WorldWideScience

Sample records for grizzly bear habitat

  1. Coefficients of productivity for Yellowstone's grizzly bear habitat

    Science.gov (United States)

    Mattson, David John; Barber, Kim; Maw, Ralene; Renkin, Roy

    2004-01-01

    This report describes methods for calculating coefficients used to depict habitat productivity for grizzly bears in the Yellowstone ecosystem. Calculations based on these coefficients are used in the Yellowstone Grizzly Bear Cumulative Effects Model to map the distribution of habitat productivity and account for the impacts of human facilities. The coefficients of habitat productivity incorporate detailed information that was collected over a 20-year period (1977-96) on the foraging behavior of Yellowstone's bears and include records of what bears were feeding on, when and where they fed, the extent of that feeding activity, and relative measures of the quantity consumed. The coefficients also incorporate information, collected primarily from 1986 to 1992, on the nutrient content of foods that were consumed, their digestibility, characteristic bite sizes, and the energy required to extract and handle each food. Coefficients were calculated for different time periods and different habitat types, specific to different parts of the Yellowstone ecosystem. Stratifications included four seasons of bear activity (spring, estrus, early hyperphagia, late hyperphagia), years when ungulate carrion and whitebark pine seed crops were abundant versus not, areas adjacent to (bear activity in each region, habitat type, and time period were incorporated into calculations, controlling for the effects of proximity to human facilities. The coefficients described in this report and associated estimates of grizzly bear habitat productivity are unique among many efforts to model the conditions of bear habitat because calculations include information on energetics derived from the observed behavior of radio-marked bears.

  2. The impacts of intensity of human use on grizzly bear habitat selection

    OpenAIRE

    Ouren, Douglas S.; Garrott, Robert A.; Watts, Raymond D.; Lukins, William J.

    2003-01-01

    Problem Statement One of the major challenges to grizzly bear preservation in the greater Yellowstone area is the impact on grizzly bear habitat selection by various types and intensities of human activities. The most prevalent of these human activities is the presence and intensity of use of motorized transportation systems. These transportation systems provide increased access into grizzly bear habitat and thus increase the risk of mortality and dilute the effectiveness of their habitat (Br...

  3. Seasonal habitat use and selection by grizzly bears in Northern British Columbia

    Science.gov (United States)

    Milakovic, B.; Parker, K.L.; Gustine, D.D.; Lay, R.J.; Walker, A.B.D.; Gillingham, M.P.

    2012-01-01

    We defined patterns of habitat use and selection by female grizzly bears (Ursus arctos) in the Besa-Prophet watershed of northern British Columbia. We fitted 13 adult females with Geographic Positioning System (GPS) radio-collars and monitored them between 2001 and 2004. We examined patterns of habitat selection by grizzly bears relative to topographical attributes and 3 potential surrogates of food availability: land-cover class, vegetation biomass or quality (as measured by the Normalized Difference Vegetation Index), and selection value for prey species themselves (moose [Alces alces], elk [Cervus elaphus], woodland caribou [Rangifer tarandus], Stone's sheep [Ovis dalli stonei]). Although vegetation biomass and quality, and selection values for prey were important in seasonal selection by some individual bears, land-cover class, elevation, aspect, and vegetation diversity most influenced patterns of habitat selection across grizzly bears, which rely on availability of plant foods and encounters with ungulate prey. Grizzly bears as a group avoided conifer stands and areas of low vegetation diversity, and selected for burned land-cover classes and high vegetation diversity across seasons. They also selected mid elevations from what was available within seasonal ranges. Quantifying relative use of different attributes helped place selection patterns within the context of the landscape. Grizzly bears used higher elevations (1,595??31 m SE) in spring and lower elevations (1,436??27 m) in fall; the range of average elevations used among individuals was highest (500 m) during the summer. During all seasons, grizzly bears most frequented aspects with high solar gain. Use was distributed across 10 land-cover classes and depended on season. Management and conservation actions must maintain a diverse habitat matrix distributed across a large elevational gradient to ensure persistence of grizzly bears as levels of human access increase in the northern Rocky Mountains

  4. Grizzly bear habitat selection is scale dependent.

    Science.gov (United States)

    Ciarniello, Lana M; Boyce, Mark S; Seip, Dale R; Heard, Douglas C

    2007-07-01

    The purpose of our study is to show how ecologists' interpretation of habitat selection by grizzly bears (Ursus arctos) is altered by the scale of observation and also how management questions would be best addressed using predetermined scales of analysis. Using resource selection functions (RSF) we examined how variation in the spatial extent of availability affected our interpretation of habitat selection by grizzly bears inhabiting mountain and plateau landscapes. We estimated separate models for females and males using three spatial extents: within the study area, within the home range, and within predetermined movement buffers. We employed two methods for evaluating the effects of scale on our RSF designs. First, we chose a priori six candidate models, estimated at each scale, and ranked them using Akaike Information Criteria. Using this method, results changed among scales for males but not for females. For female bears, models that included the full suite of covariates predicted habitat use best at each scale. For male bears that resided in the mountains, models based on forest successional stages ranked highest at the study-wide and home range extents, whereas models containing covariates based on terrain features ranked highest at the buffer extent. For male bears on the plateau, each scale estimated a different highest-ranked model. Second, we examined differences among model coefficients across the three scales for one candidate model. We found that both the magnitude and direction of coefficients were dependent upon the scale examined; results varied between landscapes, scales, and sexes. Greenness, reflecting lush green vegetation, was a strong predictor of the presence of female bears in both landscapes and males that resided in the mountains. Male bears on the plateau were the only animals to select areas that exposed them to a high risk of mortality by humans. Our results show that grizzly bear habitat selection is scale dependent. Further, the

  5. Eastern slopes grizzly bear project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-01-01

    The cumulative effects of human activities on the grizzly bears in the central Canadian Rockies are not well known. As a result, a project was initiated in 1994 to address the urgent requirement for accurate scientific information on the habitat and populations of grizzly bears in the area of the Banff National Park and Kananaskis Country. This area is probably the most heavily used and developed area where the grizzly still survives. The information gathered throughout the course of this study will be used to better protect and manage the bears and other sensitive carnivores in the region. Using telemetry, researchers are monitoring 25 grizzly bears which were radio-collared in a 22,000 square-kilometer area in the upper Bow Valley drainage of the eastern Alberta slopes. The researchers involved in the project are working with representatives from Husky Oil and Talisman Energy on the sound development of the Moose Mountain oil and gas field without adversely affecting the grizzly bear population. Information collected over seven years indicated that the grizzly bears have few and infrequent offspring. Using the information gathered so far, the location of the Moose Mountain to Jumping Pound pipeline was carefully selected, since the bears recover very slowly from high mortality, and also considering that the food and cover had already been compromised by the high number of roads, trails and other human activities in the area. The status of the population and habitat of the grizzly bear will be assessed upon the conclusion of the field research phase in 2001. Models will be updated using the data obtained during eight years and will assist in the understanding of complex variables that affect grizzly bears.

  6. The paradigm of grizzly bear restoration in North America

    Science.gov (United States)

    Schwartz, C. C.; Maehr, David S.; Noss, Reed F.; Larkin, J.L.

    2002-01-01

    Grizzly bear restoration and recovery is a controversial, highly politicized process. By 1959, when the Craigheads began their pioneering work on Yellowstone grizzly bears, the species had been reduced to a remnant of its historic range. Prior to the colonization of North America by Europeans, the grizzly lived in relatively pristine habitats with aboriginal Native Americans. As civilization expanded, humans changed the face of the landscape, converting grizzly bear habitat to farms and ranches. People killed grizzlies to protect livestock and eliminate a perceived threat to human safety. In concert, habitat loss and direct human-caused mortality had effectively eliminated the grizzly from 95 percent of its historic range in the conterminous United States by the 1920s (Servheen 1989). Grizzly bear numbers had been reduced nearly 98 percent by 1975 when the species was listed as threatened under the Endangered Species Act (ESA) (USFWS 1993).

  7. Eastern slopes grizzly bear project : project update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    This report updates a study to examine the cumulative effects of human activities on the grizzly bears in the central Canadian Rockies. The project was initiated in 1994 to acquire accurate scientific information on the habitat and populations of grizzly bears in the area of the Banff National Park and Kananaskis Country. This area is probably the most heavily used and developed area where the grizzly still survives. The information gathered throughout the course of the study is used to better protect and manage the bears and other sensitive carnivores in the region. Using telemetry, researchers monitored 25 grizzly bears which were radio-collared in a 22,000 square-kilometer area in the upper Bow Valley drainage of the eastern Alberta slopes. The researchers worked with representatives from Husky Oil and Rigel Energy on the development of the Moose Mountain oil and gas field without adversely affecting the grizzly bear population. Information collected over eight years indicates that the grizzly bears have few and infrequent offspring. Using the information gathered thus far, the location of the Moose Mountain to Jumping Pound pipeline was carefully selected, since the bears suffer from high mortality, and the food and cover had already been compromised by the high number of roads, trails and other human activities in the area. The research concluded in November 2001 provides sufficient information to accurately asses the status of the grizzly bear population and habitat. The data will be analyzed and integrated in 2002 into models that reflect the variables affecting grizzly bears and a final report will be published.

  8. Foothills model forest grizzly bear study : project update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    This report updates a five year study launched in 1999 to ensure the continued healthy existence of grizzly bears in west-central Alberta by integrating their needs into land management decisions. The objective was to gather better information and to develop computer-based maps and models regarding grizzly bear migration, habitat use and response to human activities. The study area covers 9,700 square km in west-central Alberta where 66 to 147 grizzly bears exist. During the first 3 field seasons, researchers captured and radio collared 60 bears. Researchers at the University of Calgary used remote sensing tools and satellite images to develop grizzly bear habitat maps. Collaborators at the University of Washington used trained dogs to find bear scat which was analyzed for DNA, stress levels and reproductive hormones. Resource Selection Function models are being developed by researchers at the University of Alberta to identify bear locations and to see how habitat is influenced by vegetation cover and oil, gas, forestry and mining activities. The health of the bears is being studied by researchers at the University of Saskatchewan and the Canadian Cooperative Wildlife Health Centre. The study has already advanced the scientific knowledge of grizzly bear behaviour. Preliminary results indicate that grizzlies continue to find mates, reproduce and gain weight and establish dens. These are all good indicators of a healthy population. Most bear deaths have been related to poaching. The study will continue for another two years. 1 fig.

  9. Grizzly bear

    Science.gov (United States)

    Schwartz, C.C.; Miller, S.D.; Haroldson, M.A.; Feldhamer, G.; Thompson, B.; Chapman, J.

    2003-01-01

    The grizzly bear inspires fear, awe, and respect in humans to a degree unmatched by any other North American wild mammal. Like other bear species, it can inflict serious injury and death on humans and sometimes does. Unlike the polar bear (Ursus maritimus) of the sparsely inhabited northern arctic, however, grizzly bears still live in areas visited by crowds of people, where presence of the grizzly remains physically real and emotionally dominant. A hike in the wilderness that includes grizzly bears is different from a stroll in a forest from which grizzly bears have been purged; nighttime conversations around the campfire and dreams in the tent reflect the presence of the great bear. Contributing to the aura of the grizzly bear is the mixture of myth and reality about its ferocity. unpredictable disposition, large size, strength, huge canines, long claws, keen senses, swiftness, and playfulness. They share characteristics with humans such as generalist life history strategies. extended periods of maternal care, and omnivorous diets. These factors capture the human imagination in ways distinct from other North American mammals. Precontact Native American legends reflected the same fascination with the grizzly bear as modern stories and legends (Rockwell 1991).

  10. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence.

    Directory of Open Access Journals (Sweden)

    Andrew Ladle

    Full Text Available Species' distributions are influenced by a combination of landscape variables and biotic interactions with other species, including people. Grizzly bears and black bears are sympatric, competing omnivores that also share habitats with human recreationists. By adapting models for multi-species occupancy analysis, we analyzed trail camera data from 192 trail camera locations in and around Jasper National Park, Canada to estimate grizzly bear and black bear occurrence and intensity of trail use. We documented (a occurrence of grizzly bears and black bears relative to habitat variables (b occurrence and intensity of use relative to competing bear species and motorised and non-motorised recreational activity, and (c temporal overlap in activity patterns among the two bear species and recreationists. Grizzly bears were spatially separated from black bears, selecting higher elevations and locations farther from roads. Both species co-occurred with motorised and non-motorised recreation, however, grizzly bears reduced their intensity of use of sites with motorised recreation present. Black bears showed higher temporal activity overlap with recreational activity than grizzly bears, however differences in bear daily activity patterns between sites with and without motorised and non-motorised recreation were not significant. Reduced intensity of use by grizzly bears of sites where motorised recreation was present is a concern given off-road recreation is becoming increasingly popular in North America, and can negatively influence grizzly bear recovery by reducing foraging opportunities near or on trails. Camera traps and multi-species occurrence models offer non-invasive methods for identifying how habitat use by animals changes relative to sympatric species, including humans. These conclusions emphasise the need for integrated land-use planning, access management, and grizzly bear conservation efforts to consider the implications of continued access for

  11. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence.

    Science.gov (United States)

    Ladle, Andrew; Steenweg, Robin; Shepherd, Brenda; Boyce, Mark S

    2018-01-01

    Species' distributions are influenced by a combination of landscape variables and biotic interactions with other species, including people. Grizzly bears and black bears are sympatric, competing omnivores that also share habitats with human recreationists. By adapting models for multi-species occupancy analysis, we analyzed trail camera data from 192 trail camera locations in and around Jasper National Park, Canada to estimate grizzly bear and black bear occurrence and intensity of trail use. We documented (a) occurrence of grizzly bears and black bears relative to habitat variables (b) occurrence and intensity of use relative to competing bear species and motorised and non-motorised recreational activity, and (c) temporal overlap in activity patterns among the two bear species and recreationists. Grizzly bears were spatially separated from black bears, selecting higher elevations and locations farther from roads. Both species co-occurred with motorised and non-motorised recreation, however, grizzly bears reduced their intensity of use of sites with motorised recreation present. Black bears showed higher temporal activity overlap with recreational activity than grizzly bears, however differences in bear daily activity patterns between sites with and without motorised and non-motorised recreation were not significant. Reduced intensity of use by grizzly bears of sites where motorised recreation was present is a concern given off-road recreation is becoming increasingly popular in North America, and can negatively influence grizzly bear recovery by reducing foraging opportunities near or on trails. Camera traps and multi-species occurrence models offer non-invasive methods for identifying how habitat use by animals changes relative to sympatric species, including humans. These conclusions emphasise the need for integrated land-use planning, access management, and grizzly bear conservation efforts to consider the implications of continued access for motorised

  12. Idiosyncratic responses of grizzly bear habitat to climate change based on projected food resource changes.

    Science.gov (United States)

    Roberts, David R; Nielsen, Scott E; Stenhouse, Gordon B

    2014-07-01

    Climate change vulnerability assessments for species of conservation concern often use species distribution and ecological niche modeling to project changes in habitat. One of many assumptions of these approaches is that food web dependencies are consistent in time and environmental space. Species at higher trophic levels that rely on the availability of species at lower trophic levels as food may be sensitive to extinction cascades initiated by changes in the habitat of key food resources. Here we assess climate change vulnerability for Ursus arctos (grizzly bears) in the southern Canadian Rocky Mountains using projected changes to 17 of the most commonly consumed plant food items. We used presence-absence information from 7088 field plots to estimate ecological niches and to project changes in future distributions of each species. Model projections indicated idiosyncratic responses among food items. Many food items persisted or even increased, although several species were found to be vulnerable based on declines or geographic shifts in suitable habitat. These included Hedysarum alpinum (alpine sweet vetch), a critical spring and autumn root-digging resource when little else is available. Potential habitat loss was also identified for three fruiting species of lower importance to bears: Empetrum nigrum (crowberry), Vaccinium scoparium (grouseberry), and Fragaria virginiana (strawberry). A general trend towards uphill migration of bear foods may result in higher vulnerability to bear populations at low elevations, which are also those that are most likely to have human-bear conflict problems. Regardless, a wide diet breadth of grizzly bears, as well as wide environmental niches of most food items, make climate change a much lower threat to grizzly bears than other bear species such as polar bears and panda bears. We cannot exclude, however, future alterations in human behavior and land use resulting from climate change that may reduce survival rates.

  13. Contrasting activity patterns of sympatric and allopatric black and grizzly bears

    Science.gov (United States)

    Schwartz, C.C.; Cain, S.L.; Podruzny, S.; Cherry, S.; Frattaroli, L.

    2010-01-01

    The distribution of grizzly (Ursus arctos) and American black bears (U. americanus) overlaps in western North America. Few studies have detailed activity patterns where the species are sympatric and no studies contrasted patterns where populations are both sympatric and allopatric. We contrasted activity patterns for sympatric black and grizzly bears and for black bears allopatric to grizzly bears, how human influences altered patterns, and rates of grizzlyblack bear predation. Activity patterns differed between black bear populations, with those sympatric to grizzly bears more day-active. Activity patterns of black bears allopatric with grizzly bears were similar to those of female grizzly bears; both were crepuscular and day-active. Male grizzly bears were crepuscular and night-active. Both species were more night-active and less day-active when ???1 km from roads or developments. In our sympatric study area, 2 of 4 black bear mortalities were due to grizzly bear predation. Our results suggested patterns of activity that allowed for intra- and inter-species avoidance. National park management often results in convergence of locally high human densities in quality bear habitat. Our data provide additional understanding into how bears alter their activity patterns in response to other bears and humans and should help park managers minimize undesirable bearhuman encounters when considering needs for temporal and spatial management of humans and human developments in bear habitats. ?? 2010 The Wildlife Society.

  14. Oil and gas planning and development in Alberta : new approaches to integrate grizzly bear conservation

    Energy Technology Data Exchange (ETDEWEB)

    Stenhouse, G. [Foothills Model Forest Grizzly Bear Research Program, AB (Canada)

    2007-07-01

    This paper reported on a grizzly bear research program that was initiated in the province of Alberta to provide new knowledge and tools to ensure the long term survival of grizzly bears on a multiple use landscape. The Foothills Model Forest (FMF) Grizzly Bear Research Program was formed by scientists from across Canada from a variety of scientific disciplines. A strong partner base has been created to allow the FMF's research efforts to span the entire current distribution of grizzly bear habitat in Alberta. The FMF has provided new large scale seamless maps of grizzly bear habitat and, using detailed grizzly bear GPS movement data, has constructed and tested models that can identify key grizzly bear habitat. This presentation focused on the results of 9 years of applied research and described the new tools and models that are now available to program partners in Alberta. The products are currently being used by both industry and government in Alberta as new standards in landscape management planning in grizzly bear habitat. The author suggested that the approach taken with grizzly bears in Alberta could be used and adapted for a variety of wildlife species in the north. figs.

  15. Grizzly bears and mining in the Cheviot region

    Energy Technology Data Exchange (ETDEWEB)

    Symbaluk, M.; Archibald, T. [Foothills Research Inst., Hinton, AB (Canada)

    2008-07-01

    This presentation described a grizzly bear research program conducted by the Foothill Research Institute at the Cheviot mine. The research program uses a satellite land classification protocol and remote sensing tools to map and identify the grizzly bear habitat. Modelling is also conducted to predict bear probabilities. Global information systems (GIS) are used to evaluate bear responses to human activities. Grizzly bear health and wellness is also assessed as part of the programs. Land maps are combined with global positioning systems (GPS) and resource selection function (RSF) models in order to map grizzly bear distribution. Data obtained from the program is used to inform decision-making and support policy development. Previous studies predicted that the grizzly bear population would disappear from the Cheviot mine area after 20 years of its being in operation. The research program provided real data to test predictions made during previous environmental assessments. Grizzly bear populations have actually increased in the mining area. It was concluded that the bears have moved more freely through industrial landscapes than previously predicted. tabs., figs.

  16. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Costello, Cecily M.; van Manen, Frank T.; Haroldson, Mark A.; Ebinger, Michael R.; Cain, Steven L.; Gunther, Kerry A.; Bjornlie, Daniel D.

    2014-01-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August–30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000–2011. We calculated Manly–Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas.

  17. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem.

    Science.gov (United States)

    Costello, Cecily M; van Manen, Frank T; Haroldson, Mark A; Ebinger, Michael R; Cain, Steven L; Gunther, Kerry A; Bjornlie, Daniel D

    2014-05-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August-30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000-2011. We calculated Manly-Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas.

  18. Response of Yellowstone grizzly bears to changes in food resources: A synthesis. Final report to the Interagency Grizzly Bear Committee and Yellowstone Ecosystem Subcommittee

    Science.gov (United States)

    ,; van Manen, Frank T.; Costello, Cecily M.; Haroldson, Mark A.; Bjornlie, Daniel D.; Ebinger, Michael R.; Gunther, Kerry A.; Mahalovich, Mary Frances; Thompson, Daniel J.; Higgs, Megan D.; Irvine, Kathryn M.; Legg, Kristin; Tyers, Daniel B.; Landenburger, Lisa; Cain, Steven L.; Frey, Kevin L.; Aber, Bryan C.; Schwartz, Charles C.

    2013-01-01

    The Yellowstone grizzly bear (Ursus arctos) was listed as a threatened species in 1975 (Federal Register 40 FR:31734-31736). Since listing, recovery efforts have focused on increasing population size, improving habitat security, managing bear mortalities, and reducing bear-human conflicts. The Interagency Grizzly Bear Committee (IGBC; partnership of federal and state agencies responsible for grizzly bear recovery in the lower 48 states) and its Yellowstone Ecosystem Subcommitte (YES; federal, state, county, and tribal partners charged with recovery of grizzly bears in the Greater Yelowston Ecosystem [GYE]) tasked the Interagency Grizzly Bear Study Team to provide information and further research relevant to three concerns arising from the 9th Circuit Court of Appeals November 2011 decision: 1) the ability of grizzly bears as omnivores to find alternative foods to whitebark pine seeds; 2) literature to support their conclusions; and 3) the non-intuitive biological reality that impacts can occur to individuals without causing the overall population to decline. Specifically, the IGBC and YES requested a comprehensive synthesis of the current state of knowledge regarding whitebark pinbe decline and individual and population-level responses of grizzly bears to changing food resources in the GYE. This research was particularly relevant to grizzly bear conservation given changes in the population trajectory observed during the last decade.

  19. Use of lodgepole pine cover types by Yellowstone grizzly bears

    Science.gov (United States)

    Mattson, D.J.

    1997-01-01

    Lodgepole pine (Pinus contorta) forests are a large and dynamic part of grizzly bear (Ursus arctos) habitat in the Yellowstone ecosystem. Research in other areas suggests that grizzly bears select for young open forest stands, especially for grazing and feeding on berries. Management guidelines accordingly recommend timber harvest as a technique for improving habitat in areas potentially dominated by lodgepole pine. In this paper I examine grizzly bear use of lodgepole pine forests in the Yellowstone area, and test several hypotheses with relevance to a new generation of management guidelines. Differences in grizzly bear selection of lodgepole pine cover types (defined on the basis of stand age and structure) were not pronounced. Selection furthermore varied among years, areas, and individuals. Positive selection for any lodgepole pine type was uncommon. Estimates of selection took 5-11 years or 4-12 adult females to stabilize, depending upon the cover type. The variances of selection estimates tended to stabilize after 3-5 sample years, and were more-or-less stable to slightly increasing with progressively increased sample area. There was no conclusive evidence that Yellowstone's grizzlies favored young (<40 yr) stands in general or for their infrequent use of berries. On the other hand, these results corroborated previous observations that grizzlies favored open and/or young stands on wet and fertile sites for grazing. These results also supported the proposition that temporally and spatially robust inferences require extensive, long-duration studies, especially for wide-ranging vertebrates like grizzly bears.

  20. Dietary breadth of grizzly bears in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Gunther, Kerry A.; Shoemaker, Rebecca; Frey, Kevin L.; Haroldson, Mark A.; Cain, Steven L.; van Manen, Frank T.; Fortin, Jennifer K.

    2014-01-01

    Grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE) are opportunistic omnivores that eat a great diversity of plant and animal species. Changes in climate may affect regional vegetation, hydrology, insects, and fire regimes, likely influencing the abundance, range, and elevational distribution of the plants and animals consumed by GYE grizzly bears. Determining the dietary breadth of grizzly bears is important to document future changes in food resources and how those changes may affect the nutritional ecology of grizzlies. However, no synthesis exists of all foods consumed by grizzly bears in the GYE. We conducted a review of available literature and compiled a list of species consumed by grizzly bears in the GYE. We documented >266 species within 200 genera from 4 kingdoms, including 175 plant, 37 invertebrate, 34 mammal, 7 fungi, 7 bird, 4 fish, 1 amphibian, and 1 algae species as well as 1 soil type consumed by grizzly bears. The average energy values of the ungulates (6.8 kcal/g), trout (Oncorhynchus spp., 6.1 kcal/g), and small mammals (4.5 kcal/g) eaten by grizzlies were higher than those of the plants (3.0 kcal/g) and invertebrates (2.7 kcal/g) they consumed. The most frequently detected diet items were graminoids, ants (Formicidae), whitebark pine seeds (Pinus albicaulis), clover (Trifolium spp.), and dandelion (Taraxacum spp.). The most consistently used foods on a temporal basis were graminoids, ants, whitebark pine seeds, clover, elk (Cervus elaphus), thistle (Cirsium spp.), and horsetail (Equisetum spp.). Historically, garbage was a significant diet item for grizzlies until refuse dumps were closed. Use of forbs increased after garbage was no longer readily available. The list of foods we compiled will help managers of grizzly bears and their habitat document future changes in grizzly bear food habits and how bears respond to changing food resources.

  1. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence

    OpenAIRE

    Ladle, Andrew; Steenweg, Robin; Shepherd, Brenda; Boyce, Mark S.

    2018-01-01

    Species' distributions are influenced by a combination of landscape variables and biotic interactions with other species, including people. Grizzly bears and black bears are sympatric, competing omnivores that also share habitats with human recreationists. By adapting models for multi-species occupancy analysis, we analyzed trail camera data from 192 trail camera locations in and around Jasper National Park, Canada to estimate grizzly bear and black bear occurrence and intensity of trail use....

  2. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence

    OpenAIRE

    Ladle, Andrew; Steenweg, Robin; Shepherd, Brenda; Boyce, Mark S.

    2018-01-01

    Species’ distributions are influenced by a combination of landscape variables and biotic interactions with other species, including people. Grizzly bears and black bears are sympatric, competing omnivores that also share habitats with human recreationists. By adapting models for multi-species occupancy analysis, we analyzed trail camera data from 192 trail camera locations in and around Jasper National Park, Canada to estimate grizzly bear and black bear occurrence and intensity of trail use....

  3. Impacts of rural development on Yellowstone wildlife: linking grizzly bear Ursus arctos demographics with projected residential growth

    Science.gov (United States)

    Schwartz, Charles C.; Gude, Patricia H.; Landenburger, Lisa; Haroldson, Mark A.; Podruzny, Shannon

    2012-01-01

    Exurban development is consuming wildlife habitat within the Greater Yellowstone Ecosystem with potential consequences to the long-term conservation of grizzly bears Ursus arctos. We assessed the impacts of alternative future land-use scenarios by linking an existing regression-based simulation model predicting rural development with a spatially explicit model that predicted bear survival. Using demographic criteria that predict population trajectory, we portioned habitats into either source or sink, and projected the loss of source habitat associated with four different build out (new home construction) scenarios through 2020. Under boom growth, we predicted that 12 km2 of source habitat were converted to sink habitat within the Grizzly Bear Recovery Zone (RZ), 189 km2 were converted within the current distribution of grizzly bears outside of the RZ, and 289 km2 were converted in the area outside the RZ identified as suitable grizzly bear habitat. Our findings showed that extremely low densities of residential development created sink habitats. We suggest that tools, such as those outlined in this article, in addition to zoning and subdivision regulation may prove more practical, and the most effective means of retaining large areas of undeveloped land and conserving grizzly bear source habitat will likely require a landscape-scale approach. We recommend a focus on land conservation efforts that retain open space (easements, purchases and trades) coupled with the implementation of ‘bear community programmes’ on an ecosystem wide basis in an effort to minimize human-bear conflicts, minimize management-related bear mortalities associated with preventable conflicts and to safeguard human communities. Our approach has application to other species and areas, and it has illustrated how spatially explicit demographic models can be combined with models predicting land-use change to help focus conservation priorities.

  4. Using spatial mark-recapture for conservation monitoring of grizzly bear populations in Alberta.

    Science.gov (United States)

    Boulanger, John; Nielsen, Scott E; Stenhouse, Gordon B

    2018-03-26

    One of the challenges in conservation is determining patterns and responses in population density and distribution as it relates to habitat and changes in anthropogenic activities. We applied spatially explicit capture recapture (SECR) methods, combined with density surface modelling from five grizzly bear (Ursus arctos) management areas (BMAs) in Alberta, Canada, to assess SECR methods and to explore factors influencing bear distribution. Here we used models of grizzly bear habitat and mortality risk to test local density associations using density surface modelling. Results demonstrated BMA-specific factors influenced density, as well as the effects of habitat and topography on detections and movements of bears. Estimates from SECR were similar to those from closed population models and telemetry data, but with similar or higher levels of precision. Habitat was most associated with areas of higher bear density in the north, whereas mortality risk was most associated (negatively) with density of bears in the south. Comparisons of the distribution of mortality risk and habitat revealed differences by BMA that in turn influenced local abundance of bears. Combining SECR methods with density surface modelling increases the resolution of mark-recapture methods by directly inferring the effect of spatial factors on regulating local densities of animals.

  5. An evaluation of the use of ERTS-1 satellite imagery for grizzly bear habitat analysis

    Science.gov (United States)

    Varney, J. R.; Craighead, J. J.; Sumner, J.

    1973-01-01

    Multispectral scanner images taken by the ERTS-1 satellite in August and October, 1972, were examined to determine if they would be useful in identifying and mapping favorable habitat for grizzly bears. It was possible to identify areas having a suitable mixture of alpine meadow and timber, and to eliminate those which did not meet the isolation requirements of grizzlies because of farming or grazing activity. High altitude timbered areas mapped from satellite imagery agreed reasonably well with the distribution of whitebark pine, an important food species. Analysis of satellite imagery appears to be a valuable supplement to present ground observation methods, since it allows the most important areas to be identified for intensive study and many others to be eliminated from consideration. A sampling plan can be developed from such data which will minimize field effort and overall program cost.

  6. Effects of exotic species on Yellowstone's grizzly bears

    Science.gov (United States)

    Reinhart, Daniel P.; Haroldson, Mark A.; Mattson, D.J.; Gunther, Kerry A.

    2001-01-01

    Humans have affected grizzly bears (Ursus arctos horribilis) by direct mortality, competition for space and resources, and introduction of exotic species. Exotic organisms that have affected grizzly bears in the Greater Yellowstone Area include common dandelion (Taraxacum officinale), nonnative clovers (Trifolium spp.), domesticated livestock, bovine brucellosis (Brucella abortus), lake trout (Salvelinus namaycush), and white pine blister rust (Cronartium ribicola). Some bears consume substantial amounts of dandelion and clover. However, these exotic foods provide little digested energy compared to higher-quality bear foods. Domestic livestock are of greater energetic value, but use of this food by bears often leads to conflicts with humans and subsequent increases in bear mortality. Lake trout, blister rust, and brucellosis diminish grizzly bears foods. Lake trout prey on native cutthroat trout (Oncorhynchus clarkii) in Yellowstone Lake; white pine blister rust has the potential to destroy native whitebark pine (Pinus albicaulis) stands; and management response to bovine brucellosis, a disease found in the Yellowstone bison (Bison bison) and elk (Cervus elaphus), could reduce populations of these 2 species. Exotic species will likely cause more harm than good for Yellowstone grizzly bears. Managers have few options to mitigate or contain the impacts of exotics on Yellowstone's grizzly bears. Moreover, their potential negative impacts have only begun to unfold. Exotic species may lead to the loss of substantial highquality grizzly bear foods, including much of the bison, trout, and pine seeds that Yellowstone grizzly bears currently depend upon.

  7. Grizzly bear diet shifting on reclaimed mines

    Directory of Open Access Journals (Sweden)

    Bogdan Cristescu

    2015-07-01

    Full Text Available Industrial developments and reclamation change habitat, possibly altering large carnivore food base. We monitored the diet of a low-density population of grizzly bears occupying a landscape with open-pit coal mines in Canada. During 2009–2010 we instrumented 10 bears with GPS radiocollars and compared their feeding on reclaimed coal mines and neighboring Rocky Mountains and their foothills. In addition, we compared our data with historical bear diet for the same population collected in 2001–2003, before extensive mine reclamation occurred. Diet on mines (n=331 scats was dominated by non-native forbs and graminoids, while diets in the Foothills and Mountains consisted primarily of ungulates and Hedysarum spp. roots respectively, showing diet shifting with availability. Field visitation of feeding sites (n=234 GPS relocation clusters also showed that ungulates were the main diet component in the Foothills, whereas on reclaimed mines bears were least carnivorous. These differences illustrate a shift to feeding on non-native forbs while comparisons with historical diet reveal emergence of elk as an important bear food. Food resources on reclaimed mines attract bears from wilderness areas and bears may be more adaptable to landscape change than previously thought. The grizzly bear’s ready use of mines cautions the universal view of this species as umbrella indicative of biodiversity.

  8. Environmental, biological and anthropogenic effects on grizzly bear body size: temporal and spatial considerations.

    Science.gov (United States)

    Nielsen, Scott E; Cattet, Marc R L; Boulanger, John; Cranston, Jerome; McDermid, Greg J; Shafer, Aaron B A; Stenhouse, Gordon B

    2013-09-08

    Individual body growth is controlled in large part by the spatial and temporal heterogeneity of, and competition for, resources. Grizzly bears (Ursus arctos L.) are an excellent species for studying the effects of resource heterogeneity and maternal effects (i.e. silver spoon) on life history traits such as body size because their habitats are highly variable in space and time. Here, we evaluated influences on body size of grizzly bears in Alberta, Canada by testing six factors that accounted for spatial and temporal heterogeneity in environments during maternal, natal and 'capture' (recent) environments. After accounting for intrinsic biological factors (age, sex), we examined how body size, measured in mass, length and body condition, was influenced by: (a) population density; (b) regional habitat productivity; (c) inter-annual variability in productivity (including silver spoon effects); (d) local habitat quality; (e) human footprint (disturbances); and (f) landscape change. We found sex and age explained the most variance in body mass, condition and length (R(2) from 0.48-0.64). Inter-annual variability in climate the year before and of birth (silver spoon effects) had detectable effects on the three-body size metrics (R(2) from 0.04-0.07); both maternal (year before birth) and natal (year of birth) effects of precipitation and temperature were related with body size. Local heterogeneity in habitat quality also explained variance in body mass and condition (R(2) from 0.01-0.08), while annual rate of landscape change explained additional variance in body length (R(2) of 0.03). Human footprint and population density had no observed effect on body size. These results illustrated that body size patterns of grizzly bears, while largely affected by basic biological characteristics (age and sex), were also influenced by regional environmental gradients the year before, and of, the individual's birth thus illustrating silver spoon effects. The magnitude of the silver

  9. The impact of roads on the demography of grizzly bears in Alberta.

    Directory of Open Access Journals (Sweden)

    John Boulanger

    Full Text Available One of the principal factors that have reduced grizzly bear populations has been the creation of human access into grizzly bear habitat by roads built for resource extraction. Past studies have documented mortality and distributional changes of bears relative to roads but none have attempted to estimate the direct demographic impact of roads in terms of both survival rates, reproductive rates, and the interaction of reproductive state of female bears with survival rate. We applied a combination of survival and reproductive models to estimate demographic parameters for threatened grizzly bear populations in Alberta. Instead of attempting to estimate mean trend we explored factors which caused biological and spatial variation in population trend. We found that sex and age class survival was related to road density with subadult bears being most vulnerable to road-based mortality. A multi-state reproduction model found that females accompanied by cubs of the year and/or yearling cubs had lower survival rates compared to females with two year olds or no cubs. A demographic model found strong spatial gradients in population trend based upon road density. Threshold road densities needed to ensure population stability were estimated to further refine targets for population recovery of grizzly bears in Alberta. Models that considered lowered survival of females with dependant offspring resulted in lower road density thresholds to ensure stable bear populations. Our results demonstrate likely spatial variation in population trend and provide an example how demographic analysis can be used to refine and direct conservation measures for threatened species.

  10. The impact of roads on the demography of grizzly bears in Alberta.

    Science.gov (United States)

    Boulanger, John; Stenhouse, Gordon B

    2014-01-01

    One of the principal factors that have reduced grizzly bear populations has been the creation of human access into grizzly bear habitat by roads built for resource extraction. Past studies have documented mortality and distributional changes of bears relative to roads but none have attempted to estimate the direct demographic impact of roads in terms of both survival rates, reproductive rates, and the interaction of reproductive state of female bears with survival rate. We applied a combination of survival and reproductive models to estimate demographic parameters for threatened grizzly bear populations in Alberta. Instead of attempting to estimate mean trend we explored factors which caused biological and spatial variation in population trend. We found that sex and age class survival was related to road density with subadult bears being most vulnerable to road-based mortality. A multi-state reproduction model found that females accompanied by cubs of the year and/or yearling cubs had lower survival rates compared to females with two year olds or no cubs. A demographic model found strong spatial gradients in population trend based upon road density. Threshold road densities needed to ensure population stability were estimated to further refine targets for population recovery of grizzly bears in Alberta. Models that considered lowered survival of females with dependant offspring resulted in lower road density thresholds to ensure stable bear populations. Our results demonstrate likely spatial variation in population trend and provide an example how demographic analysis can be used to refine and direct conservation measures for threatened species.

