors around the world: Advanced LIGO, Advanced Virgo, GEO600 and KAGRA.

  6. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis......We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler...

  7. Estimation of solar irradiance using ground-based whole sky imagers

    CERN Document Server

    Dev, Soumyabrata; Lee, Yee Hui; Winkler, Stefan

    2016-01-01

    Ground-based whole sky imagers (WSIs) can provide localized images of the sky of high temporal and spatial resolution, which permits fine-grained cloud observation. In this paper, we show how images taken by WSIs can be used to estimate solar radiation. Sky cameras are useful here because they provide additional information about cloud movement and coverage, which are otherwise not available from weather station data. Our setup includes ground-based weather stations at the same location as the imagers. We use their measurements to validate our methods.

  8. Development of ground-based ELF/VLF receiver system in Wuhan and its first results

    Science.gov (United States)

    Chen, Yanping; Yang, Guobin; Ni, Binbin; Zhao, Zhengyu; Gu, Xudong; Zhou, Chen; Wang, Feng

    2016-05-01

    A new digital low-frequency receiver system has been developed at Wuhan University for sensitive reception of low-latitude broadband Extremely Low Frequency (ELF) and Very Low Frequency (VLF) radio waves originating from either natural or artificial sources. These low-frequency radio waves are useful for ionospheric remote sensing, geospace environment monitoring, and submarine communications. This paper presents the principle and architecture of the system framework, including magnetic loop antenna design, low-noise analog front-end and digital receiver with data sampling and transmission. A new structure is adopted in the analog front end to provide high common-mode rejection and to reduce interference. On basis of field programmable gate array (FPGA) device and Universal Serial Bus (USB) architecture, the digital receiver is developed along with time keeping and synchronization module. The validity and feasibility of the self-developed ground-based ELF/VLF receiver system is evaluated by first results of experimental data that show the temporal variation of broadband ELF/VLF wave spectral intensity in Wuhan (30.54 °N, 114.37 °E). In addition to the acquisition of VLF transmitter signals at various frequencies, tweek atmospherics are also clearly captured to occur at multiple modes up to n = 6.

  9. Landsat Imagery-Based Above Ground Biomass Estimation and Change Investigation Related to Human Activities

    Directory of Open Access Journals (Sweden)

    Chaofan Wu

    2016-02-01

    Full Text Available Forest biomass is a significant indicator for substance accumulation and forest succession, and a spatiotemporal biomass map would provide valuable information for forest management and scientific planning. In this study, Landsat imagery and field data cooperated with a random forest regression approach were used to estimate spatiotemporal Above Ground Biomass (AGB in Fuyang County, Zhejiang Province of East China. As a result, the AGB retrieval showed an increasing trend for the past decade, from 74.24 ton/ha in 2004 to 99.63 ton/ha in 2013. Topography and forest management were investigated to find their relationships with the spatial distribution change of biomass. In general, the simulated AGB increases with higher elevation, especially in the range of 80–200 m, wherein AGB acquires the highest increase rate. Moreover, the forest policy of ecological forest has a positive effect on the AGB increase, particularly within the national level ecological forest. The result in this study demonstrates that human activities have a great impact on biomass distribution and change tendency. Furthermore, Landsat image-based biomass estimates would provide illuminating information for forest policy-making and sustainable development.

  10. The Diabolo photometer and the future of ground-based millimetric bolometer devices

    CERN Document Server

    Désert, F X; Camus, P; Giard, M; Pointecouteau, E; Aghanim, N; Bernard, J P; Coron, N; Lamarre, J M; Marty, P; Delabrouille, J; Soglasnova, V; Camus, Ph.; Marty, Ph.

    2001-01-01

    The millimetric atmospheric windows at 1 and 2 mm are interesting targets for cosmological studies. Two broad areas appear leading this field: 1) the search for high redshift star-forming galaxies and 2) the measurement of Sunyaev-Zel'dovich (SZ) effect in clusters of galaxies at all redshifts. The Diabolo photometer is a dual-channel photometer working at 1.2 and 2.1 mm and dedicated to high angular resolution measurements of the Sunyaev--Zel'dovich effect towards distant clusters. It uses 2 by 3 bolometers cooled down to 0.1 K with a compact open dilution cryostat. The high resolution is provided by the IRAM 30 m telescope. The result of several Winter campaigns are reported here, including the first millimetric map of the SZ effect that was obtained by Pointecouteau et al. (2001) on RXJ1347-1145, the non-detection of a millimetric counterpart to the radio decrement towards PC1643+4631 and 2 mm number count upper limits. We discuss limitations in ground-based single-dish millimetre observations, namely sky ...

  11. Comparison of machine-learning methods for above-ground biomass estimation based on Landsat imagery

    Science.gov (United States)

    Wu, Chaofan; Shen, Huanhuan; Shen, Aihua; Deng, Jinsong; Gan, Muye; Zhu, Jinxia; Xu, Hongwei; Wang, Ke

    2016-07-01

    Biomass is one significant biophysical parameter of a forest ecosystem, and accurate biomass estimation on the regional scale provides important information for carbon-cycle investigation and sustainable forest management. In this study, Landsat satellite imagery data combined with field-based measurements were integrated through comparisons of five regression approaches [stepwise linear regression, K-nearest neighbor, support vector regression, random forest (RF), and stochastic gradient boosting] with two different candidate variable strategies to implement the optimal spatial above-ground biomass (AGB) estimation. The results suggested that RF algorithm exhibited the best performance by 10-fold cross-validation with respect to R2 (0.63) and root-mean-square error (26.44 ton/ha). Consequently, the map of estimated AGB was generated with a mean value of 89.34 ton/ha in northwestern Zhejiang Province, China, with a similar pattern to the distribution mode of local forest species. This research indicates that machine-learning approaches associated with Landsat imagery provide an economical way for biomass estimation. Moreover, ensemble methods using all candidate variables, especially for Landsat images, provide an alternative for regional biomass simulation.

  12. Combined ground-based optical support for the aurora (DELTA) sounding rocket campaign

    Science.gov (United States)

    Griffin, Eoghan; Kosch, Mike; Aruliah, Anasuya; Kavanagh, Andrew; McWhirter, Ian; Senior, Andrew; Ford, Elaina; Davis, Chris; Abe, Takumi; Kurihara, Junichi; Kauristie, Kirsti; Ogawa, Yasunobu

    2006-09-01

    The Japan Aerospace Exploration Agency (JAXA) DELTA rocket experiment, successfully launched from Andøya at 0033 UT on December 13, 2004, supported by ground based optical instruments, primarily 2 Fabry- Perot Interferometers (FPIs) located at Skibotn, Norway (69.3°N, 20.4°E) and the KEOPS Site, Esrange, Kiruna, Sweden (67.8°N, 20.4°E). Both these instruments sampled the 557.7 nm lower thermosphere atomic oxygen emission and provided neutral temperatures and line-of-sight wind velocities, with deduced vector wind patterns over each site. All sky cameras allow contextual auroral information to be acquired. The proximity of the sites provided overlapping fields of view, adjacent to the trajectory of the DELTA rocket. This allowed independent verification of the absolute temperatures in the relatively quiet conditions early in the night, especially important given the context provided by co-located EISCAT ion temperature measurements which allow investigation of the likely emission altitude of the passive FPI measurements. The results demonstrate that this altitude changes from 120 km pre-midnight to 115 km post-midnight. Within this large scale context the results from the FPIs also demonstrate smaller scale structure in neutral temperatures, winds and intensities consistent with localised heating. These results present a challenge to the representation of thermospheric variability for the existing models of the region.

  13. Space-borne detection of volcanic carbon dioxide anomalies: The importance of ground-based validation networks

    Science.gov (United States)

    Schwandner, F. M.; Carn, S. A.; Corradini, S.; Merucci, L.; Salerno, G.; La Spina, A.

    2012-04-01

    We have investigated the feasibility of space-borne detection of volcanic carbon dioxide (CO2) anomalies, and their integration with ground-based observations. Three goals provide motivation to their integration: (a) development of new volcano monitoring techniques, with better spatial and temporal coverage, because pre-eruptive volcanic CO2 emissions are potentially the earliest available indicators of volcanic unrest; (b) improvement the currently very poor global CO2 source strength inventory for volcanoes, and (c) use of volcanic CO2 emissions for high altitude strong point source emission and dispersion studies. (1) Feasibility of space-borne detection of volcanic CO2 anomalies. Volcanoes are highly variable but continuous CO2 emitters, distributed globally, and emissions often occur at high altitudes. To detect strong point sources of CO2 from space, several hurdles have to be overcome: orographic clouds, unknown dispersion behavior, a high CO2 background in the troposphere, and sparse data coverage from existing satellite sensors. These obstacles can be overcome by a small field of view, enhanced spectral resolving power, and by employing repeat target mode observation strategies. The Japanese GOSAT instrument has been operational since January 2009, producing CO2 total column measurements with a repeat cycle of 3 days and a field of view of 10km. GOSAT thus has the potential to provide spatially integrated data for entire volcanic edifices, especially in target mode. Since summer 2010 we have conducted repeated target mode observations of over 20 persistently active global volcanoes including Etna (Italy), Erta Ale (Ethiopia), and Ambrym (Vanuatu), using L2 GOSAT FTS SWIR data. One of our best-studied test cases is Mt. Etna on Sicily (Italy), which reawakened in 2011 after a period of quiescence and produced a sequence of eruptive activities including lava fountaining events, coinciding with target-mode GOSAT observations conducted there since 2010. For the

  14. Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners

    DEFF Research Database (Denmark)

    Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben Krogh;

    2016-01-01

    , installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean...... deficit is calculated both in a Nacelle and Moving Frame of Reference. The results can be used in quantitative validation of numerical wake models....

  15. Phenomenography and grounded theory as research methods in computing education research field

    Science.gov (United States)

    Kinnunen, Päivi; Simon, Beth

    2012-06-01

    This paper discusses two qualitative research methods, phenomenography and grounded theory. We introduce both methods' data collection and analysis processes and the type or results you may get at the end by using examples from computing education research. We highlight some of the similarities and differences between the aim, data collection and analysis phases and the type of resulting outcomes of these methods. We also discuss the challenges and threats the both methods may pose to the researcher. We conclude that while aimed at tackling different types of research questions, both of these methods provide computing education researchers a useful tool in their research method toolbox.

