WorldWideScience

Sample records for gross co2 uptake

  1. Ecosystem gross CO2 fluxes in a tropical rainforest estimated from carbonyl sulfide (COS)

    Science.gov (United States)

    Seibt, U. H.; Maseyk, K. S.; Lett, C.; Juarez, S.; Sun, W.

    2014-12-01

    Carbonyl sulfide (COS) is a promising new tracer to constrain the gross CO2 fluxes of land ecosystems, particularly in tropical forests where CO2 flux partitioning is often problematic due to the absence of turbulent flow at night. Since vegetation COS and CO2 uptake during photosynthesis is closely coupled, the gross fluxes of photosynthesis and respiration can be quantified through the concurrent measurements of COS and CO2. We measured ecosystem COS and CO2 exchange over four months in a tropical rainforest at La Selva, Costa Rica. We observed a strong ecosystem uptake of COS with a diel signal that was similar but not identical to net CO2 fluxes. Soils at the site mostly acted as COS sinks, correlated with soil moisture. The COS and CO2 data were used to calculate canopy photosynthesis (approx. GPP) from net ecosystem CO2 exchange (NEE) based on the empirical relationship of leaf relative uptake of COS and CO2. Mid-day COS-based GPP estimates ranged from -10 to -15 μmol m-2 s-1, compared to NEE of -5 to -10 μmol m-2 s-1. Ecosystem respiration, calculated as the difference of NEE and GPP, ranged from 5 to 10 μmol m-2 s-1, similar to previous estimates of 5 to 9 μmol m-2 s-1 from CO2 flux partitioning and respiration component measurements at the site. Our results support the application of COS as a new tool in ecosystem flux partitioning that may be particularly useful in tropical forests.

  2. Understanding and predicting trends in north Atlantic CO2 uptake

    Science.gov (United States)

    Halloran, Paul; Lebehot, Alice; Watson, Andy; McNeall, Doug; Ford, David; Schuster, Ute

    2017-04-01

    To determine the maximum carbon dioxide (CO2) emissions society must commit to, to remain below a given atmospheric CO2 threshold, the scientific community must robustly quantify what proportion of human emitted CO2 will be taken up by the land and marine carbon reservoirs. The North Atlantic Ocean is the most intense marine sink of anthropogenic CO2 on the planet, accounting for about a fifth of the global oceanic anthropogenic CO2 uptake, despite covering just 15% of the global ocean area. Carefully assessing uncertainties, we quantify the real-world trend in North Atlantic CO2 uptake over the past two decades. Comparing this to results from state-of-the-art climate models, we find that models are systematically underestimating the observed CO2 uptake trend. By performing a set of targeted climate model simulations, we diagnose and account for this bias, and produce the first set of observation-informed future ocean CO2 uptake predictions.

  3. Accelerated carbonation of steel slags using CO2 diluted sources: CO2 uptakes and energy requirements

    Directory of Open Access Journals (Sweden)

    Renato eBaciocchi

    2016-01-01

    Full Text Available This work presents the results of carbonation experiments performed on Basic Oxygen Furnace (BOF steel slag samples employing gas mixtures containing 40 and 10% CO2 vol. simulating the gaseous effluents of gasification and combustion processes respectively, as well as 100% CO2 for comparison purposes. Two routes were tested, the slurry phase (L/S=5 l/kg, T=100 °C and Ptot=10 bar and the thin film (L/S =0.3-0.4 l/kg, T=50 °C and Ptot=7-10 bar routes. For each one, the CO2 uptake achieved as a function of the reaction time was analyzed and on this basis the energy requirements associated to each carbonation route and gas mixture composition were estimated considering to store the CO2 emissions of a medium size natural gas fired power plant (20 MW. For the slurry phase route, maximum CO2 uptakes ranged from around 8% at 10% CO2, to 21.1% (BOF-a and 29.2% (BOF-b at 40% CO2 and 32.5% (BOF-a and 40.3% (BOF-b at 100% CO2. For the thin film route, maximum uptakes of 13% (BOF-c and 19.5% (BOF-d at 40% CO2, and 17.8% (BOF-c and 20.2% (BOF-d at 100% were attained. The energy requirements of the two analyzed process routes appeared to depend chiefly on the CO2 uptake of the slag. For both process route, the minimum overall energy requirements were found for the tests with 40% CO2 flows (i.e. 1400-1600 MJ/t CO2 for the slurry phase and 2220-2550 MJ/t CO2 for the thin film route.

  4. Does elevated CO2 alter silica uptake in trees?

    Science.gov (United States)

    Fulweiler, Robinson W; Maguire, Timothy J; Carey, Joanna C; Finzi, Adrien C

    2014-01-01

    Human activities have greatly altered global carbon (C) and Nitrogen (N) cycling. In fact, atmospheric concentrations of carbon dioxide (CO2) have increased 40% over the last century and the amount of N cycling in the biosphere has more than doubled. In an effort to understand how plants will respond to continued global CO2 fertilization, long-term free-air CO2 enrichment experiments have been conducted at sites around the globe. Here we examine how atmospheric CO2 enrichment and N fertilization affects the uptake of silicon (Si) in the Duke Forest, North Carolina, a stand dominated by Pinus taeda (loblolly pine), and five hardwood species. Specifically, we measured foliar biogenic silica concentrations in five deciduous and one coniferous species across three treatments: CO2 enrichment, N enrichment, and N and CO2 enrichment. We found no consistent trends in foliar Si concentration under elevated CO2, N fertilization, or combined elevated CO2 and N fertilization. However, two-thirds of the tree species studied here have Si foliar concentrations greater than well-known Si accumulators, such as grasses. Based on net primary production values and aboveground Si concentrations in these trees, we calculated forest Si uptake rates under control and elevated CO2 concentrations. Due largely to increased primary production, elevated CO2 enhanced the magnitude of Si uptake between 20 and 26%, likely intensifying the terrestrial silica pump. This uptake of Si by forests has important implications for Si export from terrestrial systems, with the potential to impact C sequestration and higher trophic levels in downstream ecosystems.

  5. Does Elevated CO2 Alter Silica Uptake in Trees?

    Directory of Open Access Journals (Sweden)

    Robinson W. Fulweiler

    2015-01-01

    Full Text Available Human activities have greatly altered global carbon (C and N (N cycling. In fact, atmospheric concentrations of carbon dioxide (CO2 have increased 40% over the last century and the amount of N cycling in the biosphere has more than doubled. In an effort to understand how plants will respond to continued global carbon dioxide fertilization, long-term free-air CO2 enrichment (FACE experiments have been conducted at sites around the globe. Here we examine how atmospheric CO2 enrichment and N fertilization affects the uptake of silicon (Si in the Duke Forest, North Carolina, a stand dominated by Pinus taeda (loblolly pine, and five hardwood species. Specifically, we measured foliar biogenic silica (BSi concentrations in five deciduous and one coniferous species across three treatments: CO2 enrichment, N enrichment, and N and CO2 enrichment. We found no consistent trends in foliar Si concentration under elevated CO2, N fertilization, or combined elevated CO2 and N fertilization. However, two-thirds of the tree species studied here have Si foliar concentrations greater than well-known Si accumulators, such as grasses. Based on net primary production values and aboveground Si concentrations in these trees, we calculated forest Si uptake rates under control and elevated CO2 concentrations. Due largely to increased primary production, elevated CO2 enhanced the magnitude of Si uptake between 20% and 26%, likely intensifying the terrestrial silica pump. This uptake of Si by forests has important implications for Si export from terrestrial systems, with the potential to impact C sequestration and higher trophic levels in downstream ecosystems.

  6. Spatial variability of CO2 uptake in polygonal tundra

    DEFF Research Database (Denmark)

    Pirk, Norbert; Sievers, Jakob; Mertes, Jordan

    2017-01-01

    with an unmanned aerial vehicle (UAV) that mapped ice-wedge morphology to complement eddy covariance (EC) flux measurements of CO2. The analysis of spectral distributions showed that conventional EC methods do not accurately capture the turbulent CO2 exchange with a spatially heterogeneous surface that typically......The large spatial variability in Arctic tundra complicates the representative assessment of CO2 budgets. Accurate measurements of these heterogeneous landscapes are, however, essential to understanding their vulnerability to climate change. We surveyed a polygonal tundra lowland on Svalbard...... features small flux magnitudes. Nonlocal (low-frequency) flux contributions were especially pronounced during snow melt and introduced a large bias of -46 gC m(-2) to the annual CO2 budget in conventional methods (the minus sign indicates a higher uptake by the ecosystem). Our improved flux calculations...

  7. Ecosystem and soil fluxes of carbonyl sulfide (COS) and CO2 to constrain rates of gross photosynthesis (Invited)

    Science.gov (United States)

    Seibt, U. H.; Maseyk, K. S.; Lett, C.; Sun, W.; Berry, J. A.; Billesbach, D. P.; Campbell, J.; Torn, M. S.

    2013-12-01

    A promising new approach to constrain biosphere-atmosphere carbon and water exchange is the use of carbonyl sulfide (COS). COS is taken up by leaves via the same pathway as CO2, leading to a close coupling of vegetation COS and CO2 fluxes during photosynthesis. It has been proposed that the gross fluxes of photosynthesis and respiration can be quantified through the concurrent measurements of COS and CO2. Using newly available instrumentation, we conducted field campaigns to quantify COS and CO2 exchange in the Southern Great Plains, OK, and in the Santa Monica mountains, CA. We found that soils can act as sinks or sources of COS, correlated with soil temperature and moisture. At the ecosystem scale, we observed a strong uptake of COS by the canopy with a diel signal that mirrored net CO2 fluxes. Combining soil and ecosystem data of COS and CO2, we demonstrate how soil COS fluxes can be taken into account when partitioning net ecosystem exchange into photosynthesis and respiration.

  8. Responses of soil CO2 efflux to changes in plant CO2 uptake and transpiration

    Science.gov (United States)

    Balogh, János; de Luca, Giulia; Mészáros, Ádám; Trieber, Júlia; Gecse, Bernadett; Fóti, Szilvia; Pintér, Krisztina; Nagy, Zoltán

    2017-04-01

    Biotic drivers of soil respiration represent a significant supply-side (plant) control of the process. Those biotic drivers that integrate over longer time periods are useful in describing the phenological changes and physiological state of the vegetation, but they are not suitable to explain the diel variability of soil respiration. Two plant physiological processes, acting in opposite directions, could be relevant at diel timescale: (1) photosynthesis, and (2) transpiration. Firstly, it was recently found that photosynthesis has a time-lagged (a few hours) positive effect on the respiration of roots and root-associated microbes. This can be explainedby an increase in easily accessible non-structural hydrocarbon sources for the roots and root-associated organisms within this period. Secondly, it was found that the effect of transpiration could reduce root respiration due to CO2 transport through the transpiration stream, and this effect is expected to be immediate. Removing the effect of the abiotic drivers from the soil efflux signal could help to clarify the role of other driving variables. In the present study, we conducted manipulation measurements in lab environment to be able to detect the effects of the plant physiological variables (CO2 uptake, transpiration) on soil CO2 efflux. Plant individuals were planted into field soil samples in small pots. Transpiration manipulation was done by regulating vapour pressure of the air around the plant canopy and by inhibitors. Photosynthesis manipulation consisted of programmed absence of light. Isotopic signatures of soil respiration were used for estimating the contribution of the autotrophic and heterotrophic soil respiration components. 13CO2 concentration of the CO2 efflux of the different soil components was measured continuously in open system by cavity ring-down spectroscopy (Picarro G1101-i gas analyser). Keeling-plot approach was also used to calculate the isotopic signals of the sources. According to the

  9. Long-term drainage reduces CO2 uptake and increases CO2 emission on a Siberian floodplain due to shifts in vegetation community and soil thermal characteristics

    Science.gov (United States)

    Kwon, Min Jung; Heimann, Martin; Kolle, Olaf; Luus, Kristina A.; Schuur, Edward A. G.; Zimov, Nikita; Zimov, Sergey A.; Göckede, Mathias

    2016-07-01

    With increasing air temperatures and changing precipitation patterns forecast for the Arctic over the coming decades, the thawing of ice-rich permafrost is expected to increasingly alter hydrological conditions by creating mosaics of wetter and drier areas. The objective of this study is to investigate how 10 years of lowered water table depths of wet floodplain ecosystems would affect CO2 fluxes measured using a closed chamber system, focusing on the role of long-term changes in soil thermal characteristics and vegetation community structure. Drainage diminishes the heat capacity and thermal conductivity of organic soil, leading to warmer soil temperatures in shallow layers during the daytime and colder soil temperatures in deeper layers, resulting in a reduction in thaw depths. These soil temperature changes can intensify growing-season heterotrophic respiration by up to 95 %. With decreased autotrophic respiration due to reduced gross primary production under these dry conditions, the differences in ecosystem respiration rates in the present study were 25 %. We also found that a decade-long drainage installation significantly increased shrub abundance, while decreasing Eriophorum angustifolium abundance resulted in Carex sp. dominance. These two changes had opposing influences on gross primary production during the growing season: while the increased abundance of shrubs slightly increased gross primary production, the replacement of E. angustifolium by Carex sp. significantly decreased it. With the effects of ecosystem respiration and gross primary production combined, net CO2 uptake rates varied between the two years, which can be attributed to Carex-dominated plots' sensitivity to climate. However, underlying processes showed consistent patterns: 10 years of drainage increased soil temperatures in shallow layers and replaced E. angustifolium by Carex sp., which increased CO2 emission and reduced CO2 uptake rates. During the non-growing season, drainage

  10. Constraining Ecosystem Gross Primary Production and Transpiration with Measurements of Photosynthetic 13CO2 Discrimination

    Science.gov (United States)

    Blonquist, J. M.; Wingate, L.; Ogeé, J.; Bowling, D. R.

    2011-12-01

    The stable carbon isotope composition of atmospheric CO2 (δ13Ca) can provide useful information on water use efficiency (WUE) dynamics of terrestrial ecosystems and potentially constrain models of CO2 and water fluxes at the land surface. This is due to the leaf-level relationship between photosynthetic 13CO2 discrimination (Δ), which influences δ13Ca, and the ratio of leaf intercellular to atmospheric CO2 mole fractions (Ci / Ca), which is related to WUE and is determined by the balance between C assimilation (CO2 demand) and stomatal conductance (CO2 supply). We used branch-scale Δ derived from tunable diode laser absorption spectroscopy measurements collected in a Maritime pine forest to estimate Ci / Ca variations over an entire growing season. We combined Ci / Ca estimates with rates of gross primary production (GPP) derived from eddy covariance (EC) to estimate canopy-scale stomatal conductance (Gs) and transpiration (T). Estimates of T were highly correlated to T estimates derived from sapflow data (y = 1.22x + 0.08; r2 = 0.61; slope P MuSICA) (y = 0.88x - 0.05; r2 = 0.64; slope P MuSICA (y = 1.10 + 0.42; r2 = 0.50; slope P < 0.001). Results demonstrate that the leaf-level relationship between Δ and Ci / Ca can be extended to the canopy-scale and that Δ measurements have utility for partitioning ecosystem-scale CO2 and water fluxes.

  11. Marginal Lands Gross Primary Production Dominate Atmospheric CO2 Interannual Variations

    Science.gov (United States)

    Ahlström, A.; Raupach, M. R.; Schurgers, G.; Arneth, A.; Jung, M.; Reichstein, M.; Smith, B.

    2014-12-01

    Since the 1960s terrestrial ecosystems have acted as a substantial sink for atmospheric CO2, sequestering about one quarter of anthropogenic emissions in an average year. Variations in this land carbon sink are also responsible for most of the large interannual variability in atmospheric CO2 concentrations. While most evidence places the majority of the sink in highly productive forests and at high latitudes experiencing warmer and longer growing seasons, the location and the processes governing the interannual variations are still not well characterised. Here we evaluate the hypothesis that the long-term trend and the variability in the land CO2 sink are respectively dominated by geographically distinct regions: the sink by highly productive lands, mainly forests, and the variability by semi-arid or "marginal" lands where vegetation activity is strongly limited by water and therefore responds strongly to climate variability. Using novel analysis methods and data from both upscaled flux-tower measurements and a dynamic global vegetation model, we show that (1) the interannual variability in the terrestrial CO2 sink arises mainly from variability in terrestrial gross primary production (GPP); (2) most of the interannual variability in GPP arises in tropical and subtropical marginal lands, where negative anomalies are driven mainly by warm, dry conditions and positive anomalies by cool, wet conditions; (3) the variability in the GPP of high-latitude marginal lands (tundra and shrublands) is instead controlled by temperature and light, with warm bright conditions resulting in positive anomalies. The influence of ENSO (El Niño-Southern Oscillation) on the growth rate of atmospheric CO2 concentrations is mediated primarily through climatic effects on GPP in marginal lands, with opposite signs in subtropical and higher-latitude regions. Our results show that the land sink of CO2 (dominated by forests) and its interannual variability (dominated by marginal lands) are

  12. Enhancement of CO2 sorption uptake on hydrotalcite by impregnation with K2CO3.

    Science.gov (United States)

    Lee, Jung Moo; Min, Yoon Jae; Lee, Ki Bong; Jeon, Sang Goo; Na, Jeong Geol; Ryu, Ho Jung

    2010-12-21

    The awareness of symptoms of global warming and its seriousness urges the development of technologies to reduce greenhouse gas emissions. Carbon dioxide (CO(2)) is a representative greenhouse gas, and numerous methods to capture and storage CO(2) have been considered. Recently, the technology to remove high-temperature CO(2) by sorption has received lots of attention. In this study, hydrotalcite, which has been known to have CO(2) sorption capability at high temperature, was impregnated with K(2)CO(3) to enhance CO(2) sorption uptake, and the mechanism of CO(2) sorption enhancement on K(2)CO(3)-promoted hydrotalcite was investigated. Thermogravimetric analysis was used to measure equilibrium CO(2) sorption uptake and to estimate CO(2) sorption kinetics. The analyses based on N(2) gas physisorption, X-ray diffractometry, Fourier transform infrared spectrometry, Raman spectrometry, transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy were carried out to elucidate the characteristics of sorbents and the mechanism of enhanced CO(2) sorption. The equilibrium CO(2) sorption uptake on hydrotalcite could be increased up to 10 times by impregnation with K(2)CO(3), and there was an optimal amount of K(2)CO(3) for a maximum equilibrium CO(2) sorption uptake. In the K(2)CO(3)-promoted hydrotalcite, K(2)CO(3) was incorporated without changing the structure of hydrotalcite and it was thermally stabilized, resulting in the enhanced equilibrium CO(2) sorption uptake and fast CO(2) sorption kinetics.

  13. Environmental dependencies of plant CO2 uptake in theory, data, and simulations

    Science.gov (United States)

    Wang, Han; Prentice, Colin; Keenan, Trevor; Peng, Shushi; Piao, Shilong; Cornwell, William; Davis, Tyler; Wright, Ian; Peng, Changhui

    2016-04-01

    The rate of carbon uptake by land plants depends on the light use efficiency (LUE) of photosynthesis. LUE is the ratio of primary production to light absorbed by foliage. This in turn depends on the ratio of leaf-internal to ambient carbon dioxide partial pressures (χ). However, current state-of-the-art land ecosystem models represent the environmental dependencies of these two key quantities in an empirical and incomplete way. Their modeled values have not been systematically tested against observations, a situation contributing to the many uncertainties afflicting current model estimates and future projections of terrestrial carbon uptake. We present a theory for the dependencies of χ and LUE on growing-season air temperature, vapour pressure deficit (VPD), CO2 concentration and elevation based on two hypotheses rooted in eco-physiological optimality. Theoretically derived environmental dependencies of χ and LUE are shown to be precisely and quantitatively consistent with global data sets of (a) stable carbon isotope measurements, and (b) gross primary production derived from CO2 flux measurements. The modeled environmental dependencies of χ and LUE according to seven state-of-the-art land ecosystem models participating in the TRENDY2 model intercomparison project are then derived from model outputs and compared with the theoretical relationships as a benchmark. The results show large discrepancies among model-predicted relationships of χ and LUE to temperature and VPD both in spatial and temporal dimensions. The influence of elevation on χ and LUE is also inconsistent among models, as is their predicted sensitivity to CO2 enrichment. This work suggests that a top-priority task for land ecosystem models should be to reformulate the environmental drivers of χ and LUE relationships to be consistent with observations. It also indicates that eco-physiological optimality hypotheses provide a promising route to an improved predictive understanding of terrestrial

  14. Elevated CO2 alters root N uptake and C turnover in Larrea tridentata L

    Science.gov (United States)

    To examine the impact of elevated CO2 on root N uptake, soil N availability and the feedbacks between them, we quantified the effects of elevated CO2 and N additions on root N uptake and leaf C gain in Larrea tridentata seedlings grown in reconstituted Mojave Desert soils. After six months of growt...

  15. The role of biological rates in the simulated warming effect on oceanic CO2 uptake

    Science.gov (United States)

    Cao, Long; Zhang, Han

    2017-05-01

    Marine biology plays an important role in the ocean carbon cycle. However, the effect of warming-induced changes in biological rates on oceanic CO2 uptake has been largely overlooked. We use an Earth system model of intermediate complexity to investigate the effect of temperature-induced changes in biological rates on oceanic uptake of atmospheric CO2 and compare it with the effects from warming-induced changes in CO2 solubility and ocean mixing and circulation. Under the representative CO2 concentration pathway RCP 8.5 and its extension, by year 2500, relative to the simulation without warming effect on the ocean carbon cycle, CO2-induced warming reduces cumulative oceanic CO2 uptake by 469 Pg C, of which about 20% is associated with the warming-induced change in marine biological rates. In our simulations, the bulk effect of biological-mediated changes on CO2 uptake is smaller than that mediated by changes in CO2 solubility and ocean mixing and circulation. However, warming-induced changes in individual biological rates, including phytoplankton growth, phytoplankton mortality, and detritus remineralization, are found to affect oceanic CO2 uptake by an amount greater than or comparable to that caused by changes in CO2 solubility and ocean physics. Our simulations, which include only a few temperature-dependent biological processes, demonstrate the important role of biological rates in the oceanic CO2 uptake. In reality, many more complicated biological processes are sensitive to temperature change, and their responses to warming could substantially affect oceanic uptake of atmospheric CO2.

  16. CO2 uptake capacity of coal fly ash

    DEFF Research Database (Denmark)

    Mazzella, Alessandro; Errico, Massimiliano; Spiga, Daniela

    2016-01-01

    -solid carbonation treatment on coal fly ash in order to assess the potential of the process in terms of sequestration of CO2 as well as its influence on the leaching behavior of metals and soluble salts. Laboratory tests, performed under different pressure and temperature conditions, showed that in the pressure......% corresponding to a maximum carbonation efficiency of 74%, estimated on the basis of the initial CaO content. The high degree of ash carbonation achieved in the present research, which was conducted under mild conditions, without add of water and without stirring, showed the potential use of coal fly ash in CO2...

  17. Leaf and Stem CO2 Uptake in the Three Subfamilies of the Cactaceae 1

    Science.gov (United States)

    Nobel, Park S.; Hartsock, Terry L.

    1986-01-01

    Net CO2 uptake over 24-hour periods was examined for the leaves and for the stems of 11 species of cacti representing all three subfamilies. For Pereskia aculeata, Pereskia grandifolia, and Maihuenia poeppigii (subfamily Pereskioideae), all the net shoot CO2 uptake was by the leaves and during the daytime. In contrast, for the leafless species Carnegiea gigantea, Ferocactus acanthodes, Coryphantha vivipara, and Mammillaria dioica (subfamily Cactoideae), all the shoot net CO2 uptake was by the stems and at night. Similarly, for leafless Opuntia ficus-indica (subfamily Opuntioideae), all net CO2 uptake occurred at night. For leafy members of the Opuntioideae (Pereskiopsis porteri, Quiabentia chacoensis, Austrocylindropuntia subulata), at least 88% of the shoot CO2 uptake over 24 hours was by the leaves and some CO2 uptake occurred at night. Leaves responded to the instantaneous level of photosynthetically active radiation (PAR) during the daytime, as occurs for C3 plants, whereas nocturnal CO2 uptake by stems of O. ficus-indica and F. acanthodes responded to the total daily PAR, as occurs for Crassulacean acid metabolism (CAM) plants. Thus, under the well-watered conditions employed, the Pereskioideae behaved as C3 plants, the Cactoideae behaved as CAM plants, and the Opuntioideae exhibited characteristics of both pathways. PMID:16664741

  18. Leaf and Stem CO(2) Uptake in the Three Subfamilies of the Cactaceae.

    Science.gov (United States)

    Nobel, P S; Hartsock, T L

    1986-04-01

    Net CO(2) uptake over 24-hour periods was examined for the leaves and for the stems of 11 species of cacti representing all three subfamilies. For Pereskia aculeata, Pereskia grandifolia, and Maihuenia poeppigii (subfamily Pereskioideae), all the net shoot CO(2) uptake was by the leaves and during the daytime. In contrast, for the leafless species Carnegiea gigantea, Ferocactus acanthodes, Coryphantha vivipara, and Mammillaria dioica (subfamily Cactoideae), all the shoot net CO(2) uptake was by the stems and at night. Similarly, for leafless Opuntia ficus-indica (subfamily Opuntioideae), all net CO(2) uptake occurred at night. For leafy members of the Opuntioideae (Pereskiopsis porteri, Quiabentia chacoensis, Austrocylindropuntia subulata), at least 88% of the shoot CO(2) uptake over 24 hours was by the leaves and some CO(2) uptake occurred at night. Leaves responded to the instantaneous level of photosynthetically active radiation (PAR) during the daytime, as occurs for C(3) plants, whereas nocturnal CO(2) uptake by stems of O. ficus-indica and F. acanthodes responded to the total daily PAR, as occurs for Crassulacean acid metabolism (CAM) plants. Thus, under the well-watered conditions employed, the Pereskioideae behaved as C(3) plants, the Cactoideae behaved as CAM plants, and the Opuntioideae exhibited characteristics of both pathways.

  19. A SIMULATION OF CO2 UPTAKE IN A THREE DIMENSIONAL OCEAN CARBON CYCLE MODEL

    Institute of Scientific and Technical Information of China (English)

    金心; 石广玉

    2001-01-01

    A three-dimensional ocean carbon cycle model which is a general circulation model couple.d with simple biogeochemical processes is used to simulate CO2 uptake by the ocean. The OGCM used is a modified version of the Geophysical Fluid Dynamics Laboratory modular ocean model (MOM2). The ocean chemistry and a simple ocean biota model are included. Principal variables are .total CO2, alkalinity and phosphate. The vertical profile of POC flux observed by sediment traps is adopted, the rain ratio, a ratio of production rate of calcite against that of POC, and the bio-production efficiency should be 0. 06 and 2 per year, separately. The uptake of anthropogenicCO2 by the ocean is studied. Calculated oceanic uptake of anthropogenic CO2 during the 1980s is 2. 05× 10 15g (Pg) per year. The regional distributions of global oceanic CO2 are discussed.

  20. Soil CO2 Uptake in Deserts and Its Implications to the Groundwater Environment

    Directory of Open Access Journals (Sweden)

    Wenfeng Wang

    2016-09-01

    Full Text Available Recent studies of soil carbon cycle in arid and semi-arid ecosystems demonstrated that there exists an abiotic CO2 absorption by saline-alkali soils (Aa at desert ecosystems and suggested potential contributions of CO2 dissolution beneath deserts to the terrestrial ecosystems carbon balance. However, the overall importance of such soil CO2 uptake is still undetermined and its implications to the groundwater environment remain unaddressed. In this manuscript, a simple method is proposed for the direct computation of Aa from the total soil CO2 flux (Fa as well as for the evaluation of Aa importance to Fa. An artificial soil-groundwater system was employed to investigate the implications to groundwater environment and it was found that soil CO2 uptake in deserts can contribute a possible influence on the evolution of the groundwater environment, providing that the absorbed CO2 largely remained in the soil-groundwater system.

  1. The effect of elevated atmospheric CO2 concentration on gross nitrogen and carbon dynamics in a permanent grassland: A field pulse-labeling study

    Science.gov (United States)

    Moser, Gerald; Gorenflo, André; Keidel, Lisa; Brenzinger, Kristof; Elias, Dafydd; McNamara, Niall; Maček, Irena; Vodnik, Dominik; Braker, Gesche; Schimmelpfennig, Sonja; Gerstner, Judith; Müller, Christoph

    2014-05-01

    To predict ecosystem reactions to elevated atmospheric CO2 (eCO2) it is essential to understand the interactions between plant carbon input, microbial community composition and activity and associated nutrient dynamics. Long-term observations (> 14 years) within the Giessen Free Air Carbon dioxide Enrichment (Giessen FACE) study on permanent grassland showed next to an enhanced biomass production an unexpected strong positive feedback effect on ecosystem respiration and nitrous oxide (N2O) production. The overall goal of this study is to understand the long-term effects of eCO2 and carbon input on microbial community composition and activity as well as the associated nitrogen dynamics, N2O production and plant N uptake in the Giessen FACE study on permanent grassland. A combination of 13CO2 pulse labelling with 15N tracing of 15NH4+ and 15NO3- was carried out in situ. Different fractions of soil organic matter (recalcitrant, labile SOM) and the various mineral N pools in the soil (NH4+, NO3-), gross N transformation rates, pool size dependent N2O and N2 emissions as well as N species dependent plant N uptake rates and the origin of the CO2 respiration have been quantified. Microbial analyses include exploring changes in the composition of microbial communities involved in the turnover of NH4+, NO3-, N2O and N2, i.e. ammonia oxidizing, denitrifying, and microbial communities involved in dissimilatory nitrate reduction to ammonia (DNRA). mRNA based analyses will be employed to comparably evaluate the long-term effects of eCO2 on the structure and abundance of these communities, while transcripts of these genes will be used to target the fractions of the communities which actively contribute to N transformations. We quantified the contribution of mycorrhizae on N2O emissions and observed the phenological development of the mycorrhizae after the labeling.

  2. The impact of grassland conversion on CO2 emission and CH4 uptake

    Energy Technology Data Exchange (ETDEWEB)

    Erda, L.Y.L. [Agrometeorology Institute, Chinese Academy of Agricultural Sciences, Beijing (China)

    2000-07-01

    With the increase of population and the demand for food and fiber, some natural grassland was reclaimed to farmland in China. CO2 emission and CH4 uptake fluxes were measured during the growing season of natural grass, Erect milkvtch grassland, maize and potato during 1997-1998. The results indicate that the conversion of native grassland to agricultural uses has increased the CO2 emission from soils and decreased CH4 uptake from the atmosphere. 14 refs.

  3. Drier summers cancel out the co2 uptake enhancement induced bywarmer springs

    Energy Technology Data Exchange (ETDEWEB)

    Angert, Alon; Biraud, S.C.; Bonfils, C.; Henning, C.; Buermann,W.; Pinzon, J.; Tucker, C.J.; Fung, I.

    2005-02-01

    An increase in photosynthetic activity of the northernhemisphere terrestrial vegetation, as derived from satelliteobservations, has been reported in previous studies. The amplitude of theseasonal cycle of the annually detrended atmospheric CO2 in the northernhemisphere (an indicator of biospheric activity) also increased duringthat period. We found, by analyzing the annually detrended CO2 record byseason, that early summer (June) CO2 concentrations indeed decreased from1985 to 1991, and they have continued to decrease from 1994 up to 2002.This decrease indicates accelerating springtime net CO2 uptake. However,the CO2 minimum concentration in late summer (an indicator of netgrowing-season uptake) showed no positive trend since 1994, indicatingthat lower net CO2 uptake during summer cancelled out the enhanced uptakeduring spring. Using a recent satellite normalized difference vegetationindex data set and climate data, we show that this lower summer uptake isprobably the result of hotter and drier summers in both mid and highlatitudes, demonstrating that a warming climate does not necessarily leadto higher CO2 growing-season uptake, even in high-latitude ecosystemsthat are considered to be temperature limited.

  4. Assessing the potential long-term increase of oceanic fossil fuel CO2 uptake due to CO2-calcification feedback

    Directory of Open Access Journals (Sweden)

    T. M. Lenton

    2007-07-01

    Full Text Available Plankton manipulation experiments exhibit a wide range of sensitivities of biogenic calcification to simulated anthropogenic acidification of the ocean, with the "lab rat" of planktic calcifiers, Emiliania huxleyi apparently not representative of calcification generally. We assess the implications of this observational uncertainty by creating an ensemble of realizations of an Earth system model that encapsulates a comparable range of uncertainty in calcification response to ocean acidification. We predict that a substantial reduction in marine carbonate production is possible in the future, with enhanced ocean CO2 sequestration across the model ensemble driving a 4–13% reduction in the year 3000 atmospheric fossil fuel CO2 burden. Concurrent changes in ocean circulation and surface temperatures in the model contribute about one third to the increase in CO2 uptake. We find that uncertainty in the predicted strength of CO2-calcification feedback seems to be dominated by the assumption as to which species of calcifier contribute most to carbonate production in the open ocean.

  5. A Cationic MOF with High Uptake and Selectivity for CO2 due to Multiple CO2 -Philic Sites.

    Science.gov (United States)

    Wang, Hai-Hua; Shi, Wen-Juan; Hou, Lei; Li, Gao-Peng; Zhu, Zhonghua; Wang, Yao-Yu

    2015-11-09

    The reaction of N-rich pyrazinyl triazolyl carboxyl ligand 3-(4-carboxylbenzene)-5-(2-pyrazinyl)-1H-1,2,4-triazole (H2 cbptz) with MnCl2 afforded 3D cationic metal-organic framework (MOF) [Mn2 (Hcbptz)2 (Cl)(H2 O)]Cl⋅DMF⋅0.5 CH3 CN (1), which has an unusual (3,4)-connected 3,4T1 topology and 1D channels composed of cavities. MOF 1 has a very polar framework that contains exposed metal sites, uncoordinated N atoms, narrow channels, and Cl(-) basic sites, which lead to not only high CO2 uptake, but also remarkably selective adsorption of CO2 over N2 and CH4 at 298-333 K. The multiple CO2 -philic sites were identified by grand canonical Monte Carlo simulations. Moreover, 1 shows excellent stability in natural air environment. These advantages make 1 a very promising candidate in post-combustion CO2 capture, natural-gas upgrading, and landfill gas-purification processes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Nocturnal versus diurnal CO2 uptake: how flexible is Agave angustifolia?

    Science.gov (United States)

    Winter, Klaus; Garcia, Milton; Holtum, Joseph A M

    2014-07-01

    Agaves exhibit the water-conserving crassulacean acid metabolism (CAM) photosynthetic pathway. Some species are potential biofuel feedstocks because they are highly productive in seasonally dry landscapes. In plants with CAM, high growth rates are often believed to be associated with a significant contribution of C3 photosynthesis to total carbon gain when conditions are favourable. There has even been a report of a shift from CAM to C3 in response to overwatering a species of Agave. We investigated whether C3 photosynthesis can contribute substantially to carbon uptake and growth in young and mature Agave angustifolia collected from its natural habitat in Panama. In well-watered plants, CO2 uptake in the dark contributed about 75% of daily carbon gain. This day/night pattern of CO2 exchange was highly conserved under a range of environmental conditions and was insensitive to intensive watering. Elevated CO2 (800 ppm) stimulated CO2 fixation predominantly in the light. Exposure to CO2-free air at night markedly enhanced CO2 uptake during the following light period, but CO2 exchange rapidly reverted to its standard pattern when CO2 was supplied during the subsequent 24h. Although A. angustifolia consistently engages in CAM as its principal photosynthetic pathway, its relatively limited photosynthetic plasticity does not preclude it from occupying a range of habitats, from relatively mesic tropical environments in Panama to drier habitats in Mexico.

  7. Constraining gross primary production and ecosystem respiration estimates for North America using atmospheric observations of carbonyl sulfide (OCS) and CO2

    Science.gov (United States)

    He, W.; Ju, W.; Chen, H.; Peters, W.; van der Velde, I.; Baker, I. T.; Andrews, A. E.; Zhang, Y.; Launois, T.; Campbell, J. E.; Suntharalingam, P.; Montzka, S. A.

    2016-12-01

    Carbonyl sulfide (OCS) is a promising novel atmospheric tracer for studying carbon cycle processes. OCS shares a similar pathway as CO2 during photosynthesis but not released through a respiration-like process, thus could be used to partition Gross Primary Production (GPP) from Net Ecosystem-atmosphere CO2 Exchange (NEE). This study uses joint atmospheric observations of OCS and CO2 to constrain GPP and ecosystem respiration (Re). Flask data from tower and aircraft sites over North America are collected. We employ our recently developed CarbonTracker (CT)-Lagrange carbon assimilation system, which is based on the CT framework and the Weather Research and Forecasting - Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) model, and the Simple Biosphere model with simulated OCS (SiB3-OCS) that provides prior GPP, Re and plant uptake fluxes of OCS. Derived plant OCS fluxes from both process model and GPP-scaled model are tested in our inversion. To investigate the ability of OCS to constrain GPP and understand the uncertainty propagated from OCS modeling errors to constrained fluxes in a dual-tracer system including OCS and CO2, two inversion schemes are implemented and compared: (1) a two-step scheme, which firstly optimizes GPP using OCS observations, and then simultaneously optimizes GPP and Re using CO2 observations with OCS-constrained GPP in the first step as prior; (2) a joint scheme, which simultaneously optimizes GPP and Re using OCS and CO2 observations. We will evaluate the result using an estimated GPP from space-borne solar-induced fluorescence observations and a data-driven GPP upscaled from FLUXNET data with a statistical model (Jung et al., 2011). Preliminary result for the year 2010 shows the joint inversion makes simulated mole fractions more consistent with observations for both OCS and CO2. However, the uncertainty of OCS simulation is larger than that of CO2. The two-step and joint schemes perform similarly in improving the consistence with

  8. A comparative analysis of simulated and observed photosynthetic CO2 uptake in two coniferous forest canopies

    DEFF Research Database (Denmark)

    Ibrom, A.; Jarvis, P.G.; Clement, R.

    2006-01-01

    Gross canopy photosynthesis (Pg) can be simulated with canopy models or retrieved from turbulent carbon dioxide (CO2) flux measurements above the forest canopy. We compare the two estimates and illustrate our findings with two case studies. We used the three-dimensional canopy model MAESTRA to si...

  9. Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake

    Directory of Open Access Journals (Sweden)

    A. Oschlies

    2009-08-01

    Full Text Available The sensitivity of oceanic CO2 uptake to alterations in the marine biological carbon pump, such as brought about by natural or purposeful ocean fertilization, has repeatedly been investigated by studies employing numerical biogeochemical ocean models. It is shown here that the results of such ocean-centered studies are very sensitive to the assumption made about the response of the carbon reservoirs on the atmospheric side of the sea surface. Assumptions made include prescribed atmospheric pCO2, an interactive atmospheric CO2 pool exchanging carbon with the ocean but not with the terrestrial biosphere, and an interactive atmosphere that exchanges carbon with both oceanic and terrestrial carbon pools. The impact of these assumptions on simulated annual to millennial oceanic carbon uptake is investigated for a hypothetical increase in the C:N ratio of the biological pump and for an idealized enhancement of phytoplankton growth. Compared to simulations with interactive atmosphere, using prescribed atmospheric pCO2 overestimates the sensitivity of the oceanic CO2 uptake to changes in the biological pump, by about 2%, 25%, 100%, and >500% on annual, decadal, centennial, and millennial timescales, respectively. The smaller efficiency of the oceanic carbon uptake under an interactive atmosphere is due to the back flux of CO2 that occurs when atmospheric CO2 is reduced. Adding an interactive terrestrial carbon pool to the atmosphere-ocean model system has a small effect on annual timescales, but increases the simulated fertilization-induced oceanic carbon uptake by about 4%, 50%, and 100% on decadal, centennial, and millennial timescales, respectively, for pCO2 sensitivities of the terrestrial carbon storage in the middle range of the C4MIP models (Friedlingstein et al., 2006. For such sensitivities, a substantial fraction of oceanic carbon uptake induced by natural or purposeful ocean fertilization originates, on timescales longer than decades, not

  10. The mechanisms of North Atlantic CO2 uptake in a large Earth System Model ensemble

    Directory of Open Access Journals (Sweden)

    P. R. Halloran

    2014-10-01

    vary rapidly. Given the importance of this sink and its apparent variability, it is critical that we understand the mechanisms behind its operation. Here we explore subpolar North Atlantic CO2 uptake across a large ensemble of Earth System Model simulations, and find that models show a peak in sink strength around the middle of the century after which CO2 uptake begins to decline. We identify different drivers of change on interannual and multidecadal timescales. Short-term variability appears to be driven by fluctuations in regional seawater temperature and alkalinity, whereas the longer-term evolution throughout the coming century is largely occurring through a counterintuitive response to rising atmospheric CO2 concentrations. At high atmospheric CO2 concentrations the contrasting Ravelle factors between the subtropical and subpolar gyres, combined with the transport of surface waters from the subtropical to subpolar gyre, means that the subpolar CO2 uptake capacity is largely satisfied from its southern boundary rather than through air–sea CO2 flux. Our findings indicate that: (i we can explain the mechanisms of subpolar North Atlantic CO2 uptake variability across a broad range of Earth System Models, (ii a focus on understanding the mechanisms behind contemporary variability may not directly tell us about how the sink will change in the future, (iii to identify long-term change in the North Atlantic CO2 sink we should focus observational resources on monitoring subtropical as well as the subpolar seawater CO2, (iv recent observations of a weakening subpolar North Atlantic CO2 sink suggests that the sink strength is already in long-term decline.

  11. Exceptional gravimetric and volumetric CO2 uptake in a palladated NbO-type MOF utilizing cooperative acidic and basic, metal-CO2 interactions.

    Science.gov (United States)

    Spanopoulos, I; Bratsos, I; Tampaxis, C; Vourloumis, D; Klontzas, E; Froudakis, G E; Charalambopoulou, G; Steriotis, T A; Trikalitis, P N

    2016-08-18

    A novel NbO-type MOF is reported based on a palladated organic linker, showing a remarkable gravimetric and volumetric CO2 uptake, reaching 201.8 cm(3) g(-1) (9.0 mmol g(-1), 39.7 wt%) and 187.8 cm(3) cm(-3) at 273 K and 1 bar, respectively. Accurate theoretical calculations revealed that the exceptional CO2 uptake is due to the combination of Lewis base Pd(ii)-CO2 (24.3 kJ mol(-1)) and Lewis acid Cu(ii)-CO2 (30.3 kJ mol(-1)) interactions, as well as synergistic pore size effects.

  12. Assessment of North America photosynthetic uptake of CO2 through simulations of COS in a Lagrangian particle dispersion model framework

    Science.gov (United States)

    Chen, H.; Montzka, S. A.; Andrews, A. E.; Sweeney, C.; Jacobson, A. R.; Petron, G.; Trudeau, M.; Miller, B. R.; Karion, A.; Martin, J.; Gerbig, C.; Campbell, J.; Abu-Naser, M.; Berry, J. A.; Baker, I. T.; Nehrkorn, T.; Eluszkiewicz, J.; Tans, P. P.

    2012-12-01

    Improving our understanding of terrestrial gross carbon fluxes, i.e. gross primary production (GPP) and respiration, plays a key role in evaluating feedbacks and thereby improving our ability to predict future climate. Since GPP can only be directly measured on very small scales, estimates of GPP at regional to global scales are derived only from biospheric model simulations. Recent studies suggest that carbonyl sulfide be a useful tracer to provide constraints on GPP, based on the fact that both COS and CO2 are simultaneously taken up by plants. Here we present an assessment of GPP estimates for North America from the Simple Biosphere (SiB) model, the Carnegie-Ames-Stanford Approach (CASA) model, and the MPI-BGC model through atmospheric transport simulations of COS in a Lagrangian particle dispersion model (LPDM) framework. We evaluate the impacts of boundary condition and soil uptake on the GPP estimates we derive. This study uses measurements of COS and CO2 from the NOAA/ESRL tall tower and aircraft air sampling networks, and LPDM simulations backward in time are used to quantify the contribution from different sources to observed mole fractions. A measurement over the continent contains information about terrestrial fluxes provided the upwind, or background concentration is known. Hence, the background state is an important part of the observed signal to be simulated. Empirical boundary curtains are built based on observations at the NOAA/ESRL marine boundary layer stations and from aircraft vertical profiles. These curtains are utilized as the lateral boundary conditions for COS and CO2 for the North American model domain. To assess the uncertainty of the background values for observations, we compare calculated background values based on the empirical curtains and two different models that identify where on the curtain the air entered the model domain: WRF-STILT and HYSPLIT-NAM12. Furthermore, the non-GPP related COS fluxes due to anthropogenic emissions and

  13. Gross primary productivity of the true steppe in central Asia in relation to NDVI: scaling up CO2 fluxes

    Science.gov (United States)

    Gilmanov, Tagir G.; Johnson, Douglas A.; Saliendra, Nicanor Z.; Akshalov, Kanat; Wylie, Bruce K.

    2004-01-01

    Compared to other characteristics of CO2 exchange, gross primary productivity (P g ) is most directly related to photosynthetic activity. Until recently, it was considered difficult to obtain measurement-based P g . The objective of our study was to evaluate if P g can be estimated from continuous CO2 flux measurements using nonlinear identification of the nonrectangular hyperbolic model of ecosystem-scale, light-response curves. Estimates of P g and ecosystem respiration (R e ) were obtained using Bowen ratio– energy-balance measurements of CO2 exchange in a true-steppe ecosystem in northern Kazakhstan during four growing seasons (1998–2001). The maximum mean weekly apparent quantum yield (αmax) was 0.0388 mol CO2 mol photons and the maximum mean weekly P g was 28 g CO2/m2/day in July 2000. The highest mean weekly R e max (20 g CO2m2/day) was observed in July of both 1999 and 2000. Nighttime respiration calculated from daily respiration corrected for length of the dark period and temperature (using Q 10 = 2) was closely associated with measured nighttime respiration (R 2 = 0.67 to 0.93). The 4-year average annual gross primary production (GPP) was 1617 g CO2/m2/ year (range = 1308–1957). Ten-day normalized difference vegetation index corrected for the start of the season (NDVIsos) was closely associated with 10-day average P g (R 2 = 0.66 to 0.83), which was higher than R 2 values for regressions of mean 10-day net daytime fluxes on NDVIsos (0.55–0.72). This demonstrates the advantage of usingP g in scaling up flux-tower measurements compared to other characteristics (net daytime flux or net 24-h flux).

  14. The declining uptake rate of atmospheric CO2 by land and ocean sinks

    Directory of Open Access Journals (Sweden)

    M. R. Raupach

    2014-07-01

    Full Text Available Through 1959–2012, an airborne fraction (AF of 0.44 of total anthropogenic CO2 emissions remained in the atmosphere, with the rest being taken up by land and ocean CO2 sinks. Understanding of this uptake is critical because it greatly alleviates the emissions reductions required for climate mitigation, and also reduces the risks and damages that adaptation has to embrace. An observable quantity that reflects sink properties more directly than the AF is the CO2 sink rate (kS, the combined land–ocean CO2 sink flux per unit excess atmospheric CO2 above preindustrial levels. Here we show from observations that kS declined over 1959–2012 by a factor of about 1 / 3, implying that CO2 sinks increased more slowly than excess CO2. Using a carbon–climate model, we attribute the decline in kS to four mechanisms: slower-than-exponential CO2 emissions growth (~ 35% of the trend, volcanic eruptions (~ 25%, sink responses to climate change (~ 20%, and nonlinear responses to increasing CO2, mainly oceanic (~ 20%. The first of these mechanisms is associated purely with the trajectory of extrinsic forcing, and the last two with intrinsic, feedback responses of sink processes to changes in climate and atmospheric CO2. Our results suggest that the effects of these intrinsic, nonlinear responses are already detectable in the global carbon cycle. Although continuing future decreases in kS will occur under all plausible CO2 emission scenarios, the rate of decline varies between scenarios in non-intuitive ways because extrinsic and intrinsic mechanisms respond in opposite ways to changes in emissions: extrinsic mechanisms cause kS to decline more strongly with increasing mitigation, while intrinsic mechanisms cause kS to decline more strongly under high-emission, low-mitigation scenarios as the carbon–climate system is perturbed further from a near-linear regime.

  15. Uptake and Storage of Anthropogenic CO2 in the Pacific Ocean Estimated Using Two Modeling Approaches

    Institute of Scientific and Technical Information of China (English)

    LI Yangchun; XU Yongfu

    2012-01-01

    A basin-wide ocean general circulation model (OGCM) of the Pacific Ocean is employed to estimate the uptake and storage of anthropogenic CO2 using two different simulation approaches.The simulation (named BIO) makes use of a carbon model with biological processes and full thermodynamic equations to calculate surface water partial pressure of CO2,whereas the other simulation (named PTB) makes use of a perturbation approach to calculate surface water partial pressure of anthropogenie CO2.The results from the two simulations agree well with the estimates based on observation data in most important aspects of the vertical distribution as well as the total inventory of anthropogenic carbon.The storage of anthropogenic carbon from BIO is closer to the observation-based estimate than that from PTB.The Revelle factor in 1994 obtained in BIO is generally larger than that obtained in PTB in the whole Pacific,except for the subtropical South Pacific.This,to large extent,leads to the difference in the surface anthropogenic CO2 concentration between the two runs.The relative difference in the annual uptake between the two runs is almost constant during the integration processes after 1850.This is probably not caused by dissolved inorganic carbon (DIC),but rather by a factor independent of time.In both runs,the rate of change in anthropogenic CO2 fluxes with time is consistent with the rate of change in the growth rate of atmospheric partial pressure of CO2.

  16. Bundle Sheath Leakiness and Light Limitation during C-4 Leaf and Canopy CO2 Uptake

    NARCIS (Netherlands)

    Kromdijk, J.; Schepers, H.E.; Albanito, F.; Fitton, N.; Carroll, F.; Jones, M.B.; Finnan, J.; Lanigan, G.J.; Griffiths, H.

    2008-01-01

    Perennial species with the C-4 pathway hold promise for biomass-based energy sources. We have explored the extent that CO2 uptake of such species may be limited by light in a temperate climate. One energetic cost of the C-4 pathway is the leakiness (phi) of bundle sheath tissues, whereby a variable

  17. Effect of CO2 Enrichment on the Growth and Nutrient Uptake of Tomato Seedlings

    Institute of Scientific and Technical Information of China (English)

    LI Juan; ZHOU Jian-Min; DUAN Zeng-Qiang; DU Chang-Wen; WANG Huo-Yan

    2007-01-01

    Exposing tomato seedlings to elevated CO2 concentrations may have potentially profound impacts on the tomato yield and quality. A growth chamber experiment was designed to estimate how different nutrient concentrations influenced the effect of elevated CO2 on the growth and nutrient uptake of tomato seedlings. Tomato (Hezuo 906) was grown in pots placed in controlled growth chambers and was subjected to ambient or elevated CO2 (360 or 720 μL L-1), and four nutrient solutions of different strengths (1/2-, 1/4-, 1/8-, and 1/16-strength Japan Yamazaki nutrient solutions) in a completely randomized design. The results indicated that some agricultural characteristics of the tomato seedlings such as the plant height, stem thickness, total dry and fresh weights of the leaves, stems and roots, the G value (G value = total plant dry weight/seedling age),and the seedling vigor index (seedling vigor index = stem thickness/(plant height × total plant dry weight) increased with the elevated CO2, and the increases were strongly dependent on the nutrient solution concentrations, being greater with higher nutrient solution concentrations. The elevated CO2 did not alter the ratio of root to shoot. The total N, P, K, and C absorbed from all the solutions except P in the 1/8- and 1/16-strength nutrient solutions increased in the elevated CO2 treatment. These results demonstrate that the nutrient demands of the tomato seedlings increased at elevated CO2 concentrations.

  18. The effect of seasonality in phytoplankton community composition on CO2 uptake on the Scotian Shelf

    Science.gov (United States)

    Craig, Susanne E.; Thomas, Helmuth; Jones, Chris T.; Li, William K. W.; Greenan, Blair J. W.; Shadwick, Elizabeth H.; Burt, William J.

    2015-07-01

    We characterise seasonal patterns in phytoplankton community composition on the Scotian Shelf, northwest Atlantic Ocean, through a study of the numerical abundance of different cell sizes - pico-, nano- and microphytoplankton. Cell abundances of each size class were converted to cellular carbon and their seasonal patterns compared with the partial pressure of carbon dioxide (pCO2) also measured at the study site. We observed a persistent drawdown of CO2 throughout the summer months, despite nutrient depleted conditions and apparent low biomass suggested by the chlorophyll record. This drawdown was associated with a summertime phytoplankton assemblage numerically dominated by small phytoplankton that reach their peak abundance during this period. It was found that phytoplankton carbon during this period accounted for approximately 10% of spring bloom phytoplankton carbon and pointed to the importance role that small cells play in annual CO2 uptake.

  19. Increased CO2 uptake due to sea ice growth and decay in the Nordic Seas

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Bendtsen, Jørgen; Petersen, L.T.

    2009-01-01

    uptake in the Nordic Seas is currently unknown. We present evidence from 50 localities in the Arctic Ocean that dissolved inorganic carbon is rejected together with brine from growing sea ice and that sea ice melting during summer is rich in carbonates. Model calculations show that melting of sea ice......The uptake rates of atmospheric CO2 in the Nordic Seas are among the highest in the world's oceans. This has been ascribed mainly to a strong biological drawdown, but chemical processes within the sea ice itself have also been suggested to play a role. The importance of sea ice for the carbon...

  20. Young Daughter Cladodes Affect CO2 Uptake by Mother Cladodes of Opuntia ficus-indica

    Science.gov (United States)

    PIMIENTA-BARRIOS, EULOGIO; ZAÑUDO-HERNANDEZ, JULIA; ROSAS-ESPINOZA, VERONICA C.; VALENZUELA-TAPIA, AMARANTA; NOBEL, PARK S.

    2004-01-01

    • Background and Aims Drought damages cultivated C3, C4 and CAM plants in the semi-arid lands of central Mexico. Drought damage to Opuntia is common when mother cladodes, planted during the dry spring season, develop young daughter cladodes that behave like C3 plants, with daytime stomatal opening and water loss. In contrast, wild Opuntia are less affected because daughter cladodes do not develop on them under extreme drought conditions. The main objective of this work is to evaluate the effects of the number of daughter cladodes on gas exchange parameters of mother cladodes of Opuntia ficus-indica exposed to varying soil water contents. • Methods Rates of net CO2 uptake, stomatal conductance, intercellular CO2 concentration, chlorophyll content and relative water content were measured in mature mother cladodes with a variable number of daughter cladodes growing in spring under dry and wet conditions. • Key Results Daily carbon gain by mother cladodes was reduced as the number of daughter cladodes increased to eight, especially during drought. This was accompanied by decreased mother cladode relative water content, suggesting movement of water from mother to daughter cladodes. CO2 assimilation was most affected in phase IV of CAM (late afternoon net CO2 uptake) by the combined effects of daughter cladodes and drought. Rainfall raised the soil water content, decreasing the effects of daughter cladodes on net CO2 uptake by mother cladodes. • Conclusions Daughter cladodes significantly hasten the effects of drought on mother cladodes by competition for the water supply and thus decrease daily carbon gain by mother cladodes, mainly by inhibiting phase IV of CAM. PMID:15567805

  1. Gross primary production responses to warming, elevated CO2 , and irrigation: quantifying the drivers of ecosystem physiology in a semiarid grassland.

    Science.gov (United States)

    Ryan, Edmund M; Ogle, Kiona; Peltier, Drew; Walker, Anthony P; De Kauwe, Martin G; Medlyn, Belinda E; Williams, David G; Parton, William; Asao, Shinichi; Guenet, Bertrand; Harper, Anna B; Lu, Xingjie; Luus, Kristina A; Zaehle, Sönke; Shu, Shijie; Werner, Christian; Xia, Jianyang; Pendall, Elise

    2017-08-01

    Determining whether the terrestrial biosphere will be a source or sink of carbon (C) under a future climate of elevated CO2 (eCO2 ) and warming requires accurate quantification of gross primary production (GPP), the largest flux of C in the global C cycle. We evaluated 6 years (2007-2012) of flux-derived GPP data from the Prairie Heating and CO2 Enrichment (PHACE) experiment, situated in a grassland in Wyoming, USA. The GPP data were used to calibrate a light response model whose basic formulation has been successfully used in a variety of ecosystems. The model was extended by modeling maximum photosynthetic rate (Amax ) and light-use efficiency (Q) as functions of soil water, air temperature, vapor pressure deficit, vegetation greenness, and nitrogen at current and antecedent (past) timescales. The model fits the observed GPP well (R(2)  = 0.79), which was confirmed by other model performance checks that compared different variants of the model (e.g. with and without antecedent effects). Stimulation of cumulative 6-year GPP by warming (29%, P = 0.02) and eCO2 (26%, P = 0.07) was primarily driven by enhanced C uptake during spring (129%, P = 0.001) and fall (124%, P = 0.001), respectively, which was consistent across years. Antecedent air temperature (Tairant ) and vapor pressure deficit (VPDant ) effects on Amax (over the past 3-4 days and 1-3 days, respectively) were the most significant predictors of temporal variability in GPP among most treatments. The importance of VPDant suggests that atmospheric drought is important for predicting GPP under current and future climate; we highlight the need for experimental studies to identify the mechanisms underlying such antecedent effects. Finally, posterior estimates of cumulative GPP under control and eCO2 treatments were tested as a benchmark against 12 terrestrial biosphere models (TBMs). The narrow uncertainties of these data-driven GPP estimates suggest that they could be useful semi-independent data

  2. Effects of Photosynthetically Active Radiation and Air Temperature on CO2 Uptake of Pterocarpus macrocarpus in the Open Field

    Institute of Scientific and Technical Information of China (English)

    Sureeporn Kerdkankaew; Jesada Luangjame; Pojanie Khummongkol

    2005-01-01

    Since trees and plants can absorb CO2, forests are widely regarded as a carbon sink that may control the amount of CO2 in the atmosphere. The CO2 uptake rate of plants is affected by the plant species and environmental conditions such as photosynthetically active radiation (PAR), temperature, water and nutrient contents. PAR is the most immediate environmental control on photosynthesis while air temperature affects both photorespiration and dark respiration. In the natural condition, PAR and temperature play an important role in net CO2 uptake. The effects of PAR and air temperature on the CO2 uptake of Pterocarpus macrocarpus grown in a natural habitat were studied in the present work. Due to many uncontrollable factors, a simple rectangular hyperbola could not represent the measured data. The data were divided into groups of 2℃ intervals; CO2 uptake in each group may then be related to PAR by a rectangular hyperbola function. Using the obtained functions, the effect of PAR was removed from the original data. The PAR-independent CO2 uptake was then related to air temperature. Finally, the effects of PAR (I) and air temperature (Ta) on the CO2 uptake rate (A) were combined as:A= [(-0.0575 Ta2+ 2.6691 Ta-23.264)I/(-4.8794Ta2+227.13Ta-2456.9)+I](-0.00766Ta2+0.40666Ta-3.99924)

  3. Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia

    Science.gov (United States)

    Ma, Xuanlong; Huete, Alfredo; Cleverly, James; Eamus, Derek; Chevallier, Frédéric; Joiner, Joanna; Poulter, Benjamin; Zhang, Yongguang; Guanter, Luis; Meyer, Wayne; Xie, Zunyi; Ponce-Campos, Guillermo

    2016-11-01

    Each year, terrestrial ecosystems absorb more than a quarter of the anthropogenic carbon emissions, termed as land carbon sink. An exceptionally large land carbon sink anomaly was recorded in 2011, of which more than half was attributed to Australia. However, the persistence and spatially attribution of this carbon sink remain largely unknown. Here we conducted an observation-based study to characterize the Australian land carbon sink through the novel coupling of satellite retrievals of atmospheric CO2 and photosynthesis and in-situ flux tower measures. We show the 2010–11 carbon sink was primarily ascribed to savannas and grasslands. When all biomes were normalized by rainfall, shrublands however, were most efficient in absorbing carbon. We found the 2010–11 net CO2 uptake was highly transient with rapid dissipation through drought. The size of the 2010–11 carbon sink over Australia (0.97 Pg) was reduced to 0.48 Pg in 2011–12, and was nearly eliminated in 2012–13 (0.08 Pg). We further report evidence of an earlier 2000–01 large net CO2 uptake, demonstrating a repetitive nature of this land carbon sink. Given a significant increasing trend in extreme wet year precipitation over Australia, we suggest that carbon sink episodes will exert greater future impacts on global carbon cycle.

  4. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate

    NARCIS (Netherlands)

    Beer, C.; Veenendaal, E.M.

    2010-01-01

    Terrestrial gross primary production (GPP) is the largest global CO2 flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 ± 8 petagrams of carbon per year (Pg C year-1) using eddy covariance flux data and various diagnostic models. Tropical forests

  5. Involvement of respiratory processes in the transient knockout of net CO2 uptake in Mimosa pudica upon heat stimulation.

    Science.gov (United States)

    Lautner, Silke; Stummer, Michaela; Matyssek, Rainer; Fromm, Jörg; Grams, Thorsten E E

    2014-01-01

    Leaf photosynthesis of the sensitive plant Mimosa pudica displays a transient knockout in response to electrical signals induced by heat stimulation. This study aims at clarifying the underlying mechanisms, in particular, the involvement of respiration. To this end, leaf gas exchange and light reactions of photosynthesis were assessed under atmospheric conditions largely eliminating photorespiration by either elevated atmospheric CO2 or lowered O2 concentration (i.e. 2000 μmol mol(-1) or 1%, respectively). In addition, leaf gas exchange was studied in the absence of light. Under darkness, heat stimulation caused a transient increase of respiratory CO2 release simultaneously with stomatal opening, hence reflecting direct involvement of respiratory stimulation in the drop of the net CO2 uptake rate. However, persistence of the transient decline in net CO2 uptake rate under illumination and elevated CO2 or 1% O2 makes it unlikely that photorespiration is the metabolic origin of the respiratory CO2 release. In conclusion, the transient knockout of net CO2 uptake is at least partially attributed to an increased CO2 release through mitochondrial respiration as stimulated by electrical signals. Putative CO2 limitation of Rubisco due to decreased activity of carbonic anhydrase was ruled out as the photosynthesis effect was not prevented by elevated CO2 . © 2013 John Wiley & Sons Ltd.

  6. Elevated CO2 increases root uptake of organic and inorganic N in the desert shrub, Larrea tridentata

    Science.gov (United States)

    We quantified the effect of elevated atmospheric CO2 on root nitrogen (N) uptake and leaf carbon (C) turnover in the desert shrub, Larrea tridentata. We also examined the impact of elevated CO2 on soil N fluxes and plant-soil feedbacks. Seedlings of L. tridentata were grown in reconstituted Mojave...

  7. Highly porous organic polymers bearing tertiary amine group and their exceptionally high CO2 uptake capacities

    Science.gov (United States)

    Gomes, Ruth; Bhaumik, Asim

    2015-02-01

    We report a very simple and unique strategy for synthesis of a tertiary amine functionalized high surface area porous organic polymer (POP) PDVTA-1 through the co-polymerization of monomers divinylbenzene (DVB) and triallylamine (TAA) under solvothermal reaction conditions. Two different PDVTA-1 samples have been synthesized by varying the molar ratio of the monomers. The porous polymeric materials have been thoroughly characterized by solid state 13C CP MAS-NMR, FT-IR and UV-vis spectroscopy, N2 sorption, HR TEM and FE SEM to understand its chemical environment, nanostructure, bonding, morphology and related surface properties. PDVTA-1 with higher amine content (DVB/TAA=4.0) showed exceptionally high CO2 uptake capacity of 85.8 wt% (19.5 mmol g-1) at 273 K and 43.69 wt% (9.93 mmol g-1) at 298 K under 3 bar pressure, whereas relatively low amine loaded material (DVB/TAA=7.0) shows uptake capacity of 59.2 wt% (13.45 mmol g-1) at 273 K and 34.36 wt% (7.81 mmol g-1) at 298 K. Highly porous nanostructure together with very high surface area and basicity at the surface due to the presence of abundant basic tertiary amine N-sites in the framework of PDVTA-1 could be responsible for very high CO2 adsorption.

  8. Elevated CO2 increases plant uptake of organic and inorganic N in the desert shrub Larrea tridentata.

    Science.gov (United States)

    Jin, Virginia L; Evans, R D

    2010-05-01

    Resource limitations, such as the availability of soil nitrogen (N), are expected to constrain continued increases in plant productivity under elevated atmospheric carbon dioxide (CO(2)). One potential but under-studied N source for supporting increased plant growth under elevated CO(2) is soil organic N. In arid ecosystems, there have been no studies examining plant organic N uptake to date. To assess the potential effects of elevated atmospheric CO(2) on plant N uptake dynamics, we quantified plant uptake of organic and inorganic N forms in the dominant desert shrub Larrea tridentata under controlled environmental conditions. Seedlings of L. tridentata were grown in the Mojave Desert (NV, USA) soils that had been continuously exposed to ambient or elevated atmospheric CO(2) for 8 years at the Nevada Desert FACE Facility. After 6 months of growth in environmentally controlled chambers under ambient (380 micromol mol(-1)) or elevated (600 micromol mol(-1)) CO(2), pots were injected with stable isotopically labeled sole-N sources ((13)C-[2]-(15)N glycine, (15)NH(4) (+), or (15)NO(3) (-)) and moved back to their respective chambers for the remainder of the study. Plants were destructively harvested at 0, 2, 10, 24, and 49 days. Plant uptake of soil N derived from glycine, NH(4) (+), and NO(3) (-) increased under elevated CO(2) at days 2 and 10. Further, root uptake of organic N as glycine occurred as intact amino acid within the first hour after N treatment, indicated by approximately 1:1 M enrichment ratios of (13)C:(15)N. Plant N uptake responses to elevated CO(2) are often species-specific and could potentially shift competitive interactions between co-occurring species. Thus, physiological changes in root N uptake dynamics coupled with previously observed changes in the availability of soil N resources could impact plant community structure as well as ecosystem nutrient cycling under increasing atmospheric CO(2) levels in the Mojave Desert.