  11. Linking landscape characteristics to local grizzly bear abundance using multiple detection methods in a hierarchical model

    Science.gov (United States)

    Graves, T.A.; Kendall, Katherine C.; Royle, J. Andrew; Stetz, J.B.; Macleod, A.C.

    2011-01-01

    Few studies link habitat to grizzly bear Ursus arctos abundance and these have not accounted for the variation in detection or spatial autocorrelation. We collected and genotyped bear hair in and around Glacier National Park in northwestern Montana during the summer of 2000. We developed a hierarchical Markov chain Monte Carlo model that extends the existing occupancy and count models by accounting for (1) spatially explicit variables that we hypothesized might influence abundance; (2) separate sub-models of detection probability for two distinct sampling methods (hair traps and rub trees) targeting different segments of the population; (3) covariates to explain variation in each sub-model of detection; (4) a conditional autoregressive term to account for spatial autocorrelation; (5) weights to identify most important variables. Road density and per cent mesic habitat best explained variation in female grizzly bear abundance; spatial autocorrelation was not supported. More female bears were predicted in places with lower road density and with more mesic habitat. Detection rates of females increased with rub tree sampling effort. Road density best explained variation in male grizzly bear abundance and spatial autocorrelation was supported. More male bears were predicted in areas of low road density. Detection rates of males increased with rub tree and hair trap sampling effort and decreased over the sampling period. We provide a new method to (1) incorporate multiple detection methods into hierarchical models of abundance; (2) determine whether spatial autocorrelation should be included in final models. Our results suggest that the influence of landscape variables is consistent between habitat selection and abundance in this system.

  12. Trophic cascades from wolves to grizzly bears in Yellowstone.

    Science.gov (United States)

    Ripple, William J; Beschta, Robert L; Fortin, Jennifer K; Robbins, Charles T

    2014-01-01

    We explored multiple linkages among grey wolves (Canis lupus), elk (Cervus elaphus), berry-producing shrubs and grizzly bears (Ursus arctos) in Yellowstone National Park. We hypothesized competition between elk and grizzly bears whereby, in the absence of wolves, increases in elk numbers would increase browsing on berry-producing shrubs and decrease fruit availability to grizzly bears. After wolves were reintroduced and with a reduced elk population, we hypothesized there would be an increase in the establishment of berry-producing shrubs, such as serviceberry (Amelanchier alnifolia), which is a major berry-producing plant. We also hypothesized that the percentage fruit in the grizzly bear diet would be greater after than before wolf reintroduction. We compared the frequency of fruit in grizzly bear scats to elk densities prior to wolf reintroduction during a time of increasing elk densities (1968-1987). For a period after wolf reintroduction, we calculated the percentage fruit in grizzly bear scat by month based on scats collected in 2007-2009 (n = 778 scats) and compared these results to scat data collected before wolf reintroduction. Additionally, we developed an age structure for serviceberry showing the origination year of stems in a northern range study area. We found that over a 19-year period, the percentage frequency of fruit in the grizzly diet (6231 scats) was inversely correlated (P wolves and other large carnivores on elk, a reduced and redistributed elk population, decreased herbivory and increased production of plant-based foods that may aid threatened grizzly bears. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  13. Modeling survival: application of the Andersen-Gill model to Yellowstone grizzly bears

    Science.gov (United States)

    Johnson, Christopher J.; Boyce, Mark S.; Schwartz, Charles C.; Haroldson, Mark A.

    2004-01-01

     Wildlife ecologists often use the Kaplan-Meier procedure or Cox proportional hazards model to estimate survival rates, distributions, and magnitude of risk factors. The Andersen-Gill formulation (A-G) of the Cox proportional hazards model has seen limited application to mark-resight data but has a number of advantages, including the ability to accommodate left-censored data, time-varying covariates, multiple events, and discontinuous intervals of risks. We introduce the A-G model including structure of data, interpretation of results, and assessment of assumptions. We then apply the model to 22 years of radiotelemetry data for grizzly bears (Ursus arctos) of the Greater Yellowstone Grizzly Bear Recovery Zone in Montana, Idaho, and Wyoming, USA. We used Akaike's Information Criterion (AICc) and multi-model inference to assess a number of potentially useful predictive models relative to explanatory covariates for demography, human disturbance, and habitat. Using the most parsimonious models, we generated risk ratios, hypothetical survival curves, and a map of the spatial distribution of high-risk areas across the recovery zone. Our results were in agreement with past studies of mortality factors for Yellowstone grizzly bears. Holding other covariates constant, mortality was highest for bears that were subjected to repeated management actions and inhabited areas with high road densities outside Yellowstone National Park. Hazard models developed with covariates descriptive of foraging habitats were not the most parsimonious, but they suggested that high-elevation areas offered lower risks of mortality when compared to agricultural areas.

  14. Consumption of pondweed rhizomes by Yellowstone grizzly bears

    Science.gov (United States)

    Mattson, D.J.; Podruzny, S.R.; Haroldson, M.A.

    2005-01-01

    Pondweeds (Potamogeton spp.) are common foods of waterfowl throughout the Northern Hemisphere. However, consumption of pondweeds by bears has been noted only once, in Russia. We documented consumption of pondweed rhizomes by grizzly bears (Ursus arctos) in the Yellowstone region, 1977-96, during investigations of telemetry locations obtained from 175 radiomarked bears. We documented pondweed excavations at 25 sites and detected pondweed rhizomes in 18 feces. We observed grizzly bears excavating and consuming pondweed on 2 occasions. All excavations occurred in wetlands that were inundated during and after snowmelt, but dry by late August or early September of most years. These wetlands were typified by the presence of inflated sedge (Carex vesicaria) and occurred almost exclusively on plateaus of Pliocene-Pleistocene detrital sediments or volcanic rhyolite flows. Bears excavated wetlands with pondweeds when they were free of standing water, most commonly during October and occasionally during spring prior to the onset of terminal snowmelt. Most excavations were about 4.5 cm deep, 40 cubic decimeter (dm3) in total volume, and targeted the thickened pondweed rhizomes. Starch content of rhizomes collected near grizzly bear excavations averaged 28% (12% SD; n = 6). These results add to the documented diversity of grizzly bear food habits and, because pondweed is distributed circumboreally, also raise the possibility that consumption of pondweed by grizzly bears has been overlooked in other regions.

  15. Grizzly bear density in Glacier National Park, Montana

    Science.gov (United States)

    Kendall, K.C.; Stetz, J.B.; Roon, David A.; Waits, L.P.; Boulanger, J.B.; Paetkau, David

    2008-01-01

    We present the first rigorous estimate of grizzly bear (Ursus arctos) population density and distribution in and around Glacier National Park (GNP), Montana, USA. We used genetic analysis to identify individual bears from hair samples collected via 2 concurrent sampling methods: 1) systematically distributed, baited, barbed-wire hair traps and 2) unbaited bear rub trees found along trails. We used Huggins closed mixture models in Program MARK to estimate total population size and developed a method to account for heterogeneity caused by unequal access to rub trees. We corrected our estimate for lack of geographic closure using a new method that utilizes information from radiocollared bears and the distribution of bears captured with DNA sampling. Adjusted for closure, the average number of grizzly bears in our study area was 240.7 (95% CI = 202–303) in 1998 and 240.6 (95% CI = 205–304) in 2000. Average grizzly bear density was 30 bears/1,000 km2, with 2.4 times more bears detected per hair trap inside than outside GNP. We provide baseline information important for managing one of the few remaining populations of grizzlies in the contiguous United States.

  16. Prevalence of Trichinella spp. in black bears, grizzly bears, and wolves in the Dehcho Region, Northwest Territories, Canada, including the first report of T. nativa in a grizzly bear from Canada.

    Science.gov (United States)

    Larter, Nicholas C; Forbes, Lorry B; Elkin, Brett T; Allaire, Danny G

    2011-07-01

    Samples of muscle from 120 black bears (Ursus americanus), 11 grizzly bears (Ursus arctos), and 27 wolves (Canis lupus) collected in the Dehcho Region of the Northwest Territories from 2001 to 2010 were examined for the presence of Trichinella spp. larvae using a pepsin-HCl digestion assay. Trichinella spp. larvae were found in eight of 11 (73%) grizzly bears, 14 of 27 (52%) wolves, and seven of 120 (5.8%) black bears. The average age of positive grizzly bears, black bears, and wolves was 13.5, 9.9, and approximately 4 yr, respectively. Larvae from 11 wolves, six black bears, and seven grizzly bears were genotyped. Six wolves were infected with T. nativa and five with Trichinella T6, four black bears were infected with T. nativa and two with Trichinella T6, and all seven grizzly bears were infected with Trichinella T6 and one of them had a coinfection with T. nativa. This is the first report of T. nativa in a grizzly bear from Canada. Bears have been linked to trichinellosis outbreaks in humans in Canada, and black bears are a subsistence food source for residents of the Dehcho region. In order to assess food safety risk it is important to monitor the prevalence of Trichinella spp. in both species of bear and their cohabiting mammalian food sources.

  17. Density dependence, whitebark pine, and vital rates of grizzly bears

    Science.gov (United States)

    van Manen, Frank T.; Haroldson, Mark A.; Bjornlie, Daniel D.; Ebinger, Michael R.; Thompson, Daniel J.; Costello, Cecily M.; White, Gary C.

    2016-01-01

    Understanding factors influencing changes in population trajectory is important for effective wildlife management, particularly for populations of conservation concern. Annual population growth of the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem, USA has slowed from 4.2–7.6% during 1983–2001 to 0.3–2.2% during 2002–2011. Substantial changes in availability of a key food source and bear population density have occurred. Whitebark pine (Pinus albicaulis), the seeds of which are a valuable but variable fall food for grizzly bears, has experienced substantial mortality primarily due to a mountain pine beetle (Dendroctonus ponderosae) outbreak that started in the early 2000s. Positive growth rates of grizzly bears have resulted in populations reaching high densities in some areas and have contributed to continued range expansion. We tested research hypotheses to examine if changes in vital rates detected during the past decade were more associated with whitebark pine decline or, alternatively, increasing grizzly bear density. We focused our assessment on known-fate data to estimate survival of cubs-of-the-year (cubs), yearlings, and independent bears (≥2 yrs), and reproductive transition of females from having no offspring to having cubs. We used spatially and temporally explicit indices for grizzly bear density and whitebark pine mortality as individual covariates. Models indicated moderate support for an increase in survival of independent male bears over 1983–2012, whereas independent female survival did not change. Cub survival, yearling survival, and reproductive transition from no offspring to cubs all changed during the 30-year study period, with lower rates evident during the last 10–15 years. Cub survival and reproductive transition were negatively associated with an index of grizzly bear density, indicating greater declines where bear densities were higher. Our analyses did not support a similar relationship for the

  18. Exploitation of pocket gophers and their food caches by grizzly bears

    Science.gov (United States)

    Mattson, D.J.

    2004-01-01

    I investigated the exploitation of pocket gophers (Thomomys talpoides) by grizzly bears (Ursus arctos horribilis) in the Yellowstone region of the United States with the use of data collected during a study of radiomarked bears in 1977-1992. My analysis focused on the importance of pocket gophers as a source of energy and nutrients, effects of weather and site features, and importance of pocket gophers to grizzly bears in the western contiguous United States prior to historical extirpations. Pocket gophers and their food caches were infrequent in grizzly bear feces, although foraging for pocket gophers accounted for about 20-25% of all grizzly bear feeding activity during April and May. Compared with roots individually excavated by bears, pocket gopher food caches were less digestible but more easily dug out. Exploitation of gopher food caches by grizzly bears was highly sensitive to site and weather conditions and peaked during and shortly after snowmelt. This peak coincided with maximum success by bears in finding pocket gopher food caches. Exploitation was most frequent and extensive on gently sloping nonforested sites with abundant spring beauty (Claytonia lanceolata) and yampah (Perdieridia gairdneri). Pocket gophers are rare in forests, and spring beauty and yampah roots are known to be important foods of both grizzly bears and burrowing rodents. Although grizzly bears commonly exploit pocket gophers only in the Yellowstone region, this behavior was probably widespread in mountainous areas of the western contiguous United States prior to extirpations of grizzly bears within the last 150 years.

  19. Predicting grizzly bear density in western North America.

    Science.gov (United States)

    Mowat, Garth; Heard, Douglas C; Schwarz, Carl J

    2013-01-01

    Conservation of grizzly bears (Ursus arctos) is often controversial and the disagreement often is focused on the estimates of density used to calculate allowable kill. Many recent estimates of grizzly bear density are now available but field-based estimates will never be available for more than a small portion of hunted populations. Current methods of predicting density in areas of management interest are subjective and untested. Objective methods have been proposed, but these statistical models are so dependent on results from individual study areas that the models do not generalize well. We built regression models to relate grizzly bear density to ultimate measures of ecosystem productivity and mortality for interior and coastal ecosystems in North America. We used 90 measures of grizzly bear density in interior ecosystems, of which 14 were currently known to be unoccupied by grizzly bears. In coastal areas, we used 17 measures of density including 2 unoccupied areas. Our best model for coastal areas included a negative relationship with tree cover and positive relationships with the proportion of salmon in the diet and topographic ruggedness, which was correlated with precipitation. Our best interior model included 3 variables that indexed terrestrial productivity, 1 describing vegetation cover, 2 indices of human use of the landscape and, an index of topographic ruggedness. We used our models to predict current population sizes across Canada and present these as alternatives to current population estimates. Our models predict fewer grizzly bears in British Columbia but more bears in Canada than in the latest status review. These predictions can be used to assess population status, set limits for total human-caused mortality, and for conservation planning, but because our predictions are static, they cannot be used to assess population trend.

  20. Predicting grizzly bear density in western North America.

    Directory of Open Access Journals (Sweden)

    Garth Mowat

    Full Text Available Conservation of grizzly bears (Ursus arctos is often controversial and the disagreement often is focused on the estimates of density used to calculate allowable kill. Many recent estimates of grizzly bear density are now available but field-based estimates will never be available for more than a small portion of hunted populations. Current methods of predicting density in areas of management interest are subjective and untested. Objective methods have been proposed, but these statistical models are so dependent on results from individual study areas that the models do not generalize well. We built regression models to relate grizzly bear density to ultimate measures of ecosystem productivity and mortality for interior and coastal ecosystems in North America. We used 90 measures of grizzly bear density in interior ecosystems, of which 14 were currently known to be unoccupied by grizzly bears. In coastal areas, we used 17 measures of density including 2 unoccupied areas. Our best model for coastal areas included a negative relationship with tree cover and positive relationships with the proportion of salmon in the diet and topographic ruggedness, which was correlated with precipitation. Our best interior model included 3 variables that indexed terrestrial productivity, 1 describing vegetation cover, 2 indices of human use of the landscape and, an index of topographic ruggedness. We used our models to predict current population sizes across Canada and present these as alternatives to current population estimates. Our models predict fewer grizzly bears in British Columbia but more bears in Canada than in the latest status review. These predictions can be used to assess population status, set limits for total human-caused mortality, and for conservation planning, but because our predictions are static, they cannot be used to assess population trend.

  1. Impacts of hydro-electric reservoir on populations of caribou and grizzly bear in southern British Columbia

    International Nuclear Information System (INIS)

    Simpson, K.

    1987-02-01

    The impacts of a hydroelectric reservoir on populations of caribou and grizzly bear were studied north of Revelstoke, British Columbia. Information collected for 3 years prior to flooding was compared with data collected in 1984-85. The reservoir did not obstruct movement of caribou and animals did not attempt crossing during periods when ice conditions were hazardous. Evidence suggested that predator avoidance was the most important determinant of habitats used in spring. The cleared reservoir was an important habitat for caribou in the spring because of the abundant food and security from predators it offered. A potential decline in caribou recruitment was noted in 1985 coincident with reservoir flooding. Mitigative recommendations include clearing logged areas adjacent to formerly used reservoir habitats and maintaining movement corridors of mature timber between seasonal habitats. Inconclusive evidence suggested that the reservoir was a barrier to grizzly movement. Spring movements of grizzly were mainly related to finding good feeding sites. Avalanche paths in side drainages were the principal habitats used. Cleared areas did provide an abundance of food comparable to naturally disturbed habitats. The main impact of flooding was to shift habitat use of bears from relatively secure areas in the reservoir to high-risk habitats on the highway and power line rights-of-way. Mitigative recommendations include reducing the attractiveness of those rights-of-way and maintaining spring ranges in tributary valleys by careful development planning. 14 refs., 7 figs., 17 tabs

  2. Impacts of hydro-electric reservoir on populations of caribou and grizzly bear in southern British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, K.

    1987-02-01

    The impacts of a hydroelectric reservoir on populations of caribou and grizzly bear were studied north of Revelstoke, British Columbia. Information collected for 3 years prior to flooding was compared with data collected in 1984-85. The reservoir did not obstruct movement of caribou and animals did not attempt crossing during periods when ice conditions were hazardous. Evidence suggested that predator avoidance was the most important determinant of habitats used in spring. The cleared reservoir was an important habitat for caribou in the spring because of the abundant food and security from predators it offered. A potential decline in caribou recruitment was noted in 1985 coincident with reservoir flooding. Mitigative recommendations include clearing logged areas adjacent to formerly used reservoir habitats and maintaining movement corridors of mature timber between seasonal habitats. Inconclusive evidence suggested that the reservoir was a barrier to grizzly movement. Spring movements of grizzly were mainly related to finding good feeding sites. Avalanche paths in side drainages were the principal habitats used. Cleared areas did provide an abundance of food comparable to naturally disturbed habitats. The main impact of flooding was to shift habitat use of bears from relatively secure areas in the reservoir to high-risk habitats on the highway and power line rights-of-way. Mitigative recommendations include reducing the attractiveness of those rights-of-way and maintaining spring ranges in tributary valleys by careful development planning. 14 refs., 7 figs., 17 tabs.

  3. Distribution of grizzly bears in the Greater Yellowstone Ecosystem, 2004

    Science.gov (United States)

    Schwartz, C.C.; Haroldson, M.A.; Gunther, K.; Moody, D.

    2006-01-01

    The US Fish and Wildlife Service (USFWS) proposed delisting the Yellowstone grizzly bear (Ursus arctos horribilis) in November 2005. Part of that process required knowledge of the most current distribution of the species. Here, we update an earlier estimate of occupied range (1990–2000) with data through 2004. We used kernel estimators to develop distribution maps of occupied habitats based on initial sightings of unduplicated females (n = 481) with cubs of the year, locations of radiomarked bears (n = 170), and spatially unique locations of conflicts, confrontations, and mortalities (n = 1,075). Although each data set was constrained by potential sampling bias, together they provided insight into areas in the Greater Yellowstone Ecosystem (GYE) currently occupied by grizzly bears. The current distribution of 37,258 km2 (1990–2004) extends beyond the distribution map generated with data from 1990–2000 (34,416 km2 ). Range expansion is particularly evident in parts of the Caribou–Targhee National Forest in Idaho and north of Spanish Peaks on the Gallatin National Forest in Montana.

  4. Evaluating management strategies for grizzly bears in British Columbia, Canada

    OpenAIRE

    Schroeder, Amanda

    2017-01-01

    In British Columbia, The Ministry of Forests, Lands and Natural Resource Operations manages grizzly bear hunting as the most rigid and conservatively managed hunt in the province. However, there has been concern raised in the media and from some members of the academic community over the sustainability of grizzly bear hunting. It is unclear whether the current management strategy effectively incorporates uncertainties in grizzly bear biology and management. My research intends to address thes...

  5. Grizzly West: A Failed Attempt to Reintroduce Grizzly Bears in the Mountain West

    Directory of Open Access Journals (Sweden)

    Douglas M. Richardson

    2016-05-01

    Full Text Available Reviewed: Grizzly West: A Failed Attempt to Reintroduce Grizzly Bears in the Mountain West. By Michael M. Dax. Lincoln, NE: University of Nebraska Press, 2015. x + 289 pp. US$ 37.50. ISBN 978-0-8032-6673-5.

  6. Yellowstone grizzly bear investigations: Annual report of the Interagency Grizzly Bear Study Team, 2001

    Science.gov (United States)

    Schwartz, Charles C.; Haroldson, Mark A.

    2001-01-01

    The contents of this Annual Report summarize results of monitoring and research from the 2001 field season. The report also contains a summary of nuisance grizzly bear (Ursus arctos horribilis) management actions.

  7. Yellowstone grizzly bear investigations: Annual report of the Interagency Grizzly Bear Study Team, 2006

    Science.gov (United States)

    Schwartz, Charles C.; Haroldson, Mark A.; West, Karrie K.

    2007-01-01

    The contents of this Annual Report summarize results of monitoring and research from the 2006 field season. The report also contains a summary of nuisance grizzly bear (Ursus arctos horribilis) management actions.

  8. Selection of microsites by grizzly bears to excavate biscuitroots (Lomatium cous)

    Science.gov (United States)

    Mattson, D.J.

    1997-01-01

    Roots of the biscuitroot (Lomatium cous) are a common food of grizzly bears (Ursus arctos horribilis) in drier parts of their southern range. I used random sampling and locations of radiomarked bears in the Yellowstone ecosystem to investigate the importance of mass and starch content of roots, digability of the site, and density of plants relative to selection of sites by grizzly bears to dig biscuitroots. Where biscuitroots were present, most differences between dug and undug sites were related to digability of the site and mass and starch content of roots. Grizzly bears more often dug in sites where average milligrams of starch per kilogram of pull per root (a??energy gain) was high. Density of biscuitroots was not related to selection of sites by grizzly bears. Mass of biscuitroot stems also provided relatively little information about mass of roots. Distribution of biscuitroots was associated with increased cover of rocks and exposure to wind, and with decreased slopes and cover of forbs. Digs by grizzly bears were associated with the presence of biscuitroots, proximity to edge of forest, and increased cover of rocks. Results were consistent with previously observed tendencies of grizzly bears to concentrate their feeding within 50-100 m of cover.

  9. Integration of LIDAR, optical remotely sensed, and ancillary data for forest monitoring and Grizzly bear habitat characterization / Integração de LIDAR, sensores remotos óticos e dados auxiliares para o monitoramento fl orestal e caracterização do habitat dos ursos Grizzly

    Directory of Open Access Journals (Sweden)

    Michael A. Wulder

    2008-09-01

    Full Text Available Forest management and reporting information needs are becomingincreasingly complex in Canada. Inclusion of timber and non-timber considerations for both management and reporting has resulted inopportunities for integration of data from differing sources to provide the desired information. Canada’s forested land-base is over 400million hectares in size and fulfi lls important ecological and economic functions. In this communication we describe how remotely senseddata and other available spatial data layers capture different forestcharacteristics and conditions, and how these varying data sources may be combined to provide otherwise unavailable information. For instance, light detection and ranging (LIDAR confers information regardingvertical forest structure; high spatial resolution imagery captures (indetail the horizontal distribution and arrangement of vegetation andvegetation conditions; and, moderate spatial resolution imagery providesconsistent wide-area depictions of forest conditions. Furthermore, coarsespatial resolution imagery, with a high temporal density, can be blended with data of a higher spatial resolution to generate moderate spatialresolution data with a high temporal density. These remotely sensed datasources, when combined with existing spatial data layers such as forest inventory and digital terrain models, provide useful information thatmay be used to address, through modelling, questions regarding forest condition, structure, and change. In this communication, we discuss the importance of data integration and ultimately, information generation, inthe context of Grizzly bear habitat characterization. Grizzly bear habitat in western Canada is currently undergoing pressure from a combination of anthropogenic activities and a widespread outbreak of mountain pine beetle, resulting in a variety of information needs, including: detailed depictions of horizontal and vertical vegetation structure over large areasto support bark

  10. Grizzly bear-human conflicts in the Yellowstone Ecosystem, 1992-2000

    Science.gov (United States)

    Gunther, K.A.; Haroldson, M.A.; Cain, S.L.; Copeland, J.; Frey, K.; Schwartz, C.C.

    2004-01-01

    For many years, the primary strategy for managing grizzly bears (Ursus arctos) that came into conflict with humans in the Greater Yellowstone Ecosystem (GYE) was to capture and translocate the offending bears away from conflict sites. Translocation usually only temporarily alleviated the problems and most often did not result in long-term solutions. Wildlife managers needed to be able to predict the causes, types, locations, and trends of conflicts to more efficiently allocate resources for pro-active rather than reactive management actions. To address this need, we recorded all grizzly bear-human conflicts reported in the GYE during 1992-2000. We analyzed trends in conflicts over time (increasing or decreasing), geographic location on macro- (inside or outside of the designated Yellowstone Grizzly Bear Recovery Zone [YGBRZ]) and micro- (geographic location) scales, land ownership (public or private), and relationship to the seasonal availability of bear foods. We recorded 995 grizzly bear-human conflicts in the GYE. Fifty-three percent of the conflicts occurred outside and 47% inside the YGBRZ boundary. Fifty-nine percent of the conflicts occurred on public and 41% on private land. Incidents of bears damaging property and obtaining anthropogenic foods were inversely correlated to the abundance of naturally occurring bear foods. Livestock depredations occurred independent of the availability of bear foods. To further aid in prioritizing management strategies to reduce conflicts, we also analyzed conflicts in relation to subsequent human-caused grizzly bear mortality. There were 74 human-caused grizzly bear mortalities during the study, primarily from killing bears in defense of life and property (43%) and management removal of bears involved in bear-human conflicts (28%). Other sources of human-caused mortality included illegal kills, electrocution by downed power-lines, mistaken identification by American black bear (Ursus americanus) hunters, and vehicle strikes

  11. Natural regeneration on seismic lines influences movement behaviour of wolves and grizzly bears.

    Science.gov (United States)

    Finnegan, Laura; Pigeon, Karine E; Cranston, Jerome; Hebblewhite, Mark; Musiani, Marco; Neufeld, Lalenia; Schmiegelow, Fiona; Duval, Julie; Stenhouse, Gordon B

    2018-01-01

    Across the boreal forest of Canada, habitat disturbance is the ultimate cause of caribou (Rangifer tarandus caribou) declines. Habitat restoration is a focus of caribou recovery efforts, with a goal to finding ways to reduce predator use of disturbances, and caribou-predator encounters. One of the most pervasive disturbances within caribou ranges in Alberta, Canada are seismic lines cleared for energy exploration. Seismic lines facilitate predator movement, and although vegetation on some seismic lines is regenerating, it remains unknown whether vegetation regrowth is sufficient to alter predator response. We used Light Detection and Ranging (LiDAR) data, and GPS locations, to understand how vegetation and other attributes of seismic lines influence movements of two predators, wolves (Canis lupus) and grizzly bears (Ursus arctos). During winter, wolves moved towards seismic lines regardless of vegetation height, while during spring wolves moved towards seismic lines with higher vegetation. During summer, wolves moved towards seismic lines with lower vegetation and also moved faster near seismic lines with vegetation grizzly bears during spring and summer, but there was no relationship between vegetation height and grizzly bear movement rates. These results suggest that wolves use seismic lines for travel during summer, but during winter wolf movements relative to seismic lines could be influenced by factors additional to movement efficiency; potentially enhanced access to areas frequented by ungulate prey. Grizzly bears may be using seismic lines for movement, but could also be using seismic lines as a source of vegetative food or ungulate prey. To reduce wolf movement rate, restoration could focus on seismic lines with vegetation <1 m in height. However our results revealed that seismic lines continue to influence wolf movement behaviour decades after they were built, and even at later stages of regeneration. Therefore it remains unknown at what stage of natural

  12. Active fans and grizzly bears: Reducing risks for wilderness campers

    Science.gov (United States)

    Sakals, M. E.; Wilford, D. J.; Wellwood, D. W.; MacDougall, S. A.

    2010-03-01

    Active geomorphic fans experience debris flows, debris floods and/or floods (hydrogeomorphic processes) that can be hazards to humans. Grizzly bears ( Ursus arctos) can also be a hazard to humans. This paper presents the results of a cross-disciplinary study that analyzed both hydrogeomorphic and grizzly bear hazards to wilderness campers on geomorphic fans along a popular hiking trail in Kluane National Park and Reserve in southwestern Yukon Territory, Canada. Based on the results, a method is proposed to reduce the risks to campers associated with camping on fans. The method includes both landscape and site scales and is based on easily understood and readily available information regarding weather, vegetation, stream bank conditions, and bear ecology and behaviour. Educating wilderness campers and providing a method of decision-making to reduce risk supports Parks Canada's public safety program; a program based on the principle of user self-sufficiency. Reducing grizzly bear-human conflicts complements the efforts of Parks Canada to ensure a healthy grizzly bear population.

  13. Salmon-Eating Grizzly Bears Exposed to Elevated Levels of Marine Derived Persistent Organic Pollutants

    Science.gov (United States)

    Christensen, J. R.; Ross, P. S.; Whiticar, M. J.

    2004-12-01

    The coastal grizzly bears of British Columbia (BC, Canada) rely heavily on salmon returning from the Pacific Ocean, whereas interior bears do not have access to or readily utilize this marine-derived food source. Since salmon have been shown to accumulate persistent organic pollutants (POPs) from the North Pacific Ocean, we hypothesized that salmon consumption by grizzly bears would be reflected by an increase in the POP burden. To test this hypothesis we collected hair and fat tissue from grizzlies at various locations around BC to compare salmon-eating (coastal) grizzlies to non-salmon-eating (interior) grizzlies. We characterized the feeding habits for each bear sampled by measuring the stable carbon and nitrogen isotope signature of their hair. The positive relationship between 13C/12C and 15N/14N isotopic ratios suggests that the majority of the meat portion of the diet of coastal grizzlies is coming from salmon, rather than from terrestrial or freshwater sources. By contrast, stable isotope ratios revealed that interior bears have an almost exclusive vegetarian diet with no marine influence. As hypothesized, the coastal grizzly bears have significantly greater OC pesticide and lower-brominated PBDE congener body burden than the interior grizzlies. We also found a positive relationship between C and N isotope ratios and these same POP contaminants in bear tissue. Overall, these results demonstrate that Pacific salmon represents a significant vector delivering both OC pesticides and PBDEs to BC coastal grizzly bears.

  14. Methods to estimate distribution and range extent of grizzly bears in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Haroldson, Mark A.; Schwartz, Charles C.; Thompson, Daniel J.; Bjornlie, Daniel D.; Gunther, Kerry A.; Cain, Steven L.; Tyers, Daniel B.; Frey, Kevin L.; Aber, Bryan C.

    2014-01-01

    The distribution of the Greater Yellowstone Ecosystem grizzly bear (Ursus arctos) population has expanded into areas unoccupied since the early 20th century. Up-to-date information on the area and extent of this distribution is crucial for federal, state, and tribal wildlife and land managers to make informed decisions regarding grizzly bear management. The most recent estimate of grizzly bear distribution (2004) utilized fixed-kernel density estimators to describe distribution. This method was complex and computationally time consuming and excluded observations of unmarked bears. Our objective was to develop a technique to estimate grizzly bear distribution that would allow for the use of all verified grizzly bear location data, as well as provide the simplicity to be updated more frequently. We placed all verified grizzly bear locations from all sources from 1990 to 2004 and 1990 to 2010 onto a 3-km × 3-km grid and used zonal analysis and ordinary kriging to develop a predicted surface of grizzly bear distribution. We compared the area and extent of the 2004 kriging surface with the previous 2004 effort and evaluated changes in grizzly bear distribution from 2004 to 2010. The 2004 kriging surface was 2.4% smaller than the previous fixed-kernel estimate, but more closely represented the data. Grizzly bear distribution increased 38.3% from 2004 to 2010, with most expansion in the northern and southern regions of the range. This technique can be used to provide a current estimate of grizzly bear distribution for management and conservation applications.

  15. Landscape conditions predisposing grizzly bears to conflicts on private agricultural lands in the western USA

    Science.gov (United States)

    Wilson, S.M.; Madel, M.J.; Mattson, D.J.; Graham, J.M.; Merrill, T.

    2006-01-01

    We used multiple logistic regression to model how different landscape conditions contributed to the probability of human-grizzly bear conflicts on private agricultural ranch lands. We used locations of livestock pastures, traditional livestock carcass disposal areas (boneyards), beehives, and wetland-riparian associated vegetation to model the locations of 178 reported human-grizzly bear conflicts along the Rocky Mountain East Front, Montana, USA during 1986-2001. We surveyed 61 livestock producers in the upper Teton watershed of north-central Montana, to collect spatial and temporal data on livestock pastures, boneyards, and beehives for the same period, accounting for changes in livestock and boneyard management and beehive location and protection, for each season. We used 2032 random points to represent the null hypothesis of random location relative to potential explanatory landscape features, and used Akaike's Information Criteria (AIC/AICC) and Hosmer-Lemeshow goodness-of-fit statistics for model selection. We used a resulting "best" model to map contours of predicted probabilities of conflict, and used this map for verification with an independent dataset of conflicts to provide additional insights regarding the nature of conflicts. The presence of riparian vegetation and distances to spring, summer, and fall sheep or cattle pastures, calving and sheep lambing areas, unmanaged boneyards, and fenced and unfenced beehives were all associated with the likelihood of human-grizzly bear conflicts. Our model suggests that collections of attractants concentrated in high quality bear habitat largely explain broad patterns of human-grizzly bear conflicts on private agricultural land in our study area. ?? 2005 Elsevier Ltd. All rights reserved.

  16. Grizzly bear use of army cutworm moths in the Yellowstone Ecosystem

    Science.gov (United States)

    French, Steven P.; French, Marilynn G.; Knight, Richard R.

    1994-01-01

    The ecology of alpine aggregations of army cutworm moths (Euxoa auxiliaris) and the feeding behavior of grizzly bears (Ursus arctos horribilis) at these areas were studied in the Yellowstone ecosystem from 1988 to 1991. Army cutworm moths migrate to mountain regions each summer to feed at night on the nectar of alpine and subalpine flowers, and during the day they seek shelter under various rock formations. Grizzly bears were observed feeding almost exclusively on moths up to 3 months each summer at the 10 moth-aggregation areas we identified. Fifty-one different grizzly bears were observed feeding at 4 of these areas during a single day in August 1991. Army cutworm moths are a preferred source of nutrition for many grizzly bears in the Yellowstone ecosystem and represent a high quality food that is available during hyperphagia.

  17. 75 FR 14496 - Endangered and Threatened Wildlife and Plants; Reinstatement of Protections for the Grizzly Bear...

    Science.gov (United States)

    2010-03-26

    ... of Protections for the Grizzly Bear in the Greater Yellowstone Ecosystem in Compliance With Court... grizzly bear (Ursus arctos horribilis) in the Greater Yellowstone Area (GYA) and surrounding area. This rule corrects the grizzly bear listing to reinstate the listing of grizzly bears in the GYA. This final...

  18. Grizzly bear corticosteroid binding globulin: Cloning and serum protein expression.

    Science.gov (United States)

    Chow, Brian A; Hamilton, Jason; Alsop, Derek; Cattet, Marc R L; Stenhouse, Gordon; Vijayan, Mathilakath M

    2010-06-01

    Serum corticosteroid levels are routinely measured as markers of stress in wild animals. However, corticosteroid levels rise rapidly in response to the acute stress of capture and restraint for sampling, limiting its use as an indicator of chronic stress. We hypothesized that serum corticosteroid binding globulin (CBG), the primary transport protein for corticosteroids in circulation, may be a better marker of the stress status prior to capture in grizzly bears (Ursus arctos). To test this, a full-length CBG cDNA was cloned and sequenced from grizzly bear testis and polyclonal antibodies were generated for detection of this protein in bear sera. The deduced nucleotide and protein sequences were 1218 bp and 405 amino acids, respectively. Multiple sequence alignments showed that grizzly bear CBG (gbCBG) was 90% and 83% identical to the dog CBG nucleotide and amino acid sequences, respectively. The affinity purified rabbit gbCBG antiserum detected grizzly bear but not human CBG. There were no sex differences in serum total cortisol concentration, while CBG expression was significantly higher in adult females compared to males. Serum cortisol levels were significantly higher in bears captured by leg-hold snare compared to those captured by remote drug delivery from helicopter. However, serum CBG expression between these two groups did not differ significantly. Overall, serum CBG levels may be a better marker of chronic stress, especially because this protein is not modulated by the stress of capture and restraint in grizzly bears. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Extirpations of grizzly bears in the contiguous United States of America, 1850-2000

    Science.gov (United States)

    Mattson, David J.; Merrill, Troy

    2002-01-01

    We investigated factors associated with the distribution of grizzly bears (Ursus arctos horribilis) in 1850 and their extirpation during 1850–1920 and 1920–1970 in the contiguous United States. We used autologistic regression to describe relations between grizzly bear range in 1850, 1920, and 1970 and potential explanatory factors specified for a comprehensive grid of cells, each 900 km2 in size. We also related persistence, 1920–1970, to range size and shape. Grizzly bear range in 1850 was positively related to occurrence in mountainous ecoregions and the ranges of oaks (Quercus spp.), piñon pines (Pinus edulis and P. monophylla), whitebark pine (P. albicaulis), and bison (Bos bison) and negatively related to occurrence in prairie and hot desert ecoregions. Relations with salmon (Oncorynchus spp.) range and human factors were complex. Persistence of grizzly bear range, 1850–1970, was positively related to occurrence in the Rocky Mountains, whitebark pine range, and local size of grizzly bear range at the beginning of each period, and negatively related to number of humans and the ranges of bison, salmon, and piñon pines. We speculate that foods affected persistence primarily by influencing the frequency of contact between humans and bears. With respect to current conservation, grizzly bears survived from 1920 to 1970 most often where ranges at the beginning of this period were either larger than 20,000 km2 or larger than 7,000 km2 but with a ratio of perimeter to area of grizzly bear range would be as extensive as it is now. Although grizzly bear range in the Yellowstone region is currently the most robust of any to potential future increases in human lethality, bears in this region are threatened by the loss of whitebark pine.