  16. Sentinel-1 and ground-based sensors for a continuous monitoring of the Corvara landslide kinematic (South Tirol, Italy)

    Science.gov (United States)

    Schlögel, Romy; Darvishi, Mehdi; Cuozzo, Giovanni; Kofler, Christian; Rutzinger, Martin; Zieher, Thomas; Toschi, Isabella; Remondino, Fabio

    2017-04-01

    Sentinel-1 mission allows us to have Synthetic Aperture Radar (SAR) acquisitions over large areas every 6 days with spatial resolution of 20 m. This new open-source generation of satellites has enhanced the capabilities for continuously studying earth surface changes. Over the past two decades, several studies have demonstrated the potential of Differential Synthetic Aperture Radar Interferometry (DInSAR) for detecting and quantifying land surface deformation. DInSAR limitations and challenges are linked to the SAR properties and the field conditions (especially in Alpine environments) leading to spatial and temporal decorrelation of the SAR signal. High temporal decorrelation can be caused by changes in vegetation (particularly in non-urban areas), atmospheric conditions or high ground surface velocity. In this study, kinematics of the complex and vegetated Corvara landslide, situated in Val Badia (South Tirol, Italy), are monitored by a network of 3 permanent and 13 monthly Differential Global Positioning System (DGPS) stations. The slope displacement rates are found to be highly unsteady and reach several meters a year. This analysis focuses on evaluating the limitations of Sentinel-1 imagery processed with Small Baseline Subset (SBAS) technique in comparison to ground-based measurements for assessing the landslide kinematic linked to meteorological conditions. Selecting some particular acquisitions, coherence thresholds and unwrapping processes gives various results in terms of reliability and accuracy supporting the understanding of the landslide velocity field. The evolution of the coherence and phase signals are studied according to the changing field conditions and the monitored ground-based displacements. DInSAR deformation maps and residual topographic heights are finally compared with difference of high resolution Digital Elevation Models at local scale. This research is conducted within the project LEMONADE (http://lemonade.mountainresearch.at) funded

  17. Relation between substorm characteristics and rapid temporal variations of the ground magnetic field

    Directory of Open Access Journals (Sweden)

    A. Viljanen

    2006-03-01

    Full Text Available Auroral substorms are one of the major causes of large geomagnetically induced currents (GIC in technological systems. This study deals with different phases of the auroral substorm concerning their severity from the GIC viewpoint. Our database consists of 833 substorms observed by the IMAGE magnetometer network in 1997 (around sunspot minimum and 1999 (rising phase of the sunspot cycle, divided into two classes according to the Dst index: non-storm (Dst>-40 nT, 696 events and storm-time ones (Dst<-40 nT, 137 events. The key quantity concerning GIC is the time derivative of the horizontal magnetic field vector (dH/dt whose largest values during substorms occur most probably at about 5 min after the onset at stations with CGM latitude less than 72 deg. When looking at the median time of the occurrence of the maximum dH/dt after the expansion onset, it increases as a function of latitude from about 15 min at CGM lat=56 deg to about 45 min at CGM lat=75 deg for non-storm substorms. For storm-time events, these times are about 5 min longer. Based on calculated ionospheric equivalent currents, large dH/dt occur mostly during the substorm onset when the amplitude of the westward electrojet increases rapidly.

  18. Using Locally Generated Magnetic Indices to Characterize the Ionosphere From Magnetic Data Acquisition System (Magdas Ground Based Observatories in Nigeria.

    Directory of Open Access Journals (Sweden)

    U.C. Rabiu

    2013-06-01

    Full Text Available This work presents an attempt to establish a baseline for geomagnetic indices inNigeria. This is particularly very crucial since these indices give indications of theseverity of magnetic fluctuations, and hence the level of disturbances in theionosphere. K (an index which measures the magnetic perturbations of theplanetary field and A (a linear measure of the Earth's field that provides a dailyaverage level for geomagnetic activity geomagnetic indices were generated locallyfrom geomagnetic data obtained using ground based MAGDAS magnetometerslocated at Abuja (9 ̊ 40’N, 7 ̊ 29’E, Ilorin (8 ̊30’N, 4 ̊33’E and Lagos (6 ̊27’N,3 ̊23’E in Nigeria using Computer-based derivation. The indices generated wereused to characterize the ionosphere over the Magdas magnetometer Nigerianetwork stations. Results obtained showed average K values of 3.5 (ABU, 4.60(LAG and 4.13 (ILR, the ionosphere over the three stations was found to berelatively active (4.08 thus setting the baseline for characterizing the ionosphereover Nigeria from ground based magnetometers.

  19. Nodal sets for ground-states of Schroedinger operators with zero magnetic field in non simply connected domains

    Energy Technology Data Exchange (ETDEWEB)

    Helffer, B. [Paris-11 Univ., 91 - Orsay (France). Dept. de Mathematiques; Hoffmann-Ostenhof, M. [Institut fuer Mathematik, Universitaet Wien, Strudthofgasse 4, A-1090 Wien (Austria); Hoffmann-Ostenhof, T. [Institut fuer Theoretische Chemie, Universitaet Wien, Waehringerstrasse 17, A-1090 Wien (Austria)]|[International Erwin Schroedinger Inst. for Mathematical Physics, Vienna (Austria); Owen, M.P. [International Erwin Schroedinger Inst. for Mathematical Physics, Vienna (Austria)

    1999-05-01

    We investigate nodal sets of magnetic Schroedinger operators with zero magnetic field, acting on a non-simply connected domain in R{sup 2}. For the case of circulation 1/2 of the magnetic vector potential around each hole in the region, we obtain a characterisation of the nodal set, and use this to obtain bounds on the multiplicity of the ground state. For the case of one hole and a fixed electric potential, we show that the first eigenvalue takes its highest value for circulation 1/2. (orig.) With 8 figs., 20 refs.

  20. Finding common ground in team-based qualitative research using the convergent interviewing method.

    Science.gov (United States)

    Driedger, S Michelle; Gallois, Cindy; Sanders, Carrie B; Santesso, Nancy

    2006-10-01

    Research councils, agencies, and researchers recognize the benefits of team-based health research. However, researchers involved in large-scale team-based research projects face multiple challenges as they seek to identify epistemological and ontological common ground. Typically, these challenges occur between quantitative and qualitative researchers but can occur between qualitative researchers, particularly when the project involves multiple disciplinary perspectives. The authors use the convergent interviewing technique in their multidisciplinary research project to overcome these challenges. This technique assists them in developing common epistemological and ontological ground while enabling swift and detailed data collection and analysis. Although convergent interviewing is a relatively new method described primarily in marketing research, it compares and contrasts well with grounded theory and other techniques. The authors argue that this process provides a rigorous method to structure and refine research projects and requires researchers to identify and be accountable for developing a common epistemological and ontological position.

  1. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses

    Science.gov (United States)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.

    2004-01-01

    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  2. Work plan for focused feasibility study of the toxic burning pits area at J-Field, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Biang, C.; Benioff, P.; Martino, L.; Patton, T.

    1995-03-01

    The Environmental Management Division (EMD) of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study (RI/FS) of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCIA). J-Field is within the Edgewood Area of APG in Harford County, Maryland. Since World War II, activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). Considerable archival information about J-Field exists as a result of efforts by APG staff to characterize the hazards associated with the site. Contamination of J-Field was first detected during an environmental survey of the Edgewood Area conducted in 1977 and 1978 by the US Army Toxic and Hazardous Materials Agency (USATHAMA)(predecessor to the US Army Environmental Center). As part of a subsequent USATHAMA environmental survey, 11 wells were installed and sampled at J-Field. Contamination at J-Field was also detected during a munitions disposal survey conducted by Princeton Aqua Science in 1983. The Princeton Aqua Science investigation involved the installation and sampling of nine wells and the collection and analysis of surficial and deep composite soil samples. In 1986, a Resource Conservation and Recovery Act (RCRA) permit (MD3-21-0021355) requiring a basewide RCRA Facility Assessment (RFA) and a hydrogeologic assessment of J-Field was issued by the US Environmental Protection Agency (EPA). In 1987, the US Geological Survey (USGS) began a two-phased hydrogeologic assessment in which data were collected to model groundwater flow at J-Field. Soil gas investigations were conducted, several well clusters were installed, a groundwater flow model was developed, and groundwater and surface water monitoring programs were established that continue today-

  3. A new experimental approach for characterizing the internal trapped charge and electric field build up in ground-coated insulators during their e sup - irradiation

    CERN Document Server

    Jbara, O; Belhaj, M; Cazaux, J; Rau, E I; Filippov, M; Andrianov, M V

    2002-01-01

    An original method is proposed to investigate the dynamical trapping properties of bulk insulators during their irradiation by keV electrons when they are coated with a grounded metallic film. This method is based on the measurement of the displacement current and it allows to evaluate time constants for charging and discharging the dielectric as well as to evaluate the electric field build up and trapped charge density below the coating. This method is illustrated by the estimate of the charging and discharging time constants in e sup - irradiated PMMA and the estimate of the magnitude of the electric field which drives the migration of the mobile ions in e sup - irradiated glasses.

  4. Simulation of the imaging quality of ground-based telescopes affected by atmospheric disturbances

    Science.gov (United States)

    Ren, Yubin; Kou, Songfeng; Gu, Bozhong

    2014-08-01

    Ground-based telescope imaging model is developed in this paper, the relationship between the atmospheric disturbances and the ground-based telescope image quality is studied. Simulation of the wave-front distortions caused by atmospheric turbulences has long been an important method in the study of the propagation of light through the atmosphere. The phase of the starlight wave-front is changed over time, but in an appropriate short exposure time, the atmospheric disturbances can be considered as "frozen". In accordance with Kolmogorov turbulence theory, simulating atmospheric disturbances of image model based on the phase screen distorted by atmospheric turbulences is achieved by the fast Fourier transform (FFT). Geiger mode avalanche photodiode array (APD arrays) model is used for atmospheric wave-front detection, the image is achieved by inversion method of photon counting after the target starlight goes through phase screens and ground-based telescopes. Ground-based telescope imaging model is established in this paper can accurately achieve the relationship between the quality of telescope imaging and monolayer or multilayer atmosphere disturbances, and it is great significance for the wave-front detection and optical correction in a Multi-conjugate Adaptive Optics system (MCAO).