  9. Low atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake

    Science.gov (United States)

    Rubino, M.; Etheridge, D. M.; Trudinger, C. M.; Allison, C. E.; Rayner, P. J.; Enting, I.; Mulvaney, R.; Steele, L. P.; Langenfelds, R. L.; Sturges, W. T.; Curran, M. A. J.; Smith, A. M.

    2016-09-01

    Low atmospheric carbon dioxide (CO2) concentration during the Little Ice Age has been used to derive the global carbon cycle sensitivity to temperature. Recent evidence confirms earlier indications that the low CO2 was caused by increased terrestrial carbon storage. It remains unknown whether the terrestrial biosphere responded to temperature variations, or there was vegetation re-growth on abandoned farmland. Here we present a global numerical simulation of atmospheric carbonyl sulfide concentrations in the pre-industrial period. Carbonyl sulfide concentration is linked to changes in gross primary production and shows a positive anomaly during the Little Ice Age. We show that a decrease in gross primary production and a larger decrease in ecosystem respiration is the most likely explanation for the decrease in atmospheric CO2 and increase in atmospheric carbonyl sulfide concentrations. Therefore, temperature change, not vegetation re-growth, was the main cause of the increased terrestrial carbon storage. We address the inconsistency between ice-core CO2 records from different sites measuring CO2 and δ13CO2 in ice from Dronning Maud Land (Antarctica). Our interpretation allows us to derive the temperature sensitivity of pre-industrial CO2 fluxes for the terrestrial biosphere (γL = -10 to -90 Pg C K-1), implying a positive climate feedback and providing a benchmark to reduce model uncertainties.

  10. Effects of elevated CO2 levels on root morphological traits and Cd uptakes of two Lolium species under Cd stress

    Institute of Scientific and Technical Information of China (English)

    Yan JIA; Shi-rong TANG; Xue-hai JU; Li-na SHU; Shu-xing TU; Ren-wei FENG; Lorenzino GIUSTI

    2011-01-01

    This study was conducted to investigate the combined effects of elevated CO2 levels and cadmium (Cd) on the root morphological traits and Cd accumulation in Lolium multifiorum Lam. and Lolium perenne L. exposed to two CO2 levels (360 and 1 000 μl/L) and three Cd levels (0, 4, and 16 mg/L) under hydroponic conditions. The results show that elevated levels of CO2 increased shoot biomass more, compared to root biomass, but decreased Cd concentrations in all plant tissues. Cd exposure caused toxicity to both Lolium species, as shown by the restrictions of the root morphological parameters including root length, surface area, volume, and tip numbers. These parameters were significantly higher under elevated levels of CO2 than under ambient CO2, especially for the number of fine roots. The increases in magnitudes of those parameters triggered by elevated levels of CO2 under Cd stress were more than those under non-Cd stress, suggesting an ameliorated Cd stress under elevated levels of CO2. The total Cd uptake per pot, calculated on the basis of biomass, was significantly greater under elevated levels of CO2 than under ambient CO2.Ameliorated Cd toxicity, decreased Cd concentration, and altered root morphological traits in both Lolium species under elevated levels of CO2 may have implications in food safety and phytoremediation.

  11. Atmospheric CO2 uptake throughout bio-enhanced brucite-water reaction at Montecastelli serpentinites (Italy)

    Science.gov (United States)

    Bedini, Federica; Boschi, Chiara; Ménez, Benedicte; Perchiazzi, Natale; Zanchetta, Giovanni

    2014-05-01

    In the last several years, interactions between microorganisms and minerals have intrigued and catched the interest of the scientific community. Montecastelli serpentinites (Tuscany, Italy) are characterized by CO2-mineral carbonation, an important process which leads to spontaneous formation of carbonate phases uptaking atmospheric CO2. In the studied areas carbonate precipitates, mainly hydrated Mg-carbonates, are present in form of crusts, coating and spherules on exposed rock surfaces, and filling rock fractures. Petrographic and mineralogical observations revealed that Tuscan brucite-rich serpentinites hosts preserve their original chemical compositions with typical mesh-textured serpentine (± brucite) after olivine, magnetite-rich mesh rims and relicts of primary spinel. Representative hydrated carbonate samples have been collected in three different areas and analyzed to investigate the role of biological activity and its influence in the serpentine-hydrated Mg-carbonates reaction. The different types of whitish precipitates have been selected under binocular microscope for XRD analyses performed at the Dipartimento di Scienze della Terra (University of Pisa, Italy): their mineralogical composition consists of mainly hydromagnesite and variable amount of other metastable carbonate phases (i.e. nesquehonite, manasseite, pyroaurite, brugnatellite and aragonite). Moreover, the crystallinity analysis of whitish crust and spherules have been carried out by detailed and quantitative XRD analyses to testify a possible biologically controlled growth, inasmuch as the crystal structure of biominerals could be affected by many lattice defects (i.e. dislocations, twinning, etc.) and this observation cause low crystallinity of the mineral. The presence of microbial cells and relicts of organic matter has already been detected by confocal laser scanning microscopy (CLSM) combined with Raman spectromicroscopy in a previous study (Bedini et al., 2013). The presence of

  12. Elevated CO(2 modifies N acquisition of Medicago truncatula by enhancing N fixation and reducing nitrate uptake from soil.

    Directory of Open Access Journals (Sweden)

    Huijuan Guo

    Full Text Available The effects of elevated CO2 (750 ppm vs. 390 ppm were evaluated on nitrogen (N acquisition and assimilation by three Medicago truncatula genotypes, including two N-fixing-deficient mutants (dnf1-1 and dnf1-2 and their wild-type (Jemalong. The proportion of N acquisition from atmosphere and soil were quantified by (15N stable isotope, and N transportation and assimilation-related genes and enzymes were determined by qPCR and biochemical analysis. Elevated CO2 decreased nitrate uptake from soil in all three plant genotypes by down-regulating nitrate reductase (NR, nitrate transporter NRT1.1 and NR activity. Jemalong plant, however, produced more nodules, up-regulated N-fixation-related genes and enhanced percentage of N derived from fixation (%Ndf to increase foliar N concentration and N content in whole plant (Ntotal Yield to satisfy the requirement of larger biomass under elevated CO2. In contrast, both dnf1 mutants deficient in N fixation consequently decreased activity of glutamine synthetase/glutamate synthase (GS/GOGAT and N concentration under elevated CO2. Our results suggest that elevated CO2 is likely to modify N acquisition of M. truncatula by simultaneously increasing N fixation and reducing nitrate uptake from soil. We propose that elevated CO2 causes legumes to rely more on N fixation than on N uptake from soil to satisfy N requirements.

  13. Impact of bubble size on growth and CO2 uptake of Arthrospira (Spirulina) platensis KMMCC CY-007.

    Science.gov (United States)

    Kim, Kisok; Choi, Jaeho; Ji, Yosep; Park, Soyoung; Do, Hyungki; Hwang, Cherwon; Lee, Bongju; Holzapfel, Wilhelm

    2014-10-01

    Optimisation of cyanobacterial cell productivity should consider the key factors light cycle and carbon source. We studied the influence of CO2 bubble size on carbon uptake and fixation, on basis of mRNA expression levels in Arthrospira platensis KMMCC CY-007 at 30°C (light intensity: 40μmolm(-2)s(-1); 1% CO2). Growth rate, carbon fixation and lipid accumulation were examined over 7days under fine bubble (FB) (100μm Ø) bulk bubble (BB) (5000μm Ø) and non-CO2 (NB) aeration. The low affinity CO2 uptake mRNA (NDH-I4 complex) was stronger expressed than the high affinity NDH-I3 complex (bicA and sbtA) under 1% CO2 and FB conditions, with no expression of bicA1 and sbtA1 after 4days. The high affinity CO2 uptake mRNA levels corresponded to biomass, carbon content and lipid accumulation, and increase in NDH-I3 complex (9.72-fold), bicA (5.69-fold), and sbtA (10.61-fold), compared to NB, or BB conditions.

  14. Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2.

    Science.gov (United States)

    Zhu, Xiancan; Song, Fengbin; Liu, Shengqun; Liu, Fulai

    2016-02-01

    Effects of the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis on plant growth, carbon (C) and nitrogen (N) accumulation, and partitioning was investigated in Triticum aestivum L. plants grown under elevated CO2 in a pot experiment. Wheat plants inoculated or not inoculated with the AM fungus were grown in two glasshouse cells with different CO2 concentrations (400 and 700 ppm) for 10 weeks. A (15)N isotope labeling technique was used to trace plant N uptake. Results showed that elevated CO2 increased AM fungal colonization. Under CO2 elevation, AM plants had higher C concentration and higher plant biomass than the non-AM plants. CO2 elevation did not affect C and N partitioning in plant organs, while AM symbiosis increased C and N allocation into the roots. In addition, plant C and N accumulation, (15)N recovery rate, and N use efficiency (NUE) were significantly higher in AM plants than in non-AM controls under CO2 enrichment. It is concluded that AM symbiosis favors C and N partitioning in roots, increases C accumulation and N uptake, and leads to greater NUE in wheat plants grown at elevated CO2.

  15. In Vitro Comparison of the Effects of Diode Laser and CO2 Laser on Topical Fluoride Uptake in Primary Teeth

    Directory of Open Access Journals (Sweden)

    Zahra Bahrololoomi

    2016-04-01

    Full Text Available Objectives: Fluoride therapy is important for control and prevention of dental caries. Laser irradiation can increase fluoride uptake especially when combined with topical fluoride application. The objective of this study was to compare the effects of CO2 and diode lasers on enamel fluoride uptake in primary teeth.Materials and Methods: Forty human primary molars were randomly assigned to four groups (n=10. The roots were removed and the crowns were sectioned mesiodistally into buccal and lingual halves as the experimental and control groups. All samples were treated with 5% sodium fluoride (NaF varnish. The experimental samples in the four groups were irradiated with 5 or 7W diode or 1 or 2W CO2 laser for 15 seconds and were compared with the controls in terms of fluoride uptake, which was determined using an ion selective electrode after acid dissolution of the specimens. Data were analyzed by SPSS version 16 using ANOVA treating the control measurements as covariates.Results: The estimated amount of fluoride uptake was 59.5± 16.31 ppm, 66.5± 14.9 ppm, 78.6± 12.43 ppm and 90.4± 11.51 ppm for 5W and 7 W diode and 1W and 2 W CO2 lasers, respectively, which were significantly greater than the values in the conventional topical fluoridation group (P<0.005. There were no significant differences between 7W diode laser and 1W CO2 laser, 5W and 7W diode laser, or 1W and 2W CO2 laser in this regard.Conclusion: The results showed that enamel surface irradiation by CO2 and diode lasers increases the fluoride uptake.

  16. Tuning CO2 uptake and reversible iodine adsorption in two isoreticular MOFs through ligand functionalization.

    Science.gov (United States)

    Parshamoni, Srinivasulu; Sanda, Suresh; Jena, Himanshu Sekhar; Konar, Sanjit

    2015-03-01

    The synthesis and characterization of two isoreticular metal-organic frameworks (MOFs), {[Cd(bdc)(4-bpmh)]}n⋅2 n(H2O) (1) and {[Cd(2-NH2bdc)(4-bpmh)]}n⋅2 n(H2O) (2) [bdc = benzene dicarboxylic acid; 2-NH2bdc = 2-amino benzene dicarboxylic acid; 4-bpmh = N,N-bis-pyridin-4-ylmethylene-hydrazine], are reported. Both compounds possess similar two-fold interpenetrated 3D frameworks bridged by dicarboxylates and a 4-bpmh linker. The 2D Cd-dicarboxylate layers are extended along the a-axis to form distorted square grids which are further pillared by 4-bpmh linkers to result in a 3D pillared-bilayer interpenetrated framework. Gas adsorption studies demonstrate that the amino-functionalized MOF 2 shows high selectivity for CO2 (8.4 wt % 273 K and 7.0 wt % 298 K) over CH4 , and the uptake amounts are almost double that of non-functional MOF 1. Iodine (I2 ) adsorption studies reveal that amino-functionalized MOF 2 exhibits a faster I2 adsorption rate and controlled delivery of I2 over the non-functionalized homolog 1. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. High air-sea CO 2 uptake rates in nearshore and shelf areas of Southern Greenland: Temporal and spatial variability

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Mortensen, J.; Juul-Pedersen, T.;

    2012-01-01

    The present study is based on hourly samplings of wind speed, monthly sampling sessions of temperature, salinity, dissolved inorganic carbon, alkalinity, nutrients, primary productivity and vertical export in the outer sill region (station GF3) of a sub-arctic SW Greenland fjord (Godthåbsfjord...... of 76-106gCm -2yr -1. Furthermore, the estimated vertical export of phytoplankton carbon to depths below 60m of 38-89gCm -2 suggests that a large fraction of the mineralization (release of CO 2) occurs in deeper waters in the outer sill region of the fjord. However, there was no statistically...... significant correlation between average annual gross primary production and annual air-sea flux during 2005-2010, which suggests that regulation of pCO 2 in the fjord is more complex. Despite three confined periods with supersaturated pCO 2 conditions in surface waters during 2005-2010, Godthåbsfjord can...

  18. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean basin.

    Science.gov (United States)

    Cai, Wei-Jun; Chen, Liqi; Chen, Baoshan; Gao, Zhongyong; Lee, Sang H; Chen, Jianfang; Pierrot, Denis; Sullivan, Kevin; Wang, Yongchen; Hu, Xinping; Huang, Wei-Jen; Zhang, Yuanhui; Xu, Suqing; Murata, Akihiko; Grebmeier, Jacqueline M; Jones, E Peter; Zhang, Haisheng

    2010-07-30

    It has been predicted that the Arctic Ocean will sequester much greater amounts of carbon dioxide (CO2) from the atmosphere as a result of sea ice melt and increasing primary productivity. However, this prediction was made on the basis of observations from either highly productive ocean margins or ice-covered basins before the recent major ice retreat. We report here a high-resolution survey of sea-surface CO2 concentration across the Canada Basin, showing a great increase relative to earlier observations. Rapid CO2 invasion from the atmosphere and low biological CO2 drawdown are the main causes for the higher CO2, which also acts as a barrier to further CO2 invasion. Contrary to the current view, we predict that the Arctic Ocean basin will not become a large atmospheric CO2 sink under ice-free conditions.

  19. Sudden cold temperature regulates the time-lag between plant CO2 uptake and release

    Science.gov (United States)

    Barthel, M.; Cieraad, E.; Zakharova, A.; Hunt, J. E.

    2013-11-01

    Since substrates for respiration are supplied mainly by recent photo-assimilates, there is a strong but time-lagged link between short-term above- and belowground carbon (C) cycling. However, regulation of this coupling by environmental variables is poorly understood. Whereas recent studies focussed on the effect of drought and shading on the link between above and belowground short-term C cycling, the effect of temperature remains unclear. We used a 13CO2 pulse-chase labelling experiment to investigate the effect of a sudden temperature change from 25 °C to 10 °C on the short-term coupling between assimilatory C uptake and respiratory loss. The study was done in the laboratory using two month old perennial rye-grass plants (

  20. Soil trace gas emissions (CH4 and N2O) offset the CO2 uptake in poplar short rotation coppice

    Science.gov (United States)

    Zenone, Terenzio; Zona, Donatella; Gelfand, Iya; Gielen, Bert; camino serrano, Marta; Ceulemans, Reinhart

    2015-04-01

    The need for renewable energy sources will lead to a considerable expansion in the planting of dedicated fast-growing biomass crops across Europe. Among them poplar (Populus spp) is the most widely planted as short rotation coppice (SRC) and an increase in the surface area of large-scale SRC poplar plantations might thus be expected. In this study we report the greenhouse gas fluxes (GHG) of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) measured using the eddy covariance technique in a SRC plantation for bioenergy production during the period 2010-2013. The plantation was established in April 2010 on 18.4 ha of former agricultural land with a density of 8000 plants ha-1; the above-ground biomass was harvested on February 2012 and 2014.The whole GHG balance of the four years of the study was 1.90 (± 1.37) Mg CO2eq ha-1; this indicated that soil trace gas emissions offset the CO2 uptake by the plantation. CH4 and N2O almost equally contributed to offset the CO2 uptake of -5.28 (±0.67) Mg CO2eq ha-1 with an overall emission of 3.56 (± 0.35) Mg CO2eq ha-1 of N2O and of 3.53 (± 0.85) Mg CO2eq ha-1 of CH4. N2O emissions mostly occurred during a single peak a few months after the site was converted into SRC and represented 44% of the entire N2O loss during the entire study. Accurately capturing these emission events proved to be critical for correct estimates of the GHG balance. The self-organizing map (SOM) technique graphically showed the relationship between the CO2 fluxes and the principal environmental variables but failed to explain the variability of the soil trace gas emissions. The nitrogen content in the soil and the water table depth were the two drivers that best explained the variability in N2O and CH4 respectively. This study underlines the importance of the "non-CO2 GHG" on the overall balance as well as the impact of the harvest on the CO2 uptake rate. Further long-term investigations of soil trace gas emissions should also monitor the N

  1. Why Southern Ocean uptake of anthropogenic CO2 may be decreasing

    CSIR Research Space (South Africa)

    Mongwe, P

    2012-10-01

    Full Text Available is emitted into the atmosphere, because the land and ocean act as CO2 sinks. The ability of the ocean to take up the CO2 is highly variable (in time and space) and sensitive to climate influences on ocean circulations. ? The Southern Ocean (SO) plays a... values, because in addition to remineralisation, the thermohaline circulation transports mode and intermediate waters into the ocean interior via this region. When pCO2 in the ocean exceeds that of the atmosphere, the ocean outgasses CO2 by pressure...

  2. CO2 uptake capacity of coal fly ash: Influence of pressure and temperature on direct gas-solid carbonation

    DEFF Research Database (Denmark)

    Mazzella, Alessandro; Errico, Massimiliano; Spiga, Daniela

    2016-01-01

    range 1 ÷ 7.5 bar the CO2 uptake increased with temperature, shortening the time required to capture higher percentage of CO2. Conversely, in the pressure range 10 ÷ 15 bar, the carbonation kinetics slowed down and the effect of temperature was less evident. The best CO2 uptake was found to be 18.2 wt......-solid carbonation treatment on coal fly ash in order to assess the potential of the process in terms of sequestration of CO2 as well as its influence on the leaching behavior of metals and soluble salts. Laboratory tests, performed under different pressure and temperature conditions, showed that in the pressure......% corresponding to a maximum carbonation efficiency of 74%, estimated on the basis of the initial CaO content. The high degree of ash carbonation achieved in the present research, which was conducted under mild conditions, without add of water and without stirring, showed the potential use of coal fly ash in CO2...

  3. Prospects for optimizing soil microbial functioning to improve plant nutrient uptake and soil carbon sequestration under elevated CO2

    Science.gov (United States)

    Nie, M.; Pendall, E. G.

    2013-12-01

    Potential to mitigate climate change through increasing plant productivity and its carbon (C) input to soil may be limited by soil nitrogen (N) availability. Using a novel 13C-CO2 and 15N-soil dual labeling method, we investigated whether plant growth-promoting bacteria would interact with atmospheric CO2 concentration to alter plant productivity and soil C storage. We grew Bouteloua gracilis under ambient (380 ppm) or elevated CO2 (700 ppm) in climate-controlled chambers, and plant individuals were grown with or without Pseudomonas fluorescens inoculum, which can produce N catabolic enzymes. We observed that both eCO2 and P. fluorescens increased plant productivity and its C allocation to soil. P. fluorescens relative to eCO2 enhanced plant N uptake from soil organic matter, which highly correlated with soil N enzyme activities and rhizosphere exudate C. More importantly, P. fluorescens increased microbial biomass and deceased specific microbial respiration in comparison with eCO2. These results indicate that application of plant growth-promoting bacteria can increase microbial C utilization efficiency with subsequent N mineralization from soil organic matter, and may improve plant N availability and soil C sequestration. Together, our findings highlight the potential of plant growth-promoting bacteria for global change mitigation by terrestrial ecosystems.

  4. Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Ro-Poulsen, H.; Mikkelsen, Teis Nørgaard;

    2011-01-01

    season, whereas warming only stimulated photosynthesis early in the year. At the beginning and end of the growing season, a T × CO2 interaction synergistically stimulated plant carbon uptake in the combination of warming and elevated CO2. At peak drought, the D × CO2 interaction antagonistically down...

  5. Atmospheric measurements of Δ17O in CO2 in Göttingen, Germany reveal a seasonal cycle driven by biospheric uptake

    NARCIS (Netherlands)

    Hofmann, M. E. G.; Horvath, B.; Schneider, L.; Peters, W.; Schützenmeister, K.; Pack, A.

    2017-01-01

    The triple oxygen isotope composition of tropospheric CO2 might be a promising new tracer for terrestrial gross carbon fluxes. This notion is based on global box modeling of its abundance, and on highly challenging and therefore very sparse measurements of 16O, 17O and 18O in CO2 in the lower

  6. Enhanced CO2 uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane

    Science.gov (United States)

    Pohlman, John W.; Greinert, Jens; Ruppel, Carolyn; Silyakova, Anna; Vielstädte, Lisa; Casso, Michael; Mienert, Jürgen; Bünz, Stefan

    2017-05-01

    Continued warming of the Arctic Ocean in coming decades is projected to trigger the release of teragrams (1 Tg = 106 tons) of methane from thawing subsea permafrost on shallow continental shelves and dissociation of methane hydrate on upper continental slopes. On the shallow shelves (seep field on the Svalbard margin reveal atmospheric CO2 uptake rates (-33,300 ± 7,900 μmol m-2ṡd-1) twice that of surrounding waters and ˜1,900 times greater than the diffusive sea-air methane efflux (17.3 ± 4.8 μmol m-2ṡd-1). The negative radiative forcing expected from this CO2 uptake is up to 231 times greater than the positive radiative forcing from the methane emissions. Surface water characteristics (e.g., high dissolved oxygen, high pH, and enrichment of 13C in CO2) indicate that upwelling of cold, nutrient-rich water from near the seafloor accompanies methane emissions and stimulates CO2 consumption by photosynthesizing phytoplankton. These findings challenge the widely held perception that areas characterized by shallow-water methane seeps and/or strongly elevated sea-air methane flux always increase the global atmospheric greenhouse gas burden.

  7. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake

    Science.gov (United States)

    Keenan, Trevor F.; Prentice, I. Colin; Canadell, Josep G.; Williams, Christopher A.; Wang, Han; Raupach, Michael; Collatz, G. James

    2016-11-01

    Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We attribute the observed decline to increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO2 on vegetation and the slowdown in the rate of warming on global respiration. The pause in the atmospheric CO2 growth rate provides further evidence of the roles of CO2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly.

  8. Spatial variability of CO2 uptake in polygonal tundra: assessing low-frequency disturbances in eddy covariance flux estimates

    Science.gov (United States)

    Pirk, Norbert; Sievers, Jakob; Mertes, Jordan; Parmentier, Frans-Jan W.; Mastepanov, Mikhail; Christensen, Torben R.

    2017-06-01

    The large spatial variability in Arctic tundra complicates the representative assessment of CO2 budgets. Accurate measurements of these heterogeneous landscapes are, however, essential to understanding their vulnerability to climate change. We surveyed a polygonal tundra lowland on Svalbard with an unmanned aerial vehicle (UAV) that mapped ice-wedge morphology to complement eddy covariance (EC) flux measurements of CO2. The analysis of spectral distributions showed that conventional EC methods do not accurately capture the turbulent CO2 exchange with a spatially heterogeneous surface that typically features small flux magnitudes. Nonlocal (low-frequency) flux contributions were especially pronounced during snowmelt and introduced a large bias of -46 gC m-2 to the annual CO2 budget in conventional methods (the minus sign indicates a higher uptake by the ecosystem). Our improved flux calculations with the ogive optimization method indicated that the site was a strong sink for CO2 in 2015 (-82 gC m-2). Due to differences in light-use efficiency, wetter areas with low-centered polygons sequestered 47 % more CO2 than drier areas with flat-centered polygons. While Svalbard has experienced a strong increase in mean annual air temperature of more than 2 K in the last few decades, historical aerial photographs from the site indicated stable ice-wedge morphology over the last 7 decades. Apparently, warming has thus far not been sufficient to initiate strong ice-wedge degradation, possibly due to the absence of extreme heat episodes in the maritime climate on Svalbard. However, in Arctic regions where ice-wedge degradation has already initiated the associated drying of landscapes, our results suggest a weakening of the CO2 sink in polygonal tundra.

  9. Effects of multiple environmental factors on CO2 emission and CH4 uptake from old-growth forest soils

    Directory of Open Access Journals (Sweden)

    M. Cao

    2009-07-01

    Full Text Available To assess contribution of multiple environmental factors to actual carbon exchanges between the atmosphere and forest soils, four old-growth forests referred to as boreal coniferous forest, temperate needle-broadleaved mixed forest, subtropical evergreen broadleaved forest and tropical seasonal rain forest were selected along the eastern China. In each old-growth forest, soil CO2 and CH4 fluxes were measured for three years using the static chamber and gas chromatography technique. Soil temperature and moisture at the 10 cm depth were measured simultaneously with the greenhouse gas measurements. Inorganic N (NH4+-N and NO3--N in the 0–10 cm was determined monthly. From north to south, annual mean CO2 flux ranged from 18.09±0.22 to 35.40±2.24 Mg CO2 ha−1 yr−1 and annual mean CH4 flux ranged from -0.04±0.11 to -5.15±0.96 kg CH4 ha−1 yr−1. Soil CO2 fluxes in the old-growth forests were mainly driven by soil temperature, followed by soil moisture and NO3--N. Based on the gradient theory of exchange of time and space, increase in air temperature in the future would promote soil CO2 emission in the old-growth forests. The responses of soil CH4 uptake to warming were dependent upon the critical temperature in forest. In addition, the NO3--N promotion to CO2 emission could partially attribute to the compound effects of high nitrate stimulation on soil microbe activities and increased decomposability of organic materials. The mechanism of NH4+ inhibition to CH4 uptake included both a competitive inhibition of CH4 mono-oxygenase enzyme and a toxic inhibition by hydroxylamine or nitrite produced via NH4+ oxidation. Overall, increasing in precipitation and nitrogen deposition in eastern China would increase soil CO2 emission, but decrease soil CH4 uptake in the old-growth forests.

  10. Enhanced terrestrial carbon uptake: global drivers and implications for the growth rate of atmospheric CO2.

    Science.gov (United States)

    Keenan, Trevor F.; Prentice, Colin; Canadell, Josep; Williams, Christopher; Han, Wang; Riley, William; Zhu, Qing; Koven, Charlie; Chambers, Jeff

    2017-04-01

    In this presentation we will focus on using decadal changes in the global carbon cycle to better understand how ecosystems respond to changes in CO2 concentration, temperature, and water and nutrient availability. Using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple process-based global vegetation models, we examine the causes and consequences of the long-term changes in the terrestrial carbon sink. We show that over the past century the sink has been greatly enhanced, largely due to the effect of elevated CO2 on photosynthesis dominating over warming induced increases in respiration. We also examine the relative roles of greening, water and nutrients, along with individual events such as El Nino. We show that a slowdown in the rate of warming over land since the start of the 21st century likely led to a large increase in the sink, and that this increase was sufficient to lead to a pause in the growth rate of atmospheric CO2. We also show that the recent El Nino resulted in the highest growth rate of atmospheric CO2 ever recorded. Our results provide evidence of the relative roles of CO2 fertilization and warming induced respiration in the global carbon cycle, along with an examination of the impact of climate extremes.

  11. Atmospheric measurements of Δ17O in CO2 in Göttingen, Germany reveal a seasonal cycle driven by biospheric uptake

    Science.gov (United States)

    Hofmann, M. E. G.; Horváth, B.; Schneider, L.; Peters, W.; Schützenmeister, K.; Pack, A.

    2017-02-01

    The triple oxygen isotope composition of tropospheric CO2 might be a promising new tracer for terrestrial gross carbon fluxes. This notion is based on global box modeling of its abundance, and on highly challenging and therefore very sparse measurements of 16O, 17O and 18O in CO2 in the lower atmosphere. Here, we present additional high-precision triple oxygen isotope measurements of ambient air CO2 sampled in Göttingen (NW Germany) over the course of 2 years and of two air samples taken on top of the Brocken Mountain (1140 m, NW Germany). Göttingen differs from other locations where Δ17O was measured by its proximity to both urban sources of CO2, and to extensive uptake of CO2 by vegetation. In our analysis, we specifically try to discern this latter influence on our measurements, and to distinguish it from other known sources of variation in Δ17O. Our triple oxygen isotope data are reported as Δ17O values relative to a CO2-water equilibration line with Δ17O = ln (δ17O + 1) - 0.5229 × ln (δ18O + 1). We report an average of -0.02 ± 0.05‰ (SD) in the first year and -0.12 ± 0.04‰ (SD) in the second year of our measurements. This year-to-year difference is higher than expected based on other available Δ17O records, but careful scrutiny of our measurement approach did not reveal obvious analytical biases, leaving this aspect of our record unexplained. After removing the year-to-year trend, our time series shows a statistically robust seasonal cycle with maximum values in June/July and an amplitude (peak-to-trough) of 0.13 ± 0.02‰. We compare our observational data to a revised triple oxygen isotope mass balance ;box; model of tropospheric CO2 where we reconcile both 18O/16O and 17O/16O fractionation processes. We also compare them to Göttingen-specific output from a three-dimensional transport model simulation of Δ17O in CO2 performed with the Tracer Model 5 (TM5). Both the modeled isofluxes at the surface, and the modeled stratospheric, fossil

  12. Atmospheric CO2 observations and models suggest strong carbon uptake by forests in New Zealand

    Science.gov (United States)

    Steinkamp, Kay; Mikaloff Fletcher, Sara E.; Brailsford, Gordon; Smale, Dan; Moore, Stuart; Keller, Elizabeth D.; Baisden, W. Troy; Mukai, Hitoshi; Stephens, Britton B.

    2017-01-01

    A regional atmospheric inversion method has been developed to determine the spatial and temporal distribution of CO2 sinks and sources across New Zealand for 2011-2013. This approach infers net air-sea and air-land CO2 fluxes from measurement records, using back-trajectory simulations from the Numerical Atmospheric dispersion Modelling Environment (NAME) Lagrangian dispersion model, driven by meteorology from the New Zealand Limited Area Model (NZLAM) weather prediction model. The inversion uses in situ measurements from two fixed sites, Baring Head on the southern tip of New Zealand's North Island (41.408° S, 174.871° E) and Lauder from the central South Island (45.038° S, 169.684° E), and ship board data from monthly cruises between Japan, New Zealand, and Australia. A range of scenarios is used to assess the sensitivity of the inversion method to underlying assumptions and to ensure robustness of the results. The results indicate a strong seasonal cycle in terrestrial land fluxes from the South Island of New Zealand, especially in western regions covered by indigenous forest, suggesting higher photosynthetic and respiratory activity than is evident in the current a priori land process model. On the annual scale, the terrestrial biosphere in New Zealand is estimated to be a net CO2 sink, removing 98 (±37) Tg CO2 yr-1 from the atmosphere on average during 2011-2013. This sink is much larger than the reported 27 Tg CO2 yr-1 from the national inventory for the same time period. The difference can be partially reconciled when factors related to forest and agricultural management and exports, fossil fuel emission estimates, hydrologic fluxes, and soil carbon change are considered, but some differences are likely to remain. Baseline uncertainty, model transport uncertainty, and limited sensitivity to the northern half of the North Island are the main contributors to flux uncertainty.

  13. Effects of simulated spring thaw of permafrost from mineral cryosol on CO2 emissions and atmospheric CH4 uptake

    Science.gov (United States)

    Stackhouse, Brandon T.; Vishnivetskaya, Tatiana A.; Layton, Alice; Chauhan, Archana; Pfiffner, Susan; Mykytczuk, Nadia C.; Sanders, Rebecca; Whyte, Lyle G.; Hedin, Lars; Saad, Nabil; Myneni, Satish; Onstott, Tullis C.

    2015-09-01

    Previous studies investigating organic-rich tundra have reported that increasing biodegradation of Arctic tundra soil organic carbon (SOC) under warming climate regimes will cause increasing CO2 and CH4 emissions. Organic-poor, mineral cryosols, which comprise 87% of Arctic tundra, are not as well characterized. This study examined biogeochemical processes of 1 m long intact mineral cryosol cores (1-6% SOC) collected in the Canadian high Arctic. Vertical profiles of gaseous and aqueous chemistry and microbial composition were related to surface CO2 and CH4 fluxes during a simulated spring/summer thaw under light versus dark and in situ versus water saturated treatments. CO2 fluxes attained 0.8 ± 0.4 mmol CO2 m-2 h-1 for in situ treatments, of which 85 ± 11% was produced by aerobic SOC oxidation, consistent with field observations and metagenomic analyses indicating aerobic heterotrophs were the dominant phylotypes. The Q10 values of CO2 emissions ranged from 2 to 4 over the course of thawing. CH4 degassing occurred during initial thaw; however, all cores were CH4 sinks at atmospheric concentration CH4. Atmospheric CH4 uptake rates ranged from -126 ± 77 to -207 ± 7 nmol CH4 m-2 h-1 with CH4 consumed between 0 and 35 cm depth. Metagenomic and gas chemistry analyses revealed that high-affinity Type II methanotrophic sequence abundance and activity were highest between 0 and 35 cm depth. Microbial sulfate reduction dominated the anaerobic processes, outcompeting methanogenesis for H2 and acetate. Fluxes, microbial community composition, and biogeochemical rates indicate that mineral cryosols of Axel Heiberg Island act as net CO2 sources and atmospheric CH4 sinks during summertime thaw under both in situ and water saturated states.

  14. CO2 uptake and ecophysiological parameters of the grain crops of midcontinent North America: estimates from flux tower measurements

    Science.gov (United States)

    Gilmanov, Tagir; Wylie, Bruce; Tieszen, Larry; Meyers, Tilden P.; Baron, Vern S.; Bernacchi, Carl J.; Billesbach, David P.; Burba, George G.; Fischer, Marc L.; Glenn, Aaron J.; Hanan, Niall P.; Hatfield, Jerry L.; Heuer, Mark W.; Hollinger, Steven E.; Howard, Daniel M.; Matamala, Roser; Prueger, John H.; Tenuta, Mario; Young, David G.

    2013-01-01

    We analyzed net CO2 exchange data from 13 flux tower sites with 27 site-years of measurements over maize and wheat fields across midcontinent North America. A numerically robust “light-soil temperature-VPD”-based method was used to partition the data into photosynthetic assimilation and ecosystem respiration components. Year-round ecosystem-scale ecophysiological parameters of apparent quantum yield, photosynthetic capacity, convexity of the light response, respiration rate parameters, ecological light-use efficiency, and the curvature of the VPD-response of photosynthesis for maize and wheat crops were numerically identified and interpolated/extrapolated. This allowed us to gap-fill CO2 exchange components and calculate annual totals and budgets. VPD-limitation of photosynthesis was systematically observed in grain crops of the region (occurring from 20 to 120 days during the growing season, depending on site and year), determined by the VPD regime and the numerical value of the curvature parameter of the photosynthesis-VPD-response, σVPD. In 78% of the 27 site-years of observations, annual gross photosynthesis in these crops significantly exceeded ecosystem respiration, resulting in a net ecosystem production of up to 2100 g CO2 m−2 year−1. The measurement-based photosynthesis, respiration, and net ecosystem production data, as well as the estimates of the ecophysiological parameters, provide an empirical basis for parameterization and validation of mechanistic models of grain crop production in this economically and ecologically important region of North America.

  15. CO2 uptake and fixation by endosymbiotic chemoautotrophs from the bivalve Solemya velum.

    Science.gov (United States)

    Scott, Kathleen M; Cavanaugh, Colleen M

    2007-02-01

    Chemoautotrophic symbioses, in which endosymbiotic bacteria are the major source of organic carbon for the host, are found in marine habitats where sulfide and oxygen coexist. The purpose of this study was to determine the influence of pH, alternate sulfur sources, and electron acceptors on carbon fixation and to investigate which form(s) of inorganic carbon is taken up and fixed by the gamma-proteobacterial endosymbionts of the protobranch bivalve Solemya velum. Symbiont-enriched suspensions were generated by homogenization of S. velum gills, followed by velocity centrifugation to pellet the symbiont cells. Carbon fixation was measured by incubating the cells with (14)C-labeled dissolved inorganic carbon. When oxygen was present, both sulfide and thiosulfate stimulated carbon fixation; however, elevated levels of either sulfide (>0.5 mM) or oxygen (1 mM) were inhibitory. In the absence of oxygen, nitrate did not enhance carbon fixation rates when sulfide was present. Symbionts fixed carbon most rapidly between pH 7.5 and 8.5. Under optimal pH, sulfide, and oxygen conditions, symbiont carbon fixation rates correlated with the concentrations of extracellular CO(2) and not with HCO(3)(-) concentrations. The half-saturation constant for carbon fixation with respect to extracellular dissolved CO(2) was 28 +/- 3 microM, and the average maximal velocity was 50.8 +/- 7.1 micromol min(-1) g of protein(-1). The reliance of S. velum symbionts on extracellular CO(2) is consistent with their intracellular lifestyle, since HCO(3)(-) utilization would require protein-mediated transport across the bacteriocyte membrane, perisymbiont vacuole membrane, and symbiont outer and inner membranes. The use of CO(2) may be a general trait shared with many symbioses with an intracellular chemoautotrophic partner.

  16. CO2 uptake of a mature Acacia mangium plantation estimated from sap flow measurements and stable carbon isotope discrimination

    Science.gov (United States)

    Wang, H.; Zhao, P.; Zou, L. L.; McCarthy, H. R.; Zeng, X. P.; Ni, G. Y.; Rao, X. Q.

    2014-03-01

    A simple, nondestructive method for the estimation of canopy CO2 uptake is important for understanding the CO2 exchange between forest and atmosphere. Canopy CO2 uptake (FCO2) of a subtropical mature A. mangium plantation was estimated by combining sap flow measurements and stable carbon isotope discrimination (Δ) in Southern China from 2004 to 2007. The mechanistic relationship linking FCO2, Δ in leaf sap, and sap flow-based canopy stomatal conductance (Gs) was applied in our study. No significant seasonal variations were observed in Δ or in the ratio of the intercellular and ambient CO2 concentrations (Ci/Ca), although diurnal Ci/Ca varied between sunlit and shaded leaves. A sensitivity analysis showed that estimates of FCO2 were more sensitive to dynamics in Gs than in Ca and Δ. By using seasonally and canopy averaged Ci/Ca values, we obtained an acceptable estimate of FCO2 compared to other estimates. FCO2 exhibited similar diurnal variation to that of Gs. Large seasonal variation in FCO2 was attributed to the responsiveness of Gs to vapor pressure deficit, photosynthetically active radiation, and soil moisture deficit. Our estimate of FCO2 for a mature A. mangium plantation (2.13 ± 0.40 gC m-2 d-1) approached the lower range of values for subtropical mixed forests, probably due to lower mean canopy stomatal conductance, higher Ci/Ca, and greater tree height than other measured forests. Our estimate was also lower than values determined by satellite-based modeling or carbon allocation studies, suggesting the necessity of stand level flux data for verification. Qualitatively, the sap flux/stable isotope results compared well with gas exchange results. Differences in results between the two approaches likely reflected variability due to leaf position and age, which should be reduced for the combined sap flux and isotope technique, as it uses canopy average values of Gs and Ci/Ca.

  17. Enhanced uptake and photoactivation of topical methyl aminolevulinate after fractional CO2 laser pretreatment

    DEFF Research Database (Denmark)

    Haedersdal, M; Katsnelson, J; Sakamoto, F H;

    2011-01-01

    Photodynamic therapy (PDT) of thick skin lesions is limited by topical drug uptake. Ablative fractional resurfacing (AFR) creates vertical channels that may facilitate topical PDT drug penetration and improve PDT-response in deep skin layers. The purpose of this study was to evaluate whether pre...

  18. Enhanced uptake and photoactivation of topical methyl aminolevulinate after fractional CO2 laser pretreatment

    DEFF Research Database (Denmark)

    Haedersdal, M; Katsnelson, J; Sakamoto, F H

    2011-01-01

    Photodynamic therapy (PDT) of thick skin lesions is limited by topical drug uptake. Ablative fractional resurfacing (AFR) creates vertical channels that may facilitate topical PDT drug penetration and improve PDT-response in deep skin layers. The purpose of this study was to evaluate whether pre...

  19. Terrestrial biospheric and oceanic CO2 uptakes estimated from long-term measurements of atmospheric CO2 mole fraction, δ13C, and δ(O2/N2) at Ny-Ålesund, Svalbard

    Science.gov (United States)

    Goto, Daisuke; Morimoto, Shinji; Ishidoya, Shigeyuki; Aoki, Shuji; Nakazawa, Takakiyo

    2017-05-01

    Systematic observations of CO2 mole fraction, the isotopic ratio δ13C of CO2, and oxygen to nitrogen ratio (δ(O2/N2)) in the atmosphere have been carried out at Ny-Ålesund, Svalbard, since 1991, 1996, and 2001, respectively. The CO2 mole fraction shows a clear seasonal cycle superimposed on a secular increase with an average rate of 2.0 ppm yr-1 for the period of 1996-2013. On the other hand, δ13C and δ(O2/N2) decrease secularly at an average rate of -0.020‰ yr-1 for 1996-2013 and -19.9 per meg yr-1 for 2001-2013, respectively. Based on the observed secular trends of the CO2 mole fraction and δ(O2/N2), the average CO2 uptake during 2001-2013 was estimated to be 1.6 ± 0.8 and 2.3 ± 0.5 GtC yr-1 for the terrestrial biosphere and the ocean, respectively. By using the observed CO2 and δ13C, the corresponding CO2 uptakes of 1.3 ± 0.6 and 2.6 ± 0.5 GtC yr-1 were obtained for the same period. The estimates from the two methods are in good agreement with each other. The terrestrial biospheric CO2 uptake derived by the latter method showed large interannual variability in association with El Niño events. On the other hand, the oceanic uptake increased secularly with less interannual variability during 1996-2013.

  20. Lactate uptake into mouse cardiomyocytes is coupled to CO2-dependent acid/base regulation

    OpenAIRE

    Peetz, Jan

    2014-01-01

    The heart is reported to show a net consumption of lactate. This may contribute up to 15% to the total body lactate disposal. In this work, the consumption of lactate was shown for the first time on the single cell level with the new FRET-based lactate sensor Laconic. Research published until today, almost exclusively reports the monocarboxylate transporter 1 (MCT1) as the transporter responsible for myocardial lactate uptake. As this membrane transporter transports lactate togeth...

  1. Glacial meltwater and primary production are drivers of strong CO2 uptake in fjord and coastal waters adjacent to the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    L. Meire

    2015-04-01

    Full Text Available The Greenland Ice Sheet releases large amounts of freshwater, which strongly influences the physical and chemical properties of the adjacent fjord systems and continental shelves. Glacial meltwater input is predicted to strongly increase in the future, but the impact of meltwater on the carbonate dynamics of these productive coastal systems remains largely unquantified. Here we present seasonal observations of the carbonate system over the year 2013 in the surface waters of a west Greenland fjord (Godthåbsfjord influenced by tidewater outlet glaciers. Our data reveal that the surface layer of the entire fjord and adjacent continental shelf are undersaturated in CO2 throughout the year. The average annual CO2 uptake within the fjord is estimated to be 65 g C m−2 yr−1, indicating that the fjord system is a strong sink for CO2. The largest CO2 uptake occurs in the inner fjord near to the Greenland Ice Sheet and high glacial meltwater input during the summer months correlates strongly with low pCO2 values. This strong CO2 uptake can be explained by the thermodynamic effect on the surface water pCO2 resulting from the mixing of fresh glacial meltwater and ambient saline fjord water, which results in a CO2 uptake of 1.8 mg C kg−1 of glacial ice melted. We estimated that 28% of the CO2 uptake can be attributed to the input of glacial meltwater, while the remaining part is due to high primary production. Our findings imply that glacial melt\\-water is an important driver for undersaturation in CO2 in fjord and coastal waters adjacent to large ice sheets.

  2. Integrated Analysis of Engineered Carbon Limitation in a Quadruple CO2/HCO3- Uptake Mutant of Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Orf, Isabel; Klähn, Stephan; Schwarz, Doreen; Frank, Marcus; Hess, Wolfgang R; Hagemann, Martin; Kopka, Joachim

    2015-11-01

    Cyanobacteria have efficient carbon concentration mechanisms and suppress photorespiration in response to inorganic carbon (Ci) limitation. We studied intracellular Ci limitation in the slow-growing CO2/HCO3 (-)-uptake mutant ΔndhD3 (for NADH dehydrogenase subunit D3)/ndhD4 (for NADH dehydrogenase subunit D4)/cmpA (for bicarbonate transport system substrate-binding protein A)/sbtA (for sodium-dependent bicarbonate transporter A): Δ4 mutant of Synechocystis sp. PCC 6803. When cultivated under high-CO2 conditions, ∆4 phenocopies wild-type metabolic and transcriptomic acclimation responses after the shift from high to low CO2 supply. The ∆4 phenocopy reveals multiple compensation mechanisms and differs from the preacclimation of the transcriptional Ci regulator mutant ∆ndhR (for ndhF3 operon transcriptional regulator). Contrary to the carboxysomeless ∆ccmM (for carbon dioxide concentrating mechanism protein M) mutant, the metabolic photorespiratory burst triggered by shifting to low CO2 is not enhanced in ∆4. However, levels of the photorespiratory intermediates 2-phosphoglycolate and glycine are increased under high CO2. The number of carboxysomes is increased in ∆4 under high-CO2 conditions and appears to be the major contributing factor for the avoidance of photorespiration under intracellular Ci limitation. The ∆4 phenocopy is associated with the deregulation of Ci control, an overreduced cellular state, and limited photooxidative stress. Our data suggest multiple layers of Ci regulation, including inversely regulated modules of antisense RNAs and cognate target messenger RNAs and specific trans-acting small RNAs, such as the posttranscriptional PHOTOSYNTHESIS REGULATORY RNA1 (PsrR1), which shows increased expression in ∆4 and is involved in repressing many photosynthesis genes at the posttranscriptional level. In conclusion, our insights extend the knowledge on the range of compensatory responses of Synechocystis sp. PCC 6803 to intracellular Ci

  3. A Study on Potentiality of Carbon Storage and CO2 Uptake in the Biomass and Soil of Coppice Stand

    Directory of Open Access Journals (Sweden)

    A. Khademi

    2009-01-01

    Full Text Available Problem statement: Enhancing carbon storage in terrestrial ecosystems, especially in the forests, is a key factor in maintaining the atmosphere's carbon balance. With regard to the importance of forest in carbon sequestration, this study attempted to investigate the carbon storage potential and CO2 uptake in oak coppice stand. Approach: After combining slope, aspect and hypsometric maps, the number of land units (polygons as well as their areas were determined. Then 60 sample trees were selected in such a way that all environmental and typological conditions were taken into account. After determining the overall weight of different parts of tree, to measure the dry weight as well as to determine the amount of biomass, different parts of tree were transformed to a kiln. The humus was collected and weighted in an area of 400 cm2 under each tree. The quantity of ash was taken away from biomass, then the amount of organic sequestrated carbon as well as that of CO2 uptake was measured. To determine the amount of carbon stored in the soil samples were extracted from the depths of 0-10 and 10-30 cm. Results: The amount of organic sequestrated carbon was 22.65 tons ha-1. The trunk, root, branch, soil, leaf and humus had the maximal amount of storage respectively. The annual carbon dioxide uptake was 5.94 tons ha-1. Conclusion: Coppice stands had massive plant coverage as well as an increase in biomass production if the destructive factors were removed from these areas.

  4. Glycine uptake in heath plants and soil microbes responds to elevated temperature, CO2 and drought

    DEFF Research Database (Denmark)

    Andresen, Luise C.; Michelsen, Anders; Jonasson, Sven

    2009-01-01

    may increase plant root exudation of dissolved organic compounds such as amino acids, and the release of amino acids during decomposition of organic matter. Such free amino acids in soil serve as substrates for soil microorganisms and are also acquired as nutrients directly by plants. We investigated...... the magnitude of the response to the potential climate change treatments on uptake of organic nitrogen in an in situ pulse labelling experiment with 15N13C2-labelled glycine (amino acid) injected into the soil. In situ root nitrogen acquisition by grasses responded significantly to the climate change treatments...... the responses to single factors treatments. The soil microbes were superior to plants in the short-term competition for the added glycine, as indicated by an 18 times larger 15N recovery in the microbial biomass compared to the plant biomass. The soil microbes acquired glycine largely as an intact compound (87...

  5. Effects of rhizopheric nitric oxide (NO) on N uptake in Fagus sylvatica seedlings depend on soil CO2 concentration, soil N availability and N source.

    Science.gov (United States)

    Dong, Fang; Simon, Judy; Rienks, Michael; Lindermayr, Christian; Rennenberg, Heinz

    2015-08-01

    Rhizospheric nitric oxide (NO) and carbon dioxide (CO2) are signalling compounds known to affect physiological processes in plants. Their joint influence on tree nitrogen (N) nutrition, however, is still unknown. Therefore, this study investigated, for the first time, the combined effect of rhizospheric NO and CO2 levels on N uptake and N pools in European beech (Fagus sylvatica L.) seedlings depending on N availability. For this purpose, roots of seedlings were exposed to one of the nine combinations (i.e., low, ambient, high NO plus CO2 concentration) at either low or high N availability. Our results indicate a significant effect of rhizospheric NO and/or CO2 concentration on organic and inorganic N uptake. However, this effect depends strongly on NO and CO2 concentration, N availability and N source. Similarly, allocation of N to different N pools in the fine roots of beech seedlings also shifted with varying rhizospheric gas concentrations and N availability.

  6. Effects of Atmospheric CO2 Enrichment, Applied Nitrogen and Soil Moisture on Dry Matter Accumulation and Nitrogen Uptake in Spring Wheat

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Spring wheat (Triticum aestivum L. cv. Dingxi No. 8654) was treated with two concentrations of atmospheric COz (350 and 700 μmol mol-1), two levels of soil moisture (well-watered and drought) and five rates of nitrogen fertilizer (0, 50, 100, 150, and 200 mg kg-1 soil) to study the atmospheric CO2 concentration effect on dry matter accumulation and N uptake of spring wheat. The effects of CO2 enrichment on the shoot and total mass depended largely on soil nitrogen level, and the shoot and total mass increased significantly in the moderate to high N treatments but did not increase significantly in the low N treatment. Enriched CO2concentration did not increase more shoot and total mass in the drought treatment than in the well-watered treatment. Thus, elevated CO2 did not ameliorate the depressive effects of drought and nitrogen stress. In addition, root mass decreased slightly and root/shoot ratio decreased significantly due to CO2 enrichment in no N treatment under well-watered condition. Enriched CO2 decreased shoot N content and shoot and total N uptake; but it reduced root N content and uptake slightly. Shoot critical N concentration was lower for spring wheat grown at 700 μmol mol-1 CO2 than at 350 μmol mol-1 CO2 in both well-watered and drought treatments. The critical N concentrations were 16 and 19 g kg-1 for the well-watered treatment and drought treatment at elevated CO2 and 21 and 26 g kg-1 at ambient CO2, respectively. The reductions in the movement of nutrients to the plant roots through mass flow due to the enhancement in WUE (water use efficiency) and the increase in N use efficiency at elevated CO2 could elucidate the reduction of shoot and root N concentrations.

  7. Enhancement of CO2 and H2 Uptake for the Production of Biodiesel in Cupriavidus Necator

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R. P.; Eckert, C. A.; Balzer, G. J.; Yu, J.; Maness, P. C.

    2012-01-01

    Cupriavidus necator fixes CO{sub 2} through the Calvin-Benson-Bassham (CBB) cycle using electrons and energy obtained from the oxidation of H{sub 2}. Producing biodiesel-equivalent electrofuel from renewable CO{sub 2} and H{sub 2} has immense potential, especially if the fuel is compatible with the existing fuel infrastructure. This research addressed enhanced substrate utilization by focusing on two strategies: (1) optimizing transcriptional regulations to afford over-expression of Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), the enzyme responsible for assimilation of CO{sub 2} into the CBB cycle; and (2) hydrogenase over-expression by introduction of additional copies of genes encoding a membrane-bound hydrogenase (MBH), a soluble hydrogenase (SH), and their maturation machinery to enhance oxidation of H{sub 2} to generate NAD(P)H and ATP required for CO{sub 2} fixation. Incorporation of these strategies into a single production strain resulted in 6-fold CO{sub 2} and 3-fold H{sub 2} uptake improvement, in vitro, with the overarching goal of providing abundant reducing equivalents towards the economic production of biodiesel in C. necator.

  8. Facile Carbonization of Microporous Organic Polymers into Hierarchically Porous Carbons Targeted for Effective CO2 Uptake at Low Pressures.

    Science.gov (United States)

    Gu, Shuai; He, Jianqiao; Zhu, Yunlong; Wang, Zhiqiang; Chen, Dongyang; Yu, Guipeng; Pan, Chunyue; Guan, Jianguo; Tao, Kai

    2016-07-20

    The advent of microporous organic polymers (MOPs) has delivered great potential in gas storage and separation (CCS). However, the presence of only micropores in these polymers often imposes diffusion limitations, which has resulted in the low utilization of MOPs in CCS. Herein, facile chemical activation of the single microporous organic polymers (MOPs) resulted in a series of hierarchically porous carbons with hierarchically meso-microporous structures and high CO2 uptake capacities at low pressures. The MOPs precursors (termed as MOP-7-10) with a simple narrow micropore structure obtained in this work possess moderate apparent BET surface areas ranging from 479 to 819 m(2) g(-1). By comparing different activating agents for the carbonization of these MOPs matrials, we found the optimized carbon matrials MOPs-C activated by KOH show unique hierarchically porous structures with a significant expansion of dominant pore size from micropores to mesopores, whereas their microporosity is also significantly improved, which was evidenced by a significant increase in the micropore volume (from 0.27 to 0.68 cm(3) g(-1)). This maybe related to the collapse and the structural rearrangement of the polymer farmeworks resulted from the activation of the activating agent KOH at high temperature. The as-made hierarchically porous carbons MOPs-C show an obvious increase in the BET surface area (from 819 to 1824 m(2) g(-1)). And the unique hierarchically porous structures of MOPs-C significantly contributed to the enhancement of the CO2 capture capacities, which are up to 214 mg g(-1) (at 273 K and 1 bar) and 52 mg g(-1) (at 273 K and 0.15 bar), superior to those of the most known MOPs and porous carbons. The high physicochemical stabilities and appropriate isosteric adsorption heats as well as high CO2/N2 ideal selectivities endow these hierarchically porous carbon materials great potential in gas sorption and separation.

  9. Remarkable Improvement in the Mechanical Properties and CO2 Uptake of MOFs Brought About by Covalent Linking to Graphene.

    Science.gov (United States)

    Kumar, Ram; Raut, Devaraj; Ramamurty, Upadrasta; Rao, C N R

    2016-06-27

    Metal-organic frameworks (MOFs) are exceptional as gas adsorbents but their mechanical properties are poor. We present a successful strategy to improve the mechanical properties along with gas adsorption characteristics, wherein graphene (Gr) is covalently bonded with M/DOBDC (M=Mg(2+) , Ni(2+) , or Co(2+) , DOBDC=2,5-dioxido-1,4-benzene dicarboxylate) MOFs. The surface area of the graphene-MOF composites increases up to 200-300 m(2)  g(-1) whereas the CO2 uptake increases by ca. 3-5 wt % at 0.15 atm and by 6-10 wt % at 1 atm. What is significant is that the composites exhibit improved mechanical properties. In the case of Mg/DOBDC, a three-fold increase in both the elastic modulus and hardness with 5 wt % graphene reinforcement is observed. Improvement in both the mechanical properties and gas adsorption characteristics of porous MOFs on linking them to graphene is a novel observation and suggests a new avenue for the design and synthesis of porous materials.

  10. Summer drought leads to reduced net CO2 uptake and CH4 fluxes in a New Zealand peatland

    Science.gov (United States)

    Goodrich, J. P.; Campbell, D.; Schipper, L. A.; Clearwater, M.

    2013-12-01

    Global climate change is likely to influence the frequency and severity of drought events in many regions. This has implications for changing carbon (C) storage in peatland ecosystems, which provide an important global sink for atmospheric C. However, the relative impacts on ecosystem respiration (ER), gross primary productivity (GPP), and CH4 efflux are not well understood and may alter the C balance differently depending on peatland type, vegetation, and timing of drought. We measured CO2 and CH4 fluxes using eddy covariance in a New Zealand peatland during two contrasting years capturing the impact of an historically extreme drought on these two major components of the net ecosystem C balance. Kopuatai bog is a 96 km2 ombrotrophic raised bog dominated by the endemic peat-forming rush species, Empodisma robustum. The drought impacted the growing season period from January to May, 2013. Net ecosystem exchange of CO2 (NEE) during the drought was approximately half that of the previous relatively wet summer. From January 1 to May 1, cumulative NEE was -133.3 gC m-2 in 2012 and -66.7 gC m-2 in 2013. Increases in ER during the drought were responsible for up to 88% of the difference in NEE, while differences in GPP were comparatively small. For April, mean daily CH4 fluxes during the drought (25 mgCH4 m-2 day-1) reduced to approximately one third of the mean flux measured in April 2012 (80 mgCH4 m-2 day-1). CH4 fluxes remained low for several months following water table recharge, suggesting a substantial lag in the recovery of the methanogenic population. Despite the magnitude of respiration enhancement, the relatively consistent GPP and reduced CH4 flux led to net storage of C during drought, albeit significantly smaller than the previous wet year.

  11. Functional traits and structural controls on the relationship between photosynthetic CO2 uptake and sun-induced fluorescence in a Mediterranean grassland under different nutrient availability

    Science.gov (United States)

    Migliavacca, Mirco

    2016-04-01

    Recent studies have shown how human induced nitrogen (N) and phosphorous (P) imbalances affect essential ecosystem processes, and might be particularly important in water-limited ecosystems. Hyperspectral information can be used to directly infer nutrient-induced variation in structural and functional changes of vegetation under different nutrient availability. However, several uncertainties still hamper the direct link between photosynthetic CO2 uptake (gross primary productivity, GPP) and hyperspectral reflectance. Sun-induced fluorescence (SIF) provides a new non-invasive measurement approach that has the potential to quantify dynamic changes in light use efficiency and photosynthetic CO2 uptake. In this contribution we will present an experiment conducted in a Mediterranean grassland, where 16 plots of 8x8 meters were manipulated by adding nutrient (N, P, and NP). Almost simultaneous estimates of canopy scale GPP and SIF were conducted with transparent transient-state canopy chambers and high resolution spectrometers, respectively. We investigated the response of GPP and SIF to different nutrient availability and plant stoichiometry. The second objective was to identify how structural (LAI, leaf angle distribution, and biodiversity) and canopy biochemical properties (e.g. N and chlorophyll content - Chl) control the functional relationship between GPP and SIF. To test the different hypotheses the SCOPE radiative transfer model was used. We ran a factorial experiment with SCOPE to disentangle the main drivers (structure vs biochemistry) of the relationship GPP-SIF. The results showed significant differences in GPP values between N and without N addition plots. We also found that vegetation indices sensitive to pigment variations and physiology (such as photochemical reflectance index PRI) and SIF showed differences between different treatments. SCOPE showed very good agreement with the observed data (R2=0.71). The observed variability in SIF was mainly related

  12. CO2 uptake of Opuntia ficus-indica (L. Mill. whole trees and single cladodes, in relation to plant water status and cladode age

    Directory of Open Access Journals (Sweden)

    Giorgia Liguori

    2013-02-01

    Full Text Available Most of net photosynthesis determinations in Opuntia ficus-indica come from measurements on individual cladodes. However, they have limitations when used to scale up to whole canopy gas exchange, because a large variability of carbon assimilation may occur within the canopy, due to, among others, differences in cladode age and intercepted radiation or individual cladode response to abiotic stresses. The aim of this work was to evaluate the application of open gas exchange chambers, simultaneously applied around the whole canopy, to measure net CO2 uptake, continuously over a 24 h period, in single Opuntia ficus-indica (L. Mill. potted trees and in relation with their water status. Net CO2 uptake was also measured for single cladodes differentiated by age. O. ficus-indica trees continued their photosynthetic activity 60 days after the irrigation was stopped, when soil water content was lower than 5%. At this stage, current-year and 1-year-old cladodes had become flaccid but still the daily net CO2 uptake of non-irrigated trees kept the same rate than at the beginning of the experiment, while watered trees had doubled their net CO2 uptake. The highest instantaneous rates and total daily net CO2 uptake for both well-watered and non-irrigated trees occurred 60 days after the onset of the dry period, when maximal instantaneous rates were 11.1 in well-watered trees and 8.4 mol m–2 s–1 in non-irrigated trees. During the drought period, the chlorenchyma fresh weight decreased by 45% and 30%, in 1- and 2-yearold drought cladodes respectively, and marginally increased in currentyear ones (+20%. Net CO2 uptake for 1-year-old and 2-year-old cladodes changed only at highest photosynthetic photon flux density and temperatures, and average seasonal net CO2 uptake of 2-year-old cladodes was 15% lower than for 1-year-old ones. Whole-tree gas exchange measurements applied for the first time to O. ficus-indica indicated that whole cactus pear trees maintain

  13. Effects of elevated CO2 on soil organic matter turnover and plant nitrogen uptake: First results from a dual labeling mesocosm experiment

    Science.gov (United States)

    Eder, Lucia Muriel; Weber, Enrico; Schrumpf, Marion; Zaehle, Sönke

    2017-04-01

    The response of plant growth to elevated concentrations of CO2 (eCO2) is often constrained by plant nitrogen (N) uptake. To overcome potential N limitation, plants may invest photosynthetically fixed carbon (C) into N acquiring strategies, including fine root biomass, root exudation, or C allocation to mycorrhizal fungi. In turn, these strategies may affect the decomposition of soil organic matter, leading to uncertainties in net effects of eCO2 on C storage. To gain more insight into these plant-soil C-N-interactions, we combined C and N stable isotope labeling in a mesocosm experiment. Saplings of Fagus sylvatica L. were exposed to a 13CO2 enriched atmosphere at near ambient (380 ppm) or elevated (550 ppm) CO2 concentrations for four months of the vegetation period in 2016. Aboveground and belowground net CO2 fluxes were measured separately and the 13C label enabled partitioning of total soil CO2 efflux into old, soil derived and new, plant-derived C. We used ingrowth cores to assess effects of eCO2on belowground C allocation and plant N uptake in more detail and in particular we evaluated the relative importance of ectomycorrhizal associations. In the soil of each sapling, ingrowth cores with different mesh sizes allowed fine roots or only mycorrhizal hyphae to penetrate. In one type of ingrowth core each, we incorporated fine root litter that was enriched in 15N. Additionally, total N uptake was estimated by using 15N enriched saplings and unlabeled control plants. We found that eCO2 increased aboveground net CO2 exchange rates by 19% and total soil respiration by 11%. The eCO2 effect for GPP and also for NPP was positive (+23% and +11%, respectively). By combining gaseous C fluxes with data on new and old C stocks in bulk soil and plants through destructive harvesting in late autumn 2016, we will be able to infer net effects of eCO2 on the fate of C in these mesocosms. Biomass allocation patterns can reveal physiological responses to high C availability under

  14. A Rationally Designed Nitrogen-Rich Metal-Organic Framework and Its Exceptionally High CO2 and H2 Uptake Capability

    Science.gov (United States)

    Wang, Xiao-Jun; Li, Pei-Zhou; Chen, Yifei; Zhang, Quan; Zhang, Huacheng; Chan, Xiu Xiang; Ganguly, Rakesh; Li, Yongxin; Jiang, Jianwen; Zhao, Yanli

    2013-01-01

    On the way towards a sustainable low-carbon future, the design and construction of chemical or physical adsorbents for CO2 capture and clean energy storage are vital technology. The incorporation of accessible nitrogen-donor sites into the pore walls of porous adsorbents can dramatically affect the CO2 uptake capacity and selectivity on account of the dipole-quadrupole interactions between the polarizable CO2 molecule and the accessible nitrogen site. In the present work, a nitrogen-rich rth-type metal-organic framework (MOF) was constructed based on rational design and careful synthesis. The MOF presents exceptionally high uptake capacity not only for CO2 but also for H2, which is attributed to favorable interactions between the gas molecules and the nitrogen-rich triazole units of the MOF proved by both experimental measurements and theoretical molecular simulations.

  15. The contribution of changes in P release and CO2 consumption by chemical weathering to the historical trend in land carbon uptake

    Science.gov (United States)

    Goll, D. S.; Moosdorf, N.; Brovkin, V.; Hartmann, J.

    2013-12-01

    The atmospheric carbon dioxide (CO2) concentration has increased to a level unprecedented in the last 2 million years, and the concentration is projected to increase further with a rate unseen in geological past. The increase in CO2 cause a rise in surface temperatures and changes in the hydrological cycle through the redistribution of rainfall patterns. All of these changes will impact the weathering of rocks, which in turn affect atmospheric CO2 concentrations via two different pathways. On the one hand, CO2 is consumed by the dissolution reaction of the exposed minerals. And on the other hand, biological CO2 fixation is affected due to changes in phosphorus release from minerals, as biological activity is constrained by phosphorus availability at large scales. The traditional view is that both effects are negligible on a centennial time scale, but recent work on catchment scale challenge this view in favor of a potential high sensitivity of weathering to ongoing climate and land use changes. To globally quantify the contribution of CO2 fixation associated with weathering on the historical trend in terrestrial CO2 uptake, we applied a model of chemical weathering and phosphorus release under climate reconstructions from four Earth System Models. The simulations indicate that changes in weathering could have contributed considerably to the trend in terrestrial CO2 uptake since the pre-industrial revolution, with warming being the main driver of change. The increase in biological CO2 fixation is of comparable magnitude as the increase in CO2 consumption by chemical weathering. Our simulations support the previous findings on catchment scale that weathering can change significantly on a centennial time scale. This finding has implications for 21st century climate projections, which ignore changes in weathering, as well as for long-term airborne fraction of CO2 emissions, whose calculation usually neglects changes in phosphorus availability.