  20. Grizzly bear management in Yellowstone National Park: The heart of recovery in the Yellowstone Ecosystem

    Science.gov (United States)

    Schwartz, C.C.; Gunther, K.; McCullough, Dale R.; Kaji, Koichi; Yamanaka, Masami

    2006-01-01

    Grizzly bear (Ursus arctos) management in the Greater Yellowstone Ecosystem (GYE) in the past quarter century has resulted in more than doubling of the population from around 200 to more than 500, expansion of range back into habitats where the bear has extirpated more than a century ago, and a move toward removal from the U.S. Endangered Species list. At the center of this success story are the management programs in Yellowstone National Park (YNP). Regulations that restrict human activity, camping, and food storage, elimination of human food and garbage as attractants, and ranger attendance of roadside bears have all resulted in the population of grizzlies in YNP approaching carrying capacity. Recent studies suggest, however, that YNP alone is too small to support the current population, making management beyond the park boundary important and necessary to the demographics of the population as a whole. Demographic analyses suggest a source-sink dynamic exists within the GYE, with YNP and lands outside the park within the Grizzly Bear Recovery Zone (RZ) representing source habitats, whereas lands beyond the RZ constitute sinks. The source-sink demography in the GYE is indicative of carnivore conservation issues worldwide where many national parks or preserves designed to protect out natural resources are inadequate in size or shape to provide all necessary life history requirements for these wide-ranging species. Additionally, wide-ranging behavior and long-distance dispersal seem inherent to large carnivores, so mortality around the edges is virtually inevitable, and conservation in the GYE is inextricably linked to management regimes not only within YNP, but within the GYE as a whole. We discuss those needs here.

  1. Body and diet composition of sympatric black and grizzly bears in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Schwartz, Charles C.; Fortin, Jennifer K.; Teisberg, Justin E.; Haroldson, Mark A.; Servheen, Christopher; Robbins, Charles T.; van Manen, Frank T.

    2013-01-01

    The Greater Yellowstone Ecosystem (GYE) has experienced changes in the distribution and availability of grizzly bear (Ursus arctos) food resources in recent decades. The decline of ungulates, fish, and whitebark pine seeds (Pinus albicaulis) has prompted questions regarding their ability to adapt. We examined body composition and diet of grizzly bears using bioelectrical impedance and stable isotopes to determine if 1) we can detect a change in diet quality associated with the decline in either ungulates or whitebark pine, and 2) the combined decline in ungulates, fish, and pine seeds resulted in a change in grizzly bear carrying capacity in the GYE. We contrasted body fat and mass in grizzly bears with a potential competitor, the American black bear (Ursus americanus), to address these questions. Grizzly bears assimilated more meat into their diet and were in better body condition than black bears throughout the study period, indicating the decline in ungulate resources did not affect grizzly bears more than black bears. We also found no difference in autumn fat levels in grizzly bears in years of good or poor pine seed production, and stable isotope analyses revealed this was primarily a function of switching to meat resources during poor seed-producing years. This dietary plasticity was consistent over the course of our study. We did not detect an overall downward trend in either body mass or the fraction of meat assimilated into the diet by grizzly bears over the past decade, but we did detect a downward trend in percent body fat in adult female grizzly bears after 2006. Whether this decline is an artifact of small sample size or due to the population reaching the ecological carrying capacity of the Yellowstone ecosystem warrants further investigation.

  2. Use of naturally occurring mercury to determine the importance of cutthroat trout to Yellowstone grizzly bears

    Science.gov (United States)

    Felicetti, L.A.; Schwartz, C.C.; Rye, R.O.; Gunther, K.A.; Crock, J.G.; Haroldson, M.A.; Waits, L.; Robbins, C.T.

    2004-01-01

    Spawning cutthroat trout (Oncorhynchus clarki (Richardson, 1836)) are a potentially important food resource for grizzly bears (Ursus arctos horribilis Ord, 1815) in the Greater Yellowstone Ecosystem. We developed a method to estimate the amount of cutthroat trout ingested by grizzly bears living in the Yellowstone Lake area. The method utilized (i) the relatively high, naturally occurring concentration of mercury in Yellowstone Lake cutthroat trout (508 ± 93 ppb) and its virtual absence in all other bear foods (6 ppb), (ii) hair snares to remotely collect hair from bears visiting spawning cutthroat trout streams between 1997 and 2000, (iii) DNA analyses to identify the individual and sex of grizzly bears leaving a hair sample, (iv) feeding trials with captive bears to develop relationships between fish and mercury intake and hair mercury concentrations, and (v) mercury analyses of hair collected from wild bears to estimate the amount of trout consumed by each bear. Male grizzly bears consumed an average of 5 times more trout/kg bear than did female grizzly bears. Estimated cutthroat trout intake per year by the grizzly bear population was only a small fraction of that estimated by previous investigators, and males consumed 92% of all trout ingested by grizzly bears.

  3. Carnivore re-colonisation: Reality, possibility and a non-equilibrium century for grizzly bears in the southern Yellowstone ecosystem

    Science.gov (United States)

    Pyare, Sanjay; Cain, S.; Moody, D.; Schwartz, C.; Berger, J.

    2004-01-01

    Most large native carnivores have experienced range contractions due to conflicts with humans, although neither rates of spatial collapse nor expansion have been well characterised. In North America, the grizzly bear (Ursus arctos) once ranged from Mexico northward to Alaska, however its range in the continental USA has been reduced by 95-98%. Under the U. S. Endangered Species Act, the Yellowstone grizzly bear population has re-colonised habitats outside Yellowstone National Park. We analysed historical and current records, including data on radio-collared bears, (1) to evaluate changes in grizzly bear distribution in the southern Greater Yellowstone Ecosystem (GYE) over a 100-year period, (2) to utilise historical rates of re-colonisation to project future expansion trends and (3) to evaluate the reality of future expansion based on human limitations and land use. Analysis of distribution in 20-year increments reflects range reduction from south to north (1900-1940) and expansion to the south (1940-2000). Expansion was exponential and the area occupied by grizzly bears doubled approximately every 20 years. A complementary analysis of bear occurrence in Grand Teton National Park also suggests an unprecedented period of rapid expansion during the last 20-30 years. The grizzly bear population currently has re-occupied about 50% of the southern GYE. Based on assumptions of continued protection and ecological stasis, our model suggests total occupancy in 25 years. Alternatively, extrapolation of linear expansion rates from the period prior to protection suggests total occupancy could take > 100 years. Analyses of historical trends can be useful as a restoration tool because they enable a framework and timeline to be constructed to pre-emptively address the social challenges affecting future carnivore recovery. ?? 2004 The Zoological Society of London.

  4. Energy homeostasis regulatory peptides in hibernating grizzly bears.

    Science.gov (United States)

    Gardi, János; Nelson, O Lynne; Robbins, Charles T; Szentirmai, Eva; Kapás, Levente; Krueger, James M

    2011-05-15

    Grizzly bears (Ursus arctos horribilis) are inactive for up to 6 months during hibernation. They undergo profound seasonal changes in food intake, body mass, and energy expenditure. The circa-annual regulation of metabolism is poorly understood. In this study, we measured plasma ghrelin, leptin, obestatin, and neuropeptide-Y (NPY) levels, hormones known to be involved in the regulation of energy homeostasis, in ten grizzly bears. Blood samples were collected during the active summer period, early hibernation and late hibernation. Plasma levels of leptin, obestatin, and NPY did not change between the active and the hibernation periods. Plasma total ghrelin and desacyl-ghrelin concentrations significantly decreased during the inactive winter period compared to summer levels. The elevated ghrelin levels may help enhance body mass during pre-hibernation, while the low plasma ghrelin concentrations during hibernation season may contribute to the maintenance of hypophagia, low energy utilization and behavioral inactivity. Our results suggest that ghrelin plays a potential role in the regulation of metabolic changes and energy homeostasis during hibernation in grizzly bears. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Bacterial populations and metabolites in the feces of free roaming and captive grizzly bears.

    Science.gov (United States)

    Schwab, Clarissa; Cristescu, Bogdan; Boyce, Mark S; Stenhouse, Gordon B; Gänzle, Michael

    2009-12-01

    Gut physiology, host phylogeny, and diet determine the composition of the intestinal microbiota. Grizzly bears (Ursus arctos horribilis) belong to the Order Carnivora, yet feed on an omnivorous diet. The role of intestinal microflora in grizzly bear digestion has not been investigated. Microbiota and microbial activity were analysed from the feces of wild and captive grizzly bears. Bacterial composition was determined using culture-dependent and culture-independent methods. The feces of wild and captive grizzly bears contained log 9.1 +/- 0.5 and log 9.2 +/- 0.3 gene copies x g(-1), respectively. Facultative anaerobes Enterobacteriaceae and enterococci were dominant in wild bear feces. Among the strict anaerobes, the Bacteroides-Prevotella-Porphyromonas group was most prominent. Enterobacteriaceae were predominant in the feces of captive grizzly bears, at log 8.9 +/- 0.5 gene copies x g(-1). Strict anaerobes of the Bacteroides-Prevotella-Porphyromonas group and the Clostridium coccoides cluster were present at log 6.7 +/- 0.9 and log 6.8 +/- 0.8 gene copies x g(-1), respectively. The presence of lactate and short-chain fatty acids (SCFAs) verified microbial activity. Total SCFA content and composition was affected by diet. SCFA composition in the feces of captive grizzly bears resembled the SCFA composition of prey-consuming wild animals. A consistent data set was obtained that associated fecal microbiota and metabolites with the distinctive gut physiology and diet of grizzly bears.

  6. Natural landscape features, human-related attractants, and conflict hotspots: A spatial analysis of human-grizzly bear conflicts

    Science.gov (United States)

    Wilson, S.M.; Madel, M.J.; Mattson, D.J.; Graham, J.M.; Burchfield, J.A.; Belsky, J.M.

    2005-01-01

    There is a long history of conflict in the western United States between humans and grizzly bears (Ursus arctos) involving agricultural attractants. However, little is known about the spatial dimensions of this conflict and the relative importance of different attractants. This study was undertaken to better understand the spatial and functional components of conflict between humans and grizzly bears on privately owned agricultural lands in Montana. Our investigations focused on spatial associations of rivers and creeks, livestock pastures, boneyards (livestock carcass dump sites), beehives, and grizzly bear habitat with reported human-grizzly bear conflicts during 1986-2001. We based our analysis on a survey of 61 of 64 livestock producers in our study in the Rocky Mountain East Front, Montana. With the assistance of livestock and honey producers, we mapped the locations of cattle and sheep pastures, boneyards, and beehives. We used density surface mapping to identify seasonal clusters of conflicts that we term conflict hotspots. Hotspots accounted for 75% of all conflicts and encompassed approximately 8% of the study area. We also differentiated chronic (4 or more years of conflicts) from non-chronic hotspots (fewer than 4 years of conflict). The 10 chronic hotpots accounted for 58% of all conflicts. Based on Monte Carlo simulations, we found that conflict locations were most strongly associated with rivers and creeks followed by sheep lambing areas and fall sheep pastures. Conflicts also were associated with cattle calving areas, spring cow-calf pastures, summer and fall cattle pastures, and boneyards. The Monte Carlo simulations indicated associations between conflict locations and unprotected beehives at specific analysis scales. Protected (fenced) beehives were less likely to experience conflicts than unprotected beehives. Conflicts occurred at a greater rate in riparian and wetland vegetation than would be expected. The majority of conflicts occurred in a

  7. An evaluation of the use of ERTS-1 satellite imagery for grizzly bear habitat analysis. [Montana

    Science.gov (United States)

    Varney, J. R.; Craighead, J. J.; Sumner, J. S.

    1974-01-01

    Improved classification and mapping of grizzly habitat will permit better estimates of population density and distribution, and allow accurate evaluation of the potential effects of changes in land use, hunting regulation, and management policies on existing populations. Methods of identifying favorable habitat from ERTS-1 multispectral scanner imagery were investigated and described. This technique could reduce the time and effort required to classify large wilderness areas in the Western United States.

  8. 78 FR 17708 - Endangered and Threatened Wildlife and Plants; Draft Revised Supplement to the Grizzly Bear...

    Science.gov (United States)

    2013-03-22

    ...] Endangered and Threatened Wildlife and Plants; Draft Revised Supplement to the Grizzly Bear Recovery Plan... Revised Supplement to the Grizzly Bear Recovery Plan. Specifically, this supplement proposes to revise the demographic recovery criteria for the Yellowstone Ecosystem. In the lower 48 States, Grizzly bears (Ursus...

  9. Potential paths for male-mediated gene flow to and from an isolated grizzly bear population

    Science.gov (United States)

    Peck, Christopher P.; van Manen, Frank T.; Costello, Cecily M.; Haroldson, Mark A.; Landenburger, Lisa; Roberts, Lori L.; Bjornlie, Daniel D.; Mace, Richard D.

    2017-01-01

    For several decades, grizzly bear populations in the Greater Yellowstone Ecosystem (GYE) and the Northern Continental Divide Ecosystem (NCDE) have increased in numbers and range extent. The GYE population remains isolated and although effective population size has increased since the early 1980s, genetic connectivity between these populations remains a long-term management goal. With only ~110 km distance separating current estimates of occupied range for these populations, the potential for gene flow is likely greater now than it has been for many decades. We sought to delineate potential paths that would provide the opportunity for male-mediated gene flow between the two populations. We first developed step-selection functions to generate conductance layers using ecological, physical, and anthropogenic landscape features associated with non-stationary GPS locations of 124 male grizzly bears (199 bear-years). We then used a randomized shortest path (RSP) algorithm to estimate the average number of net passages for all grid cells in the study region, when moving from an origin to a destination node. Given habitat characteristics that were the basis for the conductance layer, movements follow certain grid cell sequences more than others and the resulting RSP values thus provide a measure of movement potential. Repeating this process for 100 pairs of random origin and destination nodes, we identified paths for three levels of random deviation (θ) from the least-cost path. We observed broad-scale concordance between model predictions for paths originating in the NCDE and those originating in the GYE for all three levels of movement exploration. Model predictions indicated that male grizzly bear movement between the ecosystems could involve a variety of routes, and verified observations of grizzly bears outside occupied range supported this finding. Where landscape features concentrated paths into corridors (e.g., because of anthropogenic influence), they typically

  10. Spatial patterns of breeding success of grizzly bears derived from hierarchical multistate models.

    Science.gov (United States)

    Fisher, Jason T; Wheatley, Matthew; Mackenzie, Darryl

    2014-10-01

    Conservation programs often manage populations indirectly through the landscapes in which they live. Empirically, linking reproductive success with landscape structure and anthropogenic change is a first step in understanding and managing the spatial mechanisms that affect reproduction, but this link is not sufficiently informed by data. Hierarchical multistate occupancy models can forge these links by estimating spatial patterns of reproductive success across landscapes. To illustrate, we surveyed the occurrence of grizzly bears (Ursus arctos) in the Canadian Rocky Mountains Alberta, Canada. We deployed camera traps for 6 weeks at 54 surveys sites in different types of land cover. We used hierarchical multistate occupancy models to estimate probability of detection, grizzly bear occupancy, and probability of reproductive success at each site. Grizzly bear occupancy varied among cover types and was greater in herbaceous alpine ecotones than in low-elevation wetlands or mid-elevation conifer forests. The conditional probability of reproductive success given grizzly bear occupancy was 30% (SE = 0.14). Grizzly bears with cubs had a higher probability of detection than grizzly bears without cubs, but sites were correctly classified as being occupied by breeding females 49% of the time based on raw data and thus would have been underestimated by half. Repeated surveys and multistate modeling reduced the probability of misclassifying sites occupied by breeders as unoccupied to <2%. The probability of breeding grizzly bear occupancy varied across the landscape. Those patches with highest probabilities of breeding occupancy-herbaceous alpine ecotones-were small and highly dispersed and are projected to shrink as treelines advance due to climate warming. Understanding spatial correlates in breeding distribution is a key requirement for species conservation in the face of climate change and can help identify priorities for landscape management and protection. © 2014 Society

  11. Testing landscape modeling approaches for environmental impact assessment of mining land use on grizzly bears (Ursus arctos horribilis) in the foothills region of west central Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Symbaluk, M.D. [Elk Valley Coal Corp., Hinton, AB (Canada). Cardinal River Operations

    2008-07-01

    The Cheviot open pit coal mine is located on the front range of the Rocky Mountains in Alberta. The environmental impact assessment (EIA) requirements for the mining project included an assessment of the cumulative effects of past, existing, and immanent activities on a 3040 km{sup 2} study area radiating approximately 25 km around the proposed project area. The grizzly bear was identified as a flagship valued ecosystem component (VEC) for assessing the regional cumulative effects of the proposed Cheviot project. In this portion of the study, a grizzly bear habitat effectiveness model was used to monitor grizzly bear response to mining land use in the study area. An investigation of grizzly bear movement paths prior to and during mine disturbances demonstrated that mining land use does not present significant barriers to grizzly bear activities. The study demonstrated the importance of using inductive modelling tools at appropriate scales, as well as the use of site-specific empirical data. It was concluded that continued monitoring of mining sites is needed to ensure that adaptive management processes are improved. A review of the Cheviot cumulative environmental effects (CEA) process was also provided. 17 refs., 1 fig.

  12. Demography and genetic structure of a recovering grizzly bear population

    Science.gov (United States)

    Kendall, K.C.; Stetz, J.B.; Boulanger, J.; Macleod, A.C.; Paetkau, David; White, Gary C.

    2009-01-01

    Grizzly bears (brown bears; Ursus arctos) are imperiled in the southern extent of their range worldwide. The threatened population in northwestern Montana, USA, has been managed for recovery since 1975; yet, no rigorous data were available to monitor program success. We used data from a large noninvasive genetic sampling effort conducted in 2004 and 33 years of physical captures to assess abundance, distribution, and genetic health of this population. We combined data from our 3 sampling methods (hair trap, bear rub, and physical capture) to construct individual bear encounter histories for use in Huggins-Pledger closed mark-recapture models. Our population estimate, N?? = 765 (95% CI = 715-831) was more than double the existing estimate derived from sightings of females with young. Based on our results, the estimated known, human-caused mortality rate in 2004 was 4.6% (95% CI = 4.2-4.9%), slightly above the 4% considered sustainable; however, the high proportion of female mortalities raises concern. We used location data from telemetry, confirmed sightings, and genetic sampling to estimate occupied habitat. We found that grizzly bears occupied 33,480 km2 in the Northern Continental Divide Ecosystem (NCDE) during 1994-2007, including 10,340 km beyond the Recovery Zone. We used factorial correspondence analysis to identify potential barriers to gene flow within this population. Our results suggested that genetic interchange recently increased in areas with low gene flow in the past; however, we also detected evidence of incipient fragmentation across the major transportation corridor in this ecosystem. Our results suggest that the NCDE population is faring better than previously thought, and they highlight the need for a more rigorous monitoring program.

  13. MEDULLOBLASTOMA IN A GRIZZLY BEAR (URSUS ARCTOS HORRIBLIS).

    Science.gov (United States)

    Mitchell, Jeffrey W; Thomovsky, Stephanie A; Chen, Annie V; Layton, Arthur W; Haldorson, Gary; Tucker, Russell L; Roberts, Gregory

    2015-09-01

    A 3-yr-old female spayed grizzly bear (Ursus arctos horribilis) was evaluated for seizure activity along with lethargy, inappetence, dull mentation, and aggressive behavior. Magnetic resonance (MR) examination of the brain revealed a contrast-enhanced right cerebellar mass with multifocal smaller nodules located in the left cerebellum, thalamus, hippocampus, and cerebrum with resultant obstructive hydrocephalus. Cerebrospinal fluid analysis revealed mild mononuclear pleocytosis, with differentials including inflammatory versus neoplastic processes. Blood and cerebrospinal fluid were also submitted for polymerase chain reaction and agar gel immunodiffusion to rule out infectious causes of meningitis/encephalitis. While awaiting these results, the bear was placed on steroid and antibiotic therapy. Over the next week, the bear deteriorated; she died 1 wk after MR. A complete postmortem examination, including immunohistochemisty, revealed the cerebellar mass to be a medulloblastoma. This is the only case report, to the authors' knowledge, describing a medulloblastoma in a grizzly bear.

  14. 78 FR 29774 - Endangered and Threatened Wildlife and Plants; Draft Revised Supplement to the Grizzly Bear...

    Science.gov (United States)

    2013-05-21

    ...] Endangered and Threatened Wildlife and Plants; Draft Revised Supplement to the Grizzly Bear Recovery Plan... extending the public comment period for a Draft Revised Supplement to the Grizzly Bear Recovery Plan in the... to the Grizzly Bear Recovery Plan is available at http://www.fws.gov/mountain-prairie/species/mammals...

  15. Exertional myopathy in a grizzly bear (Ursus arctos) captured by leghold snare.

    Science.gov (United States)

    Cattet, Marc; Stenhouse, Gordon; Bollinger, Trent

    2008-10-01

    We diagnosed exertional myopathy (EM) in a grizzly bear (Ursus arctos) that died approximately 10 days after capture by leghold snare in west-central Alberta, Canada, in June 2003. The diagnosis was based on history, post-capture movement data, gross necropsy, histopathology, and serum enzyme levels. We were unable to determine whether EM was the primary cause of death because autolysis precluded accurate evaluation of all tissues. Nevertheless, comparison of serum aspartate aminotransferase and creatine kinase concentrations and survival between the affected bear and other grizzly bears captured by leghold snare in the same research project suggests EM also occurred in other bears, but that it is not generally a cause of mortality. We propose, however, occurrence of nonfatal EM in grizzly bears after capture by leghold snare has potential implications for use of this capture method, including negative effects on wildlife welfare and research data.

  16. Nature vs. Nurture: Evidence for Social Learning of Conflict Behaviour in Grizzly Bears.

    Science.gov (United States)

    Morehouse, Andrea T; Graves, Tabitha A; Mikle, Nate; Boyce, Mark S

    2016-01-01

    The propensity for a grizzly bear to develop conflict behaviours might be a result of social learning between mothers and cubs, genetic inheritance, or both learning and inheritance. Using non-invasive genetic sampling, we collected grizzly bear hair samples during 2011-2014 across southwestern Alberta, Canada. We targeted private agricultural lands for hair samples at grizzly bear incident sites, defining an incident as an occurrence in which the grizzly bear caused property damage, obtained anthropogenic food, or killed or attempted to kill livestock or pets. We genotyped 213 unique grizzly bears (118 M, 95 F) at 24 microsatellite loci, plus the amelogenin marker for sex. We used the program COLONY to assign parentage. We evaluated 76 mother-offspring relationships and 119 father-offspring relationships. We compared the frequency of problem and non-problem offspring from problem and non-problem parents, excluding dependent offspring from our analysis. Our results support the social learning hypothesis, but not the genetic inheritance hypothesis. Offspring of problem mothers are more likely to be involved in conflict behaviours, while offspring from non-problem mothers are not likely to be involved in incidents or human-bear conflicts themselves (Barnard's test, p = 0.05, 62.5% of offspring from problem mothers were problem bears). There was no evidence that offspring are more likely to be involved in conflict behaviour if their fathers had been problem bears (Barnard's test, p = 0.92, 29.6% of offspring from problem fathers were problem bears). For the mother-offspring relationships evaluated, 30.3% of offspring were identified as problem bears independent of their mother's conflict status. Similarly, 28.6% of offspring were identified as problem bears independent of their father's conflict status. Proactive mitigation to prevent female bears from becoming problem individuals likely will help prevent the perpetuation of conflicts through social learning.

  17. Nature vs. Nurture: Evidence for Social Learning of Conflict Behaviour in Grizzly Bears.

    Directory of Open Access Journals (Sweden)

    Andrea T Morehouse

    Full Text Available The propensity for a grizzly bear to develop conflict behaviours might be a result of social learning between mothers and cubs, genetic inheritance, or both learning and inheritance. Using non-invasive genetic sampling, we collected grizzly bear hair samples during 2011-2014 across southwestern Alberta, Canada. We targeted private agricultural lands for hair samples at grizzly bear incident sites, defining an incident as an occurrence in which the grizzly bear caused property damage, obtained anthropogenic food, or killed or attempted to kill livestock or pets. We genotyped 213 unique grizzly bears (118 M, 95 F at 24 microsatellite loci, plus the amelogenin marker for sex. We used the program COLONY to assign parentage. We evaluated 76 mother-offspring relationships and 119 father-offspring relationships. We compared the frequency of problem and non-problem offspring from problem and non-problem parents, excluding dependent offspring from our analysis. Our results support the social learning hypothesis, but not the genetic inheritance hypothesis. Offspring of problem mothers are more likely to be involved in conflict behaviours, while offspring from non-problem mothers are not likely to be involved in incidents or human-bear conflicts themselves (Barnard's test, p = 0.05, 62.5% of offspring from problem mothers were problem bears. There was no evidence that offspring are more likely to be involved in conflict behaviour if their fathers had been problem bears (Barnard's test, p = 0.92, 29.6% of offspring from problem fathers were problem bears. For the mother-offspring relationships evaluated, 30.3% of offspring were identified as problem bears independent of their mother's conflict status. Similarly, 28.6% of offspring were identified as problem bears independent of their father's conflict status. Proactive mitigation to prevent female bears from becoming problem individuals likely will help prevent the perpetuation of conflicts through social

  18. Nature vs. nurture: Evidence for social learning of conflict behaviour in grizzly bears

    Science.gov (United States)

    Morehouse, Andrea T.; Graves, Tabitha A.; Mikle, Nathaniel; Boyce, Mark S.

    2016-01-01

    The propensity for a grizzly bear to develop conflict behaviours might be a result of social learning between mothers and cubs, genetic inheritance, or both learning and inheritance. Using non-invasive genetic sampling, we collected grizzly bear hair samples during 2011–2014 across southwestern Alberta, Canada. We targeted private agricultural lands for hair samples at grizzly bear incident sites, defining an incident as an occurrence in which the grizzly bear caused property damage, obtained anthropogenic food, or killed or attempted to kill livestock or pets. We genotyped 213 unique grizzly bears (118 M, 95 F) at 24 microsatellite loci, plus the amelogenin marker for sex. We used the program COLONY to assign parentage. We evaluated 76 mother-offspring relationships and 119 father-offspring relationships. We compared the frequency of problem and non-problem offspring from problem and non-problem parents, excluding dependent offspring from our analysis. Our results support the social learning hypothesis, but not the genetic inheritance hypothesis. Offspring of problem mothers are more likely to be involved in conflict behaviours, while offspring from non-problem mothers are not likely to be involved in incidents or human-bear conflicts themselves (Barnard’s test, p = 0.05, 62.5% of offspring from problem mothers were problem bears). There was no evidence that offspring are more likely to be involved in conflict behaviour if their fathers had been problem bears (Barnard’s test, p = 0.92, 29.6% of offspring from problem fathers were problem bears). For the mother-offspring relationships evaluated, 30.3% of offspring were identified as problem bears independent of their mother’s conflict status. Similarly, 28.6% of offspring were identified as problem bears independent of their father’s conflict status. Proactive mitigation to prevent female bears from becoming problem individuals likely will help prevent the perpetuation of conflicts through social learning.

  19. Grizzly Bear Noninvasive Genetic Tagging Surveys: Estimating the Magnitude of Missed Detections.

    Directory of Open Access Journals (Sweden)

    Jason T Fisher

    Full Text Available Sound wildlife conservation decisions require sound information, and scientists increasingly rely on remotely collected data over large spatial scales, such as noninvasive genetic tagging (NGT. Grizzly bears (Ursus arctos, for example, are difficult to study at population scales except with noninvasive data, and NGT via hair trapping informs management over much of grizzly bears' range. Considerable statistical effort has gone into estimating sources of heterogeneity, but detection error-arising when a visiting bear fails to leave a hair sample-has not been independently estimated. We used camera traps to survey grizzly bear occurrence at fixed hair traps and multi-method hierarchical occupancy models to estimate the probability that a visiting bear actually leaves a hair sample with viable DNA. We surveyed grizzly bears via hair trapping and camera trapping for 8 monthly surveys at 50 (2012 and 76 (2013 sites in the Rocky Mountains of Alberta, Canada. We used multi-method occupancy models to estimate site occupancy, probability of detection, and conditional occupancy at a hair trap. We tested the prediction that detection error in NGT studies could be induced by temporal variability within season, leading to underestimation of occupancy. NGT via hair trapping consistently underestimated grizzly bear occupancy at a site when compared to camera trapping. At best occupancy was underestimated by 50%; at worst, by 95%. Probability of false absence was reduced through successive surveys, but this mainly accounts for error imparted by movement among repeated surveys, not necessarily missed detections by extant bears. The implications of missed detections and biased occupancy estimates for density estimation-which form the crux of management plans-require consideration. We suggest hair-trap NGT studies should estimate and correct detection error using independent survey methods such as cameras, to ensure the reliability of the data upon which species

  20. Grizzly Bear Noninvasive Genetic Tagging Surveys: Estimating the Magnitude of Missed Detections.

    Science.gov (United States)

    Fisher, Jason T; Heim, Nicole; Code, Sandra; Paczkowski, John

    2016-01-01

    Sound wildlife conservation decisions require sound information, and scientists increasingly rely on remotely collected data over large spatial scales, such as noninvasive genetic tagging (NGT). Grizzly bears (Ursus arctos), for example, are difficult to study at population scales except with noninvasive data, and NGT via hair trapping informs management over much of grizzly bears' range. Considerable statistical effort has gone into estimating sources of heterogeneity, but detection error-arising when a visiting bear fails to leave a hair sample-has not been independently estimated. We used camera traps to survey grizzly bear occurrence at fixed hair traps and multi-method hierarchical occupancy models to estimate the probability that a visiting bear actually leaves a hair sample with viable DNA. We surveyed grizzly bears via hair trapping and camera trapping for 8 monthly surveys at 50 (2012) and 76 (2013) sites in the Rocky Mountains of Alberta, Canada. We used multi-method occupancy models to estimate site occupancy, probability of detection, and conditional occupancy at a hair trap. We tested the prediction that detection error in NGT studies could be induced by temporal variability within season, leading to underestimation of occupancy. NGT via hair trapping consistently underestimated grizzly bear occupancy at a site when compared to camera trapping. At best occupancy was underestimated by 50%; at worst, by 95%. Probability of false absence was reduced through successive surveys, but this mainly accounts for error imparted by movement among repeated surveys, not necessarily missed detections by extant bears. The implications of missed detections and biased occupancy estimates for density estimation-which form the crux of management plans-require consideration. We suggest hair-trap NGT studies should estimate and correct detection error using independent survey methods such as cameras, to ensure the reliability of the data upon which species management and

  1. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem

    OpenAIRE

    Costello, Cecily M; van Manen, Frank T; Haroldson, Mark A; Ebinger, Michael R; Cain, Steven L; Gunther, Kerry A; Bjornlie, Daniel D

    2014-01-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August–30 September) Global Positioning System locations from 89 bear years to investigate tempo...

  2. Prioritizing Sites for Protection and Restoration for Grizzly Bears (Ursus arctos) in Southwestern Alberta, Canada.

    Science.gov (United States)

    Braid, Andrew C R; Nielsen, Scott E

    2015-01-01

    As the influence of human activities on natural systems continues to expand, there is a growing need to prioritize not only pristine sites for protection, but also degraded sites for restoration. We present an approach for simultaneously prioritizing sites for protection and restoration that considers landscape patterns for a threatened population of grizzly bears (Ursus arctos) in southwestern Alberta, Canada. We considered tradeoffs between bottom-up (food resource supply) and top-down (mortality risk from roads) factors affecting seasonal habitat quality for bears. Simulated annealing was used to prioritize source-like sites (high habitat productivity, low mortality risk) for protection, as well as sink-like sites (high habitat productivity, high mortality risk) for restoration. Priority source-like habitats identified key conservation areas where future developments should be limited, whereas priority sink-like habitats identified key areas for mitigating road-related mortality risk with access management. Systematic conservation planning methods can be used to complement traditional habitat-based methods for individual focal species by identifying habitats where conservation actions (both protection and restoration) have the highest potential utility.

  3. Prioritizing Sites for Protection and Restoration for Grizzly Bears (Ursus arctos in Southwestern Alberta, Canada.

    Directory of Open Access Journals (Sweden)

    Andrew C R Braid

    Full Text Available As the influence of human activities on natural systems continues to expand, there is a growing need to prioritize not only pristine sites for protection, but also degraded sites for restoration. We present an approach for simultaneously prioritizing sites for protection and restoration that considers landscape patterns for a threatened population of grizzly bears (Ursus arctos in southwestern Alberta, Canada. We considered tradeoffs between bottom-up (food resource supply and top-down (mortality risk from roads factors affecting seasonal habitat quality for bears. Simulated annealing was used to prioritize source-like sites (high habitat productivity, low mortality risk for protection, as well as sink-like sites (high habitat productivity, high mortality risk for restoration. Priority source-like habitats identified key conservation areas where future developments should be limited, whereas priority sink-like habitats identified key areas for mitigating road-related mortality risk with access management. Systematic conservation planning methods can be used to complement traditional habitat-based methods for individual focal species by identifying habitats where conservation actions (both protection and restoration have the highest potential utility.

  4. Estimating grizzly and black bear population abundance and trend in Banff National Park using noninvasive genetic sampling.

    Directory of Open Access Journals (Sweden)

    Michael A Sawaya

    Full Text Available We evaluated the potential of two noninvasive genetic sampling methods, hair traps and bear rub surveys, to estimate population abundance and trend of grizzly (Ursus arctos and black bear (U. americanus populations in Banff National Park, Alberta, Canada. Using Huggins closed population mark-recapture models, we obtained the first precise abundance estimates for grizzly bears (N= 73.5, 95% CI = 64-94 in 2006; N= 50.4, 95% CI = 49-59 in 2008 and black bears (N= 62.6, 95% CI = 51-89 in 2006; N= 81.8, 95% CI = 72-102 in 2008 in the Bow Valley. Hair traps had high detection rates for female grizzlies, and male and female black bears, but extremely low detection rates for male grizzlies. Conversely, bear rubs had high detection rates for male and female grizzlies, but low rates for black bears. We estimated realized population growth rates, lambda, for grizzly bear males (λ= 0.93, 95% CI = 0.74-1.17 and females (λ= 0.90, 95% CI = 0.67-1.20 using Pradel open population models with three years of bear rub data. Lambda estimates are supported by abundance estimates from combined hair trap/bear rub closed population models and are consistent with a system that is likely driven by high levels of human-caused mortality. Our results suggest that bear rub surveys would provide an efficient and powerful means to inventory and monitor grizzly bear populations in the Central Canadian Rocky Mountains.

  5. Estimating grizzly and black bear population abundance and trend in Banff National Park using noninvasive genetic sampling.

    Science.gov (United States)

    Sawaya, Michael A; Stetz, Jeffrey B; Clevenger, Anthony P; Gibeau, Michael L; Kalinowski, Steven T

    2012-01-01

    We evaluated the potential of two noninvasive genetic sampling methods, hair traps and bear rub surveys, to estimate population abundance and trend of grizzly (Ursus arctos) and black bear (U. americanus) populations in Banff National Park, Alberta, Canada. Using Huggins closed population mark-recapture models, we obtained the first precise abundance estimates for grizzly bears (N= 73.5, 95% CI = 64-94 in 2006; N= 50.4, 95% CI = 49-59 in 2008) and black bears (N= 62.6, 95% CI = 51-89 in 2006; N= 81.8, 95% CI = 72-102 in 2008) in the Bow Valley. Hair traps had high detection rates for female grizzlies, and male and female black bears, but extremely low detection rates for male grizzlies. Conversely, bear rubs had high detection rates for male and female grizzlies, but low rates for black bears. We estimated realized population growth rates, lambda, for grizzly bear males (λ= 0.93, 95% CI = 0.74-1.17) and females (λ= 0.90, 95% CI = 0.67-1.20) using Pradel open population models with three years of bear rub data. Lambda estimates are supported by abundance estimates from combined hair trap/bear rub closed population models and are consistent with a system that is likely driven by high levels of human-caused mortality. Our results suggest that bear rub surveys would provide an efficient and powerful means to inventory and monitor grizzly bear populations in the Central Canadian Rocky Mountains.

  6. Interactions between wolves and female grizzly bears with cubs in Yellowstone National Park

    Science.gov (United States)

    Gunther, Kerry A.; Smith, Douglas W.

    2004-01-01

    Gray wolves (Canis lupus) were extirpated from Yellowstone National Park (YNP) by the 1920s through predator control actions (Murie 1940,Young and Goldman 1944, Weaver 1978), then reintroduced into the park from 1995 to 1996 to restore ecological integrity and adhere to legal mandates (Bangs and Fritts 1996, Phillips and Smith 1996, Smith et al. 2000). Prior to reintroduction, the potential effects of wolves on the region’s threatened grizzly bear (Ursus arctos) population were evaluated (Servheen and Knight 1993). In areas where wolves and grizzly bears are sympatric, interspecific killing by both species occasionally occurs (Ballard 1980, 1982; Hayes and Baer 1992). Most agonistic interactions between wolves and grizzly bears involve defense of young or competition for carcasses (Murie 1944, 1981; Ballard 1982; Hornbeck and Horejsi 1986; Hayes and Mossop 1987; Kehoe 1995; McNulty et al. 2001). Servheen and Knight (1993) predicted that reintroduced wolves could reduce the frequency of winter-killed and disease-killed ungulates available for bears to scavenge, and that grizzly bears would occasionally usurp wolf-killed ungulate carcasses. Servheen and Knight (1993) hypothesized that interspecific killing and competition for carcasses would have little or no population level effect on either species.