  5. Hanford ground-water data base management guide and user's manual. [CIRMIS

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, P.J.; Argo, R.S.; Bradymire, S.L.; Newbill, C.A.

    1985-05-01

    This management guide and user's manual is a working document for the computerized Hanford Ground-water Data Base maintained by the Geosciences Research and Engineering Department at Pacific Northwest Laboratory for the Hanford Ground-Water Surveillance Program. The program is managed by the Occupational and Environmental Protection Department for the US Department of Energy. The data base is maintained to provide rapid access to data that are rountinely collected from ground-water monitoring wells at the Hanford site. The data include water levels, sample analyses, geologic descriptions and well construction information of over 3000 existing or destroyed wells. These data are used to monitor water quality and for the evaluation of ground-water flow and pollutant transport problems. The management guide gives instructions for maintenance of the data base on the Digital Equipment Corporation PDP 11/70 Computer using the CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) data base management software developed at Pacific Northwest Laboratory. Maintenance activities include inserting, modifying and deleting data, making back-up copies of the data base, and generating tables for annual monitoring reports. The user's guide includes instructions for running programs to retrieve the data in the form of listings of graphical plots. 3 refs.

  6. Historical Trends in Ground-Based Optical Space Surveillance System Design

    Science.gov (United States)

    Shoemaker, M.; Shroyer, L.

    In the spirit of the 50th anniversary of the launch of the first man-made satellite, an historical overview of ground-based optical space surveillance systems is provided. Specific emphasis is given on gathering metrics to analyze design trends. The subject of space surveillance spans the history of spaceflight: from the early tracking cameras at missile ranges, the first observations of Sputnik, to the evolution towards highly capable commercial off-the-shelf (COTS) systems, and much in between. Whereas previous reviews in the literature have been limited in scope to specific time periods, operational programs, countries, etc., a broad overview of a wide range of sources is presented. This review is focused on systems whose primary design purpose can be classified as Space Object Identification (SOI) or Orbit Determination (OD). SOI systems are those that capture images or data to determine information about the satellite itself, such as attitude, features, and material composition. OD systems are those that produce estimates of the satellite position, usually in the form of orbital elements or a time history of tracking angles. Systems are also categorized based on the orbital regime in which their targets reside, which has been simplified in this study to either Low Earth Orbit (LEO) or Geosynchronous Earth Orbit (GEO). The systems are further classified depending on the industry segment (government/commercial or academic), and whether the program is foreign or domestic. In addition to gathering metrics on systems designed solely for man-made satellite observations, it is interesting to find examples of other systems being similarly used. Examples include large astronomical telescopes being used for GEO debris surveys and anomaly resolution for deep-space probes. Another interesting development is the increase in number and capability of COTS systems, some of which are specifically marketed to consumers as satellite trackers. After describing the results of the

  7. Ground-based observations of Saturn's H3+ aurora and ring rain from Keck in 2013

    Science.gov (United States)

    O'Donoghue, J.; Melin, H.; Stallard, T.; Provan, G.; Moore, L.; Badman, S. V.; Baines, K. H.; Miller, S.; Cowley, S. W. H.

    2014-12-01

    The ground-based 10-metre Keck telescope was used to probe Saturn's H3+ ionosphere in 2013. The slit on the high resolution near infrared spectrometer (NIRSPEC; (R~25,000) was aligned pole-to-pole along Saturn's rotational axis at local noon. This is also aligned (within uncertainties) to the effectively dipolar magnetic field. Four polar/auroral regions of Saturn's ionosphere were measured simultaneously as the planet rotated: 1) the northern noon main auroral oval; 2) the northern midnight main oval; 3) the northern polar cap and 4) the southern main oval at noon. The results here contain twenty-three H3+ temperatures, column densities and total emissions located at the above regions spread over timescales of both hours and days. The main findings of this study are that ionospheric temperatures in the northern main oval are cooler than their southern counterparts by tens of K; supportive of the hypothesis that the total thermospheric heating rate (Joule heating and ion drag) is inversely proportional to magnetic field strength. The main oval H3+ density and emission is lower at northern midnight than at noon, and this is in agreement with an electron influx peaking at 08:00 Saturn local time and having a minimum at midnight. When ordering the northern main oval parameters of H3+ as a function of the oscillation period seen in Saturn's magnetic field - the planetary period oscillation (PPO) phase - we see a large peak in H3+ density and emission at ˜110° phase, with a full-width at half-maximum (FWHM) of ˜40°. This seems to indicate that the influx of electrons associated with the PPO phase at 90° is responsible at least in part for the behavior of all H3+ parameters. In addition to the auroral/polar data we also present the latest results from observations of Saturn's mid-to-low latitude H3+ emission. This emission is thought to be modulated by charged water product influx which flows into the planet along magnetic field lines from Saturn's rings, i.e. ring

  8. Above-ground tree outside forest (TOF) phytomass and carbon estimation in the semiarid region of southern Haryana: A synthesis approach of remote sensing and field data

    Indian Academy of Sciences (India)

    Kuldeep Singh; Pritam Chand

    2012-12-01

    Trees outside forest (TOF) play an important role in global carbon cycling, since they are large pools of carbon as well as potential carbon sinks and sources to the atmosphere. In view of the importance of biomass estimates in the global carbon (C) cycle, the present study demonstrates the potential of the standwise tree outside forest inventory data and finer spatial resolution of IRS-P6 LISS-IV satellite data to classify TOF, to estimate above-ground TOF phytomass and the carbon content of TOF in a semiarid region of the southern Haryana, India. The study reports that above-ground TOF phytomass varied from 1.26 tons/ha in the scattered trees in the rural/urban area to 91.5 tons/ha in the dense linear TOF along the canal. The total above-ground TOF phytomass and carbon content was calculated as 367.04 and 174.34 tons/ha, respectively in the study area. The study results conclude that the classification of TOF and estimation of phytomass and carbon content in TOF can be successfully achieved through the combined approach of Remote Sensing and GIS based spatial technique with the supplement of field data. The present approach will help to find out the potential carbon sequestration zone in the semi-arid region of southern Haryana, India.

  9. Quench dynamics and ground state fidelity of the one-dimensional extended quantum compass model in a transverse field

    Science.gov (United States)

    Jafari, R.

    2016-05-01

    We study the ground state fidelity, fidelity susceptibility, and quench dynamics of the extended quantum compass model in a transverse field. This model reveals a rich phase diagram which includes several critical surfaces depending on exchange couplings. We present a characterization of quantum phase transitions in terms of the ground state fidelity between two ground states obtained for two different values of external parameters. We also derive scaling relations describing the singular behavior of the fidelity susceptibility in the quantum critical surfaces. Moreover, we study the time evolution of the system after a critical quantum quench using the Loschmidt echo (LE). We find that the revival times of LE are given by {T}{rev}=N/2{v}{max}, where N is the size of the system and v max is the maximum of the lower bound group velocity of quasi-particles. Although the fidelity susceptibility shows the same exponent in all critical surfaces, the structure of the revivals after critical quantum quenches displays two different regimes reflecting different equilibration dynamics.

  10. GroundWinds 2000 field campaign: demonstration of new Doppler lidar technology and wind lidar data intercomparison

    Science.gov (United States)

    Yoe, James G.; Varma Raja, M. K. Rama; Hardesty, R. Michael; Brewer, W. Alan; Moore, Berrien, III; Ryan, James M.; Hays, Paul B.; Nardell, Carl A.; Gentry, Bruce M.; Day, Michelle; Rancourt, Kenneth

    2003-03-01

    A field campaign featuring three collocated Doppler wind lidars was conducted over ten days during September 2000 at the GroundWinds Observatory in New Hampshire. The lidars were dissimilar in wavelength and Doppler detection method. The GroundWinds lidar operated at 532 nm and used fringe-imaging direct detection, while the Goddard Lidar Observatory for Winds (GLOW) ran at 355 nm and employed double-edge filter direct detection, and the NOAA mini-MOPA operated at 10 microns and used heterodyne detection. The objectives of the campaign were (1) to demonstrate the capability of the GroundWinds lidar to measure winds while employing several novel components, and (2) to compare directly the radial wind velocities measured by the three lidars for as wide a variety of conditions as possible. Baseline wind profiles and ancillary meteorological data (temperature and humidity profiles) were obtained by launching GPS radiosondes from the observatory as frequently as every 90 minutes. During the final week of the campaign the lidars collected data along common lines-of-sight for several extended periods. The wind speed varied from light to jet stream values, and sky conditions ranged from clear to thick clouds. Intercomparisons of overlapping lidar and radiosonde observations show that all three lidars were able to measure wind given sufficient backscatter. At ranged volumes containing thicker clouds, and those beyond, the wind sensing capability of the direct detection lidars was adversely affected.

  11. A Robust and Efficient Homography Based Approach for Ground Plane Detection

    Directory of Open Access Journals (Sweden)

    Sanjeev Sofat

    2012-07-01

    Full Text Available This paper presents a homography based ground planedetection method. The method is developed as a part of stereovision based obstacle detection technique for the visuallyimpaired people. The method assumes the presence of a texturedominant ground plane in the lower portion of the scene, whichis not severe restriction in a real world. SIFT algorithm is usedto extract features in the stereo images. The extracted SIFTfeatures are robustly matched by model fitting using RANSAC.A sample of putative matches lying in the lower portion of theimage is selected. A fitness function is developed to selectmatches from this sample, which are used to estimate groundplane homography hypothesis. The ground plane homographyhypothesis is used to classify the SIFT features as eitherbelonging to ground plane or not. Image segmentation usingmean shift and normalized cut is further used to filter theoutliers and augment the ground plane. Experimental testshave been conducted to test the performance of the proposedapproach. The tests indicate that the proposed approach hasgood classification rate and have operating distance rangefrom 3 feet to 12 feet.