  16. Relationships between Photosynthetically Active Radiation, Nocturnal Acid Accumulation, and CO2 Uptake for a Crassulacean Acid Metabolism Plant, Opuntia ficus-indica1

    Science.gov (United States)

    Nobel, Park S.; Hartsock, Terry L.

    1983-01-01

    The influences of photosynthetically active radiation (PAR) and water status on nocturnal Crassulacean acid metabolism (CAM) were quantitatively examined for a widely cultivated cactus, Opuntia ficus-indica (L.) Miller. When the total daily PAR was maintained at 10 moles photons per square meter per day but the instantaneous PAR level varied, the rate of nocturnal H+ accumulation (tissue acidification) became 90% saturated near 700 micromoles per square meter per second, a PAR level typical for similar light saturation of C3 photosynthesis. The total nocturnal H+ accumulation and CO2 uptake reached 90% of maximum for a total daily PAR of about 22 moles per square meter per day. Light compensation occurred near 0 moles per square meter per day for nocturnal H+ accumulation and 4 moles per square meter per day for CO2 uptake. Above a total daily PAR of 36 moles per square meter per day or for an instantaneous PAR of 1150 micromoles per square meter per second for more than 6 hours, the nocturnal H+ accumulation actually decreased. This inhibition, which occurred at PAR levels just above those occurring in the field, was accompanied by a substantial decrease in chlorophyll content over a 1-week period. A minimum ratio of H+ accumulated to CO2 taken up of 2.5 averaged over the night occurred for a total daily PAR of 31 moles per square meter per day under wet conditions. About 2 to 6 hours into the night under such conditions, a minimum H+-to-CO2 ratio of 2.0 was observed. Under progressively drier conditions, both nocturnal H+ accumulation and CO2 uptake decreased, but the H+-to-CO2 ratio increased. A ratio of two H+ per CO2 is consistent with the H+ production accompanying the conversion of starch to malic acid, and it apparently occurs for O. ficus-indica when CAM CO2 uptake is strongly favored over respiratory activity. PMID:16662802

  17. Influence of exogenous urea on photosynthetic pigments, (14)CO 2 uptake, and urease activity in Elodea densa-environmental implications.

    Science.gov (United States)

    Maleva, Maria; Borisova, Galina; Chukina, Nadezda; Nekrasova, Galina; Prasad, M N V

    2013-09-01

    This paper analyzes the effect of exogenous urea in increased concentration gradient (0, 100, 500 and 1,000 mg L(-1)) on photosynthetic pigments (measured spectrophotometrically), uptake of (14)CO2 (using radioisotope), and urease activity (by measuring ammonia with Nessler's reagent) in leaves of Elodea densa Planch. We have observed that low concentration of urea (100 mg L(-1)) stimulates the accumulation of photosynthetic pigments and intensifies photosynthesis in E. densa, whereas high concentration (1,000 mg L(-1)) suppresses these processes. Urease activity increased by approximately 2.7 and 8 fold when exogenous urea concentrations were 100 and 500 mg L(-1), respectively. However, exogenous urea in high concentration (1,000 mg L(-1)) decreased urease activity by 1.5 fold compared to the control. The necessity of mitigating urea and other nitrogen-containing compounds (NH3 from urea) in water bodies has been discussed with emphasis on the potential for phytoremediation of urea using common water weed viz. E. densa.

  18. Increasing summer net CO2 uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI

    Science.gov (United States)

    Welp, Lisa R.; Patra, Prabir K.; Rödenbeck, Christian; Nemani, Rama; Bi, Jian; Piper, Stephen C.; Keeling, Ralph F.

    2016-07-01

    Warmer temperatures and elevated atmospheric CO2 concentrations over the last several decades have been credited with increasing vegetation activity and photosynthetic uptake of CO2 from the atmosphere in the high northern latitude ecosystems: the boreal forest and arctic tundra. At the same time, soils in the region have been warming, permafrost is melting, fire frequency and severity are increasing, and some regions of the boreal forest are showing signs of stress due to drought or insect disturbance. The recent trends in net carbon balance of these ecosystems, across heterogeneous disturbance patterns, and the future implications of these changes are unclear. Here, we examine CO2 fluxes from northern boreal and tundra regions from 1985 to 2012, estimated from two atmospheric inversions (RIGC and Jena). Both used measured atmospheric CO2 concentrations and wind fields from interannually variable climate reanalysis. In the arctic zone, the latitude region above 60° N excluding Europe (10° W-63° E), neither inversion finds a significant long-term trend in annual CO2 balance. The boreal zone, the latitude region from approximately 50-60° N, again excluding Europe, showed a trend of 8-11 Tg C yr-2 over the common period of validity from 1986 to 2006, resulting in an annual CO2 sink in 2006 that was 170-230 Tg C yr-1 larger than in 1986. This trend appears to continue through 2012 in the Jena inversion as well. In both latitudinal zones, the seasonal amplitude of monthly CO2 fluxes increased due to increased uptake in summer, and in the arctic zone also due to increased fall CO2 release. These findings suggest that the boreal zone has been maintaining and likely increasing CO2 sink strength over this period, despite browning trends in some regions and changes in fire frequency and land use. Meanwhile, the arctic zone shows that increased summer CO2 uptake, consistent with strong greening trends, is offset by increased fall CO2 release, resulting in a net neutral

  19. A new microporous carbon material synthesized via thermolysis of a porous aromatic framework embedded with an extra carbon source for low-pressure CO2 uptake.

    Science.gov (United States)

    Zhang, Yiming; Li, Baiyan; Williams, Kia; Gao, Wen-Yang; Ma, Shengqian

    2013-11-11

    Pre-introducing an extra carbon source into the porous aromatic framework of PAF-1 followed by thermolysis affords a new microporous carbon material, which demonstrates a CO2 uptake capacity of 93 cm(3) g(-1) (equivalent to 4.1 mmol g(-1) or 18.2 wt%) at 295 K and 1 bar.

  20. Stoichiometry-controlled two flexible interpenetrated frameworks: higher CO2 uptake in a nanoscale counterpart supported by accelerated adsorption kinetics.

    Science.gov (United States)

    Sikdar, Nivedita; Hazra, Arpan; Maji, Tapas Kumar

    2014-06-16

    Here, we report the synthesis, structural characterizations, and gas storage properties of two new 2-fold interpenetrated 3D frameworks, {[Zn2(bpdc)2(azpy)]·2H2O·2DMF}n (1) and {[Zn3(bpdc)3(azpy)]·4H2O·2DEF}n (2) [bpdc = 4,4'-biphenyldicarboxylate; azpy = 4,4'-azobipyridine], obtained from the same set of organic linkers. Furthermore, 1 has been successfully miniaturized to nanoscale (MOF1N) of spherical morphology to study size dependent adsorption properties through a coordination modulation method. The two different SBUs, dinuclear paddle-wheel {Zn2(COO)4} for 1 and trinuclear {Zn3(μ2-OCO)2(COO)4 }for 2, direct the different network topologies of the frameworks that render different adsorption characteristics into the systems. Both of the frameworks show guest induced structural transformations as supported by PXRD studies. Adsorption studies of 1 and 2 show CO2 selectivity over several other gases (such as N2, H2, O2, and Ar) under identical experimental conditions. Interestingly, MOF1N exhibits significantly higher CO2 storage capacity compared to bulk crystals of 1 and that can be attributed to the smaller diffusion barrier at the nanoscale that is supported by studies of adsorption kinetics in both states. Kinetic measurement based on water vapor adsorption clearly distinguishes between the rate of diffusion of bulk (1) and nanospheres (MOF1N). The respective kinetic rate constant (k, s(-1)) for MOF1N (k = 1.29 × 10(-2) s(-1)) is found to be considerably higher than 1 (k = 7.1 × 10(-3) s(-1)) as obtained from the linear driving force (LDF) model. This is the first account where a new interpenetrated MOF has been scaled down to nanoscale through a coordination modulation method, and their difference in gas uptake properties has been correlated through a higher rate of mass diffusion as obtained from kinetics of adsorption.

  1. Further observations of a decreasing atmospheric CO2 uptake capacity in the Canada Basin (Arctic Ocean) due to sea ice loss

    Science.gov (United States)

    Else, Brent G. T.; Galley, R. J.; Lansard, B.; Barber, D. G.; Brown, K.; Miller, L. A.; Mucci, A.; Papakyriakou, T. N.; Tremblay, J.-É.; Rysgaard, S.

    2013-03-01

    data collected in 2009, we evaluated the potential for the southeastern Canada Basin (Arctic Ocean) to act as an atmospheric CO2 sink under the summertime ice-free conditions expected in the near future. Beneath a heavily decayed ice cover, we found surprisingly high pCO2sw (~290-320 µatm), considering that surface water temperatures were low and the influence of ice melt was strong. A simple model simulating melt of the remaining ice and exposure of the surface water for 100 days revealed a weak capacity for atmospheric CO2 uptake (mean flux: -2.4 mmol m-2 d-1), due largely to warming of the shallow mixed layer. Our results confirm a previous finding that the Canada Basin is not a significant sink of atmospheric CO2 under summertime ice-free conditions and that increased ventilation of the surface mixed layer due to sea ice loss is weakening the sink even further.

  2. Further observations of a decreasing atmospheric CO2 uptake capacity in the Canada Basin (arctic Ocean) due to sea ice loss

    DEFF Research Database (Denmark)

    Else, B.G.T.; Galley, R.J.; Lansard, B.

    2013-01-01

    [1] Using data collected in 2009, we evaluated the potential for the southeastern Canada Basin (Arctic Ocean) to act as an atmospheric CO2 sink under the summertime ice-free conditions expected in the near future. Beneath a heavily decayed ice cover, we found surprisingly high pCO2sw (~290–320matm......), considering that surface water temperatures were low and the influence of ice melt was strong. A simple model simulating melt of the remaining ice and exposure of the surface water for 100 days revealed a weak capacity for atmospheric CO2 uptake (mean flux: 2.4 mmol m2 d1), due largely to warming of the shallow....... Galley, B. Lansard, D. G. Barber, K. Brown, L. A. Miller, A. Mucci, T. N. Papakyriakou, J.-É. Tremblay, and S. Rysgaard (2013), Further observations of a decreasing atmospheric CO2 uptake capacity in the Canada Basin (Arctic Ocean) due to sea ice loss, Geophys. Res. Lett., 40, 1132–1137, doi:10.1002/grl...

  3. Elevated uptake of CO2 over Europe inferred from GOSAT XCO2 retrievals: a real phenomenon or an artefact of the analysis?

    Directory of Open Access Journals (Sweden)

    L. Feng

    2015-01-01

    Full Text Available Estimates of the natural CO2 flux over Europe inferred from in situ measurements of atmospheric CO2 mole fraction have been used previously to check top-down flux estimates inferred from space-borne dry-air CO2 column (XCO2 retrievals. Recent work has shown that CO2 fluxes inferred from XCO2 data from the Japanese Greenhouse gases Observing SATellite (GOSAT have a larger seasonal amplitude and a more negative annual net CO2 balance than those inferred from the in situ data. The causes of this enhanced European CO2 uptake have since become the focus of recent studies. We show this elevated uptake over Europe could largely be explained by mis-fitting data due to regional biases. We establish a reference in situ inversion that uses an Ensemble Kalman Filter (EnKF to assimilate surface flask data and the XCO2 data from the surface-based Total Carbon Column Observing Network (TCCON. The same EnKF system is also used to assimilate two, independent versions of GOSAT XCO2 data. We find that the GOSAT-inferred European terrestrial biosphere uptake peaks during the summer, similar to the reference inversion, but the net annual flux is 1.18 ± 0.1 GtC a−1 compared to a value of 0.56 ± 0.1 GtC a−1 for our control inversion that uses only in situ data. To reconcile these two estimates, we have performed a series of numerical experiments that assimilate observations with biases or assimilate synthetic observations for which part or all of the GOSAT XCO2 data are replaced with model data. We find that 50–80% of the elevated European uptake in 2010 inferred from GOSAT data is due to retrievals outside the immediate European region, while most of the remainder can be explained by a sub-ppm retrieval bias over Europe. We have used data assimilation techniques to estimate monthly GOSAT XCO2 biases from the joint assimilation of in situ observations and GOSAT XCO2 retrievals. We find a monthly varying bias of up to 0.5 ppm can explain an overestimate of the

  4. High air-sea CO 2 uptake rates in nearshore and shelf areas of Southern Greenland: Temporal and spatial variability

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Mortensen, J.; Juul-Pedersen, T.

    2012-01-01

    The present study is based on hourly samplings of wind speed, monthly sampling sessions of temperature, salinity, dissolved inorganic carbon, alkalinity, nutrients, primary productivity and vertical export in the outer sill region (station GF3) of a sub-arctic SW Greenland fjord (Godthåbsfjord...... be considered as a strong sink (7.2tons C month -1km -2) for atmospheric CO 2. In addition, measurements from Godthåbsfjord during the summer season showed that mixing between glacial meltwater and coastal water could explain a large part of the low pCO 2-values observed in the innermost part of the fjord....... Finally, a larger survey confirmed the existence of very low pCO 2 conditions in nearshore and shelf waters around Southern Greenland. © 2011 Elsevier B.V....

  5. A Model-based Estimate of the Relative Importance of Climate warming, CO2-fertilization and Nitrogen Deposition to Global Terrestrial Carbon Uptake (Invited)

    Science.gov (United States)

    Bala, G.; Narayanappa, D.; Chaturvedi, R.; Caldeira, K.; Nemani, R. R.

    2013-12-01

    Global carbon budget studies indicate that the terrestrial ecosystems have remained a large sink for carbon in recent decades despite deforestation activities. Carbon uptake due to CO2- fertilization, N deposition and regrowth of mid-latitude forests are believed to be the key drivers. In this study, we assess the importance of N deposition by performing idealized near-equilibrium simulations using the Community Land Model 4.0 (CLM4). In our 1000-year equilibrium simulations, only 12-17% of the deposited Nitrogen is assimilated into the ecosystem and the corresponding carbon uptake can be inferred from a C:N ratio of 20:1. We calculate the sensitivity of the terrestrial biosphere for CO2-fertilization, climate warming and N deposition as changes in total ecosystem carbon for unit changes in global mean atmospheric CO2 concentration, global mean temperature and Tera grams of Nitrogen deposition per year, respectively. Based on these sensitivities, it is estimated that about 242 PgC could have been taken up by land due to the CO2 fertilization effect and an additional 175 PgC taken up as a result of the increased N deposition since the pre-industrial period. Because of climate warming, terrestrial ecosystem could have lost about 152 PgC during the same period. Therefore, since preindustrial times terrestrial carbon losses due to warming may have been approximately compensated by effects of increased N deposition, whereas the effect of CO2-fertilization is approximately indicative of the current increase in terrestrial carbon stock. Our simulations also suggest that the sensitivity of carbon storage to increased N deposition decreases beyond current levels, indicating climate warming effects on carbon storage may overwhelm N deposition effects in the future.

  6. Elevated CO2 enhances photosynthetic efficiency, ion uptake and antioxidant activity of Gynura bicolor DC. grown in a porous-tube nutrient delivery system under simulated microgravity.

    Science.gov (United States)

    Wang, M; Liu, H; Dong, C; Fu, Y; Liu, H

    2016-05-01

    It is well known that plants can grow under space conditions, however, perturbations of many biological phenomena have been highlighted due to the effect of altered gravity and its possible interaction with other factors (e.g., CO2 , ion radiation, etc. Our aim was to test whether elevated CO2 could provide 'protection' to Gynura bicolor against the damaging effects of simulated microgravity (SM) on photosynthesis, ion uptake and antioxidant activity. As compared to G. bicolor grown in ambient CO2 with no SM (ACO2 ), growth and yield of the plants increased under elevated ambient CO2 with no SM (ECO2 ) and decreased under ACO2 +SM, whereas there was no significant effect on ECO2 +SM. Reductions in the content of Chl a, carotenoids and Chl a+b were 17.9%, 20.7% and 17.9% under ACO2 +SM, respectively, but under ECO2 there was a significant effect on all photosynthetic pigments except Chl b, compared to ACO2 . Photosynthesis was improved under ECO2 with SM and such an improvement was associated with improved water use efficiency and instantaneous carboxylation efficiency. Furthermore, SM caused a reduction in ion absorption rate, except for Ca(2+) , while ECO2 increased the uptake rate. Finally, the activity of SOD, POD and the content of MDA and H2 O2 were enhanced under SM treatments and were highest in ACO2 +SM. In contrast, T-AOC activity and GSH content significantly declined in ACO2 +SM compared to other treatments. These results suggest that ACO2 is not sufficient to counteract SM impact, but the increase is usually caused by improvement in CO2 nutrition in ECO2 +SM in comparison with ACO2 +SM.

  7. Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2

    DEFF Research Database (Denmark)

    Zhu, Xiancan; Song, Fengbin; Liu, Shengqun

    2016-01-01

    Effects of the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis on plant growth, carbon (C) and nitrogen (N) accumulation, and partitioning was investigated in Triticum aestivum L. plants grown under elevated CO2 in a pot experiment. Wheat plants inoculated or not inoculated with the AM...

  8. Tunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptake

    KAUST Repository

    Xue, Dongxu

    2013-05-22

    A series of fcu-MOFs based on rare-earth (RE) metals and linear fluorinated/nonfluorinated, homo/heterofunctional ligands were targeted and synthesized. This particular fcu-MOF platform was selected because of its unique structural characteristics combined with the ability/potential to dictate and regulate its chemical properties (e.g., tuning of the electron-rich RE metal ions and high localized charge density, a property arising from the proximal positioning of polarizing tetrazolate moieties and fluoro-groups that decorate the exposed inner surfaces of the confined conical cavities). These features permitted a systematic gas sorption study to evaluate/elucidate the effects of distinctive parameters on CO2-MOF sorption energetics. Our study supports the importance of the synergistic effect of exposed open metal sites and proximal highly localized charge density toward materials with enhanced CO2 sorption energetics. © 2013 American Chemical Society.

  9. Targeted Enhancement of H2 and CO2 Uptake for Autotrophic Production of Biodiesel in the Lithoautotrophic Bacterium Ralsonia Eutropha

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, C. A.; Sullivan, R.; Johnson, C.; Yu, J.; Maness, P. C.

    2013-01-01

    CO2 and H2 are promising feedstocks for production of valuable biocompounds. Ralstonia eutropha utilizes these feedstocks to generate energy (ATP) and reductant (NAD(P)H) via oxidation of H2 by a membrane-bound (MBH) and a soluble hydrogenase (SH) for CO2 fixation by the Calvin-Benson-Bassham (CBB) cycle. Increased expression of the enzyme that fixes CO2 (RubisCO) resulted in 6-fold activity improvement in vitro, while increased expression of the MBH operon or the SH operon plus MBH operon maturation factors necessary for activity resulted in a 10-fold enhancement. Current research involves genetic manipulation of two endogenous cbb operons for increased expression, analysis of expression and activity of CBB/MBH/SH, cofactor ratios, and downstream products during autotrophic growth in control versus enhanced strains, and development of strategies for long-term, optimal overexpression. These studies will improve our understanding of autotrophic metabolism and provide a chassis strain for autotrophic production of biodiesel and other valuable carbon biocompounds.

  10. Impact of sulfuric and nitric acids on carbonate dissolution, and the associated deficit of CO2 uptake in the upper-middle reaches of the Wujiang River, China

    Science.gov (United States)

    Huang, Qi-bo; Qin, Xiao-qun; Liu, Peng-yu; Zhang, Lian-kai; Su, Chun-tian

    2017-08-01

    Carbonate weathering and the CO2 consumption in karstic area are extensive affected by anthropogenic activities, especially sulfuric and nitric acids usage in the upper-middle reaches of Wujiang River, China. The carbonic acid would be substituted by protons from sulfuric and nitric acids which can be reduce CO2 absorption. Therefore, The goal of this study was to highlight the impacts of sulfuric and nitric acids on carbonate dissolution and the associated deficit of CO2 uptaking during carbonate weathering. The hydrochemistries and carbon isotopic signatures of dissolved inorganic carbon from groundwater were measured during the rainy season (July; 41 samples) and post-rainy season (October; 26 samples). Our results show that Ca2 + and Mg2 + were the dominant cations (55.87-98.52%), and HCO3- was the dominant anion (63.63-92.87%). The combined concentrations of Ca2 + and Mg2 + commonly exceeded the equivalent concentration of HCO3-, with calculated [Ca2 + + Mg2 +]/[HCO3-] equivalent ratios of 1.09-2.12. The mean measured groundwater δ13CDIC value (- 11.38‰) was higher than that expected for carbonate dissolution mediated solely by carbonic acid (- 11.5‰), and the strong positive correlation of these values with [SO42 - + NO3-]/HCO3- showed that additional SO42 - and NO3- were required to compensate for this cation excess. Nitric and sulfuric acids are, therefore, suggested to have acted as the additional proton-promoted weathering agents of carbonate in the region, alongside carbonic acid. The mean contribution of atmospheric/pedospheric CO2 to the total aquatic HCO3- decreased by 15.67% (rainy season) and 14.17% (post-rainy season) due to the contributions made by these acids. The annual mean deficit of soil CO2 uptake by carbonate weathering across the study area was 14.92%, which suggests that previous workers may have overestimated the absorption of CO2 by carbonate weathering in other karstic areas worldwide.

  11. Elevated CO2 plus chronic warming reduces nitrogen uptake and levels or activities of nitrogen -uptake and -assimilatory proteins in tomato roots

    Science.gov (United States)

    Atmospheric CO2 enrichment is expected to often benefit plant growth, despite causing global warming and nitrogen (N) dilution in plants. Most plants primarily procure N as inorganic nitrate (NO3-) or ammonium (NH4+), using membrane-localized transport proteins in roots, which are key targets for im...

  12. Can hydrographic data provide evidence that the rate of oceanic uptake of anthropogenic CO2 is increasing?

    Directory of Open Access Journals (Sweden)

    William Carlisle Thacker

    Full Text Available Predictions of the rate of accumulation of anthropogenic carbon dioxide in the Pacific Ocean near 32°S and 150°W based on the P16 surveys of 1991 and 2005 and on the P06 surveys of 1992 and 2003 underestimate the amount found in the P06 survey of 2009-2010, suggesting an increasing uptake rate. Assuming the accumulation rate to be constant over the two decades, analyses using all five surveys lead to upward revision of the rates based only on the first four. On the other hand, accumulation rates estimated for 2003-2010 are significantly greater than those for 1991-2003, again suggesting an increasing uptake rate. In addressing this question it is important to acknowledge the limitations of the repeat hydrography and consequent uncertainties of estimated accumulation rates.

  13. Analysis of high and selective uptake of CO2 in an oxamide-containing {Cu2(OOCR)4}-based metal-organic framework.

    Science.gov (United States)

    Alsmail, Nada H; Suyetin, Mikhail; Yan, Yong; Cabot, Rafel; Krap, Cristina P; Lü, Jian; Easun, Timothy L; Bichoutskaia, Elena; Lewis, William; Blake, Alexander J; Schröder, Martin

    2014-06-10

    The porous framework [Cu2(H2O)2L]⋅4 H2O⋅2 DMA (H4L = oxalylbis(azanediyl)diisophthalic acid; DMA = N,N-dimethylacetamide), denoted NOTT-125, is formed by connection of {Cu2(RCOO)4} paddlewheels with the isophthalate linkers in L(4-). A single crystal structure determination reveals that NOTT-125 crystallises in monoclinic unit cell with a = 27.9161(6), b = 18.6627(4) and c = 32.3643(8) Å, β = 112.655(3)°, space group P2(1)/c. The structure of this material shows fof topology, which can be viewed as the packing of two types of cages (cage A and cage B) in three-dimensional space. Cage A is constructed from twelve {Cu2(OOCR)4} paddlewheels and six linkers to form an ellipsoid-shaped cavity approximately 24.0 Å along its long axis and 9.6 Å across its central diameter. Cage B consists of six {Cu2(OOCR)4} units and twelve linkers and has a spherical diameter of 12.7 Å taking into account the van der Waals radii of the atoms. NOTT-125 incorporates oxamide functionality within the pore walls, and this, combined with high porosity in desolvated NOTT-125a, is responsible for excellent CO2 uptake (40.1 wt % at 273 K and 1 bar) and selectivity for CO2 over CH4 or N2. Grand canonical Monte Carlo (GCMC) simulations show excellent agreement with the experimental gas isotherm data, and a computational study of the specific interactions and binding energies of both CO2 and CH4 with the linkers in NOTT-125 reveals a set of strong interactions between CO2 and the oxamide motif that are not possible with a single amide.

  14. Integrated Analysis of Engineered Carbon Limitation in a Quadruple CO2/HCO3− Uptake Mutant of Synechocystis sp. PCC 68031[OPEN

    Science.gov (United States)

    Orf, Isabel; Klähn, Stephan; Schwarz, Doreen; Frank, Marcus; Hess, Wolfgang R.; Hagemann, Martin; Kopka, Joachim

    2015-01-01

    Cyanobacteria have efficient carbon concentration mechanisms and suppress photorespiration in response to inorganic carbon (Ci) limitation. We studied intracellular Ci limitation in the slow-growing CO2/HCO3−-uptake mutant ΔndhD3 (for NADH dehydrogenase subunit D3)/ndhD4 (for NADH dehydrogenase subunit D4)/cmpA (for bicarbonate transport system substrate-binding protein A)/sbtA (for sodium-dependent bicarbonate transporter A): Δ4 mutant of Synechocystis sp. PCC 6803. When cultivated under high-CO2 conditions, ∆4 phenocopies wild-type metabolic and transcriptomic acclimation responses after the shift from high to low CO2 supply. The ∆4 phenocopy reveals multiple compensation mechanisms and differs from the preacclimation of the transcriptional Ci regulator mutant ∆ndhR (for ndhF3 operon transcriptional regulator). Contrary to the carboxysomeless ∆ccmM (for carbon dioxide concentrating mechanism protein M) mutant, the metabolic photorespiratory burst triggered by shifting to low CO2 is not enhanced in ∆4. However, levels of the photorespiratory intermediates 2-phosphoglycolate and glycine are increased under high CO2. The number of carboxysomes is increased in ∆4 under high-CO2 conditions and appears to be the major contributing factor for the avoidance of photorespiration under intracellular Ci limitation. The ∆4 phenocopy is associated with the deregulation of Ci control, an overreduced cellular state, and limited photooxidative stress. Our data suggest multiple layers of Ci regulation, including inversely regulated modules of antisense RNAs and cognate target messenger RNAs and specific trans-acting small RNAs, such as the posttranscriptional PHOTOSYNTHESIS REGULATORY RNA1 (PsrR1), which shows increased expression in ∆4 and is involved in repressing many photosynthesis genes at the posttranscriptional level. In conclusion, our insights extend the knowledge on the range of compensatory responses of Synechocystis sp. PCC 6803 to intracellular Ci

  15. Effects of Benomyl and Drought on the Mycorrhizal Development and Daily Net CO2 Uptake of a Wild Platyopuntia in a Rocky Semi‐arid Environment

    Science.gov (United States)

    PIMIENTA‐BARRIOS, EULOGIO; GONZALEZ DEL CASTILLO‐ARANDA, MARIA EUGENIA; MUÑOZ‐URIAS, ALEJANDRO; NOBEL, PARK S.

    2003-01-01

    The effects of drought and the fungicide benomyl on a wild platyopuntia, Opuntia robusta Wendl., growing in a rocky semi‐arid environment were assessed. Cladode phosphorus content, cladode water potential and daily net CO2 uptake were measured monthly in 2000 and 2001 before, during and after the summer rainy period. During 2000, the formation of new roots and new cladodes was severely suppressed in response to a prolonged drought, impairing the development of the symbiotic relationship between the arbuscular mycorrhizal (AM) fungi and the roots. Hence no effect of benomyl application was observed on daily carbon assimilation by this Crassulacean acid metabolism plant. During 2001, drought was interrupted, and new cladodes and roots were formed in response to rainfall. Benomyl was highly effective in suppressing root colonization by AM‐fungi; however, daily C assimilation was reduced by benomyl application only in October. Thus, the inhibition of AM‐fungal colonization by benomyl did not affect photosynthesis, water uptake and P uptake under prolonged drought. PMID:12814956

  16. Uptake of CO2 in the Pelagic Ocean by the Biological Pump; the Global Flux and the Regional Variability

    Science.gov (United States)

    Honjo, S.; Francois, R. H.; Manganini, S. J.; Eglinton, T. I.

    2010-12-01

    POC (particulate organic carbon) is vertically transported to the oceanic interior by ballasted aggregates, CaCO3 and biogenic opal, with a minor role for lithogenic aerosols through the mesopelagic zone. The diel-migrating zooplankton community is intimately involved with the vertical transport and re-mineralization of POC. Below 1.5-km, the zooplankton ecosystem is minimal, thus the aggregates travel mainly by gravity with little zooplankton influence. We examined the mole fluxes of POC, CaCO3, and biogenic opal Si fluxes retrieved from time-series, bottom tethered sediment traps (TS-trap) at 134 globally distributed pelagic stations at 2 km (m/b) as Fm/bCorg, Fm/bCinorg, and Fm/bSibio. The POC fluxes were normalized to the value at 2 km (m/b). We investigated (1) the geographic contrasts of POC export at m/b and (2) the supply rate of ∑CO2 to the world mesopelagic water column. Fm/bCorg varies from 25 (Pacific Warm Pool) to 605 (divergent Arabian Sea) mmolC m -2 yr-1; Fm/bCinorg varies from >8 (high latitude Polar Oceans) or 15 (Pacific Warm Pool) to 459 (divergent Arabian Sea) mmolC m-2yr-1; and Fm/bSibio, the most spatially/temporally variable flux, ranges from 6 (North Atlantic Drift) to 1118 (Pacific Subarctic Gyre) mmolSi m-2yr-1. The oceanic region exhibiting the highest POC flux over a significantly large region is the area of the North Pacific Boreal Gyres where the average Fm/bCorg = 213, Fm/bCinorg = 126, and Fm/bSibio = 578 mmol m-2yr-1. Fm/bCorg and Fm/bCinorg are particularly high in large upwelling margins, including the divergent Arabian Sea and off Cape Verde. The data set shows the lowest flux over a significant region/basin is Fm/bCorg = 39, whereas the Fm/bCinorg = 69, and Fm/bSibio-2yr-1 in the North Pacific subtropical/tropical gyres; Pan-Atlantic average fluxes are similar except Fm/bSibio fluxes are even lower. Where Corg/Cinorg and Sibio/Cinorg are Ocean,” and where these ratios are ≥1 defines the “Silica Ocean.” The Carbonate

  17. Long-term trends in Arctic and Boreal CO2 uptake from 1986 to 2007 inferred from a time dependent inversion compared with satellite NDVI observations to identify likely regions of change

    Science.gov (United States)

    Welp, L. R.; Keeling, R. F.; Patra, P. K.; Nemani, R.; Piper, S. C.

    2011-12-01

    Here we examine long-term trends in CO2 fluxes inverted from atmospheric CO2 concentrations using interannually varying reanalysis transport and seasonally variable fossil fuel emission estimates. We then compare annual and seasonal trends in CO2 fluxes with observations of 1x1 degree resolution NDVI from the AVHRR/MODIS satellite records to see where there is potential co-variance between CO2 source/sink behavior and photosynthetic activity. Temperature increases and elevated atmospheric CO2 concentrations over the last several decades have been credited with increasing vegetation growth in the high northern latitudes and increasing photosynthetic uptake of CO2 from the atmosphere. This climate-carbon negative feedback may help stabilize atmospheric CO2 and temperature. Alternatively, warming of boreal and tundra ecosystems may stimulate heterotrophic respiration more than photosynthesis leading to net CO2 release from the ecosystems to the atmosphere, switching the climate-carbon feedback to a positive, destabilizing relation, warming the planet even more. In addition, satellite evidence points to large regions of the boreal forest that were 'greening' prior to the late 1990s due to more favorable growing conditions, and regions that have been 'browning' since the late 1990s as a result of climate-induced stress or insect and fire disturbance, further decreasing the CO2 uptake potential of boreal forests. Our results show that the land zone north of 60°N, encompassing the tundra biome and excluding Europe (10°W - 63°E), had no significant long-term trend in annual CO2 uptake. The seasonal amplitude of the CO2 flux increased due to enhanced summer uptake as well as fall release, which largely canceled in the annual sum. Comparing July CO2 uptake north of 60°N from 1986 to 2007 with gridded NDVI over the same period showed the strongest correlation in the tundra of North America and Asia. The inversion analysis calculated an increase of 0.29 g C m-2 day-1

  18. Microporous rod metal-organic frameworks with diverse Zn/Cd-triazolate ribbons as secondary building units for CO2 uptake and selective adsorption of hydrocarbons.

    Science.gov (United States)

    Zhang, Jian-Wei; Hu, Man-Cheng; Li, Shu-Ni; Jiang, Yu-Cheng; Zhai, Quan-Guo

    2017-01-17

    The synthetic design of new porous open-framework materials with pre-designed pore properties for desired applications such as gas adsorption and separation remains challenging. We proposed one such class of materials, rod metal-organic frameworks (rod MOFs), which can be tuned by using rod secondary building units (rod SBUs) with different geometrical and chemical features. Our approach takes advantage of the readily accessible metal-triazolate 1-D motifs as rod SBUs to combine with dicarboxylate ligands to prepare target rod MOFs. Herein we report three such metal-triazolate-dicarboxylate frameworks (SNNU-21, -22 and -23). During the formation of these three MOFs, Cd or Zn ions are firstly connected by 1,2,4-triazole through the N1,N2,N4-mode to form 1-D metal-organic ribbon-like rod SBUs, which further joint four adjacent rod SBUs via eight BDC linkers to give 3-D microporous frameworks. However, tuned by the different NH2 groups from metal-triazolate rod SBUs, different space groups, pore sizes and shapes are observed for SNNU-21-23. All of these rod MOFs show not only remarkable CO2 uptake capacity, but also high CO2 over CH4 and C2-hydrocarbons over CH4 selectivity under ambient conditions. Specially, SNNU-23 exhibits a very high isosteric heat of adsorption (Qst) for C2H2 (62.2 kJ mol(-1)), which outperforms the values of all MOF materials reported to date including the famous MOF-74-Co.

  19. Elevated CO2 increases Cs uptake and alters microbial communities and biomass in the rhizosphere of Phytolacca americana Linn (pokeweed) and Amaranthus cruentus L. (purple amaranth) grown on soils spiked with various levels of Cs.

    Science.gov (United States)

    Song, Ningning; Zhang, Ximei; Wang, Fangli; Zhang, Changbo; Tang, Shirong

    2012-10-01

    General concern about increasing global atmospheric CO(2) levels owing to the ongoing fossil fuel combustion and elevated levels of radionuclides in the environment, has led to growing interest in the responses of plants to interactive effects of elevated CO(2) and radionuclides in terms of phytoremediation and food safety. To assess the combined effects of elevated CO(2) and cesium contamination on plant biomass, microbial activities in the rhizosphere soil and Cs uptake, Phytolacca americana Linn (pokeweed, C3 specie) and Amaranthus cruentus L. (purple amaranth, C4 specie) were grown in pots of soils containing five levels of cesium (0, 100, 300, 500 and 1000 mg Cs kg(-1)) under two levels of CO(2) (360 and 860 μL L(-1), respectively). Shoot and root biomass of P. americana and Amaranthus crentus was generally higher under elevated CO(2) than under ambient CO(2) for all treatments. Both plant species exhibited higher Cs concentration in the shoots and roots under elevated CO(2) than ambient CO(2). For P. americana grown at 0, 100, 300, 500 and 1000 mg Cs kg(-1), the increase magnitude of Cs concentration due to elevated CO(2) was 140, 18, 11, 34 and 15% in the shoots, and 150, 20, 14, 15 and 19% in the roots, respectively. For A. cruentus, the corresponding value was 118, 28, 21, 14 and 17% in the shoots, and 126, 6, 11, 17 and 22% in the roots, respectively. Higher bioaccumulation factors were noted for both species grown under elevated CO(2) than ambient CO(2). The populations of bacteria, actinomycetes and fungi, and the microbial C and N in the rhizosphere soils of both species were higher at elevated CO(2) than at ambient CO(2) with the same concentration of Cs. The results suggested that elevated CO(2) significantly affected plant biomass, Cs uptake, soil C and N concentrations, and community composition of soil microbes associated with P. americana and A. cruentus roots. The knowledge gained from this investigation constitutes an important advancement in

  20. Simulation of anthropogenic CO2 uptake in the CCSM3.1 ocean circulation-biogeochemical model: comparison with data-based estimates

    Directory of Open Access Journals (Sweden)

    S. Khatiwala

    2012-04-01

    Full Text Available The global ocean has taken up a large fraction of the CO2 released by human activities since the industrial revolution. Quantifying the oceanic anthropogenic carbon (Cant inventory and its variability is important for predicting the future global carbon cycle. The detailed comparison of data-based and model-based estimates is essential for the validation and continued improvement of our prediction capabilities. So far, three global estimates of oceanic Cant inventory that are "data-based" and independent of global ocean circulation models have been produced: one based on the Δ C* method, and two that are based on constraining surface-to-interior transport of tracers, the TTD method and a maximum entropy inversion method (GF. The GF method, in particular, is capable of reconstructing the history of Cant inventory through the industrial era. In the present study we use forward model simulations of the Community Climate System Model (CCSM3.1 to estimate the Cant inventory and compare the results with the data-based estimates. We also use the simulations to test several assumptions of the GF method, including the assumption of constant climate and circulation, which is common to all the data-based estimates. Though the integrated estimates of global Cant inventories are consistent with each other, the regional estimates show discrepancies up to 50 %. The CCSM3 model underestimates the total Cant inventory, in part due to weak mixing and ventilation in the North Atlantic and Southern Ocean. Analyses of different simulation results suggest that key assumptions about ocean circulation and air-sea disequilibrium in the GF method are generally valid on the global scale, but may introduce errors in Cant estimates on regional scales. The GF method should also be used with caution when predicting future oceanic anthropogenic carbon uptake.

  1. Simulation of anthropogenic CO2 uptake in the CCSM3.1 ocean circulation-biogeochemical model: comparison with data-based estimates

    Directory of Open Access Journals (Sweden)

    F. W. Primeau

    2011-11-01

    Full Text Available The global ocean has taken up a large fraction of the CO2 released by human activities since the industrial revolution. Quantifying the oceanic anthropogenic carbon (Cant inventory and its variability is important for predicting the future global carbon cycle. The detailed comparison of data-based and model-based estimates is essential for the validation and continued improvement of our prediction capabilities. So far, three global estimates of oceanic Cant inventory that are "data-based" and independent of global ocean circulation models have been produced: one based on the ΔC* method, and two are based on reconstructions of the Green function for the surface-to-interior transport, the TTD method and the maximum entropy inversion method (KPH. The KPH method, in particular, is capable of reconstructing the history of Cant inventory through the industrial era. In the present study we use forward model simulations of the Community Climate System Model (CCSM3.1 to estimate the Cant inventory and compare the results with the data-based estimates. We also use the simulations to test several assumptions of the KPH method, including the assumption of constant climate and circulation, which is common to all the data-based estimates. Though the integrated estimates of global Cant inventories are consistent with each other, the regional estimates show discrepancies up to 50 %. The CCSM3 model underestimates the total Cant inventory, in part due to weak mixing and ventilation in the North Atlantic and Southern Ocean. Analyses of different simulation results suggest that key assumptions about ocean circulation and air-sea disequilibrium in the KPH method are generally valid on the global scale, but may introduce significant errors in Cant estimates on regional scales. The KPH method should also be used with caution when predicting future oceanic anthropogenic carbon uptake.

  2. Feedforward non-Michaelis-Menten mechanism for CO(2) uptake by Rubisco: contribution of carbonic anhydrases and photorespiration to optimization of photosynthetic carbon assimilation.

    Science.gov (United States)

    Igamberdiev, Abir U; Roussel, Marc R

    2012-03-01

    Rubisco, the most abundant protein serving as the primary engine generating organic biomass on Earth, is characterized by a low catalytic constant (in higher plants approx. 3s(-1)) and low specificity for CO(2) leading to photorespiration. We analyze here why this enzyme evolved as the main carbon fixation engine. The high concentration of Rubisco exceeding the concentration of its substrate CO(2) by 2-3 orders of magnitude makes application of Michaelis-Menten kinetics invalid and requires alternative kinetic approaches to describe photosynthetic CO(2) assimilation. Efficient operation of Rubisco is supported by a strong flux of CO(2) to the chloroplast stroma provided by fast equilibration of bicarbonate and CO(2) and forwarding the latter to Rubisco reaction centers. The main part of this feedforward mechanism is a thylakoidal carbonic anhydrase associated with photosystem II and pumping CO(2) from the thylakoid lumen in coordination with the rate of electron transport, water splitting and proton gradient across the thylakoid membrane. This steady flux of CO(2) limits photosynthesis at saturating CO(2) concentrations. At low ambient CO(2) and correspondingly limited capacity of the bicarbonate pool in the stroma, its depletion at the sites of Rubisco is relieved by utilizing O(2) instead of CO(2), i.e. by photorespiration, a process which supplies CO(2) back to Rubisco and buffers the redox state and energy level in the chloroplast. Thus, the regulation of Rubisco function aims to keep steady non-equilibrium levels of CO(2), NADPH/NADP and ATP/ADP in the chloroplast stroma and to optimize the condition of homeostatic photosynthetic flux of matter and energy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2

    NARCIS (Netherlands)

    Finzi, A.C.; Norby, R.J.; Calfapietra, C.; Gallet-Budynek, A.; Gielen, B.; Holmes, W.E.; Hoosbeek, M.R.; Iversen, C.M.; Jackson, R.B.; Kubiske, M.E.; Ledford, J.; Liberloo, M.; Oren, R.; Polle, A.; Pritchard, S.; Zak, D.R.; Schlesinger, W.H.; Ceulemans, R.

    2007-01-01

    Forest ecosystems are important sinks for rising concentrations of atmospheric CO2. In previous research, we showed that net primary production (NPP) increased by 23 ± 2% when four experimental forests were grown under atmospheric concentrations of CO2 predicted for the latter half of this century.

  4. Stomatal uptake of O3 in aspen and aspen-birch forests under free-air CO2 and O3 enrichment.

    Science.gov (United States)

    Uddling, Johan; Hogg, Alan J; Teclaw, Ronald M; Carroll, Mary Anne; Ellsworth, David S

    2010-06-01

    Rising atmospheric carbon dioxide (CO2) may alleviate the toxicological impacts of concurrently rising tropospheric ozone (O3) during the present century if higher CO2 is accompanied by lower stomatal conductance (gs), as assumed by many models. We investigated how elevated concentrations of CO2 and O3, alone and in combination, affected the accumulated stomatal flux of O3 (AFst) by canopies and sun leaves in closed aspen and aspen-birch forests in the free-air CO2-O3 enrichment experiment near Rhinelander, Wisconsin. Stomatal conductance for O3 was derived from sap flux data and AFst was estimated either neglecting or accounting for the potential influence of non-stomatal leaf surface O3 deposition. Leaf-level AFst (AFst(l)) was not reduced by elevated CO2. Instead, there was a significant CO2 x O(3) interaction on AFst(l), as a consequence of lower values of gs in control plots and the combination treatment than in the two single-gas treatments. In addition, aspen leaves had higher AFst(l) than birch leaves, and estimates of AFst(l) were not very sensitive to non-stomatal leaf surface O3 deposition. Our results suggest that model projections of large CO2-induced reductions in gs alleviating the adverse effect of rising tropospheric O3 may not be reasonable for northern hardwood forests.

  5. The role of North Atlantic Ocean circulation and biological sequestration on atmospheric CO2 uptake during the last deglaciation (CL Division Outstanding ECS Award Lecture)

    Science.gov (United States)

    Muschitiello, Francesco; D'Andrea, William J.; Dokken, Trond M.; Schmittner, Andreas

    2017-04-01

    Understanding the impact of ocean circulation on the global atmospheric CO2 budget is of paramount importance for anticipating the consequences of projected future changes in Atlantic Meridional Overturning Circulation (AMOC). In particular, the efficiency of the oceanic biological pump can impact atmospheric CO2 through changes in vertical carbon export mediated by variations in the nutrient inventory of the North Atlantic basin. However, the causal relationship between North Atlantic Ocean circulation, biological carbon sequestration, and atmospheric CO2 is poorly understood. Here we present new high-resolution planktic-benthic 14C data and biomarker records from an exceptionally well-dated marine core from the Nordic Seas spanning the last deglaciation ( 15,000-10,000 years BP). The records document for the first time large and rapid atmospheric CO2 drawdowns and increase in plankton stocks during major North Atlantic cooling events. Using transient climate simulations from a fully coupled climate-biosphere model, we show that minor perturbations of the North Atlantic biological pump resulting from surface freshening and AMOC weakening can have a major impact on the global atmospheric CO2 budget. Furthermore, our data help clarifying the timing and magnitude of the deglacial CO2 signal recorded in Antarctic ice cores. We conclude that the global CO2 budget is more sensitive to perturbations in North Atlantic circulation than previously thought, which has significance in the future debate of the AMOC response to anthropogenic warming.

  6. The CO2 footprint of new nitrogen creation

    Science.gov (United States)

    Houlton, B. Z.

    2012-12-01

    For billions of years, in the absence of substantial human influence, the essential nutrient nitrogen (N) entered terrestrial ecosystems at naturally low rates. Today, human actions (i.e., Haber-Bosch fertilizer production, fossil fuel combustion) have dramatically reshaped the N cycle from its background state, more than doubling terrestrial N circulation, resulting in large increases in anthropogenic N deposition inputs to ecosystems globally. While producing many unwanted side-effects, increased N in both rain water and dry particulate matter has been purported in accelerated rates of forest CO2 uptake, thus slowing the pace of climate change. However, this perspective does not consider the amount of CO2 released to the atmosphere during new N creation. Here I analyze the gross CO2 footprint of N input pathways, including the CO2 released during N fixation vs. that which is consumed by forest vegetation per unit of N input. This analysis indicates the following C/N conversion efficiencies during fixation: lightening = 0; Haber-Bosch = 0.49; symbiotic fixation = 10; asymbiotic fixation = 50; fossil fuel fixation = 220. Thus, lightening envisions the highest forest CO2 uptake return (100 %) followed by Haber-Bosch N (99), symbiotic N fixation (88) and asymbiotic N fixation (neutral), and lastly, fossil fuel fixation (-279). In addition, widespread and well-documented negative interactions between excess N and biological N fixation further undermine any potential positive effects of fossil-fuel N deposition on terrestrial C storage. Thus, recapturing Haber-Bosch N by natural vegetation combined with policies that target reductions in fossil fuel N sources are proposed as the most effective means for maximizing the positive benefits of anthropocene N on terrestrial CO2 uptake and storage.

  7. Recent advances in developing COS as a tracer of Biosphere-atmosphere exchange of CO2

    Science.gov (United States)

    Asaf, D.; Stimler, K.; Yakir, D.

    2012-04-01

    Potential use of COS as tracer of CO2 flux into vegetation, based on its co-diffusion with CO2 into leaves without outflux, stimulated research on COS-CO2 interactions. Atmospheric measurements by NOAA in recent years, across a global latitudinal transect, indicated a ratio of the seasonal drawdowns in COS and CO2 (normalized to their respective ambient concentrations) of about 6. We carried out leaf-scale gas exchange measurements of COS and CO2 in 22 plant species of deciduous, evergreen trees, grasses, and shrubs, under a range of light intensities and ambient COS concentrations (using mid IR laser spectroscopy). A narrow range in the normalized ratio of the net uptake rates of COS and CO2 (termed leaf relative uptake; LRU) was observed with a mean value of 1.61±0.26. These results reflect the dominance of stomatal conductance over both COS and CO2 uptake, imposing a relatively constant ratio between the two fluxes, except under low light conditions when CO2, but not COS, metabolism is light limited. A relatively constant ratio under common ambient conditions will facilitate the application of COS as a tracer of gross photosynthesis from leaf to global scales. We also report first eddy flux measurements of COS/CO2 at the ecosystem scales. Preliminarily results indicate a ratio of the COS flux, Fcos, to net ecosystem CO2 exchange, NEE, of 3-5 (termed ecosystem relative uptake; ERU). Combining measurements of COS and CO2 and the new information on their ratios at different scales should permit the direct estimation of gross CO2 uptake, GPP, by land ecosystems according to: GPP=NEE*ERU/LRU. In addition, we show that COS effect on stomatal conductance may require a special attention. Increasing COS concentrations between 250 and 2800 pmol mol-1 (enveloping atmospheric levels) stimulate stomatal conductance. It seems likely that the stomata are responding to H2S produced in the leaves from COS.

  8. Analysis of Sensitive CO2 Pathways and Genes Related to Carbon Uptake and Accumulation in Chlamydomonas reinhardtii through Genomic Scale Modeling and Experimental Validation

    Science.gov (United States)

    Winck, Flavia V.; Melo, David O. Páez; Riaño-Pachón, Diego M.; Martins, Marina C. M.; Caldana, Camila; Barrios, Andrés F. González

    2016-01-01

    The development of microalgae sustainable applications needs better understanding of microalgae biology. Moreover, how cells coordinate their metabolism toward biomass accumulation is not fully understood. In this present study, flux balance analysis (FBA) was performed to identify sensitive metabolic pathways of Chlamydomonas reinhardtii under varied CO2 inputs. The metabolic network model of Chlamydomonas was updated based on the genome annotation data and sensitivity analysis revealed CO2 sensitive reactions. Biological experiments were performed with cells cultivated at 0.04% (air), 2.5, 5, 8, and 10% CO2 concentration under controlled conditions and cell growth profiles and biomass content were measured. Pigments, lipids, proteins, and starch were further quantified for the reference low (0.04%) and high (10%) CO2 conditions. The expression level of candidate genes of sensitive reactions was measured and validated by quantitative real time PCR. The sensitive analysis revealed mitochondrial compartment as the major affected by changes on the CO2 concentrations and glycolysis/gluconeogenesis, glyoxylate, and dicarboxylate metabolism among the affected metabolic pathways. Genes coding for glycerate kinase (GLYK), glycine cleavage system, H-protein (GCSH), NAD-dependent malate dehydrogenase (MDH3), low-CO2 inducible protein A (LCIA), carbonic anhydrase 5 (CAH5), E1 component, alpha subunit (PDC3), dual function alcohol dehydrogenase/acetaldehyde dehydrogenase (ADH1), and phosphoglucomutase (GPM2), were defined, among other genes, as sensitive nodes in the metabolic network simulations. These genes were experimentally responsive to the changes in the carbon fluxes in the system. We performed metabolomics analysis using mass spectrometry validating the modulation of carbon dioxide responsive pathways and metabolites. The changes on CO2 levels mostly affected the metabolism of amino acids found in the photorespiration pathway. Our updated metabolic network was

  9. Analysis of sensitive CO2 pathways and genes related to carbon uptake and accumulation in Chlamydomonas reinhardtii through genomic scale modeling and experimental validation

    Directory of Open Access Journals (Sweden)

    Flavia Vischi Winck

    2016-02-01

    Full Text Available The development of microalgae sustainable applications needs better understanding of microalgae biology. Moreover, how cells coordinate their metabolism towards biomass accumulation is not fully understood. In this present study, flux balance analysis (FBA was performed to identify sensitive metabolic pathways of Chlamydomonas reinhardtii under varied CO2 inputs. The metabolic network model of Chlamydomonas was updated based on the genome annotation data and sensitivity analysis revealed CO2 sensitive reactions. Biological experiments were performed with cells cultivated at 0.04% (air, 2.5%, 5%, 8% and 10% CO2 concentration under controlled conditions and cell growth profiles and biomass content were measured. Pigments, lipids, proteins and starch were further quantified for the reference low (0.04% and high (10% CO2 conditions. The expression level of candidate genes of sensitive reactions was measured and validated by quantitative real time qPCR. The sensitive analysis revealed mitochondrial compartment as the major affected by high CO2 levels and glycolysis/gluconeogenesis, glyoxylate and dicarboxylate metabolism among the affected metabolic pathways. Genes coding for glycerate kinase (GLYK, glycine cleavage system, H-protein (GCSH, NAD-dependent malate dehydrogenase (MDH3, low-CO2 inducible protein A (LCIA, carbonic anhydrase 5 (CAH5, E1 component, alpha subunit (PDC3, dual function alcohol dehydrogenase/acetaldehyde dehydrogenase (ADH1 and phosphoglucomutase (GPM2, were defined, among other genes, as sensitive nodes in the metabolic network simulations. These genes were experimentally responsive to the changes in the carbon fluxes in the system. We performed metabolomics analysis using mass spectrometry validating the modulation of carbon dioxide responsive pathways and metabolites. The changes on CO2 levels mostly affected the metabolism of amino acids found in the photorespiration pathway. Our updated metabolic network was compared to

  10. The Potential of Carbonyl Sulfide as a Tracer for Gross Primary Productivity at Flux Tower Sites

    Science.gov (United States)

    Blonquist, J.; Montzka, S. A.; Yakir, D.; Desai, A. R.; Dragoni, D.; Griffis, T. J.; Monson, R. K.; Munger, J. W.; Scott, R. L.; Bowling, D. R.

    2010-12-01

    Regional/continental scale studies of atmospheric carbonyl sulfide (OCS) seasonal dynamics and leaf level studies of plant OCS uptake have shown a close relationship to CO2 dynamics and uptake, suggesting potential for OCS as a tracer for gross primary productivity (GPP). Canopy CO2 and OCS differences (mole fraction within canopy minus that above canopy) at a temperate deciduous forest (Harvard Forest AmeriFlux site) were analyzed relative to net ecosystem exchange (NEE) and GPP, respectively. Canopy CO2 and OCS vertical gradients (CO2 and OCS differences divided by within and above canopy measurement height differences) were used to calculate ecosystem relative uptake (ERU; relative canopy OCS gradient divided by relative canopy CO2 gradient, where relative gradients are gradients normalized by above canopy mole fractions), from which GPP was estimated using an equation that assumes OCS follows the same physical pathway as CO2 into plant leaves and where GPP / NEE was proportional to OCS gradient / CO2 gradient. Additionally, canopy CO2 differences from five other AmeriFlux sites were analyzed, and OCS differences were projected from these differences (via an assumed ERU) to further evaluate OCS as a potential GPP tracer. At Harvard Forest, canopy CO2 differences were related to NEE (y = 0.041x + 0.046, r2 = 0.14, P ERU is potentially measurable with current grab-sample-based OCS measurement capabilities and may provide an alternative means of estimating GPP at flux tower sites.

  11. From ionic-liquid@metal-organic framework composites to heteroatom-decorated large-surface area carbons: superior CO2 and H2 uptake.

    Science.gov (United States)

    Aijaz, Arshad; Akita, Tomoki; Yang, Hui; Xu, Qiang

    2014-06-21

    For the first time, high surface area uniformly nitrogen (N)- and boron-nitrogen (BN)-decorated nanoporous carbons have been successfully fabricated by impregnation of ionic liquids (ILs) within a metal-organic framework (MOF), MIL-100(Al), followed by carbonization, which exhibit remarkable CO2 and H2 adsorption capacities.

  12. Chemical microenvironments and single-cell carbon and nitrogen uptake in field-collected colonies of Trichodesmium under different pCO2.

    Science.gov (United States)

    Eichner, Meri J; Klawonn, Isabell; Wilson, Samuel T; Littmann, Sten; Whitehouse, Martin J; Church, Matthew J; Kuypers, Marcel Mm; Karl, David M; Ploug, Helle

    2017-06-01

    Gradients of oxygen (O2) and pH, as well as small-scale fluxes of carbon (C), nitrogen (N) and O2 were investigated under different partial pressures of carbon dioxide (pCO2) in field-collected colonies of the marine dinitrogen (N2)-fixing cyanobacterium Trichodesmium. Microsensor measurements indicated that cells within colonies experienced large fluctuations in O2, pH and CO2 concentrations over a day-night cycle. O2 concentrations varied with light intensity and time of day, yet colonies exposed to light were supersaturated with O2 (up to ~200%) throughout the light period and anoxia was not detected. Alternating between light and dark conditions caused a variation in pH levels by on average 0.5 units (equivalent to 15 nmol l(-1) proton concentration). Single-cell analyses of C and N assimilation using secondary ion mass spectrometry (SIMS; large geometry SIMS and nanoscale SIMS) revealed high variability in metabolic activity of single cells and trichomes of Trichodesmium, and indicated transfer of C and N to colony-associated non-photosynthetic bacteria. Neither O2 fluxes nor C fixation by Trichodesmium were significantly influenced by short-term incubations under different pCO2 levels, whereas N2 fixation increased with increasing pCO2. The large range of metabolic rates observed at the single-cell level may reflect a response by colony-forming microbial populations to highly variable microenvironments.

  13. (Uncertain) Carbonyl Sulfide Plant Fluxes Spatially Constrain (Even More Uncertain) CO2 GPP

    Science.gov (United States)

    Hilton, T. W.; Whelan, M.; Kulkarni, S.; Zumkehr, A. L.; Berry, J. A.; Campbell, J. E.

    2015-12-01

    With predictions of future terrestrial carbon dioxide (CO2)gross primary productivity (GPP) remaining stubbornly uncertain,ecosystem carbonyl sulfide (COS) fluxes provide an independent source ofinformation that may be able to reduce that uncertainty. Several openquestions must be addressed before COS may be applied widely as a GPPtracer. Here we employ an atmospheric chemistry and transport model(STEM) and airborne atmospheric COS concentration observations todemonstrate that COS plant uptake spatially constrains CO2 GPP even whenaccounting for soil COS flux uncertainty and COS leaf-scale relativeuptake variability and uncertainty.

  14. A model based investigation of the relative importance of CO2-fertilization, climate warming, nitrogen deposition and land use change on the global terrestrial carbon uptake in the historical period

    Science.gov (United States)

    Devaraju, N.; Bala, G.; Caldeira, K.; Nemani, R.

    2016-07-01

    In this paper, using the fully coupled NCAR Community Earth System Model (CESM1.0.4), we investigate the relative importance of CO2-fertilization, climate warming, anthropogenic nitrogen deposition, and land use and land cover change (LULCC) for terrestrial carbon uptake during the historical period (1850-2005). In our simulations, between the beginning and end of this period, we find an increase in global net primary productivity (NPP) on land of about 4 PgCyr-1 (8.2 %) with a contribution of 2.3 PgCyr-1 from CO2-fertilization and 2.0 PgCyr-1 from nitrogen deposition. Climate warming also causes NPP to increase by 0.35 PgCyr-1 but LULCC causes a decline of 0.7 PgCyr-1. These results indicate that the recent increase in vegetation productivity is most likely driven by CO2 fertilization and nitrogen deposition. Further, we find that this configuration of CESM projects that the global terrestrial ecosystem has been a net source of carbon during 1850-2005 (release of 45.1 ± 2.4 PgC), largely driven by historical LULCC related CO2 fluxes to the atmosphere. During the recent three decades (early 1970s to early 2000s), however, our model simulations project that the terrestrial ecosystem acts as a sink, taking up about 10 PgC mainly due to CO2 fertilization and nitrogen deposition. Our results are in good qualitative agreement with recent studies that indicate an increase in vegetation production and water use efficiency in the satellite era and that the terrestrial ecosystem has been a net sink for carbon in recent decades.

  15. Mass-spectrometric determination of O2 and CO 2 gas exchange in illuminated higher-plant cells : Evidence for light-inhibition of substrate decarboxylations.

    Science.gov (United States)

    Avelange, M H; Thiéry, J M; Sarrey, F; Gans, P; Rébeillé, F

    1991-01-01

    In order to estimate photosynthetic and respiratory rates in illuminated photoautotrophic cells of carnation (Dianthus caryophyllus L.), simultaneous measurements of CO2 and O2 gas exchange were performed using (18)O2, (13)CO2 and a mass-spectrometry technique. This method allowed the determination, and thus the comparison, of unidirectional fluxes of O2 and CO2. In optimum photosynthetic conditions (i.e. in the presence of high light and a saturating level of CO2), the rate of CO2 influx represented 75±5% of the rate of gross O2 evolution. After a dark-to-light transition, the rate of CO2 efflux was inhibited by 50% whereas the O2-uptake rate was little affected. The effect of a recycling of respiratory CO2 through photosynthesis on the exchange of CO2 gas was investigated using a mathematical model. The confliction of the experimental data with the simulated gas-exchange rates strongly supported the view that CO2 recycling was a minor event in these cells and could not be responsible for the observed inhibition of CO2 efflux. On the basis of this assumption it was concluded that illumination of carnation cells resulted in a decrease of substrate decarboxylations, and that CO2 efflux and O2 uptake were not as tightly coupled in the light as in the dark. Furthermore, it could be calculated from the rate of gross photosynthesis that the chloroplastic electron-transport chain produced enough ATP in the light to account for the measured CO2-uptake rate without involving cyclic transfer of electrons around PS I or mitochondrial supplementation.

  16. Iron availability, nitrate uptake, and exportable new production in the subarctic Pacific. [phytoplankton population growth support and atmospheric CO2 removal

    Science.gov (United States)

    Banse, Karl

    1991-01-01

    This paper presents a critique of experimental data and papers by Martin et al. (1989, 1990), who suggested that the phytoplankton growth is iron-limited and that, small additions of iron to large subarctic ocean areas might be a way of removing significant amounts of atmospheric CO2 by increasing phytoplancton growth. Data are presented to show that, in the summer of 1987, the phytoplankton assemblage as a whole was not iron limited, as measured by the bulk removal of nitrate or by the increase of chlorophyll. It is suggested that grazing normally prevents the phytoplankton from reaching concentrations that reduce the iron (and nitrate) to levels that depress division rates drastically.

  17. Dynamics of global atmospheric CO2 concentration from 1850 to 2010: a linear approximation

    Science.gov (United States)

    Wang, W.; Nemani, R.

    2014-09-01

    The increase in anthropogenic CO2 emissions largely followed an exponential path between 1850 and 2010, and the corresponding increases in atmospheric CO2 concentration were almost constantly proportional to the emissions by the so-called "airborne fraction". These observations suggest that the dynamics of atmospheric CO2 concentration through this time period may be properly approximated as a linear system. We demonstrate this hypothesis by deriving a linear box-model to describe carbon exchanges between the atmosphere and the surface reservoirs under the influence of disturbances such as anthropogenic CO2 emissions and global temperature changes. We show that the box model accurately simulates the observed atmospheric CO2 concentrations and growth rates across interannual to multi-decadal time scales. The model also allows us to analytically examine the dynamics of such changes/variations, linking its characteristic disturbance-response functions to bio-geophysically meaningful parameters. In particular, our results suggest that the elevated atmospheric CO2 concentrations have significantly promoted the gross carbon uptake by the terrestrial biosphere. However, such "fertilization" effects are partially offset by enhanced carbon release from surface reservoirs promoted by warmer temperatures. The result of these interactions appears to be a decline in net efficiency in sequestering atmospheric CO2 by ∼30% since 1960s. We believe that the linear modeling framework outlined in this paper provides a convenient tool to diagnose the observed atmospheric CO2 dynamics and monitor their future changes.

  18. From Chemolithoautotrophs to Electrolithoautotrophs: CO2 Fixation by Fe(II-Oxidizing Bacteria Coupled with Direct Uptake of Electrons from Solid Electron Sources

    Directory of Open Access Journals (Sweden)

    Takumi eIshii

    2015-09-01

    Full Text Available At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe2+ ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex and a cytochrome bc1 complex (bc1 complex in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD+ through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats.

  19. An Exceptionally Water Stable Metal-Organic Framework with Amide-Functionalized Cages: Selective CO2 /CH4 Uptake and Removal of Antibiotics and Dyes from Water.