  7. Acquired arteriovenous fistula in a grizzly bear (Ursus arctos horribilis).

    Science.gov (United States)

    Tuttle, Allison D; MacLean, Robert A; Linder, Keith; Cullen, John M; Wolfe, Barbara A; Loomis, Michael

    2009-03-01

    A captive adult male grizzly bear (Ursus arctos horribilis) was evaluated due to multifocal wounds of the skin and subcutaneous tissues sustained as a result of trauma from another grizzly bear. On presentation, one lesion that was located in the perineal region seemed to be a deep puncture with purple tissue protruding from it. This perineal wound did not heal in the same manner or rate as did the other wounds. Twenty-five days after initial detection, substantial active hemorrhage from the lesion occurred and necessitated anesthesia for examination of the bear. The entire lesion was surgically excised, which later proved curative. An acquired arteriovenous fistula was diagnosed via histopathology. Arteriovenous fistulas can develop after traumatic injury and should be considered as a potential complication in bears with nonhealing wounds.

  8. Titin isoform switching is a major cardiac adaptive response in hibernating grizzly bears.

    Science.gov (United States)

    Nelson, O Lynne; Robbins, Charles T; Wu, Yiming; Granzier, Henk

    2008-07-01

    The hibernation phenomenon captures biological as well as clinical interests to understand how organs adapt. Here we studied how hibernating grizzly bears (Ursus arctos horribilis) tolerate extremely low heart rates without developing cardiac chamber dilation. We evaluated cardiac filling function in unanesthetized grizzly bears by echocardiography during the active and hibernating period. Because both collagen and titin are involved in altering diastolic function, we investigated both in the myocardium of active and hibernating grizzly bears. Heart rates were reduced from 84 beats/min in active bears to 19 beats/min in hibernating bears. Diastolic volume, stroke volume, and left ventricular ejection fraction were not different. However, left ventricular muscle mass was significantly lower (300 +/- 12 compared with 402 +/- 14 g; P = 0.003) in the hibernating bears, and as a result the diastolic volume-to-left ventricular muscle mass ratio was significantly greater. Early ventricular filling deceleration times (106.4 +/- 14 compared with 143.2 +/- 20 ms; P = 0.002) were shorter during hibernation, suggesting increased ventricular stiffness. Restrictive pulmonary venous flow patterns supported this conclusion. Collagen type I and III comparisons did not reveal differences between the two groups of bears. In contrast, the expression of titin was altered by a significant upregulation of the stiffer N2B isoform at the expense of the more compliant N2BA isoform. The mean ratio of N2BA to N2B titin was 0.73 +/- 0.07 in the active bears and decreased to 0.42 +/- 0.03 (P = 0.006) in the hibernating bears. The upregulation of stiff N2B cardiac titin is a likely explanation for the increased ventricular stiffness that was revealed by echocardiography, and we propose that it plays a role in preventing chamber dilation in hibernating grizzly bears. Thus our work identified changes in the alternative splicing of cardiac titin as a major adaptive response in hibernating grizzly

  9. Immobilization of grizzly bears (Ursus arctos) with dexmedetomidine, tiletamine, and zolazepam.

    Science.gov (United States)

    Teisberg, Justin E; Farley, Sean D; Nelson, O Lynne; Hilderbrand, Grant V; Madel, Michael J; Owen, Patricia A; Erlenbach, Joy A; Robbins, Charles T

    2014-01-01

    Safe and effective immobilization of grizzly bears (Ursus arctos) is essential for research and management. Fast induction of anesthesia, maintenance of healthy vital rates, and predictable recoveries are priorities. From September 2010 to May 2012, we investigated these attributes in captive and wild grizzly bears anesthetized with a combination of a reversible α2 agonist (dexmedetomidine [dexM], the dextrorotatory enantiomer of medetomidine) and a nonreversible N-methyl-d-aspartate (NMDA) agonist and tranquilizer (tiletamine and zolazepam [TZ], respectively). A smaller-than-expected dose of the combination (1.23 mg tiletamine, 1.23 mg zolazepam, and 6.04 µg dexmedetomidine per kg bear) produced reliable, fast ataxia (3.7 ± 0.5 min, x̄±SE) and workable anesthesia (8.1 ± 0.6 min) in captive adult grizzly bears. For wild bears darted from a helicopter, a dose of 2.06 mg tiletamine, 2.06 mg zolazepam, and 10.1 µg dexmedetomidine/kg produced ataxia in 2.5 ± 0.3 min and anesthesia in 5.5 ± 1.0 min. Contrary to published accounts of bear anesthesia with medetomidine, tiletamine, and zolazepam, this combination did not cause hypoxemia or hypoventilation, although mild bradycardia (bears during the active season. With captive bears, effective dose rates during hibernation were approximately half those during the active season. The time to first signs of recovery after the initial injection of dexMTZ was influenced by heart rate (Pgrizzly bears, especially during helicopter capture operations.

  10. How much lox is a grizzly bear worth?

    Science.gov (United States)

    Chase, Jonathan

    2012-01-01

    Using grizzly bears as surrogates for "salmon ecosystem" function, the authors develop a generalizable ecosystem-based management framework that enables decision makers to quantify ecosystem-harvest tradeoffs between wild and human recipients of natural resources like fish.

  11. Grizzly bear predation rates on caribou calves in northeastern Alaska

    Science.gov (United States)

    Young, Donald D.; McCabe, Thomas R.

    1997-01-01

    During June 1993 and 1994, 11 radiocollared and 7 unmarked grizzly bears (Ursus arctos) were monitored visually (observation) from fixed-wing aircraft to document predation on calves of the Porcupine Caribou (Rangifer tarandus) Herd (PCH) in northeastern Alaska. Twenty-six (72%) grizzly bear observations were completed (???60 min) successfully (median duration = 180 min; ??95% CI = 136-181 min; range = 67-189 min) and 10 were discontinued (duration ???24 min) due to disturbance to the bear, or unfavorable weather conditions. Of the 26 successfully completed observations, 15 (58%) included predatory activity (encounter) directed at caribou calves and 8 (31%) included kills. Of 32 encounters, 9 resulted in kills, for a success rate of 28%. The median duration of encounters was 1 minute (??95% CI = 1-2 min; range = 1-6 min; n = 32;), and the median time spent at a kill was 14 minutes (??95% CI = 9-23 min; range = 6-56 min; n = 9). Sows with young (n = 4) killed more frequently (75%; P = 0.0178) than barren sows, boars, and consorting pairs combined (17%; n = 18). Estimated kill rate was highest for sows with young (6.3 kills/bear/day; n = 4), followed by barren sows (4.6 kills/bear/day; n = 5), boars (1.9 kills/bear/day; n = 5), and, finally, consorting pairs (1.0 kills/bear/day; n = 8). Estimated kill rate obtained via conventional radiotracking point surveys (4.8 kills/bear/day) was higher than that obtained via concurrent bear observations (3.1 kills/bear/day). Our research provides baseline estimates of predation rates by grizzly bears on caribou calves that will enhance the capability of wildlife professionals in managing populations of both predators and their prey.

  12. Whitebark pine, population density, and home-range size of grizzly bears in the greater yellowstone ecosystem.

    Directory of Open Access Journals (Sweden)

    Daniel D Bjornlie

    Full Text Available Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos in the Greater Yellowstone Ecosystem (GYE, recent decline of whitebark pine (WBP; Pinus albicaulis, an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  13. Whitebark pine, population density, and home-range size of grizzly bears in the greater Yellowstone ecosystem

    Science.gov (United States)

    Bjornlie, Daniel D.; van Manen, Frank T.; Ebinger, Michael R.; Haroldson, Mark A.; Thompson, Daniel J.; Costello, Cecily M.

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  14. Whitebark pine, population density, and home-range size of grizzly bears in the greater yellowstone ecosystem.

    Science.gov (United States)

    Bjornlie, Daniel D; Van Manen, Frank T; Ebinger, Michael R; Haroldson, Mark A; Thompson, Daniel J; Costello, Cecily M

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  15. Density, distribution, and genetic structure of grizzly bears in the Cabinet-Yaak Ecosystem

    Science.gov (United States)

    Macleod, Amy C.; Boyd, Kristina L.; Boulanger, John; Royle, J. Andrew; Kasworm, Wayne F.; Paetkau, David; Proctor, Michael F.; Annis, Kim; Graves, Tabitha A.

    2016-01-01

    The conservation status of the 2 threatened grizzly bear (Ursus arctos) populations in the Cabinet-Yaak Ecosystem (CYE) of northern Montana and Idaho had remained unchanged since designation in 1975; however, the current demographic status of these populations was uncertain. No rigorous data on population density and distribution or analysis of recent population genetic structure were available to measure the effectiveness of conservation efforts. We used genetic detection data from hair corral, bear rub, and opportunistic sampling in traditional and spatial capture–recapture models to generate estimates of abundance and density of grizzly bears in the CYE. We calculated mean bear residency on our sampling grid from telemetry data using Huggins and Pledger models to estimate the average number of bears present and to correct our superpopulation estimates for lack of geographic closure. Estimated grizzly bear abundance (all sex and age classes) in the CYE in 2012 was 48–50 bears, approximately half the population recovery goal. Grizzly bear density in the CYE (4.3–4.5 grizzly bears/1,000 km2) was among the lowest of interior North American populations. The sizes of the Cabinet (n = 22–24) and Yaak (n = 18–22) populations were similar. Spatial models produced similar estimates of abundance and density with comparable precision without requiring radio-telemetry data to address assumptions of geographic closure. The 2 populations in the CYE were demographically and reproductively isolated from each other and the Cabinet population was highly inbred. With parentage analysis, we documented natural migrants to the Cabinet and Yaak populations by bears born to parents in the Selkirk and Northern Continental Divide populations. These events supported data from other sources suggesting that the expansion of neighboring populations may eventually help sustain the CYE populations. However, the small size, isolation, and inbreeding documented by this study

  16. Analyzing Whitebark Pine Distribution in the Northern Rocky Mountains in Support of Grizzly Bear Recovery

    Science.gov (United States)

    Lawrence, R.; Landenburger, L.; Jewett, J.

    2007-12-01

    Whitebark pine seeds have long been identified as the most significant vegetative food source for grizzly bears in the Greater Yellowstone Ecosystem (GYE) and, hence, a crucial element of suitable grizzly bear habitat. The overall health and status of whitebark pine in the GYE is currently threatened by mountain pine beetle infestations and the spread of whitepine blister rust. Whitebark pine distribution (presence/absence) was mapped for the GYE using Landsat 7 Enhanced Thematic Mapper (ETM+) imagery and topographic data as part of a long-term inter-agency monitoring program. Logistic regression was compared with classification tree analysis (CTA) with and without boosting. Overall comparative classification accuracies for the central portion of the GYE covering three ETM+ images along a single path ranged from 91.6% using logistic regression to 95.8% with See5's CTA algorithm with the maximum 99 boosts. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales.

  17. How much lox is a grizzly bear worth?

    Directory of Open Access Journals (Sweden)

    Jonathan Chase

    Full Text Available Using grizzly bears as surrogates for "salmon ecosystem" function, the authors develop a generalizable ecosystem-based management framework that enables decision makers to quantify ecosystem-harvest tradeoffs between wild and human recipients of natural resources like fish.

  18. Grizzly bears and calving caribou: What is the relation with river corridors?

    Science.gov (United States)

    Young, Donald D.; McCabe, Thomas R.

    1998-01-01

    Researchers have debated the effect of the Trans-Alaska Pipeline (TAP) and associated developments to caribou (Rangifer tarandus) of the central Arctic herd (CAH) since the 1970s. Several studies have demonstrated that cows and calves of the CAH avoided the TAP corridor because of disturbance associated with the pipeline, whereas others have indicated that female caribou of the CAH avoided riparian habitats closely associated with the pipeline. This avoidance was explained as a predator-avoidance strategy. We investigated the relation between female caribou and grizzly bear (Ursus arctos) use of river corridors on the yet undisturbed calving grounds of the Porcupine caribou herd (PCH) in northeastern Alaska. On the coastal plain, caribou were closer to river corridors than expected (P = 0.038), but bear use of river corridors did not differ from expected (P = 0.740). In the foothills, caribou use of river corridors did not differ from expected (P = 0.520), but bears were farther from rivers than expected (P = 0.001). Our results did not suggest an avoidance of river corridors by calving caribou or a propensity for bears to be associated with riparian habitats, presumably for stalking or ambush cover. We propose that PCH caribou reduce the risks of predation to neonates by migrating to a common calving grounds, where predator swamping is the operational antipredator strategy. Consequently, we hypothesize that nutritional demands, not predator avoidance strategies, ultimately regulate habitat use patterns (e.g., use of river corridors) of calving PCH caribou.

  19. Trophic cascades from wolves to grizzly bears or changing abundance of bears and alternate foods?

    Science.gov (United States)

    Barber-Meyer, Shannon M

    2015-05-01

    This is a Forum article commenting on: Ripple, W. J., Beschta, R. L., Fortin, J. K., & Robbins, C. T. (2014) Trophic cascades from wolves to grizzly bears in Yellowstone. Journal of Animal Ecology, 83, 223-233. Comparisons Ripple et al. (2014) used to demonstrate increased fruit availability and consumption by grizzly bears post-wolf reintroduction are flawed and tenuous at best. Importantly, a more parsimonious (than trophic cascades) hypothesis, not sufficiently considered by Ripple et al., exists and is better supported by available data I review. Published 2015. This article is a U. S. Government work and is in the public domain in the USA.

  20. Persistent or not persistent? Polychlorinated biphenyls are readily depurated by grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    Christensen, Jennie R; Letcher, Robert J; Ross, Peter S

    2009-10-01

    Major pharmacokinetic processes influencing polychlorinated biphenyl (PCB) accumulation in mammals include uptake, biotransformation, respiration, and excretion. We characterized some of the factors underlying PCB accumulation/loss by evaluating PCB concentrations and patterns in pre- and posthibernation grizzly bears (Ursus arctos horribilis) and their prey. The PCB congeners with vicinal meta- and para-chlorine unsubstituted hydrogen positions consistently showed loss both before and during hibernation, supporting the idea of a dominant role for biotransformation. Retention of all other studied congeners relative to that of PCB 194 varied widely (from bears do not eat or excrete. We estimate that grizzly bears retain less than 10% of total PCBs taken up from their diet. Our results suggest that for grizzly bears, depuration of PCBs via biotransformation is important (explaining approximately 40% of loss), but that nonbiotransformation processes, such as excretion, may be more important (explaining approximately 60% of loss). These findings, together with the approximately 91% loss of the persistent PCB 153 congener relative to PCB 194 in grizzly bears, raise important questions about how one defines persistence of PCBs in wildlife and may have bearing on the interpretation of food-web biomagnification studies.

  1. Grizzly bear (Ursus arctos horribilis) locomotion: gaits and ground reaction forces.

    Science.gov (United States)

    Shine, Catherine L; Penberthy, Skylar; Robbins, Charles T; Nelson, O Lynne; McGowan, Craig P

    2015-10-01

    Locomotion of plantigrade generalists has been relatively little studied compared with more specialised postures even though plantigrady is ancestral among quadrupeds. Bears (Ursidae) are a representative family for plantigrade carnivorans, they have the majority of the morphological characteristics identified for plantigrade species, and they have the full range of generalist behaviours. This study compared the locomotion of adult grizzly bears (Ursus arctos horribilis Linnaeus 1758), including stride parameters, gaits and analysis of three-dimensional ground reaction forces, with that of previously studied quadrupeds. At slow to moderate speeds, grizzly bears use walks, running walks and canters. Vertical ground reaction forces demonstrated the typical M-shaped curve for walks; however, this was significantly more pronounced in the hindlimb. The rate of force development was also significantly higher for the hindlimbs than for the forelimbs at all speeds. Mediolateral forces were significantly higher than would be expected for a large erect mammal, almost to the extent of a sprawling crocodilian. There may be morphological or energetic explanations for the use of the running walk rather than the trot. The high medial forces (produced from a lateral push by the animal) could be caused by frontal plane movement of the carpus and elbow by bears. Overall, while grizzly bears share some similarities with large cursorial species, their locomotor kinetics have unique characteristics. Additional studies are needed to determine whether these characters are a feature of all bears or plantigrade species. © 2015. Published by The Company of Biologists Ltd.

  2. Spatial analysis of factors influencing long-term stress in the grizzly bear (Ursus arctos) population of Alberta, Canada.

    Science.gov (United States)

    Bourbonnais, Mathieu L; Nelson, Trisalyn A; Cattet, Marc R L; Darimont, Chris T; Stenhouse, Gordon B

    2013-01-01

    Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife system and others

  3. Use of sulfur and nitrogen stable isotopes to determine the importance of whitebark pine nuts to Yellowstone grizzly bears

    Science.gov (United States)

    Felicetti, L.A.; Schwartz, C.C.; Rye, R.O.; Haroldson, M.A.; Gunther, K.A.; Phillips, D.L.; Robbins, C.T.

    2003-01-01

    Whitebark pine (Pinus albicaulis) is a masting species that produces relatively large, fat- and protein-rich nuts that are consumed by grizzly bears (Ursus arctos horribilis). Trees produce abundant nut crops in some years and poor crops in other years. Grizzly bear survival in the Greater Yellowstone Ecosystem is strongly linked to variation in pine-nut availability. Because whitebark pine trees are infected with blister rust (Cronartium ribicola), an exotic fungus that has killed the species throughout much of its range in the northern Rocky Mountains, we used stable isotopes to quantify the importance of this food resource to Yellowstone grizzly bears while healthy populations of the trees still exist. Whitebark pine nuts have a sulfur-isotope signature (9.2 ?? 1.3??? (mean ?? 1 SD)) that is distinctly different from those of all other grizzly bear foods (ranging from 1.9 ?? 1.7??? for all other plants to 3.1 ?? 2.6??? for ungulates). Feeding trials with captive grizzly bears were used to develop relationships between dietary sulfur-, carbon-, and nitrogen-isotope signatures and those of bear plasma. The sulfur and nitrogen relationships were used to estimate the importance of pine nuts to free-ranging grizzly bears from blood and hair samples collected between 1994 and 2001. During years of poor pine-nut availability, 72% of the bears made minimal use of pine nuts. During years of abundant cone availability, 8 ?? 10% of the bears made minimal use of pine nuts, while 67 ?? 19% derived over 51% of their assimilated sulfur and nitrogen (i.e., protein) from pine nuts. Pine nuts and meat are two critically important food resources for Yellowstone grizzly bears.

  4. Wolves trigger a trophic cascade to berries as alternative food for grizzly bears.

    Science.gov (United States)

    Ripple, William J; Beschta, Robert L; Fortin, Jennifer K; Robbins, Charles T

    2015-05-01

    This is a Forum article in response to: Barber-Meyer, S. (2015) Trophic cascades from wolves to grizzly bears or changing abundance of bears and alternate foods? Journal of Animal Ecology, 83, doi: 10.1111/1365-2656.12338. We used multiple data sets and study areas as well as several lines of evidence to investigate potential trophic linkages in Yellowstone National Park. Our results suggest that a trophic cascade from wolves to elk to berry production to berry consumption by grizzly bears may now be underway in the Park. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  5. Plant consumption by grizzly bears reduces biomagnification of salmon-derived polychlorinated biphenyls, polybrominated diphenyl ethers, and organochlorine pesticides.

    Science.gov (United States)

    Christensen, Jennie R; Yunker, Mark B; MacDuffee, Misty; Ross, Peter S

    2013-04-01

    The present study characterizes the uptake and loss of persistent organic pollutants (POPs) in grizzly bears (Ursus arctos horribilis) by sampling and analyzing their terrestrial and marine foods and fecal material from a remote coastal watershed in British Columbia, Canada. The authors estimate that grizzly bears consume 341 to 1,120 µg of polychlorinated biphenyls (PCBs) and 3.9 to 33 µg of polybrominated diphenyl ethers daily in the fall when they have access to an abundant supply of returning salmon. The authors also estimate that POP elimination by grizzly bears through defecation is very low following salmon consumption (typically 100% for PCBs and organochlorine pesticides). Excretion of individual POPs is largely driven by a combination of fugacity (differences between bear and food concentrations) and the digestibility of the food. The results of the present study are substantiated by a principal components analysis, which also demonstrates a strong role for log KOW in governing the excretion of different POPs in grizzly bears. Collectively, the present study's results reveal that grizzly bears experience a vegetation-associated drawdown of POPs previously acquired through the consumption of salmon, to such an extent that net biomagnification is reduced. Copyright © 2013 SETAC.

  6. Environmental factors and habitat use influence body condition of individuals in a species at risk, the grizzly bear.

    Science.gov (United States)

    Bourbonnais, Mathieu L; Nelson, Trisalyn A; Cattet, Marc R L; Darimont, Chris T; Stenhouse, Gordon B; Janz, David M

    2014-01-01

    Metrics used to quantify the condition or physiological states of individuals provide proactive mechanisms for understanding population dynamics in the context of environmental factors. Our study examined how anthropogenic disturbance, habitat characteristics and hair cortisol concentrations interpreted as a sex-specific indicator of potential habitat net-energy demand affect the body condition of grizzly bears (n = 163) in a threatened population in Alberta, Canada. We quantified environmental variables by modelling spatial patterns of individual habitat use based on global positioning system telemetry data. After controlling for gender, age and capture effects, we assessed the influence of biological and environmental variables on body condition using linear mixed-effects models in an information theoretical approach. Our strongest model suggested that body condition was improved when patterns of habitat use included greater vegetation productivity, increased influence of forest harvest blocks and oil and gas well sites, and a higher percentage of regenerating and coniferous forest. However, body condition was negatively affected by habitat use in close proximity to roads and in areas where potential energetic demands were high. Poor body condition was also associated with increased selection of parks and protected areas and greater seasonal vegetation productivity. Adult females, females with cubs-of-year, juvenile females and juvenile males were in poorer body condition compared with adult males, suggesting that intra-specific competition and differences in habitat use based on gender and age may influence body condition dynamics. Habitat net-energy demand also tended to be higher in areas used by females which, combined with observed trends in body condition, could affect reproductive success in this threatened population. Our results highlight the importance of considering spatiotemporal variability in environmental factors and habitat use when assessing

  7. Evaluation of cardiac function in active and hibernating grizzly bears.

    Science.gov (United States)

    Nelson, O Lynne; McEwen, Margaret-Mary; Robbins, Charles T; Felicetti, Laura; Christensen, William F

    2003-10-15

    To evaluate cardiac function parameters in a group of active and hibernating grizzly bears. Prospective study. 6 subadult grizzly bears. Indirect blood pressure, a 12-lead ECG, and a routine echocardiogram were obtained in each bear during the summer active phase and during hibernation. All measurements of myocardial contractility were significantly lower in all bears during hibernation, compared with the active period. Mean rate of circumferential left ventricular shortening, percentage fractional shortening, and percentage left ventricular ejection fraction were significantly lower in bears during hibernation, compared with the active period. Certain indices of diastolic function appeared to indicate enhanced ventricular compliance during the hibernation period. Mean mitral inflow ratio and isovolumic relaxation time were greater during hibernation. Heart rate was significantly lower for hibernating bears, and mean cardiac index was lower but not significantly different from cardiac index during the active phase. Contrary to results obtained in hibernating rodent species, cardiac index was not significantly correlated with heart rate. Cardiac function parameters in hibernating bears are opposite to the chronic bradycardic effects detected in nonhibernating species, likely because of intrinsic cardiac muscle adaptations during hibernation. Understanding mechanisms and responses of the myocardium during hibernation could yield insight into mechanisms of cardiac function regulation in various disease states in nonhibernating species.

  8. Denning of grizzly bears in the Yellowstone National Park area

    Science.gov (United States)

    Judd, Steven L.; Knight, Richard R.; Blanchard, Bonnie M.

    1986-01-01

    Radiotelemetry was used to locate 101 grizzly bear (Ursus arctos) dens from 1975 to 1980; 35 dens were examined on the ground. Pregnant females denned in late October, and most other bears denned by mid-November. Duration of denning average 113, 132, and 170 days for males, females, and females with new cubs, respectively. Males emerged from mid-February to late March, followed by single females and females with yearlings and 2-year-olds. Females with new cubs emerged from early mid-April. Den sites were associated with moderate tree cover (26%-75% canopy cover) on 30°-60° slopes. Dens occurred on all aspects, although northerly exposures were most common. Grizzly bears usually dug new dens but occasionally used natural cavities or a den from a previous year. Males usually dug larger dens than females with young. Eight excavated and 2 natural dens of the 35 examined dens were used for more than 1 year.

  9. In bear country: peaceful co-existence with a touchy wilderness icon starting to look possible

    Energy Technology Data Exchange (ETDEWEB)

    Podlubny, J.

    2002-10-07

    How oil and gas companies have harnessed location data maps and satellite communication technology to help resource developers to map out new roads and pipelines in the grizzly bear habitat of western Alberta is described. The high-tech approach is part of the Foot Hills Model Forest Grizzly Bear Study project, operating out of Hinton, Alberta, which focuses on the effects of industrial activity on the Alberta grizzly bear. Since the project's inception three years ago a library of data has been collected with a tool known as the GPS collar. This collar attached to more than 70 bears enabled scientists to add new dimensions of precision and intimacy to the tracking of grizzly bears. The maps created from data captured by the collars have been used by forestry and oil and gas industry personnel to help establish working relationships with grizzly bears by using the information as a guide to decisions on which routes are best suited for road and pipeline projects, i.e. which ones can be forecast to have the least effect on bears. The study is the first that has generated scientific information which is being used in a practical way to help preserve grizzly bears in the wild. At least one pipeline route has been changed when the company found out, through the mapping technology, that an area affected by the originally proposed route was an important grizzly bear habitat. The information also has been used in conjunction with developing new roads, mining locations and other activities that involve grizzly bear habitats. In addition to these practical industry-related applications the study also focuses on collecting new information about grizzly bears, clearing up bear myths, making discoveries about bear DNA, creating new trapping techniques and the best drugs to use when putting on collars and ear tags.

  10. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation).

    Science.gov (United States)

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Castillo, Alesha B; Kennedy, Oran; Condon, Keith W; Auger, Janene; Black, Hal L; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2009-12-01

    Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse-induced bone loss in bears into novel treatments for osteoporosis.

  11. Comparison of methanol and isopropanol as wash solvents for determination of hair cortisol concentration in grizzly bears and polar bears.

    Science.gov (United States)

    Kroshko, Thomas; Kapronczai, Luciene; Cattet, Marc R L; Macbeth, Bryan J; Stenhouse, Gordon B; Obbard, Martyn E; Janz, David M

    2017-01-01

    Methodological differences among laboratories are recognized as significant sources of variation in quantification of hair cortisol concentration (HCC). An important step in processing hair, particularly when collected from wildlife, is the choice of solvent used to remove or "wash" external hair shaft cortisol prior to quantification of HCC. The present study systematically compared methanol and isopropanol as wash solvents for their efficiency at removing external cortisol without extracting internal hair shaft cortisol in samples collected from free-ranging grizzly bears and polar bears. Cortisol concentrations in solvents and hair were determined in each of one to eight washes of hair with each solvent independently. •There were no significant decreases in internal hair shaft cortisol among all eight washes for either solvent, although methanol removed detectable hair surface cortisol after one wash in grizzly bear hair whereas hair surface cortisol was detected in all eight isopropanol washes.•There were no significant differences in polar bear HCC washed one to eight times with either solvent, but grizzly bear HCC was significantly greater in hair washed with isopropanol compared to methanol.•There were significant differences in HCC quantified using different commercial ELISA kits commonly used for HCC determinations.

  12. Selecting the best stable isotope mixing model to estimate grizzly bear diets in the Greater Yellowstone Ecosystem.

    Science.gov (United States)

    Hopkins, John B; Ferguson, Jake M; Tyers, Daniel B; Kurle, Carolyn M

    2017-01-01

    Past research indicates that whitebark pine seeds are a critical food source for Threatened grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE). In recent decades, whitebark pine forests have declined markedly due to pine beetle infestation, invasive blister rust, and landscape-level fires. To date, no study has reliably estimated the contribution of whitebark pine seeds to the diets of grizzlies through time. We used stable isotope ratios (expressed as δ13C, δ15N, and δ34S values) measured in grizzly bear hair and their major food sources to estimate the diets of grizzlies sampled in Cooke City Basin, Montana. We found that stable isotope mixing models that included different combinations of stable isotope values for bears and their foods generated similar proportional dietary contributions. Estimates generated by our top model suggest that whitebark pine seeds (35±10%) and other plant foods (56±10%) were more important than meat (9±8%) to grizzly bears sampled in the study area. Stable isotope values measured in bear hair collected elsewhere in the GYE and North America support our conclusions about plant-based foraging. We recommend that researchers consider model selection when estimating the diets of animals using stable isotope mixing models. We also urge researchers to use the new statistical framework described here to estimate the dietary responses of grizzlies to declines in whitebark pine seeds and other important food sources through time in the GYE (e.g., cutthroat trout), as such information could be useful in predicting how the population will adapt to future environmental change.

  13. The natural food habits of grizzly bears in Yellowstone National Park, 1973-74

    Science.gov (United States)

    Mealey, Stephen Patrick

    1980-01-01

     The natural food habits of grizzly bears (Ursus arctos horribilis Ord) in Yellowstone National Park were investigated in 1973-74 to identify the grizzly's energy sources and trophic level(s), nutrient use, and distribution. Food consumption was determined by scat analysis and field observations. Food quality and digestibility were estimated by chemical analysis. Grizzlies were distributed in 3 distinctive feeding economies: valley/plateau, a grass/rodent economy where grizzlies were intensive diggers; mountain, primarily a grass/springbeauty/root economy where grizzlies were casual diggers; and lake, primarily a fish/grass economy where grizzlies were fishers. The economies occured in areas with fertile soils; distribution of bears within each was related to the occurrence of succulent plants. The feeding cycle in the valley/plateau and mountain economies followed plant phenology. Grizzlies fed primarily on meat before green-up and on succulent herbs afterwards; meat, corms, berries, and nuts became important during the postgrowing season. Succulent grasses and sedges with an importance value percentage of 78.5 were the most important food items consumed. Protein from animal tissue was more digestible than protein from plant tissue. Storage fats were more digestible than structural fats. Food energy and digestibility were directly related. Five principle nutrient materials (listed with their percentage digestibilities) contributed to total energy intake: protein from succulent herbs, 42.8; protein and fat from animal material, 78.1; fat and protein from pine nuts, 73.6; starch, 78.8; and sugar from berries and fruits, digestibility undetermined. Protein from succulent herbs, with a nutritive value percentage of 77.3, was the grizzlies' primary energy source. Because succulent, preflowering herbs had higher protein levels than dry, mature herbs, grizzly use of succulent herbs guaranteed them the highest source of herbaceous protein. Low protein digestibility of

  14. Spatial analysis of factors influencing long-term stress in the grizzly bear (Ursus arctos population of Alberta, Canada.

    Directory of Open Access Journals (Sweden)

    Mathieu L Bourbonnais

    Full Text Available Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC generated from a threatened grizzly bear (Ursus arctos population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife

  15. Predatory behavior of grizzly bears feeding on elk calves in Yellowstone National Park

    Science.gov (United States)

    French, Steven P.; French, Marilynn G.

    1990-01-01

    Grizzly bears (Ursus arctos horribilis) were observed preying on elk calves (Cervus elaphus) on 60 occasions in Yellowstone National Park, with 29 confirmed kills. Some bears were deliberate predators and effectively preyed on elk calves for short periods each spring, killing up to 1 calf daily. Primary hunting techniques were searching and chasing although some bears used a variety of techniques during a single hunt. They hunted both day and night and preyed on calves in the open and in the woods. Excess killing occurred when circumstances permitted. One bear caught 5 calves in a 15-minute interval. Elk used a variety of antipredator defenses and occasionally attacked predacious bears. The current level of this feeding behavior appears to be greater than previously reported. This is probably related to the increased availability of calves providing a greater opportunity for learning, and the adaptation of a more predatory behavior by some grizzly bears in Yellowstone.

  16. Selecting the best stable isotope mixing model to estimate grizzly bear diets in the Greater Yellowstone Ecosystem.

    Directory of Open Access Journals (Sweden)

    John B Hopkins

    Full Text Available Past research indicates that whitebark pine seeds are a critical food source for Threatened grizzly bears (Ursus arctos in the Greater Yellowstone Ecosystem (GYE. In recent decades, whitebark pine forests have declined markedly due to pine beetle infestation, invasive blister rust, and landscape-level fires. To date, no study has reliably estimated the contribution of whitebark pine seeds to the diets of grizzlies through time. We used stable isotope ratios (expressed as δ13C, δ15N, and δ34S values measured in grizzly bear hair and their major food sources to estimate the diets of grizzlies sampled in Cooke City Basin, Montana. We found that stable isotope mixing models that included different combinations of stable isotope values for bears and their foods generated similar proportional dietary contributions. Estimates generated by our top model suggest that whitebark pine seeds (35±10% and other plant foods (56±10% were more important than meat (9±8% to grizzly bears sampled in the study area. Stable isotope values measured in bear hair collected elsewhere in the GYE and North America support our conclusions about plant-based foraging. We recommend that researchers consider model selection when estimating the diets of animals using stable isotope mixing models. We also urge researchers to use the new statistical framework described here to estimate the dietary responses of grizzlies to declines in whitebark pine seeds and other important food sources through time in the GYE (e.g., cutthroat trout, as such information could be useful in predicting how the population will adapt to future environmental change.

  17. Mating-related behaviour of grizzly bears inhabiting marginal habitat at the periphery of their North American range.

    Science.gov (United States)

    Edwards, Mark A; Derocher, Andrew E

    2015-02-01

    In comparison to core populations, peripheral populations have low density and recruitment, and are subject to different selective pressures, such as environmental conditions, food type and availability, predation, disease, etc., which may result in behavioural modifications to mating. We test the roam-to-mate hypothesis for a peripheral population of grizzly bears (Ursus arctos) at the northern extent of their North American range, in Canada's Arctic. If bears are roaming-to-mate, we predicted greater range size and daily displacement, and more linear movements for receptive animals during the mating period compared to post-mating. In contrast to our predictions, we found that in general range size and displacement increased from mating to post-mating regardless of reproductive status. When considered across both periods, females with cubs-of-the-year had smaller range use metrics than other reproductive groups, which we attribute to a counter-strategy against sexually selected infanticide and the reduced mobility of cubs. Linearity of movements remained near zero during both periods across all groups, suggesting tortuous movements more characteristic of foraging than of mate-searching. We suggest that for this population, finding quality habitat takes precedence over mate-searching in this marginal Arctic landscape. Alternatively, a more monogamous mating system and sequestering behaviour may have obscured movement differences between the two periods. The behavioural differences in mating that we observed from what is typical of core populations may reflect local adaptation to marginal conditions and could benefit the species in the face of ongoing environmental change. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. USE OF SULFUR AND NITROGEN STABLE ISOTOPES TO DETERMINE THE IMPORTANCE OF WHITEBARK PINE NUTS TO YELLOWSTONE GRIZZLY BEARS

    Science.gov (United States)

    Whitebark pine (Pinus albicaulis) is a masting species that produces relatively large, fat and protein-rich nuts that are consumed by grizzly bears (Ursus arctos horribilis). Trees produce abundant nut crops in some years and poor crops in other years. Grizzly bear survival in ...

  19. New challenges for grizzly bear management in Yellowstone National Park

    Science.gov (United States)

    van Manen, Frank T.; Gunther, Kerry A.

    2016-01-01

    A key factor contributing to the success of grizzly bear Ursus arctos conservation in the Greater Yellowstone Ecosystem has been the existence of a large protected area, Yellowstone National Park. We provide an overview of recovery efforts, how demographic parameters changed as the population increased, and how the bear management program in Yellowstone National Park has evolved to address new management challenges over time. Finally, using the management experiences in Yellowstone National Park, we present comparisons and perspectives regarding brown bear management in Shiretoko National Park.

  20. Macronutrient optimization and seasonal diet mixing in a large omnivore, the grizzly bear: a geometric analysis.

    Directory of Open Access Journals (Sweden)

    Sean C P Coogan

    Full Text Available Nutrient balance is a strong determinant of animal fitness and demography. It is therefore important to understand how the compositions of available foods relate to required balance of nutrients and habitat suitability for animals in the wild. These relationships are, however, complex, particularly for omnivores that often need to compose balanced diets by combining their intake from diverse nutritionally complementary foods. Here we apply geometric models to understand how the nutritional compositions of foods available to an omnivorous member of the order Carnivora, the grizzly bear (Ursus arctos L., relate to optimal macronutrient intake, and assess the seasonal nutritional constraints on the study population in west-central Alberta, Canada. The models examined the proportion of macronutrients that bears could consume by mixing their diet from food available in each season, and assessed the extent to which bears could consume the ratio of protein to non-protein energy previously demonstrated using captive bears to optimize mass gain. We found that non-selective feeding on ungulate carcasses provided a non-optimal macronutrient balance with surplus protein relative to fat and carbohydrate, reflecting adaptation to an omnivorous lifestyle, and that optimization through feeding selectively on different tissues of ungulate carcasses is unlikely. Bears were, however, able to dilute protein intake to an optimal ratio by mixing their otherwise high-protein diet with carbohydrate-rich fruit. Some individual food items were close to optimally balanced in protein to non-protein energy (e.g. Hedysarum alpinum roots, which may help explain their dietary prevalence. Ants may be consumed particularly as a source of lipids. Overall, our analysis showed that most food available to bears in the study area were high in protein relative to lipid or carbohydrate, suggesting the lack of non-protein energy limits the fitness (e.g. body size and reproduction and

  1. Macronutrient optimization and seasonal diet mixing in a large omnivore, the grizzly bear: a geometric analysis.

    Science.gov (United States)

    Coogan, Sean C P; Raubenheimer, David; Stenhouse, Gordon B; Nielsen, Scott E

    2014-01-01

    Nutrient balance is a strong determinant of animal fitness and demography. It is therefore important to understand how the compositions of available foods relate to required balance of nutrients and habitat suitability for animals in the wild. These relationships are, however, complex, particularly for omnivores that often need to compose balanced diets by combining their intake from diverse nutritionally complementary foods. Here we apply geometric models to understand how the nutritional compositions of foods available to an omnivorous member of the order Carnivora, the grizzly bear (Ursus arctos L.), relate to optimal macronutrient intake, and assess the seasonal nutritional constraints on the study population in west-central Alberta, Canada. The models examined the proportion of macronutrients that bears could consume by mixing their diet from food available in each season, and assessed the extent to which bears could consume the ratio of protein to non-protein energy previously demonstrated using captive bears to optimize mass gain. We found that non-selective feeding on ungulate carcasses provided a non-optimal macronutrient balance with surplus protein relative to fat and carbohydrate, reflecting adaptation to an omnivorous lifestyle, and that optimization through feeding selectively on different tissues of ungulate carcasses is unlikely. Bears were, however, able to dilute protein intake to an optimal ratio by mixing their otherwise high-protein diet with carbohydrate-rich fruit. Some individual food items were close to optimally balanced in protein to non-protein energy (e.g. Hedysarum alpinum roots), which may help explain their dietary prevalence. Ants may be consumed particularly as a source of lipids. Overall, our analysis showed that most food available to bears in the study area were high in protein relative to lipid or carbohydrate, suggesting the lack of non-protein energy limits the fitness (e.g. body size and reproduction) and population density

  2. Diet and Macronutrient Optimization in Wild Ursids: A Comparison of Grizzly Bears with Sympatric and Allopatric Black Bears.