  12. Development of access-based metrics for site location of ground segment in LEO missions

    Directory of Open Access Journals (Sweden)

    Hossein Bonyan Khamseh

    2010-09-01

    Full Text Available The classical metrics of ground segment site location do not take account of the pattern of ground segment access to the satellite. In this paper, based on the pattern of access between the ground segment and the satellite, two metrics for site location of ground segments in Low Earth Orbits (LEO missions were developed. The two developed access-based metrics are total accessibility duration and longest accessibility gap in a given period of time. It is shown that repeatability cycle is the minimum necessary time interval to study the steady behavior of the two proposed metrics. System and subsystem characteristics of the satellite represented by each of the metrics are discussed. Incorporation of the two proposed metrics, along with the classical ones, in the ground segment site location process results in financial saving in satellite development phase and reduces the minimum required level of in-orbit autonomy of the satellite. To show the effectiveness of the proposed metrics, simulation results are included for illustration.

  13. Which future for electromagnetic Astronomy: Ground Based vs Space Borne Large Astrophysical Facilities

    Science.gov (United States)

    Ubertini, Pietro

    2015-08-01

    The combined use of large ground based facilities and large space observatories is playing a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum, allowing high sensitivity observations from the lower radio wavelength to the higher energy gamma rays.It is nowadays clear that a forward steps in the understanding of the Universe evolution and large scale structure formation is essential and only possible with the combined use of multiwavelength imaging and spectral high resolution instruments.The increasing size, complexity and cost of large ground and space observatories places a growing emphasis on international collaboration. If the present set of astronomical facilities is impressive and complete, with nicely complementary space and ground based telescopes, the scenario becomes worrisome and critical in the next two decades. In fact, only a few ‘Large’ main space missions are planned and there is a need to ensure proper ground facility coverage: the synergy Ground-Space is not escapable in the timeframe 2020-2030.The scope of this talk is to review the current astronomical instrumentation panorama also in view of the recent major national agencies and international bodies programmatic decisions.This Division B meeting give us a unique opportunity to review the current situation and discuss the future perspectives taking advantage of the large audience ensured by the IAU GA.

  14. Ground Control Point - Wireless System Network for UAV-based environmental monitoring applications

    Science.gov (United States)

    Mejia-Aguilar, Abraham

    2016-04-01

    In recent years, Unmanned Aerial Vehicles (UAV) have seen widespread civil applications including usage for survey and monitoring services in areas such as agriculture, construction and civil engineering, private surveillance and reconnaissance services and cultural heritage management. Most aerial monitoring services require the integration of information acquired during the flight (such as imagery) with ground-based information (such as GPS information or others) for improved ground truth validation. For example, to obtain an accurate 3D and Digital Elevation Model based on aerial imagery, it is necessary to include ground-based information of coordinate points, which are normally acquired with surveying methods based on Global Position Systems (GPS). However, GPS surveys are very time consuming and especially for longer time series of monitoring data repeated GPS surveys are necessary. In order to improve speed of data collection and integration, this work presents an autonomous system based on Waspmote technologies build on single nodes interlinked in a Wireless Sensor Network (WSN) star-topology for ground based information collection and later integration with surveying data obtained by UAV. Nodes are designed to be visible from the air, to resist extreme weather conditions with low-power consumption. Besides, nodes are equipped with GPS as well as Inertial Measurement Unit (IMU), accelerometer, temperature and soil moisture sensors and thus provide significant advantages in a broad range of applications for environmental monitoring. For our purpose, the WSN transmits the environmental data with 3G/GPRS to a database on a regular time basis. This project provides a detailed case study and implementation of a Ground Control Point System Network for UAV-based vegetation monitoring of dry mountain grassland in the Matsch valley, Italy.

  15. Reconnaissance of ground-water resources in the Eastern Coal Field Region, Kentucky

    Science.gov (United States)

    Price, William E.; Mull, D.S.; Kilburn, Chabot

    1962-01-01

    In the Eastern Coal Field region of Kentucky, water is obtained from consolidated sedimentary rocks ranging in age from Devonian to Pennsylvanian and from unconsolidated sediments of Quaternary age. About 95 percent of the area is underlain by shale, sandstone, and coal of Pennsylvanian age. Principal factors governing the availability of water in the region are depth, topographic location, and the lithology of the aquifer penetrated. In general, the yield of the well increases as the depth increases. Wells drilled in topographic lows, such as valleys, are likely to yield more water than wells drilled on topographic highs, such as hills. Sand and gravel, present in thick beds in the alluvium along the Ohio River, form the most productive aquifer in the Eastern Coal Field. Of the consolidated rocks in the region sandstone strata are the best aquifers chiefly because joints, openings along bedding planes, and intergranular pore spaces are best developed in them. Shale also supplies water to many wells in the region, chiefly from joints and openings along bedding planes. Coal constitutes a very small part of the sedimentary section, but it yields water from fractures to many wells. Limestone yields water readily from solution cavities developed along joint and bedding-plane openings. The availability of water in different parts of the region was determined chiefly by analyzing well data collected during the reconnaissance. The resulting water-availability maps, published as hydrologic investigations atlases (Price and others, 1961 a, b; Kilburn and others, 1961) were designed to be used in conjunction with this report. The maps were constructed by dividing the region into 5 physiographic areas, into 10 subareas based chiefly on lithologic facies, and, in the case of the Kanawha section, into 2 quality-of-water areas. The 5 physiographic areas are the Knobs, Mississippian Plateau, Cumberland Plateau section, Kanawha section, and Cumberland Mountain section. The 10

  16. The Qualitative and Numerical Analysis of the Cosmological Model Based on Phantom Scalar Field with Self

    CERN Document Server

    Ignat'ev, Yu G

    2016-01-01

    In this paper we investigate the asymptotic behavior of the cosmological model based on phantom scalar field on the ground of qualitative analysis of the system of the cosmological model's differential equations and show that as opposed to models with classical scalar field, such models have stable asymptotic solutions with constant value of the potential both in infinite past and infinite future. We also develop numerical models of the cosmological evolution models with phantom scalar field in this paper. {\\bf keywords}: cosmological model, phantom scalar field, quality analysis, asymptotic behavior, numerical simulation, numerical gravitation.\\\\ {\\bf PACS}: 04.20.Cv, 98.80.Cq, 96.50.S 52.27.Ny

  17. On reconciling ground-based with spaceborne normalized radar cross section measurements

    DEFF Research Database (Denmark)

    Baumgartner, Francois; Munk, Jens; Jezek, K C

    2002-01-01

    This study examines differences in the normalized radar cross section, derived from ground-based versus spaceborne radar data. A simple homogeneous half-space model, indicates that agreement between the two improves as 1) the distance from the scatterer is increased; and/or 2) the extinction...

  18. Facilitating Grounded Online Interactions in Video-Case-Based Teacher Professional Development

    Science.gov (United States)

    Nemirovsky, Ricardo; Galvis, Alvaro

    2004-01-01

    The use of interactive video cases for teacher professional development is an emergent medium inspired by case study methods used extensively in law, management, and medicine, and by the advent of multimedia technology available to support online discussions. This paper focuses on Web-based "grounded" discussions--in which the participants base…

  19. Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics

    Science.gov (United States)

    E.L. Loudermilk; J.K. Hiers; J.J. O’Brien; R.J. Mitchell; A. Singhania; J.C. Fernandez; W.P. Cropper; K.C. Slatton

    2009-01-01

    Ground-based LIDAR (also known as laser ranging) is a novel technique that may precisely quantify fuelbed characteristics important in determining fire behavior. We measured fuel properties within a south-eastern US longleaf pine woodland at the individual plant and fuelbed scale. Data were collected using a mobile terrestrial LIDAR unit at sub-cm scale for individual...

  20. Identifying Barriers in Implementing Outcomes-Based Assessment Program Review: A Grounded Theory Analysis

    Science.gov (United States)

    Bresciani, Marilee J.

    2011-01-01

    The purpose of this grounded theory study was to identify the typical barriers encountered by faculty and administrators when implementing outcomes-based assessment program review. An analysis of interviews with faculty and administrators at nine institutions revealed a theory that faculty and administrators' promotion, tenure (if applicable),…

  1. Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations

    NARCIS (Netherlands)

    Di Noia, A.; Hasekamp, O.P.; Harten, G. van; Rietjens, J.H.H.; Smit, J.M.; Snik, F.; Henzing, J.S.; Boer, J. de; Keller, C.U.; Volten, H.

    2015-01-01

    In this paper, the use of a neural network algorithm for the retrieval of the aerosol properties from ground-based spectropolarimetric measurements is discussed. The neural network is able to retrieve the aerosol properties with an accuracy that is almost comparable to that of an iterative retrieval

  2. Retrieval of liquid water cloud properties from ground-based remote sensing observations

    NARCIS (Netherlands)

    Knist, C.L.

    2014-01-01

    Accurate ground-based remotely sensed microphysical and optical properties of liquid water clouds are essential references to validate satellite-observed cloud properties and to improve cloud parameterizations in weather and climate models. This requires the evaluation of algorithms for retrieval of

  3. Ground-based remote sensing scheme for monitoring aerosol–cloud interactions (discussion)

    NARCIS (Netherlands)

    Sarna, K.; Russchenberg, H.W.J.

    2015-01-01

    A method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of cloud microphysical changes due to the changing aerosol concentration. We use high resolution measurements from lid

  4. Ground-based remote sensing scheme for monitoring aerosol-cloud interactions

    NARCIS (Netherlands)

    Sarna, K.; Russchenberg, H.W.J.

    2016-01-01

    A new method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of the change of the cloud droplet size due to the change in the aerosol concentration. We use high-resolution mea

  5. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis...

  6. New light field camera based on physical based rendering tracing

    Science.gov (United States)

    Chung, Ming-Han; Chang, Shan-Ching; Lee, Chih-Kung

    2014-03-01

    Even though light field technology was first invented more than 50 years ago, it did not gain popularity due to the limitation imposed by the computation technology. With the rapid advancement of computer technology over the last decade, the limitation has been uplifted and the light field technology quickly returns to the spotlight of the research stage. In this paper, PBRT (Physical Based Rendering Tracing) was introduced to overcome the limitation of using traditional optical simulation approach to study the light field camera technology. More specifically, traditional optical simulation approach can only present light energy distribution but typically lack the capability to present the pictures in realistic scenes. By using PBRT, which was developed to create virtual scenes, 4D light field information was obtained to conduct initial data analysis and calculation. This PBRT approach was also used to explore the light field data calculation potential in creating realistic photos. Furthermore, we integrated the optical experimental measurement results with PBRT in order to place the real measurement results into the virtually created scenes. In other words, our approach provided us with a way to establish a link of virtual scene with the real measurement results. Several images developed based on the above-mentioned approaches were analyzed and discussed to verify the pros and cons of the newly developed PBRT based light field camera technology. It will be shown that this newly developed light field camera approach can circumvent the loss of spatial resolution associated with adopting a micro-lens array in front of the image sensors. Detailed operational constraint, performance metrics, computation resources needed, etc. associated with this newly developed light field camera technique were presented in detail.