    Science.gov (United States)

    Jin, Wei-Guang; Chen, Wei; Xu, Pei-Hang; Lin, Xin-Wen; Huang, Xiao-Chun; Chen, Guang-Hui; Lu, Fushen; Chen, Xiao-Ming

    2017-09-21

    As the main organic pollutants in wastewater, antibiotics and organic dyes are harmful to the environment and public health, and their removal is important but challenging. In this work, highly porous 3D metal-organic frameworks (MOFs) [M2 (PDAD)(H2 O)]n (PCN-124-stu; M=Cu, Zn; H4 PDAD = 5,5'-(pyridine-3,5-dicarbonyl)bis(azanediyl)diisophthalic acid) were synthesized, and PCN-124-stu(Cu) shows excellent chemical and thermal stability. PCN-124-stu(Cu) was used as a host for efficient extraction of various organic dyes, especially the large-molecule dye Coomassie brilliant blue, and fluoroquinolones from water, in comparison with five common MOFs, zeolite 13X, and activated carbon. PCN-124-stu(Cu) exhibits absolute predominance for fluoroquinolone adsorption among these microporous materials because of the H-bonds between fluoroquinolone molecules and the amide groups in the frameworks, except for MIL-100(Cr), which is a mesoporous MOF. Moreover, PCN-124-stu(Cu) could release fluoroquinolones slowly in physiological saline and retained its framework structure after four adsorption/desorption cycles. In addition, PCN-124-stu(Cu) can be used as a platform for selective adsorption of CO2 /CH4. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Application of Ann for Prediction of Co2+, Cd2+ and Zn2+ Ions Uptake by R. Squarrosus Biomass in Single and Binary Mixtures

    Directory of Open Access Journals (Sweden)

    Nemeček Peter

    2014-06-01

    Full Text Available Discharge of heavy metals into aquatic ecosystems has become a matter of concern over the last few decades. The search for new technologies involving the removal of toxic metals from wastewaters has directed the attention to biosorption, based on metal binding capacities of various biological materials. Degree of sorbent affinity for the sorbate determines its distribution between the solid and liquid phases and this behavior can be described by adsorption isotherm models (Freundlich and Langmuir isotherm models representing the classical approach. In this study, an artificial neural network (ANN was proposed to predict the sorption efficiency in single and binary component solutions of Cd2+, Zn2+ and Co2+ ions by biosorbent prepared from biomass of moss Rhytidiadelphus squarrosus. Calculated non-linear ANN models presented in this paper are advantageous for its capability of successful prediction, which can be problematic in the case of classical isotherm approach. Quality of prediction was proved by strong agreement between calculated and measured data, expressed by the coefficient of determination in both, single and binary metal systems (R2= 0.996 and R2= 0.987, respectively. Another important benefit of these models is necessity of significantly smaller amount of data (about 50% for the model calculation. Also, it is possible to calculate Qeq for all studied metals by one combined ANN model, which totally overcomes a classical isotherm approach

  1. Combined Effects of CO2 and Light on the N2-Fixing Cyanobacterium Trichodesmium IMS101: Physiological Responses1[OA

    Science.gov (United States)

    Kranz, Sven A.; Levitan, Orly; Richter, Klaus-Uwe; Prášil, Ondřej; Berman-Frank, Ilana; Rost, Björn

    2010-01-01

    Recent studies on the diazotrophic cyanobacterium Trichodesmium erythraeum (IMS101) showed that increasing CO2 partial pressure (pCO2) enhances N2 fixation and growth. Significant uncertainties remain as to the degree of the sensitivity to pCO2, its modification by other environmental factors, and underlying processes causing these responses. To address these questions, we examined the responses of Trichodesmium IMS101 grown under a matrix of low and high levels of pCO2 (150 and 900 μatm) and irradiance (50 and 200 μmol photons m−2 s−1). Growth rates as well as cellular carbon and nitrogen contents increased with increasing pCO2 and light levels in the cultures. The pCO2-dependent stimulation in organic carbon and nitrogen production was highest under low light. High pCO2 stimulated rates of N2 fixation and prolonged the duration, while high light affected maximum rates only. Gross photosynthesis increased with light but did not change with pCO2. HCO3− was identified as the predominant carbon source taken up in all treatments. Inorganic carbon uptake increased with light, but only gross CO2 uptake was enhanced under high pCO2. A comparison between carbon fluxes in vivo and those derived from 13C fractionation indicates high internal carbon cycling, especially in the low-pCO2 treatment under high light. Light-dependent oxygen uptake was only detected under low pCO2 combined with high light or when low-light-acclimated cells were exposed to high light, indicating that the Mehler reaction functions also as a photoprotective mechanism in Trichodesmium. Our data confirm the pronounced pCO2 effect on N2 fixation and growth in Trichodesmium and further show a strong modulation of these effects by light intensity. We attribute these responses to changes in the allocation of photosynthetic energy between carbon acquisition and the assimilation of carbon and nitrogen under elevated pCO2. These findings are supported by a complementary study looking at photosynthetic

  2. CO2-Neutral Fuels

    NARCIS (Netherlands)

    Goede, A.; van de Sanden, M. C. M.

    2016-01-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy

  3. CO2-Neutral Fuels

    Science.gov (United States)

    Goede, Adelbert; van de Sanden, Richard

    2016-06-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy efficiency.

  4. CO2-Neutral Fuels

    NARCIS (Netherlands)

    Goede, A.; van de Sanden, M. C. M.

    2016-01-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy

  5. Effects of elevated CO2 and nitrogen deposition on ecosystem carbon fluxes on the Sanjiang plain wetland in Northeast China.

    Directory of Open Access Journals (Sweden)

    Jianbo Wang

    Full Text Available BACKGROUND: Increasing atmospheric CO2 and nitrogen (N deposition across the globe may affect ecosystem CO2 exchanges and ecosystem carbon cycles. Additionally, it remains unknown how increased N deposition and N addition will alter the effects of elevated CO2 on wetland ecosystem carbon fluxes. METHODOLOGY/PRINCIPAL FINDINGS: Beginning in 2010, a paired, nested manipulative experimental design was used in a temperate wetland of northeastern China. The primary factor was elevated CO2, accomplished using Open Top Chambers, and N supplied as NH4NO3 was the secondary factor. Gross primary productivity (GPP was higher than ecosystem respiration (ER, leading to net carbon uptake (measured by net ecosystem CO2 exchange, or NEE in all four treatments over the growing season. However, their magnitude had interannual variations, which coincided with air temperature in the early growing season, with the soil temperature and with the vegetation cover. Elevated CO2 significantly enhanced GPP and ER but overall reduced NEE because the stimulation caused by the elevated CO2 had a greater impact on ER than on GPP. The addition of N stimulated ecosystem C fluxes in both years and ameliorated the negative impact of elevated CO2 on NEE. CONCLUSION/SIGNIFICANCE: In this ecosystem, future elevated CO2 may favor carbon sequestration when coupled with increasing nitrogen deposition.

  6. CO2 -Responsive polymers.

    Science.gov (United States)

    Lin, Shaojian; Theato, Patrick

    2013-07-25

    This Review focuses on the recent progress in the area of CO2 -responsive polymers and provides detailed descriptions of these existing examples. CO2 -responsive polymers can be categorized into three types based on their CO2 -responsive groups: amidine, amine, and carboxyl groups. Compared with traditional temperature, pH, or light stimuli-responsive polymers, CO2 -responsive polymers provide the advantage to use CO2 as a "green" trigger as well as to capture CO2 directly from air. In addition, the current challenges of CO2 -responsive polymers are discussed and the different solution methods are compared. Noteworthy, CO2 -responsive polymers are considered to have a prosperous future in various scientific areas.

  7. CO2 laser modeling

    Science.gov (United States)

    Johnson, Barry

    1992-01-01

    The topics covered include the following: (1) CO2 laser kinetics modeling; (2) gas lifetimes in pulsed CO2 lasers; (3) frequency chirp and laser pulse spectral analysis; (4) LAWS A' Design Study; and (5) discharge circuit components for LAWS. The appendices include LAWS Memos, computer modeling of pulsed CO2 lasers for lidar applications, discharge circuit considerations for pulsed CO2 lidars, and presentation made at the Code RC Review.

  8. Relationships between carbonyl sulfide (COS) and CO2 during leaf gas exchange.

    Science.gov (United States)

    Stimler, Keren; Montzka, Stephen A; Berry, Joseph A; Rudich, Yinon; Yakir, Dan

    2010-06-01

    *Carbonyl sulfide (COS) exchange in C(3) leaves is linked to that of CO(2), providing a basis for the use of COS as a powerful tracer of gross CO(2) fluxes between plants and the atmosphere, a critical element in understanding the response of the land biosphere to global change. *Here, we carried out controlled leaf-scale gas-exchange measurements of COS and CO(2) in representative C(3) plants under a range of light intensities, relative humidities and temperatures, CO(2) and COS concentrations, and following abscisic acid treatments. *No 'respiration-like' emission of COS or detectable compensation point, and no cross-inhibition effects between COS and CO(2) were observed. The mean ratio of COS to CO(2) assimilation flux rates, A(s)/A(c), was c. 1.4 pmol micromol(-1) and the leaf relative uptake (assimilation normalized to ambient concentrations, (A(s)/A(c))(C(a)(c)/C(a)(s))) was 1.6-1.7 across species and conditions, with significant deviations under certain conditions. Stomatal conductance was enhanced by increasing COS, which was possibly mediated by hydrogen sulfide (H(2)S) produced from COS hydrolysis, and a correlation was observed between A(s) and leaf discrimination against C(18)OO. *The results provide systematic and quantitative information necessary for the use of COS in photosynthesis and carbon-cycle research on the physiological to global scales.

  9. Covalent Organic Frameworks for CO2 Capture.

    Science.gov (United States)

    Zeng, Yongfei; Zou, Ruqiang; Zhao, Yanli

    2016-04-20

    As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect. Recent research achievements using COFs for CO2 capture are highlighted. A background overview is provided, consisting of a brief statement on the current CO2 issue, a summary of representative materials utilized for CO2 capture, and an introduction to COFs. Research progresses on: i) experimental CO2 capture using different COFs synthesized based on different covalent bond formations, and ii) computational simulation results of such porous materials on CO2 capture are summarized. Based on these experimental and theoretical studies, careful analyses and discussions in terms of the COF stability, low- and high-pressure CO2 uptake, CO2 selectivity, breakthrough performance, and CO2 capture conditions are provided. Finally, a perspective and conclusion section of COFs for CO2 capture is presented. Recent advancements in the field are highlighted and the strategies and principals involved are discussed.

  10. CO2NNIE

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin

    2015-01-01

    We propose a system for calculating the personalized annual fuel consumption and CO2 emissions from transportation. The system, named CO2NNIE, estimates the fuel consumption on the fastest route between the frequent destinations of the user. The travel time and fuel consumption estimated are based......% of the actual fuel consumption (4.6% deviation on average). We conclude, that the system provides new detailed information on CO2 emissions and fuel consumption for any make and model....

  11. Wearable CO2 sensor

    OpenAIRE

    Radu, Tanja; Fay, Cormac; Lau, King-Tong; Waite, Rhys; Diamond, Dermot

    2009-01-01

    High concentrations of CO2 may develop particularly in the closed spaces during fires and can endanger the health of emergency personnel by causing serious physiological effects. The proposed prototype provides real-time continuous monitoring of CO2 in a wearable configuration sensing platform. A commercially available electrochemical CO2 sensor was selected due to its selectivity, sensitivity and low power demand. This was integrated onto an electronics platform that performed signal capture...

  12. CO2 blood test

    Science.gov (United States)

    Bicarbonate test; HCO3-; Carbon dioxide test; TCO2; Total CO2; CO2 test - serum ... Many medicines can interfere with blood test results. Your health care provider will tell you if you need to stop taking any medicines before you have this test. DO ...

  13. CO2 laser resurfacing.

    Science.gov (United States)

    Fitzpatrick, R E

    2001-07-01

    The CO2 Laser offers a variety of unique features in resurfacing facial photodamage and acne scarring. These include hemostasis, efficient removal of the epidermis in a single pass, thermally induced tissue tightening, and safe, predictable tissue interaction. Knowledge of these mechanisms will result in the capability of using the CO2 laser effectively and safely whether the goal is superficial or deep treatment.

  14. Outsourcing CO2 Emissions

    Science.gov (United States)

    Davis, S. J.; Caldeira, K. G.

    2009-12-01

    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with consumption of goods and services in each country. This consumption-based emissions inventory differs from the production-based inventory because of imports and exports of goods and services that, either directly or indirectly, involved CO2 emissions. Using the latest available data and reasonable assumptions regarding trans-shipment of embodied carbon through third-party countries, we developed a global consumption-based CO2 emissions inventory and have calculated associated consumption-based energy and carbon intensities. We find that, in 2004, 24% of CO2 emissions are effectively outsourced to other countries, with much of the developed world outsourcing CO2 emissions to emerging markets, principally China. Some wealthy countries, including Switzerland and Sweden, outsource over half of their consumption-based emissions, with many northern Europeans outsourcing more than three tons of emissions per person per year. The United States is both a big importer and exporter of emissions embodied in trade, outsourcing >2.6 tons of CO2 per person and at the same time as >2.0 tons of CO2 per person are outsourced to the United States. These large flows indicate that CO2 emissions embodied in trade must be taken into consideration when considering responsibility for increasing atmospheric greenhouse gas concentrations.

  15. Concurrent CO2 and COS fluxes across major biomes in Europe

    Science.gov (United States)

    Spielmann, Felix M.; Kitz, Florian; Hammerle, Albin; Gerdel, Katharina; Ibrom, Andreas; Kolle, Olaf; Migliavacca, Mirco; Moreno, Gerardo; Noe, Steffen M.; Wohlfahrt, Georg

    2017-04-01

    The trace gas carbonyl sulfide (COS) has been proposed as a tracer for canopy gross primary production (GPP), canopy transpiration and stomatal conductance of plant canopies in the last few years. COS enters the plant leaf through the stomata and diffuses through the intercellular space, the cell wall, the plasma membrane and the cytosol like carbon dioxide (CO2). It is then catalyzed by the enzyme carbonic anhydrase in a one-way reaction to hydrogen sulfide and CO2. This one-way flux into the leaf makes COS a promising tracer for the GPP. However, this approach assumes that the ratio of the deposition velocities between COS and CO2 is constant, which must be determined in field experiments covering a wide variety of ecosystems. The overarching objective of this study was to quantify the relationship between the ecosystem-scale exchange of COS and CO2 and thus, to test for the potential of COS to be used as a universal tracer for the plant canopy CO2 exchange. Between spring 2015 and summer 2016 we set up our quantum cascade laser at different field sites across Europe. These sites included a managed temperate mountain grassland (AUT), a savanna (ESP), a temperate beech forest (DEN) and a hemiboreal forest (EST). On each of these sites, we conducted ecosystem scale eddy covariance and soil chamber measurements. Since the soil COS flux contribution, especially in grass dominated ecosystems, could not be neglected, we had to derive the actual canopy COS fluxes for all the measurement sites. Using these fluxes we compared the ecosystem relative uptake (ERU) of the sites and searched for factors affecting its variability. We then used the influential factors to scale the ERU to be comparable under different field sites and conditions. Furthermore we also calculated the GPP using conventional CO2 flux partitioning and compared the results with the approach of using the leaf relative uptake.

  16. Responses of Bog Vegetation and CO2 Exchange to Experimental N and PK Addition

    Science.gov (United States)

    Juutinen, S.; Bubier, J. L.; Shrestha, P.; Smith, R.; Moore, T.

    2008-12-01

    Atmospheric nitrogen (N) deposition has the potential to alter the structure and functioning of nutrient poor wetland ecosystems. It is important to quantify the effect of N input on ecosystem carbon (C) sequestration in these globally important C storages. We address this issue at the temperate Mer Bleue bog, ON, Canada. After 6 years of experimental fertilization, we saw that high N deposition can change mixed Sphagnum and dwarf shrub dominated communities to taller and denser dwarf shrub communities that are losing moss cover, and which might have even lower net C uptake. Now, after 8 years of fertilization and with new treatments we quantify the relationship between the plant community structure and ecosystem CO2 exchange. Three levels of N fertilization were applied with or without phosphorus and potassium (PK) into triplicate plots. We measured light saturated net ecosystem CO2 exchange (NEE), and its components ecosystem respiration and gross photosynthesis using clear and dark chambers (May-August). Vegetation characteristics were quantified by measuring foliage cover (LAI), amount of woody and foliar biomass, and abundance of moss species (point interception technique), moss growth (cranked wires) and green area of vascular leaves and moss. Addition of PK fertilizer did not alter NEE or its components relative to the control. The 8-year low N addition alone and with PK, and the 4-year fertilization with high N levels resulted in the highest net ecosystem CO2 uptake relative to the control. The ecosystem respiration increased with increasing N input rate. All levels of N fertilization resulted in higher gross photosynthesis than the control, but there was no increasing trend with increasing N input. Vascular foliage increased, while moss cover drastically decreased with increasing levels of N fertilization. At the highest level of N (and PK) addition woody biomass increased at the expense of leaf increment. Dependencies of ecosystem CO2 exchange on the

  17. Economics show CO2 EOR potential in central Kansas

    Science.gov (United States)

    Dubois, M.K.; Byrnes, A.P.; Pancake, R.E.; Willhite, G.P.; Schoeling, L.G.

    2000-01-01

    Carbon dioxide (CO2) enhanced oil recovery (EOR) may be the key to recovering hundreds of millions of bbl of trapped oil from the mature fields in central Kansas. Preliminary economic analysis indicates that CO2 EOR should provide an internal rate of return (IRR) greater than 20%, before income tax, assuming oil sells for $20/bbl, CO2 costs $1/Mcf, and gross utilization is 10 Mcf of CO2/bbl of oil recovered. If the CO2 cost is reduced to $0.75/Mcf, an oil price of $17/bbl yields an IRR of 20%. Reservoir and economic modeling indicates that IRR is most sensitive to oil price and CO2 cost. A project requires a minimum recovery of 1,500 net bbl/acre (about 1 million net bbl/1-mile section) under a best-case scenario. Less important variables to the economics are capital costs and non-CO2 related lease operating expenses.

  18. CO2-strategier

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    2008-01-01

    I 2007 henvendte Lyngby-Taarbæk kommunens Agenda 21 koordinator sig til Videnskabsbutikken og spurgte om der var interesse for at samarbejde om CO2-strategier. Da Videnskabsbutikken DTU er en åben dør til DTU for borgerne og deres organisationer, foreslog Videnskabsbutikken DTU at Danmarks...... Naturfredningsforening’s lokalkomité for Lyngby blev en del af samarbejdet for at få borgerne i kommunen involveret i arbejdet med at udvikle strategier for reduktion af CO2. Siden sommeren 2007 har Videnskabsbutikken DTU, Lyngby-Taarbæk kommune og Danmarks Naturfredningsforening i Lyngby-Taarbæk samarbejdet om analyse...... og innovation i forhold til CO2-strategier....

  19. CO2-neutral fuels

    Science.gov (United States)

    Goede, A. P. H.

    2015-08-01

    The need for storage of renewable energy (RE) generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G) scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel cycle is

  20. CO2-neutral fuels

    Directory of Open Access Journals (Sweden)

    Goede A. P. H.

    2015-01-01

    Full Text Available The need for storage of renewable energy (RE generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel

  1. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux.

    Science.gov (United States)

    Oishi, A Christopher; Palmroth, Sari; Johnsen, Kurt H; McCarthy, Heather R; Oren, Ram

    2014-04-01

    Soil CO2 efflux (Fsoil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free-Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values - estimated based on temperature alone assuming nonlimiting soil water content - by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil , showing a decrease of ca. 114 g C m(-2) yr(-1) per 1 g m(-2) increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and

  2. Changes in vegetation phenology are not reflected in atmospheric CO2 and (13) C/(12) C seasonality.

    Science.gov (United States)

    Gonsamo, Alemu; D'Odorico, Petra; Chen, Jing M; Wu, Chaoyang; Buchmann, Nina

    2017-01-31

    Northern terrestrial ecosystems have shown global warming-induced advances in start, delays in end, and thus increased lengths of growing season and gross photosynthesis in recent decades. The tradeoffs between seasonal dynamics of two opposing fluxes, CO2 uptake through photosynthesis and release through respiration, determine the influence of the terrestrial ecosystem on the atmospheric CO2 and (13) C/(12) C seasonality. Here, we use four CO2 observation stations in the Northern Hemisphere, namely Alert, La Jolla, Point Barrow, and Mauna Loa Observatory, to determine how changes in vegetation productivity and phenology, respiration, and air temperature affect both the atmospheric CO2 and (13) C/(12) C seasonality. Since the 1960s, the only significant long-term trend of CO2 and (13) C/(12) C seasonality was observed at the northern most station, Alert, where the spring CO2 drawdown dates advanced by 0.65 ± 0.55 days yr(-1) , contributing to a nonsignificant increase in length of the CO2 uptake period (0.74 ± 0.67 days yr(-1) ). For Point Barrow station, vegetation phenology changes in well-watered ecosystems such as the Canadian and western Siberian wetlands contributed the most to (13) C/(12) C seasonality while the CO2 seasonality was primarily linked to nontree vegetation. Our results indicate significant increase in the Northern Hemisphere soil respiration. This means, increased respiration of (13) C depleted plant materials cancels out the (12) C gain from enhanced vegetation activities during the start and end of growing season. These findings suggest therefore that parallel warming-induced increases both in photosynthesis and respiration contribute to the long-term stability of CO2 and (13) C/(12) C seasonality under changing climate and vegetation activity. The summer photosynthesis and the soil respiration in the dormant seasons have become more vigorous which lead to increased peak-to-through CO2 amplitude. As the relative magnitude of the

  3. Gross motor control

    Science.gov (United States)

    Gross motor control is the ability to make large, general movements (such as waving an arm or lifting a leg). ... Gross motor control is a milestone in the development of an infant. Infants develop gross motor control before they develop ...

  4. CO2 laser preionisation

    Science.gov (United States)

    Spiers, Gary D.

    1991-01-01

    The final report for work done during the reporting period of January 25, 1990 to January 24, 1991 is presented. A literature survey was conducted to identify the required parameters for effective preionization in TEA CO2 lasers and the methods and techniques for characterizing preionizers are reviewed. A numerical model of the LP-140 cavity was used to determine the cause of the transverse mode stability improvement obtained when the cavity was lengthened. The measurement of the voltage and current discharge pulses on the LP-140 were obtained and their subsequent analysis resulted in an explanation for the low efficiency of the laser. An assortment of items relating to the development of high-voltage power supplies is also provided. A program for analyzing the frequency chirp data files obtained with the HP time and frequency analyzer is included. A program to calculate the theoretical LIMP chirp is also included and a comparison between experiment and theory is made. A program for calculating the CO2 linewidth and its dependence on gas composition and pressure is presented. The program also calculates the number of axial modes under the FWHM of the line for a given resonator length. A graphical plot of the results is plotted.

  5. Drilling and production - Economics show CO2 EOR potential

    Science.gov (United States)

    Dubois, M.K.; Byrnes, A.P.

    2000-01-01

    CO2 EOR may be the key to recovering hundreds of millions of bbl of trapped oil from the mature fields in central Kansas. A simple model aided in assessing the economics of CO2 EOR for central Kansas and the Midcontinent. The model used CO2 Prophet, a DOE freeware reservoir numerical simulation program, to determine reservoir performance, including injected and produced fluid rates, and CO2 utilization. Economic parameters, e.g., oil price, CO2 costs, capital costs, net revenue interest, production taxes, and lease operating expenses, are typical for anticipated conditions in the region and present price climate. Preliminary economic analysis shows that CO2 EOR should give an internal rate of return (IRR) > 20%, before income tax, assuming oil sells for $20/bbl, CO2 costs $1/million cu ft, and gross utilization is 10 million cu ft of CO2/bbl of oil recovered. If the CO2 is reduced to $0.75/million cu ft, an oil price of $17/bbl yields an IRR of 20%. Reservoir and economic modeling shows that IRR is most sensitive to oil price and CO2 cost.

  6. Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake

    OpenAIRE

    M. E. Whelan; Hilton, T. W.; Berry, J. A.; M. Berkelhammer; A. R. Desai; Campbell, J. E.

    2015-01-01

    Carbonyl sulfide (COS) measurements are one of the emerging tools to better quantify gross primary production (GPP), the largest flux in the global carbon cycle. COS is a gas with a similar structure to CO2; COS uptake is thought to be a proxy for GPP. However, soils are a potential source or sink of COS. This study presents a framework for understanding soil-COS interactions. Excluding wetlands, most of the few observations of isolated soils that have been ...

  7. Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake

    OpenAIRE

    Whelan, Mary E.; Hilton, Timothy W; Berry, Joseph A; Berkelhammer, Max; Desai, Ankur R; Campbell, J. Elliott

    2016-01-01

    Carbonyl sulfide (COS) measurements are one of the emerging tools to better quantify gross primary production (GPP), the largest flux in the global carbon cycle. COS is a gas with a similar structure to CO2; COS uptake is thought to be a proxy for GPP. However, soils are a potential source or sink of COS. This study presents a framework for understanding soil–COS interactions. Excluding wetlands, most of the few observations of isolated soils that have been made show smal...

  8. Quantifying CO2 Fluxes Across a Gradient of Permafrost in Boreal Alaska

    Science.gov (United States)

    Euskirchen, E. S.; Edgar, C.; Turetsky, M. R.; Harden, J. W.; McGuire, A. D.

    2011-12-01

    Changes in vegetation and soil properties following permafrost degradation and thermokarst development may cause changes in net carbon uptake, either by stimulating primary productivity due to changes in vegetation composition or by stimulating soil microbial decomposition. In order to better understand these dynamics, we established three sites in interior Alaska across a gradient of permafrost in which permafrost varies in presence and stability. These sites include a black spruce ecosystem with cold soils and stable permafrost, a permafrost collapse scar with thermokarst formation, and a moderately rich fen lacking near surface permafrost. Measurements at the sites include year-round eddy covariance estimates of CO2, water, and energy fluxes as well as the associated micrometeorological variables. During winter, the ecosystems each released approximately 15 - 25 g C m-2 mo-1. However, the black spruce ecosystem began to take up CO2 as soon as air temperatures increased in the spring, with an estimated accumulation of ~23 g C m-2 from late March to early May. During this same period, we observed unusually high rates of ecosystem respiration some days at the thermokarst site, potentially due to the release of trapped CO2 from frozen soil gas pockets. While the black spruce ecosystem continued to act as a net sink of CO2 in the summer, taking up ~2.5± 1 g C m-2 d-1, the thermokarst and fen ecosystems remained CO2 sources, respectively releasing ~2.4 ± 0.8 g C m-2 d-1 and ~1.9 ± 1.1 g C m-2 d-1. While ecosystem respiration was similar across all three ecosystems during the summer (~4.8 ± 1.0 g C m-2 d-1), gross primary productivity was much higher in the spruce ecosystem (~7.3 ± 1.4 g C m-2 d-1) compared to the thermokarst (~ 2.5 ± 0.9 g C m-2 d-1) and fen ecosystems (~ 3.0 ± 1.1 g C m-2 d-1). These results suggest that in these boreal peatland ecosystems, permafrost thaw and thermokarst development will increase CO2 emissions to the atmosphere due to

  9. Geospatial variability of soil CO2-C exchange in the main terrestrial ecosystems of Keller Peninsula, Maritime Antarctica.

    Science.gov (United States)

    Thomazini, A; Francelino, M R; Pereira, A B; Schünemann, A L; Mendonça, E S; Almeida, P H A; Schaefer, C E G R

    2016-08-15

    Soils and vegetation play an important role in the carbon exchange in Maritime Antarctica but little is known on the spatial variability of carbon processes in Antarctic terrestrial environments. The objective of the current study was to investigate (i) the soil development and (ii) spatial variability of ecosystem respiration (ER), net ecosystem CO2 exchange (NEE), gross primary production (GPP), soil temperature (ST) and soil moisture (SM) under four distinct vegetation types and a bare soil in Keller Peninsula, King George Island, Maritime Antarctica, as follows: site 1: moss-turf community; site 2: moss-carpet community; site 3: phanerogamic antarctic community; site 4: moss-carpet community (predominantly colonized by Sanionia uncinata); site 5: bare soil. Soils were sampled at different layers. A regular 40-point (5×8 m) grid, with a minimum separation distance of 1m, was installed at each site to quantify the spatial variability of carbon exchange, soil moisture and temperature. Vegetation characteristics showed closer relation with soil development across the studied sites. ER reached 2.26μmolCO2m(-2)s(-1) in site 3, where ST was higher (7.53°C). A greater sink effect was revealed in site 4 (net uptake of 1.54μmolCO2m(-2)s(-1)) associated with higher SM (0.32m(3)m(-3)). Spherical models were fitted to describe all experimental semivariograms. Results indicate that ST and SM are directly related to the spatial variability of CO2 exchange. Heterogeneous vegetation patches showed smaller range values. Overall, poorly drained terrestrial ecosystems act as CO2 sink. Conversely, where ER is more pronounced, they are associated with intense soil carbon mineralization. The formations of new ice-free areas, depending on the local soil drainage condition, have an important effect on CO2 exchange. With increasing ice/snow melting, and resulting widespread waterlogging, increasing CO2 sink in terrestrial ecosystems is expected for Maritime Antarctica.

  10. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification

    Science.gov (United States)

    Zhang, Han; Cao, Long

    2016-01-01

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations. PMID:26838480

  11. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification

    Science.gov (United States)

    Zhang, Han; Cao, Long

    2016-02-01

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations.

  12. Sequestering CO2 in the Ocean: Options and Consequences

    Science.gov (United States)

    Rau, G. H.; Caldeira, K.

    2002-12-01

    The likelihood of negative climate and environmental impacts associated with increasing atmospheric CO2 has prompted serious consideration of various CO2 mitigation strategies. Among these are methods of capturing and storing of CO2 in the ocean. Two approaches that have received the most attention in this regard have been i) ocean fertilization to enhanced biological uptake and fixation of CO2, and ii) the chemical/mechanical capture and injection of CO2 into the deep ocean. Both methods seek to enhance or speed up natural mechanisms of CO2 uptake and storage by the ocean, namely i) the biological CO2 "pump" or ii) the passive diffusion of CO2 into the surface ocean and subsequent mixing into the deep sea. However, as will be reviewed, concerns about the capacity and effectiveness of either strategy in long-term CO2 sequestration have been raised. Both methods are not without potentially significant environmental impacts, and the costs of CO2 capture and injection (option ii) are currently prohibitive. An alternate method of ocean CO2 sequestration would be to react and hydrate CO2 rich waste gases (e.g., power plant flue gas) with seawater and to subsequently neutralize the resulting carbonic acid with limestone to produce calcium and bicarbonate ions in solution. This approach would simply speed up the CO2 uptake and sequestration that naturally (but very slowly) occurs via global carbonate weathering. This would avoid much of the increased acidity associated with direct CO2 injection while obviating the need for costly CO2 separation and capture. The addition of the resulting bicarbonate- and carbonate-rich solution to the ocean would help to counter the decrease in pH and carbonate ion concentration, and hence loss of biological calcification that is presently occurring as anthropogenic CO2 invades the ocean from the atmosphere. However, as with any approach to CO2 mitigation, the costs, impacts, risks, and benefits of this method need to be better understood

  13. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2

    Directory of Open Access Journals (Sweden)

    S. Basu

    2013-09-01

    Full Text Available We present one of the first estimates of the global distribution of CO2 surface fluxes using total column CO2 measurements retrieved by the SRON-KIT RemoTeC algorithm from the Greenhouse gases Observing SATellite (GOSAT. We derive optimized fluxes from June 2009 to December 2010. We estimate fluxes from surface CO2 measurements to use as baselines for comparing GOSAT data-derived fluxes. Assimilating only GOSAT data, we can reproduce the observed CO2 time series at surface and TCCON sites in the tropics and the northern extra-tropics. In contrast, in the southern extra-tropics GOSAT XCO2 leads to enhanced seasonal cycle amplitudes compared to independent measurements, and we identify it as the result of a land–sea bias in our GOSAT XCO2 retrievals. A bias correction in the form of a global offset between GOSAT land and sea pixels in a joint inversion of satellite and surface measurements of CO2 yields plausible global flux estimates which are more tightly constrained than in an inversion using surface CO2 data alone. We show that assimilating the bias-corrected GOSAT data on top of surface CO2 data (a reduces the estimated global land sink of CO2, and (b shifts the terrestrial net uptake of carbon from the tropics to the extra-tropics. It is concluded that while GOSAT total column CO2 provide useful constraints for source–sink inversions, small spatiotemporal biases – beyond what can be detected using current validation techniques – have serious consequences for optimized fluxes, even aggregated over continental scales.

  14. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2

    Directory of Open Access Journals (Sweden)

    M. Torn

    2013-02-01

    Full Text Available We present one of the first estimates of the global distribution of CO2 surface fluxes using total column CO2 measurements retrieved from the Greenhouse gases Observing SATellite (GOSAT. We derive optimized fluxes from June 2009 to December 2010. We estimate fluxes from surface CO2 measurements to use as baselines for comparing GOSAT data-derived fluxes. Assimilating only GOSAT data, we can reproduce the observed CO2 time series at surface and TCCON sites in the tropics and the northern extra-tropics. In contrast, in the southern extra-tropics GOSAT XCO2 leads to enhanced seasonal cycle amplitudes compared to independent measurements, and we identify it as the result of a land-sea bias in our GOSAT XCO2 retrievals. A bias correction in the form of a global offset between GOSAT land and sea pixels in a joint inversion of satellite and surface measurements of CO2 yields plausible global flux estimates which are more tightly constrained than in an inversion using surface CO2 data alone. We show that assimilating the bias-corrected GOSAT data on top of surface CO2 data (a reduces the estimated global land sink of CO2, and (b shifts the terrestrial net uptake of carbon from the tropics to the extra-tropics. It is concluded that while GOSAT total column CO2 provide useful constraints for source-sink inversions, small spatiotemporal biases – beyond what can be detected using current validation techniques – have serious consequences for optimized fluxes, even aggregated over continental scales.

  15. Methane production from coal seams and CO2 uptake capability of the Mecsek mountain range, Hungary; Die Methangewinnung aus Kohlefloezen und das CO{sub 2}-Aufnahmevermoegen des Mecsek-Gebirges in Ungarn

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Z.N. [Univ. Miskolc (Hungary); Lakatos, I. [Forschungsinstitut der angewandten Chemie (Hungary); Foeldessy, J.; Toth, J.; Fodor, B.; Csecsei, T. [Ungarischer Geologischer Dienst, Rotaqua KFT (Hungary)

    2006-06-15

    Methane from the Mecsek mountain range coal seams is of vast economic importance. Modified geological models focusing on zones of enhanced permeability may be useful in the development of practicable winning technologies. High gas volumes are assumed in stowed material, which may be recovered by a simple technology. There is a power station in the vicinity which produces waste gases that may be used for injection, so the Mecsek region offers promising conditions for CO2 CBM production. The same power plant is also a potential consumer of the recovered methane. (orig.)

  16. In situ synthesis of polymer-modified mesoporous carbon CMK-3 composites for CO2 sequestration.

    Science.gov (United States)

    Hwang, Chih-Chau; Jin, Zhong; Lu, Wei; Sun, Zhengzong; Alemany, Lawrence B; Lomeda, Jay R; Tour, James M

    2011-12-01

    Here we report carbon-based composites polyethylenimine-mesocarbon (PEI-CMK-3) and polyvinylamine-mesocarbon (PVA-CMK-3) that can be used to capture and rapidly release CO(2). CO(2) uptake by the synthesized composites was determined using a gravimetric method at 30 °C and 1 atm; the 39% PEI-CMK-3 composite had ~12 wt % CO(2) uptake capacity and the 37% PVA-CMK-3 composite had ~13 wt % CO(2) uptake capacity. A desorption temperature of 75 °C was sufficient for regeneration. The CO(2) uptake was the same when using 10% CO(2) in a 90% CH(4), C(2)H(6), and C(3)H(8) mixture, underscoring this composite's efficacy for CO(2) sequestration from natural gas.

  17. Variability of annual CO2 exchange from Dutch Grasslands

    Directory of Open Access Journals (Sweden)

    A. Schrier-Uijl

    2007-05-01

    Full Text Available An intercomparison is made of the Net Ecosystem Exchange of CO2, NEE, for eight Dutch grassland sites; four natural grasslands, two production grasslands and two meteorological stations within a rotational grassland region. At all sites the NEE was determined during at least 10 months per site, using the eddy-covariance (EC technique, but in different years. The photosynthesis-light response analysis technique is used along with the respiration-temperature response technique to partition NEE among Gross Primary Production (GPP and Ecosystem Respiration (Re and to obtain the eco-physiological characteristics of the sites at the field scale. Annual sums of NEE, GPP and Re are then estimated using the fitted response curves with observed radiation and air temperature from a meteorological site in the centre of The Netherlands as drivers. These calculations are carried out for four years (2002–2005. The estimated annual Re for all individual sites is more or less constant per site and the average for all sites amounts to 1390±30 gC m−2 a−1. The narrow uncertainty band (±2% reflects the small differences in the mean annual air temperature. The mean annual GPP was estimated to be 1325 g C m−2 a−1, and displays a much higher standard deviation, of ±100 gC m−2 a−1 (8%, which reflects the relatively large variation in annual solar radiation. The mean annual NEE amounts to –65±85 gC m−2 a−1, which implies that on average the grasslands act as a source, with a relatively large standard deviation. From two sites, four-year records of CO2 flux were available and analyzed (2002–2005. Using the weather record of 2005 with optimizations from the other years, standard deviation of annual GPP was estimated to be 171–206 gC m−2 a−1 (8–14%, of annual Re 227–247 gC m−2 a−1 (14–16% and of annual NEE 176–276 gC m−2 a−1. The inter-site standard deviation was higher for GPP and Re, 534 gC m−2 a−1 (37.3% and 486 gC m

  18. Triazine containing N-rich microporous organic polymers for CO2 capture and unprecedented CO2/N2 selectivity

    Science.gov (United States)

    Bhunia, Subhajit; Bhanja, Piyali; Das, Sabuj Kanti; Sen, Tapas; Bhaumik, Asim

    2017-03-01

    Targeted synthesis of microporous adsorbents for CO2 capture and storage is very challenging in the context of remediation from green house gases. Herein we report two novel N-rich microporous networks SB-TRZ-CRZ and SB-TRZ-TPA by extensive incorporation of triazine containing tripodal moiety in the porous polymer framework. These materials showed excellent CO2 storage capacities: SB-TRZ-CRZ displayed the CO2 uptake capacity of 25.5 wt% upto 1 bar at 273 K and SB-TRZ-TPA gave that of 16 wt% under identical conditions. The substantial dipole quadruple interaction between network (polar triazine) and CO2 boosts the selectivity for CO2/N2. SB-TRZ-CRZ has this CO2/N2 selectivity ratio of 377, whereas for SB-TRZ-TPA it was 97. Compared to other porous polymers, these materials are very cost effective, scalable and very promising material for clean energy application and environmental issues.

  19. Forecasting global atmospheric CO2

    Directory of Open Access Journals (Sweden)

    A. Agustí-Panareda

    2014-05-01

    Full Text Available A new global atmospheric carbon dioxide (CO2 real-time forecast is now available as part of the pre-operational Monitoring of Atmospheric Composition and Climate – Interim Implementation (MACC-II service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF Integrated Forecasting System (IFS. One of the strengths of the CO2 forecasting system is that the land surface, including vegetation CO2 fluxes, is modelled online within the IFS. Other CO2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO2 fluxes also lead to accumulating errors in the CO2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO2 fluxes compared to total optimized fluxes and the atmospheric CO2 compared to observations. The largest biases in the atmospheric CO2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO2 analyses based on the assimilation of CO2 satellite retrievals, as they

  20. Upscaling nitrogen-mycorrhizal effects to quantify CO2 fertilization.

    Science.gov (United States)

    Terrer, C.; Franklin, O.; Kaiser, C.; Vicca, S.; Stocker, B.; Prentice, I. C.; Soudzilovskaia, N.

    2016-12-01

    Terrestrial ecosystems sequester annually about a quarter of anthropogenic carbon dioxide (CO2) emissions. However, it has been proposed that nitrogen (N) availability will limit plants' capacity to absorb increasing quantities of CO2 in the atmosphere. Experiments in which plants are fumigated with elevated CO2 show contrasting results, leaving open the debate of whether the magnitude of the CO2 fertilization effect will be limited by N. By synthesizing data from CO2 experiments through meta-analysis, we found that the magnitude of the CO2 fertilization effect can be explained based on the interaction between N availability and type of mycorrhizal association. Indeed, N availability is the most important driver of the CO2 fertilization effect, however, plants that associate with ectomycorrhizal fungi can overcome N limitations and grow about 30% more under 650ppm than under 400ppm of atmospheric CO2. On the other hand, plants that associate with arbuscular mycorrhizal fungi show no CO2 fertilization effect under low N availability. Using this framework, we quantified biomass responses to CO2 as a function of the soil parameters that determine N availability for the two mycorrhizal types. Then, by overlaying the distribution of mycorrhizal plants with global projections of the soil parameters that determine N availability, we estimated the amount of extra CO2 that terrestrial plants can sequester in biomass for an increase in CO2, as well as the distribution of the CO2 fertilization effect. This synthesis reconciles contrasting views of the role of N in terrestrial carbon uptake and emphasizes the plant control on N availability through interaction with ectomycorrhizal fungi. Large-scale ecosystem models should account for the influence of nitrogen and mycorrhizae reported here, which will improve representation of the CO2 fertilization effect, critical for projecting ecosystem responses and feedbacks to climate change.

  1. NM Gross Receipts Baseline

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This layer represents boundaries for New Mexico's gross receipts tax districts as identified on the "Gross Receipts Tax Rate Schedule" published by the Taxation and...

  2. Polyurethane Foam-Based Ultramicroporous Carbons for CO2 Capture.

    Science.gov (United States)

    Ge, Chao; Song, Jian; Qin, Zhangfeng; Wang, Jianguo; Fan, Weibin

    2016-07-27

    A series of sustainable porous carbon materials were prepared from waste polyurethane foam and investigated for capture of CO2. The effects of preparation conditions, such as precarbonization, KOH to carbon precursor weight ratio, and activation temperature, on the porous structure and CO2 adsorption properties were studied for the purpose of controlling pore sizes and nitrogen content and developing high-performance materials for capture of CO2. The sample prepared at optimum conditions shows CO2 adsorption capacities of 6.67 and 4.33 mmol·g(-1) at 0 and 25 °C under 1 bar, respectively, which are comparable to those of the best reported porous carbons prepared from waste materials. The HCl treatment experiment reveals that about 80% of CO2 adsorption capacity arises from physical adsorption, while the other 20% is due to the chemical adsorption originated from the interaction of basic N groups and CO2 molecules. The relationship between CO2 uptake and pore size at different temperatures indicates that the micropores with pore size smaller than 0.86 and 0.70 nm play a dominant role in the CO2 adsorption at 0 and 25 °C, respectively. It was found that the obtained carbon materials exhibited high recyclability and high selectivity to adsorption of CO2 from the CO2 and N2 mixture.

  3. Peroxisomal malate dehydrogenase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release.

    Science.gov (United States)

    Cousins, Asaph B; Pracharoenwattana, Itsara; Zhou, Wenxu; Smith, Steven M; Badger, Murray R

    2008-10-01

    Peroxisomes are important for recycling carbon and nitrogen that would otherwise be lost during photorespiration. The reduction of hydroxypyruvate to glycerate catalyzed by hydroxypyruvate reductase (HPR) in the peroxisomes is thought to be facilitated by the production of NADH by peroxisomal malate dehydrogenase (PMDH). PMDH, which is encoded by two genes in Arabidopsis (Arabidopsis thaliana), reduces NAD(+) to NADH via the oxidation of malate supplied from the cytoplasm to oxaloacetate. A double mutant lacking the expression of both PMDH genes was viable in air and had rates of photosynthesis only slightly lower than in the wild type. This is in contrast to other photorespiratory mutants, which have severely reduced rates of photosynthesis and require high CO(2) to grow. The pmdh mutant had a higher O(2)-dependent CO(2) compensation point than the wild type, implying that either Rubisco specificity had changed or that the rate of CO(2) released per Rubisco oxygenation was increased in the pmdh plants. Rates of gross O(2) evolution and uptake were similar in the pmdh and wild-type plants, indicating that chloroplast linear electron transport and photorespiratory O(2) uptake were similar between genotypes. The CO(2) postillumination burst and the rate of CO(2) released during photorespiration were both greater in the pmdh mutant compared with the wild type, suggesting that the ratio of photorespiratory CO(2) release to Rubisco oxygenation was altered in the pmdh mutant. Without PMDH in the peroxisome, the CO(2) released per Rubisco oxygenation reaction can be increased by over 50%. In summary, PMDH is essential for maintaining optimal rates of photorespiration in air; however, in its absence, significant rates of photorespiration are still possible, indicating that there are additional mechanisms for supplying reductant to the peroxisomal HPR reaction or that the HPR reaction is altogether circumvented.

  4. Combined climate factors alleviate changes in gross soil nitrogen dynamics in heathlands

    DEFF Research Database (Denmark)

    Bjorsne, Anna-Karin; Rutting, Tobias; Ambus, Per

    2014-01-01

    of exposure to three climate change factors, i.e. warming, elevated CO2 (eCO(2)) and summer drought, applied both in isolation and in combination. By conducting laboratory N-15 tracing experiments we show that warming increased both gross N mineralization and nitrification rates. In contrast, gross...

  5. Stopped-Flow Spectrophotometric Study of the Kinetics and Mechanism of CO2 Uptake by cis-[Cr(C2O4(BaraNH2(OH22]+ Cation and the Acid-Catalyzed Decomposition of cis-[Cr(C2O4(BaraNH2OCO2]− Anion in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Lech Chmurzyński

    2011-09-01

    Full Text Available The kinetics of CO2 uptake by the cis-[Cr(C2O4(BaraNH2(OH22]+ complex cation and the acid hydrolysis of the cis-[Cr(C2O4(BaraNH2OCO2]− complex anion (where BaraNH2 denotes methyl 3-amino-2,3-dideoxy-b-D-arabino-hexopyranoside were studied using the stopped-flow technique. The reactions under study were investigated in aqueous solution in the 288–308 K temperature range. In the case of the reaction between CO2 and cis-[Cr(C2O4(BaraNH2(OH22]+ cation variable pH values (6.82–8.91 and the constant ionic strength of solution (H+, Na+, ClO4− = 1.0 were used. Carbon dioxide was generated by the reaction between sodium pyruvate and hydrogen peroxide. The acid hydrolysis of cis-[Cr(C2O4(BaraNH2OCO2]− was investigated for varying concentrations of H+ ions (0.01–2.7 M. The obtained results enabled the determination of the number of steps of the studied reactions. Based on the kinetic equations, rate constants were determined for each step. Finally, mechanisms for both reactions were proposed and discussed. Based on the obtained results it was concluded that the carboxylation (CO2 uptake reactions of cis-[Cr(C2O4(BaraNH2(OH22]+ and the decarboxylation (acid hydrolysis of the cis-[Cr(C2O4(BaraNH2OCO2]− are the opposite of each other.

  6. India Co2 Emissions

    Science.gov (United States)

    Sharan, S.; Diffenbaugh, N. S.

    2010-12-01

    created a balance in between the “developed” and developing countries. If India was producing the same amounts of emissions per capita as the it would have a total of 20 billion metric tons of CO2 emissions annually.

  7. Gross National Happiness

    DEFF Research Database (Denmark)

    Giri, Krishna Prasad; Kjær-Rasmussen, Lone Krogh

    This paper investigates practices related to the ideology of infusing Gross National Happiness (GNH) into school curriculum, the effectiveness of the meditation and mind training and the implication of GNH for school environment. It also explores how GNH ambience has been managed and practiced...... of Gross National Happiness and Educating for Gross National happiness....

  8. Dynamic breathing of CO2 by hydrotalcite.

    Science.gov (United States)

    Ishihara, Shinsuke; Sahoo, Pathik; Deguchi, Kenzo; Ohki, Shinobu; Tansho, Masataka; Shimizu, Tadashi; Labuta, Jan; Hill, Jonathan P; Ariga, Katsuhiko; Watanabe, Ken; Yamauchi, Yusuke; Suehara, Shigeru; Iyi, Nobuo

    2013-12-04

    The carbon cycle of carbonate solids (e.g., limestone) involves weathering and metamorphic events, which usually occur over millions of years. Here we show that carbonate anion intercalated layered double hydroxide (LDH), a class of hydrotalcite, undergoes an ultrarapid carbon cycle with uptake of atmospheric CO2 under ambient conditions. The use of (13)C-labeling enabled monitoring by IR spectroscopy of the dynamic exchange between initially intercalated (13)C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. Exchange is promoted by conditions of low humidity with a half-life of exchange of ~24 h. Since hydrotalcite-like clay minerals exist in Nature, our finding implies that the global carbon cycle involving exchange between lithosphere and atmosphere is much more dynamic than previously thought.

  9. CO2 as a refrigerant

    CERN Document Server

    2014-01-01

    A first edition, the IIR guide “CO2 as a Refrigerant” highlights the application of carbon dioxide in supermarkets, industrial freezers, refrigerated transport, and cold stores as well as ice rinks, chillers, air conditioning systems, data centers and heat pumps. This guide is for design and development engineers needing instruction and inspiration as well as non-technical experts seeking background information on a specific topic. Written by Dr A.B. Pearson, a well-known expert in the field who has considerable experience in the use of CO2 as a refrigerant. Main topics: Thermophysical properties of CO2 – Exposure to CO2, safety precautions – CO2 Plant Design – CO2 applications – Future prospects – Standards and regulations – Bibliography.

  10. Synergetic effect of carbon nanopore size and surface oxidation on CO2 capture from CO2/CH4 mixtures.

    Science.gov (United States)

    Furmaniak, Sylwester; Kowalczyk, Piotr; Terzyk, Artur P; Gauden, Piotr A; Harris, Peter J F

    2013-05-01

    We have studied the synergetic effect of confinement (carbon nanopore size) and surface chemistry (the number of carbonyl groups) on CO2 capture from its mixtures with CH4 at typical operating conditions for industrial adsorptive separation (298 K and compressed CO2-CH4 mixtures). Although both confinement and surface oxidation have an impact on the efficiency of CO2/CH4 adsorptive separation at thermodynamics equilibrium, we show that surface functionalization is the most important factor in designing an efficient adsorbent for CO2 capture. Systematic Monte Carlo simulations revealed that adsorption of CH4 either pure or mixed with CO2 on oxidized nanoporous carbons is only slightly increased by the presence of functional groups (surface dipoles). In contrast, adsorption of CO2 is very sensitive to the number of carbonyl groups, which can be examined by a strong electric quadrupolar moment of CO2. Interestingly, the adsorbed amount of CH4 is strongly affected by the presence of the co-adsorbed CO2. In contrast, the CO2 uptake does not depend on the molar ratio of CH4 in the bulk mixture. The optimal carbonaceous porous adsorbent used for CO2 capture near ambient conditions should consist of narrow carbon nanopores with oxidized pore walls. Furthermore, the equilibrium separation factor was the greatest for CO2/CH4 mixtures with a low CO2 concentration. The maximum equilibrium separation factor of CO2 over CH4 of ~18-20 is theoretically predicted for strongly oxidized nanoporous carbons. Our findings call for a review of the standard uncharged model of carbonaceous materials used for the modeling of the adsorption separation processes of gas mixtures containing CO2 (and other molecules with strong electric quadrupolar moment or dipole moment).

  11. Highly efficient CO2 sorbents: development of synthetic, calcium-rich dolomites.

    Science.gov (United States)

    Filitz, Rainer; Kierzkowska, Agnieszka M; Broda, Marcin; Müller, Christoph R

    2012-01-03

    The reaction of CaO with CO(2) is a promising approach for separating CO(2) from hot flue gases. The main issue associated with the use of naturally occurring CaCO(3), that is, limestone, is the rapid decay of its CO(2) capture capacity over repeated cycles of carbonation and calcination. Interestingly, dolomite, a naturally occurring equimolar mixture of CaCO(3) and MgCO(3), possesses a CO(2) uptake that remains almost constant with cycle number. However, owing to the large quantity of MgCO(3) in dolomite, the total CO(2) uptake is comparatively small. Here, we report the development of a synthetic Ca-rich dolomite using a coprecipitation technique, which shows both a very high and a stable CO(2) uptake over repeated cycles of calcination and carbonation. To obtain such an excellent CO(2) uptake characteristic it was found to be crucial to mix the Ca(2+) and Mg(2+) on a molecular level, that is, within the crystalline lattice. For sorbents which were composed of mixtures of microscopic crystals of CaCO(3) and MgCO(3), a decay behavior similar to natural limestone was observed. After 15 cycles, the CO(2) uptake of the best sorbent was 0.51 g CO(2)/g sorbent exceeding the CO(2) uptake of limestone by almost 100%.

  12. Evaluation of the influence of CO2 on hydrogen production by Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Willquist, K.; Claassen, P.A.M.; Niel, van E.W.J.

    2009-01-01

    Stripping gas is generally used to improve hydrogen yields in fermentations. Since CO2 is relatively easy to separate from hydrogen it could be an interesting stripping gas. However, a higher partial CO2 pressure is accompanied with an increased CO2 uptake in the liquid, where it hydrolyses and

  13. Evaluation of the influence of CO2 on hydrogen production by Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Willquist, K.; Claassen, P.A.M.; Niel, van E.W.J.

    2009-01-01

    Stripping gas is generally used to improve hydrogen yields in fermentations. Since CO2 is relatively easy to separate from hydrogen it could be an interesting stripping gas. However, a higher partial CO2 pressure is accompanied with an increased CO2 uptake in the liquid, where it hydrolyses and indu

  14. Plant growth responses to elevated atmospheric CO2 are increased by phosphorus sufficiency but not by arbuscular mycorrhizas

    DEFF Research Database (Denmark)

    Jakobsen, Iver; Smith, Sally E.; Smith, F. Andrew

    2016-01-01

    Capturing the full growth potential in crops under future elevated CO2 (eCO2) concentrations would be facilitated by improved understanding of eCO2 effects on uptake and use of mineral nutrients. This study investigates interactions of eCO2, soil phosphorus (P), and arbuscular mycorrhizal (AM...

  15. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim......The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  16. CO2 Sequestration short course

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

    2014-12-08

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  17. Effect of CO2 concentrations on the activity of photosynthetic CO2 fixation and extracelluar carbonic anhydrase in the marine diatom Skeletonema costatum

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiongwen; GAO Kunshan

    2003-01-01

    The growth and activity of photosynthetic CO2 uptake and extracellular carbonic anhydrase (Caext) of the marine diatom Skeletonema costatum were investigated while cultured at different levels of CO2 in order to see its physiological response to different CO2 concentrations under either a low (30 μmol·m-2·s-1) or high (210 μmol·m-2·s-1) irradiance. The changes in CO2 concentrations (4-31 μmol/L) affected the growth and net photosynthesis to a greater extent under the low than under the high light regime. Caext was detected in the cells grown at 4 μmol/L CO2 but not at 31 and 12 μmol/L CO2, with its activity being about 2.5-fold higher at the high than at the low irradiance. Photo- synthetic CO2 affinity (1/ K1/2(CO2)) of the cells decreased with increased CO2 concentrations in culture. The cells cultured under the high-light show significantly higher photosynthetic CO2 affinity than those grown at the low-light level. It is concluded that the regulations of Caext activity and photosynthetic CO2 affinity are dependent not only on CO2 concentration but also on light availability, and that the development of higher Caext activity and CO2 affinity under higher light level could sufficiently support the photosynthetic demand for CO2 even at low level of CO2.

  18. CO2-induced changes in mineral stoichiometry of wheat grains

    Science.gov (United States)

    Broberg, Malin; Pleijel, Håkan; Högy, Petra

    2016-04-01

    A comprehensive review of experiments with elevated CO2 (eCO2) presenting data on grain mineral concentration in wheat grain was made. Data were collected both from FACE (Free-Air CO2 Enrichment) and OTC (Open-Top Chamber) experiments. Analysis was made i) by deriving response functions for the relative effect on yield and mineral concentration in relation to CO2 concentration, ii) meta-analysis to test the magnitude and significance of observed effects and iii) comparison of the CO2 effect on the accumulation of different minerals in relation to accumulation of biomass and accumulation of N. Data were obtained for the following minerals: N, Zn, Mn, K, Ca, Mg, P, Fe, S, Cr, Cu, Cd and Na. In addition, data for starch, the dominating carbohydrate of wheat grain, were extracted. The responses ranged from near zero effects to strong negative effects of eCO2 on mineral concentration. The order of effect size was the following (from largest to smallest effect) for the different elements: Fe, Ca, S, Zn, Cd, N, Mg, Mn, P, Cu, Cr, K and Na. Particularly strong negative impacts of eCO2 were found in the essential mineral elements Fe, S, Ca, Zn and Mg. Especially Fe, Zn and Mg are nutrients for which deficiency in humans is a problem in todaýs world. The rather large differences in response of different elements indicated that the CO2-induced responses cannot be explained by a simple growth dilution model. Rather, uptake and transport mechanisms may have to be considered in greater detail, as well as the link of different elements with the uptake of nitrogen, the quantitatively dominating mineral nutrient, to explain the observed pattern. No effect of eCO2 on starch concentration could be demonstrated. This substantiates the rejection of a simple dilution model, since one would expect starch concentrations to be elevated in order to explain reduced mineral concentrations by carbohydrate dilution. The concentrations of toxic Cd was negatively affected, in principle a

  19. Secondary Amine Functional Disiloxanes as CO2 Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, MJ; Farnum, RL; Perry, RJ; Genovese, SE

    2014-05-01

    A series of two different types of secondary amine functional disiloxanes were prepared and screened as CO2 capture solvents. The first group of materials contained RNHCH2CH2CH2 side chains where the R groups were C1-6 alkyls. When R was a primary alkyl group, these materials exhibited CO2 uptake values slightly in excess of theoretical. As the alkyl groups were changed to more sterically hindered secondary or tertiary alkyls, the uptake was less efficient. Heats of absorption values for these materials were generally in the range 2000-2200 kJ/kg of CO2, values significantly lower than those obtained for primary amine functional disiloxanes (2500-2700 kJ/kg of CO2). Also explored were a series of secondary amine functional disiloxanes with X-CH2CH2NH-CH2CH2CH2 - substituents. When X was an electron-donating group (RO-, R2N-, RO-CH2-) the CO2 uptake was also in excess of theoretical. Interestingly, these compounds were generally found to produce carbamate salts that were flowable, low-viscosity oils. Furthermore, the heat of absorption values determined for these materials were even lower. Most compounds gave values below 2000 kJ/kg of CO2. Overall the most promising results were obtained with a methoxyethylaminopropyl derivative, an ethoxyethylaminopropyl-containing material, and a dimethylaminoethylaminopropyl-based compound. These materials showed excellent CO2 uptake, had low heats of absorption, and produced carbamate salts that were flowable liquids even at room temperature.

  20. Anthropogenic CO2 emissions in Africa

    Directory of Open Access Journals (Sweden)

    R. A. Houghton

    2008-11-01

    Full Text Available An understanding of the regional contributions and trends of anthropogenic carbon dioxide (CO2 emissions is critical to design mitigation strategies aimed at stabilizing atmospheric greenhouse gases. Here we report CO2 emissions from the combustion of fossil fuels and land use change in Africa for various time periods. Africa was responsible for an average of 500 TgC y−1 for the period 2000–2005. These emissions resulted from the combustion of fossil fuels (260 TgC y−1 and land use change (240 TgC y−1. Over this period, the African share of global emissions from land use change was 17%. For 2005, the last year reported in this study, African fossil fuel emissions were 285 TgC accounting for 3.7% of the global emissions. The 2000–2005 growth rate in African fossil fuel emissions was 3.2% y−1, very close to the global average. Fossil fuel emissions per capita in Africa are among the lowest in the world, at 0.32 tC y−1 compared to the global average of 1.2 tC y−1. The average amount of carbon (C emitted as CO2 to produce 1 US $ of Gross Domestic Product (GDP in Africa in 2005 was 187 gC/$, close to the world average of 199 gC/$. With the fastest population growth in the world and rising per capita GDP, Africa is likely to increase its share of global emissions over the coming decades although emissions from Africa will remain low compared to other continents.

  1. Connecting CO2. Feasibility study CO2 network Southwest Netherlands; Connecting CO2. Haalbaarheidsstudie CO2-netwerk Zuidwest-Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Rutten, M.

    2009-06-10

    An overview is given of supply and demand of CO2 in the region Southwest Netherlands and the regions Antwerp and Gent in Belgium. Also attention is paid to possible connections between these regions [Dutch] Een inventarisatie wordt gegeven van vraag en aanbod van CO2 in de regio Zuidwest- Nederland en de regios Antwerpen en Gent in Belgie. Ook worden mogelijke koppelingen tussen de regios besproken.

  2. Biogeophysical effects of CO2 fertilization on global climate

    Science.gov (United States)

    Bala, G.; Caldeira, K.; Mirin, A.; Wickett, M.; Delire, C.; Phillips, T. J.

    2006-11-01

    CO2 fertilization affects plant growth, which modifies surface physical properties, altering the surface albedo, and fluxes of sensible and latent heat. We investigate how such CO2-fertilization effects on vegetation and surface properties would affect the climate system. Using a global three-dimensional climate-carbon model that simulates vegetation dynamics, we compare two multicentury simulations: a `Control' simulation with no emissions and a `Physiol-noGHG' simulation where physiological changes occur as a result of prescribed CO2 emissions, but where CO2-induced greenhouse warming is not included. In our simulations, CO2 fertilization produces warming; we obtain an annual- and global-mean warming of about 0.65 K (and land-only warming of 1.4 K) after 430 yr. This century-scale warming is mostly due to a decreased surface albedo associated with the expansion of the Northern Hemisphere boreal forests. On decadal timescales, the CO2 uptake by afforestation should produce a cooling effect that exceeds this albedo-based warming; but if the forests remain in place, the CO2-enhanced-greenhouse effect would diminish as the ocean equilibrates with the atmosphere, whereas the albedo effect would persist. Thus, on century timescales, there is the prospect for net warming from CO2 fertilization of the land biosphere. Further study is needed to confirm and better quantify our results.

  3. [On the analysis of CO2-exchange in bryophyllum : II. Inhibition of starch loss during the night in an atmosphere free from CO2].

    Science.gov (United States)

    Kluge, M

    1969-06-01

    Starch consumption during the dark period in detached phyllodia of Bryophyllum tubiflorum is inhibited, when the phyllodia are held in an atmosphere free from carbon dioxide during the night. This is true also in other succulent plants with Crassulacean acid metabolism=CAM (examined were Bryophyllum calycinum and Sedum morganianum). This effect seems to indicate that the role of starch in CAM is production of CO2 acceptors rather than production of carbon dioxide by respiration. If the CO2 acceptors are not used, starch consumption comes to an end.This hypothesis could also explain results of experiments in which phyllodia were held at different temperatures during the dark period, and net CO2 fixation, starch loss and malate gain were determined. At 10° CO2 uptake was at a maximum (the necessary supply of CO2 acceptors must have therefore been at a maximum, too). Under these conditions there was the greatest amount of starch consumption. At 23° C, CO2 uptake was clearly lowered, and this was also true for starch consumption. At 35° C net CO2 uptake was balanced by net CO2, output (no CO2 acceptors were needed in CO2 dark fixation). At this temperature no starch loss could be measured.

  4. ROOT-GROWTH AND FUNCTIONING UNDER ATMOSPHERIC CO2 ENRICHMENT

    NARCIS (Netherlands)

    STULEN, [No Value; DENHERTOG, J

    1993-01-01

    This paper examines the extent to which atmospheric CO2 enrichment may influence growth of plant roots and function in terms of uptake of water and nutrients, and carbon allocation towards symbionts. It is concluded that changes in dry matter allocation greatly depend on the experimental conditions

  5. ACCURACY OF CO2 SENSORS

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2008-10-01

    Are the carbon dioxide (CO2) sensors in your demand controlled ventilation systems sufficiently accurate? The data from these sensors are used to automatically modulate minimum rates of outdoor air ventilation. The goal is to keep ventilation rates at or above design requirements while adjusting the ventilation rate with changes in occupancy in order to save energy. Studies of energy savings from demand controlled ventilation and of the relationship of indoor CO2 concentrations with health and work performance provide a strong rationale for use of indoor CO2 data to control minimum ventilation rates1-7. However, this strategy will only be effective if, in practice, the CO2 sensors have a reasonable accuracy. The objective of this study was; therefore, to determine if CO2 sensor performance, in practice, is generally acceptable or problematic. This article provides a summary of study methods and findings ? additional details are available in a paper in the proceedings of the ASHRAE IAQ?2007 Conference8.

  6. Impact of Mesophyll Diffusion on Estimated Global Land CO2 Fertilization

    Science.gov (United States)

    Sun, Y.; Gu, L.; Dickinson, R. E.

    2014-12-01

    In C3 plants, CO2 concentrations drop considerably along mesophyll diffusion pathways from substomatal cavities to chloroplasts where CO2 assimilation occurs. Global carbon cycle models have not explicitly represented this internal drawdown and so overestimate CO2 available for carboxylation and underestimate photosynthetic responsiveness to atmospheric CO2. An explicit consideration of mesophyll diffusion increases the modeled cumulative CO2 fertilization effect (CFE) for global gross primary production (GPP) from 915 PgC to 1057 PgC for the period of 1901 to 2010. This increase represents a 16% correction large enough to explain the persistent overestimation of growth rates of historical atmospheric CO2 by Earth System Models. Without this correction, the CFE for global GPP is underestimated by 0.05 PgC yr-1ppm-1. This finding implies that the contemporary terrestrial biosphere is more CO2-limited than previously thought.

  7. Impact of mesophyll diffusion on estimated global land CO2 fertilization.

    Science.gov (United States)

    Sun, Ying; Gu, Lianhong; Dickinson, Robert E; Norby, Richard J; Pallardy, Stephen G; Hoffman, Forrest M

    2014-11-01

    In C3 plants, CO2 concentrations drop considerably along mesophyll diffusion pathways from substomatal cavities to chloroplasts where CO2 assimilation occurs. Global carbon cycle models have not explicitly represented this internal drawdown and therefore overestimate CO2 available for carboxylation and underestimate photosynthetic responsiveness to atmospheric CO2. An explicit consideration of mesophyll diffusion increases the modeled cumulative CO2 fertilization effect (CFE) for global gross primary production (GPP) from 915 to 1,057 PgC for the period of 1901-2010. This increase represents a 16% correction, which is large enough to explain the persistent overestimation of growth rates of historical atmospheric CO2 by Earth system models. Without this correction, the CFE for global GPP is underestimated by 0.05 PgC/y/ppm. This finding implies that the contemporary terrestrial biosphere is more CO2 limited than previously thought.

  8. Climate impacts on rising atmospheric CO2 from long-term time-series of CO2 and O2

    Science.gov (United States)

    Keeling, R. F.; Rafelski, L. E.; Piper, S. C.