    Science.gov (United States)

    Costello, Cecily M; Cain, Steven L; Pils, Shannon; Frattaroli, Leslie; Haroldson, Mark A; van Manen, Frank T

    2016-01-01

    When fed ad libitum, ursids can maximize mass gain by selecting mixed diets wherein protein provides 17 ± 4% of digestible energy, relative to carbohydrates or lipids. In the wild, this ability is likely constrained by seasonal food availability, limits of intake rate as body size increases, and competition. By visiting locations of 37 individuals during 274 bear-days, we documented foods consumed by grizzly (Ursus arctos) and black bears (Ursus americanus) in Grand Teton National Park during 2004-2006. Based on published nutritional data, we estimated foods and macronutrients as percentages of daily energy intake. Using principal components and cluster analyses, we identified 14 daily diet types. Only 4 diets, accounting for 21% of days, provided protein levels within the optimal range. Nine diets (75% of days) led to over-consumption of protein, and 1 diet (3% of days) led to under-consumption. Highest protein levels were associated with animal matter (i.e., insects, vertebrates), which accounted for 46-47% of daily energy for both species. As predicted: 1) daily diets dominated by high-energy vertebrates were positively associated with grizzly bears and mean percent protein intake was positively associated with body mass; 2) diets dominated by low-protein fruits were positively associated with smaller-bodied black bears; and 3) mean protein was highest during spring, when high-energy plant foods were scarce, however it was also higher than optimal during summer and fall. Contrary to our prediction: 4) allopatric black bears did not exhibit food selection for high-energy foods similar to grizzly bears. Although optimal gain of body mass was typically constrained, bears usually opted for the energetically superior trade-off of consuming high-energy, high-protein foods. Given protein digestion efficiency similar to obligate carnivores, this choice likely supported mass gain, consistent with studies showing monthly increases in percent body fat among bears in this

  3. Landscape features and attractants that predispose grizzly bears to risk of conflicts with humans: A spatial and temporal analysis on privately owned agricultural land

    Science.gov (United States)

    Wilson, Seth Mark

    Grizzly bear (Ursus arctos) deaths in the US tend to be concentrated on the periphery of core habitats. These deaths were often preceded by conflicts with humans. Management removals of "nuisance" and or habituated grizzly bears are a leading cause of death in many populations. This exploratory study focuses on the conditions that lead to human-grizzly bear conflicts on private lands near core habitat. I examined spatial associations among reported human-grizzly bear conflicts during 1986--2001, landscape features, and agricultural-attractants in north-central Montana. I surveyed 61 of a possible 64 active livestock related land users and I used geographic information system (GIS) techniques to collect information on cattle and sheep pasture locations, seasons of use, and bone yard (carcass dumps) and beehive locations. I used GIS spatial analyses, univariate tests, and logistic regression models to explore the associations among conflicts, landscape features, and attractants. A majority (75%) of conflicts were found in distinct seasonal conflict hotspots. Conflict hotspots with spatial overlap were associated with riparian vegetation, bone yards, and beehives in close proximity to one another and accounted for 62% of all conflicts. Consistently available seasonal attractants in overlapping hotspots such as calving areas, sheep lambing areas and spring, summer, and fall sheep and cattle pastures appear to perpetuate the occurrence of conflicts. I found that lambing areas and spring and summer sheep pastures were strongly associated with conflict locations as were cattle calving areas, spring cow/calf pastures, fall pastures, and bone yards. Logistic regression modeling revealed that the presence of riparian vegetation within a 1.6 km search radius strongly influenced the likelihood of conflict. After controlling for riparian vegetation, I found that unmanaged bone yards, unfenced and fenced beehives, all increased the odds of conflict. For every 1 km moved away

  4. Changing numbers of spawning cutthroat trout in tributary streams of Yellowstone Lake and estimates of grizzly bears visiting streams from DNA

    Science.gov (United States)

    Haroldson, M.A.; Gunther, K.A.; Reinhart, Daniel P.; Podruzny, S.R.; Cegelski, C.; Waits, L.; Wyman, T.C.; Smith, J.

    2005-01-01

    Spawning Yellowstone cutthroat trout (Oncorhynchus clarki) provide a source of highly digestible energy for grizzly bears (Ursus arctos) that visit tributary streams to Yellowstone Lake during the spring and early summer. During 1985–87, research documented grizzly bears fishing on 61% of the 124 tributary streams to the lake. Using track measurements, it was estimated that a minimum of 44 grizzly bears fished those streams annually. During 1994, non-native lake trout (Salvelinus namaycush) were discovered in Yellowstone Lake. Lake trout are efficient predators and have the potential to reduce the native cutthroat population and negatively impact terrestrial predators that use cutthroat trout as a food resource. In 1997, we began sampling a subset of streams (n = 25) from areas of Yellowstone Lake surveyed during the previous study to determine if changes in spawner numbers or bear use had occurred. Comparisons of peak numbers and duration suggested a considerable decline between study periods in streams in the West Thumb area of the lake. The apparent decline may be due to predation by lake trout. Indices of bear use also declined on West Thumb area streams. We used DNA from hair collected near spawning streams to estimate the minimum number of bears visiting the vicinity of spawning streams. Seventy-four individual bears were identified from 429 hair samples. The annual number of individuals detected ranged from 15 in 1997 to 33 in 2000. Seventy percent of genotypes identified were represented by more than 1 sample, but only 31% of bears were documented more than 1 year of the study. Sixty-two (84%) bears were only documented in 1 segment of the lake, whereas 12 (16%) were found in 2–3 lake segments. Twenty-seven bears were identified from hair collected at multiple streams. One bear was identified on 6 streams in 2 segments of the lake and during 3 years of the study. We used encounter histories derived from DNA and the Jolly-Seber procedure in Program MARK

  5. Perspectives on grizzly bear management in Banff National Park and the Bow River Watershed, Alberta: A Q methodology study

    OpenAIRE

    Chamberlain, Emily Carter

    2006-01-01

    Conserving populations of large carnivores such as grizzly bears (Ursus arctos) requires not only biophysical research, but also an understanding of the values and beliefs of the people involved with and affected by carnivore management. I used Q methodology to examine views of stakeholders concerning grizzly bear management in the Banff-Bow Valley region of Alberta, Canada. In recent years, decision-making about bears in this region has been characterized by acrimonious disputes over scienti...

  6. Diet and Macronutrient Optimization in Wild Ursids: A Comparison of Grizzly Bears with Sympatric and Allopatric Black Bears.

    Directory of Open Access Journals (Sweden)

    Cecily M Costello

    Full Text Available When fed ad libitum, ursids can maximize mass gain by selecting mixed diets wherein protein provides 17 ± 4% of digestible energy, relative to carbohydrates or lipids. In the wild, this ability is likely constrained by seasonal food availability, limits of intake rate as body size increases, and competition. By visiting locations of 37 individuals during 274 bear-days, we documented foods consumed by grizzly (Ursus arctos and black bears (Ursus americanus in Grand Teton National Park during 2004-2006. Based on published nutritional data, we estimated foods and macronutrients as percentages of daily energy intake. Using principal components and cluster analyses, we identified 14 daily diet types. Only 4 diets, accounting for 21% of days, provided protein levels within the optimal range. Nine diets (75% of days led to over-consumption of protein, and 1 diet (3% of days led to under-consumption. Highest protein levels were associated with animal matter (i.e., insects, vertebrates, which accounted for 46-47% of daily energy for both species. As predicted: 1 daily diets dominated by high-energy vertebrates were positively associated with grizzly bears and mean percent protein intake was positively associated with body mass; 2 diets dominated by low-protein fruits were positively associated with smaller-bodied black bears; and 3 mean protein was highest during spring, when high-energy plant foods were scarce, however it was also higher than optimal during summer and fall. Contrary to our prediction: 4 allopatric black bears did not exhibit food selection for high-energy foods similar to grizzly bears. Although optimal gain of body mass was typically constrained, bears usually opted for the energetically superior trade-off of consuming high-energy, high-protein foods. Given protein digestion efficiency similar to obligate carnivores, this choice likely supported mass gain, consistent with studies showing monthly increases in percent body fat among

  7. Diet and macronutrient optimization in wild ursids: A comparison of grizzly bears with sympatric and allopatric black bears

    Science.gov (United States)

    Costello, Cecily M.; Cain, Steven L.; Pils, Shannon R; Frattaroli, Leslie; Haroldson, Mark A.; van Manen, Frank T.

    2016-01-01

    When fed ad libitum, ursids can maximize mass gain by selecting mixed diets wherein protein provides 17 ± 4% of digestible energy, relative to carbohydrates or lipids. In the wild, this ability is likely constrained by seasonal food availability, limits of intake rate as body size increases, and competition. By visiting locations of 37 individuals during 274 bear-days, we documented foods consumed by grizzly (Ursus arctos) and black bears (Ursus americanus) in Grand Teton National Park during 2004–2006. Based on published nutritional data, we estimated foods and macronutrients as percentages of daily energy intake. Using principal components and cluster analyses, we identified 14 daily diet types. Only 4 diets, accounting for 21% of days, provided protein levels within the optimal range. Nine diets (75% of days) led to over-consumption of protein, and 1 diet (3% of days) led to under-consumption. Highest protein levels were associated with animal matter (i.e., insects, vertebrates), which accounted for 46–47% of daily energy for both species. As predicted: 1) daily diets dominated by high-energy vertebrates were positively associated with grizzly bears and mean percent protein intake was positively associated with body mass; 2) diets dominated by low-protein fruits were positively associated with smaller-bodied black bears; and 3) mean protein was highest during spring, when high-energy plant foods were scarce, however it was also higher than optimal during summer and fall. Contrary to our prediction: 4) allopatric black bears did not exhibit food selection for high-energy foods similar to grizzly bears. Although optimal gain of body mass was typically constrained, bears usually opted for the energetically superior trade-off of consuming high-energy, high-protein foods. Given protein digestion efficiency similar to obligate carnivores, this choice likely supported mass gain, consistent with studies showing monthly increases in percent body fat among bears in

  8. Genetic analysis of individual origins supports isolation of grizzly bears in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Haroldson, Mark A.; Schwartz, Charles; Kendall, Katherine C.; Gunther, Kerry A.; Moody, David S.; Frey, Kevin L.; Paetkau, David

    2010-01-01

    The Greater Yellowstone Ecosystem (GYE) supports the southernmost of the 2 largest remaining grizzly bear (Ursus arctos) populations in the contiguous United States. Since the mid-1980s, this population has increased in numbers and expanded in range. However, concerns for its long-term genetic health remain because of its presumed continued isolation. To test the power of genetic methods for detecting immigrants, we generated 16-locus microsatellite genotypes for 424 individual grizzly bears sampled in the GYE during 1983–2007. Genotyping success was high (90%) and varied by sample type, with poorest success (40%) for hair collected from mortalities found ≥1 day after death. Years of storage did not affect genotyping success. Observed heterozygosity was 0.60, with a mean of 5.2 alleles/marker. We used factorial correspondence analysis (Program GENETIX) and Bayesian clustering (Program STRUCTURE) to compare 424 GYE genotypes with 601 existing genotypes from grizzly bears sampled in the Northern Continental Divide Ecosystem (NCDE) (FST  =  0.096 between GYE and NCDE). These methods correctly classified all sampled individuals to their population of origin, providing no evidence of natural movement between the GYE and NCDE. Analysis of 500 simulated first-generation crosses suggested that over 95% of such bears would also be detectable using our 16-locus data set. Our approach provides a practical method for detecting immigration in the GYE grizzly population. We discuss estimates for the proportion of the GYE population sampled and prospects for natural immigration into the GYE.

  9. Temporal, spatial, and environmental influences on the demographics of grizzly bears in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Schwartz, Charles C.; Haroldson, Mark A.; White, Gary C.; Harris, Richard B.; Cherry, Steve; Keating, Kim A.; Moody, Dave; Servheen, Christopher

    2006-01-01

    During the past 2 decades, the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem (GYE) has increased in numbers and expanded in range. Understanding temporal, environmental, and spatial variables responsible for this change is useful in evaluating what likely influenced grizzly bear demographics in the GYE and where future management efforts might benefit conservation and management. We used recent data from radio-marked bears to estimate reproduction (1983–2002) and survival (1983–2001); these we combined into models to evaluate demographic vigor (lambda [λ]). We explored the influence of an array of individual, temporal, and spatial covariates on demographic vigor.

  10. Grizzly bear denning chronology and movements in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Haroldson, Mark A.; Ternent, Mark A.; Gunther, Kerry A.; Schwartz, Charles C.

    2002-01-01

    Den entrance and emergence dates of grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem are important to management agencies that wish to minimize impacts of human activities on bears. Current estimates for grizzly bear denning events use data that were collected from 1975–80. We update these estimates by including data obtained from 1981–99. We used aerial telemetry data to estimate week of den entry and emergence by determining the midpoint between the last known active date and the first known date denned, as well as the last known date denned and the first known active date. We also investigated post emergence movement patterns relative to den locations. Mean earliest and latest week of den entry and emergence were also determined. Den entry for females began during the fourth week in September, with 90% denned by the fourth week of November. Earliest den entry for males occurred during the second week of October, with 90% denned by the second week of December. Mean week of den entry for known pregnant females was earlier than males. Earliest week of den entry for known pregnant females was earlier than other females and males. Earliest den emergence for males occurred during the first week of February, with 90% of males out of dens by the fourth week of April. Earliest den emergence for females occurred during the third week of March; by the first week of May, 90% of females had emerged. Male bears emerged from dens earlier than females. Denning period differed among classes and averaged 171 days for females that emerged from dens with cubs, 151 days for other females, and 131 days for males. Known pregnant females tended to den at higher elevations and, following emergence, remained at higher elevation until late May. Females with cubs remained relatively close (grizzly bear populations in the southern Rocky Mountains. 

  11. Genetic analysis reveals demographic fragmentation of grizzly bears yielding vulnerably small populations.

    Science.gov (United States)

    Proctor, Michael F; McLellan, Bruce N; Strobeck, Curtis; Barclay, Robert M R

    2005-11-22

    Ecosystem conservation requires the presence of native carnivores, yet in North America, the distributions of many larger carnivores have contracted. Large carnivores live at low densities and require large areas to thrive at the population level. Therefore, if human-dominated landscapes fragment remaining carnivore populations, small and demographically vulnerable populations may result. Grizzly bear range contraction in the conterminous USA has left four fragmented populations, three of which remain along the Canada-USA border. A tenet of grizzly bear conservation is that the viability of these populations requires demographic linkage (i.e. inter-population movement of both sexes) to Canadian bears. Using individual-based genetic analysis, our results suggest this demographic connection has been severed across their entire range in southern Canada by a highway and associated settlements, limiting female and reducing male movement. Two resulting populations are vulnerably small (bear populations may be more threatened than previously thought and that conservation efforts must expand to include international connectivity management. They also demonstrate the ability of genetic analysis to detect gender-specific demographic population fragmentation in recently disturbed systems, a traditionally intractable yet increasingly important ecological measurement worldwide.

  12. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.

  13. Trichinellosis acquired in Nunavut, Canada in September 2009: meat from grizzly bear suspected.

    Science.gov (United States)

    Houzé, S; Ancelle, T; Matra, R; Boceno, C; Carlier, Y; Gajadhar, A A; Dupouy-Camet, J

    2009-11-05

    Five cases of trichinellosis with onset of symptoms in September 2009, were reported in France, and were probably linked to the consumption of meat from a grizzly bear in Cambridge Bay in Nunavut, Canada. Travellers should be aware of the risks of eating raw or rare meat products in arctic regions, particularly game meat such as bear or walrus meat.

  14. Does learning or instinct shape habitat selection?

    Directory of Open Access Journals (Sweden)

    Scott E Nielsen

    Full Text Available Habitat selection is an important behavioural process widely studied for its population-level effects. Models of habitat selection are, however, often fit without a mechanistic consideration. Here, we investigated whether patterns in habitat selection result from instinct or learning for a population of grizzly bears (Ursus arctos in Alberta, Canada. We found that habitat selection and relatedness were positively correlated in female bears during the fall season, with a trend in the spring, but not during any season for males. This suggests that habitat selection is a learned behaviour because males do not participate in parental care: a genetically predetermined behaviour (instinct would have resulted in habitat selection and relatedness correlations for both sexes. Geographic distance and home range overlap among animals did not alter correlations indicating that dispersal and spatial autocorrelation had little effect on the observed trends. These results suggest that habitat selection in grizzly bears are partly learned from their mothers, which could have implications for the translocation of wildlife to novel environments.

  15. Effect of season and high ambient temperature on activity levels and patterns of grizzly bears (Ursus arctos).

    Science.gov (United States)

    McLellan, Michelle L; McLellan, Bruce N

    2015-01-01

    Understanding factors that influence daily and annual activity patterns of a species provides insights to challenges facing individuals, particularly when climate shifts, and thus is important in conservation. Using GPS collars with dual-axis motion sensors that recorded the number of switches every 5 minutes we tested the hypotheses: 1. Grizzly bears (Ursus arctos) increase daily activity levels and active bout lengths when they forage on berries, the major high-energy food in this ecosystem, and 2. Grizzly bears become less active and more nocturnal when ambient temperature exceeds 20°C. We found support for hypothesis 1 with both male and female bears being active from 0.7 to 2.8 h longer in the berry season than in other seasons. Our prediction under hypothesis 2 was not supported. When bears foraged on berries on a dry, open mountainside, there was no relationship between daily maximum temperature (which varied from 20.4 to 40.1°C) and the total amount of time bears were active, and no difference in activity levels during day or night between warm (20.4-27.3°C) and hot (27.9-40.1°C) days. Our results highlight the strong influence that food acquisition has on activity levels and patterns of grizzly bears and is a challenge to the heat dissipation limitation theory.

  16. Effect of season and high ambient temperature on activity levels and patterns of grizzly bears (Ursus arctos.

    Directory of Open Access Journals (Sweden)

    Michelle L McLellan

    Full Text Available Understanding factors that influence daily and annual activity patterns of a species provides insights to challenges facing individuals, particularly when climate shifts, and thus is important in conservation. Using GPS collars with dual-axis motion sensors that recorded the number of switches every 5 minutes we tested the hypotheses: 1. Grizzly bears (Ursus arctos increase daily activity levels and active bout lengths when they forage on berries, the major high-energy food in this ecosystem, and 2. Grizzly bears become less active and more nocturnal when ambient temperature exceeds 20°C. We found support for hypothesis 1 with both male and female bears being active from 0.7 to 2.8 h longer in the berry season than in other seasons. Our prediction under hypothesis 2 was not supported. When bears foraged on berries on a dry, open mountainside, there was no relationship between daily maximum temperature (which varied from 20.4 to 40.1°C and the total amount of time bears were active, and no difference in activity levels during day or night between warm (20.4-27.3°C and hot (27.9-40.1°C days. Our results highlight the strong influence that food acquisition has on activity levels and patterns of grizzly bears and is a challenge to the heat dissipation limitation theory.

  17. Bears, Big and Little. Young Discovery Library Series.

    Science.gov (United States)

    Pfeffer, Pierre

    This book is written for children 5 through 10. Part of a series designed to develop their curiosity, fascinate them and educate them, this volume describes: (1) the eight species of bears, including black bear, brown bear, grizzly bear, spectacled bear, sun bear, sloth bear, polar bear, and giant panda; (2) geographical habitats of bears; (3)…

  18. Grizzly bear predation links the loss of native trout to the demography of migratory elk in Yellowstone

    Science.gov (United States)

    Middleton, Arthur D.; Morrison, Thomas A.; Fortin, Jennifer K.; Robbins, Charles T.; Proffitt, Kelly M.; White, P.J.; McWhirter, Douglas E.; Koel, Todd M.; Brimeyer, Douglas G.; Fairbanks, W. Sue; Kauffman, Matthew J.

    2013-01-01

    The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4–16%) and population growth (2–11%). The disruption of this aquatic–terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores—particularly wolves—our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears.

  19. Grizzly bear predation links the loss of native trout to the demography of migratory elk in Yellowstone.

    Science.gov (United States)

    Middleton, Arthur D; Morrison, Thomas A; Fortin, Jennifer K; Robbins, Charles T; Proffitt, Kelly M; White, P J; McWhirter, Douglas E; Koel, Todd M; Brimeyer, Douglas G; Fairbanks, W Sue; Kauffman, Matthew J

    2013-07-07

    The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4-16%) and population growth (2-11%). The disruption of this aquatic-terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores--particularly wolves--our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears.

  20. Seasonal and individual variation in the use of rail-associated food attractants by grizzly bears (Ursus arctos) in a national park.

    Science.gov (United States)

    Murray, Maureen H; Fassina, Sarah; Hopkins, John B; Whittington, Jesse; St Clair, Colleen C

    2017-01-01

    Similar to vehicles on roadways, trains frequently kill wildlife via collisions along railways. Despite the prevalence of this mortality worldwide, little is known about the relative importance of wildlife attractants associated with railways, including spilled agricultural products, enhanced vegetation, invertebrates, and carcasses of rail-killed ungulates. We assessed the relative importance of several railway attractants to a provincially-threatened population of grizzly bears (Ursus arctos) in Banff and Yoho National Parks, Canada, for which rail-caused mortality has increased in recent decades without known cause. We examined the relationship between the use of the railway and diet by fitting 21 grizzly bears with GPS collars in 2011-2013 and measuring the stable isotope values (δ15N, δ34S) derived from their hair. We also examined the importance of rail-associated foods to grizzly bears by analyzing 230 grizzly bear scats collected from May through October in 2012-2014, some of which could be attributed to GPS-collared bears. Among the 21 collared bears, 17 used the rail rarely (bears (which included the three smallest bears and the largest bear in our sample) used the rail frequently (>20% of their monitored days). We found no significant relationships between δ15N and δ34S values measured from the hair of grizzlies and their frequency of rail use. Instead, δ15N increased with body mass, especially for male bears, suggesting large males consumed more animal protein during hair growth. All four bears that used the railway frequently produced scats containing grain. Almost half the scats (43%) collected within 150 m of the railway contained grain compared to only 7% of scats found >150 m from the railway. Scats deposited near the rail were also more likely to contain grain in the fall (85% of scats) compared to summer (14%) and spring (17%), and those containing grain were more diverse in their contents (6.8 ± 2.2 species vs. 4.9 ± 1.6, P bears in the

  1. Respect for Grizzly Bears: an Aboriginal Approach for Co-existence and Resilience

    Directory of Open Access Journals (Sweden)

    Douglas A. Clark

    2009-06-01

    Full Text Available Aboriginal peoples' respect for grizzly bear (Ursus arctos is widely acknowledged, but rarely explored, in wildlife management discourse in northern Canada. Practices of respect expressed toward bears were observed and grouped into four categories: terminology, stories, reciprocity, and ritual. In the southwest Yukon, practices in all four categories form a coherent qualitative resource management system that may enhance the resilience of the bear-human system as a whole. This system also demonstrates the possibility of a previously unrecognized human role in maintaining productive riparian ecosystems and salmon runs, potentially providing a range of valued social-ecological outcomes. Practices of respect hold promise for new strategies to manage bear-human interactions, but such successful systems may be irreducibly small scale and place based.

  2. The Bear Facts: Implications of Whitebark Pine Loss for Yellowstone Grizzlies

    OpenAIRE

    Willcox, Louisa

    2009-01-01

    Whitebark pine is a foundation species, and barometer of the health of high elevation forests ecosystems in the West. It provides food and cover for numerous wildlife species, including the Clark’s nutcracker, crossbill, grosbeak, red squirrel and chipmunk. Whitebark pine is particularly important in the Greater Yellowstone Ecosystem (GYE), where it provides an essential food source for the imperiled Yellowstone grizzly bear. We will review the current scientific knowledge about the relations...

  3. Disseminated pleomorphic myofibrosarcoma in a grizzly bear (Ursus arctos horribilis).

    Science.gov (United States)

    Mete, A; Woods, L; Famini, D; Anderson, M

    2012-01-01

    The pathological and diagnostic features of a widely disseminated pleomorphic high-grade myofibroblastic sarcoma are described in a 23-year-old male brown bear (Ursus arctos horribilis). Firm, solid, white to tan neoplastic nodules, often with cavitated or soft grey-red necrotic centres, were observed throughout most internal organs, subcutaneous tissues and skeletal muscles on gross examination. Microscopically, the tumour consisted of pleomorphic spindle cells forming interlacing fascicles with a focal storiform pattern with large numbers of bizarre polygonal multinucleate cells, frequently within a collagenous stroma. Immunohistochemistry, Masson's trichrome stain and transmission electron microscopy designated the myofibroblast as the cell of origin. This is the first case of a high-grade myofibrosarcoma in a grizzly bear. Published by Elsevier Ltd.

  4. Morphological variability and molecular identification of Uncinaria spp. (Nematoda: Ancylostomatidae) from grizzly and black bears: new species or phenotypic plasticity?

    Science.gov (United States)

    Catalano, Stefano; Lejeune, Manigandan; van Paridon, Bradley; Pagan, Christopher A; Wasmuth, James D; Tizzani, Paolo; Duignan, Pádraig J; Nadler, Steven A

    2015-04-01

    The hookworms Uncinaria rauschi Olsen, 1968 and Uncinaria yukonensis ( Wolfgang, 1956 ) were formally described from grizzly ( Ursus arctos horribilis) and black bears ( Ursus americanus ) of North America. We analyzed the intestinal tracts of 4 grizzly and 9 black bears from Alberta and British Columbia, Canada and isolated Uncinaria specimens with anatomical traits never previously documented. We applied morphological and molecular techniques to investigate the taxonomy and phylogeny of these Uncinaria parasites. The morphological analysis supported polymorphism at the vulvar region for females of both U. rauschi and U. yukonensis. The hypothesis of morphological plasticity for U. rauschi and U. yukonensis was confirmed by genetic analysis of the internal transcribed spacers (ITS-1 and ITS-2) of the nuclear ribosomal DNA. Two distinct genotypes were identified, differing at 5 fixed sites for ITS-1 (432 base pairs [bp]) and 7 for ITS-2 (274 bp). Morphometric data for U. rauschi revealed host-related size differences: adult U. rauschi were significantly larger in black bears than in grizzly bears. Interpretation of these results, considering the historical biogeography of North American bears, suggests a relatively recent host-switching event of U. rauschi from black bears to grizzly bears which likely occurred after the end of the Wisconsin glaciation. Phylogenetic maximum parsimony (MP) and maximum likelihood (ML) analyses of the concatenated ITS-1 and ITS-2 datasets strongly supported monophyly of U. rauschi and U. yukonensis and their close relationship with Uncinaria stenocephala (Railliet, 1884), the latter a parasite primarily of canids and felids. Relationships among species within this group, although resolved by ML, were unsupported by MP and bootstrap resampling. The clade of U. rauschi, U. yukonensis, and U. stenocephala was recovered as sister to the clade represented by Uncinaria spp. from otariid pinnipeds. These results support the absence of strict

  5. Grizzly bear (Ursus arctos horribilis) locomotion: forelimb joint mechanics across speed in the sagittal and frontal planes.

    Science.gov (United States)

    Shine, Catherine L; Robbins, Charles T; Nelson, O Lynne; McGowan, Craig P

    2017-04-01

    The majority of terrestrial locomotion studies have focused on parasagittal motion and paid less attention to forces or movement in the frontal plane. Our previous research has shown that grizzly bears produce higher medial ground reaction forces (lateral pushing from the animal) than would be expected for an upright mammal, suggesting frontal plane movement may be an important aspect of their locomotion. To examine this, we conducted an inverse dynamics analysis in the sagittal and frontal planes, using ground reaction forces and position data from three high-speed cameras of four adult female grizzly bears. Over the speed range collected, the bears used walks, running walks and canters. The scapulohumeral joint, wrist and the limb overall absorb energy (average total net work of the forelimb joints, -0.97 W kg -1 ). The scapulohumeral joint, elbow and total net work of the forelimb joints have negative relationships with speed, resulting in more energy absorbed by the forelimb at higher speeds (running walks and canters). The net joint moment and power curves maintain similar patterns across speed as in previously studied species, suggesting grizzly bears maintain similar joint dynamics to other mammalian quadrupeds. There is no significant relationship with net work and speed at any joint in the frontal plane. The total net work of the forelimb joints in the frontal plane was not significantly different from zero, suggesting that, despite the high medial ground reaction forces, the forelimb acts as a strut in that plane. © 2017. Published by The Company of Biologists Ltd.

  6. Grizzly bear population vital rates and trend in the Northern Continental Divide Ecosystem, Montana

    Science.gov (United States)

    Mace, R.D.; Carney, D.W.; Chilton-Radandt, T.; Courville, S.A.; Haroldson, M.A.; Harris, R.B.; Jonkel, J.; McLellan, B.; Madel, M.; Manley, T.L.; Schwartz, C.C.; Servheen, C.; Stenhouse, G.; Waller, J.S.; Wenum, E.

    2012-01-01

    We estimated grizzly bear (Ursus arctos) population vital rates and trend for the Northern Continental Divide Ecosystem (NCDE), Montana, between 2004 and 2009 by following radio-collared females and observing their fate and reproductive performance. Our estimates of dependent cub and yearling survival were 0.612 (95% CI = 0.300–0.818) and 0.682 (95% CI = 0.258–0.898). Our estimates of subadult and adult female survival were 0.852 (95% CI = 0.628–0.951) and 0.952 (95% CI = 0.892–0.980). From visual observations, we estimated a mean litter size of 2.00 cubs/litter. Accounting for cub mortality prior to the first observations of litters in spring, our adjusted mean litter size was 2.27 cubs/litter. We estimated the probabilities of females transitioning from one reproductive state to another between years. Using the stable state probability of 0.322 (95% CI = 0.262–0.382) for females with cub litters, our adjusted fecundity estimate (mx) was 0.367 (95% CI = 0.273–0.461). Using our derived rates, we estimated that the population grew at a mean annual rate of approximately 3% (λ = 1.0306, 95% CI = 0.928–1.102), and 71.5% of 10,000 Monte Carlo simulations produced estimates of λ > 1.0. Our results indicate an increasing population trend of grizzly bears in the NCDE. Coupled with concurrent studies of population size, we estimate that over 1,000 grizzly bears reside in and adjacent to this recovery area. We suggest that monitoring of population trend and other vital rates using radioed females be continued.

  7. Home range size variation in female arctic grizzly bears relative to reproductive status and resource availability.

    Science.gov (United States)

    Edwards, Mark A; Derocher, Andrew E; Nagy, John A

    2013-01-01

    The area traversed in pursuit of resources defines the size of an animal's home range. For females, the home range is presumed to be a function of forage availability. However, the presence of offspring may also influence home range size due to reduced mobility, increased nutritional need, and behavioral adaptations of mothers to increase offspring survival. Here, we examine the relationship between resource use and variation in home range size for female barren-ground grizzly bears (Ursus arctos) of the Mackenzie Delta region in Arctic Canada. We develop methods to test hypotheses of home range size that address selection of cover where cover heterogeneity is low, using generalized linear mixed-effects models and an information-theoretic approach. We found that the reproductive status of female grizzlies affected home range size but individually-based spatial availability of highly selected cover in spring and early summer was a stronger correlate. If these preferred covers in spring and early summer, a period of low resource availability for grizzly bears following den-emergence, were patchy and highly dispersed, females travelled farther regardless of the presence or absence of offspring. Increased movement to preferred covers, however, may result in greater risk to the individual or family.

  8. Home range size variation in female arctic grizzly bears relative to reproductive status and resource availability.

    Directory of Open Access Journals (Sweden)

    Mark A Edwards

    Full Text Available The area traversed in pursuit of resources defines the size of an animal's home range. For females, the home range is presumed to be a function of forage availability. However, the presence of offspring may also influence home range size due to reduced mobility, increased nutritional need, and behavioral adaptations of mothers to increase offspring survival. Here, we examine the relationship between resource use and variation in home range size for female barren-ground grizzly bears (Ursus arctos of the Mackenzie Delta region in Arctic Canada. We develop methods to test hypotheses of home range size that address selection of cover where cover heterogeneity is low, using generalized linear mixed-effects models and an information-theoretic approach. We found that the reproductive status of female grizzlies affected home range size but individually-based spatial availability of highly selected cover in spring and early summer was a stronger correlate. If these preferred covers in spring and early summer, a period of low resource availability for grizzly bears following den-emergence, were patchy and highly dispersed, females travelled farther regardless of the presence or absence of offspring. Increased movement to preferred covers, however, may result in greater risk to the individual or family.

  9. Seasonal and individual variation in the use of rail-associated food attractants by grizzly bears (Ursus arctos in a national park.

    Directory of Open Access Journals (Sweden)

    Maureen H Murray

    Full Text Available Similar to vehicles on roadways, trains frequently kill wildlife via collisions along railways. Despite the prevalence of this mortality worldwide, little is known about the relative importance of wildlife attractants associated with railways, including spilled agricultural products, enhanced vegetation, invertebrates, and carcasses of rail-killed ungulates. We assessed the relative importance of several railway attractants to a provincially-threatened population of grizzly bears (Ursus arctos in Banff and Yoho National Parks, Canada, for which rail-caused mortality has increased in recent decades without known cause. We examined the relationship between the use of the railway and diet by fitting 21 grizzly bears with GPS collars in 2011-2013 and measuring the stable isotope values (δ15N, δ34S derived from their hair. We also examined the importance of rail-associated foods to grizzly bears by analyzing 230 grizzly bear scats collected from May through October in 2012-2014, some of which could be attributed to GPS-collared bears. Among the 21 collared bears, 17 used the rail rarely (20% of their monitored days. We found no significant relationships between δ15N and δ34S values measured from the hair of grizzlies and their frequency of rail use. Instead, δ15N increased with body mass, especially for male bears, suggesting large males consumed more animal protein during hair growth. All four bears that used the railway frequently produced scats containing grain. Almost half the scats (43% collected within 150 m of the railway contained grain compared to only 7% of scats found >150 m from the railway. Scats deposited near the rail were also more likely to contain grain in the fall (85% of scats compared to summer (14% and spring (17%, and those containing grain were more diverse in their contents (6.8 ± 2.2 species vs. 4.9 ± 1.6, P < 0.001. Lastly, scats collected near the rail were more likely to contain ungulate hair and ant remains

  10. Oil patch fitting in with wildlife habitat

    Energy Technology Data Exchange (ETDEWEB)

    Lea, N.

    2003-06-01

    Changes in grizzly bear and caribou populations associated with roads, seismic lines, and pipelines are of great concern to the oil, gas and forestry industries since the presence of structures are providing easier access to wildlife habitats for predatory wolves and humans. This article provides details of this concern and describes efforts, such as the Caribou Range Recovery Project, towards mitigating the impact of the industry and hastening the reclamation of the woodland caribou habitat disturbed by humans. This project, funded by a consortium of government, industry and the University of Alberta, is a three-year project which focuses on the revegetation of disturbed areas in the highly-impacted caribou ranges of northern and west-central Alberta, the development of a preliminary set of guidelines for reclamation of industrial developments in caribou ranges, development of a long-term monitoring strategy for assessing the success of these reclamation efforts, and on promoting First Nations involvement through consultation and participation. Previous projects focused on Little Smoky, Redrock, Red Earth, and Stony Mountain areas. Details are also provided of the Foot Hills Model Forest Grizzly Bear Research project, a five-year, $3 million study deigned to ensure healthy grizzly bear populations in west-central Alberta by better integrating their needs into land management decisions.

  11. A Comparison of Grizzly Bear Demographic Parameters Estimated from Non-Spatial and Spatial Open Population Capture-Recapture Models.

    Science.gov (United States)

    Whittington, Jesse; Sawaya, Michael A

    2015-01-01

    Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal's home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786-1.071) for females, 0.844 (0.703-0.975) for males, and 0.882 (0.779-0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758-1.024) for females, 0.825 (0.700-0.948) for males, and 0.863 (0.771-0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth

  12. A Comparison of Grizzly Bear Demographic Parameters Estimated from Non-Spatial and Spatial Open Population Capture-Recapture Models.