  7. A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network

    Science.gov (United States)

    Jiang, H.; Cheng, H.; Zhang, Y.; Liu, J.

    A growing number of space activities have created an orbital debris environment that poses increasing impact risks to existing space systems and human space flight. For the safety of in-orbit spacecraft, a lot of observation facilities are needed to catalog space objects, especially in low earth orbit. Surveillance of Low earth orbit objects are mainly rely on ground-based radar, due to the ability limitation of exist radar facilities, a large number of ground-based radar need to build in the next few years in order to meet the current space surveillance demands. How to optimize the embattling of ground-based radar surveillance network is a problem to need to be solved. The traditional method for embattling optimization of ground-based radar surveillance network is mainly through to the detection simulation of all possible stations with cataloged data, and makes a comprehensive comparative analysis of various simulation results with the combinational method, and then selects an optimal result as station layout scheme. This method is time consuming for single simulation and high computational complexity for the combinational analysis, when the number of stations increases, the complexity of optimization problem will be increased exponentially, and cannot be solved with traditional method. There is no better way to solve this problem till now. In this paper, target detection procedure was simplified. Firstly, the space coverage of ground-based radar was simplified, a space coverage projection model of radar facilities in different orbit altitudes was built; then a simplified objects cross the radar coverage model was established according to the characteristics of space objects orbit motion; after two steps simplification, the computational complexity of the target detection was greatly simplified, and simulation results shown the correctness of the simplified results. In addition, the detection areas of ground-based radar network can be easily computed with the

  8. Current Field Calculation of Cirque UHVDC Transmission Grounding Electrode%特高压直流输电圆环型接地极电流场计算

    Institute of Scientific and Technical Information of China (English)

    徐韬; 徐政; 张哲任; 周志超; 沈扬

    2012-01-01

    In the process of designing an UHVDC transmission grounding electrode, the current field should be calculated. As a result, we introduced a current field calculating method for cirque UHVDC transmission grounding electrode based on resistance network model. Firstly, the grounding electrode field was divided into a certain number of cells in 3D space, and each cell was equivalent to a node in the system, with 6 resistances connecting to adjacent cells; Then, by connecting all the nodes, a resistance network was formed, thus the current field could be calculated by solving the network; Finally, node voltage of the network was acquired and relevant parameters of current field was presented on the basis of node voltage, such as step voltage, current density, etc. Under the same conditions, the calculated results of current field were compared with those by the ANSYS simulation, showing a good consistency, thus, the validity of the resistance network method was verified.%在特高压直流(UHVDC)输电接地极设计过程中,需要对接地极附近的电流场进行计算。为此,介绍了基于电阻网络模型的高压直流输电圆环型接地极电流场的计算方法。首先将接地极场域在三维空间内分割为若干单元,每个单元等效为系统中的1个节点,通过6个等值电阻与相邻单元节点连接;然后将所有单元节点相互连接,构成1个电阻网络,从而将电流场计算问题转化为对电阻网络的求解问题;最后求解电阻网络,得到节点电压,并根据节点电压计算跨步电压、溢流密度等电流场相关参数。在同等条件下,将该算法与ANSYS仿真得到的电流场计算结果进行对比,结果偏差较小,验证了该算法的正确性。

  9. ELECTRIC FIELD SENSORS BASED ON MEMS TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    Gong Chao; Xia Shanhong; Deng Kai; Bai Qiang; Chen Shaofeng

    2005-01-01

    The design and optimization of two types of novel miniature vibrating Electric Field Sensors (EFSs) based on Micro Electro Mechanical Systems (MEMS) technology are presented.They have different structures and vibrating modes. The volume is much smaller than other types of charge-induced EFSs such as field-mills. As miniaturizing, the induced signal is reduced enormously and a high sensitive circuit is needed to detect it. Elaborately designed electrodes can increase the amplitude of the output current, making the detecting circuit simplified and improving the signal-to-noise ratio. Computer simulations for different structural parameters of the EFSs and vibrating methods have been carried out by Finite Element Method (FEM). It is proved that the new structures are realizable and the output signals are detectable.

  10. Nano-based chemical sensor array systems for uninhabited ground and airborne vehicles

    Science.gov (United States)

    Brantley, Christina; Ruffin, Paul B.; Edwards, Eugene

    2009-03-01

    In a time when homemade explosive devices are being used against soldiers and in the homeland security environment, it is becoming increasingly evident that there is an urgent need for high-tech chemical sensor packages to be mounted aboard ground and air vehicles to aid soldiers in determining the location of explosive devices and the origin of bio-chemical warfare agents associated with terrorist activities from a safe distance. Current technologies utilize relatively large handheld detection systems that are housed on sizeable robotic vehicles. Research and development efforts are underway at the Army Aviation & Missile Research, Development, and Engineering Center (AMRDEC) to develop novel and less expensive nano-based chemical sensors for detecting explosives and chemical agents used against the soldier. More specifically, an array of chemical sensors integrated with an electronics control module on a flexible substrate that can conform to and be surface-mounted to manned or unmanned vehicles to detect harmful species from bio-chemical warfare and other explosive devices is being developed. The sensor system under development is a voltammetry-based sensor system capable of aiding in the detection of any chemical agent and in the optimization of sensor microarray geometry to provide nonlinear Fourier algorithms to characterize target area background (e.g., footprint areas). The status of the research project is reviewed in this paper. Critical technical challenges associated with achieving system cost, size, and performance requirements are discussed. The results obtained from field tests using an unmanned remote controlled vehicle that houses a CO2/chemical sensor, which detects harmful chemical agents and wirelessly transmits warning signals back to the warfighter, are presented. Finally, the technical barriers associated with employing the sensor array system aboard small air vehicles will be discussed.

  11. PhotoSpec - Ground-based Remote Sensing of Solar-Induced Chlorophyll Fluorescence: First Results

    Science.gov (United States)

    Grossmann, K.; Magney, T. S.; Frankenberg, C.; Seibt, U.; Pivovaroff, A. L.; Hurlock, S. C.; Stutz, J.

    2016-12-01

    Solar-Induced Chlorophyll Fluorescence (SIF) emitted from vegetation can be used as a proxy for photosynthetic activity and is observable on a global scale from space. However, many issues on a leaf-to-canopy scale remain poorly understood, such as influences on the SIF signal from environmental conditions, water stress, or radiation. We have developed a novel ground-based spectrometer system for measuring SIF from natural ecosystems. The instrumental set-up, requirements, and measurement technique are based on decades of experience using Differential Optical Absorption Spectroscopy (DOAS), an established method to measure atmospheric trace gases. The instrument consists of three thermally stabilized commercial spectrometers that are linked to a 2D scanning telescope unit via optical fiber bundles, and also includes a commercial photosynthetic active radiation (PAR) sensor. The spectrometers cover a SIF retrieval wavelength range at high spectral resolution (670 - 780 nm, 0.1 nm FWHM), and also provide moderate resolution spectra (400 - 800 nm, 1.5 nm FWHM) to retrieve vegetation indices and the photochemical reflectance index (PRI). We report on results of the first continuous field measurements of this novel system at Stunt Ranch Santa Monica Mountains UC Reserve, where the PhotoSpec instrument was monitoring SIF of four native Californian shrubland species with different adaptations to seasonal summer drought. We report on the correlation with CO2 fluxes over both the growing season and the hot summer period in 2016. We also show detailed measurements of the diurnal cycle of the SIF signal of single broad leaves, as well as dark-light transitions, under controlled experimental conditions. In addition to demonstrating the instrumental set-up, retrieval algorithm, and instrument performance, our results illustrate that SIF measurements at the leaf to ecosystem scale are needed to understand and interpret the SIF signals retrieved at larger scales.

  12. An Improved Algorithm of Grounding Grids Corrosion Diagnosis Based on Total Least Square Method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying-jiao; NIU Tao; WANG Sen

    2011-01-01

    A new model considering corrosion property for grounding grids diagnosis is proposed, which provides reference solutions of ambiguous branches. The constraint total least square method based on singular value decomposition is adopted to improve the effectiveness of grounding grids' diagnosis algorithm. The improvement can weaken the influence of the model's error, which results from the differences between design paper and actual grid. Its influence on touch and step voltages caused by the interior resistance of conductors is taken into account. Simulation results show the validity of this approach.

  13. Seismic fragility analysis of typical pre-1990 bridges due to near- and far-field ground motions

    Science.gov (United States)

    Mosleh, Araliya; Razzaghi, Mehran S.; Jara, José; Varum, Humberto

    2016-03-01

    Bridge damages during the past earthquakes caused several physical and economic impacts to transportation systems. Many of the existing bridges in earthquake prone areas are pre-1990 bridges and were designed with out of date regulation codes. The occurrences of strong motions in different parts of the world show every year the vulnerability of these structures. Nonlinear dynamic time history analyses were conducted to assess the seismic vulnerability of typical pre-1990 bridges. A family of existing concrete bridge representative of the most common bridges in the highway system in Iran is studied. The seismic demand consists in a set of far-field and near-field strong motions to evaluate the likelihood of exceeding the seismic capacity of the mentioned bridges. The peak ground accelerations (PGAs) were scaled and applied incrementally to the 3D models to evaluate the seismic performance of the bridges. The superstructure was assumed to remain elastic and the nonlinear behavior in piers was modeled by assigning plastic hinges in columns. In this study the displacement ductility and the PGA are selected as a seismic performance indicator and intensity measure, respectively. The results show that pre-1990 bridges subjected to near-fault ground motions reach minor and moderate damage states.