    2009-04-01

    The long-term time series of atmospheric CO2 and O2 concentrations from the Scripps Institution of oceanography now span 51 and 19 years, respectively. These time series will be presented together with the ice-core CO2 records and discussed in terms of the processes controlling the atmospheric CO2 rise, particularly the sensitivity of the natural sinks for CO2 in the land and ocean to climate changes. The CO2 record provides constraints on the sensitivity of the land sinks to climate. The CO2 rise can be expressed as an anomaly relative to the trend expected from fossil-fuel burning, land use emissions, and uptake by the land biosphere and oceans, with the latter two processes depicted by simple reservoir models (land sink driven by CO2 fertilization). Despite uncertainties, the anomaly computed this way shows an evident link with global land temperature, with both the anomaly and temperature trend showing breaks in slope around 1940 and 1980. Climate effects on the land biosphere may thus explain two otherwise puzzling features in the CO2 record: the plateau in growth in the 1940s and the persistent high growth after 1980. The implied effect of warming on CO2 suggested by this decadal variability is too small to be a significant climate feedback, however. Additional constraints on the climate sensitivity of ocean sinks can be obtained by combining the CO2 and O2 records. The ocean CO2 sink that would have been obtained in the absence of climate change is quite well constrained based on ocean observations of chlorofluorocarbons. This sink can be compared to the sink computed from the global O2 budget, assuming the oceans have not been a long-term source or sink for O2. The comparison reveals a significant discrepancy, which suggests that climate changes are impacting some combination of the long-term O2 and CO2 fluxes. The climate effect is qualitatively consistent with ocean models, which predict that warming will reduce oceanic uptake of CO2 and induce oceanic

  9. [CO2-exchange of some lichens after absorption of water vapour].

    Science.gov (United States)

    Bertsch, A

    1966-06-01

    The relation between CO2-exchange and water content of the lichens Evernia divaricata, E. prunastri, Ramalina thrausta and R. farinacea was investigated. The dry thalli absorb water vapour up to 70% of their dry weight. This uptake of water vapour is sufficient to reactivate the CO2-exchange. In equilibrium with the vapour pressure of the nearly saturated air the apparent CO2-uptake amounts to 90% of the value obtained after imbibition with liquid water. Even in unsaturated air the CO2-exchange is reactivated and the compensation point is reached between 80 and 85% relative humidity (saturation deficit at 10°C: 1,85-1,38 mm Hg).

  10. The CO2nnect activities

    Science.gov (United States)

    Eugenia, Marcu

    2014-05-01

    Climate change is one of the biggest challenges we face today. A first step is the understanding the problem, more exactly what is the challenge and the differences people can make. Pupils need a wide competencies to meet the challenges of sustainable development - including climate change. The CO2nnect activities are designed to support learning which can provide pupils the abilities, skills, attitudes and awareness as well as knowledge and understanding of the issues. The project "Together for a clean and healthy world" is part of "The Global Educational Campaign CO2nnect- CO2 on the way to school" and it was held in our school in the period between February and October 2009. It contained a variety of curricular and extra-curricular activities, adapted to students aged from 11 to 15. These activities aimed to develop in students the necessary skills to understanding man's active role in improving the quality of the environment, putting an end to its degrading process and to reducing the effects of climate changes caused by the human intervention in nature, including transport- a source of CO2 pollution. The activity which I propose can be easily adapted to a wide range of age groups and linked to the curricula of many subjects: - Investigate CO2 emissions from travel to school -Share the findings using an international database -Compare and discuss CO2 emissions -Submit questions to a climate- and transport expert -Partner with other schools -Meet with people in your community to discuss emissions from transport Intended learning outcomes for pupils who participate in the CO2nnect campaign are: Understanding of the interconnected mobility- and climate change issue climate change, its causes and consequences greenhouse-gas emissions from transport and mobility the interlinking of social, environmental, cultural and economic aspects of the local transport system how individual choices and participation can contribute to creating a more sustainable development

  11. Joint control of terrestrial gross primary productivity by plant phenology and physiology.

    Science.gov (United States)

    Xia, Jianyang; Niu, Shuli; Ciais, Philippe; Janssens, Ivan A; Chen, Jiquan; Ammann, Christof; Arain, Altaf; Blanken, Peter D; Cescatti, Alessandro; Bonal, Damien; Buchmann, Nina; Curtis, Peter S; Chen, Shiping; Dong, Jinwei; Flanagan, Lawrence B; Frankenberg, Christian; Georgiadis, Teodoro; Gough, Christopher M; Hui, Dafeng; Kiely, Gerard; Li, Jianwei; Lund, Magnus; Magliulo, Vincenzo; Marcolla, Barbara; Merbold, Lutz; Montagnani, Leonardo; Moors, Eddy J; Olesen, Jørgen E; Piao, Shilong; Raschi, Antonio; Roupsard, Olivier; Suyker, Andrew E; Urbaniak, Marek; Vaccari, Francesco P; Varlagin, Andrej; Vesala, Timo; Wilkinson, Matthew; Weng, Ensheng; Wohlfahrt, Georg; Yan, Liming; Luo, Yiqi

    2015-03-03

    Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate-carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy-covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO2 uptake period (CUP) and the seasonal maximal capacity of CO2 uptake (GPPmax). The product of CUP and GPPmax explained >90% of the temporal GPP variability in most areas of North America during 2000-2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 (r(2) = 0.90) and GPP recovery after a fire disturbance in South Dakota (r(2) = 0.88). Additional analysis of the eddy-covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPPmax than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPPmax and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space.

  12. Environment and phenology: CO2 net ecosystem exchange and CO2 flux partitioning at an acid and oligotrophic mire system in northern Sweden

    Science.gov (United States)

    Gažovič, Michal; Peichl, Matthias; Vermeij, Ilse; Limpens, Juul; Nilsson, Mats. B.

    2015-04-01

    Static chamber and environmental measurements in combination with vegetation indices (i.e. vascular green area (VGA) and the greenness chromatic color index (gcc) derived from digital camera images) were used to investigate effects of environment and phenology on the CO2 net ecosystem exchange (NEE) and CO2 flux partitioning at the Degerö Stormyr site in northern Sweden (64°11' 23.565" N, 19°33' 55.291 E) during two environmentally different years. Our measurement design included a control plot, a moss plot (where vascular plants were removed by clipping) and four heterotrophic respiration (RH) collars (where all green moss and vascular plant biomass were removed) to partition between soil heterotrophic and plant autotrophic (moss and vascular plants) respiration (RA), as well as between moss and vascular plant gross primary production (GPP). Environmental conditions, especially the shallow snow cover, peat soil frost and cold spring in 2014 caused delayed onset of spring green up, reduced soil respiration flux and reduced GPP of vascular plants. Soil temperature measured in 26 cm depth started to rise from spring temperatures of ~ 0.6 °C in 2013 and 0.15 °C in 2014 about 20 days earlier in 2013 compared to 2014. With earlier onset of the growing season and higher soil temperatures in 2013, heterotrophic soil respiration was higher in year 2013 than in year 2014. In 2013, RH dominated the total ecosystem respiration in all months but June and August. On contrary, autotrophic respiration dominated ecosystem respiration in all months of 2014. In both years, vascular plants and mosses were more or less equally contributing to autotrophic respiration. We measured higher GPP in year 2013 compared to year 2014. Also VGA and gcc were higher in spring and throughout the rest of 2013 compared to 2014. The onset of VGA was delayed by ~ 10 days in 2014. In general, total GPP was dominated by GPP of vascular plants in both years, although moss GPP had substantial

  13. A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT

    Directory of Open Access Journals (Sweden)

    T. Takahashi

    2012-08-01

    Full Text Available A well documented, publicly available, global data set of surface ocean carbon dioxide (CO2 parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC. Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC, were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly defined criteria. Regional specialists performed the quality control, using state-of-the-art web-based tools, specially developed for accomplishing this global team effort. SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data points from the global oceans and coastal seas, spanning four decades (1968–2007. Three types of data products are available: individual cruise files, a merged complete data set and gridded products. With the rapid expansion of marine CO2 data collection and the importance of quantifying net global oceanic CO2 uptake and its changes, sustained data synthesis and data access are priorities.

  14. A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT

    Directory of Open Access Journals (Sweden)

    B. Pfeil

    2013-04-01

    Full Text Available A well-documented, publicly available, global data set of surface ocean carbon dioxide (CO2 parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC. Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC, were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly defined criteria. Regional specialists performed the quality control, using state-of-the-art web-based tools, specially developed for accomplishing this global team effort. SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data points from the global oceans and coastal seas, spanning four decades (1968–2007. Three types of data products are available: individual cruise files, a merged complete data set and gridded products. With the rapid expansion of marine CO2 data collection and the importance of quantifying net global oceanic CO2 uptake and its changes, sustained data synthesis and data access are priorities.

  15. Shifting terrestrial feedbacks from CO2 fertilization to global warming

    Science.gov (United States)

    Peñuelas, Josep; Ciais, Philippe; Janssens, Ivan; Canadell, Josep; Obersteiner, Michael; Piao, Shilong; Vautard, Robert; Sardans Jordi Sardans, Jordi

    2016-04-01

    Humans are increasingly fertilizing the planet. Our activities are increasing atmospheric concentrations of carbon dioxide, nitrogen inputs to ecosystems and global temperatures. Individually and combined, they lead to biospheric availability of carbon and nitrogen, enhanced metabolic activity, and longer growing seasons. Plants can consequently grow more and take up more carbon that can be stored in ecosystem carbon pools, thus enhancing carbon sinks for atmospheric CO2. Data on the increased strength of carbon sinks are, however, inconclusive: Some data (eddy covariance, short-term experiments on elevated CO2 and nutrient fertilization) suggest that biospheric carbon uptake is already effectively increasing but some other data suggest it is not, or are not general and conclusive (tree-ring, forest inventory). The combined land-ocean CO2 sink flux per unit of excess atmospheric CO2 above preindustrial levels declined over 1959-2012 by a factor of about 1/3, implying that CO2 sinks increased more slowly than excess CO2. We will discuss the available data, and the discussion will drive us to revisit our projections for enhanced carbon sinks. We will reconsider the performance of the modulators of increased carbon uptake in a CO2 fertilized and warmed world: nutrients, climate, land use and pollution. Nutrient availability in particular plays a crucial role. A simple mass-balance approach indicates that limited phosphorus availability and the corresponding N:P imbalances can jointly reduce the projected future carbon storage by natural ecosystems during this century. We then present a new paradigm: we are shifting from a fertilization to a warming era. Compared to the historical period, future impacts of warming will be larger than the benefits of CO2 fertilization given nutrient limitations, management and disturbance (which reduces C stocks and thus sequestration potential) and because CO2 will decrease by 2050 in RCP2.6, meaning loss of CO2 fertilization, and CO2

  16. Loovkirjutamist õpetab Philip Gross

    Index Scriptorium Estoniae

    2011-01-01

    T.S. Elioti luulepreemia laureaat Philip Gross on Tallinna Ülikooli talvekooli rahvusvahelise kursuse "Poetry: A Conversation between Words and Silence" läbiviija. Oma seminarides keskendub ta lisaks loovkirjutamisele ka loova lugemise vajadusele

  17. Gross Sales Tax Collections

    Data.gov (United States)

    City of Jackson, Mississippi — This data is captured directly from the MS Department of Revenue and specific to the City of Jackson. It is compiled from Gross Sales Tax reported by taxpayers each...

  18. Quantifying fossil fuel CO2 from continuous measurements of APO: a novel approach

    Science.gov (United States)

    Pickers, Penelope; Manning, Andrew C.; Forster, Grant L.; van der Laan, Sander; Wilson, Phil A.; Wenger, Angelina; Meijer, Harro A. J.; Oram, David E.; Sturges, William T.

    2016-04-01

    Using atmospheric measurements to accurately quantify CO2 emissions from fossil fuel sources requires the separation of biospheric and anthropogenic CO2 fluxes. The ability to quantify the fossil fuel component of CO2 (ffCO2) from atmospheric measurements enables more accurate 'top-down' verification of CO2 emissions inventories, which frequently have large uncertainty. Typically, ffCO2 is quantified (in ppm units) from discrete atmospheric measurements of Δ14CO2, combined with higher resolution atmospheric CO measurements, and with knowledge of CO:ffCO2 ratios. In the United Kingdom (UK), however, measurements of Δ14CO2 are often significantly biased by nuclear power plant influences, which limit the use of this approach. We present a novel approach for quantifying ffCO2 using measurements of APO (Atmospheric Potential Oxygen; a tracer derived from concurrent measurements of CO2 and O2) from two measurement sites in Norfolk, UK. Our approach is similar to that used for quantifying ffCO2 from CO measurements (ffCO2(CO)), whereby ffCO2(APO) = (APOmeas - APObg)/RAPO, where (APOmeas - APObg) is the APO deviation from the background, and RAPO is the APO:CO2 combustion ratio for fossil fuel. Time varying values of RAPO are calculated from the global gridded COFFEE (CO2 release and Oxygen uptake from Fossil Fuel Emission Estimate) dataset, combined with NAME (Numerical Atmospheric-dispersion Modelling Environment) transport model footprints. We compare our ffCO2(APO) results to results obtained using the ffCO2(CO) method, using CO:CO2 fossil fuel emission ratios (RCO) from the EDGAR (Emission Database for Global Atmospheric Research) database. We find that the APO ffCO2 quantification method is more precise than the CO method, owing primarily to a smaller range of possible APO:CO2 fossil fuel emission ratios, compared to the CO:CO2 emission ratio range. Using a long-term dataset of atmospheric O2, CO2, CO and Δ14CO2 from Lutjewad, The Netherlands, we examine the

  19. Reducing cement's CO2 footprint

    Science.gov (United States)

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  20. Monitoring subsurface CO2 storage

    NARCIS (Netherlands)

    Winthaegen, P.; Arts, R.; Schroot, B.M.

    2005-01-01

    An overview is given of various currently applied monitoring techniques for CO2 storage. Techniques are subdivided in correspondence to their applicability for monitoring three distinct realms. These are: - the atmosphere and the near-surface; - the overburden (including faults and wells); - the

  1. Negative CO2 emissions via subsurface mineral carbonation in fractured peridotite

    Science.gov (United States)

    Kelemen, P. B.; Matter, J.

    2014-12-01

    Uptake of CO2 from surface water via mineral carbonation in peridotite can be engineered to achieve negative CO2 emissions. Reaction with peridotite, e.g., CO2 + olivine (A), serpentine (B) and brucite (C), forms inert, non-toxic, solid carbonates such as magnesite. Experimental studies show that A can be 80% complete in a few hours with 30 micron powders and elevated P(CO2) [1,2,3]. B is slower, but in natural systems the rate of B+C is significant [4]. Methods for capture of dilute CO2 via mineral carbonation [4,5,6,7] are not well known, though CO2 storage via mineral carbonation has been discussed for decades [8,9]. Where crushed peridotite is available, as in mine tailings, increased air or water flow could enhance CO2 uptake at a reasonable cost [4,5]. Here we focus on enhancing subsurface CO2 uptake from surface water flowing in fractured peridotite, in systems driven by thermal convection such as geothermal power plants. Return of depleted water to the surface would draw down CO2 from the air [6,7]. CO2 uptake from water, rate limited by flow in input and output wells, could exceed 1000 tons CO2/yr [7]. If well costs minus power sales were 0.1M to 1M and each system lasts 10 years this costs < 10 to 100 per ton CO2. As for other CCS methods, upscaling requires infrastructure resembling the oil industry. Uptake of 1 Gt CO2/yr at 1000 t/well/yr requires 1M wells, comparable to the number of producing oil and gas wells in the USA. Subsurface CO2 uptake could first be applied in coastal, sub-seafloor peridotite with onshore drilling. Sub-seafloor peridotite is extensive off Oman, New Caledonia and Papua New Guinea, with smaller amounts off Spain, Morocco, USA, etc. This would be a regional contribution, used in parallel with other methods elsewhere. To achieve larger scale is conceivable. There is a giant mass of seafloor peridotite along slow-spreading mid-ocean ridges. Could robotic drills enhance CO2 uptake at a reasonable cost, while fabric chimneys

  2. Excitation of CO2/+/ by electron impact on CO2

    Science.gov (United States)

    Mentall, J. E.; Coplan, M. A.; Kushlis, R. J.

    1973-01-01

    Consideration of a discrepancy concerning the correct value of the cross section for excitation of the CO2(+) B state by electron impact on CO2. It is suggested that the reason for the disparate results obtained by various authors for the B state can be traced to a calibration error due to scattered light. In particular, the tungsten filament lamps used in the experiments cited have very low intensity at wavelengths below 3000 A where the B state emissions occur, so that even a small amount of scattered light in the spectrometer will produce a large error in the measured cross section. In a remeasurement of the cross section for excitation of the B state at an energy of 150 eV it was found that at 2900 A the scattered light signal, if uncorrected for, would introduce an error of about 50%.

  3. CO2 Exchange and Growth of the Crassulacean Acid Metabolism Plant Opuntia ficus-indica under Elevated CO2 in Open-Top Chambers.

    Science.gov (United States)

    Cui, M.; Miller, P. M.; Nobel, P. S.

    1993-01-01

    CO2 uptake, water vapor conductance, and biomass production of Opuntia ficus-indica, a Crassulacean acid metabolism species, were studied at CO2 concentrations of 370, 520, and 720 [mu]L L-1 in open-top chambers during a 23-week period. Nine weeks after planting, daily net CO2 uptake for basal cladodes at 520 and 720 [mu]L L-1 of CO2 was 76 and 98% higher, respectively, than at 370 [mu]L L-1. Eight weeks after daughter cladodes emerged, their daily net CO2 uptake was 35 and 49% higher at 520 and 720 [mu]L L-1 of C02, respectively, than at 370 [mu]L L-1. Daily water-use efficiency was 88% higher under elevated CO2 for basal cladodes and 57% higher for daughter cladodes. The daily net CO2 uptake capacity for basal cladodes increased for 4 weeks after planting and then remained fairly constant, whereas for daughter cladodes, it increased with cladode age, became maximal at 8 to 14 weeks, and then declined. The percentage enhancement in daily net CO2 uptake caused by elevated CO2 was greatest initially for basal cladodes and at 8 to 14 weeks for daughter cladodes. The chlorophyll content per unit fresh weight of chlorenchyma for daughter cladodes at 8 weeks was 19 and 62% lower in 520 and 720 [mu]L L-1 of CO2, respectively, compared with 370 [mu]L L-1. Despite the reduced chlorophyll content, plant biomass production during 23 weeks in 520 and 720 [mu]L L-1 of CO2 was 21 and 55% higher, respectively, than at 370 [mu]L L-1. The root dry weight nearly tripled as the C02 concentration was doubled, causing the root/shoot ratio to increase with CO2 concentration. During the 23-week period, elevated CO2 significantly increased CO2 uptake and biomass production of O. ficus-indica. PMID:12231958

  4. CO2 Exchange and Growth of the Crassulacean Acid Metabolism Plant Opuntia ficus-indica under Elevated CO2 in Open-Top Chambers.

    Science.gov (United States)

    Cui, M.; Miller, P. M.; Nobel, P. S.

    1993-10-01

    CO2 uptake, water vapor conductance, and biomass production of Opuntia ficus-indica, a Crassulacean acid metabolism species, were studied at CO2 concentrations of 370, 520, and 720 [mu]L L-1 in open-top chambers during a 23-week period. Nine weeks after planting, daily net CO2 uptake for basal cladodes at 520 and 720 [mu]L L-1 of CO2 was 76 and 98% higher, respectively, than at 370 [mu]L L-1. Eight weeks after daughter cladodes emerged, their daily net CO2 uptake was 35 and 49% higher at 520 and 720 [mu]L L-1 of C02, respectively, than at 370 [mu]L L-1. Daily water-use efficiency was 88% higher under elevated CO2 for basal cladodes and 57% higher for daughter cladodes. The daily net CO2 uptake capacity for basal cladodes increased for 4 weeks after planting and then remained fairly constant, whereas for daughter cladodes, it increased with cladode age, became maximal at 8 to 14 weeks, and then declined. The percentage enhancement in daily net CO2 uptake caused by elevated CO2 was greatest initially for basal cladodes and at 8 to 14 weeks for daughter cladodes. The chlorophyll content per unit fresh weight of chlorenchyma for daughter cladodes at 8 weeks was 19 and 62% lower in 520 and 720 [mu]L L-1 of CO2, respectively, compared with 370 [mu]L L-1. Despite the reduced chlorophyll content, plant biomass production during 23 weeks in 520 and 720 [mu]L L-1 of CO2 was 21 and 55% higher, respectively, than at 370 [mu]L L-1. The root dry weight nearly tripled as the C02 concentration was doubled, causing the root/shoot ratio to increase with CO2 concentration. During the 23-week period, elevated CO2 significantly increased CO2 uptake and biomass production of O. ficus-indica.

  5. Continuous Vocalization during Kendo Exercises Suppresses Expiration of CO2.

    Science.gov (United States)

    Arikawa, H; Terada, T; Takahashi, T; Kizaki, K; Imai, H; Era, S

    2015-06-01

    One distinctive trait of kendo, the Japanese martial art of fencing, is the execution of sustained, high-effort vocalizations during actions. The purpose of this study was to determine the effect of these vocalizations on respiratory functions. First, the intensity of 3 kendo exercises was quantified by measuring oxygen uptake (V̇O2) and comparing it with V̇O2max measured during treadmill tests of 8 university kendo athletes. Respiratory variables of these 8 athletes were then analyzed using a portable breath gas analyzer during the most intensive kendo exercise, kakari-keiko, with and without vocalization. Breathing frequency (fB) increased regardless of vocalization, but in trials with vocalization, fB and ventilation were significantly lower, and expiration time was significantly longer. Components of expired gases were also affected by vocalization. Although there was no significant difference in oxygen uptake, vocalization yielded a reduction in carbon dioxide output (V̇CO2) and an increase in fraction of end-tidal carbon dioxide (FetCO2). We thus conclude that these vocalizations greatly affect expiration breathing patterns in kendo. Moreover, repetition of kakari-keiko caused a reduction in V̇CO2 and an increase in FetCO2 and CO2 storage. We consider the possibility that the sustained high-effort vocalizations of kendo also increase cerebral blood flow.

  6. Entry and exit pathways of CO2 in rat liver mitochondria respiring in a bicarbonate buffer system.

    Science.gov (United States)

    Balboni, E; Lehninger, A L

    1986-03-15

    The dynamics and pathways of CO2 movements across the membranes of mitochondria respiring in vitro in a CO2/HCO-3 buffer at concentrations close to that in intact rat tissues were continuously monitored with a gas-permeable CO2-sensitive electrode. O2 uptake and pH changes were monitored simultaneously. Factors affecting CO2 entry were examined under conditions in which CO2 uptake was coupled to electrophoretic influx of K+ (in the presence of valinomycin) or Ca2+. The role of mitochondrial carbonic anhydrase (EC 4.2.1.1) in CO2 entry was evaluated by comparison of CO2 uptake by rat liver mitochondria, which possess carbonic anhydrase, versus rat heart mitochondria, which lack carbonic anhydrase. Such studies showed that matrix carbonic anhydrase activity is essential for rapid net uptake of CO2 with K+ or Ca2+. Studies with acetazolamide (Diamox), a potent inhibitor of carbonic anhydrase, confirmed the requirement of matrix carbonic anhydrase for net CO2 uptake. It was shown that at pH 7.2 the major species leaving respiring mitochondria is dissolved CO2, rather than HCO-3 or H2CO3 suggested by earlier reports. Efflux of endogenous CO2/HCO-3 is significantly inhibited by inhibitors of the dicarboxylate and tricarboxylate transport systems of the rat liver inner membrane. The possibility that these anion carriers mediate outward transport of HCO-3 is discussed.

  7. Strain development in smectite clays upon exposure to CO2

    Science.gov (United States)

    de Jong, S. M.; Spiers, C. J.; Busch, A.

    2012-04-01

    Smectites (or swelling clays) are common constituents of claystones, mudstones and shales and are often present in the caprocks and faults sealing potential CO2 storage reservoirs. Their crystal structure is comprised of alternating silicate layers separated by an interlayer region, containing cations and water molecules. As the water molecules are easily exchanged between this region and the intergranular pore space, the structure can expand or shrink depending on factors such as temperature, water activity and clay composition. Whereas the water uptake and swelling properties of smectite clays have been studied extensively, fewer studies have been directed at possible interactions with CO2. However, several scenarios including shrinkage (dehydration) and swelling (surface adsorption or uptake of CO2 into the interlayer region) of the crystals are conceivable, which could have significant implications for caprock and fault integrity. To investigate possible effects of CO2 on the swelling properties of smectite clays, we performed unconfined volumetric strain measurements on compacted pellets of montmorillonite (SWy-1), which is a common type of smectite, and on smectite-bearing shale. This was done using an optical cell. We probed the macroscopic response of the pressed samples to assess the overall strain response to exposure to CO2 at typical P-T conditions expected in carbon dioxide storage sites, i.e. at a temperature of 45°C and CO2 pressures up to 15MPa. Samples were heat-treated prior to exposure to CO2 to obtain a defined hydration state (d001-spacing). This was determined independently using X-ray diffraction methods. Our results show that montmorillonite SWy-1 swells almost instantaneously (in a few seconds) to an equilibrium state, when placed in contact with (supercritical) CO2 for the conditions PCO2 ≤ 8 MPa, T = 45°C. Maximum swelling is observed for an initial d001 spacing of 11Å, reaching 2.4 ± 0.45% at a CO2 pressure of 15MPa. Only minor

  8. Fang CO2 med Aminosyrer

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai

    2010-01-01

    Med såkaldte “carbon capture-teknikker” er det muligt at rense røgen fra kulfyrede kraftværker, således at den er næsten helt fri for drivhusgassen CO2. Kunsten er at gøre processen tilstrækkeligt billig. Et lovende fangstredskab i denne proces er aminosyrer.......Med såkaldte “carbon capture-teknikker” er det muligt at rense røgen fra kulfyrede kraftværker, således at den er næsten helt fri for drivhusgassen CO2. Kunsten er at gøre processen tilstrækkeligt billig. Et lovende fangstredskab i denne proces er aminosyrer....

  9. Autotrophic and heterotrophic soil respiration determined with trenching, soil CO2 fluxes and 13CO2/12CO2 concentration gradients in a boreal forest ecosystem

    Science.gov (United States)

    Pumpanen, Jukka; Shurpali, Narasinha; Kulmala, Liisa; Kolari, Pasi; Heinonsalo, Jussi

    2017-04-01

    Soil CO2 efflux forms a substantial part of the ecosystem carbon balance, and it can contribute more than half of the annual ecosystem respiration. Recently assimilated carbon which has been fixed in photosynthesis during the previous days plays an important role in soil CO2 efflux, and its contribution is seasonally variable. Moreover, the recently assimilated C has been shown to stimulate the decomposition of recalcitrant C in soil and increase the mineralization of nitrogen, the most important macronutrient limiting gross primary productivity (GPP) in boreal ecosystems. Podzolic soils, typical in boreal zone, have distinctive layers with different biological and chemical properties. The biological activity in different soil layers has large seasonal variation due to vertical gradient in temperature, soil organic matter and root biomass. Thus, the source of CO2 and its components have a vertical gradient which is seasonally variable. The contribution of recently assimilated C and its seasonal as well as spatial variation in soil are difficult to assess without disturbing the system. The most common method of partitioning soil respiration into its components is trenching which entails the roots being cut or girdling where the flow of carbohydrates from the canopy to roots has been isolated by cutting of the phloem. Other methods for determining the contribution of autotrophic (Ra) and heterotrophic (Rh) respiration components in soil CO2 efflux are pulse labelling with 13CO2 or 14CO2 or the natural abundance of 13C and/or 14C isotopes. Also differences in seasonal and short-term temperature response of soil respiration have been used to separate Ra and Rh. We compared the seasonal variation in Ra and Rh using the trenching method and differences between seasonal and short-term temperature responses of soil respiration. I addition, we estimated the vertical variation in soil biological activity using soil CO2 concentration and the natural abundance of 13C and 12C

  10. Neither elevated nor reduced CO2 affects the photophysiological performance of the marine Antarctic diatom Chaetoceros brevis

    NARCIS (Netherlands)

    Boelen, Peter; de Poll, Willem H. van; van der Strate, Han J.; Neven, Ika A.; Beardall, John; Buma, Anita G. J.

    2011-01-01

    Enhanced or reduced pCO(2) (partial pressure of CO2) may affect the photosynthetic performance of marine microalgae since changes in pCO(2) can influence the activity of carbon concentrating mechanisms, modulate cellular RuBisCO levels or alter carbon uptake efficiency. In the present study we compa

  11. Atmospheric CO2 enrichment facilitates cation release from soil.

    Science.gov (United States)

    Cheng, L; Zhu, J; Chen, G; Zheng, X; Oh, N-H; Rufty, T W; Richter, D deB; Hu, S

    2010-03-01

    Atmospheric CO(2) enrichment generally stimulates plant photosynthesis and nutrient uptake, modifying the local and global cycling of bioactive elements. Although nutrient cations affect the long-term productivity and carbon balance of terrestrial ecosystems, little is known about the effect of CO(2) enrichment on cation availability in soil. In this study, we present evidence for a novel mechanism of CO(2)-enhancement of cation release from soil in rice agricultural systems. Elevated CO(2) increased organic C allocation belowground and net H(+) excretion from roots, and stimulated root and microbial respiration, reducing soil redox potential and increasing Fe(2+) and Mn(2+) in soil solutions. Increased H(+), Fe(2+), and Mn(2+) promoted Ca(2+) and Mg(2+) release from soil cation exchange sites. These results indicate that over the short term, elevated CO(2) may stimulate cation release from soil and enhance plant growth. Over the long-term, however, CO(2)-induced cation release may facilitate cation losses and soil acidification, negatively feeding back to the productivity of terrestrial ecosystems.

  12. Physical Activation of Oil Palm Empty Fruit Bunch via CO2 Activation Gas for CO2 Adsorption

    Science.gov (United States)

    Joseph, C. G.; Quek, K. S.; Daud, W. M. A. W.; Moh, P. Y.

    2017-06-01

    In this study, different parameters for the preparation of activated carbon were investigated for their yield and CO2 capture capabilities. The activated carbon was prepared from Oil Palm Empty Fruit Bunch (OPEFB) via a 2-step physical activation process. The OPEFB was pyrolyzed under inert conditions at 500 °C and activated via CO2. A 2-factorial design was employed and the effects of activation temperature, activation dwell time and gas flow rate on yield and CO2 capture capabilities were compared and studied. The yield obtained ranged from between 20 - 26, whereby the temperature was determined to be the most significant factor in influencing CO2 uptake. The CO2 capture capacity was determined using Temperature Programmed Desorption (TPD) technique. The CO2 uptake of EFB activated carbon achieved was between 1.85 - 2.09 mmol/g. TPD analysis has shown that the surface of AC were of basic nature. AC was found to be able to withhold the CO2 up to 663°C before maximum desorption occurs. The surface area and pore size of OPEFB obtained from BET analysis is 2.17 m2 g-1 and 0.01 cm3 g-1. After activation, both surface area and pore size increased with a maximum observed surface area and pore size of 548.07 m2 g-1 and 0.26 cm3 g-1. Surface morphology, functional groups, pore size and surface area were analyzed using SEM, FT-IR, TPD and BET.

  13. Recent global CO2 flux inferred from atmospheric CO2 observations and its regional analyses

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2011-11-01

    Full Text Available The net surface exchange of CO2 for the years 2002–2007 is inferred from 12 181 atmospheric CO2 concentration data with a time-dependent Bayesian synthesis inversion scheme. Monthly CO2 fluxes are optimized for 30 regions of the North America and 20 regions for the rest of the globe. Although there have been many previous multiyear inversion studies, the reliability of atmospheric inversion techniques has not yet been systematically evaluated for quantifying regional interannual variability in the carbon cycle. In this study, the global interannual variability of the CO2 flux is found to be dominated by terrestrial ecosystems, particularly by tropical land, and the variations of regional terrestrial carbon fluxes are closely related to climate variations. These interannual variations are mostly caused by abnormal meteorological conditions in a few months in the year or part of a growing season and cannot be well represented using annual means, suggesting that we should pay attention to finer temporal climate variations in ecosystem modeling. We find that, excluding fossil fuel and biomass burning emissions, terrestrial ecosystems and oceans absorb an average of 3.63 ± 0.49 and 1.94 ± 0.41 Pg C yr−1, respectively. The terrestrial uptake is mainly in northern land while the tropical and southern lands contribute 0.62 ± 0.47, and 0.67 ± 0.34 Pg C yr−1 to the sink, respectively. In North America, terrestrial ecosystems absorb 0.89 ± 0.18 Pg C yr−1 on average with a strong flux density found in the south-east of the continent.

  14. Recent global CO2 flux inferred from atmospheric CO2 observations and its regional analyses

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2011-04-01

    Full Text Available The net surface exchange of CO2 for the years 2002–2007 is inferred from 12 181 atmospheric CO2 concentration data with a time-dependent Bayesian synthesis inversion scheme. Monthly CO2 fluxes are optimized for 30 regions of the North America and 20 regions for the rest of the globe. Although there have been many previous multiyear inversion studies, the reliability of atmospheric inversion techniques is not yet been systematically evaluated for quantifying regional interannual variability in the carbon cycle. In this study, the global interannual variability of the CO2 flux is found to be dominated by terrestrial ecosystems and is mostly caused by tropical land, and the variations of regional terrestrial carbon fluxes are closely related to climate variations. These interannual variations are mostly caused by abnormal meteorological conditions in a few months in the year or part of a growing season and cannot be well represented using annual means, suggesting that we should pay attention to monthly or submonthly climate variations in ecosystem modeling. We find that, excluding fossil fuel and biomass burning emissions, terrestrial ecosystems and oceans absorb an average of 3.63±0.49 and 1.94±0.41 Pg C/yr, respectively. The terrestrial uptake is mainly in northern land while the tropical and southern lands contribute 0.62±0.47, and 0.67±0.34 Pg C/yr to the sink, respectively. In North America, terrestrial ecosystems absorb 0.89±0.18 Pg C/yr on average with a strong flux density found in the south-east of the continent.

  15. Net carbon storage in a popular plantation (POPFACE) after three years of free-air CO2 enrichment

    NARCIS (Netherlands)

    Gielen, B.; Calfapietra, C.; Lukac, M.; Wittig, V.E.; Angelis, de P.; Janssens, I.A.; Moscatelli, M.C.; Grego, S.; Cotrufo, M.F.; Godbold, D.; Hoosbeek, M.R.; Long, S.; Miglietta, F.; Polle, A.; Bernacchi, C.; Davey, P.A.; Ceulemans, R.; Scarascia-Mugnozza, G.

    2005-01-01

    A high-density plantation of three genotypes of Populus was exposed to an elevated concentration of carbon dioxide ([CO2]; 550 µmol mol¿1) from planting through canopy closure using a free-air CO2 enrichment (FACE) technique. The FACE treatment stimulated gross primary productivity by 22 and 11% in

  16. Triptycene-based microporous polymer with pending tetrazole moieties for CO2 -capture application.

    Science.gov (United States)

    Liu, Lei; Zhang, Jie

    2013-12-01

    Triptycene-based micorporous polymer is functionalized with CO2 -philic tetrazole moieties via ZnCl2 -catalyzed post-polymerization. Gas adsorption experiments indicate that it possesses high CO2 uptake capacity, reaching 134 cm(3) g(-1) (26.5 wt%) at 1.0 bar and 273 K, along with high selectivity towards CO2 over N2 and CH4 . The porous polymeric networks present the promising potentials as efficient adsorbents in clean energy applications.

  17. High-Temperature CO2 Sorption on Hydrotalcite Having a High Mg/Al Molar Ratio.

    Science.gov (United States)

    Kim, Suji; Jeon, Sang Goo; Lee, Ki Bong

    2016-03-09

    Hydrotalcites having a Mg/Al molar ratio between 3 and 30 have been synthesized as promising high-temperature CO2 sorbents. The existence of NaNO3 in the hydrotalcite structure, which originates from excess magnesium nitrate in the precursor, markedly increases CO2 sorption uptake by hydrotalcite up to the record high value of 9.27 mol kg(-1) at 240 °C and 1 atm CO2.

  18. Trends in global CO2 emissions. 2013 Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, J.G.J.; Peters, J.A.H.W. [PBL Netherlands Environmental Assessment Agency, Den Haag (Netherlands); Janssens-Maenhout, G. [Institute for Environment and Sustainability IES, European Commission' s Joint Research Centre JRC, Ispra (Italy); Muntean, M. [Institute for Environment and Sustainability IES, Joint Research Centre JRC, Ispra (Italy)

    2013-10-15

    This report discusses the results of a trend assessment of global CO2 emissions up to 2012 and updates last year's assessment. This assessment focuses on the changes in annual CO2 emissions from 2011 to 2012, and includes not only fossil-fuel combustion on which the BP reports are based, but also incorporates other relevant CO2 emissions sources including flaring of waste gas during gas and oil production, cement clinker production and other limestone uses, feedstock and other non-energy uses of fuels, and several other small sources. The report clarifies the CO2 emission sources covered, and describes the methodology and data sources. More details are provided in Annex 1 over the 2010-2012 period, including a discussion of the degree of uncertainty in national and global CO2 emission estimates. Chapter 2 presents a summary of recent CO2 emission trends, per main country or region, including a comparison between emissions per capita and per unit of Gross Domestic Product (GDP), and of the underlying trend in fossil-fuel production and use, non-fossil energy and other CO2 sources. Specific attention is given to developments in shale gas and oil production and oil sands production and their impact on CO2 emissions. To provide a broader context of global emissions trends, international greenhouse gas mitigation targets and agreements are also presented, including different perspectives of emission accounting per country. In particular, annual trends with respect to the Kyoto Protocol target and Cancun agreements and cumulative global CO2 emissions of the last decade are compared with scientific literature that analyses global emissions in relation to the target of 2{sup 0}C maximum global warming in the 21st century, which was adopted in the UN climate negotiations. In addition, we briefly discuss the rapid development and implementation of various emission trading schemes, because of their increasing importance as a cross-cutting policy instrument for mitigating

  19. CO2 Fluxes and Concentrations in a Residential Area in the Southern Hemisphere

    Science.gov (United States)

    Weissert, L. F.; Salmond, J. A.; Turnbull, J. C.; Schwendenmann, L.

    2014-12-01

    While cities are generally major sources of anthropogenic carbon dioxide (CO2) emissions, recent research has shown that parts of urban areas may also act as CO2 sinks due to CO2 uptake by vegetation. However, currently available results are related to a large degree of uncertainty due to the limitations of the applied methods and the limited number of studies available from urban areas, particularly from the southern hemisphere. In this study, we explore the potential of eddy covariance and tracer measurements (13C and 14C isotopes of CO2) to quantify and partition CO2 fluxes and concentrations in a residential urban area in Auckland, New Zealand. Based on preliminary results from autumn and winter (March to July 2014) the residential area is a small source of CO2 (0.11 mol CO2 m-2 day-1). CO2 fluxes and concentrations follow a distinct diurnal cycle with a morning peak between 7:00 and 9:00 (max: 0.25 mol CO2 m-2 day-1/412 ppm) and midday low with negative CO2 fluxes (min: -0.17 mol CO2 m-2 day-1/392 ppm) between 10:00 and 15:00 local time, likely due to photosynthetic CO2 uptake by local vegetation. Soil CO2 efflux may explain that CO2 concentrations increase and remain high (401 ppm) throughout the night. Mean diurnal winter δ13C values are in anti-phase with CO2 concentrations and vary between -9.0 - -9.7‰. The depletion of δ13C compared to clean atmospheric air (-8.2‰) is likely a result of local CO2 sources dominated by gasoline combustion (appr. 60%) during daytime. A sector analysis (based on prevailing wind) of CO2 fluxes and concentrations indicates lower CO2 fluxes and concentrations from the vegetation-dominated sector, further demonstrating the influence of vegetation on local CO2 concentrations. These results provide an insight into the temporal and spatial variability CO2 fluxes/concentrations and potential CO2 sinks and sources from a city in the southern hemisphere and add valuable information to the global database of urban CO2 fluxes.

  20. Modeling Atmospheric CO2 Processes to Constrain the Missing Sink

    Science.gov (United States)

    Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.

    2005-01-01

    We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.

  1. Potassium-based sorbents from fly ash for high-temperature CO2 capture.

    Science.gov (United States)

    Sanna, Aimaro; Maroto-Valer, M Mercedes

    2016-11-01

    Potassium-fly ash (K-FA) sorbents were investigated for high-temperature CO2 sorption. K-FAs were synthesised using coal fly ash as source of silica and aluminium. The synthesised materials were also mixed with Li2CO3 and Ca(OH)2 to evaluate their effect on CO2 capture. Temperature strongly affected the performance of the K-FA sorbents, resulting in a CO2 uptake of 1.45 mmol CO2/g sorbent for K-FA 1:1 at 700 °C. The CO2 sorption was enhanced by the presence of Li2CO3 (10 wt%), with the K-FA 1:1 capturing 2.38 mmol CO2/g sorbent at 700 °C in 5 min. This sorption was found to be similar to previously developed Li-Na-FA (2.54 mmol/g) and Li-FA (2.4 mmol/g) sorbents. The presence of 10 % Li2CO3 also accelerated sorption and desorption. The results suggest that the increased uptake of CO2 and faster reaction rates in presence of K-FA can be ascribed to the formation of K-Li eutectic phase, which favours the diffusion of potassium and CO2 in the material matrix. The cyclic experiments showed that the K-FA materials maintained stable CO2 uptake and reaction rates over 10 cycles.

  2. RODZAJE METOD SEKWESTRACJI CO2

    Directory of Open Access Journals (Sweden)

    Zofia LUBAŃSKA

    Full Text Available Z pojęciem ochrony środowiska wiąże się bardzo szeroko w ostatnim czasie omawiane zagadnienie dotyczące ograniczenia emisji CO2. Konsekwencją globalnych zmian klimatu wywołanego przez ludzi jest wzrost stężenia atmosferycznego gazów cieplarnianych, które powodują nasilający się efekt cieplarniany. Wzrasta na świecie liczba ludności, a co za tym idzie wzrasta konsumpcja na jednego mieszkańca, szczególnie w krajach szeroko rozwiniętych gospodarczo. Protokół z Kioto ściśle określa działania jakie należy podjąć w celu zmniejszenia stężenia dwutlenku węgla w atmosferze. Pomimo maksymalnej optymalizacji procesu spalania paliw kopalnianych wykorzystywanych do produkcji energii, zastosowania odnawialnych źródeł energii zmiana klimatu jest nieunikniona i konsekwentnie będzie postępować przez kolejne dekady. Prognozuje się, że duże znaczenie odegra nowoczesna technologia, która ma za zadanie wychwycenie CO2 a następnie składowanie go w odpowiednio wybranych formacjach geologicznych (CCS- Carbon Capture and Storage. Eksperci są zgodni, że ta technologia w niedalekiej przyszłości stanie się rozwiązaniem pozwalającym ograniczyć ogromną ilość emisji CO2 pochodzącą z procesów wytwarzania energii z paliw kopalnych. Z analiz Raportu IPCC wynika, iż technologia CSS może się przyczynić do ok. 20% redukcji emisji dwutlenku węgla przewidzianej do 2050 roku [3]. Zastosowanie jej napotyka na wiele barier, nie tylko technologicznych i ekonomicznych, ale także społecznych. Inną metodą dającą ujemne źródło emisji CO2 jest możliwość wykorzystania obszarów leśnych o odpowiedniej strukturze drzewostanu. Środkiem do tego celu, oprócz ograniczenia zużycia emisjogennych paliw kopalnych (przy zachowaniu zasad zrównoważonego rozwoju może być intensyfikacja zalesień. Zwiększanie lesistości i prawidłowa gospodarka leśna należy do najbardziej efektywnych sposobów kompensowania

  3. Measuring water adsorption on mineral surfaces in air, CO2, and supercritical CO2 with a quartz-crystal microbalance

    Science.gov (United States)

    Bryan, C. R.; Wells, R. K.; Burton, P. D.; Heath, J. E.; Dewers, T. A.; Wang, Y.

    2011-12-01

    Carbon sequestration via underground storage in geologic formations is a proposed approach for reducing industrial CO2 emissions. However, current models for carbon injection and long-term storage of supercritical CO2 (scCO2) do not consider the development and stability of adsorbed water films at the scCO2-hydrophilic mineral interface. The thickness and properties of the water films control the surface tension and wettability of the mineral surface, and on the core scale, affect rock permeability, saturation, and capillary properties. The film thickness is strongly dependent upon the activity of water in the supercritical fluid, which will change as initially anhydrous scCO2 absorbs water from formation brine. As described in a companion paper by the coauthors, the thickness of the adsorbed water layer is controlled by the disjoining pressure; structural and van der Waals components dominate at low water activity, while electrostatic forces become more important with increasing film thickness (higher water activities). As scCO2 water activity and water layer thickness increase, concomitant changes in mineral surface properties and reservoir/caprock hydrologic properties will affect the mobility of the aqueous phase and of scCO2. Moreover, the development of a water layer may be critical to mineral dissolution reactions in scCO2. Here, we describe the use of a quartz-crystal microbalance (QCM) to monitor adsorption of water by mineral surfaces. QCMs utilize a piezoelectrically-stimulated quartz wafer to measure adsorbed or deposited mass via changes in vibrational frequency. When used to measure the mass of adsorbed liquid films, the frequency response of the crystal must be corrected for the viscoelastic, rather than elastic, response of the adsorbed layer. Results are presented for adsorption to silica in N2 and CO2 at one bar, and in scCO2. Additional data are presented for water uptake by clays deposited on a QCM wafer. In this case, water uptake occurs by the

  4. Surface Condensation of CO2 onto Kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Schaef, Herbert T.; Glezakou, Vassiliki Alexandra; Owen, Antionette T.; Ramprasad, Sudhir; Martin, Paul F.; McGrail, B. Peter

    2014-02-11

    The fundamental adsorption behavior of gaseous and supercritical carbon dioxide (CO2) onto poorly crystalline kaolinite (KGa-2) at conditions relevant to geologic sequestration has been investigated using a quartz crystal microbalance (QCM) and density functional theory (DFT) methods. The QCM data indicated linear adsorption of CO2 (0-0.3 mmol CO2/g KGa-2) onto the kaolinite surface up through the gaseous state (0.186 g/cm3). However in the supercritical region, CO2 adsorption increases dramatically, reaching a peak (0.9-1.0 mmol CO2/g KGa-2) near 0.43 g/cm3, before declining rapidly to surface adsorption values equivalent or below gaseous CO2. This adsorption profile was not observed with He or N2. Comparative density functional studies of CO2 interactions with kaolinite surface models rule out CO2 intercalation and confirm that surface adsorption is favored up to approximately 0.35 g/cm3 of CO2, showing distorted T-shaped CO2-CO2 clustering, typical of supercritical CO2 aggregation over the surface as the density increases. Beyond this point, the adsorption energy gain for any additional CO2 becomes less than the CO2 interaction energy (~0.2 eV) in the supercritical medium resulting in overall desorption of CO2 from the kaolinite surface.

  5. Decoupling of CO2-emissions from Energy Intensive Industries

    DEFF Research Database (Denmark)

    Andersen, M. S.; Enevoldsen, M. K.; Ryelund, A. V.

    for own-price and cross-price elasticities of the individual fuels. Whereas elasticities for electricity and gas are found to be moderate, the own-price elasticity for oil, coal and waste is relatively high (-0.4 to -0.6), indicating that consumption of these fuels is relatively price elastic......This report shows that a decoupling between economic growth, expressed as gross value added, and CO2 emissions has been achieved in the period from 1990-2001 in many energy-intensive and less energy-intensive sectors across the Nordic countries. The report investigates the impact of prices...... and taxes on the trends in CO2 emissions on the basis of a novel method that relies on sector-specific energy prices. Whereas previous research has been unable to account for the implications of complex tax exemptions and price discounts, the present report bridges the gap and provides innovative estimates...

  6. Assumption Centred Modelling of Ecosystem Responses to CO2 at Six US Atmospheric CO2 Enrichment Experiments.

    Science.gov (United States)

    Walker, A. P.; De Kauwe, M. G.; Medlyn, B. E.; Zaehle, S.; Luus, K. A.; Ryan, E.; Xia, J.; Norby, R. J.

    2015-12-01

    Plant photosynthetic rates increase and stomatal apertures decrease in response to elevated atmospheric CO[2] (eCO2), increasing both plant carbon (C) availability and water use efficiency. These physiological responses to eCO2 are well characterised and understood, however the ecological effects of these responses as they cascade through a suite of plant and ecosystem processes are complex and subject to multiple interactions and feedbacks. Therefore the response of the terrestrial carbon sink to increasing atmospheric CO[2] remains the largest uncertainty in global C cycle modelling to date, and is a huge contributor to uncertainty in climate change projections. Phase 2 of the FACE Model-Data Synthesis (FACE-MDS) project synthesises ecosystem observations from five long-term Free-Air CO[2] Enrichment (FACE) experiments and one open top chamber (OTC) experiment to evaluate the assumptions of a suite of terrestrial ecosystem models. The experiments are: The evergreen needleleaf Duke Forest FACE (NC), the deciduous broadleaf Oak Ridge FACE (TN), the prairie heating and FACE (WY), and the Nevada desert FACE, and the evergreen scrub oak OTC (FL). An assumption centered approach is being used to analyse: the interaction between eCO2 and water limitation on plant productivity; the interaction between eCO2 and temperature on plant productivity; whether increased rates of soil decomposition observed in many eCO2 experiments can account for model deficiencies in N uptake shown during Phase 1 of the FACE-MDS; and tracing carbon through the ecosystem to identify the exact cause of changes in ecosystem C storage.

  7. Seasonal patterns of tropical forest leaf area index and CO2 exchange

    Science.gov (United States)

    Doughty, Christopher E.; Goulden, Michael L.

    2008-03-01

    We used in situ and satellite measurements to investigate the seasonal patterns of leaf area index (LAI) and gross ecosystem CO2 exchange (GEE) by an evergreen tropical forest. The forest experienced a dry season from June through November. The rates of light-saturated CO2 uptake (GEE) were comparatively high from December through March and low from May through July. In situ measurements showed that LAI varied seasonally, with a minimum from May through September. Leaf production and leaf abscission were reduced from December through April. Leaf abscission increased in May, which reduced LAI. High rates of leaf abscission and production occurred from July through September associated with leaf turnover. Leaf abscission decreased abruptly in October, while production continued, which rapidly increased LAI. Leaf phenology was not directly correlated with changes in soil water. The seasonal cycle of in situ LAI differed markedly from the seasonal cycles of in situ normalized difference vegetation index (NDVI) and the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD15 LAI product. We hypothesize that the NDVI and MOD15 seasonality at the site is driven partly by seasonal changes in leaf age and leaf reflectance. We developed three simple models to investigate the causes of GEE seasonality. The first two models showed that the seasonal changes in LAI alone, and the effects of leaf age on leaf-level photosynthesis alone, could not account for the observed GEE seasonality. The third model showed that the combined effect of seasonal changes in LAI and seasonal changes in leaf age and leaf photosynthesis was sufficient to account for the observed GEE seasonality.

  8. Regional atmospheric CO2 inversion reveals seasonal and geographic differences in Amazon net biome exchange.

    Science.gov (United States)

    Alden, Caroline B; Miller, John B; Gatti, Luciana V; Gloor, Manuel M; Guan, Kaiyu; Michalak, Anna M; van der Laan-Luijkx, Ingrid T; Touma, Danielle; Andrews, Arlyn; Basso, Luana S; Correia, Caio S C; Domingues, Lucas G; Joiner, Joanna; Krol, Maarten C; Lyapustin, Alexei I; Peters, Wouter; Shiga, Yoichi P; Thoning, Kirk; van der Velde, Ivar R; van Leeuwen, Thijs T; Yadav, Vineet; Diffenbaugh, Noah S

    2016-10-01

    Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with the atmosphere (NBE), which represents nonfire carbon fluxes into and out of biomass and soils. Subannual and sub-Basin Amazon NBE estimates have relied heavily on process-based biosphere models, despite lack of model agreement with plot-scale observations. We present a new analysis of airborne measurements that reveals monthly, regional-scale (~1-8 × 10(6)  km(2) ) NBE variations. We develop a regional atmospheric CO2 inversion that provides the first analysis of geographic and temporal variability in Amazon biosphere-atmosphere carbon exchange and that is minimally influenced by biosphere model-based first guesses of seasonal and annual mean fluxes. We find little evidence for a clear seasonal cycle in Amazon NBE but do find NBE sensitivity to aberrations from long-term mean climate. In particular, we observe increased NBE (more carbon emitted to the atmosphere) associated with heat and drought in 2010, and correlations between wet season NBE and precipitation (negative correlation) and temperature (positive correlation). In the eastern Amazon, pulses of increased NBE persisted through 2011, suggesting legacy effects of 2010 heat and drought. We also identify regional differences in postdrought NBE that appear related to long-term water availability. We examine satellite proxies and find evidence for higher gross primary productivity (GPP) during a pulse of increased carbon uptake in 2011, and lower GPP during a period of increased NBE in the 2010 dry season drought, but links between GPP and NBE changes are not conclusive. These results provide novel evidence of NBE sensitivity to short-term temperature and moisture extremes in the Amazon, where monthly and sub

  9. Efficient CO2 capture on low-cost silica gel modified by polyethyleneimine

    Institute of Scientific and Technical Information of China (English)

    Ke Wang; Hongyan Shang; Lin Li; Xinlong Yan; Zifeng Yan; Chenguang Liu; Qingfang Zha

    2012-01-01

    In this work,a series of polyethyleneimine (PEI) functionalized commercial silica gel were prepared by wet impregnation method and used as CO2 sorbent.The as-prepared sorbents were characterized by N2 adsorption,FT-IR and SEM techniques.CO2 capture was tested in a fixed bed reactor using a simulated flue gas containing 15.1% CO2 in a temperature range of 25-100 ℃.The effects of sorption temperature and amine content on CO2 uptake of the adsorbents were investigated.The silica gel with a 30 wt% PEI loading manifested the largest CO2 uptake of 93.4 mgCO2/gadsorbent (equal to 311.3 mgCO2/gPEI) among the tested sorbents under the conditions of 15.1% (v/v) CO2 in N2 at 75 ℃ and atmospheric pressure.Moreover,it was rather low-cost.In addition,the PEI-impregnated silica gel exhibited stable adsorption-desorption behavior during 5 consecutive test cycles.These results suggest that the PEI-impregnated silica gel is a promising and cost-effective sorbent for CO2 capture from flue gas and other stationary sources with low CO2 concentration.

  10. Compensatory Water Effects Link Yearly Global Land CO2 Sink Changes to Temperature

    Science.gov (United States)

    Jung, Martin; Reichstein, Markus; Tramontana, Gianluca; Viovy, Nicolas; Schwalm, Christopher R.; Wang, Ying-Ping; Weber, Ulrich; Weber, Ulrich; Zaehle, Soenke; Zeng, Ning; hide

    2017-01-01

    Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems13. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales314. Here we use empirical models based on eddy covariance data15 and process-based models16,17 to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance36,9,11,12,14. Our study indicates that spatial climate covariation drives the global carbon cycle response.

  11. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation

    Science.gov (United States)

    Reich, Peter B.; Hobbie, Sarah E.; Lee, Tali D.

    2014-12-01

    Rising atmospheric CO2 concentrations can fertilize plant growth. The resulting increased plant uptake of CO2 could, in turn, slow increases in atmospheric CO2 levels and associated climate warming. CO2 fertilization effects may be enhanced when water availability is low, because elevated CO2 also leads to improved plant water-use efficiency. However, CO2 fertilization effects may be weaker when plant growth is limited by nutrient availability. How variation in soil nutrients and water may act together to influence CO2 fertilization is unresolved. Here we report plant biomass levels from a five-year, open-air experiment in a perennial grassland under two contrasting levels of atmospheric CO2, soil nitrogen and summer rainfall, respectively. We find that the presence of a CO2 fertilization effect depends on the amount of available nitrogen and water. Specifically, elevated CO2 levels led to an increase in plant biomass of more than 33% when summer rainfall, nitrogen supply, or both were at the higher levels (ambient for rainfall and elevated for soil nitrogen). But elevated CO2 concentrations did not increase plant biomass when both rainfall and nitrogen were at their lower level. We conclude that given widespread, simultaneous limitation by water and nutrients, large stimulation of biomass by rising atmospheric CO2 concentrations may not be ubiquitous.

  12. Estimating carbon fluxes for North America from a joint inversion for CO2 and COS using STILT

    Science.gov (United States)

    Chen, H.; Petron, G.; Trudeau, M. E.; Karion, A.; Koch, F. T.; Kretschmer, R.; Gerbig, C.; Campbell, J. E.; Berry, J. A.; Baker, I. T.; Nehrkorn, T.; Eluszkiewicz, J.; Miller, B. R.; Montzka, S. A.; Jacobson, A. R.; Sweeney, C.; Andrews, A. E.; Tans, P. P.

    2011-12-01

    Understanding biospheric CO2 fluxes is paramount if climate studies are to be able to analyze the response of terrestrial ecosystems to climate change and monitor fossil fuel emissions reductions. Carbonyl sulfide (COS) may be a useful tracer to provide a constraint on photosynthesis [gross primary production (GPP)]. Here we simulate both COS and CO2 using the Stochastic Time-Inverted Lagrangian Transport (STILT) model coupled with various biospheric fluxes, such as fluxes estimated from the Vegetation Photosynthesis and Respiration Model (VPRM), CarbonTracker, and from the Carnegie-Ames-Stanford Approach (CASA) model. The STILT model is driven by Weather Research and Forecast (WRF) meteorological fields. The WRF-STILT system is compared with the STILT driven by the ECMWF (European Center for Medium range Weather Forecasting) meteorology for the North American domain. This study uses measurements of COS and CO2 in 2008 from the NOAA/ESRL tall tower and aircraft air sampling networks, with ~ 6,000 observations in total. Biospheric COS fluxes will be estimated from a GPP-based model coupled with the GPP estimates from above mentioned biosphere models. Soil uptakes of COS are derived from a biosphere model (SiB) that assimilates the soil moisture and temperature. Estimation of other COS fluxes, such as anthropogenic, biomass burning are based on existing analyses of temporal and spatial variations. Empirical boundary curtains are built based on observations at the NOAA/ESRL marine boundary layer stations and from aircraft vertical profiles, and are utilized as the lateral boundary conditions for COS and CO2 for North America. Comparison of the simulations for both COS and CO2 using different biospheric fluxes provides an opportunity to assess the performance of both the biospheric models and the representation of atmospheric transport. In addition, we will estimate the carbon fluxes for North America from a joint inversion for COS and CO2 in a Bayesian synthesis

  13. Synthesis of Size-Tunable CO2-Philic Imprinted Polymeric Particles (MIPs) for Low-Pressure CO2 Capture Using Oil-in-Oil Suspension Polymerization.

    Science.gov (United States)

    Nabavi, Seyed Ali; Vladisavljević, Goran T; Zhu, Yidi; Manović, Vasilije

    2017-10-03

    Highly selective molecularly imprinted poly[acrylamide-co-(ethylene glycol dimethacrylate)] polymer particles (MIPs) for CO2 capture were synthesized by suspension polymerization via oil-in-oil emulsion. Creation of CO2-philic, amide-decorated cavities in the polymer matrix led to a high affinity to CO2. At 0.15 bar CO2 partial pressure, the CO2/N2 selectivity was 49 (corresponding to 91% purity of the gas stream after regeneration), and reached 97 at ultralow CO2 partial pressures. The imprinted polymers showed considerably higher CO2 uptakes compared to their nonimprinted counterparts, and the maximum equilibrium CO2 capture capacity of 1.1 mmol g(-1) was achieved at 273 K. The heat of adsorption was below 32 kJ mol(-1) and the temperature of onset of intense thermal degradation was 351-376 °C. An increase in monomer-to-cross-linker molar ratio in the dispersed phase up to 1:2.5 led to a higher affinity toward CO2 due to higher density of selective amide groups in the polymer network. MIPs are a promising option for industrial packed and fluidized bed CO2 capture systems due to large particles with a diameter up to 1200 μm and irregular oblong shapes formed due to arrested coalescence during polymerization, occurring as a result of internal elasticity of the partially polymerized semisolid drops.

  14. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2

    Science.gov (United States)

    Wenzel, Sabrina; Cox, Peter M.; Eyring, Veronika; Friedlingstein, Pierre

    2016-10-01

    Uncertainties in the response of vegetation to rising atmospheric CO2 concentrations contribute to the large spread in projections of future climate change. Climate-carbon cycle models generally agree that elevated atmospheric CO2 concentrations will enhance terrestrial gross primary productivity (GPP). However, the magnitude of this CO2 fertilization effect varies from a 20 per cent to a 60 per cent increase in GPP for a doubling of atmospheric CO2 concentrations in model studies. Here we demonstrate emergent constraints on large-scale CO2 fertilization using observed changes in the amplitude of the atmospheric CO2 seasonal cycle that are thought to be the result of increasing terrestrial GPP. Our comparison of atmospheric CO2 measurements from Point Barrow in Alaska and Cape Kumukahi in Hawaii with historical simulations of the latest climate-carbon cycle models demonstrates that the increase in the amplitude of the CO2 seasonal cycle at both measurement sites is consistent with increasing annual mean GPP, driven in part by climate warming, but with differences in CO2 fertilization controlling the spread among the model trends. As a result, the relationship between the amplitude of the CO2 seasonal cycle and the magnitude of CO2 fertilization of GPP is almost linear across the entire ensemble of models. When combined with the observed trends in the seasonal CO2 amplitude, these relationships lead to consistent emergent constraints on the CO2 fertilization of GPP. Overall, we estimate a GPP increase of 37 ± 9 per cent for high-latitude ecosystems and 32 ± 9 per cent for extratropical ecosystems under a doubling of atmospheric CO2 concentrations on the basis of the Point Barrow and Cape Kumukahi records, respectively.

  15. CyclicCO2R: production of cyclic carbonates from CO2 using renewable feedstocks

    NARCIS (Netherlands)

    Kimball, E.; Schuurbiers, C.A.H.; Zevenbergen, J.F.; Håkonsen, S.F.; Heyn, R.; Offermans, W.; Leitner, W.; Ostapowicz, T.; Müller, T. E.; Mul, G.; North, M.; Ngomsik-Fanselow, A.F.; Sarron, E.; Sigurbjörnsson, O.; Schäffner, B.

    2013-01-01

    The consortium behind CyclicCO2R wants to kick-start the implementation of CO2 utilization technologies by converting CO2 into a high value-added product, thus providing a showcase that inspires industry to further develop technologies utilizing CO2 as a sustainable raw material and valorizing CO2

  16. CyclicCO2R: production of cyclic carbonates from CO2 using renewable feedstocks

    NARCIS (Netherlands)

    Kimball, E.; Schuurbiers, C.A.H.; Zevenbergen, J.F.; Håkonsen, S.F.; Heyn, R.; Offermans, W.; Leitner, W.; Ostapowicz, T.; Müller, T. E.; Mul, G.; North, M.; Ngomsik-Fanselow, A.F.; Sarron, E.; Sigurbjörnsson, O.; Schäffner, B.

    2013-01-01

    The consortium behind CyclicCO2R wants to kick-start the implementation of CO2 utilization technologies by converting CO2 into a high value-added product, thus providing a showcase that inspires industry to further develop technologies utilizing CO2 as a sustainable raw material and valorizing CO2 i

  17. Epoxy based oxygen enriched porous carbons for CO2 capture

    Science.gov (United States)

    Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K.

    2017-08-01

    Oxygen enriched carbon adsorbents were successfully synthesized for the first time from template zeolite and epoxy resin as precursor using a nanocasting technique. Carbonization and CO2 activation were performed at various temperatures (500-800 °C) to prepare different carbon structure adsorbents. Several characterization techniques were used to characterize the textural structure, oxygen content and surface functional groups of the adsorbents. The carbon adsorbents show high oxygen content (47.51%), highest surface area (SBET = 686.37 m2 g-1) and pore volume (0.60 cm3 g-1), respectively. The materials were evaluated thermogravimetrically at different adsorption temperatures (30-100 °C) and CO2 concentrations (6-100%). Adsorbent prepared at 700 °C exhibited highest CO2 uptake of 0.91 mmol g-1 due to high surface basicity. Further, regeneration studies of adsorbent exhibited easy regenerability and stability over four multiple adsorptions-desorption cycles. Kinetic models for CO2 adsorption at various CO2 concentrations and temperatures were studied and it was found that the fractional order provided best fitting for the adsorption behavior with an error of less than 3%. The experimental data for CO2 adsorption were analyzed using different isothermal models and found that the Freundlich isothermal model presented perfect fit among all isotherm models depicting heterogeneous adsorbent surface. The isosteric heat of adsorption was estimated to be 11.75 kJ mol-1, indicating physiosorption process. Overall, the above results suggested that the synthesized adsorbent using nanocasting technique provides a feasible way for CO2 capture from point source due to their environmentally benign nature, low cost and stable adsorption capacity.