    Directory of Open Access Journals (Sweden)

    Jesse Whittington

    Full Text Available Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal's home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786-1.071 for females, 0.844 (0.703-0.975 for males, and 0.882 (0.779-0.981 for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758-1.024 for females, 0.825 (0.700-0.948 for males, and 0.863 (0.771-0.957 for both sexes. The combination of low densities, low reproductive rates, and predominantly negative

  13. Despotism and risk of infanticide influence grizzly bear den-site selection.

    Science.gov (United States)

    Libal, Nathan S; Belant, Jerrold L; Leopold, Bruce D; Wang, Guiming; Owen, Patricia A

    2011-01-01

    Given documented social dominance and intraspecific predation in bear populations, the ideal despotic distribution model and sex hypothesis of sexual segregation predict adult female grizzly bears (Ursus arctos) will avoid areas occupied by adult males to reduce risk of infanticide. Under ideal despotic distribution, juveniles should similarly avoid adult males to reduce predation risk. Den-site selection and use is an important component of grizzly bear ecology and may be influenced by multiple factors, including risk from conspecifics. To test the role of predation risk and the sex hypothesis of sexual segregation, we compared adult female (n = 142), adult male (n = 36), and juvenile (n = 35) den locations in Denali National Park and Preserve, Alaska, USA. We measured elevation, aspect, slope, and dominant land cover for each den site, and used maximum entropy modeling to determine which variables best predicted den sites. We identified the global model as the best-fitting model for adult female (area under curve (AUC) = 0.926) and elevation as the best predictive variable for adult male (AUC = 0.880) den sites. The model containing land cover and elevation best-predicted juvenile (AUC = 0.841) den sites. Adult females spatially segregated from adult males, with dens characterized by higher elevations (mean= 1,412 m, SE = 52) and steeper slopes (mean = 21.9°, SE = 1.1) than adult male (elevation: mean = 1,209 m, SE = 76; slope: mean = 15.6°, SE = 1.9) den sites. Juveniles used a broad range of landscape attributes but did not avoid adult male denning areas. Observed spatial segregation by adult females supports the sex hypothesis of sexual segregation and we suggest is a mechanism to reduce risk of infanticide. Den site selection of adult males is likely related to distribution of food resources during spring.

  14. Caching behaviour by red squirrels may contribute to food conditioning of grizzly bears

    Directory of Open Access Journals (Sweden)

    Julia Elizabeth Put

    2017-08-01

    Full Text Available We describe an interspecific relationship wherein grizzly bears (Ursus arctos horribilis appear to seek out and consume agricultural seeds concentrated in the middens of red squirrels (Tamiasciurus hudsonicus, which had collected and cached spilled grain from a railway. We studied this interaction by estimating squirrel density, midden density and contents, and bear activity along paired transects that were near (within 50 m or far (200 m from the railway. Relative to far ones, near transects had 2.4 times more squirrel sightings, but similar numbers of squirrel middens. Among 15 middens in which agricultural products were found, 14 were near the rail and 4 subsequently exhibited evidence of bear digging. Remote cameras confirmed the presence of squirrels on the rail and bears excavating middens. We speculate that obtaining grain from squirrel middens encourages bears to seek grain on the railway, potentially contributing to their rising risk of collisions with trains.

  15. Multiple estimates of effective population size for monitoring a long-lived vertebrate: An application to Yellowstone grizzly bears

    Science.gov (United States)

    Kamath, Pauline L.; Haroldson, Mark A.; Luikart, Gordon; Paetkau, David; Whitman, Craig L.; van Manen, Frank T.

    2015-01-01

    Effective population size (Ne) is a key parameter for monitoring the genetic health of threatened populations because it reflects a population's evolutionary potential and risk of extinction due to genetic stochasticity. However, its application to wildlife monitoring has been limited because it is difficult to measure in natural populations. The isolated and well-studied population of grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem provides a rare opportunity to examine the usefulness of different Ne estimators for monitoring. We genotyped 729 Yellowstone grizzly bears using 20 microsatellites and applied three single-sample estimators to examine contemporary trends in generation interval (GI), effective number of breeders (Nb) and Ne during 1982–2007. We also used multisample methods to estimate variance (NeV) and inbreeding Ne (NeI). Single-sample estimates revealed positive trajectories, with over a fourfold increase in Ne (≈100 to 450) and near doubling of the GI (≈8 to 14) from the 1980s to 2000s. NeV (240–319) and NeI (256) were comparable with the harmonic mean single-sample Ne (213) over the time period. Reanalysing historical data, we found NeV increased from ≈80 in the 1910s–1960s to ≈280 in the contemporary population. The estimated ratio of effective to total census size (Ne/Nc) was stable and high (0.42–0.66) compared to previous brown bear studies. These results support independent demographic evidence for Yellowstone grizzly bear population growth since the 1980s. They further demonstrate how genetic monitoring of Ne can complement demographic-based monitoring of Nc and vital rates, providing a valuable tool for wildlife managers.

  16. Re-evaluation of Yellowstone grizzly bear population dynamics not supported by empirical data: response to Doak & Cutler

    Science.gov (United States)

    van Manen, Frank T.; Ebinger, Michael R.; Haroldson, Mark A.; Harris, Richard B.; Higgs, Megan D.; Cherry, Steve; White, Gary C.; Schwartz, Charles C.

    2014-01-01

    Doak and Cutler critiqued methods used by the Interagency Grizzly Bear Study Team (IGBST) to estimate grizzly bear population size and trend in the Greater Yellowstone Ecosystem. Here, we focus on the premise, implementation, and interpretation of simulations they used to support their arguments. They argued that population increases documented by IGBST based on females with cubs-of-the-year were an artifact of increased search effort. However, we demonstrate their simulations were neither reflective of the true observation process nor did their results provide statistical support for their conclusion. They further argued that survival and reproductive senescence should be incorporated into population projections, but we demonstrate their choice of extreme mortality risk beyond age 20 and incompatible baseline fecundity led to erroneous conclusions. The conclusions of Doak and Cutler are unsubstantiated when placed within the context of a thorough understanding of the data, study system, and previous research findings and publications.

  17. Grizzly bears as a filter for human use management in Canadian Rocky Mountain national parks

    Science.gov (United States)

    Derek Petersen

    2000-01-01

    Canadian National Parks within the Rocky Mountains recognize that human use must be managed if the integrity and health of the ecosystems are to be preserved. Parks Canada is being challenged to ensure that these management actions are based on credible scientific principles and understanding. Grizzly bears provide one of only a few ecological tools that can be used to...

  18. Contrafreeloading in grizzly bears: implications for captive foraging enrichment.

    Science.gov (United States)

    McGowan, Ragen T S; Robbins, Charles T; Alldredge, J Richard; Newberry, Ruth C

    2010-01-01

    Although traditional feeding regimens for captive animals were focused on meeting physiological needs to assure good health, more recently emphasis has also been placed on non-nutritive aspects of feeding. The provision of foraging materials to diversify feeding behavior is a common practice in zoos but selective consumption of foraging enrichment items over more balanced "chow" diets could lead to nutrient imbalance. One alternative is to provide balanced diets in a contrafreeloading paradigm. Contrafreeloading occurs when animals choose resources that require effort to exploit when identical resources are freely available. To investigate contrafreeloading and its potential as a theoretical foundation for foraging enrichment, we conducted two experiments with captive grizzly bears (Ursus arctos horribilis). In Experiment 1, bears were presented with five foraging choices simultaneously: apples, apples in ice, salmon, salmon in ice, and plain ice under two levels of food restriction. Two measures of contrafreeloading were considered: weight of earned food consumed and time spent working for earned food. More free than earned food was eaten, with only two bears consuming food extracted from ice, but all bears spent more time manipulating ice containing salmon or apples than plain ice regardless of level of food restriction. In Experiment 2, food-restricted bears were presented with three foraging choices simultaneously: apples, apples inside a box, and an empty box. Although they ate more free than earned food, five bears consumed food from boxes and all spent more time manipulating boxes containing apples than empty boxes. Our findings support the provision of contrafreeloading opportunities as a foraging enrichment strategy for captive wildlife. (c) 2009 Wiley-Liss, Inc.

  19. Libby/Hungry Horse Dams Wildlife Mitigation Habitat Protection : Interim Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Marilyn

    1991-04-01

    The Columbia River Basin Fish and Wildlife Program identified mitigation goals for Hungry Horse and Libby dams (1987). Specific programs goals included: (1) protect and/or enhance 4565 acres of wetland habitat in the Flathead Valley; (2) protect 2462 acres of prairie habitat within the vicinity of the Tobacco Plains Columbian sharp-tailed grouse; (3) protect 8590 acres riparian habitat in northwest Montana for grizzly and black bears; and (4) protect 11,500 acres of terrestrial furbearer habitat through cooperative agreements with state and federal agencies and private landowners. The purpose of this project is to continue to develop and obtain information necessary to evaluate and implement specific wildlife habitat protection actions in northwestern Montana. This report summarizes project work completed between May 1, 1990, and December 31, 1990. There were three primary project objectives during this time: obtain specific information necessary to develop the mitigation program for Columbian sharp-tailed grouse; continue efforts necessary to develop, refine, and coordinate the mitigation programs for waterfowl/wetlands and grizzly/black bears; determine the opportunity and appropriate strategies for protecting terrestrial furbearer habitat by lease or management agreements on state, federal and private lands. 19 refs., 1 tab.

  20. Multiple estimates of effective population size for monitoring a long-lived vertebrate: an application to Yellowstone grizzly bears.

    Science.gov (United States)

    Kamath, Pauline L; Haroldson, Mark A; Luikart, Gordon; Paetkau, David; Whitman, Craig; van Manen, Frank T

    2015-11-01

    Effective population size (N(e)) is a key parameter for monitoring the genetic health of threatened populations because it reflects a population's evolutionary potential and risk of extinction due to genetic stochasticity. However, its application to wildlife monitoring has been limited because it is difficult to measure in natural populations. The isolated and well-studied population of grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem provides a rare opportunity to examine the usefulness of different N(e) estimators for monitoring. We genotyped 729 Yellowstone grizzly bears using 20 microsatellites and applied three single-sample estimators to examine contemporary trends in generation interval (GI), effective number of breeders (N(b)) and N(e) during 1982-2007. We also used multisample methods to estimate variance (N(eV)) and inbreeding N(e) (N(eI)). Single-sample estimates revealed positive trajectories, with over a fourfold increase in N(e) (≈100 to 450) and near doubling of the GI (≈8 to 14) from the 1980s to 2000s. N(eV) (240-319) and N(eI) (256) were comparable with the harmonic mean single-sample N(e) (213) over the time period. Reanalysing historical data, we found N(eV) increased from ≈80 in the 1910s-1960s to ≈280 in the contemporary population. The estimated ratio of effective to total census size (N(e) /N(c)) was stable and high (0.42-0.66) compared to previous brown bear studies. These results support independent demographic evidence for Yellowstone grizzly bear population growth since the 1980s. They further demonstrate how genetic monitoring of N(e) can complement demographic-based monitoring of N(c) and vital rates, providing a valuable tool for wildlife managers. © 2015 John Wiley & Sons Ltd.

  1. The effects of automated scatter feeders on captive grizzly bear activity budgets.

    Science.gov (United States)

    Andrews, Nathan L P; Ha, James C

    2014-01-01

    Although captive bears are popular zoo attractions, they are known to exhibit high levels of repetitive behaviors (RBs). These behaviors have also made them particularly popular subjects for welfare research. To date, most research on ursid welfare has focused on various feeding methods that seek to increase time spent searching for, extracting, or consuming food. Prior research indicates an average of a 50% reduction in RBs when attempts are successful and, roughly, a 50% success rate across studies. This research focused on decreasing time spent in an RB while increasing the time spent active by increasing time spent searching for, extracting, and consuming food. The utility of timed, automated scatter feeders was examined for use with captive grizzly bears (Ursis arctos horribilis). Findings include a significant decrease in time spent in RB and a significant increase in time spent active while the feeders were in use. Further, the bears exhibited a wider range of behaviors and a greater use of their enclosure.

  2. Despotism and risk of infanticide influence grizzly bear den-site selection.

    Directory of Open Access Journals (Sweden)

    Nathan S Libal

    Full Text Available Given documented social dominance and intraspecific predation in bear populations, the ideal despotic distribution model and sex hypothesis of sexual segregation predict adult female grizzly bears (Ursus arctos will avoid areas occupied by adult males to reduce risk of infanticide. Under ideal despotic distribution, juveniles should similarly avoid adult males to reduce predation risk. Den-site selection and use is an important component of grizzly bear ecology and may be influenced by multiple factors, including risk from conspecifics. To test the role of predation risk and the sex hypothesis of sexual segregation, we compared adult female (n = 142, adult male (n = 36, and juvenile (n = 35 den locations in Denali National Park and Preserve, Alaska, USA. We measured elevation, aspect, slope, and dominant land cover for each den site, and used maximum entropy modeling to determine which variables best predicted den sites. We identified the global model as the best-fitting model for adult female (area under curve (AUC = 0.926 and elevation as the best predictive variable for adult male (AUC = 0.880 den sites. The model containing land cover and elevation best-predicted juvenile (AUC = 0.841 den sites. Adult females spatially segregated from adult males, with dens characterized by higher elevations (mean= 1,412 m, SE = 52 and steeper slopes (mean = 21.9°, SE = 1.1 than adult male (elevation: mean = 1,209 m, SE = 76; slope: mean = 15.6°, SE = 1.9 den sites. Juveniles used a broad range of landscape attributes but did not avoid adult male denning areas. Observed spatial segregation by adult females supports the sex hypothesis of sexual segregation and we suggest is a mechanism to reduce risk of infanticide. Den site selection of adult males is likely related to distribution of food resources during spring.

  3. Human perspectives and conservation of grizzly bears in Banff National Park, Canada.

    Science.gov (United States)

    Chamberlain, Emily C; Rutherford, Murray B; Gibeau, Michael L

    2012-06-01

    Some conservation initiatives provoke intense conflict among stakeholders. The need for action, the nature of the conservation measures, and the effects of these measures on human interests may be disputed. Tools are needed to depolarize such situations, foster understanding of the perspectives of people involved, and find common ground. We used Q methodology to explore stakeholders' perspectives on conservation and management of grizzly bears (Ursus arctos horribilis) in Banff National Park and the Bow River watershed of Alberta, Canada. Twenty-nine stakeholders participated in the study, including local residents, scientists, agency employees, and representatives of nongovernmental conservation organizations and other interest groups. Participants rank ordered a set of statements to express their opinions on the problems of grizzly bear management (I-IV) and a second set of statements on possible solutions to the problems (A-C). Factor analysis revealed that participants held 4 distinct views of the problems: individuals associated with factor I emphasized deficiencies in goals and plans; those associated with factor II believed that problems had been exaggerated; those associated with factor III blamed institutional flaws such as disjointed management and inadequate resources; and individuals associated with factor IV blamed politicized decision making. There were 3 distinct views about the best solutions to the problems: individuals associated with factor A called for increased conservation efforts; those associated with factor B wanted reforms in decision-making processes; and individuals associated with factor C supported active landscape management. We connected people's definitions of the problem with their preferred solutions to form 5 overall problem narratives espoused by groups in the study: the problem is deficient goals and plans, the solution is to prioritize conservation efforts (planning-oriented conservation advocates); the problem is flawed

  4. Detecting grizzly bear use of ungulate carcasses using global positioning system telemetry and activity data

    Science.gov (United States)

    Ebinger, Michael R.; Haroldson, Mark A.; van Manen, Frank T.; Costello, Cecily M.; Bjornlie, Daniel D.; Thompson, Daniel J.; Gunther, Kerry A.; Fortin, Jennifer K.; Teisberg, Justin E.; Pils, Shannon R; White, P J; Cain, Steven L.; Cross, Paul C.

    2016-01-01

    Global positioning system (GPS) wildlife collars have revolutionized wildlife research. Studies of predation by free-ranging carnivores have particularly benefited from the application of location clustering algorithms to determine when and where predation events occur. These studies have changed our understanding of large carnivore behavior, but the gains have concentrated on obligate carnivores. Facultative carnivores, such as grizzly/brown bears (Ursus arctos), exhibit a variety of behaviors that can lead to the formation of GPS clusters. We combined clustering techniques with field site investigations of grizzly bear GPS locations (n = 732 site investigations; 2004–2011) to produce 174 GPS clusters where documented behavior was partitioned into five classes (large-biomass carcass, small-biomass carcass, old carcass, non-carcass activity, and resting). We used multinomial logistic regression to predict the probability of clusters belonging to each class. Two cross-validation methods—leaving out individual clusters, or leaving out individual bears—showed that correct prediction of bear visitation to large-biomass carcasses was 78–88%, whereas the false-positive rate was 18–24%. As a case study, we applied our predictive model to a GPS data set of 266 bear-years in the Greater Yellowstone Ecosystem (2002–2011) and examined trends in carcass visitation during fall hyperphagia (September–October). We identified 1997 spatial GPS clusters, of which 347 were predicted to be large-biomass carcasses. We used the clustered data to develop a carcass visitation index, which varied annually, but more than doubled during the study period. Our study demonstrates the effectiveness and utility of identifying GPS clusters associated with carcass visitation by a facultative carnivore.

  5. Development and application of an antibody-based protein microarray to assess physiological stress in grizzly bears (Ursus arctos).

    Science.gov (United States)

    Carlson, Ruth I; Cattet, Marc R L; Sarauer, Bryan L; Nielsen, Scott E; Boulanger, John; Stenhouse, Gordon B; Janz, David M

    2016-01-01

    A novel antibody-based protein microarray was developed that simultaneously determines expression of 31 stress-associated proteins in skin samples collected from free-ranging grizzly bears (Ursus arctos) in Alberta, Canada. The microarray determines proteins belonging to four broad functional categories associated with stress physiology: hypothalamic-pituitary-adrenal axis proteins, apoptosis/cell cycle proteins, cellular stress/proteotoxicity proteins and oxidative stress/inflammation proteins. Small skin samples (50-100 mg) were collected from captured bears using biopsy punches. Proteins were isolated and labelled with fluorescent dyes, with labelled protein homogenates loaded onto microarrays to hybridize with antibodies. Relative protein expression was determined by comparison with a pooled standard skin sample. The assay was sensitive, requiring 80 µg of protein per sample to be run in triplicate on the microarray. Intra-array and inter-array coefficients of variation for individual proteins were generally bears. This suggests that remotely delivered biopsy darts could be used in future sampling. Using generalized linear mixed models, certain proteins within each functional category demonstrated altered expression with respect to differences in year, season, geographical sampling location within Alberta and bear biological parameters, suggesting that these general variables may influence expression of specific proteins in the microarray. Our goal is to apply the protein microarray as a conservation physiology tool that can detect, evaluate and monitor physiological stress in grizzly bears and other species at risk over time in response to environmental change.

  6. Multiple data sources improve DNA-based mark-recapture population estimates of grizzly bears.

    Science.gov (United States)

    Boulanger, John; Kendall, Katherine C; Stetz, Jeffrey B; Roon, David A; Waits, Lisette P; Paetkau, David

    2008-04-01

    A fundamental challenge to estimating population size with mark-recapture methods is heterogeneous capture probabilities and subsequent bias of population estimates. Confronting this problem usually requires substantial sampling effort that can be difficult to achieve for some species, such as carnivores. We developed a methodology that uses two data sources to deal with heterogeneity and applied this to DNA mark-recapture data from grizzly bears (Ursus arctos). We improved population estimates by incorporating additional DNA "captures" of grizzly bears obtained by collecting hair from unbaited bear rub trees concurrently with baited, grid-based, hair snag sampling. We consider a Lincoln-Petersen estimator with hair snag captures as the initial session and rub tree captures as the recapture session and develop an estimator in program MARK that treats hair snag and rub tree samples as successive sessions. Using empirical data from a large-scale project in the greater Glacier National Park, Montana, USA, area and simulation modeling we evaluate these methods and compare the results to hair-snag-only estimates. Empirical results indicate that, compared with hair-snag-only data, the joint hair-snag-rub-tree methods produce similar but more precise estimates if capture and recapture rates are reasonably high for both methods. Simulation results suggest that estimators are potentially affected by correlation of capture probabilities between sample types in the presence of heterogeneity. Overall, closed population Huggins-Pledger estimators showed the highest precision and were most robust to sparse data, heterogeneity, and capture probability correlation among sampling types. Results also indicate that these estimators can be used when a segment of the population has zero capture probability for one of the methods. We propose that this general methodology may be useful for other species in which mark-recapture data are available from multiple sources.

  7. Space-time clusters for early detection of grizzly bear predation.

    Science.gov (United States)

    Kermish-Wells, Joseph; Massolo, Alessandro; Stenhouse, Gordon B; Larsen, Terrence A; Musiani, Marco

    2018-01-01

    Accurate detection and classification of predation events is important to determine predation and consumption rates by predators. However, obtaining this information for large predators is constrained by the speed at which carcasses disappear and the cost of field data collection. To accurately detect predation events, researchers have used GPS collar technology combined with targeted site visits. However, kill sites are often investigated well after the predation event due to limited data retrieval options on GPS collars (VHF or UHF downloading) and to ensure crew safety when working with large predators. This can lead to missing information from small-prey (including young ungulates) kill sites due to scavenging and general site deterioration (e.g., vegetation growth). We used a space-time permutation scan statistic (STPSS) clustering method (SaTScan) to detect predation events of grizzly bears ( Ursus arctos ) fitted with satellite transmitting GPS collars. We used generalized linear mixed models to verify predation events and the size of carcasses using spatiotemporal characteristics as predictors. STPSS uses a probability model to compare expected cluster size (space and time) with the observed size. We applied this method retrospectively to data from 2006 to 2007 to compare our method to random GPS site selection. In 2013-2014, we applied our detection method to visit sites one week after their occupation. Both datasets were collected in the same study area. Our approach detected 23 of 27 predation sites verified by visiting 464 random grizzly bear locations in 2006-2007, 187 of which were within space-time clusters and 277 outside. Predation site detection increased by 2.75 times (54 predation events of 335 visited clusters) using 2013-2014 data. Our GLMMs showed that cluster size and duration predicted predation events and carcass size with high sensitivity (0.72 and 0.94, respectively). Coupling GPS satellite technology with clusters using a program based

  8. Grizzly bear monitoring by the Heiltsuk people as a crucible for First Nation conservation practice

    Directory of Open Access Journals (Sweden)

    William G. Housty

    2014-06-01

    Full Text Available Guided by deeply held cultural values, First Nations in Canada are rapidly regaining legal authority to manage natural resources. We present a research collaboration among academics, tribal government, provincial and federal government, resource managers, conservation practitioners, and community leaders supporting First Nation resource authority and stewardship. First, we present results from a molecular genetics study of grizzly bears inhabiting an important conservation area within the territory of the Heiltsuk First Nation in coastal British Columbia. Noninvasive hair sampling occurred between 2006 and 2009 in the Koeye watershed, a stronghold for grizzly bears, salmon, and Heiltsuk people. Molecular demographic analyses revealed a regionally significant population of bears, which congregate at the Koeye each salmon-spawning season. There was a minimum of 57 individual bears detected during the study period. Results also pointed to a larger than expected source geography for salmon-feeding bears in the study area (> 1000 km², as well as early evidence of a declining trend in the bear population potentially explained by declining salmon numbers. Second, we demonstrate and discuss the power of integrating scientific research with a culturally appropriate research agenda developed by indigenous people. Guided explicitly by principles from Gvi'ilas or customary law, this research methodology is coupled with Heiltsuk culture, enabling results of applied conservation science to involve and resonate with tribal leadership in ways that have eluded previous scientific endeavors. In this context, we discuss the effectiveness of research partnerships that, from the outset, create both scientific programs and integrated communities of action that can implement change. We argue that indigenous resource management requires collaborative approaches like ours, in which science-based management is embedded within a socially and culturally appropriate

  9. Trend of the Yellowstone Grizzly Bear Population

    International Nuclear Information System (INIS)

    Eberhardt, L.L.; Breiwick, J.M.

    2010-01-01

    Yellowstone's grizzlies (Ursus arctos) have been studied for more than 40 years. Radio telemetry has been used to obtain estimates of the rate of increase of the population, with results reported by Schwartz et al. (2006). Counts of females with cubs-of-the-year unduplicated also provide an index of abundance and are the primary subject of this report. An exponential model was fitted to n=24 such counts, using nonlinear least squares. Estimates of the rate of increase, r, were about 0.053. 95% confidence intervals, were obtained by several different methods, and all had lower limits substantially above zero, indicating that the population has been increasing steadily, in contrast to the results of Schwartz et al. (2006), which could not exclude a decreasing population. The grizzly data have been repeatedly mis-used in current literature for reasons explained here.

  10. First report of Taenia arctos (Cestoda: Taeniidae) from grizzly (Ursus arctos horribilis) and black bears (Ursus americanus) in North America.

    Science.gov (United States)

    Catalano, Stefano; Lejeune, Manigandan; Verocai, Guilherme G; Duignan, Pádraig J

    2014-04-01

    The cestode Taenia arctos was found at necropsy in the small intestine of a grizzly (Ursus arctos horribilis) and a black bear (Ursus americanus) from Kananaskis Country in southwestern Alberta, Canada. The autolysis of the tapeworm specimens precluded detailed morphological characterization of the parasites but molecular analysis based on mitochondrial DNA cytochrome c oxidase subunit 1 gene confirmed their identity as T. arctos. This is the first report of T. arctos from definitive hosts in North America. Its detection in Canadian grizzly and black bears further supports the Holarctic distribution of this tapeworm species and its specificity for ursids as final hosts. Previously, T. arctos was unambiguously described at its adult stage in brown bears (Ursus arctos arctos) from Finland, and as larval stages in Eurasian elk (Alces alces) from Finland and moose (Alces americanus) from Alaska, USA. Given the morphological similarity between T. arctos and other Taenia species, the present study underlines the potential for misidentification of tapeworm taxa in previous parasitological reports from bears and moose across North America. The biogeographical history of both definitive and intermediate hosts in the Holarctic suggests an ancient interaction between U. arctos, Alces spp., and T. arctos, and a relatively recent host-switching event in U. americanus. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Trend of the Yellowstone Grizzly Bear Population

    Directory of Open Access Journals (Sweden)

    L. L. Eberhardt

    2010-01-01

    Full Text Available Yellowstone's grizzlies (Ursus arctos have been studied for more than 40 years. Radiotelemetry has been used to obtain estimates of the rate of increase of the population, with results reported by Schwartz et al. (2006. Counts of females with cubs-of-the-year “unduplicated” also provide an index of abundance and are the primary subject of this report. An exponential model was fitted to n=24 such counts, using nonlinear leastsquares. Estimates of the rate of increase, r, were about 0.053. 95% confidence intervals, were obtained by several different methods, and all had lower limits substantially above zero, indicating that the population has been increasing steadily, in contrast to the results of Schwartz et al. (2006, which could not exclude a decreasing population. The grizzly data have been repeatedly mis-used in current literature for reasons explained here.

  12. Geographic pattern of serum antibody prevalence for Brucella spp. in caribou, grizzly bears, and wolves from Alaska, 1975-1998.

    Science.gov (United States)

    Zarnke, Randall L; Ver Hoef, Jay M; DeLong, Robert A

    2006-07-01

    Blood samples were collected from 2,635 caribou (Rangifer tarandus), 1,238 grizzly bears (Ursus arctos), and 930 wolves (Canis lupus) from throughout mainland Alaska during 1975-98. Sera were tested for evidence of exposure to Brucella spp. Serum antibody prevalences were highest in the northwestern region of the state. In any specific area, antibody prevalences for caribou and wolves were of a similar magnitude, whereas antibody prevalence for bears in these same areas were two to three times higher.

  13. Using grizzly bears to assess harvest-ecosystem tradeoffs in salmon fisheries.

    Science.gov (United States)

    Levi, Taal; Darimont, Chris T; Macduffee, Misty; Mangel, Marc; Paquet, Paul; Wilmers, Christopher C

    2012-01-01

    Implementation of ecosystem-based fisheries management (EBFM) requires a clear conceptual and quantitative framework for assessing how different harvest options can modify benefits to ecosystem and human beneficiaries. We address this social-ecological need for Pacific salmon fisheries, which are economically valuable but intercept much of the annual pulse of nutrient subsidies that salmon provide to terrestrial and aquatic food webs. We used grizzly bears, vectors of salmon nutrients and animals with densities strongly coupled to salmon abundance, as surrogates for "salmon ecosystem" function. Combining salmon biomass and stock-recruitment data with stable isotope analysis, we assess potential tradeoffs between fishery yields and bear population densities for six sockeye salmon stocks in Bristol Bay, Alaska, and British Columbia (BC), Canada. For the coastal stocks, we find that both bear densities and fishery yields would increase substantially if ecosystem allocations of salmon increase from currently applied lower to upper goals and beyond. This aligning of benefits comes at a potential cost, however, with the possibility of forgoing harvests in low productivity years. In contrast, we detect acute tradeoffs between bear densities and fishery yields in interior stocks within the Fraser River, BC, where biomass from other salmon species is low. There, increasing salmon allocations to ecosystems would benefit threatened bear populations at the cost of reduced long-term yields. To resolve this conflict, we propose an EBFM goal that values fisheries and bears (and by extension, the ecosystem) equally. At such targets, ecosystem benefits are unexpectedly large compared with losses in fishery yields. To explore other management options, we generate tradeoff curves that provide stock-specific accounting of the expected loss to fishers and gain to bears as more salmon escape the fishery. Our approach, modified to suit multiple scenarios, provides a generalizable method

  14. Using grizzly bears to assess harvest-ecosystem tradeoffs in salmon fisheries.

    Directory of Open Access Journals (Sweden)

    Taal Levi

    Full Text Available Implementation of ecosystem-based fisheries management (EBFM requires a clear conceptual and quantitative framework for assessing how different harvest options can modify benefits to ecosystem and human beneficiaries. We address this social-ecological need for Pacific salmon fisheries, which are economically valuable but intercept much of the annual pulse of nutrient subsidies that salmon provide to terrestrial and aquatic food webs. We used grizzly bears, vectors of salmon nutrients and animals with densities strongly coupled to salmon abundance, as surrogates for "salmon ecosystem" function. Combining salmon biomass and stock-recruitment data with stable isotope analysis, we assess potential tradeoffs between fishery yields and bear population densities for six sockeye salmon stocks in Bristol Bay, Alaska, and British Columbia (BC, Canada. For the coastal stocks, we find that both bear densities and fishery yields would increase substantially if ecosystem allocations of salmon increase from currently applied lower to upper goals and beyond. This aligning of benefits comes at a potential cost, however, with the possibility of forgoing harvests in low productivity years. In contrast, we detect acute tradeoffs between bear densities and fishery yields in interior stocks within the Fraser River, BC, where biomass from other salmon species is low. There, increasing salmon allocations to ecosystems would benefit threatened bear populations at the cost of reduced long-term yields. To resolve this conflict, we propose an EBFM goal that values fisheries and bears (and by extension, the ecosystem equally. At such targets, ecosystem benefits are unexpectedly large compared with losses in fishery yields. To explore other management options, we generate tradeoff curves that provide stock-specific accounting of the expected loss to fishers and gain to bears as more salmon escape the fishery. Our approach, modified to suit multiple scenarios, provides a

  15. The influence of sulfur and hair growth on stable isotope diet estimates for grizzly bears.

    Directory of Open Access Journals (Sweden)

    Garth Mowat

    Full Text Available Stable isotope ratios of grizzly bear (Ursus arctos guard hair collected from bears on the lower Stikine River, British Columbia (BC were analyzed to: 1 test whether measuring δ34S values improved the precision of the salmon (Oncorhynchus spp. diet fraction estimate relative to δ15N as is conventionally done, 2 investigate whether measuring δ34S values improves the separation of diet contributions of moose (Alces alces, marmot (Marmota caligata, and mountain goat (Oreamnos americanus and, 3 examine the relationship between collection date and length of hair and stable isotope values. Variation in isotope signatures among hair samples from the same bear and year were not trivial. The addition of δ34S values to mixing models used to estimate diet fractions generated small improvement in the precision of salmon and terrestrial prey diet fractions. Although the δ34S value for salmon is precise and appears general among species and areas, sulfur ratios were strongly correlated with nitrogen ratios and therefore added little new information to the mixing model regarding the consumption of salmon. Mean δ34S values for the three terrestrial herbivores of interest were similar and imprecise, so these data also added little new information to the mixing model. The addition of sulfur data did confirm that at least some bears in this system ate marmots during summer and fall. We show that there are bears with short hair that assimilate >20% salmon in their diet and bears with longer hair that eat no salmon living within a few kilometers of one another in a coastal ecosystem. Grizzly bears are thought to re-grow hair between June and October however our analysis of sectioned hair suggested at least some hairs begin growing in July or August, not June and, that hair of wild bears may grow faster than observed in captive bears. Our hair samples may have been from the year of sampling or the previous year because samples were collected in summer when

  16. The influence of sulfur and hair growth on stable isotope diet estimates for grizzly bears.

    Science.gov (United States)

    Mowat, Garth; Curtis, P Jeff; Lafferty, Diana J R

    2017-01-01

    Stable isotope ratios of grizzly bear (Ursus arctos) guard hair collected from bears on the lower Stikine River, British Columbia (BC) were analyzed to: 1) test whether measuring δ34S values improved the precision of the salmon (Oncorhynchus spp.) diet fraction estimate relative to δ15N as is conventionally done, 2) investigate whether measuring δ34S values improves the separation of diet contributions of moose (Alces alces), marmot (Marmota caligata), and mountain goat (Oreamnos americanus) and, 3) examine the relationship between collection date and length of hair and stable isotope values. Variation in isotope signatures among hair samples from the same bear and year were not trivial. The addition of δ34S values to mixing models used to estimate diet fractions generated small improvement in the precision of salmon and terrestrial prey diet fractions. Although the δ34S value for salmon is precise and appears general among species and areas, sulfur ratios were strongly correlated with nitrogen ratios and therefore added little new information to the mixing model regarding the consumption of salmon. Mean δ34S values for the three terrestrial herbivores of interest were similar and imprecise, so these data also added little new information to the mixing model. The addition of sulfur data did confirm that at least some bears in this system ate marmots during summer and fall. We show that there are bears with short hair that assimilate >20% salmon in their diet and bears with longer hair that eat no salmon living within a few kilometers of one another in a coastal ecosystem. Grizzly bears are thought to re-grow hair between June and October however our analysis of sectioned hair suggested at least some hairs begin growing in July or August, not June and, that hair of wild bears may grow faster than observed in captive bears. Our hair samples may have been from the year of sampling or the previous year because samples were collected in summer when bears were

  17. Cardiac function adaptations in hibernating grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    Nelson, O Lynne; Robbins, Charles T

    2010-03-01

    Research on the cardiovascular physiology of hibernating mammals may provide insight into evolutionary adaptations; however, anesthesia used to handle wild animals may affect the cardiovascular parameters of interest. To overcome these potential biases, we investigated the functional cardiac phenotype of the hibernating grizzly bear (Ursus arctos horribilis) during the active, transitional and hibernating phases over a 4 year period in conscious rather than anesthetized bears. The bears were captive born and serially studied from the age of 5 months to 4 years. Heart rate was significantly different from active (82.6 +/- 7.7 beats/min) to hibernating states (17.8 +/- 2.8 beats/min). There was no difference from the active to the hibernating state in diastolic and stroke volume parameters or in left atrial area. Left ventricular volume:mass was significantly increased during hibernation indicating decreased ventricular mass. Ejection fraction of the left ventricle was not different between active and hibernating states. In contrast, total left atrial emptying fraction was significantly reduced during hibernation (17.8 +/- 2.8%) as compared to the active state (40.8 +/- 1.9%). Reduced atrial chamber function was also supported by reduced atrial contraction blood flow velocities and atrial contraction ejection fraction during hibernation; 7.1 +/- 2.8% as compared to 20.7 +/- 3% during the active state. Changes in the diastolic cardiac filling cycle, especially atrial chamber contribution to ventricular filling, appear to be the most prominent macroscopic functional change during hibernation. Thus, we propose that these changes in atrial chamber function constitute a major adaptation during hibernation which allows the myocardium to conserve energy, avoid chamber dilation and remain healthy during a period of extremely low heart rates. These findings will aid in rational approaches to identifying underlying molecular mechanisms.

  18. Evaluating estimators for numbers of females with cubs-of-the-year in the Yellowstone grizzly bear population

    Science.gov (United States)

    Cherry, S.; White, G.C.; Keating, K.A.; Haroldson, Mark A.; Schwartz, Charles C.

    2007-01-01

    Current management of the grizzly bear (Ursus arctos) population in Yellowstone National Park and surrounding areas requires annual estimation of the number of adult female bears with cubs-of-the-year. We examined the performance of nine estimators of population size via simulation. Data were simulated using two methods for different combinations of population size, sample size, and coefficient of variation of individual sighting probabilities. We show that the coefficient of variation does not, by itself, adequately describe the effects of capture heterogeneity, because two different distributions of capture probabilities can have the same coefficient of variation. All estimators produced biased estimates of population size with bias decreasing as effort increased. Based on the simulation results we recommend the Chao estimator for model M h be used to estimate the number of female bears with cubs of the year; however, the estimator of Chao and Shen may also be useful depending on the goals of the research.

  19. Evaluation of rules to distinguish unique female grizzly bears with cubs in Yellowstone

    Science.gov (United States)

    Schwartz, C.C.; Haroldson, M.A.; Cherry, S.; Keating, K.A.