  14. A Dynamic Programming-Based Heuristic for the Shift Design Problem in Airport Ground Handling

    DEFF Research Database (Denmark)

    Clausen, Tommy

    We consider the heterogeneous shift design problem for a workforce with multiple skills, where work shifts are created to cover a given demand as well as possible while minimizing cost and satisfying a flexible set of constraints. We focus mainly on applications within airport ground handling where...... the demand can be highly irregular and specified on time intervals as short as five minutes. Ground handling operations are subject to a high degree of cooperation and specialization that require workers with different qualifications to be planned together. Different labor regulations or organizational rules...... can apply to different ground handling operations, so the rules and restrictions can be numerous and vary significantly. This is modeled using flexible volume constraints that limit the creation of certain shifts. We present a fast heuristic for the heterogeneous shift design problem based on dynamic...

  15. (21) Lutetia spectrophotometry from Rosetta-OSIRIS images and comparison to ground-based observations

    Science.gov (United States)

    Magrin, S.; La Forgia, F.; Pajola, M.; Lazzarin, M.; Massironi, M.; Ferri, F.; da Deppo, V.; Barbieri, C.; Sierks, H.; Osiris Team

    2012-06-01

    Here we present some preliminary results on surface variegation found on (21) Lutetia from ROSETTA-OSIRIS images acquired on 2010-07-10. The spectrophotometry obtained by means of the two cameras NAC and WAC (Narrow and Wide Angle Cameras) is consistent with ground based observations, and does not show surface diversity above the data error bars. The blue and UV images (shortward 500 nm) may, however, indicate a variegation of the optical properties of the asteroid surface on the Baetica region (Sierks et al., 2011). We also speculate on the contribution due to different illumination and to different ground properties (composition or, more probably, grain size diversity). In particular a correlation with geologic units independently defined by Massironi et al. (2012) is evident, suggesting that the variegation of the ground optical properties is likely to be real.

  16. Protection Measures for Buildings Based on Coordinating Action Theory of Ground, Foundation and Structure

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the theory of coordinating action of building ground, foundation and structure, this paper presents a modified method for calculating additional stresses on buildings in mining areas by considering the joint effect of curvature deformation and horizontal deformation on buildings. It points out that for buildings over the coal pillar, it is advisable to soften the intermediate ground of buildings when they are affected by mining. For buildings over the goaf, it is preferable to soften the ground at both ends of buildings. In order to enhance the ability of a building to resist tensile deformation, the key measure is to reinforce the bottom foundation of the building. In addition, the concept of "angle of break of building" is proposed. It is because of this angle that the protecting coal pillar is left, which is a better solution than prevailing solutions The findings provide a more scientific basis for mining under buildings.

  17. Ground truth delineation for medical image segmentation based on Local Consistency and Distribution Map analysis.

    Science.gov (United States)

    Cheng, Irene; Sun, Xinyao; Alsufyani, Noura; Xiong, Zhihui; Major, Paul; Basu, Anup

    2015-01-01

    Computer-aided detection (CAD) systems are being increasingly deployed for medical applications in recent years with the goal to speed up tedious tasks and improve precision. Among others, segmentation is an important component in CAD systems as a preprocessing step to help recognize patterns in medical images. In order to assess the accuracy of a CAD segmentation algorithm, comparison with ground truth data is necessary. To-date, ground truth delineation relies mainly on contours that are either manually defined by clinical experts or automatically generated by software. In this paper, we propose a systematic ground truth delineation method based on a Local Consistency Set Analysis approach, which can be used to establish an accurate ground truth representation, or if ground truth is available, to assess the accuracy of a CAD generated segmentation algorithm. We validate our computational model using medical data. Experimental results demonstrate the robustness of our approach. In contrast to current methods, our model also provides consistency information at distributed boundary pixel level, and thus is invariant to global compensation error.

  18. Laboratory and field based evaluation of chromatography ...

    Science.gov (United States)

    The Monitor for AeRosols and GAses in ambient air (MARGA) is an on-line ion-chromatography-based instrument designed for speciation of the inorganic gas and aerosol ammonium-nitrate-sulfate system. Previous work to characterize the performance of the MARGA has been primarily based on field comparison to other measurement methods to evaluate accuracy. While such studies are useful, the underlying reasons for disagreement among methods are not always clear. This study examines aspects of MARGA accuracy and precision specifically related to automated chromatography analysis. Using laboratory standards, analytical accuracy, precision, and method detection limits derived from the MARGA chromatography software are compared to an alternative software package (Chromeleon, Thermo Scientific Dionex). Field measurements are used to further evaluate instrument performance, including the MARGA’s use of an internal LiBr standard to control accuracy. Using gas/aerosol ratios and aerosol neutralization state as a case study, the impact of chromatography on measurement error is assessed. The new generation of on-line chromatography-based gas and particle measurement systems have many advantages, including simultaneous analysis of multiple pollutants. The Monitor for Aerosols and Gases in Ambient Air (MARGA) is such an instrument that is used in North America, Europe, and Asia for atmospheric process studies as well as routine monitoring. While the instrument has been evaluat

  19. Monitoring surface geothermal features using time series of aerial and ground-based photographs

    Science.gov (United States)

    Bromley, C.; van Manen, S. M.; Graham, D.

    2010-12-01

    Geothermal systems are of high conservation and scientific value and monitoring of these is an important management tool to assess natural variations and changes resulting from development and utilization. This study examines time series of aerial and ground-based photographs of geothermal areas within the Taupo Volcanic Zone, New Zealand. A time series of aerial photographs from 1946-2007 of the Broadlands Road Scenic Reserve (Taupo, New Zealand) highlights large changes to this small area as the result of the start of geothermal fluid production for the nearby Wairakei power plant in 1958 and other causes. Prior to the opening of the plant the area was not geothermally active, but expansion of steam zones due to pressure drawdown has resulted in significant thermal changes in the subsurface. These subsurface thermal changes are evident in the aerial photographs as the appearance of hydrothermal eruption craters and areas of thermal bare ground, which are too hot for vegetation to grown on. In addition, in the late 1960’s thermotolerant vegetation started to establish itself in the adjacent area. Changes in the surface area covered by each of these, reflect changes in the geothermal system as well as changes in management (e.g. exclusion of livestock), and a time series of these changes has been produced using ArcMap™. Monthly photographs of surface geothermal expressions in the Rotorua area show changes in colour and size of chloride springs with time. Colour and size changes are difficult to quantify due to varying exposure settings, weather conditions, and vantage points. However, these qualitative descriptions can be combined with quantitative time series such as temperature measurements, to provide better insight into surface changes that have occurred at this geothermal field. This study highlights the value of both qualitative and quantitative data that can be obtained from time series of photographs, including photographs that were obtained before the

  20. First Ground-Based Observation of Sprites Over Southern Africa and Estimation of Their Physical and Optical Characteristics

    Science.gov (United States)

    Nnadih, O.; Martinez, P.; Kosch, M.; Lotz, S.; Fullekrug, M.

    2016-12-01

    We present the first ground-based observations of sprites over convective thunderstorms in southern Africa. The observations, acquired during the austral summer of 2015/16. show sprites with dendritic, carrot, angel and jellyfish-like shapes. The sprite locations are compared with lightning locations and peak amplitudes determined from the lightning detection network operated by the South African Weather Service, and also with the lightning locations reported by the World Wide Lightning Location Network (WLLN) and Low Frequency radio waveforms of the electric field strength recorded in the conjugate hemisphere in South-West England. The charge moment of the lightning discharges causing sprites is inferred from Extremely Low Frequency magnetic field measurements recorded at remote distances. These measurements reveal that a number of the sprites that we observed were triggered below and above the charge moment threshold for sprite production.

  1. Spatial scale of the substorm onset region determined from multi-point satellite and ground-based observations

    Science.gov (United States)

    Nakamura, Rumi; Baker, D. N.; Belian, Richard D.; Yamamoto, T.

    1992-01-01

    The temporal and spatial scale of the onset of two substorm events is investigated using high resolution energetic particle and magnetic field data at synchronous orbit plus auroral and magnetic field data simultaneously taken from the ground based instrumentation. During both intervals the major expansion onset had precursor localized expansions without significant negative bay enhancement ('pseudobreakups'). Typical magnetospheric onset signatures such as tail current diversion, dipolarization, and injection were observed associated with some of the pseudobreakups. The major expansion, on the other hand, consisted of a number of rather localized injections and expansions, each of which had times scales of 5 to approximately 10 minutes, a comparable time scale to that of pseudobreakups. The number of occurrences, as well as the scale size of the magnetospheric source region, would constitute the major difference between pseudobreakup and the global expansion onset.

  2. Ground Truth Mineralogy vs. Orbital Observations at the Bagnold Dune Field

    Science.gov (United States)

    Achilles, C. N.; Downs, R. T.; Ming, D. W.; Rampe, E. B.; Morris, R. V.; Treiman, A. H.; Morrison, S. M.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.

    2017-01-01

    The Mars Science Laboratory (MSL) rover, Curiosity, is analyzing rock and sediments in Gale crater to provide in situ sedimentological, geochemical, and mineralogical assessments of the crater's geologic history. Curiosity's recent traverse through an active, basaltic eolian deposit, informally named the Bagnold Dunes, provided the opportunity for a multi-instrument investigation of the dune field.

  3. Field experiment provides ground truth for surface nuclear magnetic resonance measurement

    Science.gov (United States)

    Knight, R.; Grunewald, E.; Irons, T.; Dlubac, K.; Song, Y.; Bachman, H.N.; Grau, B.; Walsh, D.; Abraham, J.D.; Cannia, J.

    2012-01-01

    The need for sustainable management of fresh water resources is one of the great challenges of the 21st century. Since most of the planet's liquid fresh water exists as groundwater, it is essential to develop non-invasive geophysical techniques to characterize groundwater aquifers. A field experiment was conducted in the High Plains Aquifer, central United States, to explore the mechanisms governing the non-invasive Surface NMR (SNMR) technology. We acquired both SNMR data and logging NMR data at a field site, along with lithology information from drill cuttings. This allowed us to directly compare the NMR relaxation parameter measured during logging,T2, to the relaxation parameter T2* measured using the SNMR method. The latter can be affected by inhomogeneity in the magnetic field, thus obscuring the link between the NMR relaxation parameter and the hydraulic conductivity of the geologic material. When the logging T2data were transformed to pseudo-T2* data, by accounting for inhomogeneity in the magnetic field and instrument dead time, we found good agreement with T2* obtained from the SNMR measurement. These results, combined with the additional information about lithology at the site, allowed us to delineate the physical mechanisms governing the SNMR measurement. Such understanding is a critical step in developing SNMR as a reliable geophysical method for the assessment of groundwater resources.