  18. Enhanced biological carbon consumption in a high CO2 ocean.

    Science.gov (United States)

    Riebesell, U; Schulz, K G; Bellerby, R G J; Botros, M; Fritsche, P; Meyerhöfer, M; Neill, C; Nondal, G; Oschlies, A; Wohlers, J; Zöllner, E

    2007-11-22

    The oceans have absorbed nearly half of the fossil-fuel carbon dioxide (CO2) emitted into the atmosphere since pre-industrial times, causing a measurable reduction in seawater pH and carbonate saturation. If CO2 emissions continue to rise at current rates, upper-ocean pH will decrease to levels lower than have existed for tens of millions of years and, critically, at a rate of change 100 times greater than at any time over this period. Recent studies have shown effects of ocean acidification on a variety of marine life forms, in particular calcifying organisms. Consequences at the community to ecosystem level, in contrast, are largely unknown. Here we show that dissolved inorganic carbon consumption of a natural plankton community maintained in mesocosm enclosures at initial CO2 partial pressures of 350, 700 and 1,050 microatm increases with rising CO2. The community consumed up to 39% more dissolved inorganic carbon at increased CO2 partial pressures compared to present levels, whereas nutrient uptake remained the same. The stoichiometry of carbon to nitrogen drawdown increased from 6.0 at low CO2 to 8.0 at high CO2, thus exceeding the Redfield carbon:nitrogen ratio of 6.6 in today's ocean. This excess carbon consumption was associated with higher loss of organic carbon from the upper layer of the stratified mesocosms. If applicable to the natural environment, the observed responses have implications for a variety of marine biological and biogeochemical processes, and underscore the importance of biologically driven feedbacks in the ocean to global change.

  19. Technical note: Evaluation of three machine learning models for surface ocean CO2 mapping

    Science.gov (United States)

    Zeng, Jiye; Matsunaga, Tsuneo; Saigusa, Nobuko; Shirai, Tomoko; Nakaoka, Shin-ichiro; Tan, Zheng-Hong

    2017-04-01

    Reconstructing surface ocean CO2 from scarce measurements plays an important role in estimating oceanic CO2 uptake. There are varying degrees of differences among the 14 models included in the Surface Ocean CO2 Mapping (SOCOM) inter-comparison initiative, in which five models used neural networks. This investigation evaluates two neural networks used in SOCOM, self-organizing maps and feedforward neural networks, and introduces a machine learning model called a support vector machine for ocean CO2 mapping. The technique note provides a practical guide to selecting the models.

  20. Temporal variability in the sources and fluxes of CO2 in a residential area in an evergreen subtropical city

    Science.gov (United States)

    Weissert, L. F.; Salmond, J. A.; Turnbull, J. C.; Schwendenmann, L.

    2016-10-01

    Measurements of CO2 fluxes in temperate climates have shown that urban areas are a net source of CO2 and that photosynthetic CO2 uptake is generally not sufficient to offset local CO2 emissions. However, little is known about the role of vegetation in cities where biogenic CO2 uptake is not limited to a 2-8 months growing season. This study used the eddy covariance technique to quantify the atmospheric CO2 fluxes over a period of 12 months in a residential area in subtropical Auckland, New Zealand, where the vegetation cover (surface cover fraction: 47%) is dominated by evergreen vegetation. Radiocarbon isotope measurements of CO2 were conducted at three different times of the day (06:00-09:00, 12:00-15:00, 01:00-04:00) for four consecutive weekdays in summer and winter to differentiate anthropogenic sources of CO2 (fossil fuel combustion) from biogenic sources (ecosystem respiration, combustion of biofuel/biomass). The results reveal previously unreported patterns for CO2 fluxes, with no seasonal variability and negative (net uptake) CO2 midday fluxes throughout the year, demonstrating photosynthetic uptake by the evergreen vegetation all year-round. The winter radiocarbon measurements showed that 85% of the CO2 during the morning rush hour was attributed to fossil fuel emissions, when wind was from residential areas. However, for all other time periods radiocarbon measurements showed that fossil fuel combustion was not a large source of CO2, suggesting that biogenic processes likely dominate CO2 fluxes at this residential site. Overall, our findings highlight the importance of vegetation in residential areas to mitigate local CO2 emissions, particularly in cities with a climate that allows evergreen vegetation to maintain high photosynthetic rates over winter. As urban areas grow, urban planners need to consider the role of urban greenspace to mitigate urban CO2 emissions.

  1. CO2 Virtual Science Data Environment API

    Data.gov (United States)

    National Aeronautics and Space Administration — The CO2 Virtual Data Environment is a comprehensive effort at bringing together the models, data, and tools necessary to perform research on atmospheric CO2.This...

  2. Why capture CO2 from the atmosphere?

    National Research Council Canada - National Science Library

    Keith, David W

    2009-01-01

    Air capture is an industrial process for capturing CO2 from ambient air; it is one of an emerging set of technologies for CO2 removal that includes geological storage of biotic carbon and the acceleration of geochemical weathering...

  3. Calculating subsurface CO2 storage capacities

    NARCIS (Netherlands)

    Meer, B. van der; Egberts, P.

    2008-01-01

    Often we need to know how much CO2 we can store in a certain underground space, or how much such space we need to store a given amount of CO2. In a recent attempt (Bradshaw et al., 2006) to list various regional and global estimates of CO2 storage capacity (Figure 1), the estimates reported are ofte

  4. Calculating subsurface CO2 storage capacities

    NARCIS (Netherlands)

    Meer, B. van der; Egberts, P.

    2008-01-01

    Often we need to know how much CO2 we can store in a certain underground space, or how much such space we need to store a given amount of CO2. In a recent attempt (Bradshaw et al., 2006) to list various regional and global estimates of CO2 storage capacity (Figure 1), the estimates reported are

  5. CO2 fluxes from a tropical neighborhood: sources and sinks

    Science.gov (United States)

    Velasco, E.; Roth, M.; Tan, S.; Quak, M.; Britter, R.; Norford, L.

    2011-12-01

    Cities are the main contributors to the CO2 rise in the atmosphere. The CO2 released from the various emission sources is typically quantified by a bottom-up aggregation process that accounts for emission factors and fossil fuel consumption data. This approach does not consider the heterogeneity and variability of the urban emission sources, and error propagation can result in large uncertainties. In this context, direct measurements of CO2 fluxes that include all major and minor anthropogenic and natural sources and sinks from a specific district can be used to evaluate emission inventories. This study reports and compares CO2 fluxes measured directly using the eddy covariance method with emissions estimated by emissions factors and activity data for a residential neighborhood of Singapore, a highly populated and urbanized tropical city. The flux measurements were conducted during one year. No seasonal variability was found as a consequence of the constant climate conditions of tropical places; but a clear diurnal pattern with morning and late afternoon peaks in phase with the rush-hour traffic was observed. The magnitude of the fluxes throughout daylight hours is modulated by the urban vegetation, which is abundant in terms of biomass but not of land-cover (15%). Even though the carbon uptake by vegetation is significant, it does not exceed the anthropogenic emissions and the monitored district is a net CO2 source of 20.3 ton km-2 day-1 on average. The carbon uptake by vegetation is investigated as the difference between the estimated emissions and the measured fluxes during daytime.

  6. Re-evaluating the 1940s CO2 plateau

    Science.gov (United States)

    Bastos, Ana; Ciais, Philippe; Barichivich, Jonathan; Bopp, Laurent; Brovkin, Victor; Gasser, Thomas; Peng, Shushi; Pongratz, Julia; Viovy, Nicolas; Trudinger, Cathy M.

    2016-09-01

    The high-resolution CO2 record from Law Dome ice core reveals that atmospheric CO2 concentration stalled during the 1940s (so-called CO2 plateau). Since the fossil-fuel emissions did not decrease during the period, this stalling implies the persistence of a strong sink, perhaps sustained for as long as a decade or more. Double-deconvolution analyses have attributed this sink to the ocean, conceivably as a response to the very strong El Niño event in 1940-1942. However, this explanation is questionable, as recent ocean CO2 data indicate that the range of variability in the ocean sink has been rather modest in recent decades, and El Niño events have generally led to higher growth rates of atmospheric CO2 due to the offsetting terrestrial response. Here, we use the most up-to-date information on the different terms of the carbon budget: fossil-fuel emissions, four estimates of land-use change (LUC) emissions, ocean uptake from two different reconstructions, and the terrestrial sink modelled by the TRENDY project to identify the most likely causes of the 1940s plateau. We find that they greatly overestimate atmospheric CO2 growth rate during the plateau period, as well as in the 1960s, in spite of giving a plausible explanation for most of the 20th century carbon budget, especially from 1970 onwards. The mismatch between reconstructions and observations during the CO2 plateau epoch of 1940-1950 ranges between 0.9 and 2.0 Pg C yr-1, depending on the LUC dataset considered. This mismatch may be explained by (i) decadal variability in the ocean carbon sink not accounted for in the reconstructions we used, (ii) a further terrestrial sink currently missing in the estimates by land-surface models, or (iii) LUC processes not included in the current datasets. Ocean carbon models from CMIP5 indicate that natural variability in the ocean carbon sink could explain an additional 0.5 Pg C yr-1 uptake, but it is unlikely to be higher. The impact of the 1940-1942 El Niño on the

  7. A Fine-Tuned Fluorinated MOF Addresses the Needs for Trace CO2 Removal and Air Capture Using Physisorption.

    Science.gov (United States)

    Bhatt, Prashant M; Belmabkhout, Youssef; Cadiau, Amandine; Adil, Karim; Shekhah, Osama; Shkurenko, Aleksander; Barbour, Leonard J; Eddaoudi, Mohamed

    2016-07-27

    The development of functional solid-state materials for carbon capture at low carbon dioxide (CO2) concentrations, namely, from confined spaces (CO2-selective NbOFFIVE-1-Ni exhibits the highest CO2 gravimetric and volumetric uptake (ca. 1.3 mmol/g and 51.4 cm(3) (STP) cm(-3)) for a physical adsorbent at 400 ppm of CO2 and 298 K. Practically, NbOFFIVE-1-Ni offers the complete CO2 desorption at 328 K under vacuum with an associated moderate energy input of 54 kJ/mol, typical for the full CO2 desorption in conventional physical adsorbents but considerably lower than chemical sorbents. Noticeably, the contracted square-like channels, affording the close proximity of the fluorine centers, permitted the enhancement of the CO2-framework interactions and subsequently the attainment of an unprecedented CO2 selectivity at very low CO2 concentrations. The precise localization of the adsorbed CO2 at the vicinity of the periodically aligned fluorine centers, promoting the selective adsorption of CO2, is evidenced by the single-crystal X-ray diffraction study on NbOFFIVE-1-Ni hosting CO2 molecules. Cyclic CO2/N2 mixed-gas column breakthrough experiments under dry and humid conditions corroborate the excellent CO2 selectivity under practical carbon capture conditions. Pertinently, the notable hydrolytic stability positions NbOFFIVE-1-Ni as the new benchmark adsorbent for direct air capture and CO2 removal from confined spaces.

  8. Detecting the relationship between economic growth, CO2 and energy consumption by using panel data approach

    Science.gov (United States)

    Sayed, Ahmed R. M. Al; Isa, Zaidi

    2015-09-01

    Many scholars have shown their interest into the relationship between energy consumption (EC), gross domestic product (GDP) and emissions. The main objective of this study is to investigate the relationship between GDP, EC and CO2 within multivariate model by using panel data method in Asian countries; Korea, Malaysia, Japan and China for annually data during the period 1960 to 2010. The main finding shows that CO2 can be explained more than 86% & 78% by EC and GDP in each of cross section model and period model respectively. As a result of that, CO2 emissions should be considered as an important factor in energy consumption and gross domestic product by policy maker.

  9. CO2 Capture for Cement Technology

    OpenAIRE

    2013-01-01

    Production of cement is an energy intensive process and is the source of considerable CO2emissions. Itis estimated that the cement industry contributes around 8% of total global CO2emissions. CO2is oneof the major greenhouse gases. In the atmosphere, the CO2concentration has increased from 310 ppmvin 1960 to 390 ppmv in 2012, probably due to human activity. A lot of research is being carried out forreducing CO2emissions from large stationary sources. Ofwhich, the carbonate looping process is ...

  10. Forest succession at elevated CO2

    Energy Technology Data Exchange (ETDEWEB)

    Clark, James S.; Schlesinger, William H.

    2002-02-01

    We tested hypotheses concerning the response of forest succession to elevated CO2 in the FACTS-1 site at the Duke Forest. We quantified growth and survival of naturally recruited seedlings, tree saplings, vines, and shrubs under ambient and elevated CO2. We planted seeds and seedlings to augment sample sites. We augmented CO2 treatments with estimates of shade tolerance and nutrient limitation while controlling for soil and light effects to place CO2 treatments within the context of natural variability at the site. Results are now being analyzed and used to parameterize forest models of CO2 response.

  11. Residual CO2 trapping in Indiana limestone.

    Science.gov (United States)

    El-Maghraby, Rehab M; Blunt, Martin J

    2013-01-01

    We performed core flooding experiments on Indiana limestone using the porous plate method to measure the amount of trapped CO(2) at a temperature of 50 °C and two pressures: 4.2 and 9 MPa. Brine was mixed with CO(2) for equilibration, then the mixture was circulated through a sacrificial core. Porosity and permeability tests conducted before and after 884 h of continuous core flooding confirmed negligible dissolution. A trapping curve for supercritical (sc)CO(2) in Indiana showing the relationship between the initial and residual CO(2) saturations was measured and compared with that of gaseous CO(2). The results were also compared with scCO(2) trapping in Berea sandstone at the same conditions. A scCO(2) residual trapping end point of 23.7% was observed, indicating slightly less trapping of scCO(2) in Indiana carbonates than in Berea sandstone. There is less trapping for gaseous CO(2) (end point of 18.8%). The system appears to be more water-wet under scCO(2) conditions, which is different from the trend observed in Berea; we hypothesize that this is due to the greater concentration of Ca(2+) in brine at higher pressure. Our work indicates that capillary trapping could contribute to the immobilization of CO(2) in carbonate aquifers.

  12. Selecting CO2 Sources for CO2 Utilization by Environmental-Merit-Order Curves.

    Science.gov (United States)

    von der Assen, Niklas; Müller, Leonard J; Steingrube, Annette; Voll, Philip; Bardow, André

    2016-02-01

    Capture and utilization of CO2 as alternative carbon feedstock for fuels, chemicals, and materials aims at reducing greenhouse gas emissions and fossil resource use. For capture of CO2, a large variety of CO2 sources exists. Since they emit much more CO2 than the expected demand for CO2 utilization, the environmentally most favorable CO2 sources should be selected. For this purpose, we introduce the environmental-merit-order (EMO) curve to rank CO2 sources according to their environmental impacts over the available CO2 supply. To determine the environmental impacts of CO2 capture, compression and transport, we conducted a comprehensive literature study for the energy demands of CO2 supply, and constructed a database for CO2 sources in Europe. Mapping these CO2 sources reveals that CO2 transport distances are usually small. Thus, neglecting transport in a first step, we find that environmental impacts are minimized by capturing CO2 first from chemical plants and natural gas processing, then from paper mills, power plants, and iron and steel plants. In a second step, we computed regional EMO curves considering transport and country-specific impacts for energy supply. Building upon regional EMO curves, we identify favorable locations for CO2 utilization with lowest environmental impacts of CO2 supply, so-called CO2 oases.

  13. Enhancement of CO2 Affinity in a Polymer of Intrinsic Microporosity by Amine Modification.

    Science.gov (United States)

    Mason, Christopher R; Maynard-Atem, Louise; Heard, Kane W J; Satilmis, Bekir; Budd, Peter M; Friess, Karel; Lanc̆, Marek; Bernardo, Paola; Clarizia, Gabriele; Jansen, Johannes C

    2014-02-11

    Nitrile groups in the polymer of intrinsic microporosity PIM-1 were reduced to primary amines using borane complexes. In adsorption experiments, the novel amine-PIM-1 showed higher CO2 uptake and higher CO2/N2 sorption selectivity than the parent polymer, with very evident dual-mode sorption behavior. In gas permeation with six light gases, the individual contributions of solubility and diffusion to the overall permeability was determined via time-lag analysis. The high CO2 affinity drastically restricts diffusion at low pressures and lowers CO2 permeability compared to the parent PIM-1. Furthermore, the size-sieving properties of the polymer are increased, which can be attributed to a higher stiffness of the system arising from hydrogen bonding of the amine groups. Thus, for the H2/CO2 gas pair, whereas PIM-1 favors CO2, amine-PIM-1 shows permselectivity toward H2, breaking the Robeson 2008 upper bound.

  14. Reversible CO2 Capture by Conjugated Ionic Liquids through Dynamic Covalent Carbon-Oxygen Bonds.

    Science.gov (United States)

    Pan, Mingguang; Cao, Ningning; Lin, Wenjun; Luo, Xiaoyan; Chen, Kaihong; Che, Siying; Li, Haoran; Wang, Congmin

    2016-09-08

    The strong chemisorption of CO2 is always accompanied by a high absorption enthalpy, and traditional methods to reduce the absorption enthalpy lead to decreased CO2 capacities. Through the introduction of a large π-conjugated structure into the anion, a dual-tuning approach for the improvement of CO2 capture by anion-functionalized ionic liquids (ILs) resulted in a high capacity of up to 0.96 molCO2  mol-1IL and excellent reversibility. The increased capacity and improved desorption were supported by quantum chemical calculations, spectroscopic investigations, and thermogravimetric analysis. The increased capacity may be a result of the strengthened dynamic covalent bonds in these π-electron-conjugated structures through anion aggregation upon the uptake of CO2 , and the improved desorption originates from the charge dispersion of interaction sites through the large π-electron delocalization. These results provide important insights into effective strategies for CO2 capture.

  15. Interaction of pristine hydrotalcite-like layered double hydroxides with CO2: a thermogravimetric study

    Indian Academy of Sciences (India)

    Shivanna Marappa; P Vishnu Kamath

    2015-12-01

    Metal oxides in general have surface acidic sites, but for exceptional circumstances, are not expected to mineralize CO2. Given their intrinsic basicity and an expandable interlayer gallery, the hydrotalcite-like layered double hydroxides (LDHs) are expected to be superior candidate materials for CO2 mineralization. However, the incorporation of Al3+ adversely impacts the ability of the metal hydroxide layer to interact with CO2 in the gas phase in comparison with the unitary Mg(OH)2. Thermogravimetric analysis shows that the decomposition reaction of the [Mg–Al–CO3] LDH is only marginally delayed in flowing CO2 in comparison with flowing N2, showing only an apparent marginal CO2 uptake. Al3+ ion severely attenuates the surface basicity of the LDHs, as the unitary Al(OH)3 is acidic in comparison with Mg(OH)2 and shows little or no interaction with CO2 in the gas phase.

  16. Amine scrubbing for CO2 capture.

    Science.gov (United States)

    Rochelle, Gary T

    2009-09-25

    Amine scrubbing has been used to separate carbon dioxide (CO2) from natural gas and hydrogen since 1930. It is a robust technology and is ready to be tested and used on a larger scale for CO2 capture from coal-fired power plants. The minimum work requirement to separate CO2 from coal-fired flue gas and compress CO2 to 150 bar is 0.11 megawatt-hours per metric ton of CO2. Process and solvent improvements should reduce the energy consumption to 0.2 megawatt-hour per ton of CO2. Other advanced technologies will not provide energy-efficient or timely solutions to CO2 emission from conventional coal-fired power plants.

  17. Characterizing CO2 fluxes for growing and non-growing seasons in a shrub ecosystem on the Qinghai-Tibet Plateau

    Institute of Scientific and Technical Information of China (English)

    XU; Shixiao; ZHAO; Xinquan; FU; Yuling; ZHAO; Liang; LI; Yi

    2005-01-01

    To assess carbon budget for shrub ecosystems on the Qinghai-Tibet Plateau, CO2flux was measured with an open-path eddy covariance system for an alpine shrub ecosystem during growing and non-growing seasons. CO2 flux dynamics was distinct between the two seasons. During the growing season from May to September, the ecosystem exhibited net CO2uptake from 08:00 to 19:00 (Beijing Standard Time), but net CO2 emission from 19:00 to 08:00.Maximum CO2 uptake appeared around 12:00 with values of 0.71, 1.19, 1.46 and 0.67 g CO2m-2 h-1 for June, July, August and September, respectively. Diurnal fluctuation of CO2 flux showed higher correlation with photosynthetic photon flux density than temperature. The maximum net CO2 influx occurred in August with a value of 247 g CO2 m-2. The total CO2 uptake by the ecosystem was up to 583 g CO2 m-2 for the growing season. During the non-growing season from January to April and from October to December, CO2 flux showed small fluctuation with the largest net CO2 efflux of 0.30 g CO2 m-2 h-1 in April. The diurnal CO2 flux was close to zero during most time of the day, but showed a small net CO2 efflux from 11:00 to 18:00. Diurnal CO2 flux, is significantly correlated to diurnal temperature in the non-growing season. The maximum monthly net CO2 efflux appeared in April, with a value of 105 g CO2 m-2. The total net CO2 efflux for the whole non-growing season was 356 g CO2 m-2.

  18. Quantifying the drivers of ocean-atmosphere CO2 fluxes

    Science.gov (United States)

    Lauderdale, Jonathan M.; Dutkiewicz, Stephanie; Williams, Richard G.; Follows, Michael J.

    2016-07-01

    A mechanistic framework for quantitatively mapping the regional drivers of air-sea CO2 fluxes at a global scale is developed. The framework evaluates the interplay between (1) surface heat and freshwater fluxes that influence the potential saturated carbon concentration, which depends on changes in sea surface temperature, salinity and alkalinity, (2) a residual, disequilibrium flux influenced by upwelling and entrainment of remineralized carbon- and nutrient-rich waters from the ocean interior, as well as rapid subduction of surface waters, (3) carbon uptake and export by biological activity as both soft tissue and carbonate, and (4) the effect on surface carbon concentrations due to freshwater precipitation or evaporation. In a steady state simulation of a coarse-resolution ocean circulation and biogeochemistry model, the sum of the individually determined components is close to the known total flux of the simulation. The leading order balance, identified in different dynamical regimes, is between the CO2 fluxes driven by surface heat fluxes and a combination of biologically driven carbon uptake and disequilibrium-driven carbon outgassing. The framework is still able to reconstruct simulated fluxes when evaluated using monthly averaged data and takes a form that can be applied consistently in models of different complexity and observations of the ocean. In this way, the framework may reveal differences in the balance of drivers acting across an ensemble of climate model simulations or be applied to an analysis and interpretation of the observed, real-world air-sea flux of CO2.

  19. Surface Ocean pCO2 Seasonality and Sea-Air CO2 Flux Estimates for the North American East Coast

    Science.gov (United States)

    Signorini, Sergio; Mannino, Antonio; Najjar, Raymond G., Jr.; Friedrichs, Marjorie A. M.; Cai, Wei-Jun; Salisbury, Joe; Wang, Zhaohui Aleck; Thomas, Helmuth; Shadwick, Elizabeth

    2013-01-01

    Underway and in situ observations of surface ocean pCO2, combined with satellite data, were used to develop pCO2 regional algorithms to analyze the seasonal and interannual variability of surface ocean pCO2 and sea-air CO2 flux for five physically and biologically distinct regions of the eastern North American continental shelf: the South Atlantic Bight (SAB), the Mid-Atlantic Bight (MAB), the Gulf of Maine (GoM), Nantucket Shoals and Georges Bank (NS+GB), and the Scotian Shelf (SS). Temperature and dissolved inorganic carbon variability are the most influential factors driving the seasonality of pCO2. Estimates of the sea-air CO2 flux were derived from the available pCO2 data, as well as from the pCO2 reconstructed by the algorithm. Two different gas exchange parameterizations were used. The SS, GB+NS, MAB, and SAB regions are net sinks of atmospheric CO2 while the GoM is a weak source. The estimates vary depending on the use of surface ocean pCO2 from the data or algorithm, as well as with the use of the two different gas exchange parameterizations. Most of the regional estimates are in general agreement with previous studies when the range of uncertainty and interannual variability are taken into account. According to the algorithm, the average annual uptake of atmospheric CO2 by eastern North American continental shelf waters is found to be between 3.4 and 5.4 Tg C/yr (areal average of 0.7 to 1.0 mol CO2 /sq m/yr) over the period 2003-2010.

  20. Nitrification and CO2 fixation in hot springs in the presence and absence of a nitrification inhibitor

    Science.gov (United States)

    Hungate, B. A.; Dijkstra, P.; Brown, J.; Mau, R. L.; Thomas, S.; Dodsworth, J. A.; Hedlund, B. P.; Boyd, E. S.; de la Torre, J. R.; Jewell, T.

    2012-12-01

    Ammonium oxidation occurs in terrestrial and aquatic ecosystems, and from temperatures approaching freezing to close to 80 °C. This reaction is catalyzed by ammonium oxidase associated with both Bacteria and Archaea, although those associated with Archaea appear dominant at temperatures above ~ 60°C. For bacteria, this process is coupled to active CO2 uptake, although whether Archaea use this reaction in situ to drive C fixation has yet to be definitively established. For some hot spring communities, the Thaumarcheota (specifically close relatives of Nitrosocaldus yellowstonii) represent a substantial proportion of the microbial community. We conducted gross nitrification and CO2 fixation measurements to determine 1- the upper in situ temperature limit for nitrification and 2- the contribution of ammonium oxidizers to the community C fixation by inhibiting nitrification using allylthiourea (ATU). We used 15NO3- pool dilution to determine nitrification in sediment slurries and incubated sediment with 14C-labeled bicarbonate to measure C fixation. Sediment samples were collected from the Great Boiling Spring near Gerlach, Nevada. The water temperature ranged between 83 and 50°C depending on the location in the main pool. We collected samples at 82, 72, 59, and 51 °C. The sediment was homogenized, 15NO3- was added. The nitrification inhibitor ATU was added before adding the 15N label. One sample was immediately stored cold, while another was incubated overnight at the collection temperature. In parallel experiments, 14C bicarbonate was added to the headspace and likewise incubated in situ for several hours in the presence and absence of ATU. We observed significant nitrification at temperatures from 51-72 °C, but not at 82 °C. This nitrification was blocked by ATU. We also observed significant CO2 fixation at 51 and 59 °C, but not at higher temperature. CO2 fixation was not blocked by the nitrification inhibitor. We conclude that 1- ammonium oxidizers are

  1. Following the CO2 diet; Die Grosse CO{sub 2}-Diaet

    Energy Technology Data Exchange (ETDEWEB)

    Weinhold, Nicole; Wiedemann, Karsten

    2009-11-15

    One tonne of carbon dioxide per head per annum - that is about the limit that our global climate can cope with. However, the one-tonne society is still nothing but a remote vision, as the editorial staff of neue energie found out in an experiment on itself. (orig.)

  2. Improving North American gross primary production (GPP) estimates using atmospheric measurements of carbonyl sulfide (COS)

    Science.gov (United States)

    Chen, Huilin; Montzka, Steve; Andrews, Arlyn; Sweeney, Colm; Jacobson, Andy; Miller, Ben; Masarie, Ken; Jung, Martin; Gerbig, Christoph; Campbell, Elliott; Abu-Naser, Mohammad; Berry, Joe; Baker, Ian; Tans, Pieter

    2013-04-01

    Understanding the responses of gross primary production (GPP) to climate change is essential for improving our prediction of climate change. To this end, it is important to accurately partition net ecosystem exchange of carbon into GPP and respiration. Recent studies suggest that carbonyl sulfide is a useful tracer to provide a constraint on GPP, based on the fact that both COS and CO2 are simultaneously taken up by plants and the quantitative correlation between GPP and COS plant uptake. We will present an assessment of North American GPP estimates from the Simple Biosphere (SiB) model, the Carnegie-Ames-Stanford Approach (CASA) model, and the MPI-BGC model through atmospheric transport simulations of COS in a receptor oriented framework. The newly upgraded Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) will be employed to compute the influence functions, i.e. footprints, to link the surface fluxes to the concentration changes at the receptor observations. The HYSPLIT is driven by the 3-hourly archived NAM 12km meteorological data from NOAA NCEP. The background concentrations are calculated using empirical curtains along the west coast of North America that have been created by interpolating in time and space the observations at the NOAA/ESRL marine boundary layer stations and from aircraft vertical profiles. The plant uptake of COS is derived from GPP estimates of biospheric models. The soil uptake and anthropogenic emissions are from Kettle et al. 2002. In addition, we have developed a new soil flux map of COS based on observations of molecular hydrogen (H2), which shares a common soil uptake term but lacks a vegetative sink. We will also improve the GPP estimates by assimilating atmospheric observations of COS in the receptor oriented framework, and then present the assessment of the improved GPP estimates against variations of climate variables such as temperature and precipitation.

  3. Space Suit CO2 Washout During Intravehicular Activity

    Science.gov (United States)

    Augustine, Phillip M.; Navarro, Moses; Conger, Bruce; Sargusingh, Miriam M.

    2010-01-01

    Space suit carbon dioxide (CO2) washout refers to the removal of CO2 gas from the oral-nasal area of a suited astronaut's (or crewmember's) helmet using the suit's ventilation system. Inadequate washout of gases can result in diminished mental/cognitive abilities as well as headaches and light headedness. In addition to general discomfort, these ailments can impair an astronaut s ability to perform mission-critical tasks ranging from flying the space vehicle to performing lunar extravehicular activities (EVAs). During design development for NASA s Constellation Program (CxP), conflicting requirements arose between the volume of air flow that the new Orion manned space vehicle is allocated to provide to the suited crewmember and the amount of air required to achieve CO2 washout in a space suit. Historically, space suits receive 6.0 actual cubic feet per minute (acfm) of air flow, which has adequately washed out CO2 for EVAs. For CxP, the Orion vehicle will provide 4.5 acfm of air flow to the suit. A group of subject matter experts (SM Es) among the EVA Systems community came to an early consensus that 4.5 acfm may be acceptable for low metabolic rate activities. However, this value appears very risky for high metabolic rates, hence the need for further analysis and testing. An analysis was performed to validate the 4.5 acfm value and to determine if adequate CO2 washout can be achieved with the new suit helmet design concepts. The analysis included computational fluid dynamic (CFD) modeling cases, which modeled the air flow and breathing characteristics of a human wearing suit helmets. Helmet testing was performed at the National Institute of Occupational Safety and Health (NIOSH) in Pittsburgh, Pennsylvania, to provide a gross-level validation of the CFD models. Although there was not a direct data correlation between the helmet testing and the CFD modeling, the testing data showed trends that are very similar to the CFD modeling. Overall, the analysis yielded

  4. The role of vegetation in the CO2 flux from a tropical urban neighbourhood

    Science.gov (United States)

    Velasco, E.; Roth, M.; Tan, S. H.; Quak, M.; Nabarro, S. D. A.; Norford, L.

    2013-03-01

    Urban surfaces are usually net sources of CO2. Vegetation can potentially have an important role in reducing the CO2 emitted by anthropogenic activities in cities, particularly when vegetation is extensive and/or evergreen. Negative daytime CO2 fluxes, for example have been observed during the growing season at suburban sites characterized by abundant vegetation and low population density. A direct and accurate estimation of carbon uptake by urban vegetation is difficult due to the particular characteristics of the urban ecosystem and high variability in tree distribution and species. Here, we investigate the role of urban vegetation in the CO2 flux from a residential neighbourhood in Singapore using two different approaches. CO2 fluxes measured directly by eddy covariance are compared with emissions estimated from emissions factors and activity data. The latter includes contributions from vehicular traffic, household combustion, soil respiration and human breathing. The difference between estimated emissions and measured fluxes should approximate the biogenic flux. In addition, a tree survey was conducted to estimate the annual CO2 sequestration using allometric equations and an alternative model of the metabolic theory of ecology for tropical forests. Palm trees, banana plants and turfgrass were also included in the survey with their annual CO2 uptake obtained from published growth rates. Both approaches agree within 2% and suggest that vegetation captures 8% of the total emitted CO2 in the residential neighbourhood studied. A net uptake of 1.4 ton km-2 day-1 (510 ton km-2 yr-1 ) was estimated from the difference between the daily CO2 uptake by photosynthesis (3.95 ton km-2 ) and release by respiration (2.55 ton km-2). The study shows the importance of urban vegetation at the local scale for climate change mitigation in the tropics.

  5. Carbonyl sulfide exchange in a temperate loblolly pine forest grown under ambient and elevated CO2

    Science.gov (United States)

    White, M. L.; Zhou, Y.; Russo, R. S.; Mao, H.; Talbot, R.; Varner, R. K.; Sive, B. C.

    2010-01-01

    Vegetation, soil and ecosystem level carbonyl sulfide (COS) exchange was observed at Duke Forest, a temperate loblolly pine forest, grown under ambient (Ring 1, R1) and elevated (Ring 2, R2) CO2. During calm meteorological conditions, ambient COS mixing ratios at the top of the forest canopy followed a distinct diurnal pattern in both CO2 growth regimes, with maximum COS mixing ratios during the day (R1=380±4 pptv and R2=373±3 pptv, daytime mean ± standard error) and minimums at night (R1=340±6 pptv and R2=346±5 pptv, nighttime mean ± standard error) reflecting a significant nighttime sink. Nocturnal vegetative uptake (-11 to -21 pmol m-2s-1, negative values indicate uptake from the atmosphere) dominated nighttime net ecosystem COS flux estimates (-10 to -30 pmol m-2s-1) in both CO2 regimes. In comparison, soil uptake (-0.8 to -1.7 pmol m-2 s-1) was a minor component of net ecosystem COS flux. In both CO2 regimes, loblolly pine trees exhibited substantial COS consumption overnight (50% of daytime rates) that was independent of CO2 assimilation. This suggests current estimates of the global vegetative COS sink, which assume that COS and CO2 are consumed simultaneously, may need to be reevaluated. Ambient COS mixing ratios, species specific diurnal patterns of stomatal conductance, temperature and canopy position were the major factors influencing the vegetative COS flux at the branch level. While variability in branch level vegetative COS consumption measurements in ambient and enhanced CO2 environments could not be attributed to CO2 enrichment effects, estimates of net ecosystem COS flux based on ambient canopy mixing ratio measurements suggest less nighttime uptake of COS in R2, the CO2 enriched environment.

  6. Extraction of stevia glycosides with CO2 + water, CO2 + ethanol, and CO2 + water + ethanol

    Directory of Open Access Journals (Sweden)

    A. Pasquel

    2000-09-01

    Full Text Available Stevia leaves are an important source of natural sugar substitute. There are some restrictions on the use of stevia extract because of its distinctive aftertaste. Some authors attribute this to soluble material other than the stevia glycosides, even though it is well known that stevia glycosides have to some extent a bitter taste. Therefore, the purpose of this work was to develop a process to obtain stevia extract of a better quality. The proposed process includes two steps: i Pretreatment of the leaves by SCFE; ii Extraction of the stevia glycosides by SCFE using CO2 as solvent and water and/or ethanol as cosolvent. The mean total yield for SCFE pretreatment was 3.0%. The yields for SCFE with cosolvent of stevia glycosides were below 0.50%, except at 120 bar, 16°C, and 9.5% (molar of water. Under this condition, total yield was 3.4%. The quality of the glycosidic fraction with respect to its capacity as sweetener was better for the SCFE extract as compared to extract obtained by the conventional process. The overall extraction curves were well described by the Lack extended model.

  7. Effective CO2 adsorption on pristine and chemically functionalized MWCNTs

    Science.gov (United States)

    Shukrullah, Shazia; Mohamed, Norani Muti; Shaharun, Maizatul Shima; Ullah, Sami; Naz, Muhammad Yasin

    2016-11-01

    Carbon dioxide is one of the major greenhouse gases, which directly links to global warming. In this study, the laboratory produced multi-walled carbon nanotubes (MWCNTs) were amine-functionalized and tested for their potential as a CO2 adsorbent material. The CVD grown MWCNTs were treated with H2SO4/HNO3 and functionalized with 30% of 3-aminopropyltriethoxysilane (APTS). Both the pristine and functionalized MWCNTs were characterized for their surface morphology, chemical composition and functional groups by using FESEM, EDX and FTIR techniques. The acidic and APTS treatment to MWCNTs resulted in unbundling and loosening of the nanotubes from their bundled, agglomerated and entangled forms. Furthermore, oxidation and functionalization also significantly influenced the CO2 adsorption capacity of MWCNTs. The breakthrough curves (adsorption isotherms) revealed that the modified MWCNTs exhibit higher capacity for CO2 adsorption as compared to the pristine MWCNTs. Overall, CO2 uptake by the pristine and modified MWCNTs was found about 0.00025 mol/g and 0.00038 mol/g, respectively.

  8. Molten Salt Promoting Effect in Double Salt CO2 Absorbents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Keling; Li, Xiaohong S.; Chen, Haobo; Singh, Prabhakar; King, David L.

    2016-01-01

    The purpose of this paper is to elaborate on the concept of molten salts as catalysts for CO2 absorption by MgO, and extend these observations to the MgO-containing double salt oxides. We will show that the phenomena involved with CO2 absorption by MgO and MgO-based double salts are similar and general, but with some important differences. This paper focuses on the following key concepts: i) identification of conditions that favor or disfavor participation of isolated MgO during double salt absorption, and investigation of methods to increase the absorption capacity of double salt systems by including MgO participation; ii) examination of the relationship between CO2 uptake and melting point of the promoter salt, leading to the recognition of the role of pre-melting (surface melting) in these systems; and iii) extension of the reaction pathway model developed for the MgO-NaNO3 system to the double salt systems. This information advances our understanding of MgO-based CO2 absorption systems for application with pre-combustion gas streams.

  9. Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Teng, Baiyang

    2013-05-01

    Carbon dioxide (CO2) has long been regarded as the major greenhouse gas, which leads to numerous negative effects on global environment. The capture and separation of CO2 by selective adsorption using porous materials proves to be an effective way to reduce the emission of CO2 to atmosphere. Porous organic polymers (POPs) are promising candidates for this application due to their readily tunable textual properties and surface functionalities. The objective of this thesis work is to develop new POPs with high CO2 adsorption capacities and CO2/N2 selectivities for post-combustion effluent (e.g. flue gas) treatment. We will also exploit the correlation between the CO2 capture performance of POPs and their textual properties/functionalities. Chapters Two focuses on the study of a group of porous phenolic-aldehyde polymers (PPAPs) synthesized by a catalyst-free method, the CO2 capture capacities of these PPAPs exceed 2.0 mmol/g at 298 K and 1 bar, while keeping CO2/N2 selectivity of more than 30 at the same time. Chapter Three reports the gas adsorption results of different hyper-cross-linked polymers (HCPs), which indicate that heterocyclo aromatic monomers can greatly enhance polymers’ CO2/N2 selectivities, and the N-H bond is proved to the active CO2 adsorption center in the N-contained (e.g. pyrrole) HCPs, which possess the highest selectivities of more than 40 at 273 K when compared with other HCPs. Chapter Four emphasizes on the chemical modification of a new designed polymer of intrinsic microporosity (PIM) with high CO2/N2 selectivity (50 at 273 K), whose experimental repeatability and chemical stability prove excellent. In Chapter Five, we demonstrate an improvement of both CO2 capture capacity and CO2/N2 selectivity by doping alkali metal ions into azo-polymers, which leads a promising method to the design of new porous organic polymers.

  10. Changes in gene expression, cell physiology and toxicity of the harmful cyanobacterium Microcystis aeruginosa at elevated CO2

    Directory of Open Access Journals (Sweden)

    Giovanni eSandrini

    2015-05-01

    Full Text Available Rising CO2 concentrations may have large effects on aquatic microorganisms. In this study, we investigated how elevated pCO2 affects the harmful freshwater cyanobacterium Microcystis aeruginosa. This species is capable of producing dense blooms and hepatotoxins called microcystins. Strain PCC 7806 was cultured in chemostats that were shifted from low to high pCO2 conditions. This resulted in a transition from a C-limited to a light-limited steady state, with a ~2.7 fold increase of the cyanobacterial biomass and ~2.5 fold more microcystin per cell. Cells increased their chlorophyll a and phycocyanin content, and raised their PSI/PSII ratio at high pCO2. Surprisingly, cells had a lower dry weight and contained less carbohydrates, which might be an adaptation to improve the buoyancy of Microcystis when light becomes more limiting at high pCO2. Only 234 of the 4,691 genes responded to elevated pCO2. For instance, expression of the carboxysome, RuBisCO, photosystem and C metabolism genes did not change significantly, and only a few N assimilation genes were expressed differently. The lack of large-scale changes in the transcriptome could suit a buoyant species that lives in eutrophic lakes with strong CO2 fluctuations very well. However, we found major responses in inorganic carbon uptake. At low pCO2, cells were mainly dependent on bicarbonate uptake, whereas at high pCO2 gene expression of the bicarbonate uptake systems was down-regulated and cells shifted to CO2 and low-affinity bicarbonate uptake. These results show that the need for high-affinity bicarbonate uptake systems ceases at elevated CO2. Moreover, the combination of an increased cyanobacterial abundance, improved buoyancy, and higher toxin content per cell indicates that rising atmospheric CO2 levels may increase the problems associated with the harmful cyanobacterium Microcystis in eutrophic lakes.

  11. Root growth and function of three Mojave Desert grasses in response to elevated atmospheric CO2 concentration

    Science.gov (United States)

    Yoder, C.K.; Vivin, P.; DeFalco, L.A.; Seemann, J.R.; Nowak, R.S.

    2000-01-01

    Root growth and physiological responses to elevated CO2 were investigated for three important Mojave Desert grasses: the C3 perennial Achnatherum hymenoides, the C4 perennial Pleuraphis rigida and the C3 annual Bromus madritensis ssp. rubens. Seeds of each species were grown at ambient (360 μl l−1) or elevated (1000 μl l−1) CO2 in a glasshouse and harvested at three phenological stages: vegetative, anthesis and seed fill. Because P. rigida did not flower during the course of this study, harvests for this species represent three vegetative stages. Primary productivity was increased in both C3 grasses in response to elevated CO2 (40 and 19% for A. hymenoides and B. rubens, respectively), but root biomass increased only in the C3 perennial grass. Neither above-ground nor below-ground biomass of the C4 perennial grass was significantly affected by the CO2 treatment. Elevated CO2 did not significantly affect root surface area for any species. Total plant nitrogen was also not statistically different between CO2treatments for any species, indicating no enhanced uptake of N under elevated CO2. Physiological uptake capacities for NO3 and NH4 were not affected by the CO2 treatment during the second harvest; measurements were not made for the first harvest. However, at the third harvest uptake capacity was significantly decreased in response to elevated CO2 for at least one N form in each species. NO3 uptake rates were lower in A. hymenoides and P. rigida, and NH4 uptake rates were lower in B. rubens at elevated CO2. Nitrogen uptake on a whole root-system basis (NO3+NH4uptake capacity × root biomass) was influenced positively by elevated CO2 only for A. hymenoidesafter anthesis. These results suggest that elevated CO2 may result in a competitive advantage forA. hymenoides relative to species that do not increase root-system N uptake capacity. Root respiration measurements normalized to 20 °C were not significantly affected by the CO2treatment. However, specific root

  12. Energyless CO2 Absorption, Generation, and Fixation Using Atmospheric CO2.

    Science.gov (United States)

    Inagaki, Fuyuhiko; Okada, Yasuhiko; Matsumoto, Chiaki; Yamada, Masayuki; Nakazawa, Kenta; Mukai, Chisato

    2016-01-01

    From an economic and ecological perspective, the efficient utilization of atmospheric CO2 as a carbon resource should be a much more important goal than reducing CO2 emissions. However, no strategy to harvest CO2 using atmospheric CO2 at room temperature currently exists, which is presumably due to the extremely low concentration of CO2 in ambient air (approximately 400 ppm=0.04 vol%). We discovered that monoethanolamine (MEA) and its derivatives efficiently absorbed atmospheric CO2 without requiring an energy source. We also found that the absorbed CO2 could be easily liberated with acid. Furthermore, a novel CO2 generator enabled us to synthesize a high value-added material (i.e., 2-oxazolidinone derivatives based on the metal catalyzed CO2-fixation at room temperature) from atmospheric CO2.

  13. Different CO2 absorbents-modified SBA-15 sorbent for highly selective CO2 capture

    Science.gov (United States)

    Liu, Xiuwu; Zhai, Xinru; Liu, Dongyang; Sun, Yan

    2017-05-01

    Different CO2 absorbents-modified SBA-15 materials are used as CO2 sorbent to improve the selectivity of CH4/CO2 separation. The SBA-15 sorbents modified by physical CO2 absorbents are very limited to increasing CO2 adsorption and present poor selectivity. However, the SBA-15 sorbents modified by chemical CO2 absorbents increase CO2 adsorption capacity obviously. The separation coefficients of CO2/CH4 increase in this case. The adsorption and regeneration properties of the SBA-15 sorbents modified by TEA, MDEA and DIPA have been compared. The SBA-15 modified by triethanolamine (TEA) presents better CO2/CH4 separation performance than the materials modified by other CO2 absorbents.

  14. Tuning the Surface Polarity of Microporous Organic Polymers for CO2 Capture.

    Science.gov (United States)

    Chen, Jian; Li, He; Zhong, Mingmei; Yang, Qihua

    2017-09-05

    CO2 capture is very important to reduce the CO2 concentration in atmosphere. Herein, we report the preparation of microporous polymers with tunable surface polarity for CO2 capture. Porous polymers functionalized with -NH2 , -SO3 H, and -SO3 Li have been successfully prepared by using a post-synthesis modification of microporous polymers (P-PhPh3 prepared with 1,3,5-triphenylbenzene as the monomer and AlCl3 as the catalyst) by chemical transformations, such as nitration-reduction, sulfonation, and cationic exchange. The CO2 adsorption selectivity (CO2 /N2 and CO2 /H2 ) and isosteric heats of the microporous polymers increase markedly after modification, P-PhPh3 -NH2 and P-PhPh3 -SO3 Li afford higher CO2 uptake capacity than P-PhPh3 at pressures of less than 0.15 bar due to the enhanced interaction between CO2 and the -NH2 and -SO3 Li functional groups. Moreover, functionalized porous polymers could be stably used for CO2 capture. Surface modification is an efficient approach to tune the CO2 capture properties of porous polymers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enhanced CO2 permeability of membranes by incorporating polyzwitterion@CNT composite particles into polyimide matrix.

    Science.gov (United States)

    Liu, Ye; Peng, Dongdong; He, Guangwei; Wang, Shaofei; Li, Yifan; Wu, Hong; Jiang, Zhongyi

    2014-08-13

    In this study, polyzwitterion is introduced into a CO2 separation membrane. Composite particles of polyzwitterion coated carbon nanotubes (SBMA@CNT) are prepared via a precipitation polymerization method. Hybrid membranes are fabricated by incorporating SBMA@CNT in polyimide matrix and utilized for CO2 separation. The prepared composite particles and hybrid membranes are characterized by transmission electron microscopy (TEM) with element mapping, field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectra, differential scanning calorimetry (DSC) and an electronic tensile machine. Water uptake and water state of membranes are measured to probe the relationship among water uptake, water state and CO2 transport behavior. Hybrid membranes show significantly enhanced CO2 permeability compared to an unfilled polyimide membrane at a humidified state. A hybrid membrane with 5 wt % SBMA@CNT exhibits the maximum CO2 permeability of 103 Barrer with a CO2/CH4 selectivity of 36. The increase of CO2 permeability is attributed to the incorporation of the SBMA@CNT composite particles. First, SBMA@CNT form interconnected channels for CO2 transport due to the facilitated transport effect of the quaternary ammonium in repeat unit of pSBMA. Second, SBMA@CNT improve water uptake and adjust water state of membrane, which further increases CO2 permeability. Meanwhile, the variation of CO2/CH4 selectivity is dependent on the bound water portion in the membrane. A gas permeation test at a dry state and a pressure test are conducted to further probe the membrane separation performance.

  16. The non-steady state oceanic CO2 signal: its importance, magnitude and a novel way to detect it

    Directory of Open Access Journals (Sweden)

    B. I. McNeil

    2013-04-01

    Full Text Available The role of the ocean has been pivotal in modulating rising atmospheric CO2 levels since the industrial revolution, sequestering nearly half of all fossil-fuel derived CO2 emissions. Net oceanic uptake of CO2 has roughly doubled between the 1960s (~1 Pg C yr−1 and 2000s (~2 Pg C yr−1, with expectations that it will continue to absorb even more CO2 with rising future atmospheric CO2 levels. However, recent CO2 observational analyses along with numerous model predictions suggest the rate of oceanic CO2 uptake is already slowing, largely as a result of a natural decadal-scale outgassing signal. This recent CO2 outgassing signal represents a significant shift in our understanding of the oceans role in modulating atmospheric CO2. Current tracer-based estimates for the ocean storage of anthropogenic CO2 assume the ocean circulation and biology is in steady state, thereby missing the new and potentially important "non-steady state" CO2 outgassing signal. By combining data-based techniques that assume the ocean is in a steady state, with techniques that constrain the net oceanic CO2 uptake signal, we show how to extract the non-steady state CO2 signal from observations. Over the entire industrial era, the non-steady state CO2 outgassing signal (~13 ± 10 Pg C is estimated to represent about 9% of the total net CO2 inventory change (~142 Pg C. However, between 1989 and 2007, the non-steady state CO2 outgassing signal (~6.3 Pg C has likely increased to be ~18% of net oceanic CO2 storage over that period (~36 Pg C. The present uncertainty of our data-based techniques for oceanic CO2 uptake limit our capacity to quantify the non-steady state CO2 signal, however with more data and better certainty estimates across a range of diverse methods, this important and growing CO2 signal could be better constrained in the future.

  17. Gross decontamination experiment report

    Energy Technology Data Exchange (ETDEWEB)

    Mason, R.; Kinney, K.; Dettorre, J.; Gilbert, V.

    1983-07-01

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment.

  18. Imidazole tailored deep eutectic solvents for CO2 capture enhanced by hydrogen bonds.

    Science.gov (United States)

    Cao, Lingdi; Huang, Junhua; Zhang, Xiangping; Zhang, Suojiang; Gao, Jubao; Zeng, Shaojuan

    2015-11-07

    Deep eutectic solvents (DESs) have emerged as promising alternative candidates for CO2 capture in recent years. In this work, several novel DESs were firstly prepared to enhance CO2 absorption. Structural and physical properties of DESs were investigated, as well as their absorption performance of CO2. A distinct depression in the melting point up to 80 K of DESs was observed compared with that of BMIMCl. The observed red shifts of the C2H group in an imidazolium ring and its chemical shifts downfield in NMR spectra are indicative of a hydrogen bond interaction between BMIMCl and MEA. In particular, CO2 uptake in MEA : ILs (4 : 1) at room temperature and atmospheric pressure is up to 21.4 wt%, which is higher than that of 30 wt% MEA (13%). A hydrogen bond related mechanism was proposed in which ILs act as a medium to improve CO2 uptake through hydrogen bonds. Finally, the firstly reported overall heat of CO2 absorption is slightly higher than that of 30 wt% MEA, implying that the hydrogen bonds of DESs contribute to the overall heat of CO2 absorption. This study reveals that the heat of CO2 absorption can be tailored by the proper molar ratio of MEA and ILs.

  19. Effect of water addition and nitrogen fertilization on the fluxes of CH4, CO2, NOx, and N2O following five years of elevated CO2 in the Colorado Shortgrass Steppe

    Directory of Open Access Journals (Sweden)

    A. R. Mosier

    2003-01-01

    Full Text Available An open-top-chamber (OTC CO2 enrichment (~720 mmol mol-1 study was conducted in the Colorado shortgrass steppe from April 1997 through October 2001. Aboveground plant biomass increased under elevated CO2 and soil moisture content was typically higher than under ambient CO2 conditions. Fluxes of CH4, CO2, NOx and N2O, measured weekly year round were not significantly altered by CO2 enrichment over the 55 month period of observation. During early summer of 2002, following the removal of the open-top-chambers from the CO2 enrichment sites in October 2001, we conducted a short term study to determine if soil microbial processes were altered in soils that had been exposed to double ambient CO2 concentrations during the growing season for the past five years. Microplots were established within each experimental site and 10 mm of water or 10 mm of water containing the equivalent of 10 g m-2 of ammonium nitrate-N was applied to the soil surface. Fluxes of CO2, CH4, NOx and N2O fluxes within control (unchambered, ambient CO2 and elevated CO2 OTC soils were measured at one to three day intervals for the next month. With water addition alone, CO2 and NO emission did not differ between ambient and elevated CO2 soils, while CH4 uptake rates were higher and N2O fluxes lower in elevated CO2 soils. Adding water and mineral N resulted in increased CO2 emissions, increased CH4 uptake and decreased NO emissions in elevated CO2 soils. The N addition study confirmed previous observations that soil respiration is enhanced under elevated CO2 and N immobilization is increased, thereby decreasing NO emission.

  20. Advanced technology development reducing CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sup

    2010-09-15

    Responding to Korean government policies on green growth and global energy/ environmental challenges, SK energy has been developing new technologies to reduce CO2 emissions by 1) CO2 capture and utilization, 2) efficiency improvement, and 3) Li-ion batteries. The paper introduces three advanced technologies developed by SK energy; GreenPol, ACO, and Li-ion battery. Contributing to company vision, a more energy and less CO2, the three technologies are characterized as follows. GreenPol utilizes CO2 as a feedstock for making polymer. Advanced Catalytic Olefin (ACO) reduces CO2 emission by 20% and increase olefin production by 17%. Li-ion Batteries for automotive industries improves CO2 emission.

  1. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone....... The CO2 capture capacity of limestone in the raw meal is lower than for pure limestone. The difference in the CO2 capture capacity decreases with an increase in cycle number. The calcination conditions and composition are major factors that influence the CO2 capture capacity of limestone. At 850 °C in N2...

  2. CO2 Allowance and Electricity Price Interaction

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    With the introduction of CO2 emission constraints on power generators in the European Union, climate policy is starting to have notable effects on energy markets. This paper sheds light on the links between CO2 prices, electricity prices, and electricity costs to industry. It is based on a series of interviews with industrial and electricity stakeholders, as well as a rich literature seeking to estimate the exact effect of CO2 prices on electricity prices.

  3. [A new colorimetric CO2 indicator Colibri].

    Science.gov (United States)

    Nishiyama, T; Hanaoka, K

    1996-06-01

    A new colorimetric carbon dioxide (CO2) indicator Colibri is a disposable, compact and light weighted device. Colibri does not need to be calibrated and is easily usable in an emergency. It indicates blue with CO2 below 4 mmHg and becomes yellow with CO2 above 40 mmHg. In comparison with EASY CAP, Colibri functions for a longer period and it has a humidifier and a bacterial filter. Colibri is useful for emergency situations and anesthetic care.

  4. The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump

    Directory of Open Access Journals (Sweden)

    J. C. McWilliams

    2007-10-01

    Full Text Available Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical biogeochemical ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.

  5. CO2 capture in different carbon materials.

    Science.gov (United States)

    Jiménez, Vicente; Ramírez-Lucas, Ana; Díaz, José Antonio; Sánchez, Paula; Romero, Amaya

    2012-07-03

    In this work, the CO(2) capture capacity of different types of carbon nanofibers (platelet, fishbone, and ribbon) and amorphous carbon have been measured at 26 °C as at different pressures. The results showed that the more graphitic carbon materials adsorbed less CO(2) than more amorphous materials. Then, the aim was to improve the CO(2) adsorption capacity of the carbon materials by increasing the porosity during the chemical activation process. After chemical activation process, the amorphous carbon and platelet CNFs increased the CO(2) adsorption capacity 1.6 times, whereas fishbone and ribbon CNFs increased their CO(2) adsorption capacity 1.1 and 8.2 times, respectively. This increase of CO(2) adsorption capacity after chemical activation was due to an increase of BET surface area and pore volume in all carbon materials. Finally, the CO(2) adsorption isotherms showed that activated amorphous carbon exhibited the best CO(2) capture capacity with 72.0 wt % of CO(2) at 26 °C and 8 bar.

  6. Synthetic biology for CO2 fixation.

    Science.gov (United States)

    Gong, Fuyu; Cai, Zhen; Li, Yin

    2016-11-01

    Recycling of carbon dioxide (CO2) into fuels and chemicals is a potential approach to reduce CO2 emission and fossil-fuel consumption. Autotrophic microbes can utilize energy from light, hydrogen, or sulfur to assimilate atmospheric CO2 into organic compounds at ambient temperature and pressure. This provides a feasible way for biological production of fuels and chemicals from CO2 under normal conditions. Recently great progress has been made in this research area, and dozens of CO2-derived fuels and chemicals have been reported to be synthesized by autotrophic microbes. This is accompanied by investigations into natural CO2-fixation pathways and the rapid development of new technologies in synthetic biology. This review first summarizes the six natural CO2-fixation pathways reported to date, followed by an overview of recent progress in the design and engineering of CO2-fixation pathways as well as energy supply patterns using the concept and tools of synthetic biology. Finally, we will discuss future prospects in biological fixation of CO2.

  7. CO2 Capture for Cement Technology

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar

    performed recently has focused on CO2capture from fossil fuel-based power plants. Inherently,this process is especially suitablefor cement plants, as CaO used for CO2capture is also a majoringredient for clinker production. Thus, a detailed investigation was carried outto study the applicationof......% of the inlet CO2 was captured by highly deactivated limestone, which had a maximum CO2 capture capacity of 11.5%, with an inlet Ca/C ratio of 13. So, the performance of the carbonator can be defined by the inlet Ca/C ratio, which can be estimated if the maximum capture capacity of limestone is known...

  8. Competing roles of rising CO2 and climate change in the contemporary European carbon balance

    Directory of Open Access Journals (Sweden)

    J. K. Hughes

    2008-01-01

    Full Text Available Natural ecosystems respond to, and may affect climate change through uptake and storage of atmospheric CO2. Here we use the land-surface and carbon cycle model JULES to simulate the contemporary European carbon balance and its sensitivity to rising CO2 and changes in climate. We find that the impact of climate change is to decrease the ability of Europe to store carbon by 97 TgC yr−1. In contrast, the effect of rising atmospheric CO2 has been to stimulate increased uptake and storage. The CO2 effect is currently dominant leading to a net increase of 114 TgC yr−1. Our simulations do not at present include other important factors such as land use and management, the effects of forest age classes and nitrogen deposition. Understanding this balance and its implications for mitigation policies is becoming increasingly important.

  9. A Highly Stable Microporous Covalent Imine Network Adsorbent for Natural Gas Upgrading and Flue Gas CO2 Capture

    KAUST Repository

    Das, Swapan Kumar

    2016-06-06

    The feasible capture and separation of CO2 and N2 from CH4 is an important task for natural gas upgrading and the control of greenhouse gas emissions. Here, we studied the microporous covalent imine networks (CIN) material prepared through Schiff base condensation and exhibited superior chemical robustness under both acidic and basic conditions and high thermal stability. The material possesses a relatively uniform nanoparticle size of approximately 70 to 100 nm. This network featured permanent porosity with a high surface area (722 m2g-1) and micropores. A single-component gas adsorption study showed enhanced CO2 and CH4 uptakes of 3.32 mmol/g and 1.14 mmol/g, respectively, at 273 K and 1 bar, coupled with high separation selectivities for CO2/CH4, CH4/N2, and CO2/N2 of 23, 11.8 and 211, respectively. The enriched Lewis basicity in the porous skeletons favours the interaction of quadrupolar CO2 and polarizable CH4, resulting in enhanced CH4 and CO2 uptake and high CH4/N2, CO2/CH4 and CO2/N2 selectivities. Breakthrough experiments showed high CO2/CH4, CH4/N2 and CO2/N2 selectivities of 7.29, 40 and 125, respectively, at 298 K and 1 bar. High heats of adsorption for CH4 and CO2 (QstCH4; 32.61 kJ mol-1 and QstCO2; 42.42 kJ mol-1) provide the ultimate validation for the high selectivity. To the best of our knowledge, such a versatile adsorbent material that displays both enhanced uptake and selectivity for a variety of binary gas mixtures, including CO2/ CH4, CO2/N2 and CH4/N2, has not been extensively explored.

  10. Experimental Ion Mobility measurements in Ne-CO$_2$ and CO$_2$-N$_2$ mixtures

    CERN Document Server

    Encarnação, P.M.C.C.; Veenhof, R.; Neves, P.N.B.; Santos, F.P.; Trindade, A.M.F.; Borges, F.I.G.M.; Conde, C.A.N.

    2016-01-01

    In this paper we present the experimental results for the mobility, K0, of ions in neon-carbon dioxide (Ne-CO2) and carbon dioxide-nitrogen (CO2-N2) gaseous mixtures for total pressures ranging from 8–12 Torr, reduced electric fields in the 10–25 Td range, at room temperature. Regarding the Ne-CO2 mixture only one peak was observed for CO2 concentrations above 25%, which has been identified as an ion originated in CO2, while below 25% of CO2 a second-small peak appears at the left side of the main peak, which has been attributed to impurities. The mobility values for the main peak range between 3.51 ± 0.05 and 1.07 ± 0.01 cm2V−1s−1 in the 10%-99% interval of CO2, and from 4.61 ± 0.19 to 3.00 ± 0.09 cm2V−1s−1 for the second peak observed (10%–25% of CO2). For the CO2-N2, the time-of-arrival spectra displayed only one peak for CO2 concentrations above 10%, which was attributed to ions originated in CO2, namely CO2+(CO2), with a second peak appearing for CO2 concentrations below 10%. This secon...

  11. Phenol-Formaldehyde Resin-Based Carbons for CO2 Separation at Sub-Atmospheric Pressures

    Directory of Open Access Journals (Sweden)

    Noelia Álvarez-Gutiérrez

    2016-03-01

    Full Text Available The challenge of developing effective separation and purification technologies that leave much smaller energy footprints is greater for carbon dioxide (CO2 than for other gases. In addition to its involvement in climate change, CO2 is present as an impurity in biogas and bio-hydrogen (biological production by dark fermentation, in post-combustion processes (flue gas, CO2-N2 and many other gas streams. Selected phenol-formaldehyde resin-based activated carbons prepared in our laboratory have been evaluated under static conditions (adsorption isotherms as potential adsorbents for CO2 separation at sub-atmospheric pressures, i.e., in post-combustion processes or from biogas and bio-hydrogen streams. CO2, H2, N2, and CH4 adsorption isotherms at 25 °C and up to 100 kPa were obtained using a volumetric equipment and were correlated by applying the Sips model. Adsorption equilibrium was then predicted for multicomponent gas mixtures by extending the multicomponent Sips model and the Ideal Adsorbed Solution Theory (IAST in conjunction with the Sips model. The CO2 uptakes of the resin-derived carbons from CO2-CH4, CO2-H2, and CO2-N2 at atmospheric pressure were greater than those of the reference commercial carbon (Calgon BPL. The performance of the resin-derived carbons in terms of equilibrium of adsorption seems therefore relevant to CO2 separation in post-combustion (flue gas, CO2-N2 and in hydrogen fermentation (CO2-H2, CO2-CH4.

  12. CO2 Interaction with Geomaterials (Invited)

    Science.gov (United States)

    Romanov, V.; Howard, B. H.; Lynn, R. J.; Warzinski, R. P.; Hur, T.; Myshakin, E. M.; Lopano, C. L.; Voora, V. K.; Al-Saidi, W. A.; Jordan, K. D.; Cygan, R. T.; Guthrie, G. D.

    2010-12-01

    This work compares the sorption and swelling processes associated with CO2-coal and CO2-clay interactions. We investigated the mechanisms of interaction related to CO2 adsortion in micropores, intercalation into sub-micropores, dissolution in solid matrix, the role of water, and the associated changes in reservoir permeability, for applications in CO2 sequestration and enhanced coal bed methane recovery. The structural changes caused by CO2 have been investigated. A high-pressure micro-dilatometer was equipped to investigate the effect of CO2 pressure on the thermoplastic properties of coal. Using an identical dilatometer, Rashid Khan (1985) performed experiments with CO2 that revealed a dramatic reduction in the softening temperature of coal when exposed to high-pressure CO2. A set of experiments was designed for -20+45-mesh samples of Argonne Premium Pocahontas #3 coal, which is similar in proximate and ultimate analysis to the Lower Kittanning seam coal that Khan used in his experiments. No dramatic decrease in coal softening temperature has been observed in high-pressure CO2 that would corroborate the prior work of Khan. Thus, conventional polymer (or “geopolymer”) theories may not be directly applicable to CO2 interaction with coals. Clays are similar to coals in that they represent abundant geomaterials with well-developed microporous structure. We evaluated the CO2 sequestration potential of clays relative to coals and investigated the factors that affect the sorption capacity, rates, and permanence of CO2 trapping. For the geomaterials comparison studies, we used source clay samples from The Clay Minerals Society. Preliminary results showed that expandable clays have CO2 sorption capacities comparable to those of coal. We analyzed sorption isotherms, XRD, DRIFTS (infrared reflectance spectra at non-ambient conditions), and TGA-MS (thermal gravimetric analysis) data to compare the effects of various factors on CO2 trapping. In montmorillonite, CO2

  13. High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria

    National Research Council Canada - National Science Library

    William C. Chueh; Christoph Falter; Mandy Abbott; Danien Scipio; Philipp Furler; Sossina M. Haile; Aldo Steinfeld

    2010-01-01

    .... By using a solar cavity-receiver reactor, we combined the oxygen uptake and release capacity of cerium oxide and facile catalysis at elevated temperatures to thermochemically dissociate CO 2 and H 2...

  14. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress.