    2008-01-01

    The United States Fish and Wildlife Service uses counts of unduplicated female grizzly bears (Ursus arctos) with cubs-of-the-year to establish limits of sustainable mortality in the Greater Yellowstone Ecosystem, USA. Sightings are dustered into observations of unique bears based on an empirically derived rule set. The method has never been tested or verified. To evaluate the rule set, we used data from radiocollared females obtained during 1975-2004 to simulate populations under varying densities, distributions, and sighting frequencies. We tested individual rules and rule-set performance, using custom software to apply the rule-set and duster sightings. Results indicated most rules were violated to some degree, and rule-based dustering consistently underestimated the minimum number of females and total population size derived from a nonparametric estimator (Chao2). We conclude that the current rule set returns conservative estimates, but with minor improvements, counts of unduplicated females-with-cubs can serve as a reasonable index of population size useful for establishing annual mortality limits. For the Yellowstone population, the index is more practical and cost-effective than capture-mark-recapture using either DNA hair snagging or aerial surveys with radiomarked bears. The method has useful application in other ecosystems, but we recommend rules used to distinguish unique females be adapted to local conditions and tested.

  20. Habitat degradation affects the summer activity of polar bears.

    Science.gov (United States)

    Ware, Jasmine V; Rode, Karyn D; Bromaghin, Jeffrey F; Douglas, David C; Wilson, Ryan R; Regehr, Eric V; Amstrup, Steven C; Durner, George M; Pagano, Anthony M; Olson, Jay; Robbins, Charles T; Jansen, Heiko T

    2017-05-01

    Understanding behavioral responses of species to environmental change is critical to forecasting population-level effects. Although climate change is significantly impacting species' distributions, few studies have examined associated changes in behavior. Polar bear (Ursus maritimus) subpopulations have varied in their near-term responses to sea ice decline. We examined behavioral responses of two adjacent subpopulations to changes in habitat availability during the annual sea ice minimum using activity data. Location and activity sensor data collected from 1989 to 2014 for 202 adult female polar bears in the Southern Beaufort Sea (SB) and Chukchi Sea (CS) subpopulations were used to compare activity in three habitat types varying in prey availability: (1) land; (2) ice over shallow, biologically productive waters; and (3) ice over deeper, less productive waters. Bears varied activity across and within habitats with the highest activity at 50-75% sea ice concentration over shallow waters. On land, SB bears exhibited variable but relatively high activity associated with the use of subsistence-harvested bowhead whale carcasses, whereas CS bears exhibited low activity consistent with minimal feeding. Both subpopulations had fewer observations in their preferred shallow-water sea ice habitats in recent years, corresponding with declines in availability of this substrate. The substantially higher use of marginal habitats by SB bears is an additional mechanism potentially explaining why this subpopulation has experienced negative effects of sea ice loss compared to the still-productive CS subpopulation. Variability in activity among, and within, habitats suggests that bears alter their behavior in response to habitat conditions, presumably in an attempt to balance prey availability with energy costs.

  1. Microhabitat features influencing habitat use by Florida black bears

    Directory of Open Access Journals (Sweden)

    Dana L. Karelus

    2018-01-01

    Full Text Available Understanding fine-scale habitat needs of species and the factors influencing heterogeneous use of habitat within home range would help identify limiting resources and inform habitat management practices. This information is especially important for large mammals living in fragmented habitats where resources may be scarcer and more patchily distributed than in contiguous habitats. Using bihourly Global Position System (GPS location data collected from 10 individuals during 2011–2014, we investigated microhabitat features of areas within home ranges that received high vs. low intensity of use by Florida black bears (Ursus americanus floridanus in north-central, Florida. We identified areas receiving high and low levels of use by bears based on their utilization distributions estimated with the dynamic Brownian bridge movement model, and performed vegetation sampling at bear locations within high- and low-use areas. Using univariate analyses and generalized linear mixed models, we found that (1 canopy cover, visual obstruction, and hardwood density were important in defining high-use sites; (2 the probability of high use was positively associated with principal components that represented habitat closer to creeks and with high canopy and shrub cover and higher hardwood densities, likely characteristic of forested wetlands; and (3 the probability of high use was, to a lesser extent, associated with principal components that represented habitat with high canopy cover, high pine density, and low visual obstruction and hardwood density; likely representing sand pine and pine plantations. Our results indicate that the high bear-use sites were in forested wetlands, where cover and food resources for bears are likely to occur in higher abundance. Habitat management plans whereby bears are a focal species should aim to increase the availability and quality of forested wetlands. Keywords: Habitat selection, Heterogeneous habitat use, Forest management

  2. Grizzly bears exhibit augmented insulin sensitivity while obese prior to a reversible insulin resistance during hibernation.

    Science.gov (United States)

    Nelson, O Lynne; Jansen, Heiko T; Galbreath, Elizabeth; Morgenstern, Kurt; Gehring, Jamie Lauren; Rigano, Kimberly Scott; Lee, Jae; Gong, Jianhua; Shaywitz, Adam J; Vella, Chantal A; Robbins, Charles T; Corbit, Kevin C

    2014-08-05

    The confluence of obesity and diabetes as a worldwide epidemic necessitates the discovery of new therapies. Success in this endeavor requires translatable preclinical studies, which traditionally employ rodent models. As an alternative approach, we explored hibernation where obesity is a natural adaptation to survive months of fasting. Here we report that grizzly bears exhibit seasonal tripartite insulin responsiveness such that obese animals augment insulin sensitivity but only weeks later enter hibernation-specific insulin resistance (IR) and subsequently reinitiate responsiveness upon awakening. Preparation for hibernation is characterized by adiposity coupled to increased insulin sensitivity via modified PTEN/AKT signaling specifically in adipose tissue, suggesting a state of "healthy" obesity analogous to humans with PTEN haploinsufficiency. Collectively, we show that bears reversibly cope with homeostatic perturbations considered detrimental to humans and describe a mechanism whereby IR functions not as a late-stage metabolic adaptation to obesity, but rather a gatekeeper of the fed-fasting transition. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Stress and reproductive hormones in grizzly bears reflect nutritional benefits and social consequences of a salmon foraging niche.

    Science.gov (United States)

    Bryan, Heather M; Darimont, Chris T; Paquet, Paul C; Wynne-Edwards, Katherine E; Smits, Judit E G

    2013-01-01

    Physiological indicators of social and nutritional stress can provide insight into the responses of species to changes in food availability. In coastal British Columbia, Canada, grizzly bears evolved with spawning salmon as an abundant but spatially and temporally constrained food source. Recent and dramatic declines in salmon might have negative consequences on bear health and ultimately fitness. To examine broadly the chronic endocrine effects of a salmon niche, we compared cortisol, progesterone, and testosterone levels in hair from salmon-eating bears from coastal BC (n = 75) with the levels in a reference population from interior BC lacking access to salmon (n = 42). As predicted, testosterone was higher in coastal bears of both sexes relative to interior bears, possibly reflecting higher social density on the coast mediated by salmon availability. We also investigated associations between the amount of salmon individual bears consumed (as measured by stable isotope analysis) and cortisol and testosterone in hair. Also as predicted, cortisol decreased with increasing dietary salmon and was higher after a year of low dietary salmon than after a year of high dietary salmon. These findings at two spatial scales suggest that coastal bears might experience nutritional or social stress in response to on-going salmon declines, providing novel insights into the effects of resource availability on fitness-related physiology.

  4. Stress and reproductive hormones in grizzly bears reflect nutritional benefits and social consequences of a salmon foraging niche.

    Directory of Open Access Journals (Sweden)

    Heather M Bryan

    Full Text Available Physiological indicators of social and nutritional stress can provide insight into the responses of species to changes in food availability. In coastal British Columbia, Canada, grizzly bears evolved with spawning salmon as an abundant but spatially and temporally constrained food source. Recent and dramatic declines in salmon might have negative consequences on bear health and ultimately fitness. To examine broadly the chronic endocrine effects of a salmon niche, we compared cortisol, progesterone, and testosterone levels in hair from salmon-eating bears from coastal BC (n = 75 with the levels in a reference population from interior BC lacking access to salmon (n = 42. As predicted, testosterone was higher in coastal bears of both sexes relative to interior bears, possibly reflecting higher social density on the coast mediated by salmon availability. We also investigated associations between the amount of salmon individual bears consumed (as measured by stable isotope analysis and cortisol and testosterone in hair. Also as predicted, cortisol decreased with increasing dietary salmon and was higher after a year of low dietary salmon than after a year of high dietary salmon. These findings at two spatial scales suggest that coastal bears might experience nutritional or social stress in response to on-going salmon declines, providing novel insights into the effects of resource availability on fitness-related physiology.

  5. Confronting uncertainty in wildlife management: performance of grizzly bear management.

    Science.gov (United States)

    Artelle, Kyle A; Anderson, Sean C; Cooper, Andrew B; Paquet, Paul C; Reynolds, John D; Darimont, Chris T

    2013-01-01

    Scientific management of wildlife requires confronting the complexities of natural and social systems. Uncertainty poses a central problem. Whereas the importance of considering uncertainty has been widely discussed, studies of the effects of unaddressed uncertainty on real management systems have been rare. We examined the effects of outcome uncertainty and components of biological uncertainty on hunt management performance, illustrated with grizzly bears (Ursus arctos horribilis) in British Columbia, Canada. We found that both forms of uncertainty can have serious impacts on management performance. Outcome uncertainty alone--discrepancy between expected and realized mortality levels--led to excess mortality in 19% of cases (population-years) examined. Accounting for uncertainty around estimated biological parameters (i.e., biological uncertainty) revealed that excess mortality might have occurred in up to 70% of cases. We offer a general method for identifying targets for exploited species that incorporates uncertainty and maintains the probability of exceeding mortality limits below specified thresholds. Setting targets in our focal system using this method at thresholds of 25% and 5% probability of overmortality would require average target mortality reductions of 47% and 81%, respectively. Application of our transparent and generalizable framework to this or other systems could improve management performance in the presence of uncertainty.

  6. Confronting uncertainty in wildlife management: performance of grizzly bear management.

    Directory of Open Access Journals (Sweden)

    Kyle A Artelle

    Full Text Available Scientific management of wildlife requires confronting the complexities of natural and social systems. Uncertainty poses a central problem. Whereas the importance of considering uncertainty has been widely discussed, studies of the effects of unaddressed uncertainty on real management systems have been rare. We examined the effects of outcome uncertainty and components of biological uncertainty on hunt management performance, illustrated with grizzly bears (Ursus arctos horribilis in British Columbia, Canada. We found that both forms of uncertainty can have serious impacts on management performance. Outcome uncertainty alone--discrepancy between expected and realized mortality levels--led to excess mortality in 19% of cases (population-years examined. Accounting for uncertainty around estimated biological parameters (i.e., biological uncertainty revealed that excess mortality might have occurred in up to 70% of cases. We offer a general method for identifying targets for exploited species that incorporates uncertainty and maintains the probability of exceeding mortality limits below specified thresholds. Setting targets in our focal system using this method at thresholds of 25% and 5% probability of overmortality would require average target mortality reductions of 47% and 81%, respectively. Application of our transparent and generalizable framework to this or other systems could improve management performance in the presence of uncertainty.

  7. Immobilization of Wyoming bears using carfentanil and xylazine.

    Science.gov (United States)

    Kreeger, Terry J; Bjornlie, Dan; Thompson, Dan; Clapp, Justin; Clark, Colby; Hansen, Cole; Huizenga, Matt; Lockwood, Sam

    2013-07-01

    Seven grizzly (Ursus arctos; four male, three female) and three black (Ursus americanus; two male, one female) bears caught in culvert traps or leg snares were immobilized in northwestern Wyoming with carfentanil and xylazine at doses, respectively, of 0.011 ± 0.001 and 0.12 ± 0.01 mg/kg for grizzly bears and 0.014 ± 0.002 and 0.15 ± 0.04 mg/kg for black bears. These drugs were antagonized with 1 mg/kg naltrexone and 2 mg/kg tolazoline. Induction and recovery times, respectively, were 4.3 ± 0.5 and 7.1 ± 0.8 min for grizzly bears and 5.2 ± 0.4 and 9.1 ± 2.2 min for black bears. Inductions were smooth and uneventful. Recoveries were characterized initially by increased respiration followed by raising of the head, which quickly led to a full recovery, with the bears recognizing and avoiding humans and moving away, maneuvering around obstacles. All bears experienced respiratory depression, which did not significantly improve with supplemental oxygen on the basis of pulse oximetry (P=0.56). Rectal temperatures were normothermic. Carfentanil-xylazine immobilization of bears provided significant advantages over other drug regimens, including small drug volumes, predictable inductions, quick and complete recoveries, and lower costs. On the basis of these data, both grizzly and black bears can be immobilized effectively with 0.01 mg/kg carfentanil and 0.1 mg/kg xylazine.

  8. Positive Reinforcement Training for Blood Collection in Grizzly Bears (Ursus arctos horribilis) Results in Undetectable Elevations in Serum Cortisol Levels: A Preliminary Investigation.

    Science.gov (United States)

    Joyce-Zuniga, Nicole M; Newberry, Ruth C; Robbins, Charles T; Ware, Jasmine V; Jansen, Heiko T; Nelson, O Lynne

    2016-01-01

    Training nonhuman animals in captivity for participation in routine husbandry procedures is believed to produce a lower stress environment compared with undergoing a general anesthetic event for the same procedure. This hypothesis rests largely on anecdotal evidence that the captive subjects appear more relaxed with the trained event. Blood markers of physiological stress responses were evaluated in 4 captive grizzly bears (Ursus arctos horribilis) who were clicker-trained for blood collection versus 4 bears who were chemically immobilized for blood collection. Serum cortisol and immunoglobulin A (IgA) and plasma β-endorphin were measured as indicators of responses to stress. Plasma β-endorphin was not different between the groups. Serum IgA was undetectable in all bears. Serum cortisol was undetectable in all trained bears, whereas chemically immobilized bears had marked cortisol elevations (p bears with extensive recent immobilization experience. These findings support the use of positive reinforcement training for routine health procedures to minimize anxiety.

  9. Contrasting past and current numbers of bears visiting Yellowstone cutthroat trout streams

    Science.gov (United States)

    Haroldson, Mark A.; Schwartz, Charles C.; Teisberg, Justin E.; Gunther, Kerry A.; Fortin, Jennifer K.; Robbins, Charles T.

    2014-01-01

    Spawning cutthroat trout (Oncorhynchus clarkii bouvieri) were historically abundant within tributary streams of Yellowstone Lake within Yellowstone National Park and were a highly digestible source of energy and protein for Yellowstone’s grizzly bears (Ursus arctos) and black bears (U. americanus). The cutthroat trout population has subsequently declined since the introduction of non-native lake trout (Salvelinus namaycush), and in response to effects of drought and whirling disease (Myxobolus cerebralis). The trout population, duration of spawning runs, and indices of bear use of spawning streams had declined in some regions of the lake by 1997–2000. We initiated a 3-year study in 2007 to assess whether numbers of spawning fish, black bears, and grizzly bears within and alongside stream corridors had changed since 1997– 2000. We estimated numbers of grizzly bears and black bears by first compiling encounter histories of individual bears visiting 48 hair-snag sites along 35 historically fished streams.We analyzed DNA encounter histories with Pradel-recruitment and Jolly-Seber (POPAN) capture-mark-recapture models. When compared to 1997–2000, the current number of spawning cutthroat trout per stream and the number of streams with cutthroat trout has decreased. We estimated that 48 (95% CI¼42–56) male and 23 (95% CI¼21–27) female grizzly bears visited the historically fished tributary streams during our study. In any 1- year, 46 to 59 independent grizzly bears (8–10% of estimated Greater Yellowstone Ecosystem population) visited these streams. When compared with estimates from the 1997 to 2000 study and adjusted for equal effort, the number of grizzly bears using the stream corridors decreased by 63%. Additionally, the number of black bears decreased between 64% and 84%. We also document an increased proportion of bears of both species visiting front-country (i.e., near human development) streams. With the recovery of cutthroat trout, we suggest bears

  10. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet

    International Nuclear Information System (INIS)

    Noël, Marie; Christensen, Jennie R.; Spence, Jody; Robbins, Charles T.

    2015-01-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size = 30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r 2 = 0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method. - Highlights: • LA-ICP-MS provides temporal trace metal exposure information for wild grizzly bears. • Cu and Zn temporal exposures provide

  11. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet

    Energy Technology Data Exchange (ETDEWEB)

    Noël, Marie, E-mail: marie.noel@stantec.com [Stantec Consulting Ltd. 2042 Mills Road, Unit 11, Sidney BC V8L 4X2 (Canada); Christensen, Jennie R., E-mail: jennie.christensen@stantec.com [Stantec Consulting Ltd. 2042 Mills Road, Unit 11, Sidney BC V8L 4X2 (Canada); Spence, Jody, E-mail: jodys@uvic.ca [School of Earth and Ocean Sciences, Bob Wright Centre A405, University of Victoria, PO BOX 3065 STN CSC, Victoria, BC V8W 3V6 (Canada); Robbins, Charles T., E-mail: ctrobbins@wsu.edu [School of the Environment and School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 (United States)

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size = 30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r{sup 2} = 0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method. - Highlights: • LA-ICP-MS provides temporal trace metal exposure information for wild grizzly bears. • Cu and Zn temporal exposures provide

  12. Predicting 21st-century polar bear habitat distribution from global climate models

    Science.gov (United States)

    Durner, George M.; Douglas, David C.; Nielson, R.M.; Amstrup, Steven C.; McDonald, T.L.; Stirling, I.; Mauritzen, Mette; Born, E.W.; Wiig, O.; Deweaver, E.; Serreze, Mark C.; Belikov, Stanislav; Holland, M.M.; Maslanik, J.; Aars, Jon; Bailey, D.A.; Derocher, A.E.

    2009-01-01

    Projections of polar bear (Ursus maritimus) sea ice habitat distribution in the polar basin during the 21st century were developed to understand the consequences of anticipated sea ice reductions on polar bear populations. We used location data from satellitecollared polar bears and environmental data (e.g., bathymetry, distance to coastlines, and sea ice) collected from 1985 to 1995 to build resource selection functions (RSFs). RSFs described habitats that polar bears preferred in summer, autumn, winter, and spring. When applied to independent data from 1996 to 2006, the RSFs consistently identified habitats most frequently used by polar bears. We applied the RSFs to monthly maps of 21st-century sea ice concentration projected by 10 general circulation models (GCMs) used in the Intergovernmental Panel of Climate Change Fourth Assessment Report, under the A1B greenhouse gas forcing scenario. Despite variation in their projections, all GCMs indicated habitat losses in the polar basin during the 21st century. Losses in the highest-valued RSF habitat (optimal habitat) were greatest in the southern seas of the polar basin, especially the Chukchi and Barents seas, and least along the Arctic Ocean shores of Banks Island to northern Greenland. Mean loss of optimal polar bear habitat was greatest during summer; from an observed 1.0 million km2 in 1985-1995 (baseline) to a projected multi-model mean of 0.32 million km2 in 2090-2099 (-68% change). Projected winter losses of polar bear habitat were less: from 1.7 million km2 in 1985-1995 to 1.4 million km2 in 2090-2099 (-17% change). Habitat losses based on GCM multi-model means may be conservative; simulated rates of habitat loss during 1985-2006 from many GCMs were less than the actual observed rates of loss. Although a reduction in the total amount of optimal habitat will likely reduce polar bear populations, exact relationships between habitat losses and population demographics remain unknown. Density and energetic

  13. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears.

    Directory of Open Access Journals (Sweden)

    Clarissa Schwab

    Full Text Available BACKGROUND: Diet and environment impact the composition of mammalian intestinal microbiota; dietary or health disturbances trigger alterations in intestinal microbiota composition and render the host susceptible to enteric pathogens. To date no long term monitoring data exist on the fecal microbiota and pathogen load of carnivores either in natural environments or in captivity. This study investigates fecal microbiota composition and the presence of pathogenic Escherichia coli and toxigenic clostridia in wild and captive grizzly bears (Ursus arctos and relates these to food resources consumed by bears. METHODOLOGY/PRINCIPAL FINDINGS: Feces were obtained from animals of two wild populations and from two captive animals during an active bear season. Wild animals consumed a diverse diet composed of plant material, animal prey and insects. Captive animals were fed a regular granulated diet with a supplement of fruits and vegetables. Bacterial populations were analyzed using quantitative PCR. Fecal microbiota composition fluctuated in wild and in captive animals. The abundance of Clostridium clusters I and XI, and of C. perfringens correlated to regular diet protein intake. Enteroaggregative E. coli were consistently present in all populations. The C. sordellii phospholipase C was identified in three samples of wild animals and for the first time in Ursids. CONCLUSION: This is the first longitudinal study monitoring the fecal microbiota of wild carnivores and comparing it to that of captive individuals of the same species. Location and diet affected fecal bacterial populations as well as the presence of enteric pathogens.

  14. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears.

    Science.gov (United States)

    Schwab, Clarissa; Cristescu, Bogdan; Northrup, Joseph M; Stenhouse, Gordon B; Gänzle, Michael

    2011-01-01

    Diet and environment impact the composition of mammalian intestinal microbiota; dietary or health disturbances trigger alterations in intestinal microbiota composition and render the host susceptible to enteric pathogens. To date no long term monitoring data exist on the fecal microbiota and pathogen load of carnivores either in natural environments or in captivity. This study investigates fecal microbiota composition and the presence of pathogenic Escherichia coli and toxigenic clostridia in wild and captive grizzly bears (Ursus arctos) and relates these to food resources consumed by bears. Feces were obtained from animals of two wild populations and from two captive animals during an active bear season. Wild animals consumed a diverse diet composed of plant material, animal prey and insects. Captive animals were fed a regular granulated diet with a supplement of fruits and vegetables. Bacterial populations were analyzed using quantitative PCR. Fecal microbiota composition fluctuated in wild and in captive animals. The abundance of Clostridium clusters I and XI, and of C. perfringens correlated to regular diet protein intake. Enteroaggregative E. coli were consistently present in all populations. The C. sordellii phospholipase C was identified in three samples of wild animals and for the first time in Ursids. This is the first longitudinal study monitoring the fecal microbiota of wild carnivores and comparing it to that of captive individuals of the same species. Location and diet affected fecal bacterial populations as well as the presence of enteric pathogens.

  15. Land use planning: A potential force for retaining habitat connectivity in the Greater Yellowstone Ecosystem and Beyond

    Directory of Open Access Journals (Sweden)

    Craig L. Shafer

    2015-01-01

    Full Text Available The grizzly bear (Ursus arctos horribilis population in the Greater Yellowstone Ecosystem (GYE is perceived to have been isolated from the population in the Northern Continental Divide Ecosystem for a century. Better land use planning is needed to thwart progressive intra- and inter-ecosystem habitat fragmentation, especially due to private land development. The dilemma of private lands being intermixed in large landscapes is addressed. This review attempts to identify some land use planning levels and tools which might facilitate dispersal by the grizzly bear and other large mammals. The planning levels discussed include national, regional, state, county and municipal, and federal land management agency. Specific potential federal tools mentioned include zoning, Landscape Conservation Cooperatives, the Endangered Species Act, beyond boundary authority, land exchanges, less-than-fee acquisition and other incentives, the Northern Rockies Ecosystem Protection Act, and federal land annexation. Besides summarizing existing recommendations, some derived observations are offered.

  16. Dietary protein content alters energy expenditure and composition of the mass gain in grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    Felicetti, Laura A; Robbins, Charles T; Shipley, Lisa A

    2003-01-01

    Many fruits contain high levels of available energy but very low levels of protein and other nutrients. The discrepancy between available energy and protein creates a physiological paradox for many animals consuming high-fruit diets, as they will be protein deficient if they eat to meet their minimum energy requirement. We fed young grizzly bears both high-energy pelleted and fruit diets containing from 1.6% to 15.4% protein to examine the role of diet-induced thermogenesis and fat synthesis in dealing with high-energy-low-protein diets. Digestible energy intake at mass maintenance increased 2.1 times, and composition of the gain changed from primarily lean mass to entirely fat when the protein content of the diet decreased from 15.4% to 1.6%. Daily fat gain was up to three times higher in bears fed low-protein diets ad lib., compared with bears consuming the higher-protein diet and gaining mass at the same rate. Thus, bears eating fruit can either consume other foods to increase dietary protein content and reduce energy expenditure, intake, and potentially foraging time or overeat high-fruit diets and use diet-induced thermogenesis and fat synthesis to deal with their skewed energy-to-protein ratio. These are not discrete options but a continuum that creates numerous solutions for balancing energy expenditure, intake, foraging time, fat accumulation, and ultimately fitness, depending on food availability, foraging efficiency, bear size, and body condition.

  17. Watchable Wildlife: The Black Bear

    Science.gov (United States)

    Lynn L. Rogers

    1992-01-01

    Black bears are the bears people most often encounter. Black bears live in forests over much of North America, unlike grizzlies that live only in Alaska, northern and western Canada, and the northern Rocky Mountains. This brochure presents the latest information on black bear life and how this species responds to an ever-increasing number of campers, hikers, and...

  18. Effects of hurricanes Katrina and Rita on Louisiana black bear habitat

    Science.gov (United States)

    Clark, Joseph D.; Murrow, Jennifer L.

    2012-01-01

    The Louisiana black bear (Ursus americanus luteolus) is comprised of 3 subpopulations, each being small, geographically isolated, and vulnerable to extinction. Hurricanes Katrina and Rita struck the Louisiana and Mississippi coasts in 2005, potentially altering habitat occupied by this federally threatened subspecies. We used data collected on radio-telemetered bears from 1993 to 1995 and pre-hurricane landscape data to develop a habitat model based on the Mahalanobis distance (D2) statistic. We then applied that model to post-hurricane landscape data where the telemetry data were collected (i.e., occupied study area) and where bear range expansion might occur (i.e., unoccupied study area) to quantify habitat loss or gain. The D2 model indicated that quality bear habitat was associated with areas of high mast-producing forest density, low water body density, and moderate forest patchiness. Cross-validation and testing on an independent data set in central Louisiana indicated that prediction and transferability of the model were good. Suitable bear habitat decreased from 348 to 345 km2 (0.9%) within the occupied study area and decreased from 34,383 to 33,891 km2 (1.4%) in the unoccupied study area following the hurricanes. Our analysis indicated that bear habitat was not significantly degraded by the hurricanes, although changes that could have occurred on a microhabitat level would be more difficult to detect at the resolution we used. We suggest that managers continue to monitor the possible long-term effects of these hurricanes (e.g., vegetation changes from flooding, introduction of toxic chemicals, or water quality changes).

  19. Bears and pipeline construction in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Follmann, E.H.; Hechtel, J.L. (Univ. of Alaska Fairbanks, AK (USA))

    1990-06-01

    Serious problems were encountered with bears during construction of the 1274-km trans-Alaska oil pipeline between Prudhoe Bay and Valdez. This multi-billion-dollar project traversed both black bear (Ursus americanus Pallas) and grizzly bear (U. arctos L.) habitat throughtout its entire length. Plans for dealing with anticipated problems with bears were often inadequate. Most (71%) problems occurred north of the Yukon River in a previously roadless wilderness where inadequate refuse disposal and widespread animal feeding created dangerous situations. Of the 192 officially reported bear problems associated with the Trans-Alaska Pipeline System (TAPS) (1971-1979), about 65% involved the presence of bears in camps or dumps, 13% the feeding of bears on garbage or handouts, 10% property damage or economic loss, 7% bears under and in buildings, and only 5% charges by bears. Remarkably, no bear-related injuries were reported, suggesting that bears became accustomed to people and did not regard them as a threat. Following construction of the TAPS there have been proposals for pipelines to transport natural gas from Prudhoe Bay to southern and Pacific-rim markets. Based on past experience, some animal control measures were developed during the planning phase for the authorized gas pipeline route in Alaska. Fences installed around 100-person survey camps were found to be effective in deterring bears in two traditionally troublesome areas. 16 refs., 7 figs., 1 tab.

  20. Grizzly Usage and Theory Manual

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Backman, M. [Univ. of Tennessee, Knoxville, TN (United States); Chakraborty, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, X. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    Grizzly is a multiphysics simulation code for characterizing the behavior of nuclear power plant (NPP) structures, systems and components (SSCs) subjected to a variety of age-related aging mechanisms. Grizzly simulates both the progression of aging processes, as well as the capacity of aged components to safely perform. This initial beta release of Grizzly includes capabilities for engineering-scale thermo-mechanical analysis of reactor pressure vessels (RPVs). Grizzly will ultimately include capabilities for a wide range of components and materials. Grizzly is in a state of constant development, and future releases will broaden the capabilities of this code for RPV analysis, as well as expand it to address degradation in other critical NPP components.

  1. Increased cardiac alpha-myosin heavy chain in left atria and decreased myocardial insulin-like growth factor (Igf-I) expression accompany low heart rate in hibernating grizzly bears.

    Science.gov (United States)

    Barrows, N D; Nelson, O L; Robbins, C T; Rourke, B C

    2011-01-01

    Grizzly bears (Ursus arctos horribilis) tolerate extended periods of extremely low heart rate during hibernation without developing congestive heart failure or cardiac chamber dilation. Left ventricular atrophy and decreased left ventricular compliance have been reported in this species during hibernation. We evaluated the myocardial response to significantly reduced heart rate during hibernation by measuring relative myosin heavy-chain (MyHC) isoform expression and expression of a set of genes important to muscle plasticity and mass regulation in the left atria and left ventricles of active and hibernating bears. We supplemented these data with measurements of systolic and diastolic function via echocardiography in unanesthetized grizzly bears. Atrial strain imaging revealed decreased atrial contractility, decreased expansion/reservoir function (increased atrial stiffness), and decreased passive-filling function (increased ventricular stiffness) in hibernating bears. Relative MyHC-α protein expression increased significantly in the atrium during hibernation. The left ventricle expressed 100% MyHC-β protein in both groups. Insulin-like growth factor (IGF-I) mRNA expression was reduced by ∼50% in both chambers during hibernation, consistent with the ventricular atrophy observed in these bears. Interestingly, mRNA expression of the atrophy-related ubiquitin ligases Muscle Atrophy F-box (MAFBx) and Muscle Ring Finger 1 did not increase, nor did expression of myostatin or hypoxia-inducible factor 1α (HIF-1α). We report atrium-specific decreases of 40% and 50%, respectively, in MAFBx and creatine kinase mRNA expression during hibernation. Decreased creatine kinase expression is consistent with lowered energy requirements and could relate to reduced atrial emptying function during hibernation. Taken together with our hemodynamic assessment, these data suggest a potential downregulation of atrial chamber function during hibernation to prevent fatigue and dilation

  2. Invariant polar bear habitat selection during a period of sea ice loss.

    Science.gov (United States)

    Wilson, Ryan R; Regehr, Eric V; Rode, Karyn D; St Martin, Michelle

    2016-08-17

    Climate change is expected to alter many species' habitat. A species' ability to adjust to these changes is partially determined by their ability to adjust habitat selection preferences to new environmental conditions. Sea ice loss has forced polar bears (Ursus maritimus) to spend longer periods annually over less productive waters, which may be a primary driver of population declines. A negative population response to greater time spent over less productive water implies, however, that prey are not also shifting their space use in response to sea ice loss. We show that polar bear habitat selection in the Chukchi Sea has not changed between periods before and after significant sea ice loss, leading to a 75% reduction of highly selected habitat in summer. Summer was the only period with loss of highly selected habitat, supporting the contention that summer will be a critical period for polar bears as sea ice loss continues. Our results indicate that bears are either unable to shift selection patterns to reflect new prey use patterns or that there has not been a shift towards polar basin waters becoming more productive for prey. Continued sea ice loss is likely to further reduce habitat with population-level consequences for polar bears. © 2016 The Author(s).

  3. Invariant polar bear habitat selection during a period of sea ice loss

    Science.gov (United States)

    Wilson, Ryan R.; Regehr, Eric V.; Rode, Karyn D.; St Martin, Michelle

    2016-01-01

    Climate change is expected to alter many species' habitat. A species' ability to adjust to these changes is partially determined by their ability to adjust habitat selection preferences to new environmental conditions. Sea ice loss has forced polar bears (Ursus maritimus) to spend longer periods annually over less productive waters, which may be a primary driver of population declines. A negative population response to greater time spent over less productive water implies, however, that prey are not also shifting their space use in response to sea ice loss. We show that polar bear habitat selection in the Chukchi Sea has not changed between periods before and after significant sea ice loss, leading to a 75% reduction of highly selected habitat in summer. Summer was the only period with loss of highly selected habitat, supporting the contention that summer will be a critical period for polar bears as sea ice loss continues. Our results indicate that bears are either unable to shift selection patterns to reflect new prey use patterns or that there has not been a shift towards polar basin waters becoming more productive for prey. Continued sea ice loss is likely to further reduce habitat with population-level consequences for polar bears.

  4. Conservation Strategy for Brown Bear and Its Habitat in Nepal

    Directory of Open Access Journals (Sweden)

    Achyut Aryal

    2012-08-01

    Full Text Available The Himalaya region of Nepal encompasses significant habitats for several endangered species, among them the brown bear (Ursus arctos pruinosus. However, owing to the remoteness of the region and a dearth of research, knowledge on the conservation status, habitat and population size of this species is lacking. Our aim in this paper is to report a habitat survey designed to assess the distribution and habitat characteristics of the brown bear in the Nepalese Himalaya, and to summarize a conservation action plan for the species devised at a pair of recent workshops held in Nepal. Results of our survey showed that brown bear were potentially distributed between 3800 m and 5500 m in the high mountainous region of Nepal, across an area of 4037 km2 between the eastern border of Shey Phoksundo National Park (SPNP and the Manasalu Conservation Area (MCA. Of that area, 2066 km2 lie inside the protected area (350 km2 in the MCA; 1716 km2 in the Annapurna Conservation Area and 48% (1917 km2 lies outside the protected area in the Dolpa district. Furthermore, 37% of brown bear habitat also forms a potential habitat for blue sheep (or bharal, Pseudois nayaur, and 17% of these habitats is used by livestock, suggesting a significant potential for resource competition. Several plant species continue to be uprooted by local people for fuel wood. Based on the results of our field survey combined with consultations with local communities and scientists, we propose that government and non-government organizations should implement a three-stage program of conservation activities for the brown bear. This program should: (a Detail research activities in and outside the protected area of Nepal; (b support livelihood and conservation awareness at local and national levels; and (c strengthen local capacity and reduce human-wildlife conflict in the region.

  5. Delineating priority habitat areas for the conservation of Andean bears in northern Ecuador

    Science.gov (United States)

    Peralvo, M.F.; Cuesta, F.; Van Manen, F.

    2005-01-01

    We sought to identify priority areas for the conservation of Andean bear (Tremarctos ornatus) habitat in the northern portion of the eastern Andean cordillera in Ecuador. The study area included pa??ramo and montane forest habitats within the Antisana and Cayambe-Coca ecological reserves, and unprotected areas north of these reserves with elevations ranging from 1,800 to 4,300 m. We collected data on bear occurrence along 53 transects during 2000-01 in the Oyacachi River basin, an area of indigenous communities within the Cayambe-Coca Ecological Reserve. We used those data and a set of 7 environmental variables to predict suitability of Andean bear habitat using Mahalanobis distance, a multivariate measure of dissimilarity. The Mahalanobis distance values were classified into 5 classes of habitat suitability and generalized to a resolution of 1,650-m ?? 1,650-m grid cells. Clusters of grid cells with high suitability values were delineated from the generalized model and denned as important habitat areas (IHAs) for conservation. The IHAs were ranked using a weighted index that included factors of elevation range, influence from disturbed areas, and current conservation status. We identified 12 IHAs, which were mainly associated with pa??ramo and cloud forest habitats; 2 of these areas have high conservation priorities because they are outside existing reserves and close to areas of human pressure. The distribution of the IHAs highlighted the role of human land use as the main source of fragmentation of Andean bear habitat in this region, emphasizing the importance of preserving habitat connectivity to allow the seasonal movements among habitat types that we documented for this species. Furthermore, the existence of areas with high habitat suitability close to areas of intense human use indicates the importance of bear-human conflict management as a critical Andean bear conservation strategy. We suggest that a promising conservation opportunity for this species is

  6. Monitoring and mitigating measures to reduce potential impacts of oil and gas exploration and development on bears in the Inuvik region

    Energy Technology Data Exchange (ETDEWEB)

    Branigan, M. [Government of the Northwest Territories, Inuvik, NT (Canada). Dept. of Environment and Natural Resources

    2007-07-01

    The Inuvik Region consists of the Northwest Territories portion of the Inuvialuit Settlement Region and the Gwich'in Settlement Area. The range of grizzly bears, polar bears and black bears extends to different parts of the region. The potential impact of development depends on the season of the development and the species of bear found in the footprint. As such, monitoring and mitigation measures should take this into consideration. This presentation focused on the potential impacts and current practices to monitor and mitigate the impacts in the region. Mitigation measures currently used include: communication with stakeholders; waste management guidelines; use of wildlife monitors to identify key habitat and den sites and to deter bears; minimum flight altitudes; and safety training. Suggestions for additional mitigation measures were also presented. figs.

  7. Population growth of Yellowstone grizzly bears: Uncertainty and future monitoring

    Science.gov (United States)

    Harris, R.B.; White, Gary C.; Schwartz, C.C.; Haroldson, M.A.