  4. Problem-based, interdisciplinary field-based courses

    DEFF Research Database (Denmark)

    Hill, Trevor; Birch-Thomsen, Torben; Traynor, Catherine

    2008-01-01

    Student field courses at Universities are increasingly incorporating problem-based interdisciplinary approaches to enhance learning opportunities. This paper reports upon seven field-based, problem-oriented, interdisciplinary courses held within southern Africa concerning natural resource managem...... in a positive manner and a strong respectful working relationship from the staff. We advocate this process as worthwhile as classroom theory becomes real in all applied and complex environment....... management and sustainable land use. The SLUSE (Sustainable Land Use and Natural Resource Management) project, under which these courses were devised, is introduced and the process of field-course implementation is described. The SLUSE approach is discussed in terms of management issues, levels...... of responsibility, staff and student development and the benefits to rural host communities. The courses are very intense experiences and Students encounter difficulties working across traditional academic disciplines and in cross-cultural groups. Through critical thinking and self-reflection students understand...

  5. Particle production during inflation and gravitational waves detectable by ground-based interferometers

    OpenAIRE

    Cook, Jessica L.; Sorbo, Lorenzo

    2011-01-01

    Inflation typically predicts a quasi scale-invariant spectrum of gravitational waves. In models of slow-roll inflation, the amplitude of such a background is too small to allow direct detection without a dedicated space-based experiment such as the proposed BBO or DECIGO. In this paper we note that particle production during inflation can generate a feature in the spectrum of primordial gravitational waves. We discuss the possibility that such a feature might be detected by ground-based laser...

  6. Comparison of NO2 vertical profiles from satellite and ground based measurements over Antarctica

    OpenAIRE

    Kulkarni, Pavan; Bortoli, Daniele; Costa, Maria João; Silva, Ana Maria; Ravegnani, Fabrizio; Giovanelli, Giorgio

    2011-01-01

    The Intercomparison of nitrogen dioxide (NO2) vertical profiles, derived from the satellite based HALogen Occultation Experiment (HALOE) measurements and from the ground based UV-VIS spectrometer GASCOD (Gas Analyzer Spectrometer Correlating Optical Differences) observations at the Mario Zucchelli Station (MZS), in Antarctica, are done for the first time. It is shown here that both datasets are in good agreement showing the same features in terms of magnitude, profile structure, a...

  7. Shear wave velocity-based evaluation and design of stone column improved ground for liquefaction mitigation

    Institute of Scientific and Technical Information of China (English)

    Zhou Yanguo; Sun Zhengbo; Chen Jie; Chen Yunmin; Chen Renpeng

    2017-01-01

    The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice.In this paper,a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity (Vs)-void ratio (e) of sandy soils,and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available.The detailed procedures of pre-and post-improvement liquefaction evaluations and stone column design are given.According to this approach,the required level of ground improvement will be met once the target Vs of soil is raised high enough (i.e.,no less than the critical velocity) to resist the given earthquake loading according to the CRR-Vs relationship,and then this requirement is transferred to the control of target void ratio (i.e.,the critical e) according to the Vs-e relationship.As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature,specific considerations of the densification mechanism and effect are given,and the effects of drainage and reinforcement of stone columns are also discussed.A case study of a thermal power plant in Indonesia is introduced,where the effectiveness of stone column improved ground was evaluated by the proposed Vs-based method and compared with the SPT-based evaluation.This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.

  8. Shear wave velocity-based evaluation and design of stone column improved ground for liquefaction mitigation

    Science.gov (United States)

    Zhou, Yanguo; Sun, Zhengbo; Chen, Jie; Chen, Yunmin; Chen, Renpeng

    2017-04-01

    The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice. In this paper, a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity ( V s)-void ratio ( e) of sandy soils, and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available. The detailed procedures of pre- and post-improvement liquefaction evaluations and stone column design are given. According to this approach, the required level of ground improvement will be met once the target V s of soil is raised high enough (i.e., no less than the critical velocity) to resist the given earthquake loading according to the CRR- V s relationship, and then this requirement is transferred to the control of target void ratio (i.e., the critical e) according to the V s- e relationship. As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature, specific considerations of the densification mechanism and effect are given, and the effects of drainage and reinforcement of stone columns are also discussed. A case study of a thermal power plant in Indonesia is introduced, where the effectiveness of stone column improved ground was evaluated by the proposed V s-based method and compared with the SPT-based evaluation. This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.

  9. Dynamic Analyses of Isolated Structures under Bi-Directional Excitations of Near-Field Ground Motions

    Directory of Open Access Journals (Sweden)

    Gokhan Ozdemir

    2012-01-01

    Full Text Available Nonlinear response history analyses (NRHA of a 3-story isolated reinforced concrete (RC building are carried out under both uni- and bi-directional earthquake excitations of near-field records. NRHA are conducted for a wide range of yield strength (Q/W of lead rubber bearings (LRB, and isolation period (T. Selected near-field records are used to investigate both the contribution of orthogonal components on maximum isolator displacements and accuracy of equivalent lateral force (ELF procedure on estimation of maximum isolator displacements. Analyses results show that both the contribution of orthogonal components and accuracy of ELF procedure depend on the soil condition where isolation system is implemented.

  10. A preferred ground state for the scalar field in de Sitter space

    CERN Document Server

    Aslanbeigi, Siavash

    2013-01-01

    We investigate a recent proposal for a distinguished vacuum state of a free scalar quantum field in an arbitrarily curved spacetime, known as the Sorkin-Johnston (SJ) vacuum, by applying it to de Sitter space. We derive the associated two-point functions on both the global and Poincar\\'e (cosmological) patches in general d+1 dimensions. In all cases where it is defined, the SJ vacuum belongs to the family of de Sitter invariant alpha-vacua. We obtain different states depending on the spacetime dimension, mass of the scalar field, and whether the state is evaluated on the global or Poincar\\'e patch. We find that the SJ vacuum agrees with the Euclidean/Bunch-Davies state for heavy ("principal series") fields on the global patch in even spacetime dimensions. We also compute the SJ vacuum on a causal set corresponding to a causal diamond in 1+1 dimensional de Sitter space. Our simulations show that the mean of the SJ two-point function on the causal set agrees well with its expected continuum counterpart.

  11. A preferred ground state for the scalar field in de Sitter space

    Science.gov (United States)

    Aslanbeigi, S.; Buck, M.

    2013-08-01

    We investigate a recent proposal for a distinguished vacuum state of a free scalar quantum field in an arbitrarily curved spacetime, known as the Sorkin-Johnston (SJ) vacuum, by applying it to de Sitter space. We derive the associated two-point functions on both the global and Poincaré (cosmological) patches in general d + 1 dimensions. In all cases where it is defined, the SJ vacuum belongs to the family of de Sitter invariant α-vacua. We obtain different states depending on the spacetime dimension, mass of the scalar field, and whether the state is evaluated on the global or Poincaré patch. We find that the SJ vacuum agrees with the Euclidean/Bunch-Davies state for heavy ("principal series") fields on the global patch in even spacetime dimensions. We also compute the SJ vacuum on a causal set corresponding to a causal diamond in 1 + 1 dimensional de Sitter space. Our simulations show that the mean of the SJ two-point function on the causal set agrees well with its expected continuum counterpart.

  12. Ionosphere-magnetosphere studies using ground based VLF radio propagation technique: an Indian example

    Science.gov (United States)

    Chakravarty, Subhas

    Since IGY period (1957-58), natural and artificially produced Very Low Frequency (VLF) elec-tromagnetic radiations are being recorded at large number of ground stations all over the world and on-board satellites to study various radio wave-thermal/energetic plasma interactive pro-cesses related to earth's ionosphere-plasmasphere-magnetosphere environment. The terrestrial propagation of these VLF radio waves are primarily enabled through the earth ionosphere wave guide (EIWG) mode to long horizontal distances around the globe and ducted along the ge-omagnetic field lines into the conjugate hemisphere through the plasmasphere-magnetosphere regions. The time frequency spectra of the received signals indicate presence of dispersion (wave/group velocities changing with frequency) and various cut-off frequencies based on the width of the EIWG, electron gyro and plasma frequencies etc., providing several types of received signals like whistlers, chorus, tweeks, hiss and hisslers which can be heard on loud-speakers/earphones with distinguishing audio structures. While the VLF technique has been a very effective tool for studying middle and high latitude phenomena, the importance of the similar and anomalous observations over the Indian low latitude stations provide potentially new challenges for their scientific interpretation and modelling. The ducted and non-ducted magnetospheric propagation, pro-longitudinal (PL) mode, low latitude TRIMPI/TLE (Tran-sient Luminous Emissions) or other effects of wave-particle/wave-wave interactions, effects due to ionospheric irregularities and electric fields, full wave solutions to D-region ionisation per-turbations due to solar and stellar energetic X-and γ ray emissions during normal and flaring conditions are a few problems which have been addressed in these low latitude studies over India. Since the conjugate points of Indian stations lie over the Indian oceanic region, the VLF propagation effects would be relatively free from

  13. Monitoring greenhouse gas emissions in Australian landscapes: Comparing ground based mobile surveying data to GOSAT observations

    Science.gov (United States)

    Bashir, S.; Iverach, C.; Kelly, B. F. J.