    Science.gov (United States)

    Pandey, Renu; Zinta, Gaurav; AbdElgawad, Hamada; Ahmad, Altaf; Jain, Vanita; Janssens, Ivan A

    2015-01-01

    Atmospheric [CO2] has increased substantially in recent decades and will continue to do so, whereas the availability of phosphorus (P) is limited and unlikely to increase in the future. P is a non-renewable resource, and it is essential to every form of life. P is a key plant nutrient controlling the responsiveness of photosynthesis to [CO2]. Increases in [CO2] typically results in increased biomass through stimulation of net photosynthesis, and hence enhance the demand for P uptake. However, most soils contain low concentrations of available P. Therefore, low P is one of the major growth-limiting factors for plants in many agricultural and natural ecosystems. The adaptive responses of plants to [CO2] and P availability encompass alterations at morphological, physiological, biochemical and molecular levels. In general low P reduces growth, whereas high [CO2] enhances it particularly in C3 plants. Photosynthetic capacity is often enhanced under high [CO2] with sufficient P supply through modulation of enzyme activities involved in carbon fixation such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, high [CO2] with low P availability results in enhanced dry matter partitioning towards roots. Alterations in below-ground processes including root morphology, exudation and mycorrhizal association are influenced by [CO2] and P availability. Under high P availability, elevated [CO2] improves the uptake of P from soil. In contrast, under low P availability, high [CO2] mainly improves the efficiency with which plants produce biomass per unit P. At molecular level, the spatio-temporal regulation of genes involved in plant adaptation to low P and high [CO2] has been studied individually in various plant species. Genome-wide expression profiling of high [CO2] grown plants revealed hormonal regulation of biomass accumulation through complex transcriptional networks. Similarly, differential transcriptional regulatory networks are involved in P

  15. A microporous metal-organic framework for selective C2H2 and CO2 separation

    Science.gov (United States)

    Lin, Rong-Guang; Lin, Rui-Biao; Chen, Banglin

    2017-08-01

    A quartzlike metal-organic framework with interesting one dimensional channel has been synthesized. It exhibits considerable acetylene and carbon dioxide uptake of 41.5 and 24.6 cm3 g-1, respectively, and relatively high selectivity for separation of C2H2/C2H4, C2H2/CH4, CO2/CH4 and CO2/N2 at ambient condition.

  16. Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes

    Directory of Open Access Journals (Sweden)

    A. M. Morales-Williams

    2017-06-01

    Full Text Available Phytoplankton blooms are increasing in frequency, intensity, and duration in aquatic ecosystems worldwide. In many eutrophic lakes, these high levels of primary productivity correspond to periods of CO2 depletion in surface waters. Cyanobacteria and other groups of phytoplankton have the ability to actively transport bicarbonate (HCO3− across their cell membrane when CO2 concentrations are limiting, possibly giving them a competitive advantage over algae not using carbon concentrating mechanisms (CCMs. To investigate whether CCMs can maintain phytoplankton bloom biomass under CO2 depletion, we measured the δ13C signatures of dissolved inorganic carbon (δ13CDIC and phytoplankton particulate organic carbon (δ13Cphyto in 16 mesotrophic to hypereutrophic lakes during the ice-free season of 2012. We used mass–balance relationships to determine the dominant inorganic carbon species used by phytoplankton under CO2 stress. We found a significant positive relationship between phytoplankton biomass and phytoplankton δ13C signatures as well as a significant nonlinear negative relationship between water column ρCO2 and isotopic composition of phytoplankton, indicating a shift from diffusive uptake to active uptake by phytoplankton of CO2 or HCO3− during blooms. Calculated photosynthetic fractionation factors indicated that this shift occurs specifically when surface water CO2 drops below atmospheric equilibrium. Our results indicate that active HCO3− uptake via CCMs may be an important mechanism in maintaining phytoplankton blooms when CO2 is depleted. Further increases in anthropogenic pressure, eutrophication, and cyanobacteria blooms are therefore expected to contribute to increased bicarbonate uptake to sustain primary production.

  17. Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes

    Science.gov (United States)

    Morales-Williams, Ana M.; Wanamaker, Alan D., Jr.; Downing, John A.

    2017-06-01

    Phytoplankton blooms are increasing in frequency, intensity, and duration in aquatic ecosystems worldwide. In many eutrophic lakes, these high levels of primary productivity correspond to periods of CO2 depletion in surface waters. Cyanobacteria and other groups of phytoplankton have the ability to actively transport bicarbonate (HCO3-) across their cell membrane when CO2 concentrations are limiting, possibly giving them a competitive advantage over algae not using carbon concentrating mechanisms (CCMs). To investigate whether CCMs can maintain phytoplankton bloom biomass under CO2 depletion, we measured the δ13C signatures of dissolved inorganic carbon (δ13CDIC) and phytoplankton particulate organic carbon (δ13Cphyto) in 16 mesotrophic to hypereutrophic lakes during the ice-free season of 2012. We used mass-balance relationships to determine the dominant inorganic carbon species used by phytoplankton under CO2 stress. We found a significant positive relationship between phytoplankton biomass and phytoplankton δ13C signatures as well as a significant nonlinear negative relationship between water column ρCO2 and isotopic composition of phytoplankton, indicating a shift from diffusive uptake to active uptake by phytoplankton of CO2 or HCO3- during blooms. Calculated photosynthetic fractionation factors indicated that this shift occurs specifically when surface water CO2 drops below atmospheric equilibrium. Our results indicate that active HCO3- uptake via CCMs may be an important mechanism in maintaining phytoplankton blooms when CO2 is depleted. Further increases in anthropogenic pressure, eutrophication, and cyanobacteria blooms are therefore expected to contribute to increased bicarbonate uptake to sustain primary production.

  18. Effects of a holiday week on urban soil CO2 flux: an intensive study in Xiamen, southeastern China

    Science.gov (United States)

    Ye, H.; Wang, K.; Chen, F.

    2012-12-01

    To study the effects of a holiday period on urban soil CO2 flux, CO2 efflux from grassland soil in a traditional park in the city of Xiamen was measured hourly from 28th Sep to 11th Oct, a period that included China's National Day holiday week in 2009. The results of this study revealed that: a) The urban soil CO2 emissions were higher before and after the holiday week and lower during the National Day holiday reflecting changes in the traffic cycles; b) A diurnal cycle where the soil CO2 flux decreased from early morning to noon was associated with CO2 uptake by vegetation which strongly offset vehicle CO2 emissions. The soil CO2 flux increased from night to early morning, associated with reduced CO2 uptake by vegetation; c) During the National Day holiday week in 2009, lower rates of soil respiration were measured after Mid-Autumn Day than earlier in the week, and this was related to a reduced level of human activities and vehicle traffic, reducing the CO2 concentration in the air. Urban holidays have a clear effect on soil CO2 flux through the interactions between vehicle, visitor and vegetation CO2 emissions which indirectly control the use of carbon by plant roots, the rhizosphere and soil microorganisms. Consequently, appropriate traffic controls and tourism travel plans can have positive effects on the soil carbon store and may improve local air quality.

  19. The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted

    NARCIS (Netherlands)

    Driever, S.M.; Baker, N.R.

    2011-01-01

    Electron flux from water via photosystem II (PSII) and PSI to oxygen (water–water cycle) may provide a mechanism for dissipation of excess excitation energy in leaves when CO2 assimilation is restricted. Mass spectrometry was used to measure O2 uptake and evolution together with CO2 uptake in leaves

  20. The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted

    NARCIS (Netherlands)

    Driever, S.M.; Baker, N.R.

    2011-01-01

    Electron flux from water via photosystem II (PSII) and PSI to oxygen (water–water cycle) may provide a mechanism for dissipation of excess excitation energy in leaves when CO2 assimilation is restricted. Mass spectrometry was used to measure O2 uptake and evolution together with CO2 uptake in leaves

  1. The Idea of Global CO2 Trade

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard

    1998-01-01

    The US has been criticized for wanting to earn a fortune on a global CO2 market. However, compared to the situation without trade and provided that such a market is designed so that it does not pay to cheat, a global CO2 market may provide the world with an epoch-making means of cost-effective co...

  2. Monitoring Options for CO2 Storage

    NARCIS (Netherlands)

    Arts, R.; Winthaegen, P.

    2005-01-01

    This chapter provides an overview of various monitoring techniques for CO2 storage that is structured into three categories-instrumentation in a well (monitoring well); instrumentation at the (near) surface (surface geophysical methods); and sampling at the (near) surface measuring CO2 concentration

  3. CO2 capture research in the Netherlands

    NARCIS (Netherlands)

    Meerman, J.C.; Kuramochi, T.; Egmond, S. van

    2008-01-01

    The global climate is changing due to human activities. This human‑induced climate change is mainly caused by global emissions of carbon dioxide (CO2) into the atmosphere. Most scientists agree that in order to mitigate climate change, by 2050, global CO2 emissions must be reduced by at least 50% co

  4. Photocatalytic CO2 Activation by Water

    NARCIS (Netherlands)

    Yang, Chieh-Chao

    2011-01-01

    Photocatalytic activation of CO2 and water has potential for producing fuels by conversion of photon energy. However, the low productivity still limits practical application. In this study, the goal was to gain more fundamental insight in CO2 activation, and to provide guidelines for rational design

  5. CO2 Capture with Enzyme Synthetic Analogue

    Energy Technology Data Exchange (ETDEWEB)

    Cordatos, Harry

    2010-11-08

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  6. Capturing CO2 via reactions in nanopores.

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Kevin; Nenoff, Tina Maria; Criscenti, Louise Jacqueline; Tang, Z; Dong, J. H.

    2008-10-01

    This one-year exploratory LDRD aims to provide fundamental understanding of the mechanism of CO2 scrubbing platforms that will reduce green house gas emission and mitigate the effect of climate change. The project builds on the team members expertise developed in previous LDRD projects to study the capture or preferential retention of CO2 in nanoporous membranes and on metal oxide surfaces. We apply Density Functional Theory and ab initio molecular dynamics techniques to model the binding of CO2 on MgO and CaO (100) surfaces and inside water-filled, amine group functionalized silica nanopores. The results elucidate the mechanisms of CO2 trapping and clarify some confusion in the literature. Our work identifies key future calculations that will have the greatest impact on CO2 capture technologies, and provides guidance to science-based design of platforms that can separate the green house gas CO2 from power plant exhaust or even from the atmosphere. Experimentally, we modify commercial MFI zeolite membranes and find that they preferentially transmit H2 over CO2 by a factor of 34. Since zeolite has potential catalytic capability to crack hydrocarbons into CO2 and H2, this finding paves the way for zeolite membranes that can convert biofuel into H2 and separate the products all in one step.

  7. CO2 Rekentool voor Tuinbouw: Handleiding

    NARCIS (Netherlands)

    Hiller, S.R.C.H.; Danse, M.G.

    2009-01-01

    Dit document is een handleiding bij de online CO2 Rekentool voor Tuinbouw Ketens. De CO2 tool is mogelijk gemaakt door de financiële bijdrage van Productschap Tuinbouw en het Ministerie van Landbouw, Natuur en Voedselkwaliteit (LNV). De tool is ontwikkeld door het onderzoeksconsortium WUR, BMA en AI

  8. CO2 capture, transport, storage and utilisation

    NARCIS (Netherlands)

    Brouwer, J.H.

    2013-01-01

    Reducing CO2 emissions requires an integrated CO2 management approach. The dependency between the different industry sectors is higher than commonly acknowledged and covers all areas; capture, transport, storage and utilisation. TNO is one of Europe’s largest independent research organisations and p

  9. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance.

    Science.gov (United States)

    Connell, Sean D; Kroeker, Kristy J; Fabricius, Katharina E; Kline, David I; Russell, Bayden D

    2013-01-01

    Predictions concerning the consequences of the oceanic uptake of increasing atmospheric carbon dioxide (CO2) have been primarily occupied with the effects of ocean acidification on calcifying organisms, particularly those critical to the formation of habitats (e.g. coral reefs) or their maintenance (e.g. grazing echinoderms). This focus overlooks direct and indirect effects of CO2 on non-calcareous taxa that play critical roles in ecosystem shifts (e.g. competitors). We present the model that future atmospheric [CO2] may act as a resource for mat-forming algae, a diverse and widespread group known to reduce the resilience of kelp forests and coral reefs. We test this hypothesis by combining laboratory and field CO2 experiments and data from 'natural' volcanic CO2 vents. We show that mats have enhanced productivity in experiments and more expansive covers in situ under projected near-future CO2 conditions both in temperate and tropical conditions. The benefits of CO2 are likely to vary among species of producers, potentially leading to shifts in species dominance in a high CO2 world. We explore how ocean acidification combines with other environmental changes across a number of scales, and raise awareness of CO2 as a resource whose change in availability could have wide-ranging community consequences beyond its direct effects.

  10. Distributions and air-sea fluxes of CO2 in the summer Bering Sea

    Institute of Scientific and Technical Information of China (English)

    CHEN Liqi; GAO Zhongyong; SUN Heng; CHEN Baoshan; CAI Wei-jun

    2014-01-01

    The 3rd Chinese National Arctic Research Expedition (CHINARE-Arctic III) was carried out from July to Sep-tember in 2008. The partial pressure of CO2 (pCO2) in the atmosphere and in surface seawater were deter-mined in the Bering Sea during July 11-27, 2008, and a large number of seawater samples were taken for total alkalinity (TA) and total dissolved inorganic carbon (DIC) analysis. The distributions of CO2 parameters in the Bering Sea and their controlling factors were discussed. The pCO2 values in surface seawater presented a drastic variation from 148 to 563μatm (1μatm=1.013 25×10-1 Pa ). The lowest pCO2 values were observed near the Bering Sea shelf break while the highest pCO2 existed at the western Bering Strait. The Bering Sea generally acts as a net sink for atmospheric CO2 in summer. The air-sea CO2 fluxes in the Bering Sea shelf, slope, and basin were estimated at-9.4,-16.3, and-5.1 mmol/(m2·d), respectively. The annual uptake of CO2 was about 34 Tg C in the Bering Sea.

  11. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species.

    Science.gov (United States)

    Borum, Jens; Pedersen, Ole; Kotula, Lukasz; Fraser, Matthew W; Statton, John; Colmer, Timothy D; Kendrick, Gary A

    2016-06-01

    Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential responses to increasing CO2 availability among species. We used short-term photosynthetic responses of nine seagrass species from the south-west of Australia to test species-specific responses to enhanced CO2 and changes in HCO3 (-) . Net photosynthesis of all species except Zostera polychlamys were limited at pre-industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3 (-) users through acidification of diffusive boundary layers, production of extracellular carbonic anhydrase, or uptake and internal conversion of HCO3 (-) . Species responded differently to near saturating CO2 implying that increasing atmospheric CO2 may change competition among seagrass species if co-occurring in mixed beds. Increasing CO2 availability also enhanced internal aeration in the one species assessed. We expect that future increases in atmospheric CO2 will have the strongest impact on seagrass recruits and sparsely vegetated beds, because densely vegetated seagrass beds are most often limited by light and not by inorganic carbon.

  12. Phytochelatin synthesis in response to elevated CO2 under cadmium stress in Lolium perenne L.

    Science.gov (United States)

    Jia, Yan; Ju, Xuehai; Liao, Shangqiang; Song, Zhengguo; Li, Zhongyang

    2011-10-15

    The increasing atmospheric CO(2) and heavy metal contamination in soil are two of the major environmental problems. Knowledge of the Cd stress coping mechanisms is needed to understand the regulation of the plants' metabolism under the increasing atmospheric CO(2) levels. Lolium perenne L. was grown hydroponically under two concentrations of atmospheric CO(2) (360 and 1000μLL(-1)) and six concentrations of cadmium (0-160μmolL(-1)) to investigate Cd uptake, Cd transportation, and variations in phytochelatin (PC) concentration. Cd concentrations in roots and shoots were decreased, but transport index (Ti) was increased under elevated CO(2) compared to ambient CO(2). Regardless of CO(2) concentrations, Cd and PC concentrations, especially the concentrations of high molecular weight PCs (PC(4), PC(5), PC(6)) were higher with increasing Cd concentration in growth media and longer Cd exposure time. Under the elevated CO(2), more high molecular weight PCs (PC(4), PC(5), PC(6)) in shoots and roots were synthesized compared to ambient CO(2), with higher SH:Cd ratio in roots as well. These results indicate that under elevated CO(2), L. perenne may be better protected against Cd stress with higher biomass, lower Cd concentration and better detoxification by phytochelatins.

  13. Chemical transformation of CO2 during its capture by waste biomass derived biochars.

    Science.gov (United States)

    Xu, Xiaoyun; Kan, Yue; Zhao, Ling; Cao, Xinde

    2016-06-01

    Biochar is a porous carbonaceous material with high alkalinity and rich minerals, making it possible for CO2 capture. In this study, biochars derived from pig manure, sewage sludge, and wheat straw were evaluated for their CO2 sorption behavior. All three biochars showed high sorption abilities for CO2, with the maximum capacities reaching 18.2-34.4 mg g(-1) at 25 °C. Elevating sorption temperature and moisture content promoted the transition of CO2 uptake from physical to chemical process. Mineral components such as Mg, Ca, Fe, K, etc. in biochar induced the chemical sorption of CO2 via the mineralogical reactions which occupied 17.7%-50.9% of the total sorption. FeOOH in sewage sludge biochar was transformed by sorbed CO2 into Fe(OH)2CO3, while the sorbed CO2 in pig manure biochar was precipitated as K2Ca(CO3)2 and CaMg(CO3)2, which resulted in a dominant increase of insoluble inorganic carbon in both biochars. For wheat straw biochar, sorbed CO2 induced CaCO3 transformed into soluble Ca(HCO3)2, which led to a dominant increase of soluble inorganic carbons. The results obtained from this study demonstrated that biochar as a unique carbonaceous material could distinctly be a promising sorbent for CO2 capture in which chemical sorption induced by mineralogical reactions played an important role.

  14. Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics

    NARCIS (Netherlands)

    Drigo, B.; Kowalchuk, G.A.; Knapp, B.A.; Pijl, A.S.; Boschker, H.T.S.; Van Veen, J.A.

    2013-01-01

    Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short-term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil-borne microbial community. Long-term i

  15. Improved Criteria for Increasing CO2 Storage Potential with CO2 Enhanced Oil Recovery

    Science.gov (United States)

    Bauman, J.; Pawar, R.

    2013-12-01

    In recent years it has been found that deployment of CO2 capture and storage technology at large scales will be difficult without significant incentives. One of the technologies that has been a focus in recent years is CO2 enhanced oil/gas recovery, where additional hydrocarbon recovery provides an economic incentive for deployment. The way CO2 EOR is currently deployed, maximization of additional oil production does not necessarily lead to maximization of stored CO2, though significant amounts of CO2 are stored regardless of the objective. To determine the potential of large-scale CO2 storage through CO2 EOR, it is necessary to determine the feasibility of deploying this technology over a wide range of oil/gas field characteristics. In addition it is also necessary to accurately estimate the ultimate CO2 storage potential and develop approaches that optimize oil recovery along with long-term CO2 storage. This study uses compositional reservoir simulations to further develop technical screening criteria that not only improve oil recovery, but maximize CO2 storage during enhanced oil recovery operations. Minimum miscibility pressure, maximum oil/ CO2 contact without the need of significant waterflooding, and CO2 breakthrough prevention are a few key parameters specific to the technical aspects of CO2 enhanced oil recovery that maximize CO2 storage. We have developed reduced order models based on simulation results to determine the ultimate oil recovery and CO2 storage potential in these formations. Our goal is to develop and demonstrate a methodology that can be used to determine feasibility and long-term CO2 storage potential of CO2 EOR technology.

  16. Geophysical monitoring technology for CO2 sequestration

    Science.gov (United States)

    Ma, Jin-Feng; Li, Lin; Wang, Hao-Fan; Tan, Ming-You; Cui, Shi-Ling; Zhang, Yun-Yin; Qu, Zhi-Peng; Jia, Ling-Yun; Zhang, Shu-Hai

    2016-06-01

    Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.

  17. Exchange of carbonyl sulfide (COS), a potential tracer of gross primary productivity, between grassland ecosystem components and the atmosphere

    Science.gov (United States)

    Whelan, M.; Rhew, R. C.

    2013-12-01

    Recently, measurements of carbonyl sulfide (COS) exchange have been used as an independent constraint for estimates of gross primary productivity over terrestrial ecosystems and continents. CO2 is both taken up and released by plants, whereas COS is usually only consumed and at a predictable ratio to CO2. Most of the underlying theoretical assumptions of this method have been verified, however the problem of parsing leaf exchange from other terrestrial sources and sinks of COS is still under investigation. In ecosystems that experience distinct periods of growing and senescence, it is possible to assess COS fluxes in situ when no green plants are present and compare to measurements during the growing season. Taking advantage of this seasonal pattern, we have investigated COS exchange from March 2012 to March 2013 in a Mediterranean grassland outside of Santa Cruz, CA, U.S.A (37.0°N, 122°W). Through lab-based incubation experiments, we found that net COS uptake of grassland soil can be reduced by increased soil moisture. We evaluated this claim in the field with monthly field deployments of static flux chambers over the in-tact soil and plant system. In the dry summer, artificial rain amendments caused COS net uptake to decrease, sometimes leading to overall net production to the atmosphere, in agreement with lab experiments. During the wet growing season, water additions caused over 2x increase in COS uptake from the atmosphere. Contrary to what has been previously claimed, soil exchange of COS is not negligible in grassland ecosystems.

  18. Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure.

    Science.gov (United States)

    Lu, Weigang; Yuan, Daqiang; Sculley, Julian; Zhao, Dan; Krishna, Rajamani; Zhou, Hong-Cai

    2011-11-16

    A porous polymer network (PPN) grafted with sulfonic acid (PPN-6-SO(3)H) and its lithium salt (PPN-6-SO(3)Li) exhibit significant increases in isosteric heats of CO(2) adsorption and CO(2)-uptake capacities. IAST calculations using single-component-isotherm data and a 15/85 CO(2)/N(2) ratio at 295 K and 1 bar revealed that the sulfonate-grafted PPN-6 networks show exceptionally high adsorption selectivity for CO(2) over N(2) (155 and 414 for PPN-6-SO(3)H and PPN-6-SO(3)Li, respectively). Since these PPNs also possess ultrahigh physicochemical stability, practical applications in postcombustion capture of CO(2) lie well within the realm of possibility.

  19. Influence of SO2 in incineration flue gas on the sequestration of CO2 by municipal solid waste incinerator fly ash

    Institute of Scientific and Technical Information of China (English)

    Jianguo Jiang; Sicong Tian; Chang Zhang

    2013-01-01

    The influence of CO2 content and presence of SO2 on the sequestration of CO2 by municipal solid waste incinerator (MSWI) fly ash was studied by investigating the carbonation reaction of MSWI fly ash with different combinations of simulated flue gas.The reaction between fly ash and 100% CO2 was relatively fast; the uptake of CO2 reached 87 g CO2/kg ash,and the sequestered CO2 could be entirely released at high temperatures.When CO2 content was reduced to 12%,the reaction rate decreased; the uptake fell to 41 g CO2/kg ash,and 70.7% of the sequestered CO2 could be released.With 12% CO2 in the presence of SO2,the reaction rate significantly decreased; the uptake was just 17 g CO2/kg ash,and only 52.9% of the sequestered CO2 could be released.SO2 in the simulated gas restricted the ability of fly ash to sequester CO2 because it blocked the pores of the ash.

  20. Net ecosystem CO2 exchange of a primary tropical peat swamp forest in Sarawak, Malaysia

    Science.gov (United States)

    Tang Che Ing, A.; Stoy, P. C.; Melling, L.

    2014-12-01

    Tropical peat swamp forests are widely recognized as one of the world's most efficient ecosystems for the sequestration and storage of carbon through both their aboveground biomass and underlying thick deposits of peat. As the peat characteristics exhibit high spatial and temporal variability as well as the structural and functional complexity of forests, tropical peat ecosystems can act naturally as both carbon sinks and sources over their life cycles. Nonetheless, few reports of studies on the ecosystem-scale CO2 exchange of tropical peat swamp forests are available to-date and their present roles in the global carbon cycle remain uncertain. To quantify CO2 exchange and unravel the prevailing factors and potential underlying mechanism regulating net CO2 fluxes, an eddy covariance tower was erected in a tropical peat swamp forest in Sarawak, Malaysia. We observed that the diurnal and seasonal patterns of net ecosystem CO2 exchange (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (RE)) varied between seasons and years. Rates of NEE declined in the wet season relative to the dry season. Conversely, both the gross primary productivity (GPP) and ecosystem respiration (RE) were found to be higher during the wet season than the dry season, in which GPP was strongly negatively correlated with NEE. The average annual NEE was 385 ± 74 g C m-2 yr-1, indicating the primary peat swamp forest functioned as net source of CO2 to the atmosphere over the observation period.

  1. Silvering substrates after CO2 snow cleaning

    Science.gov (United States)

    Zito, Richard R.

    2005-09-01

    There have been some questions in the astronomical community concerning the quality of silver coatings deposited on substrates that have been cleaned with carbon dioxide snow. These questions center around the possible existence of carbonate ions left behind on the substrate by CO2. Such carbonate ions could react with deposited silver to produce insoluble silver carbonate, thereby reducing film adhesion and reflectivity. Carbonate ions could be produced from CO2 via the following mechanism. First, during CO2 snow cleaning, a small amount of moisture can condense on a surface. This is especially true if the jet of CO2 is allowed to dwell on one spot. CO2 gas can dissolve in this moisture, producing carbonic acid, which can undergo two acid dissociations to form carbonate ions. In reality, it is highly unlikely that charged carbonate ions will remain stable on a substrate for very long. As condensed water evaporates, Le Chatelier's principle will shift the equilibrium of the chain of reactions that produced carbonate back to CO2 gas. Furthermore, the hydration of CO2 reaction of CO2 with H20) is an extremely slow process, and the total dehydrogenation of carbonic acid is not favored. Living tissues that must carry out the equilibration of carbonic acid and CO2 use the enzyme carbonic anhydrase to speed up the reaction by a factor of one million. But no such enzymatic action is present on a clean mirror substrate. In short, the worst case analysis presented below shows that the ratio of silver atoms to carbonate radicals must be at least 500 million to one. The results of chemical tests presented here support this view. Furthermore, film lift-off tests, also presented in this report, show that silver film adhesion to fused silica substrates is actually enhanced by CO2 snow cleaning.

  2. Seasonal patterns of photosynthetic light response in Douglas-fir seedlings subjected to elevated atmospheric CO(2) and temperature.

    Science.gov (United States)

    Lewis, J. D.; Olszyk, D.; Tingey, D. T.

    1999-04-01

    Increases in atmospheric CO(2) concentration and temperature are predicted to increase the light response of photosynthesis by increasing light-saturated photosynthetic rates and apparent quantum yields. We examined the interactive effects of elevated atmospheric CO(2) concentration and temperature on the light response of photosynthesis in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings. Seedlings were grown in sunlit chambers controlled to track either ambient (~400 ppm) CO(2) or ambient + 200 ppm CO(2), at ambient temperature or ambient + 4 degrees C. Photosynthetic light response curves were measured over an 18-month period beginning 32 months after treatments were initiated. Light-response curves were measured at the growth CO(2) concentration, and were used to calculate the light-saturated rate of photosynthesis, light compensation point, quantum yield and respiration rate. Elevated CO(2) increased apparent quantum yields during two of five measurement periods, but did not significantly affect light-saturated net photosynthetic rates, light compensation points or respiration rates. Elevated temperature increased all parameters. There were no significant interactions between CO(2) concentration and temperature. We conclude that down-regulation of photosynthesis occurred in the elevated CO(2) treatments such that carbon uptake at a given irradiance was similar across CO(2) treatments. In contrast, increasing temperature may substantially increase carbon uptake rates in Douglas-fir, assuming other environmental factors do not limit photosynthesis; however, it is not clear whether the increased carbon uptake will increase growth rates or be offset by increased carbon efflux through respiration.

  3. Activities of carboxylating enzymes in the CAM species Opuntia ficus-indica grown under current and elevated CO2 concentrations.

    Science.gov (United States)

    Israel, A A; Nobel, P S

    1994-06-01

    Responses of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPCase) to an elevated atmospheric CO2 concentration were determined along with net CO2 uptake rates for the Crassulacean acid metabolism species Opuntia ficus-indica growing in open-top chambers. During the spring 13 months after planting, total daily net CO2 uptake of basal and first-order daughter cladodes was 28% higher at 720 than at 360 μl CO2 l(-1). The enhancement, caused mainly by higher CO2 assimilation during the early part of the night, was also observed during late summer (5 months after planting) and the following winter. The activities of Rubisco and PEPCase measured in vitro were both lower at the elevated CO2 concentration, particularly under the more favorable growth conditions in the spring and late summer. Enzyme activity in second-order daughter cladodes increased with cladode age, becoming maximal at 6 to 10 days. The effect ofelevated CO2 on Rubisco and PEPCase activity declined with decreasing irradiance, especially for Rubisco. Throughout the 13-month observation period, O. ficus-indica thus showed increased CO2 uptake when the atmospheric CO2 concentration was doubled despite lower activities of both carboxylating enzymes.

  4. Effect of elevated CO2 concentration on photosynthetic characteristics of hyperaccumulator Sedum alfredii under cadmium stress

    Institute of Scientific and Technical Information of China (English)

    Tingqiang Li; Qi Tao; Zhenzhen Di; Fan Lu; Xiaoe Yang

    2015-01-01

    The combined effects of elevated CO2 and cadmi-um (Cd) on photosynthetic rate, chlorophyl fluorescence and Cd accumulation in hyperaccumulator Sedum alfredi Hance were investigated to predict plant growth under Cd stress with rising atmospheric CO2 concentration. Both pot and hydroponic experiments were conducted and the plants were grown under ambient (350 mL L?1) or elevated (800 mL L?1) CO2. Elevated CO2 significantly (P<0.05) increased Pn (105%–149%), Pnmax (38.8%–63.0%) and AQY (20.0%–34.8%) of S. alfredii in al the Cd treatments, but reduced chlorophyl concentra-tion, dark respiration and photorespiration. After 10 days growth in medium with 50 mM Cd under elevated CO2, PSII activities were significantly enhanced (P<0.05) with Pm, Fv/Fm, F(II) and qP increased by 66.1%, 7.5%, 19.5% and 16.4%, respectively, as compared with ambient-grown plants. Total Cd uptake in shoot of S. alfredi grown under elevated CO2 was increased by 44.1%–48.5%, which was positively correlated with the increase in Pn. These results indicate that elevated CO2 promoted the growth of S. alfredi due to increased photosynthetic carbon uptake rate and photosynthetic light-use efficiency, and showed great potential to improve the phytoextraction of Cd by S. alfredi .

  5. Road freight energy efficiency and CO2 emissions in the Nordic countries

    DEFF Research Database (Denmark)

    Liimatainen, Heikki; Arvidsson, Niklas; Hovi, Inger Beate

    2014-01-01

    and their impact on energy efficiency and CO2 emissions. A joint analysis method was developed to compare data. Quantitative data was used to conduct a decomposition analysis for several sectors, taking several indicators into account. Statistics from Denmark, Finland, Norway and Sweden include continuous road...... haulier surveys, national account data and fuel consumption data. The CO2 emissions of road freight transport in the Nordic countries vary from 1.14 Mt in Denmark to 2.27 Mt in Sweden. While the size of the economy, measured in gross value added (GVA), is a major determinant for the emissions...

  6. Does Non-Fossil Energy Usage Lower CO2 Emissions? Empirical Evidence from China

    Directory of Open Access Journals (Sweden)

    Deshan Li

    2016-08-01

    Full Text Available This paper uses an autoregressive distributed lag model (ARDL to examine the dynamic impact of non-fossil energy consumption on carbon dioxide (CO2 emissions in China for a given level of economic growth, trade openness, and energy usage between 1965 and 2014. The results suggest that the variables are in a long-run equilibrium. ARDL estimation indicates that consumption of non-fossil energy plays a crucial role in curbing CO2 emissions in the long run but not in the short term. The results also suggest that, in both the long and short term, energy consumption and trade openness have a negative impact on the reduction of CO2 emissions, while gross domestic product (GDP per capita increases CO2 emissions only in the short term. Finally, the Granger causality test indicates a bidirectional causality between CO2 emissions and energy consumption. In addition, this study suggests that non-fossil energy is an effective solution to mitigate CO2 emissions, providing useful information for policy-makers wishing to reduce atmospheric CO2.

  7. River sequesters atmospheric carbon and limits the CO2 degassing in karst area, southwest China.

    Science.gov (United States)

    Zhang, Tao; Li, Jianhong; Pu, Junbing; Martin, Jonathan B; Khadka, Mitra B; Wu, Feihong; Li, Li; Jiang, Feng; Huang, Siyu; Yuan, Daoxian

    2017-12-31

    CO2 fluxes across water-air interfaces of river systems play important roles in regulating the regional and global carbon cycle. However, great uncertainty remains as to the contribution of these inland water bodies to the global carbon budget. Part of the uncertainty stems from limited understanding of the CO2 fluxes at diurnal and seasonal frequencies caused by aquatic metabolism. Here, we measured surface water characteristics (temperature, pH, and DO, DIC, Ca(2+) concentrations) and CO2 fluxes across the air-water interface at two transects of Guijiang River, southwest China to assess the seasonal and diurnal dynamics of fluvial carbon cycling and its potential role in regional and global carbon budgets. The two transects had differing bedrock; DM transect is underlain by carbonate and detrital rock and PY is underlain by pure carbonate. Our results show that the river water both degasses CO2 to and absorbs CO2 from the atmosphere in both summer and winter, but the degassing and absorption varied between the two transects. Further, CO2 fluxes evolve through diurnal cycles. At DM, the river evaded CO2 from early morning through noon and absorbed CO2 from afternoon through early morning. At PY in summer, the CO2 evasion decreased during the daytime and increased at night while in winter at night, CO2 uptake increased in the morning and decreased in the afternoon but remained relatively stable at night. Although the river is a net source of carbon to the atmosphere (~15mMm(-2)day(-1)), the evasion rate is the smallest of all reported world's inland water bodies reflecting sequestration of atmospheric carbon through the carbonate dissolution and high primary productivity. These results emphasize the need of seasonal and diurnal monitoring of CO2 fluxes across water-air interface, particularly in highly productive rivers, to reduce uncertainty in current estimates of global riverine CO2 emission. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. CO2 deserts: implications of existing CO2 supply limitations for carbon management.

    Science.gov (United States)

    Middleton, Richard S; Clarens, Andres F; Liu, Xiaowei; Bielicki, Jeffrey M; Levine, Jonathan S

    2014-10-01

    Efforts to mitigate the impacts of climate change will require deep reductions in anthropogenic CO2 emissions on the scale of gigatonnes per year. CO2 capture and utilization and/or storage technologies are a class of approaches that can substantially reduce CO2 emissions. Even though examples of this approach, such as CO2-enhanced oil recovery, are already being practiced on a scale >0.05 Gt/year, little attention has been focused on the supply of CO2 for these projects. Here, facility-scale data newly collected by the U.S. Environmental Protection Agency was processed to produce the first comprehensive map of CO2 sources from industrial sectors currently supplying CO2 in the United States. Collectively these sources produce 0.16 Gt/year, but the data reveal the presence of large areas without access to CO2 at an industrially relevant scale (>25 kt/year). Even though some facilities with the capability to capture CO2 are not doing so and in some regions pipeline networks are being built to link CO2 sources and sinks, much of the country exists in "CO2 deserts". A life cycle analysis of the sources reveals that the predominant source of CO2, dedicated wells, has the largest carbon footprint further confounding prospects for rational carbon management strategies.

  9. CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites.

    Science.gov (United States)

    Dai, Zhenxue; Viswanathan, Hari; Middleton, Richard; Pan, Feng; Ampomah, William; Yang, Changbing; Jia, Wei; Xiao, Ting; Lee, Si-Yong; McPherson, Brian; Balch, Robert; Grigg, Reid; White, Mark

    2016-07-19

    Using CO2 in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce sequestration costs in the absence of emissions policies that include incentives for carbon capture and storage. This study develops a multiscale statistical framework to perform CO2 accounting and risk analysis in an EOR environment at the Farnsworth Unit (FWU), Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil/gas-water flow and transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2/water injection/production rates, cumulative net CO2 storage, cumulative oil/gas productions, and CO2 breakthrough time. The median and confidence intervals are estimated for quantifying uncertainty ranges of the risk metrics. A response-surface-based economic model has been derived to calculate the CO2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO2 capture and operating expenses reduce, more realizations would be profitable. The results from this study provide valuable insights for understanding CO2 storage potential and the corresponding environmental and economic risks of commercial-scale CO2-sequestration in depleted reservoirs.

  10. Effects of CO2 leakage on soil bacterial communities from simulated CO2-EOR areas.

    Science.gov (United States)

    Chen, Fu; Yang, Yongjun; Ma, Yanjun; Hou, Huping; Zhang, Shaoliang; Ma, Jing

    2016-05-18

    CO2-EOR (enhanced oil recovery) has been proposed as a viable option for flooding oil and reducing anthropogenic CO2 contribution to the atmospheric pool. However, the potential risk of CO2 leakage from the process poses a threat to the ecological system. High-throughput sequencing was used to investigate the effects of CO2 emission on the composition and structure of soil bacterial communities. The diversity of bacterial communities notably decreased with increasing CO2 flux. The composition of bacterial communities varied along the CO2 flux, with increasing CO2 flux accompanied by increases in the relative abundance of Bacteroidetes and Firmicutes phyla, but decreases in the relative abundance of Acidobacteria and Chloroflexi phyla. Within the Firmicutes phylum, the genus Lactobacillus increased sharply when the CO2 flux was at its highest point. Alpha and beta diversity analysis revealed that differences in bacterial communities were best explained by CO2 flux. The redundancy analysis (RDA) revealed that differences in bacterial communities were best explained by soil pH values which related to CO2 flux. These results could be useful for evaluating the risk of potential CO2 leakages on the ecosystems associated with CO2-EOR processes.

  11. Glacial CO2 Cycles: A Composite Scenario

    Science.gov (United States)

    Broecker, W. S.

    2015-12-01

    There are three main contributors to the glacial drawdown of atmospheric CO2 content: starvation of the supply of carbon to the ocean-atmosphere reservoir, excess CO2 storage in the deep sea, and surface-ocean cooling. In this talk, I explore a scenario in which all three play significant roles. Key to this scenario is the assumption that deep ocean storage is related to the extent of nutrient stratification of the deep Atlantic. The stronger this stratification, the larger the storage of respiration CO2. Further, it is my contention that the link between Milankovitch insolation cycles and climate is reorganizations of the ocean's thermohaline circulation leading to changes in the deep ocean's CO2 storage. If this is the case, the deep Atlantic d13C record kept in benthic foraminifera shells tells us that deep ocean CO2 storage follows Northern Hemisphere summer insolation cycles and thus lacks the downward ramp so prominent in the records of sea level, benthic 18O and CO2. Rather, the ramp is created by the damping of planetary CO2 emissions during glacial time intervals. As it is premature to present a specific scenario, I provide an example as to how these three contributors might be combined. As their magnitudes and shapes remain largely unconstrained, the intent of this exercise is to provoke creative thinking.

  12. Elevated CO2 and Soil Nitrogen Cycling

    Science.gov (United States)

    Hofmockel, K.; Schlesinger, W.

    2002-12-01

    Although forests can be large terrestrial carbon sinks, soil fertility can limit carbon sequestration in response to increased atmospheric CO2. During five years of CO2 fertilization (ambient + 200ppm) at the Duke Free-Air CO2 Enrichment (FACE) site, net primary production increased significantly by an average of 25% in treatment plots. Total nitrogen in the foliar canopy increased by 16%, requiring an additional 1.3 g N m-2yr-1 to be taken up from soils under elevated CO2. Mechanisms supporting increased nitrogen acquisition have not been identified. Here we report on biological N-fixation rates, using the acetylene reduction assay, in litter and mineral soil during three years of the CO2 enrichment experiment. Lack of a significant CO2 treatment effect on acetylene reduction indicates that carbon is not directly limiting biological N fixation. Nutrient addition experiments using a complete block design with glucose, Fe, Mo and P indicate biological N fixation is co-limited by molybdenum and carbon. These results suggest even if elevated atmospheric CO2 enhances below-ground carbon availability via root exudation, biological nitrogen fixation may not be stimulated due to micronutrient limitations. Assessment of future carbon sequestration by forest stands must consider limitations imposed by site fertility, including micronutrients.

  13. CO2 adsorption on chemically modified activated carbon.

    Science.gov (United States)

    Caglayan, Burcu Selen; Aksoylu, A Erhan

    2013-05-15

    CO2 adsorption capacity of a commercial activated carbon was improved by using HNO3 oxidation, air oxidation, alkali impregnation and heat treatment under helium gas atmosphere. The surface functional groups produced were investigated by diffuse reflectance infrared Fourier transform spectrometer (DRIFTS). CO2 adsorption capacities of the samples were determined by gravimetric analyses for 25-200°C temperature range. DRIFTS studies revealed the formation of carboxylic acid groups on the HNO3 oxidized adsorbents. Increased aromatization and uniform distribution of the Na particles were observed on the samples prepared by Na2CO3 impregnation onto HNO3 oxidized AC support. The adsorption capacities of the nonimpregnated samples were increased by high temperature helium treatments or by increasing the adsorption temperature; both leading to decomposition of surface oxygen groups, forming sites that can easily adsorb CO2. The adsorption capacity loss due to cyclic adsorption/desorption procedures was overcome with further surface stabilization of Na2CO3 modified samples with high temperature He treatments. With Na2CO3 impregnation the mass uptakes of the adsorbents at 20 bars and 25 °C were improved by 8 and 7 folds and at 1 bar were increased 15 and 16 folds, on the average, compared to their air oxidized and nitric acid oxidized supports, respectively.

  14. Using satellite-derived optical thickness to assess the influence of clouds on terrestrial carbon uptake

    Science.gov (United States)

    Cheng, S. J.; Steiner, A. L.; Hollinger, D. Y.; Bohrer, G.; Nadelhoffer, K. J.

    2016-07-01

    Clouds scatter direct solar radiation, generating diffuse radiation and altering the ratio of direct to diffuse light. If diffuse light increases plant canopy CO2 uptake, clouds may indirectly influence climate by altering the terrestrial carbon cycle. However, past research primarily uses proxies or qualitative categories of clouds to connect the effect of diffuse light on CO2 uptake to sky conditions. We mechanistically link and quantify effects of cloud optical thickness (τc) to surface light and plant canopy CO2 uptake by comparing satellite retrievals of τc to ground-based measurements of diffuse and total photosynthetically active radiation (PAR; 400-700 nm) and gross primary production (GPP) in forests and croplands. Overall, total PAR decreased with τc, while diffuse PAR increased until an average τc of 6.8 and decreased with larger τc. When diffuse PAR increased with τc, 7-24% of variation in diffuse PAR was explained by τc. Light-use efficiency (LUE) in this range increased 0.001-0.002 per unit increase in τc. Although τc explained 10-20% of the variation in LUE, there was no significant relationship between τc and GPP (p > 0.05) when diffuse PAR increased. We conclude that diffuse PAR increases under a narrow range of optically thin clouds and the dominant effect of clouds is to reduce total plant-available PAR. This decrease in total PAR offsets the increase in LUE under increasing diffuse PAR, providing evidence that changes within this range of low cloud optical thickness are unlikely to alter the magnitude of terrestrial CO2 fluxes.

  15. Effects of Sulfur Doping and Humidity on CO2 Capture by Graphite Split Pore: A Theoretical Study.

    Science.gov (United States)

    Li, Xiaofang; Xue, Qingzhong; Chang, Xiao; Zhu, Lei; Ling, Cuicui; Zheng, Haixia

    2017-03-08

    By use of grand canonical Monte Carlo calculations, we study the effects of sulfur doping and humidity on the performance of graphite split pore as an adsorbent for CO2 capture. It is demonstrated that S doping can greatly enhance pure CO2 uptake by graphite split pore. For example, S-graphite split pore with 33.12% sulfur shows a 39.85% rise in pure CO2 uptake (51.001 mmol/mol) compared with pristine graphite split pore at 300 K and 1 bar. More importantly, it is found that S-graphite split pore can still maintain much higher CO2 uptake than that by pristine graphite split pore in the presence of water. Especially, uptake by 33.12% sulfur-doped S-graphite split pore is 51.963 mmol of CO2/mol in the presence of water, which is 44.34% higher than that by pristine graphite split pore at 300 K and 1 bar. In addition, CO2/N2 selectivity of S-graphite split pore increases with increasing S content, resulting from stronger interactions between CO2 and S-graphite split pore. Moreover, by use of density functional theory calculations, we demonstrate that S doping can enhance adsorption energy between CO2 molecules and S-graphene surface at different humidities and furthermore enhance CO2 uptake by S-graphite split pore. Our results indicate that S-graphite split pore is a promising adsorbent material for humid CO2 capture.

  16. Root damage by insects reverses the effects of elevated atmospheric CO2 on Eucalypt seedlings.

    Directory of Open Access Journals (Sweden)

    Scott N Johnson

    Full Text Available Predicted increases in atmospheric carbon dioxide (CO2 are widely anticipated to increase biomass accumulation by accelerating rates of photosynthesis in many plant taxa. Little, however, is known about how soil-borne plant antagonists might modify the effects of elevated CO2 (eCO2, with root-feeding insects being particularly understudied. Root damage by insects often reduces rates of photosynthesis by disrupting root function and imposing water deficits. These insects therefore have considerable potential for modifying plant responses to eCO2. We investigated how root damage by a soil-dwelling insect (Xylotrupes gideon australicus modified the responses of Eucalyptus globulus to eCO2. eCO2 increased plant height when E. globulus were 14 weeks old and continued to do so at an accelerated rate compared to those grown at ambient CO2 (aCO2. Plants exposed to root-damaging insects showed a rapid decline in growth rates thereafter. In eCO2, shoot and root biomass increased by 46 and 35%, respectively, in insect-free plants but these effects were arrested when soil-dwelling insects were present so that plants were the same size as those grown at aCO2. Specific leaf mass increased by 29% under eCO2, but at eCO2 root damage caused it to decline by 16%, similar to values seen in plants at aCO2 without root damage. Leaf C:N ratio increased by >30% at eCO2 as a consequence of declining leaf N concentrations, but this change was also moderated by soil insects. Soil insects also reduced leaf water content by 9% at eCO2, which potentially arose through impaired water uptake by the roots. We hypothesise that this may have impaired photosynthetic activity to the extent that observed plant responses to eCO2 no longer occurred. In conclusion, soil-dwelling insects could modify plant responses to eCO2 predicted by climate change plant growth models.

  17. CO2 laser in vitreoretinal surgery

    Energy Technology Data Exchange (ETDEWEB)

    Karlin, D.B.; Patel, C.K.; Wood, O.R.; Llovera, I.

    1980-01-01

    Radiation from a CO2 laser has the dual effect of phototransection and photocoagulation. Incisions have been made in scleral-chorioretinal tissue, lens tissue, and the vitreous body (with and without membrane formation). Results indicate that the CO2 laser may be useful in intravitreal surgery. Its simultaneous cutting and coagulating properties may make the experimental transvitreal chorioretinal biopsy and the full-thickness ocular wall resection for small melanosarcomas of the choroid clinical possibilities in the not too distant future. Finally, the effects of CO2 laser radiation on the normal human lens suggests the possibility of the dissolution of cataracts by laser irradiation.

  18. Spin polarization effect for Co2 molecule

    Institute of Scientific and Technical Information of China (English)

    Yan Shi-Ying; Bao Wen-Sheng

    2007-01-01

    The density functional theory (DFT)(b3p86) of Gaussian 03 has been used to optimize the structure of the Co2molecule, a transition metal element molecule. The result shows that the ground state for the Co2 molecule is a 7-multiple state, indicating a spin polarization effect in the Co2 molecule. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state is not mingled with wavefunctions of higher-energy states. So for the ground state of Co2 molecule to be a 7-multiple state is the indicative of spin polarization effect of the Co2molecule, that is, there exist 6 parallel spin electrons in a Co2 molecule. The number of non-conjugated electrons is the greatest. These electrons occupy different spacial orbitals so that the energy of the Co2 molecule is minimized. It can be concluded that the effect of parallel spin in the Co2 molecule is larger than the effect of the conjugated molecule,which is obviously related to the effect of electron d delocalization. In addition, the Murrell-Sorbie potential functions with the parameters for the ground state and the other states of the Co2 molecule are derived. The dissociation energy De for the ground state of Co2 molecule is 4.0489eV, equilibrium bond length Re is 0.2061 nm, and vibration frequency 11.2222 aJ.nm-4respectively(1 a.J=10-18 J). The other spectroscopic data for the ground state of Co2 molecule ωexe,Be, and αe are 0.7202 cm-1, 0.1347 cm-1, and 2.9120× 10-1 cm-1 respectively. And ωexe is the non-syntonic part of frequency, Be is the rotational constant, αe is revised constant of rotational constant for non-rigid part of Co2 molecule.

  19. Structurally simple complexes of CO2

    OpenAIRE

    Murphy, Luke J.; Robertson, Katherine N.; Richard A. Kemp; TUONONEN, Heikki; Clyburne, Jason A. C.

    2015-01-01

    The ability to bind CO2 through the formation of low-energy, easily-broken, bonds could prove invaluable in a variety of chemical contexts. For example, weak bonds to CO2 would greatly decrease the cost of the energy-intensive sorbent-regeneration step common to most carbon capture technologies. Furthermore, exploration of this field could lead to the discovery of novel CO2 chemistry. Reduction of complexed carbon dioxide might generate chemical feedstocks for the preparation of value-added p...

  20. The Idea of Global CO2 Trade

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard

    1999-01-01

    The US has been criticized for wanting to earn a fortune on a global CO2 market. However, compared to the situation without trade and provided that such a market is designed so that it does not pay to cheat, a global CO2 market may provide the world with an epoch-making means of cost-effective...... control which can solve future global environmental problems. The economic gains from 'hot air' distributions of permits and CO2 trade make the system politically attractive to potential participants. For example, vital financial subsidies from the EU to Eastern Europe are to be expected. It will probably...

  1. Sea ice contribution to the air-sea CO(2) exchange in the Arctic and Southern Oceans

    DEFF Research Database (Denmark)

    Rysgaard...[], Søren; Bendtsen, Jørgen; Delille, B.

    2011-01-01

    Although salt rejection from sea ice is a key process in deep-water formation in ice-covered seas, the concurrent rejection of CO(2) and the subsequent effect on air-sea CO(2) exchange have received little attention. We review the mechanisms by which sea ice directly and indirectly controls the a......-sea CO(2) exchange during winter, and (3) release of CO(2)-depleted melt water with excess total alkalinity during sea-ice decay and (4) biological CO(2) drawdown during primary production in sea ice and surface oceanic waters.......Although salt rejection from sea ice is a key process in deep-water formation in ice-covered seas, the concurrent rejection of CO(2) and the subsequent effect on air-sea CO(2) exchange have received little attention. We review the mechanisms by which sea ice directly and indirectly controls the air......-sea CO(2) exchange and use recent measurements of inorganic carbon compounds in bulk sea ice to estimate that oceanic CO(2) uptake during the seasonal cycle of sea-ice growth and decay in ice-covered oceanic regions equals almost half of the net atmospheric CO(2) uptake in ice-free polar seas. This sea-ice...

  2. Physical Properties and CO2 Reaction Pathway of 1-Ethyl-3-Methylimidazolium Ionic Liquids with Aprotic Heterocyclic Anions

    Energy Technology Data Exchange (ETDEWEB)

    Seo, S; DeSilva, MA; Brennecke, JF

    2014-12-25

    Ionic liquids (ILs) with aprotic heterocyclic anions (AHA) are attractive candidates for CO2 capture technologies. In this study, a series of AHA ILs with 1-ethyl-3-methylimidazolium ([emim](+)) cations were synthesized, and their physical properties (density, viscosity, and ionic conductivity) were measured. In addition, CO2 solubility in each IL was determined at room temperature using a volumetric method at pressures between 0 and 1 bar. The AHAs are basic anions that are capable of reacting stoichiometrically with CO2 to form carbamate species. An interesting CO2 uptake isotherm behavior was observed, and this may be attributed to a parallel, equilibrium proton exchange process between the imidazolium cation and the basic AHA in the presence of CO2, followed by the formation of "transient" carbene species that react rapidly with CO2. The presence of the imidazolium-carboxylate species and carbamate anion species was verified using H-1 and C-13 NMR spectroscopy. While the reaction between CO2 and the proposed transient carbene resulted in cation-CO2 binding that is stronger than the anion-CO2 reaction, the reactions of the imidazolium AHA ILs were fully reversible upon regeneration at 80 degrees C with nitrogen purging. The presence of water decreased the CO2 uptake due to the inhibiting effect of the neutral species (protonated form of AHA) that is formed.

  3. Atmospheric deposition, CO2, and change in the land carbon sink

    DEFF Research Database (Denmark)

    Martinez-Fernandez, Cristina; Vicca, Sara; Janssens, Ivan A.

    2017-01-01

    Concentrations of atmospheric carbon dioxide (CO2) have continued to increase whereas atmospheric deposition of sulphur and nitrogen has declined in Europe and the USA during recent decades. Using time series of flux observations from 23 forests distributed throughout Europe and the USA......, and generalised mixed models, we found that forest-level net ecosystem production and gross primary production have increased by 1% annually from 1995 to 2011. Statistical models indicated that increasing atmospheric CO2 was the most important factor driving the increasing strength of carbon sinks...... in these forests. We also found that the reduction of sulphur deposition in Europe and the USA lead to higher recovery in ecosystem respiration than in gross primary production, thus limiting the increase of carbon sequestration. By contrast, trends in climate and nitrogen deposition did not significantly...

  4. Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China

    Directory of Open Access Journals (Sweden)

    X. Jia

    2014-03-01

    Full Text Available The carbon (C cycling in semiarid and arid areas remains largely unexplored, despite the wide distribution of drylands globally. Rehabilitation practices have been carried out in many desertified areas, but information on the C sequestration potential of recovering vegetation is still largely lacking. Using the eddy-covariance technique, we measured the net ecosystem CO2 exchange (NEE over a recovering shrub ecosystem in northwest China throughout 2012 in order to (1 quantify NEE and its components, (2 examine the dependence of C fluxes on biophysical factors at multiple timescales. The annual budget showed a gross ecosystem productivity (GEP of 456 ± 8 g C m−2 yr−1 and an ecosystem respiration (Re of 379 ± 3 g C m−2 yr−1, resulting in a net C sink of 77 ± 7 g C m−2 yr−1. The maximum daily NEE, GEP and Re were −4.7, 6.8 and 3.3 g C m−2 day−1, respectively. Both the maximum C assimilation rate (i.e., at optimum light intensity and the quantum yield varied strongly over the growing season, being higher in summer and lower in spring and autumn. At the half-hourly scale, water stress exerted a major control over daytime NEE, and interacted with heat stress and photoinhibition in constraining C fixation by the vegetation. Low soil moisture also reduced the temperature sensitivity of Re (Q10. At the synoptic scale, rain events triggered immediate pulses of C release from the ecosystem, followed by peaks of CO2 uptake 1–2 days later. Over the entire growing season, leaf area index accounted for 45 and 65% of the seasonal variation in NEE and GEP, respectively. There was a linear dependence of daily Re on GEP, with a slope of 0.34. These results highlight the role of abiotic stresses and their alleviation in regulating C cycling in the face of an increasing frequency and intensity of extreme climatic events.

  5. Plant growth responses to elevated atmospheric CO2 are increased by phosphorus sufficiency but not by arbuscular mycorrhizas

    Science.gov (United States)

    Jakobsen, Iver; Smith, Sally E.; Smith, F. Andrew; Watts-Williams, Stephanie J.; Clausen, Signe S.; Grønlund, Mette

    2016-01-01

    Capturing the full growth potential in crops under future elevated CO2 (eCO2) concentrations would be facilitated by improved understanding of eCO2 effects on uptake and use of mineral nutrients. This study investigates interactions of eCO2, soil phosphorus (P), and arbuscular mycorrhizal (AM) symbiosis in Medicago truncatula and Brachypodium distachyon grown under the same conditions. The focus was on eCO2 effects on vegetative growth, efficiency in acquisition and use of P, and expression of phosphate transporter (PT) genes. Growth responses to eCO2 were positive at P sufficiency, but under low-P conditions they ranged from non-significant in M. truncatula to highly significant in B. distachyon. Growth of M. truncatula was increased by AM at low P conditions at both CO2 levels and eCO2×AM interactions were sparse. Elevated CO2 had small effects on P acquisition, but enhanced conversion of tissue P into biomass. Expression of PT genes was influenced by eCO2, but effects were inconsistent across genes and species. The ability of eCO2 to partly mitigate P limitation-induced growth reductions in B. distachyon was associated with enhanced P use efficiency, and requirements for P fertilizers may not increase in such species in future CO2-rich climates. PMID:27811084

  6. Element budgets in an Arctic mesocosm CO2 perturbation study

    Science.gov (United States)

    Czerny, J.; Schulz, K. G.; Boxhammer, T.; Bellerby, R. G. J.; Büdenbender, J.; Engel, A.; Krug, S. A.; Ludwig, A.; Nachtigall, K.; Nondal, G.; Niehoff, B.; Siljakova, A.; Riebesell, U.

    2012-08-01

    Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining the temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air/sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification using KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation) all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down some of the mentioned uncertainties. Water column concentrations of particulate and dissolved organic and inorganic constituents were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution, as well as estimates of wall growth were developed to close the gaps in element budgets. Future elevated pCO2 was found to enhance net autotrophic community carbon uptake in 2 of the 3 experimental phases but did not significantly affect particle elemental composition. Enhanced carbon consumption appears to result in accumulation of dissolved organic compounds under nutrient recycling summer conditions. This carbon over-consumption effect becomes evident from budget calculations, but was too small to be resolved by direct measurements of dissolved organics. The out-competing of large diatoms by comparatively small algae in nutrient uptake caused reduced production rates under future ocean CO2 conditions in the end of the experiment. This CO2 induced shift away from diatoms towards smaller phytoplankton and enhanced cycling of

  7. Element budgets in an Arctic mesocosm CO2 perturbation study

    Directory of Open Access Journals (Sweden)

    A. Siljakova

    2012-08-01

    Full Text Available Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining the temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air/sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification using KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down some of the mentioned uncertainties. Water column concentrations of particulate and dissolved organic and inorganic constituents were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution, as well as estimates of wall growth were developed to close the gaps in element budgets. Future elevated pCO2 was found to enhance net autotrophic community carbon uptake in 2 of the 3 experimental phases but did not significantly affect particle elemental composition. Enhanced carbon consumption appears to result in accumulation of dissolved organic compounds under nutrient recycling summer conditions. This carbon over-consumption effect becomes evident from budget calculations, but was too small to be resolved by direct measurements of dissolved organics. The out-competing of large diatoms by comparatively small algae in nutrient uptake caused reduced production rates under future ocean CO2 conditions in the end of the experiment. This CO2 induced shift away from diatoms towards smaller phytoplankton and

  8. Development of nitrogen enriched nanostructured carbon adsorbents for CO2 capture.

    Science.gov (United States)

    Goel, Chitrakshi; Bhunia, Haripada; Bajpai, Pramod K

    2015-10-01

    Nanostructured carbon adsorbents containing high nitrogen content were developed by templating melamine-formaldehyde resin in the pores of mesoporous silica by nanocasting technique. A series of adsorbents were prepared by altering the carbonization temperature from 400 to 700 °C and characterized in terms of their textural and morphological properties. CO2 adsorption performance was investigated at various temperatures from 30 to 100 °C by using a thermogravimetric analyzer under varying CO2 concentrations. Multiple adsorption-desorption experiments were also carried out to investigate the adsorbent regenerability. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the development of nanostructured materials. Fourier transform infrared spectroscopy (FTIR) and elemental analysis indicated the development of carbon adsorbents having high nitrogen content. The surface area and pore volume of the adsorbent carbonized at 700 °C were found to be 266 m(2) g(-1) and 0.25 cm(3) g(-1) respectively. CO2 uptake profile for the developed adsorbents showed that the maximum CO2 adsorption occurred within ca. 100 s. CO2 uptake of 0.792 mmol g(-1) at 30 °C was exhibited by carbon obtained at 700 °C with complete regenerability in three adsorption-desorption cycles. Furthermore, kinetics of CO2 adsorption on the developed adsorbents was studied by fitting the experimental data of CO2 uptake to three kinetic models with best fit being obtained by fractional order kinetic model with error% within range of 5%. Adsorbent surface was found to be energetically heterogeneous as suggested by Temkin isotherm model. Also the isosteric heat of adsorption for CO2 was observed to increase from ca. 30-44 kJ mol(-1) with increase in surface coverage.

  9. CO2-dependent carbon isotope fractionation in dinoflagellates relates to their inorganic carbon fluxes.

    Science.gov (United States)

    Hoins, Mirja; Eberlein, Tim; Van de Waal, Dedmer B; Sluijs, Appy; Reichart, Gert-Jan; Rost, Björn

    2016-08-01

    Carbon isotope fractionation (εp) between the inorganic carbon source and organic matter has been proposed to be a function of pCO2. To understand the CO2-dependency of εp and species-specific differences therein, inorganic carbon fluxes in the four dinoflagellate species Alexandrium fundyense, Scrippsiella trochoidea, Gonyaulax spinifera and Protoceratium reticulatum have been measured by means of membrane-inlet mass spectrometry. In-vivo assays were carried out at different CO2 concentrations, representing a range of pCO2 from 180 to 1200 μatm. The relative bicarbonate contribution (i.e. the ratio of bicarbonate uptake to total inorganic carbon uptake) and leakage (i.e. the ratio of CO2 efflux to total inorganic carbon uptake) varied from 0.2 to 0.5 and 0.4 to 0.7, respectively, and differed significantly between species. These ratios were fed into a single-compartment model, and εp values were calculated and compared to carbon isotope fractionation measured under the same conditions. For all investigated species, modeled and measured εp values were comparable (A. fundyense, S. trochoidea, P. reticulatum) and/or showed similar trends with pCO2 (A. fundyense, G. spinifera, P. reticulatum). Offsets are attributed to biases in inorganic flux measurements, an overestimated fractionation factor for the CO2-fixing enzyme RubisCO, or the fact that intracellular inorganic carbon fluxes were not taken into account in the model. This study demonstrates that CO2-dependency in εp can largely be explained by the inorganic carbon fluxes of the individual dinoflagellates.

  10. The role of vegetation in the CO2 flux from a tropical urban neighbourhood

    Science.gov (United States)

    Velasco, E.; Roth, M.; Tan, S. H.; Quak, M.; Nabarro, S. D. A.; Norford, L.

    2013-10-01

    Urban surfaces are usually net sources of CO2. Vegetation can potentially have an important role in reducing the CO2 emitted by anthropogenic activities in cities, particularly when vegetation is extensive and/or evergreen. A direct and accurate estimation of carbon uptake by urban vegetation is difficult due to the particular characteristics of the urban ecosystem and high variability in tree distribution and species. Here, we investigate the role of urban vegetation in the CO2 flux from a residential neighbourhood in Singapore using two different approaches. CO2 fluxes measured directly by eddy covariance are compared with emissions estimated from emissions factors and activity data. The latter includes contributions from vehicular traffic, household combustion, soil respiration and human breathing. The difference between estimated emissions and measured fluxes should approximate the flux associated with the aboveground vegetation. In addition, a tree survey was conducted to estimate the annual CO2 sequestration using allometric equations and an alternative model of the metabolic theory of ecology for tropical forests. Palm trees, banana plants and turfgrass were also included in the survey with their annual CO2 uptake obtained from published growth rates. Both approaches agree within 2% and suggest that vegetation sequesters 8% of the total emitted CO2 in the residential neighbourhood studied. An uptake of 1.4 ton km-2 day-1 (510 ton km-2 yr-1) was estimated as the difference between assimilation by photosynthesis minus the aboveground biomass respiration during daytime (4.0 ton km-2 day-1) and release by plant respiration at night (2.6 ton km-2 day-1). However, when soil respiration is added to the daily aboveground flux, the biogenic component becomes a net source amounting to 4% of the total CO2 flux and represents the total contribution of urban vegetation to the carbon flux to the atmosphere.

  11. Hopewell Beneficial CO2 Capture for Production of Fuels, Fertilizer and Energy

    Energy Technology Data Exchange (ETDEWEB)

    UOP; Honeywell Resins & Chemicals; Honeywell Process Solutions; Aquaflow Bionomics Ltd

    2010-09-30

    For Phase 1 of this project, the Hopewell team developed a detailed design for the Small Scale Pilot-Scale Algal CO2 Sequestration System. This pilot consisted of six (6) x 135 gallon cultivation tanks including systems for CO2 delivery and control, algal cultivation, and algal harvesting. A feed tank supplied Hopewell wastewater to the tanks and a receiver tank collected the effluent from the algal cultivation system. The effect of environmental parameters and nutrient loading on CO2 uptake and sequestration into biomass were determined. Additionally the cost of capturing CO2 from an industrial stack emission at both pilot and full-scale was determined. The engineering estimate evaluated Amine Guard technology for capture of pure CO2 and direct stack gas capture and compression. The study concluded that Amine Guard technology has lower lifecycle cost at commercial scale, although the cost of direct stack gas capture is lower at the pilot scale. Experiments conducted under high concentrations of dissolved CO2 did not demonstrate enhanced algae growth rate. This result suggests that the dissolved CO2 concentration at neutral pH was already above the limiting value. Even though dissolved CO2 did not show a positive effect on biomass growth, controlling its value at a constant set-point during daylight hours can be beneficial in an algae cultivation stage with high algae biomass concentration to maximize the rate of CO2 uptake. The limited enhancement of algal growth by CO2 addition to Hopewell wastewater was due at least in part to the high endogenous CO2 evolution from bacterial degradation of dissolved organic carbon present at high levels in the wastewater. It was found that the high level of bacterial activity was somewhat inhibitory to algal growth in the Hopewell wastewater. The project demonstrated that the Honeywell automation and control system, in combination with the accuracy of the online pH, dissolved O2, dissolved CO2, turbidity, Chlorophyll A and

  12. CO2 emissions in the steel industry

    Directory of Open Access Journals (Sweden)

    M. Kundak

    2009-07-01

    Full Text Available Global CO2 emissions caused by the burning of fossil fuels over the past century are presented. Taking into consideration the total world production of more than 1,3 billion tons of steel, the steel industry produces over two billion tons of CO2. Reductions in CO2 emissions as a result of technological improvements and structural changes in steel production in industrialized countries during the past 40 years are described. Substantial further reductions in those emissions will not be possible using conventional technologies. Instead, a radical cutback may be achieved if, instead of carbon, hydrogen is used for direct iron ore reduction. The cost and the ensuing CO2 generation in the production of hydrogen as a reducing agent from various sources are analysed.

  13. Hoeveel CO2 kostte deze paprika?

    NARCIS (Netherlands)

    Smit, P.X.

    2011-01-01

    Ondernemers in de tuinbouwsector kunnen dankzij een nieuw protocol de CO2-voetafdruk van hun product van zaaigoed tot supermarktschap berekenen. Daarbij zit een tool die de telers, handelaren en transporteurs kan laten zien waar de uitstoot plaatsvindt.

  14. Compact, High Accuracy CO2 Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase II proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  15. Translucent CO2 ice on Mars ?

    Science.gov (United States)

    Schmidt, Frederic; Andrieu, Francois; Douté, Sylvain; Schmitt, Bernard

    2016-10-01

    The Martian climate is driven by the condensation/sublimation of CO2 representing 95% of the atmosphere. Many active surface features (such dark spot, dark flows), have been potentially linked to CO2 exchange. Understanding the surface/atmosphere interactions is a major issue, for both atmospheric but also surface science. This study aims at estimating the physical properties of the seasonal CO2 ice deposits. Are these deposits granular or compact? What is the thickness of the ice? How much impurities are included within the ice? These questions have been highly debated in the literature, in particular the presence of a translucent slab ice, the link with the H2O cycle. In particular the cold jet geyser model requires translucent CO2 ice. We use radiative transfer models to simulate spectroscopic data from the CRISM instrument and perform an inversion to estimate model's parameters though time. We then discuss the consistency of the results with other datasets.

  16. Compact, High Accuracy CO2 Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase I proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  17. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  18. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone...... that raw meal could be used as a sorbent for the easy integration of the carbonate looping process into the cement pyro process for reducing CO2 emissions from the cement production process....

  19. CO2 Removal from Mars EMU Project

    Data.gov (United States)

    National Aeronautics and Space Administration — CO2 control for during ExtraVehicular Activity (EVA) on mars is challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable...

  20. CO2 phytotron established in Ailaoshan Mountains

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Understanding the Uinteractions between ecological systems and the environment is a priority for the studies of global change, evolutionary biology, and functional genomics.Controlled environment facilities,like CO2 phytotrons, are necessary for acquiring such an understanding.

  1. CO2 Removal from Mars EMU Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A practical CO2 control system for ExtraVehicular Activity (EVA) on Mars have not yet been developed. TDA Research, Inc. proposes to develop a durable,...

  2. Combustion of hythane diluted with CO2

    Directory of Open Access Journals (Sweden)

    Hraiech Ibtissem

    2015-01-01

    Full Text Available With increasing concern about energy shortage and environmental protection, improving engine fuel economy and reducing exhaust emissions have become major research topics in combustion and engine development. Hythane (a blend of hydrogen H2 and natural gas NG has generated a significant interest as an alternative fuel for the future. This paper describes an experimental study of the effects of CO2 addition on the stability of a turbulent jet diffusion NG-H2 flame. The mole fraction of hydrogen (% H2 in NG-H2 mixture was varied from 0% to 50%. The equivalence ratio of the hythane/CO2/air mixture was kept at stoichiometry. The results show that the lift-off height increases with the addition of CO2 at various % H2 content in hythane. However, we observe that with 20% H2, we can obtain a stable flame diluted with 40% CO2, while for 0% H2, the flame is blown out above 20% CO2. This means that the limits of flame blowing out are pushed with the additions of H2. Moreover, the results show that for %H2 content in NG-H2 fuel up to 10%, the addition of CO2 could produce lifted flame if the % CO2 is low. At higher % CO2 dilution, flame would remain attached until blow-out. This is mainly due to the fact that the dilution leads to ejection velocities very high but reactivity of the mixture does not change so the flame tends to stretch.

  3. Udvikling af CO2 neutralt byrumsarmatur

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Dam-Hansen, Carsten; Corell, Dennis Dan

    Denne rapport indeholder en beskrivelse af arbejdet udført i og resultaterne af forsknings- og udviklingsprojektet ” Udvikling af CO2 neutralt byrumsarmatur” og udgør slutrapportering for dette projekt.......Denne rapport indeholder en beskrivelse af arbejdet udført i og resultaterne af forsknings- og udviklingsprojektet ” Udvikling af CO2 neutralt byrumsarmatur” og udgør slutrapportering for dette projekt....

  4. The Twelve Principles of CO2 CHEMISTRY.

    Science.gov (United States)

    Poliakoff, Martyn; Leitner, Walter; Streng, Emilia S

    2015-01-01

    This paper introduces a set of 12 Principles, based on the acronym CO2 CHEMISTRY, which are intended to form a set of criteria for assessing the viability of different processes or reactions for using CO2 as a feedstock for making organic chemicals. The principles aim to highlight the synergy of Carbon Dioxide Utilisation (CDU) with the components of green and sustainable chemistry as well as briefly pointing out the connection to the energy sector.

  5. The twelve principles of CO2 Chemistry

    OpenAIRE

    Poliakoff, Martyn; Leitner, Walter; Streng, Emelia S.

    2015-01-01

    This paper introduces a set of 12 Principles, based on the acronym CO2 CHEMISTRY, which are intended to form a set of criteria for assessing the viability of different processes or reactions for using CO2 as a feedstock for making organic chemicals. The principles aim to highlight the synergy of Carbon Dioxide Utilisation (CDU) with the components of green and sustainable chemistry as well as briefly pointing out the connection to the energy sector.

  6. Trapping atmospheric CO2 with gold.

    Science.gov (United States)

    Collado, Alba; Gómez-Suárez, Adrián; Webb, Paul B; Kruger, Hedi; Bühl, Michael; Cordes, David B; Slawin, Alexandra M Z; Nolan, Steven P

    2014-10-07

    The ability of gold-hydroxides to fix CO2 is reported. [Au(IPr)(OH)] and [{Au(IPr)}2(μ-OH)][BF4] react with atmospheric CO2 to form the trigold carbonate complex [{Au(IPr)}3(μ(3)-CO3)][BF4]. Reactivity studies revealed that this complex behaves as two basic and one cationic Au centres, and that it is catalytically active. DFT calculations and kinetic experiments have been carried out.

  7. Supercritical CO2 Extraction of Ethanol

    OpenAIRE

    GÜVENÇ, A.; MEHMETOĞLU, Ü.; ÇALIMLI, A.

    1999-01-01

    Extraction of ethanol was studied from both synthetic ethanol solution and fermentation broth using supercritical CO2 in an extraction apparatus in ranges of 313 to 333 K and 80 to 160 atmospheres, for varying extraction times. The experimental system consists mainly of four parts: a CO2 storage system, a high-pressure liquid pump, an extractor and a product collection unit. Samples were analyzed by gas chromatography. Effects of temperature, pressure, extraction time, initial ethan...

  8. Inorganic nitrogen form: a major player in wheat and Arabidopsis responses to elevated CO2.

    Science.gov (United States)

    Rubio-Asensio, José S; Bloom, Arnold J

    2016-12-23

    Critical for predicting the future of primary productivity is a better understanding of plant responses to rising atmospheric carbon dioxide (CO2) concentration. This review considers recent results on the role of the inorganic nitrogen (N) forms nitrate (NO3(-)) and ammonium (NH4(+)) in determining the responses of wheat and Arabidopsis to elevated atmospheric CO2 concentration. Here, we identify four key issues: (i) the possibility that different plant species respond similarly to elevated CO2 if one accounts for the N form that they are using; (ii) the major influence that plant-soil N interactions have on plant responses to elevated CO2; (iii) the observation that elevated CO2 may favor the uptake of one N form over others; and (iv) the finding that plants receiving NH4(+) nutrition respond more positively to elevated CO2 than those receiving NO3(-) nutrition because elevated CO2 inhibits the assimilation of NO3(-) in shoots of C3 plants. We conclude that the form and amount of N available to plants from the rhizosphere and plant preferences for the different N forms are essential for predicting plant responses to elevated CO2.

  9. Tracking airborne CO2 mitigation and low cost transformation into valuable carbon nanotubes

    Science.gov (United States)

    Ren, Jiawen; Licht, Stuart

    2016-06-01

    Primary evidence of the direct uptake of atmospheric CO2 and direct transformation into carbon nanotubes, CNTs, is demonstrated through isotopic labeling, and provides a new high yield route to mitigate this greenhouse gas. CO2 is converted directly to CNTs and does not require pre-concentration of the airbone CO2. This C2CNT (CO2 to carbon nanotube) synthesis transforms CO2-gas dissolved in a 750 °C molten Li2CO3, by electrolysis, into O2-gas at a nickel electrode, and at a steel cathode into CNTs or carbon or nanofibers, CNFs. CNTs are synthesized at a 100-fold price reduction compared to conventional chemical vapour deposition, CVD, synthesis. The low cost conversion to a stable, value-added commodity incentivizes CO2 removal to mitigate climate change. The synthesis allows morphology control at the liquid/solid interface that is not available through conventional CVD synthesis at the gas/solid interface. Natural abundance 12CO2 forms hollow CNTs, while equivalent synthetic conditions with heavier 13CO2 favours closed core CNFs, as characterized by Raman, SEM and TEM. Production ease is demonstrated by the first synthesis of a pure 13C multiwalled carbon nanofiber.

  10. Southern Ocean CO2 sink: the contribution of the sea ice

    DEFF Research Database (Denmark)

    Delille, B.; Vancoppenolle, Martin; Geilfus, Nicolas-Xavier

    2014-01-01

    undersaturation while the underlying oceanic waters remains slightly oversaturated. The decrease from winter to summer of pCO2 in the brines is driven by dilution with melting ice, dissolution of carbonate crystals, and net primary production. As the ice warms, its permeability increases, allowing CO2 transfer......We report first direct measurements of the partial pressure of CO2 (pCO2) within Antarctic pack sea ice brines and related CO2 fluxes across the air-ice interface. From late winter to summer, brines encased in the ice change from a CO2 large oversaturation, relative to the atmosphere, to a marked...... at the air-sea ice interface. The sea ice changes from a transient source to a sink for atmospheric CO2. We upscale these observations to the whole Antarctic sea ice cover using the NEMO-LIM3 large-scale sea ice-ocean and provide first esti- mates of spring and summer CO2 uptake from the atmosphere...

  11. How secure is subsurface CO2 storage? Controls on leakage in natural CO2 reservoirs

    Science.gov (United States)

    Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, Stuart

    2014-05-01

    Carbon Capture and Storage (CCS) is the only industrial scale technology available to directly reduce carbon dioxide (CO2) emissions from fossil fuelled power plants and large industrial point sources to the atmosphere. The technology includes the capture of CO2 at the source and transport to subsurface storage sites, such as depleted hydrocarbon reservoirs or saline aquifers, where it is injected and stored for long periods of time. To have an impact on the greenhouse gas emissions it is crucial that there is no or only a very low amount of leakage of CO2 from the storage sites to shallow aquifers or the surface. CO2 occurs naturally in reservoirs in the subsurface and has often been stored for millions of years without any leakage incidents. However, in some cases CO2 migrates from the reservoir to the surface. Both leaking and non-leaking natural CO2 reservoirs offer insights into the long-term behaviour of CO2 in the subsurface and on the mechanisms that lead to either leakage or retention of CO2. Here we present the results of a study on leakage mechanisms of natural CO2 reservoirs worldwide. We compiled a global dataset of 49 well described natural CO2 reservoirs of which six are leaking CO2 to the surface, 40 retain CO2 in the subsurface and for three reservoirs the evidence is inconclusive. Likelihood of leakage of CO2 from a reservoir to the surface is governed by the state of CO2 (supercritical vs. gaseous) and the pressure in the reservoir and the direct overburden. Reservoirs with gaseous CO2 is more prone to leak CO2 than reservoirs with dense supercritical CO2. If the reservoir pressure is close to or higher than the least principal stress leakage is likely to occur while reservoirs with pressures close to hydrostatic pressure and below 1200 m depth do not leak. Additionally, a positive pressure gradient from the reservoir into the caprock averts leakage of CO2 into the caprock. Leakage of CO2 occurs in all cases along a fault zone, indicating that

  12. Reducing CO2 emission from bitumen upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John

    2011-07-15

    The treatment of sand oil can result in significant CO2 emission. Ceramatec Inc. has developed a technology to reduce the emission of CO2 during the upgrading of feedstocks bearing heteroatoms. This technology can be applied to kerogen derived oil (shale oil) and heavy oil as well as to bitumen from oil sands. Metallic sodium is used as the reducing and heteroatom scavenging agent. Hydrogen, methane or other hydrocarbons may be used to cap radicals formed in the process. But using methane can lead to lower material and capital costs, greater product yield, and lower CO2 emission. During the upgrading process, the aromatic constituents remain in the product, after treatment with sodium and removal of sulphur, nitrogen and metals. Aromatic saturation is not required with sodium, so less hydrogen is needed which leads to reduced CO2 emission. The reason is that CO2 is emitted in the steam methane reforming (SMR) process where hydrogen is produced. An example is introduced to demonstrate the reduction of CO2 emission from hydrogen production. Another advantage of the sodium/methane upgrading process is the incorporation of methane into the fuel. In addition, the total acid number, TAN, becomes negligible in the sodium upgrading processes. Ceramatec has also developed a process for the recovery of sodium from the sodium salts generated in the sodium/methane upgrading process.

  13. Density of aqueous solutions of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Julio E.

    2001-10-10

    In this report, we present a numerical representation for the partial molar volume of CO2 in water and the calculation of the corresponding aqueous solution density. The motivation behind this work is related to the importance of having accurate representations for aqueous phase properties in the numerical simulation of carbon dioxide disposal into aquifers as well as in geothermal applications. According to reported experimental data the density of aqueous solutions of CO2 can be as much as 2-3% higher than pure water density. This density variation might produce an influence on the groundwater flow regime. For instance, in geologic sequestration of CO2, convective transport mixing might occur when, several years after injection of carbon dioxide has stopped, the CO2-rich gas phase is concentrated at the top of the formation, just below an overlaying caprock. In this particular case the heavier CO2 saturated water will flow downward and will be replaced by water with a lesser CO2 content.

  14. On the Vertical Gradient in CO2

    Science.gov (United States)

    Stine, A. R.; Fung, I. Y.

    2008-12-01

    Attempts to constrain surface fluxes of carbon from atmospheric measurements of carbon dioxide have primarily focused on surface boundary layer measurements, because information about surface fluxes is least diluted close to the locations where the fluxes occur. However, errors in model ventilation of air in the vertical can be misinterpreted as local surface fluxes. Satellites which measure column integrated CO2 are expected to represent a major advance in part because they observe the entire atmospheric column. Recent work has highlighted the fact that vertical gradients in carbon concentrations can give us information about where vertical mixing errors are likely to be misinterpreted as local surface fluxes, but passive tracer evidence suggests that models that capture vertical profiles on the ocean do poorly on the land (and vice versa), suggesting that the problem of correctly treating vertical mixing in inverse studies is more fundamental than picking the "best" model. We consider observations of the vertical gradient in CO2 from aircrafts and from a comparison of satellites that observe in the near infrared (which observe the column integrated CO2 field) and the thermal infrared (which observe the upper troposphere). We evaluate the feasibility of using these satellites for determining the vertical gradient in CO2. We examine how observations of the vertical gradient of CO2 allow us to differentiate the imprint of vertical mixing and the imprint in surface fluxes on the observed field of atmospheric CO2.

  15. CO2 efflux from cleared mangrove peat.

    Directory of Open Access Journals (Sweden)

    Catherine E Lovelock

    Full Text Available BACKGROUND: CO(2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. METHODOLOGY/PRINCIPAL FINDINGS: We measured CO(2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO(2 efflux. CO(2 efflux from soils declines from time of clearing from ∼10,600 tonnes km(-2 year(-1 in the first year to 3000 tonnes km(2 year(-1 after 20 years since clearing. Disturbing peat leads to short term increases in CO(2 efflux (27 umol m(-2 s(-1, but this had returned to baseline levels within 2 days. CONCLUSIONS/SIGNIFICANCE: Deforesting mangroves that grow on peat soils results in CO(2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks.

  16. Forest soil carbon oxidation state and oxidative ratio responses to elevated CO2

    Science.gov (United States)

    Hockaday, William C.; Gallagher, Morgan E.; Masiello, Caroline A.; Baldock, Jeffrey A.; Iversen, Colleen M.; Norby, Richard J.

    2015-09-01

    The oxidative ratio (OR) of the biosphere is the stoichiometric ratio (O2/CO2) of gas exchange by photosynthesis and respiration—a key parameter in budgeting calculations of the land and ocean carbon sinks. Carbon cycle-climate feedbacks could alter the OR of the biosphere by affecting the quantity and quality of organic matter in plant biomass and soil carbon pools. This study considers the effect of elevated atmospheric carbon dioxide concentrations ([CO2]) on the OR of a hardwood forest after nine growing seasons of Free-Air CO2 Enrichment. We measured changes in the carbon oxidation state (Cox) of biomass and soil carbon pools as a proxy for the ecosystem OR. The OR of net primary production, 1.039, was not affected by elevated [CO2]. However, the Cox of the soil carbon pool was 40% higher at elevated [CO2], and the estimated OR values for soil respiration increased from 1.006 at ambient [CO2] to 1.054 at elevated [CO2]. A biochemical inventory of the soil organic matter ascribed the increases in Cox and OR to faster turnover of reduced substrates, lignin and lipids, at elevated [CO2]. This implicates the heterotrophic soil community response to elevated [CO2] as a driver of disequilibrium in the ecosystem OR. The oxidation of soil carbon pool constitutes an unexpected terrestrial O2 sink. Carbon budgets constructed under the assumption of OR equilibrium would equate such a terrestrial O2 sink to CO2 uptake by the ocean. The potential for climate-driven disequilibriua in the cycling of O2 and CO2 warrants further investigation.

  17. Biological CO2 fixation using Chlorella vulgaris and its thermal characteristics through thermogravimetric analysis.

    Science.gov (United States)

    Razzak, Shaikh A; Ali, Saad Aldin M; Hossain, Mohammad M; Mouanda, Alexis Nzila

    2016-11-01

    The present research is focused on cultivation of microalgae strain Chlorella vulgaris for bio-fixation of CO2 coupled with biomass production. In this regard, a single semi-batch vertical tubular photobioreactor and four similar photobioreactors in series have been employed. The concentration of CO2 in the feed stream was varied from 2 to 12 % (v/v) by adjusting CO2 to air ratio. The amount of CO2 capture and algae growth were monitored by measuring decrease of CO2 concentration in the gas phase, microalgal cell density, and algal biomass production rate. The results show that 4 % CO2 gives maximum amount of biomass (0.9 g L(-1)) and productivity (0.118 g L(-1) day(-1)) of C. vulgaris in a single reactor. In series reactors, average productivity per reactor found to be 0.078 g L(-1) day(-1). The maximum CO2 uptake for single reactor also found with 4 % CO2, and it is around 0.2 g L(-1) day(-1). In series reactors, average CO2 uptake is 0.13 g L(-1) day(-1) per reactor. TOC analysis shows that the carbon content of the produced biomass is around 40.67 % of total weight. The thermochemical characteristics of the cultivated C. vulgaris samples were analyzed in the presence of air. All samples burn above 200 °C and the combustion rate become faster at around 600 °C. Almost 98 wt% of the produced biomass is combustible in this range.

  18. State of the Carbon Cycle - Consequences of Rising Atmospheric CO2

    Science.gov (United States)

    Moore, D. J.; Cooley, S. R.; Alin, S. R.; Brown, M. E.; Butman, D. E.; French, N. H. F.; Johnson, Z. I.; Keppel-Aleks, G.; Lohrenz, S. E.; Ocko, I.; Shadwick, E. H.; Sutton, A. J.; Potter, C. S.; Yu, R. M. S.

    2016-12-01

    The rise of atmospheric CO2, largely attributable to human activity through fossil fuel emissions and land-use change, has been dampened by carbon uptake by the ocean and terrestrial biosphere. We outline the consequences of this carbon uptake as direct and indirect effects on terrestrial and oceanic systems and processes for different regions of North America and the globe. We assess the capacity of these systems to continue to act as carbon sinks. Rising CO2 has decreased seawater pH; this process of ocean acidification has impacted some marine species and altered fundamental ecosystem processes with further effects likely. In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, net primary production, and increased water-use efficiency. Rising CO2 may change vegetation composition and carbon storage, and widespread increases in water use efficiency likely influence terrestrial hydrology and biogeochemical cycling. Consequences for human populations include changes to ecosystem services including cultural activities surrounding land use, agricultural or harvesting practices. Commercial fish stocks have been impacted and crop production yields have been changed as a result of rising CO2. Ocean and terrestrial effects are contingent on, and feedback to, global climate change. Warming and modified precipitation regimes impact a variety of ecosystem processes, and the combination of climate change and rising CO2 contributes considerable uncertainty to forecasting carbon sink capacity in the ocean and on land. Disturbance regime (fire and insects) are modified with increased temperatures. Fire frequency and intensity increase, and insect lifecycles are disrupted as temperatures move out of historical norms. Changes in disturbance patterns modulate the effects of rising CO2 depending on ecosystem type, disturbance frequency, and magnitude of events. We discuss management strategies designed to limit the rise of atmospheric CO2 and reduce

  19. CO2 Emission Factors for Coals

    Directory of Open Access Journals (Sweden)

    P. Orlović-Leko

    2015-03-01

    Full Text Available Emission factors are used in greenhouse gas inventories to estimate emissions from coal combustion. In the absence of direct measures, emissions factors are frequently used as a quick, low cost way to estimate emissions values. Coal combustion has been a major contributor to the CO2 flux into the atmosphere. Nearly all of the fuel carbon (99 % in coal is converted to CO2 during the combustion process. The carbon content is the most important coal parameter which is the measure of the degree of coalification (coal rank. Coalification is the alteration of vegetation to form peat, succeeded by the transformation of peat through lignite, sub-bituminous, bituminous to anthracite coal. During the geochemical or metamorphic stage, the progressive changes that occur within the coal are an increase in the carbon content and a decrease in the hydrogen and oxygen content resulting in a loss of volatiles. Heterogeneous composition of coal causes variation in CO2 emission from different coals. The IPCC (Intergovernmental Panel on Climate Change has produced guidelines on how to produce emission inventories which includes emission factors. Although 2006 IPCC Guidelines provided the default values specified according to the rank of the coal, the application of country-specific emission factors was recommended when estimating the national greenhouse gas emissions. This paper discusses the differences between country-specific emission factors and default IPCC CO2 emission factors, EF(CO2, for coals. Also, this study estimated EF(CO2 for two different types of coals and peat from B&H, on the basis fuel analyses. Carbon emission factors for coal mainly depend on the carbon content of the fuel and vary with both rank and geographic origin, which supports the idea of provincial variation of carbon emission factors. Also, various other factors, such as content of sulphur, minerals and macerals play an important role and influence EF(CO2 from coal. Carbonate minerals

  20. Gross job flows and firms

    OpenAIRE

    Scott Schuh; Robert K. Triest

    1999-01-01

    This paper extends the work of Dunne, Roberts, and Samuelson [3] and Davis, Haltiwanger, and Schuh [2] on gross job flows among manufacturing plants. Gross job creation, destruction, and reallocation have been shown to be important in understanding the birth, growth, and death of plants, and the relation of plant life cycles to the business cycle. However, little is known about job flows between firms or how job flows among plants occur within firms (corporate restructuring). We use informati...

  1. Acclimatization of the Crustose Coralline Alga Porolithon onkodes to Variable pCO2

    Science.gov (United States)

    Johnson, Maggie D.; Moriarty, Vincent W.; Carpenter, Robert C.

    2014-01-01

    Ocean acidification (OA) has important implications for the persistence of coral reef ecosystems, due to potentially negative effects on biomineralization. Many coral reefs are dynamic with respect to carbonate chemistry, and experience fluctuations in pCO2 that exceed OA projections for the near future. To understand the influence of dynamic pCO2 on an important reef calcifier, we tested the response of the crustose coralline alga Porolithon onkodes to oscillating pCO2. Individuals were exposed to ambient (400 µatm), high (660 µatm), or variable pCO2 (oscillating between 400/660 µatm) treatments for 14 days. To explore the potential for coralline acclimatization, we collected individuals from low and high pCO2 variability sites (upstream and downstream respectively) on a back reef characterized by unidirectional water flow in Moorea, French Polynesia. We quantified the effects of treatment on algal calcification by measuring the change in buoyant weight, and on algal metabolism by conducting sealed incubations to measure rates of photosynthesis and respiration. Net photosynthesis was higher in the ambient treatment than the variable treatment, regardless of habitat origin, and there was no effect on respiration or gross photosynthesis. Exposure to high pCO2 decreased P. onkodes calcification by >70%, regardless of the original habitat. In the variable treatment, corallines from the high variability habitat calcified 42% more than corallines from the low variability habitat. The significance of the original habitat for the coralline calcification response to variable, high pCO2 indicates that individuals existing in dynamic pCO2 habitats may be acclimatized to OA within the scope of in situ variability. These results highlight the importance of accounting for natural pCO2 variability in OA manipulations, and provide insight into the potential for plasticity in habitat and species-specific responses to changing ocean chemistry. PMID:24505305

  2. Advanced Amine Solvent Formulations and Process Integration for Near-Term CO2 Capture Success

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Kevin S.; Searcy, Katherine; Rochelle, Gary T.; Ziaii, Sepideh; Schubert, Craig

    2007-06-28

    This Phase I SBIR project investigated the economic and technical feasibility of advanced amine scrubbing systems for post-combustion CO2 capture at coal-fired power plants. Numerous combinations of advanced solvent formulations and process configurations were screened for energy requirements, and three cases were selected for detailed analysis: a monoethanolamine (MEA) base case and two “advanced” cases: an MEA/Piperazine (PZ) case, and a methyldiethanolamine (MDEA) / PZ case. The MEA/PZ and MDEA/PZ cases employed an advanced “double matrix” stripper configuration. The basis for calculations was a model plant with a gross capacity of 500 MWe. Results indicated that CO2 capture increased the base cost of electricity from 5 cents/kWh to 10.7 c/kWh for the MEA base case, 10.1 c/kWh for the MEA / PZ double matrix, and 9.7 c/kWh for the MDEA / PZ double matrix. The corresponding cost per metric tonne CO2 avoided was 67.20 $/tonne CO2, 60.19 $/tonne CO2, and 55.05 $/tonne CO2, respectively. Derated capacities, including base plant auxiliary load of 29 MWe, were 339 MWe for the base case, 356 MWe for the MEA/PZ double matrix, and 378 MWe for the MDEA / PZ double matrix. When compared to the base case, systems employing advanced solvent formulations and process configurations were estimated to reduce reboiler steam requirements by 20 to 44%, to reduce derating due to CO2 capture by 13 to 30%, and to reduce the cost of CO2 avoided by 10 to 18%. These results demonstrate the potential for significant improvements in the overall economics of CO2 capture via advanced solvent formulations and process configurations.

  3. Effect of CO2 Concentration on Nitrogen Metabolism of Winter Wheat

    Institute of Scientific and Technical Information of China (English)

    MEN Zhong-hua; LI Sheng-xiu

    2005-01-01

    Hoagland's solution was used as water culture medium to study the effect of CO2 concentration on nitrate metabolism of wheat under natural light and light-shaded conditions. NO3-N, NH4+-N, nitrate reductase activity, total uptake N by wheat plants during solution cultural period and total N in plants were determined for comprehensive evaluation of the effect.Results showed that under both natural light and light-shaded conditions, addition of CO2 increased NO3-N uptake and its assimilative capabilities by plants. However, there were some difference between shoots and roots. With increase of CO2concentration, the concentration of NO3-N and NH4+-N as well as nitrate reductase activity were all decreased for shoots while the difference was not so distinct in roots, and the nitrate reductase activity was not decreased, but increased. Since NO3-N uptake by plants from the solution and the total N in plants were much higher by CO2 addition, it may be concluded that addition of CO2 has resulted in rise of nitrate absorption, assimilation and metabolism of wheat.

  4. Application of CO2 in BOF%转炉应用CO2技术

    Institute of Scientific and Technical Information of China (English)

    万雪峰; 曹东; 刘祥; 朱晓雷; 廖相巍

    2015-01-01

    By the thermodynamic analysis of top blowing CO2 in the converter,combined with laboratory simulation re-sult of top blowing O2+CO2 mixture gas in converter,some key parameters of CO2 used in converter were established. It is concluded that although pure CO2 injected in the converter could achieve decarburize,the drop of temperature was rath-er large. When the CO2 supplying intensity was 3.0 m3/(t·min),the reduction of temperature was 15.1℃/min;By blow-ing O2+CO2 mixture gas,temperature balance could be realized,but the largest theoretical proportion of CO2 in mixture gas was 79.1%;with the increase of CO2 proportion,the carbon and oxygen product of molten steel at the blowing end was reduced,under the condition of φ(CO2)∶φ(O2)=1∶1,the carbon and oxygen product could be controlled in the range of (25~32)×10-8.%通过对转炉顶吹CO2的热力学分析,结合实验室模拟转炉顶吹O2+CO2混合气体试验结果,确立了CO2在转炉中应用的关键参数。得出在转炉中顶吹纯CO2虽可脱碳,但温降较大,顶吹CO2供气强度为3.0 m3/(t·min)时,钢液温降速率为15.1℃/min;通过喷吹O2+CO2混合气体可实现温度平衡,但CO2配比的最大理论比例为79.1%;随着混合气体中CO2比例增大,吹炼终点钢液碳氧积降低,当φ(CO2)∶φ(O2)=1∶1时可控碳氧积为(25~32)×10-8。

  5. Precursory volcanic CO2 signals from space

    Science.gov (United States)

    Schwandner, Florian M.; Carn, Simon A.; Kataoka, Fumie; Kuze, Akihiko; Shiomi, Kei; Goto, Naoki

    2016-04-01

    Identification of earliest signals heralding volcanic unrest benefits from the unambiguous detection of precursors that reflect deviation of magmatic systems from metastable background activity. Ascent and emplacement of new basaltic magma at depth may precede eruptions by weeks to months. Transient localized carbon dioxide (CO2) emissions stemming from exsolution from depressurized magma are expected, and have been observed weeks to months ahead of magmatic surface activity. Detecting such CO2 precursors by continuous ground-based monitoring operations is unfortunately not a widely implemented method yet, save a handful of volcanoes. Detecting CO2 emissions from space offers obvious advantages - however it is technologically challenging, not the least due to the increasing atmospheric burden of CO2, against which a surface emission signal is hard to discern. In a multi-year project, we have investigated the feasibility of space-borne detection of pre-eruptive volcanic CO2 passive degassing signals using observations from the Greenhouse Gas Observing SATellite (GOSAT). Since 2010, we have observed over 40 active volcanoes from space using GOSAT's special target mode. Over 72% of targets experienced at least one eruption over that time period, demonstrating the potential utility of space-borne CO2 observations in non-imaging target-mode (point source monitoring mode). While many eruption precursors don't produce large enough CO2 signals to exceed space-borne detection thresholds of current satellite sensors, some of our observations have nevertheless already shown significant positive anomalies preceding eruptions at basaltic volcanoes. In 2014, NASA launched its first satellite dedicated to atmospheric CO2 observation, the Orbiting Carbon Observatory (OCO-2). Its observation strategy differs from the single-shot GOSAT instrument. At the expense of GOSAT's fast time series capability (3-day repeat cycle, vs. 16 for OCO-2), its 8-footprint continuous swath can slice

  6. Primary, secondary, and tertiary amines for CO2 capture: designing for mesoporous CO2 adsorbents.

    Science.gov (United States)

    Ko, Young Gun; Shin, Seung Su; Choi, Ung Su

    2011-09-15

    CO(2) emissions, from fossil-fuel-burning power plants, the breathing, etc., influence the global worming on large scale and the man's work efficiency on small scale. The reversible capture of CO(2) is a prominent feature of CO(2) organic-inorganic hybrid adsorbent to sequester CO(2). Herein, (3-aminopropyl) trimethoxysilane (APTMS), [3-(methylamino)propyl] trimethoxysilane (MAPTMS), and [3-(diethylamino) propyl] trimethoxysilane (DEAPTMS) are immobilized on highly ordered mesoporous silicas (SBA-15) to catch CO(2) as primary, secondary, and tertiary aminosilica adsorbents. X-ray photoelectron spectroscopy was used to analyze the immobilized APTMS, MAPTMS, and DEAPTMS on the SBA-15. We report an interesting discovery that the CO(2) adsorption and desorption on the adsorbent depend on the amine type of the aminosilica adsorbent. The adsorbed CO(2) was easily desorbed from the adsorbent with the low energy consumption in the order of tertiary, secondary, and primary amino-adsorbents while the adsorption amount and the bonding-affinity increased in the reverse order. The effectiveness of amino-functionalized (1(o), 2(o), and 3(o) amines) SBA-15s as a CO(2) capturing agent was investigated in terms of adsorption capacity, adsorption-desorption kinetics, and thermodynamics. This work demonstrates apt amine types to catch CO(2) and regenerate the adsorbent, which may open new avenues to designing "CO(2) basket".

  7. Fingerprinting captured CO2 using natural tracers: Determining CO2 fate and proving ownership

    Science.gov (United States)

    Flude, Stephanie; Gilfillan, Stuart; Johnston, Gareth; Stuart, Finlay; Haszeldine, Stuart

    2016-04-01

    In the long term, captured CO2 will most likely be stored in large saline formations and it is highly likely that CO2 from multiple operators will be injected into a single saline formation. Understanding CO2 behavior within the reservoir is vital for making operational decisions and often uses geochemical techniques. Furthermore, in the event of a CO2 leak, being able to identify the owner of the CO2 is of vital importance in terms of liability and remediation. Addition of geochemical tracers to the CO2 stream is an effective way of tagging the CO2 from different power stations, but may become prohibitively expensive at large scale storage sites. Here we present results from a project assessing whether the natural isotopic composition (C, O and noble gas isotopes) of captured CO2 is sufficient to distinguish CO2 captured using different technologies and from different fuel sources, from likely baseline conditions. Results include analytical measurements of CO2 captured from a number of different CO2 capture plants and a comprehensive literature review of the known and hypothetical isotopic compositions of captured CO2 and baseline conditions. Key findings from the literature review suggest that the carbon isotope composition will be most strongly controlled by that of the feedstock, but significant fractionation is possible during the capture process; oxygen isotopes are likely to be controlled by the isotopic composition of any water used in either the industrial process or the capture technology; and noble gases concentrations will likely be controlled by the capture technique employed. Preliminary analytical results are in agreement with these predictions. Comparison with summaries of likely storage reservoir baseline and shallow or surface leakage reservoir baseline data suggests that C-isotopes are likely to be valuable tracers of CO2 in the storage reservoir, while noble gases may be particularly valuable as tracers of potential leakage.

  8. Growth condition study of algae function in ecosystem for CO2 bio-fixation.

    Science.gov (United States)

    Tsai, David Dah-Wei; Ramaraj, Rameshprabu; Chen, Paris Honglay

    2012-02-06

    Algae niche play a crucial role on carbon cycle and have great potential for CO(2) sequestration. This study was to investigate the CO(2) bio-fixation by the high rate pond (HRP) to mimic the algae function of nature. All the reactors can keep CO(2) consumption efficiencies over 100%. The statistical analyses proved HRPs were close to the natural system from all the growth conditions. The HRP could show the "natural optimization as nature" to perform as well as the artificial reactor of continuously stirred tank reactor (CSTR). In the nutrition study, the carbon mass balance indicated CO(2) was the main carbon source. Accordingly, the HRPs can keep a neutral pH range to provide dissolved oxygen (DO), to promote total nitrogen (TN)/total phosphorous (TP) removal efficiencies and to demonstrate self-purification process. Furthermore, the observations of different nitrogen species in the reactors demonstrated that the major nitrogen source was decided by pH. This finding logically explained the complex nitrogen uptake by algae in nature. Consequently, this study took advantage of HRP to explore the processes of efficient CO(2) uptake with the corresponding growth condition in the ecosystem. Those results contributed the further understanding of the role of CO(2) bio-fixation in nature and demonstrated HRP could be a potential ecological engineering alternative.

  9. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean

    Science.gov (United States)

    Holding, J. M.; Duarte, C. M.; Sanz-Martín, M.; Mesa, E.; Arrieta, J. M.; Chierici, M.; Hendriks, I. E.; García-Corral, L. S.; Regaudie-de-Gioux, A.; Delgado, A.; Reigstad, M.; Wassmann, P.; Agustí, S.

    2015-12-01

    The Arctic Ocean is warming at two to three times the global rate and is perceived to be a bellwether for ocean acidification. Increased CO2 concentrations are expected to have a fertilization effect on marine autotrophs, and higher temperatures should lead to increased rates of planktonic primary production. Yet, simultaneous assessment of warming and increased CO2 on primary production in the Arctic has not been conducted. Here we test the expectation that CO2-enhanced gross primary production (GPP) may be temperature dependent, using data from several oceanographic cruises and experiments from both spring and summer in the European sector of the Arctic Ocean. Results confirm that CO2 enhances GPP (by a factor of up to ten) over a range of 145-2,099 μatm however, the greatest effects are observed only at lower temperatures and are constrained by nutrient and light availability to the spring period. The temperature dependence of CO2-enhanced primary production has significant implications for metabolic balance in a warmer, CO2-enriched Arctic Ocean in the future. In particular, it indicates that a twofold increase in primary production during the spring is likely in the Arctic.

  10. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean

    KAUST Repository

    Holding, J. M.

    2015-08-31

    The Arctic Ocean is warming at two to three times the global rate1 and is perceived to be a bellwether for ocean acidification2, 3. Increased CO2 concentrations are expected to have a fertilization effect on marine autotrophs4, and higher temperatures should lead to increased rates of planktonic primary production5. Yet, simultaneous assessment of warming and increased CO2 on primary production in the Arctic has not been conducted. Here we test the expectation that CO2-enhanced gross primary production (GPP) may be temperature dependent, using data from several oceanographic cruises and experiments from both spring and summer in the European sector of the Arctic Ocean. Results confirm that CO2 enhances GPP (by a factor of up to ten) over a range of 145–2,099 μatm; however, the greatest effects are observed only at lower temperatures and are constrained by nutrient and light availability to the spring period. The temperature dependence of CO2-enhanced primary production has significant implications for metabolic balance in a warmer, CO2-enriched Arctic Ocean in the future. In particular, it indicates that a twofold increase in primary production during the spring is likely in the Arctic.

  11. Impact of warming on CO2 emissions from streams countered by aquatic photosynthesis

    Science.gov (United States)

    Demars, Benoît O. L.; Gíslason, Gísli M.; Ólafsson, Jón S.; Manson, J. Russell; Friberg, Nikolai; Hood, James M.; Thompson, Joshua J. D.; Freitag, Thomas E.

    2016-10-01

    Streams and rivers are an important source of CO2 emissions. One important control of these emissions is the metabolic balance between photosynthesis, which converts CO2 to organic carbon, and respiration, which converts organic carbon into CO2 (refs ,). Carbon emissions from rivers could increase with warming, independently of organic carbon inputs, because the apparent activation energy is predicted to be higher for respiration than photosynthesis. However, physiological CO2-concentrating mechanisms may prevent the increase in photorespiration, limiting photosynthesis with warming. Here we report the thermal response of aquatic photosynthesis from streams located in geothermal areas of North America, Iceland and Kamchatka with water temperatures ranging between 4 and 70 °C. Based on a thermodynamic theory of enzyme kinetics, we show that the apparent activation energy of aquatic ecosystem photosynthesis is approximately 0.57 electron volts (eV) for temperatures ranging from 4 to 45 °C, which is similar to that of respiration. This result and a global synthesis of 222 streams suggest that warming will not create increased stream and river CO2 emissions from a warming-induced imbalance between photosynthesis and respiration. However, temperature could affect annual CO2 emissions from streams if ecosystem respiration is independent of gross primary production, and may be amplified by increasing organic carbon supply.

  12. Exploring the impact of determining factors behind CO2 emissions in China: A CGE appraisal.

    Science.gov (United States)

    Xiao, Bowen; Niu, Dongxiao; Wu, Han

    2017-03-01

    Along with the arrival of the post-Kyoto Protocol era, the Chinese government faces ever greater pressure to reduce greenhouse gases (GHGs). Hence, this paper aims to discuss the drivers of carbon dioxide (CO2) emissions and their impact on society as a whole. First, we analyzed the background and overall situations of CO2 emissions in China. Then, we reviewed previous studies to explore the determinants behind China's CO2 emissions. It is widely acknowledged that energy efficiency, energy mix, and economy structure are three key factors contributing to CO2 emissions. To explore the impacts of those three factors on the economy and CO2 emissions, we established a computable general equilibrium (CGE) model. The following results were found: (1) The decline of a secondary industry can cause an emission reduction effect, but this is at the expense of the gross domestic product (GDP), whereas the development of a tertiary industry can boost the economy and help to reduce CO2 emissions. (2) Cutting coal consumption can contribute significantly to emission reduction, which is accompanied by a great loss in the whole economy. (3) Although the energy efficiency improvement plays a positive role in promoting economic development, a backfire effect can weaken the effects of emission reduction and energy savings.

  13. Controlling factors analysis of pCO2 distribution in the Western Arctic Ocean in summertime

    Science.gov (United States)

    Song, Xuelian; Bai, Yan; Hao, Zengzhou; Zhun, Qiankun; Chen, Jianyu; Gong, Fang

    2015-10-01

    The uptake of carbon dioxide (CO2) by the Arctic Ocean has been changing because of the rapid sea-ice retreat with global warming. The Chukchi Sea is the only gateway of the warm and nutrient-rich Pacific Ocean water flowing into the North Pole, and the high productivity-water had great impact on the CO2 uptake by the Arctic Ocean. We used the in situ underway data of aquatic partial pressure of CO2 (pCO2), temperature and salinity, as well as the remote sensing data of sea ice concentration, chlorophyll concentration, sea surface temperature in August in 2008, 2011 and 2012 to analyze the major controlling factors of aquatic pCO2 in the Western Arctic Ocean. We analyzed the pCO2 variation under the effects of thermodynamic process (temperature), mixing of water mass (salinity), biological drawdown (chlorophyll), and sea ice concentration. The aquatic pCO2 was generally unsaturation relative to the atmospheric CO2 in most of the Western Arctic Ocean. According to different controlling mechanisms, the study area was divided into three parts: the area affected by the Pacific Ocean water (mainly in the Chukchi Sea), the area where sea ice mostly melted with weak biological production (the southern Canada Basin and the Western Beaufort Sea), and the area mostly covered by sea ice (the Northern Canada Basin). The aquatic pCO2 was low in the Chukchi Sea with the influence of the Pacific Ocean water. While, pCO2 in the area where sea ice melted was up to 360-380 μatm because of warming, CO2 invasion from the atmosphere, and a low biological production. For the Canada Basin, it was controlled by temperature change and sea ice cover. The remote sensing data in large spatial-temporal scale can help to understand the pCO2 variation and its response to global change; and it needs to develop satellite algorithm of pCO2 based on the quantification of controlling processes.

  14. CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2 Geostorage.

    Science.gov (United States)

    Iglauer, Stefan

    2017-05-16

    Carbon geosequestration (CGS) has been identified as a key technology to reduce anthropogenic greenhouse gas emissions and thus significantly mitigate climate change. In CGS, CO2 is captured from large point-source emitters (e.g., coal fired power stations), purified, and injected deep underground into geological formations for disposal. However, the CO2 has a lower density than the resident formation brine and thus migrates upward due to buoyancy forces. To prevent the CO2 from leaking back to the surface, four trapping mechanisms are used: (1) structural trapping (where a tight caprock acts as a seal barrier through which the CO2 cannot percolate), (2) residual trapping (where the CO2 plume is split into many micrometer-sized bubbles, which are immobilized by capillary forces in the pore network of the rock), (3) dissolution trapping (where CO2 dissolves in the formation brine and sinks deep into the reservoir due to a slight increase in brine density), and (4) mineral trapping (where the CO2 introduced into the subsurface chemically reacts with the formation brine or reservoir rock or both to form solid precipitates). The efficiency of these trapping mechanisms and the movement of CO2 through the rock are strongly influenced by the CO2-brine-rock wettability (mainly due to the small capillary-like pores in the rock which form a complex network), and it is thus of key importance to rigorously understand CO2-wettability. In this context, a substantial number of experiments have been conducted from which several conclusions can be drawn: of prime importance is the rock surface chemistry, and hydrophilic surfaces are water-wet while hydrophobic surfaces are CO2-wet. Note that CO2-wet surfaces dramatically reduce CO2 storage capacities. Furthermore, increasing pressure, salinity, or dissolved ion valency increases CO2-wettability, while the effect of temperature is not well understood. Indeed theoretical understanding of CO2-wettability and the ability to

  15. Carbon Dioxide Clusters: (CO_2)_6 to (CO_2)13

    Science.gov (United States)

    McKellar, A. R. W.; Oliaee, J. Norooz; Dehghany, M.; Moazzen-Ahmadi, N.

    2011-06-01

    We recenty reported assignments of specific infrared bands in the CO_2 νb{3} region (˜2350 wn) to (CO_2)_6, (CO_2)_7, (CO_2)_9, (CO_2)10, (CO_2)11, (CO_2)12, and (CO_2)13. Spectra are obtained by direct absorption using a rapid-scan tuneable diode laser spectrometer to probe a pulsed supersonic slit-jet expansion and assignments are facilitated by recent calculations of Takeuchi based on the Murthy potential. (CO_2)_6 is a symmetric top with S_6 point group symmetry which can be thought of as a stack of two planar cyclic trimers. (CO_2)13 is also an S_6 symmetric top, and consists of a single CO_2 monomer surrounded by an slightly distorted icosahedral cage. The remaining clusters are asymmetric tops without symmetry. Here we report additional CO_2 cluster results. Calculations based on the SAPT-s potential indicate that the structure of (CO_2)10 may be slightly different from that given by Takeuchi/Murthy. An additional band is observed for each of (CO_2)13 and (CO_2)10. A feature observed at 2378.2 wn is assigned as a (CO_2)_6 parallel combination band involving the sum of a fundamental and a low-lying intermolecular vibration. Most significantly, two bands are assigned to a second isomer of (CO_2)_6. This is also a symmetric top, but now with S_4 symmetry. The two symmetric hexamer isomers observed spectroscopically correspond well with the lowest energy structures given by both the SAPT-s and Murthy intermolecular potentials. [1] J. Norooz Oliaee, M. Dehgany, N. Moazzen-Ahmadi, and A.R.W. McKellar, Phys. Chem. Chem. Phys. 13, 1297 (2011). [2] H. Takeuchi, J. Phys. Chem. A 107, 5703 (2008); C.S. Murthy, S.F. O'Shea, and I.R. McDonald, Mol. Phys. 50, 531 (1983). [3] R. Bukowski, J. Sadlej, B. Jeziorski, P. Jankowski, K. Szalewicz, S.A. Kucharski, H.L. Williams, and B.M. Rice, J. Chem. Phys. 110, 3785 (1999)

  16. Regulation of CO2 Concentrating Mechanism in Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Robert L. Burnap

    2015-01-01

    Full Text Available In this chapter, we mainly focus on the acclimation of cyanobacteria to the changing ambient CO2 and discuss mechanisms of inorganic carbon (Ci uptake, photorespiration, and the regulation among the metabolic fluxes involved in photoautotrophic, photomixotrophic and heterotrophic growth. The structural components for several of the transport and uptake mechanisms are described and the progress towards elucidating their regulation is discussed in the context of studies, which have documented metabolomic changes in response to changes in Ci availability. Genes for several of the transport and uptake mechanisms are regulated by transcriptional regulators that are in the LysR-transcriptional regulator family and are known to act in concert with small molecule effectors, which appear to be well-known metabolites. Signals that trigger changes in gene expression and enzyme activity correspond to specific “regulatory metabolites” whose concentrations depend on the ambient Ci availability. Finally, emerging evidence for an additional layer of regulatory complexity involving small non-coding RNAs is discussed.

  17. Molecular simulation studies of CO2 adsorption by carbon model compounds for carbon capture and sequestration applications.

    Science.gov (United States)

    Liu, Yangyang; Wilcox, Jennifer

    2013-01-02

    Effects of oxygen-containing surface functionalities on the adsorption of mixtures including CO(2)/CH(4), CO(2)/N(2), and CO(2)/H(2)O have been investigated in the current work. Together with Bader charge analysis, electronic structure calculations have provided the initial framework comprising both the geometry and corresponding charge information required to carry out statistical-based molecular simulations. The adsorption isotherms and selectivity of CO(2) from CO(2)/N(2), CO(2)/CH(4), and CO(2)/H(2)O gas mixtures were determined by grand canonical Monte Carlo simulations at temperature/pressure conditions relevant to carbon capture and sequestration applications. The interactions between the surfaces with induced polarity and nonpolar/polar molecules have been investigated. It has been observed that, due to the induced polarity of the surface functionalization, the selectivity of CO(2) over CH(4) increases from approximately 2 to higher than 5, and the selectivity of CO(2) over N(2) increases from approximately 5 to 20, especially in the low-pressure regime. However, water vapor will always preferentially adsorb over CO(2) in carbon-based systems containing oxygen functionalized surfaces at conditions relevant to carbon capture application. Molecular simulation results indicate that the surface chemistry in micropores is tunable thereby influencing the selectivity for enhanced uptake of CO(2).

  18. Eddy covariance CO2 flux above a Gmelin larch forest on continuous permafrost in Central Siberia during a growing season

    Science.gov (United States)

    Nakai, Y.; Matsuura, Y.; Kajimoto, T.; Abaimov, A. P.; Yamamoto, S.; Zyryanova, O. A.

    2008-08-01

    Gmelin larch ( Larix gmelinii) forests are representative vegetation in the continuous permafrost region of Central Siberia. Information on the carbon budget is still limited for this Siberian larch taiga in comparison to boreal forests in other regions, while the larch forests are expected to play a key role in the global carbon balance due to their wide distribution over North-East Eurasia. The authors reported results of eddy covariance CO2 flux measurements at a mature Gmelin larch stand in Central Siberia, Russia (64°16'N, 100°12'E, 250 m a.s.l.). The measurements were conducted during one growing season (June-early September in 2004). CO2 uptake was initiated in early June and increased sharply until late June, which was closely related to the phenology of the larch trees (i.e., bud-break and needle flush). Maximum half-hourly net CO2 uptake was ˜6 µmol m-2 s-1. Maximum daily net uptake of ˜2 g C m-2 day-1 occurred at the end of June and in mid-July. Cumulative net uptake was 76-78 g C m-2, indicating that the mature larch forest acted as a net sink for CO2 during the growing season (91 days). In comparison with other boreal forests, however, the magnitude of net CO2 uptake and night-time release of the forest, and cumulative net CO2 uptake were lower. We suggest that lower net ecosystem CO2 uptake of the study stand was primarily associated with low leaf area index.

  19. CO2 and CO Simulations and Their Source Signature Indicated by CO/CO2

    Science.gov (United States)

    Kawa, Randy; Huisheng, Bian

    2004-01-01

    Three years (2000-2002) atmospheric CO2 and CO fields are simulated by a Chemistry Transport Model driven by the assimilated meteorological fields from GEOS-4. The simulated CO2 and CO are evaluated by measurements from surface (CMDL), satellite (MOPITT/CO), and aircraft. The model-observation comparisons indicate reasonable agreement in both source and remote regions, and in the lower and upper troposphere. The simulation also captures the seasonality of CO2 and CO variations. The ratios of CO/CO2 are analyzed over different representative regions to identify the source signature, since the anthropogenic CO comes fiom the same combustion processes as CO2. This work enables us to improve satellite inversion estimates of CO2 sources and sinks by simultaneously using satellite CO measurement.

  20. Computational Studies of CO 2 Sorption and Separation in an Ultramicroporous Metal–Organic Material

    KAUST Repository

    Forrest, Katherine A.

    2013-08-29

    Grand canonical Monte Carlo (GCMC) simulations of CO2 sorption and separation were performed in [Zn(pyz)2SiF6], a metal-organic material (MOM) consisting of a square grid of Zn2+ ions coordinated to pyrazine (pyz) linkers and pillars of SiF6 2- ions. This MOM was recently shown to have an unprecedented selectivity for CO2 over N2, CH4, and H 2 under industrially relevant conditions. The simulated CO 2 sorption isotherms and calculated isosteric heat of adsorption, Qst, values were in excellent agreement with the experimental data for all the state points considered. CO2 saturation in [Zn(pyz) 2SiF6] was achieved at near-ambient temperatures and pressures lower than 1.0 atm. Moreover, the sorbed CO2 molecules were representative of a liquid/fluid under such conditions as confirmed through calculating the isothermal compressibility, βT, values. The simulated CO2 uptakes within CO2/N2 (10:90), CO2/CH4 (50:50), and CO2/H2 (30:70) mixture compositions, characteristic of flue gas, biogas, and syngas, respectively, were comparable to those that were produced in the single-component CO2 sorption simulations. The modeled structure at saturation revealed a loading of 1 CO2 molecule per unit cell. The favored CO2 sorption site was identified as the attraction of the carbon atoms of CO2 molecules to four equatorial fluorine atoms of SiF6 2- anions simultaneously, resulting in CO2 molecules localized at the center of the channel. Furthermore, experimental studies have shown that [Zn(pyz)2SiF6] sorbed minimal amounts of CO2 and N2 at their respective liquid temperatures. Analysis of the crystal structure at 100 K revealed that the unit cell undergoes a slight contraction in all dimensions and contains pyrazine rings that are mildly slanted with an angle of 13.9. Additionally, molecular dynamics (MD) simulations revealed that the sorbate molecules are anchored to the framework at low temperatures, which inhibits diffusion. Thus, it is hypothesized that the sorbed molecules

  1. Nitrogen Limitation is Reducing the Enhancement of NPP by Elevated CO2 in a Deciduous Forest

    Energy Technology Data Exchange (ETDEWEB)

    Norby, Richard J [ORNL; Warren, Jeffrey [ORNL; Iversen, Colleen M [ORNL; Medlyn, Belinda [Macquarie University; McMurtrie, Ross [University of New South Wales; Hoffman, Forrest M [ORNL

    2008-01-01

    Accurate model representation of the long-term response of forested ecosystems to elevated atmospheric CO2 concentrations (eCO2) is important for predictions of future concentrations of CO2. For biogeochemical models that predict the response of net primary productivity (NPP) to eCO2, free-air CO2 enrichment (FACE) experiments provide the only source of data for comparison. A synthesis of forest FACE experiments reported a 23% increase in NPP in eCO2, and this result has been used as a model benchmark. Here, we provide new evidence from a FACE experiment in a deciduous forest in Tennessee that N limitation has significantly reduced the stimulation of NPP by eCO2, consistent with predictions from ecosystem and global models that incorporate N feedbacks. The Liquidambar styraciflua stand has been exposed to current ambient atmospheric CO2 or air enriched with CO2 to 550 ppm since 1998. Results from the first 6 years of the experiment indicated that NPP was significantly enhanced by eCO2 and that this was a consistent and sustained response. Now, with 10 years of data, our analysis must be revised. The response of NPP to eCO2 has declined from 24% in 2001-2003 to 9% in 2007. The diminishing response to eCO2 since 2004 coincides with declining NPP in ambient CO2 plots. Productivity of this forest stand is limited by N availability, and the steady decline in forest NPP is closely related to changes in the N economy, as evidenced by declining foliar N concentrations. There is a strong linear relationship between foliar [N] and NPP, and the steeper slope in eCO2 indicates that the NPP response to eCO2 should diminish as foliar N declines. Increased fine-root production and root proliferation deeper in the soil have sustained N uptake, but not to an extent sufficient to benefit aboveground production. The mechanistic basis of the N effect on NPP resides in the photosynthetic machinery. The linear relationships between Jmax and Vcmax with foliar [N] did not change from 1998

  2. Nitrogen Limitation is Reducing the Enhancement of NPP by Elevated CO2 in a Deciduous Forest

    Science.gov (United States)

    Norby, R. J.; Warren, J. M.; Iversen, C. M.; Medlyn, B. E.; McMurtrie, R. E.; Hoffman, F. M.

    2008-12-01

    Accurate model representation of the long-term response of forested ecosystems to elevated atmospheric CO2 concentrations (eCO2) is important for predictions of future concentrations of CO2. For biogeochemical models that predict the response of net primary productivity (NPP) to eCO2, free-air CO2 enrichment (FACE) experiments provide the only source of data for comparison. A synthesis of forest FACE experiments reported a 23% increase in NPP in eCO2, and this result has been used as a model benchmark. Here, we provide new evidence from a FACE experiment in a deciduous forest in Tennessee that N limitation has significantly reduced the stimulation of NPP by eCO2, consistent with predictions from ecosystem and global models that incorporate N feedbacks. The Liquidambar styraciflua stand has been exposed to current ambient atmospheric CO2 or air enriched with CO2 to 550 ppm since 1998. Results from the first 6 years of the experiment indicated that NPP was significantly enhanced by eCO2 and that this was a consistent and sustained response. Now, with 10 years of data, our analysis must be revised. The response of NPP to eCO2 has declined from 24% in 2001-2003 to 9% in 2007. The diminishing response to eCO2 since 2004 coincides with declining NPP in ambient CO2 plots. Productivity of this forest stand is limited by N availability, and the steady decline in forest NPP is closely related to changes in the N economy, as evidenced by declining foliar N concentrations. There is a strong linear relationship between foliar [N] and NPP, and the steeper slope in eCO2 indicates that the NPP response to eCO2 should diminish as foliar N declines. Increased fine-root production and root proliferation deeper in the soil have sustained N uptake, but not to an extent sufficient to benefit aboveground production. The mechanistic basis of the N effect on NPP resides in the photosynthetic machinery. The linear relationships between Jmax and Vcmax with foliar [N] did not change from 1998

  3. The Idea of Global CO2 Trade

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard

    1998-01-01

    The US has been criticized for wanting to earn a fortune on a global CO2 market. However, compared to the situation without trade and provided that such a market is designed so that it does not pay to cheat, a global CO2 market may provide the world with an epoch-making means of cost-effective co...... profitable trade. Also, a periodical renewal of permits makes it possible to tighten target levels in the future.......The US has been criticized for wanting to earn a fortune on a global CO2 market. However, compared to the situation without trade and provided that such a market is designed so that it does not pay to cheat, a global CO2 market may provide the world with an epoch-making means of cost......-effective control which can solve future global environmental problems. The gains from CO2 trade may give vital financial subsidies from the EU to Eastern Europe, for example, and it will probably not pay to cheat if quotas are renewed periodically by the UN. Cheating countries are then to be excluded from further...

  4. The Idea of Global CO2 Trade

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard

    1999-01-01

    The US has been criticized for wanting to earn a fortune on a global CO2 market. However, compared to the situation without trade and provided that such a market is designed so that it does not pay to cheat, a global CO2 market may provide the world with an epoch-making means of cost-effective co...... not pay to cheat if quotas are renewed periodically by the UN. Cheating countries are then to be excluded from further profitable trade. Also, a periodical renewal of permits makes it possible to tighten target levels in the future.......The US has been criticized for wanting to earn a fortune on a global CO2 market. However, compared to the situation without trade and provided that such a market is designed so that it does not pay to cheat, a global CO2 market may provide the world with an epoch-making means of cost......-effective control which can solve future global environmental problems. The economic gains from 'hot air' distributions of permits and CO2 trade make the system politically attractive to potential participants. For example, vital financial subsidies from the EU to Eastern Europe are to be expected. It will probably...

  5. A cost effective CO2 strategy

    DEFF Research Database (Denmark)

    by the Ministry of Transport, with the Technical University of Denmark as one of the main contributors. The CO2-strategy was to be based on the principle of cost-effectiveness. A model was set up to assist in the assessment. The model consists of a projection of CO2-emissions from road and rail modes from 2020...... are evaluated according to CO2 reduction potential and according to the ‘shadow price’ on a reduction of one ton CO2. The shadow price reflects the costs (and benefits) of the different measures. Comparing the measures it is possible to identify cost effective measures, but these measures are not necessarily......, a scenario-part and a cost-benefit part. Air and sea modes are not analyzed. The model adopts a bottom-up approach to allow a detailed assessment of transport policy measures. Four generic areas of intervention were identified and the likely effect on CO2 emissions, socioeconomic efficiency and other...

  6. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption.

    KAUST Repository

    Bhatt, Prashant

    2016-07-08

    The development of functional solid-state materials for carbon capture at low carbon dioxide (CO2) concentrations, from con-fined spaces (<0.5 %) and particularly from air (400 ppm), is of prime importance with respect to energy and environment sustainability. Herein, we report the deliberate construction of a hydrolytically stable fluorinated metal-organic framework (MOF), NbOFFIVE-1-Ni, with the proper pore system (size, shape and functionality), ideal for efficient and effective traces carbon dioxide removal. Markedly, the CO2-selective NbOFFIVE-1-Ni exhibits the highest CO2 gravimetric and volumetric uptake (ca. 1.3 mmol/g and 51.4 cm3.cm-3) for physical adsorbents at 400 ppm CO2 and 298 K. Practically, the NbOFFIVE-1-Ni affords the complete CO2 desorption at 328 K under vacuum with an associated moderate energy input of 54 kJ/mol, typical for the full CO2 desorption in reference physical adsorbents but considerably lower than the conventional chemical sorbents. Noticeably, the contracted square-like channels, affording the close proximity of the fluorine centers, permitted the enhancement of the CO2-framework interactions and subsequently the attainment of an unprecedented CO2-selectivity at very low CO2 concentrations. The precise localization of the adsorbed CO2 at the vicinity of the periodically aligned fluorine centers, promoting the selective adsorption of CO2, is evidenced by the single-crystal X-ray diffraction study on the NbOFFIVE-1-Ni hosting CO2 molecules. Cyclic CO2/N2 mixed-gas column breakthrough experiments under dry and humid conditions corroborate the excellent CO2-selectivity under practical carbon capture conditions. Pertinently, the no-table hydrolytic stability positions the NbOFFIVE-1-Ni as the new benchmark adsorbent for direct air capture and CO2 removal from confined spaces.

  7. Infrared absorption spectroscopy of CO2-HX complexes using the CO2 asymmetric stretch chromophore: CO2HF(DF) and CO2HCl(DCl) linear and CO2HBr bent equilibrium geometries

    Science.gov (United States)

    Sharpe, S. W.; Zeng, Y. P.; Wittig, C.; Beaudet, R. A.

    1990-01-01

    Infrared absorption spectra associated with the CO2 asymmetric stretch vibration have been recorded for weakly bonded gas-phase complexes of CO2 with HF, DF, HCl, DCl, and HBr, using tunable diode laser spectroscopy and a pulsed slit expansion (0.15×38 mm2) that provides >20 MHz overall resolution. Results obtained with CO2-HF are in agreement with earlier studies, in which the HF-stretch region near 3900 cm-1 was examined. In both cases, broad linewidths suggest subnanosecond predissociation. With CO2-DF, the natural linewidths are markedly narrower than with CO2-HF (e.g., 28 vs 182 MHz), and this difference is attributed to slower predissociation, possibly implicating resonances in the case of CO2-HF. Both CO2-HF and CO2-DF exhibited overlapping features: simple P and R branches associated with a linear rotor, and P and R branches containing doublets. As in earlier studies, the second feature can be assigned to either a slightly asymmetric rotor with Ka=1, or a hot band involving a low-frequency intermolecular bend mode. Results obtained with CO2-HCl are in excellent agreement with earlier microwave measurements on the ground vibrational state, and the vibrationally excited state is almost identical to the lower state. Like CO2-DF, linewidths of CO2-HCl and CO2-DCl are much sharper than those of CO2-HF, and in addition, CO2-HCl and CO2-DCl exhibited weak hot bands, as were also evident with CO2-HF and CO2-DF. Upon forming complexes with either HF or HCl, the asymmetric stretch mode of CO2 underwent a blue shift relative to uncomplexed CO2. This can be understood in terms of the nature of the hydrogen bonds, and ab initio calculations are surprisingly good at predicting these shifts. Deuteration of both HF and HCl resulted in further blue shifts of the band origins. These additional shifts are attributed to stronger intermolecular interactions, i.e., deuteration lowers the zero-point energy, and in a highly anharmonic field this results in a more compact average

  8. Spatiotemporal variability and drivers of pCO2 and air–sea CO2 fluxes in the California Current System: an eddy-resolving modeling study

    Directory of Open Access Journals (Sweden)

    G. Turi

    2013-08-01

    Full Text Available We quantify the CO2 source/sink nature of the California Current System (CalCS and determine the drivers and processes behind the mean and spatiotemporal variability of the partial pressure of CO2 (pCO2 in the surface ocean. To this end, we analyze eddy-resolving, climatological simulations of a coupled physical-ecosystem-biogeochemical ocean model on the basis of the Regional Oceanic Modeling System (ROMS. The model-simulated pCO2 agrees very well with in situ observations over the entire domain with virtually no bias, but the model overestimates pCO2 in the nearshore 100 km, and underestimates the observed temporal variability. In the annual mean, the entire CalCS within 800 km of the coast and from ~ 33° N to 46° N is essentially neutral with regard to atmospheric CO2. The model simulates an integrated uptake flux of −0.9 Tg C yr–1, corresponding to a very small average flux density of −0.05 mol C m–2 yr–1, with an uncertainty of the order of ±0.20 mol C m–2 yr–1. This near zero flux is a consequence of an almost complete regional compensation between the strong outgassing in the nearshore region (first 100 km, with flux densities of more than 3 mol C m–2 yr–1 and a weaker, but more widespread uptake flux in the offshore region with an average flux density of −0.17 mol C m–2 yr–1. This pattern is primarily a result of the interaction between upwelling in the nearshore that brings waters with high concentrations of dissolved inorganic ca