    2016-12-01

    Climate change is threatening the health and stability of the natural world and human society. Such concerns were emphasized at COP21 conference in Paris 2015 which highlighted the global need to improve our knowledge of sources of greenhouse gas and to develop methods to mitigate the effects of their emissions. Ongoing spatial and temporal measurements of greenhouse gases at both point and regional scales is important for clarification of climate change mechanisms and accounting. The Greenhouse gas Observing SATellite (GOSAT) is designed to monitor the global distribution of carbon dioxide (CO2) and methane (CH4) from orbit. As existing ground monitoring stations are limited and still unevenly distributed, satellite observations provide important frequent, spatially extensive, but low resolution observations. Recent developments in portable laser based greenhouse gas measurement systems have enabled the rapid measurement of greenhouse gases in ppb at the ground surface. This study was conducted to map major sources of CO2 and CH4 in the eastern states of Australia at the landscape scale and to compare the results to GOSAT observations. During April 2016 we conducted a regional CH4 and CO2 mobile survey, using an LGR greenhouse gas analyzer. Measurements were made along a 4000 KM circuit through major cities, country towns, dry sclerophyll forests, coastal wetlands, coal mining regions, coal seam gas developments, dryland farming and irrigated agricultural landscapes. The ground-based survey data were then compared with the data (L2) from GOSAT. Ground-based mobile surveys showed that there are clear statistical differences in the ground level atmospheric concentration of CH4 and CO2 associated with all major changes in land use. These changes extend for kilometers, and cover one or more GOSAT pixels. In the coal mining districts the ground-level atmospheric concentration of CH4 exceeded 2 ppm for over 40 km, yet this was not discernable in the retrieved data (L2

  14. Open-loop GPS signal tracking at low elevation angles from a ground-based observation site

    Science.gov (United States)

    Beyerle, Georg; Zus, Florian

    2017-01-01

    A 1-year data set of ground-based GPS signal observations aiming at geometric elevation angles below +2° is analysed. Within the "GLESER" measurement campaign about 2600 validated setting events were recorded by the "OpenGPS" open-loop tracking receiver at an observation site located at 52.3808° N, 13.0642° E between January and December 2014. The measurements confirm the feasibility of open-loop signal tracking down to geometric elevation angles of -1 to -1.5° extending the corresponding closed-loop tracking range by up to 1°. The study is based on the premise that observations of low-elevation events by a ground-based receiver may serve as test cases for space-based radio occultation measurements, even if the latter proceed at a significantly faster temporal scale. The results support the conclusion that the open-loop Doppler model has negligible influence on the derived carrier frequency profile for strong signal-to-noise density ratios above about 30 dB Hz. At lower signal levels, however, the OpenGPS receiver's dual-channel design, which tracks the same signal using two Doppler models differing by 10 Hz, uncovers a notable bias. The repeat patterns of the GPS orbit traces in terms of azimuth angle reveal characteristic signatures in both signal amplitude and Doppler frequency with respect to the topography close to the observation site. Mean vertical refractivity gradients, extracted from ECMWF meteorological fields, correlate weakly to moderately with observed signal amplitude fluctuations at geometric elevation angles between +1 and +2°. Results from multiple phase screen simulations support the interpretation that these fluctuations are at least partly produced by atmospheric multipath; at negative elevation angles diffraction at the ground surface seems to contribute.

  15. Tropospheric BrO column densities in the Arctic derived from satellite: retrieval and comparison to ground-based measurements

    Directory of Open Access Journals (Sweden)

    H. Sihler

    2012-11-01

    Full Text Available During polar spring, halogen radicals like bromine monoxide (BrO play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical column densities of BrO from data of high-resolution spectroscopic satellite instruments such as the second Global Ozone Monitoring Experiment (GOME-2. Unlike recently published approaches, the presented algorithm is capable of separating the fraction of BrO in the activated troposphere from the total BrO column solely based on remotely measured properties. The presented algorithm furthermore allows to estimate a realistic measurement error of the tropospheric BrO column. The sensitivity of each satellite pixel to BrO in the boundary layer is quantified using the measured UV radiance and the column density of the oxygen collision complex O4. A comparison of the sensitivities with CALIPSO LIDAR observations demonstrates that clouds shielding near-surface trace-gas columns can be reliably detected even over ice and snow. Retrieved tropospheric BrO columns are then compared to ground-based BrO measurements from two Arctic field campaigns in the Amundsen Gulf and at Barrow in 2008 and 2009, respectively. Our algorithm was found to be capable of retrieving enhanced near-surface BrO during both campaigns in good agreement with ground-based data. Some differences between ground-based and satellite measurements observed at Barrow can be explained by both elevated and shallow surface layers of BrO. The observations strongly suggest that surface release processes are the dominating source of BrO and that boundary layer meteorology influences the vertical distribution.

  16. Tropospheric BrO column densities in the Arctic from satellite: retrieval and comparison to ground-based measurements

    Directory of Open Access Journals (Sweden)

    H. Sihler

    2012-05-01

    Full Text Available During polar spring, halogen radicals like bromine monoxide (BrO play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO-distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical column densities of BrO from data of high-resolution spectroscopic satellite instruments such as the second Global Ozone Monitoring Experiment (GOME-2. Unlike recently published approaches, the presented algorithm is capable of separating the fraction of BrO in the activated troposphere from the total BrO column solely based on remotely measured properties. The sensitivity of each satellite pixel to BrO in the boundary-layer is quantified using the measured UV-radiance and the column density of the oxygen collision complex O4. A comparison of the sensitivities with CALIPSO LIDAR observations demonstrates that clouds shielding near-surface trace-gas columns can be reliably detected even over ice and snow. Retrieved tropospheric BrO columns are then compared to ground-based BrO measurements from two Arctic field campaigns in the Amundsen Gulf and at Barrow in 2008 and 2009, respectively. Our algorithm was found to be capable of retrieving enhanced near-surface BrO during both campaigns in good agreement to ground-based data. Some differences between ground-based and satellite measurements observed at Barrow can be explained by both, elevated and shallow surface layers of BrO. The observations strongly suggest that surface release processes are the dominating source of BrO and that boundary-layer meteorology influences the vertical distribution.

  17. Discrete and continuum simulations of near-field ground motion from Source Physics Experiments (SPE) (Invited)

    Science.gov (United States)

    Ezzedine, S. M.; Vorobiev, O.; Herbold, E. B.; Glenn, L. A.; Antoun, T.

    2013-12-01

    This work is focused on analysis of near-field measurements (up to 100 m from the source) recorded during Source Physics Experiments in a granitic formation. One of the main goals of these experiments is to investigate the possible mechanisms of shear wave generation in the nonlinear source region. SPE experiments revealed significant tangential motion (up to 30 % of the magnitude in the radial direction) at many locations. Furthermore, azimuthal variations in radial velocities were also observed which cannot be generated by a spherical source in isotropic materials. Understanding the nature of this non-radial motion is important for discriminating between the natural seismicity and underground explosions signatures. Possible mechanisms leading to such motion include, but not limited to, heterogeneities in the rock such as joints, faults and geologic layers as well as surface topography and vertical motion at the surface caused by material spall and gravity. We have performed a three dimensional computational studies considering all these effects. Both discrete and continuum methods have been employed to model heterogeneities. In the discrete method, the joints and faults were represented by cohesive contact elements. This enables us to examine various friction laws at the joints which include softening, dilatancy, water saturation and rate-dependent friction. Yet this approach requires the mesh to be aligned with joints, which may present technical difficulties in three dimensions when multiple non-persistent joints are present. In addition, the discrete method is more computationally expensive. The continuum approach assumes that the joints are stiff and the dilatancy and shear softening can be neglected. In this approach, the joints are modeled as weakness planes within the material, which are imbedded into and pass through many finite elements. The advantage of this approach is that it requires neither sophisticated meshing algorithms nor contact detection

  18. Nulling interferometry: performance comparison between space and ground-based sites for exozodiacal disc detection

    CERN Document Server

    Defrère, D; Foresto, V Coudé du; Danchi, W C; Hartog, R den

    2008-01-01

    Characterising the circumstellar dust around nearby main sequence stars is a necessary step in understanding the planetary formation process and is crucial for future life-finding space missions such as ESA's Darwin or NASA's Terrestrial Planet Finder (TPF). Besides paving the technological way to Darwin/TPF, the space-based infrared interferometers Pegase and FKSI (Fourier-Kelvin Stellar Interferometer) will be valuable scientific precursors in that respect. In this paper, we investigate the performance of Pegase and FKSI for exozodiacal disc detection and compare the results with ground-based nulling interferometers. Besides their main scientific goal (characterising hot giant extrasolar planets), Pegase and FKSI are very efficient in assessing within a few minutes the level of circumstellar dust in the habitable zone around nearby main sequence stars. They are capable of detecting exozodiacal discs respectively 5 and 1 time as dense as the solar zodiacal cloud and they outperform any ground-based instrumen...

  19. Validation of Aura OMI by Aircraft and Ground-Based Measurements

    Science.gov (United States)

    McPeters, R. D.; Petropavlovskikh, I.; Kroon, M.

    2006-12-01

    Both aircraft-based and ground-based measurements have been used to validate ozone measurements by the OMI instrument on Aura. Three Aura Validation Experiment (AVE) flights have been conducted, in November 2004 and June 2005 with the NASA WB57, and in January/February 2005 with the NASA DC-8. On these flights, validation of OMI was primarily done using data from the CAFS (CCD Actinic Flux Spectroradiometer) instrument, which is used to measure total column ozone above the aircraft. These measurements are used to differentiate changes in stratospheric ozone from changes in total column ozone. Also, changes in ozone over high clouds measured by OMI were checked in a flight over tropical storm Arlene on a flight on June 11th. Ground-based measurements were made during the SAUNA campaign in Sodankyla, Finland, in March and April 2006. Both total column ozone and the ozone vertical distribution were validated.

  20. REMOTE SENSING OF WATER VAPOR CONTENT USING GROUND-BASED GPS DATA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Spatial and temporal resolution of water vapor content is useful in improving the accuracy of short-term weather prediction.Dense and continuously tracking regional GPS arrays will play an important role in remote sensing atmospheric water vapor content.In this study,a piecewise linear solution method was proposed to estimate the precipitable water vapor (PWV) content from ground-based GPS observations in Hong Kong.To evaluate the solution accuracy of the water vapor content sensed by GPS,the upper air sounding data (radiosonde) that are collected locally was used to calculate the precipitable water vapor during the same period.One-month results of PWV from both ground-based GPS sensing technique and radiosonde method are in agreement within 1~2 mm.This encouraging result will motivate the GPS meteorology application based on the establishment of a dense GPS array in Hong Kong.