    2007-01-01

    Grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem of the US Rocky Mountains have recently increased in numbers, but remain vulnerable due to isolation from other populations and predicted reductions in favored food resources. Harris et al. (2006) projected how this population might fare in the future under alternative survival rates, and in doing so estimated the rate of population growth, 1983–2002. We address issues that remain from that earlier work: (1) the degree of uncertainty surrounding our estimates of the rate of population change (λ); (2) the effect of correlation among demographic parameters on these estimates; and (3) how a future monitoring system using counts of females accompanied by cubs might usefully differentiate between short-term, expected, and inconsequential fluctuations versus a true change in system state. We used Monte Carlo re-sampling of beta distributions derived from the demographic parameters used by Harris et al. (2006) to derive distributions of λ during 1983–2002 given our sampling uncertainty. Approximate 95% confidence intervals were 0.972–1.096 (assuming females with unresolved fates died) and 1.008–1.115 (with unresolved females censored at last contact). We used well-supported models of Haroldson et al. (2006) and Schwartz et al. (2006a,b,c) to assess the strength of correlations among demographic processes and the effect of omitting them in projection models. Incorporating correlations among demographic parameters yielded point estimates of λ that were nearly identical to those from the earlier model that omitted correlations, but yielded wider confidence intervals surrounding λ. Finally, we suggest that fitting linear and quadratic curves to the trend suggested by the estimated number of females with cubs in the ecosystem, and using AICc model weights to infer population sizes and λ provides an objective means to monitoring approximate population trajectories in addition to demographic

  8. Population fragmentation and inter-ecosystem movements of grizzly bears in Western Canada and the Northern United States

    Science.gov (United States)

    Proctor, M.F.; Paetkau, David; McLellan, B.N.; Stenhouse, G.B.; Kendall, K.C.; Mace, R.D.; Kasworm, W.F.; Servheen, C.; Lausen, C.L.; Gibeau, M.L.; Wakkinen, W.L.; Haroldson, M.A.; Mowat, G.; Apps, C.D.; Ciarniello, L.M.; Barclay, R.M.R.; Boyce, M.S.; Schwartz, C.C.; Strobeck, C.

    2012-01-01

    Population fragmentation compromises population viability, reduces a species ability to respond to climate change, and ultimately may reduce biodiversity. We studied the current state and potential causes of fragmentation in grizzly bears over approximately 1,000,000 km 2 of western Canada, the northern United States (US), and southeast Alaska. We compiled much of our data from projects undertaken with a variety of research objectives including population estimation and trend, landscape fragmentation, habitat selection, vital rates, and response to human development. Our primary analytical techniques stemmed from genetic analysis of 3,134 bears, supplemented with radiotelemetry data from 792 bears. We used 15 locus microsatellite data coupled withmeasures of genetic distance, isolation-by-distance (IBD) analysis, analysis of covariance (ANCOVA), linear multiple regression, multi-factorial correspondence analysis (to identify population divisions or fractures with no a priori assumption of group membership), and population-assignment methods to detect individual migrants between immediately adjacent areas. These data corroborated observations of inter-area movements from our telemetry database. In northern areas, we found a spatial genetic pattern of IBD, although there was evidence of natural fragmentation from the rugged heavily glaciated coast mountains of British Columbia (BC) and the Yukon. These results contrasted with the spatial pattern of fragmentation in more southern parts of their distribution. Near the Canada-US border area, we found extensive fragmentation that corresponded to settled mountain valleys andmajor highways. Genetic distances across developed valleys were elevated relative to those across undeveloped valleys in central and northern BC. In disturbed areas, most inter-area movements detected were made by male bears, with few female migrants identified. North-south movements within mountain ranges (Mts) and across BC Highway 3 were more common

  9. Assessment of Brown Bear\\'s (Ursus arctos syriacus Winter Habitat Using Geographically Weighted Regression and Generalized Linear Model in South of Iran

    Directory of Open Access Journals (Sweden)

    A. A. Zarei

    2016-03-01

    Full Text Available Winter dens are one of the important components of brown bear's (Ursus arctos syriacus habitat, affecting their reproduction and survival. Therefore identification of factors affecting the habitat selection and suitable denning areas in the conservation of our largest carnivore is necessary. We used Geographically Weighted Logistic Regression (GWLR and Generalized Linear Model (GLM for modeling suitability of denning habitat in Kouhkhom region in Fars province. In the present research, 20 dens (presence locations and 20 caves where signs of bear were not found (absence locations were used as dependent variables and six environmental factors were used for each location as independent variables. The results of GLM showed that variables of distance to settlements, altitude, and distance to water were the most important parameters affecting suitability of the brown bear's denning habitat. The results of GWLR showed the significant local variations in the relationship between occurrence of brown bear dens and the variable of distance to settlements. Based on the results of both models, suitable habitats for denning of the species are impassable areas in the mountains and inaccessible for humans.

  10. Polar bears and sea ice habitat change

    Science.gov (United States)

    Durner, George M.; Atwood, Todd C.; Butterworth, Andy

    2017-01-01

    The polar bear (Ursus maritimus) is an obligate apex predator of Arctic sea ice and as such can be affected by climate warming-induced changes in the extent and composition of pack ice and its impacts on their seal prey. Sea ice declines have negatively impacted some polar bear subpopulations through reduced energy input because of loss of hunting habitats, higher energy costs due to greater ice drift, ice fracturing and open water, and ultimately greater challenges to recruit young. Projections made from the output of global climate models suggest that polar bears in peripheral Arctic and sub-Arctic seas will be reduced in numbers or become extirpated by the end of the twenty-first century if the rate of climate warming continues on its present trajectory. The same projections also suggest that polar bears may persist in the high-latitude Arctic where heavy multiyear sea ice that has been typical in that region is being replaced by thinner annual ice. Underlying physical and biological oceanography provides clues as to why polar bear in some regions are negatively impacted, while bears in other regions have shown no apparent changes. However, continued declines in sea ice will eventually challenge the survival of polar bears and efforts to conserve them in all regions of the Arctic.

  11. Polar bear attacks on humans: Implications of a changing climate

    Science.gov (United States)

    Wilder, James; Vongraven, Dag; Atwood, Todd C.; Hansen, Bob; Jessen, Amalie; Kochnev, Anatoly A.; York, Geoff; Vallender, Rachel; Hedman, Daryll; Gibbons, Melissa

    2017-01-01

    Understanding causes of polar bear (Ursus maritimus) attacks on humans is critical to ensuring both human safety and polar bear conservation. Although considerable attention has been focused on understanding black (U. americanus) and grizzly (U. arctos) bear conflicts with humans, there have been few attempts to systematically collect, analyze, and interpret available information on human-polar bear conflicts across their range. To help fill this knowledge gap, a database was developed (Polar Bear-Human Information Management System [PBHIMS]) to facilitate the range-wide collection and analysis of human-polar bear conflict data. We populated the PBHIMS with data collected throughout the polar bear range, analyzed polar bear attacks on people, and found that reported attacks have been extremely rare. From 1870–2014, we documented 73 attacks by wild polar bears, distributed among the 5 polar bear Range States (Canada, Greenland, Norway, Russia, and United States), which resulted in 20 human fatalities and 63 human injuries. We found that nutritionally stressed adult male polar bears were the most likely to pose threats to human safety. Attacks by adult females were rare, and most were attributed to defense of cubs. We judged that bears acted as a predator in most attacks, and that nearly all attacks involved ≤2 people. Increased concern for both human and bear safety is warranted in light of predictions of increased numbers of nutritionally stressed bears spending longer amounts of time on land near people because of the loss of their sea ice habitat. Improved conflict investigation is needed to collect accurate and relevant data and communicate accurate bear safety messages and mitigation strategies to the public. With better information, people can take proactive measures in polar bear habitat to ensure their safety and prevent conflicts with polar bears. This work represents an important first step towards improving our understanding of factors influencing

  12. Assessing bear-human conflicts in the Yukon Territory

    OpenAIRE

    Lukie, Raechel Dawn

    2010-01-01

    Managing conflicts between bears and humans is vital for human safety and for the conservation of bears. This study investigated black bear (Ursus americanus) and grizzly bear (Ursus arctos) interactions with humans in 18 major communities of the Yukon Territory. I used an information theoretic approach to generate predictive models of the relative potential of bear-human interaction for the 9 conservation officer management regions in the Yukon Territory. I independently modeled interactions...

  13. Consequences of severe habitat fragmentation on density, genetics, and spatial capture-recapture analysis of a small bear population.

    Directory of Open Access Journals (Sweden)

    Sean M Murphy

    Full Text Available Loss and fragmentation of natural habitats caused by human land uses have subdivided several formerly contiguous large carnivore populations into multiple small and often isolated subpopulations, which can reduce genetic variation and lead to precipitous population declines. Substantial habitat loss and fragmentation from urban development and agriculture expansion relegated the Highlands-Glades subpopulation (HGS of Florida, USA, black bears (Ursus americanus floridanus to prolonged isolation; increasing human land development is projected to cause ≥ 50% loss of remaining natural habitats occupied by the HGS in coming decades. We conducted a noninvasive genetic spatial capture-recapture study to quantitatively describe the degree of contemporary habitat fragmentation and investigate the consequences of habitat fragmentation on population density and genetics of the HGS. Remaining natural habitats sustaining the HGS were significantly more fragmented and patchier than those supporting Florida's largest black bear subpopulation. Genetic diversity was low (AR = 3.57; HE = 0.49 and effective population size was small (NE = 25 bears, both of which remained unchanged over a period spanning one bear generation despite evidence of some immigration. Subpopulation density (0.054 bear/km2 was among the lowest reported for black bears, was significantly female-biased, and corresponded to a subpopulation size of 98 bears in available habitat. Conserving remaining natural habitats in the area occupied by the small, genetically depauperate HGS, possibly through conservation easements and government land acquisition, is likely the most important immediate step to ensuring continued persistence of bears in this area. Our study also provides evidence that preferentially placing detectors (e.g., hair traps or cameras primarily in quality habitat across fragmented landscapes poses a challenge to estimating density-habitat covariate relationships using spatial

  14. Interthalamic hematoma secondary to cerebrovascular atherosclerosis in an aged grizzly bear (Ursus arctos horribilis) with primary cardiac schwannoma.

    Science.gov (United States)

    Miller, Andrew David; McDonough, Sean

    2008-12-01

    A 38-year-old intact female Grizzly bear (Ursus arctos horribilis) was evaluated for progressive seizure activity, pale mucous membranes, deficient pupillary light and menace responses, and irregular shallow respiration. Because of poor response to treatment, the animal was euthanized. Gross examination revealed abundant hemorrhage in both lateral ventricles; a large, encapsulated mass within the rostral interthalamic region; and a well-demarcated, round white mass in the apex of the right ventricle. Histologic examination of the interthalamic mass revealed a resolving hematoma composed of stratified layers of fibrin and white blood cells that was surrounded by a thick fibrous capsule. Most meningeal and intraparenchymal blood vessels had multifocal degeneration, fragmentation, and fraying of the internal elastic lamina with prominent intimal proliferations and plaques. The plaques were formed by small numbers of lipid-laden macrophages (foam cells) that were intermixed with occasional lymphocytes and plasma cells. The cardiac mass was composed of pallisading and interlacing spindle cells with parallel nuclei and abundant, pale eosinophilic cytoplasm consistent with a schwannoma.

  15. 75 FR 24545 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Polar Bear...

    Science.gov (United States)

    2010-05-05

    ... Critical Habitat for the Polar Bear in the United States AGENCY: Fish and Wildlife Service, Interior... designation of critical habitat for the polar bear (Ursus maritimus) under the Endangered Species Act of 1973... for the polar bear and on the DEA, and an amended required determinations section of the proposal. We...

  16. Black bear abundance, habitat use, and food habits in the Sierra San Luis, Sonora, Mexico

    Science.gov (United States)

    Rodrigo Sierra Corona; Ivan A. Sayago Vazquez; M. del Carmen Silva Hurtado; Carlos A. Lopez Gonzalez

    2005-01-01

    We studied black bears to determine habitat use, food habits, and abundance between April 2002 and November 2003 in the Sierra San Luis, Sonora. We utilized transects to determine spoor presence, camera traps for abundance, and scat analysis. During 2002, bears fed principally on plant material, and for 2003 on animal matter, namely livestock. Habitat use differed...

  17. Insights into the latent multinomial model through mark-resight data on female grizzly bears with cubs-of-the-year

    Science.gov (United States)

    Higgs, Megan D.; Link, William; White, Gary C.; Haroldson, Mark A.; Bjornlie, Daniel D.

    2013-01-01

    Mark-resight designs for estimation of population abundance are common and attractive to researchers. However, inference from such designs is very limited when faced with sparse data, either from a low number of marked animals, a low probability of detection, or both. In the Greater Yellowstone Ecosystem, yearly mark-resight data are collected for female grizzly bears with cubs-of-the-year (FCOY), and inference suffers from both limitations. To overcome difficulties due to sparseness, we assume homogeneity in sighting probabilities over 16 years of bi-annual aerial surveys. We model counts of marked and unmarked animals as multinomial random variables, using the capture frequencies of marked animals for inference about the latent multinomial frequencies for unmarked animals. We discuss undesirable behavior of the commonly used discrete uniform prior distribution on the population size parameter and provide OpenBUGS code for fitting such models. The application provides valuable insights into subtleties of implementing Bayesian inference for latent multinomial models. We tie the discussion to our application, though the insights are broadly useful for applications of the latent multinomial model.

  18. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago.

    Science.gov (United States)

    Hamilton, Stephen G; Castro de la Guardia, Laura; Derocher, Andrew E; Sahanatien, Vicki; Tremblay, Bruno; Huard, David

    2014-01-01

    Sea ice across the Arctic is declining and altering physical characteristics of marine ecosystems. Polar bears (Ursus maritimus) have been identified as vulnerable to changes in sea ice conditions. We use sea ice projections for the Canadian Arctic Archipelago from 2006 - 2100 to gain insight into the conservation challenges for polar bears with respect to habitat loss using metrics developed from polar bear energetics modeling. Shifts away from multiyear ice to annual ice cover throughout the region, as well as lengthening ice-free periods, may become critical for polar bears before the end of the 21st century with projected warming. Each polar bear population in the Archipelago may undergo 2-5 months of ice-free conditions, where no such conditions exist presently. We identify spatially and temporally explicit ice-free periods that extend beyond what polar bears require for nutritional and reproductive demands. Under business-as-usual climate projections, polar bears may face starvation and reproductive failure across the entire Archipelago by the year 2100.

  19. Grizzli mobile systems and LPG delivery management; Grizzli mobile systems

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-07-01

    Complete text of publication follows: Grizzli Mobile Systems (and its sister companies) specialists in data communications and system solutions, offer their complete management solution for LPG deliveries, right through from remote reading of the gas level in the tank, through route management, management of the delivery itself and finally on-site invoicing and payment. The system permits a supplier to really differentiate itself from its competitors in terms of customer service and control of its operations. Domestic gas tanks are often difficult to access; visual reading of the gauge is not always easy and often leads to the customer re-ordering in panic mode. The supplier has also to react in panic mode to the customer. Grizzli Mobile Systems has developed a radio module that is fitted to the gas tank that calls, at regular set intervals with the tank level to a Call Rider gateway plug. The Call Rider is a small box plugged into the regular telephone socket (also supplying multiple operator telephony and other home automation services). As soon as the gas level reaches a predetermined minimum level, this radio information is relayed via the Internet to the LPG supplier. The supplier can then arrange (in non-panic mode) to deliver gas to the customer, via conventional means or by use of an interactive radio display (attached to a refrigerator or similar by magnets) that communicates with the Call Rider by radio. Once a delivery date has been set, a Grizzli Mobile Systems' dispatch system, installed at the supplier's headquarters creates and transfers routes via GSM communications to its fleet of delivery vehicles. A main-frame mapping software provides real-time follow-up and status checks of the vehicles using the GPS functionality and imports data back from the vehicles and updates databases. The driver is also assisted in localizing delivery sites. Inside the cabin of the vehicle the driver has available a Fujitsu PenCentra pen computer, a Microsoft

  20. Use of isotopic sulfur to determine whitebark pine consumption by Yellowstone bears: a reassessment

    Science.gov (United States)

    Schwartz, Charles C.; Teisberg, Justin E.; Fortin, Jennifer K.; Haroldson, Mark A.; Servheen, Christopher; Robbins, Charles T.; van Manen, Frank T.

    2014-01-01

    Use of naturally occurring stable isotopes to estimate assimilated diet of bears is one of the single greatest breakthroughs in nutritional ecology during the past 20 years. Previous research in the Greater Yellowstone Ecosystem (GYE), USA, established a positive relationship between the stable isotope of sulfur (δ34S) and consumption of whitebark pine (Pinus albicaulis) seeds. That work combined a limited sample of hair, blood clots, and serum. Here we use a much larger sample to reassess those findings. We contrasted δ34S values in spring hair and serum with abundance of seeds of whitebark pine in samples collected from grizzly (Ursus arctos) and American black bears (U. americanus) in the GYE during 2000–2010. Although we found a positive relationship between δ34S values in spring hair and pine seed abundance for grizzly bears, the coefficients of determination were small (R2 ≤ 0.097); we failed to find a similar relationship with black bears. Values of δ34S in spring hair were larger in black bears and δ34S values in serum of grizzly bears were lowest in September and October, a time when we expect δ34S to peak if whitebark pine seeds were the sole source of high δ34S. The relationship between δ34S in bear tissue and the consumption of whitebark pine seeds, as originally reported, may not be as clean a method as proposed. Data we present here suggest other foods have high values of δ34S, and there is spatial heterogeneity affecting the δ34S values in whitebark pine, which must be addressed.

  1. Biweekly disturbance capture and attribution: case study in western Alberta grizzly bear habitat

    Science.gov (United States)

    Hilker, Thomas; Coops, Nicholas C.; Gaulton, Rachel; Wulder, Michael A.; Cranston, Jerome; Stenhouse, Gordon

    2011-01-01

    An increasing number of studies have demonstrated the impact of landscape disturbance on ecosystems. Satellite remote sensing can be used for mapping disturbances, and fusion techniques of sensors with complimentary characteristics can help to improve the spatial and temporal resolution of satellite-based mapping techniques. Classification of different disturbance types from satellite observations is difficult, yet important, especially in an ecological context as different disturbance types might have different impacts on vegetation recovery, wildlife habitats, and food resources. We demonstrate a possible approach for classifying common disturbance types by means of their spatial characteristics. First, landscape level change is characterized on a near biweekly basis through application of a data fusion model (spatial temporal adaptive algorithm for mapping reflectance change) and a number of spatial and temporal characteristics of the predicted disturbance patches are inferred. A regression tree approach is then used to classify disturbance events. Our results show that spatial and temporal disturbance characteristics can be used to classify disturbance events with an overall accuracy of 86% of the disturbed area observed. The date of disturbance was identified as the most powerful predictor of the disturbance type, together with the patch core area, patch size, and contiguity.

  2. Mapping polar bear maternal denning habitat in the National Petroleum Reserve -- Alaska with an IfSAR digital terrain model

    Science.gov (United States)

    Durner, George M.; Simac, Kristin S.; Amstrup, Steven C.

    2013-01-01

    The National Petroleum Reserve–Alaska (NPR-A) in northeastern Alaska provides winter maternal denning habitat for polar bears (Ursus maritimus) and also has high potential for recoverable hydrocarbons. Denning polar bears exposed to human activities may abandon their dens before their young are able to survive the severity of Arctic winter weather. To ensure that wintertime petroleum activities do not threaten polar bears, managers need to know the distribution of landscape features in which maternal dens are likely to occur. Here, we present a map of potential denning habitat within the NPR-A. We used a fine-grain digital elevation model derived from Interferometric Synthetic Aperture Radar (IfSAR) to generate a map of putative denning habitat. We then tested the map’s ability to identify polar bear denning habitat on the landscape. Our final map correctly identified 82% of denning habitat estimated to be within the NPR-A. Mapped denning habitat comprised 19.7 km2 (0.1% of the study area) and was widely dispersed. Though mapping denning habitat with IfSAR data was as effective as mapping with the photogrammetric methods used for other regions of the Alaskan Arctic coastal plain, the use of GIS to analyze IfSAR data allowed greater objectivity and flexibility with less manual labor. Analytical advantages and performance equivalent to that of manual cartographic methods suggest that the use of IfSAR data to identify polar bear maternal denning habitat is a better management tool in the NPR-A and wherever such data may be available.

  3. Good neighbours: even bears kept happy by the new approach to wilderness project

    International Nuclear Information System (INIS)

    Stonehouse, D.

    2000-01-01

    Experiences gained by Husky Oil and Rigel Energy drilling a successful exploratory well in Kananaskis country, Calgary's wilderness playground, are described. 'Fitting in' with the character of 'K-country' entailed developing a plan acceptable to recreational users, aboriginal groups, government agencies, and environmentalists. The result was a landmark effort in industrial adaptation to nature: the Eastern Slope Grizzly Bear Project, a major cumulative effects assessment, which is now gaining acceptance as an industry model. The assessment involved surveying the distribution of deer, elk, moose, sheep, rare plants, breeding birds and fish species and the tracking and mapping of the movements of bears, to get a complete picture of the health of the eastern slope habitat, and to provide the foundation for assessing development and land use. The study showed Husky Oil how to proceed without doing environmental damage. It influenced the manner in which the field was delineated, it altered production tests, it forced reinjection of fluids and gas during well testing rather than hauling it away in trucks, it determined the type and route for the access road and later the location of the pipeline, all in an effort to stay clear of high quality ungulate and bear habitat. It was time consuming and expensive, but according to company officials, well worth it. Development was also influenced by traditional land use and preservation of native cultural resources; for example, the pipeline was rerouted to avoid archaeological sites

  4. Good neighbours: even bears kept happy by the new approach to wilderness project

    Energy Technology Data Exchange (ETDEWEB)

    Stonehouse, D.

    2000-04-01

    Experiences gained by Husky Oil and Rigel Energy drilling a successful exploratory well in Kananaskis country, Calgary's wilderness playground, are described. 'Fitting in' with the character of 'K-country' entailed developing a plan acceptable to recreational users, aboriginal groups, government agencies, and environmentalists. The result was a landmark effort in industrial adaptation to nature: the Eastern Slope Grizzly Bear Project, a major cumulative effects assessment, which is now gaining acceptance as an industry model. The assessment involved surveying the distribution of deer, elk, moose, sheep, rare plants, breeding birds and fish species and the tracking and mapping of the movements of bears, to get a complete picture of the health of the eastern slope habitat, and to provide the foundation for assessing development and land use. The study showed Husky Oil how to proceed without doing environmental damage. It influenced the manner in which the field was delineated, it altered production tests, it forced reinjection of fluids and gas during well testing rather than hauling it away in trucks, it determined the type and route for the access road and later the location of the pipeline, all in an effort to stay clear of high quality ungulate and bear habitat. It was time consuming and expensive, but according to company officials, well worth it. Development was also influenced by traditional land use and preservation of native cultural resources; for example, the pipeline was rerouted to avoid archaeological sites.

  5. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago.

    Directory of Open Access Journals (Sweden)

    Stephen G Hamilton

    Full Text Available Sea ice across the Arctic is declining and altering physical characteristics of marine ecosystems. Polar bears (Ursus maritimus have been identified as vulnerable to changes in sea ice conditions. We use sea ice projections for the Canadian Arctic Archipelago from 2006 - 2100 to gain insight into the conservation challenges for polar bears with respect to habitat loss using metrics developed from polar bear energetics modeling.Shifts away from multiyear ice to annual ice cover throughout the region, as well as lengthening ice-free periods, may become critical for polar bears before the end of the 21st century with projected warming. Each polar bear population in the Archipelago may undergo 2-5 months of ice-free conditions, where no such conditions exist presently. We identify spatially and temporally explicit ice-free periods that extend beyond what polar bears require for nutritional and reproductive demands.Under business-as-usual climate projections, polar bears may face starvation and reproductive failure across the entire Archipelago by the year 2100.

  6. Remote identification of maternal polar bear (Ursus maritimus) denning habitat on the Colville River Delta, Alaska

    Science.gov (United States)

    Blank, Justin J.

    High resolution digital aerial photographs (1 foot pixel size) of the Colville River Delta, Alaska were examined in 3D, with the use of a digital photogrammetric workstation. Topographic features meeting the criteria required for adequate snow accumulation, and subsequent construction of terrestrial polar bear maternal dens, were identified and digitized into an ArcGIS line shapefile. Effectiveness, efficiency, and accuracy were improved when compared to previous polar bear denning habitat efforts which utilized contact photo prints and a pocket stereoscope in other geographic areas of northern Alaska. Accuracy of photograph interpretation was systematically evaluated visually from the air with the use of a helicopter and physically on the ground. Results show that the mapping efforts were successful in identifying den habitat 91.3% of the time. Knowledge denning habitat can improve and inform decision making by managers and regulators when considering travel and development in the study area. An understanding of polar bear denning habitat extent and location will be a crucial tool for planning activities within the study area in a way that minimizes conflicts with maternal dens.

  7. Physical stream habitat dynamics in Lower Bear Creek, northern Arkansas

    Science.gov (United States)

    Reuter, Joanna M.; Jacobson, Robert B.; Elliott, Caroline M.

    2003-01-01

    We evaluated the roles of geomorphic and hydrologic dynamics in determining physical stream habitat in Bear Creek, a stream with a 239 km2 drainage basin in the Ozark Plateaus (Ozarks) in northern Arkansas. During a relatively wet 12-month monitoring period, the geomorphology of Bear Creek was altered by a series of floods, including at least four floods with peak discharges exceeding a 1-year recurrence interval and another flood with an estimated 2- to 4-year recurrence interval. These floods resulted in a net erosion of sediment from the study reach at Crane Bottom at rates far in excess of other sites previously studied in the Ozarks. The riffle-pool framework of the study reach at Crane Bottom was not substantially altered by these floods, but volumes of habitat in riffles and pools changed. The 2- to 4-year flood scoured gravel from pools and deposited it in riffles, increasing the diversity of available stream habitat. In contract, the smaller floods eroded gravel from the riffles and deposited it in pools, possibly flushing fine sediment from the substrate but also decreasing habitat diversity. Channel geometry measured at the beginning of the study was use to develop a two-dimensional, finite-element hydraulic model at assess how habitat varies with hydrologic dynamics. Distributions of depth and velocity simulated over the range of discharges observed during the study (0.1 to 556 cubic meters per second, cms) were classified into habitat units based on limiting depths and Froude number criteria. The results indicate that the areas of habitats are especially sensitive to change to low to medium flows. Races (areas of swift, relatively deep water downstream from riffles) disappear completely at the lowest flows, and riffles (areas of swift, relatively shallow water) contract substantially in area. Pools also contract in area during low flow, but deep scours associated with bedrock outcrops sustain some pool area even at the lowest modeled flows. Modeled

  8. Effects of habitat features on size-biased predation on salmon by bears.

    Science.gov (United States)

    Andersson, Luke C; Reynolds, John D

    2017-05-01

    Predators can drive trait divergence among populations of prey by imposing differential selection on prey traits. Habitat characteristics can mediate predator selectivity by providing refuge for prey. We quantified the effects of stream characteristics on biases in the sizes of spawning salmon caught by bears (Ursus arctos and U. americanus) on the central coast of British Columbia, Canada by measuring size-biased predation on spawning chum (Oncorhynchus keta) and pink (O. gorbuscha) salmon in 12 streams with varying habitat characteristics. We tested the hypotheses that bears would catch larger than average salmon (size-biased predation) and that this bias toward larger fish would be higher in streams that provide less protection to spawning salmon from predation (e.g., less pools, wood, undercut banks). We then we tested for how such size biases in turn translate into differences among populations in the sizes of the fish. Bears caught larger-than-average salmon as the spawning season progressed and as predicted, this was most pronounced in streams with fewer refugia for the fish (i.e., wood and undercut banks). Salmon were marginally smaller in streams with more pronounced size-biased predation but this predictor was less reliable than physical characteristics of streams, with larger fish in wider, deeper streams. These results support the hypothesis that selective forces imposed by predators can be mediated by habitat characteristics, with potential consequences for physical traits of prey.

  9. Not accounting for interindividual variability can mask habitat selection patterns: a case study on black bears.

    Science.gov (United States)

    Lesmerises, Rémi; St-Laurent, Martin-Hugues

    2017-11-01

    Habitat selection studies conducted at the population scale commonly aim to describe general patterns that could improve our understanding of the limiting factors in species-habitat relationships. Researchers often consider interindividual variation in selection patterns to control for its effects and avoid pseudoreplication by using mixed-effect models that include individuals as random factors. Here, we highlight common pitfalls and possible misinterpretations of this strategy by describing habitat selection of 21 black bears Ursus americanus. We used Bayesian mixed-effect models and compared results obtained when using random intercept (i.e., population level) versus calculating individual coefficients for each independent variable (i.e., individual level). We then related interindividual variability to individual characteristics (i.e., age, sex, reproductive status, body condition) in a multivariate analysis. The assumption of comparable behavior among individuals was verified only in 40% of the cases in our seasonal best models. Indeed, we found strong and opposite responses among sampled bears and individual coefficients were linked to individual characteristics. For some covariates, contrasted responses canceled each other out at the population level. In other cases, interindividual variability was concealed by the composition of our sample, with the majority of the bears (e.g., old individuals and bears in good physical condition) driving the population response (e.g., selection of young forest cuts). Our results stress the need to consider interindividual variability to avoid misinterpretation and uninformative results, especially for a flexible and opportunistic species. This study helps to identify some ecological drivers of interindividual variability in bear habitat selection patterns.

  10. Studying boat-based bear viewing: Methodological challenges and solutions

    Science.gov (United States)

    Sarah Elmeligi

    2007-01-01

    Wildlife viewing, a growing industry throughout North America, holds much potential for increased revenue and public awareness regarding species conservation. In Alaska and British Columbia, grizzly bear (Ursus arctos) viewing is becoming more popular, attracting tourists from around the world. Viewing is typically done from a land-based observation...

  11. Home ranges and habitat use of sloth bears Melursus ursinus inornatus in Wasgomuwa National Park, Sri Lanka

    Science.gov (United States)

    Ratnayeke, S.; Van Manen, F.T.; Padmalal, U.K.G.K.

    2007-01-01

    We studied home ranges and habitat selection of 10 adult sloth bears Melursus ursinus inornatus at Wasgomuwa National Park, Sri Lanka during 2002-2003. Very little is known about the ecology and behaviour of M. u. inornatus, which is a subspecies found in Sri Lanka. Our study was undertaken to assess space and habitat requirements typical of a viable population of M. u. inornatus to facilitate future conservation efforts. We captured and radio-collared 10 adult sloth bears and used the telemetry data to assess home-range size and habitat use. Mean 95% fixed kernel home ranges were 2.2 km2 (SE = 0.61) and 3.8 km2 (SE = 1.01) for adult females and males, respectively. Although areas outside the national park were accessible to bears, home ranges were almost exclusively situated within the national park boundaries. Within the home ranges, high forests were used more and abandoned agricultural fields (chenas) were used less than expected based on availability. Our estimates of home-range size are among the smallest reported for any species of bear. Thus, despite its relatively small size, Wasgomuwa National Park may support a sizeable population of sloth bears. The restriction of human activity within protected areas may be necessary for long-term viability of sloth bear populations in Sri Lanka as is maintenance of forest or scrub cover in areas with existing sloth bear populations and along potential travel corridors. ?? Wildlife Biology 2007.

  12. Landscape evaluation of female black bear habitat effectiveness and capability in the North Cascades, Washington.

    Science.gov (United States)

    William L. Gaines; Andrea L. Lyons; John F. Lehmkuhl; Kenneth J. Raedeke

    2005-01-01

    We used logistic regression to derive scaled resource selection functions (RSFs) for female black bears at two study areas in the North Cascades Mountains. We tested the hypothesis that the influence of roads would result in potential habitat effectiveness (RSFs without the influence of roads) being greater than realized habitat effectiveness (RSFs with roads). Roads...

  13. Variation in the response of an Arctic top predator experiencing habitat loss: feeding and reproductive ecology of two polar bear populations.

    Science.gov (United States)

    Rode, Karyn D; Regehr, Eric V; Douglas, David C; Durner, George; Derocher, Andrew E; Thiemann, Gregory W; Budge, Suzanne M

    2014-01-01

    Polar bears (Ursus maritimus) have experienced substantial changes in the seasonal availability of sea ice habitat in parts of their range, including the Beaufort, Chukchi, and Bering Seas. In this study, we compared the body size, condition, and recruitment of polar bears captured in the Chukchi and Bering Seas (CS) between two periods (1986-1994 and 2008-2011) when declines in sea ice habitat occurred. In addition, we compared metrics for the CS population 2008-2011 with those of the adjacent southern Beaufort Sea (SB) population where loss in sea ice habitat has been associated with declines in body condition, size, recruitment, and survival. We evaluated how variation in body condition and recruitment were related to feeding ecology. Comparing habitat conditions between populations, there were twice as many reduced ice days over continental shelf waters per year during 2008-2011 in the SB than in the CS. CS polar bears were larger and in better condition, and appeared to have higher reproduction than SB bears. Although SB and CS bears had similar diets, twice as many bears were fasting in spring in the SB than in the CS. Between 1986-1994 and 2008-2011, body size, condition, and recruitment indices in the CS were not reduced despite a 44-day increase in the number of reduced ice days. Bears in the CS exhibited large body size, good body condition, and high indices of recruitment compared to most other populations measured to date. Higher biological productivity and prey availability in the CS relative to the SB, and a shorter recent history of reduced sea ice habitat, may explain the maintenance of condition and recruitment of CS bears. Geographic differences in the response of polar bears to climate change are relevant to range-wide forecasts for this and other ice-dependent species. © 2013 John Wiley & Sons Ltd.

  14. Variation in the response of an Arctic top predator experiencing habitat loss: Feeding and reproductive ecology of two polar bear populations

    Science.gov (United States)

    Rode, Karyn D.; Regehr, Eric V.; Douglas, David C.; Durner, George M.; Derocher, Andrew E.; Thiemann, Gregory W.; Budge, Suzanne M.

    2014-01-01

    Polar bears (Ursus maritimus) have experienced substantial changes in the seasonal availability of sea ice habitat in parts of their range, including the Beaufort, Chukchi, and Bering Seas. In this study, we compared the body size, condition, and recruitment of polar bears captured in the Chukchi and Bering Seas (CS) between two periods (1986–1994 and 2008–2011) when declines in sea ice habitat occurred. In addition, we compared metrics for the CS population 2008–2011 with those of the adjacent southern Beaufort Sea (SB) population where loss in sea ice habitat has been associated with declines in body condition, size, recruitment, and survival. We evaluated how variation in body condition and recruitment were related to feeding ecology. Comparing habitat conditions between populations, there were twice as many reduced ice days over continental shelf waters per year during 2008–2011 in the SB than in the CS. CS polar bears were larger and in better condition, and appeared to have higher reproduction than SB bears. Although SB and CS bears had similar diets, twice as many bears were fasting in spring in the SB than in the CS. Between 1986–1994 and 2008–2011, body size, condition, and recruitment indices in the CS were not reduced despite a 44-day increase in the number of reduced ice days. Bears in the CS exhibited large body size, good body condition, and high indices of recruitment compared to most other populations measured to date. Higher biological productivity and prey availability in the CS relative to the SB, and a shorter recent history of reduced sea ice habitat, may explain the maintenance of condition and recruitment of CS bears. Geographic differences in the response of polar bears to climate change are relevant to range-wide forecasts for this and other ice-dependent species.

  15. Remote identification of potential polar bear maternal denning habitat in northern Alaska using airborne LiDAR

    Science.gov (United States)

    Jones, B. M.; Durner, G. M.; Stoker, J.; Shideler, R.; Perham, C.; Liston, G. E.

    2013-12-01

    Polar bear (Ursus maritimus) populations throughout the Arctic are being threatened by reductions in critical sea ice habitat. Throughout much of their range, polar bears give birth to their young in winter dens that are excavated in snowdrifts. New-born cubs, which are unable to survive exposure to Arctic winter weather, require 2-3 months of the relatively warm, stable, and undisturbed environment of the den for their growth. In the southern Beaufort Sea (BS), polar bears may den on the Alaskan Arctic Coastal Plain (ACP).The proportion of dens occurring on land has increased because of reductions in stable multi-year ice, increases in unconsolidated ice, and lengthening of the fall open-water period. Large portions of the ACP are currently being used for oil and gas activities and proposed projects will likely expand this footprint in the near future. Since petroleum exploration and development activities increase during winter there is the potential for human activities to disturb polar bears in maternal dens. Thus, maps showing the potential distribution of terrestrial denning habitat can help to mitigate negative interactions. Prior remote sensing efforts have consisted of manual interpretation of vertical aerial photography and automated classification of Interferometric Synthetic Aperture (IfSAR) derived digital terrain models (DTM) (5-m spatial resolution) focused on the identification of snowdrift forming landscape features. In this study, we assess the feasibility of airborne Light Detection and Ranging (LiDAR) data (2-m spatial resolution) for the automated classification of potential polar bear maternal denning habitat in a 1,400 km2 area on the central portion of the ACP. The study region spans the BS coast from the Prudhoe Bay oilfield in the west to near Point Thompson in the east and extends inland from 10 to 30 km. Approximately 800 km2 of the study area contains 19 known den locations, 51 field survey sites with information on bank height and

  16. A comparison of photograph-interpreted and IfSAR-derived maps of polar bear denning habitat for the 1002 Area of the Arctic National Wildlife Refuge, Alaska

    Science.gov (United States)

    Durner, George M.; Atwood, Todd C.

    2018-05-11

    Polar bears (Ursus maritimus) in Alaska use the Arctic National Wildlife Refuge (ANWR) for maternal denning. Pregnant bears den in snow banks for more than 3 months in winter during which they give birth to and nurture young. Denning is one of the most vulnerable times in polar bear life history as the family group cannot simply walk away from a disturbance without jeopardizing survival of newly born cubs. The ANWR includes the “1002 Area”, a region recently opened for oil and gas exploration by the U.S. Department of the Interior (DOI). As a part of its mission, the DOI “… protects and manages the Nation's natural resources …” and is therefore responsible for conserving polar bears and encouraging development of energy potential. Because future industrial activities could overlap habitats used by denning polar bears, identifying these habitats can inform the decisions of resource managers tasked to develop resources and protect polar bears. To help inform these efforts, we qualitatively compared the distribution of denning habitat identified by two different methods: previously published habitat from manual interpretation of aerial photographs, and habitat derived by computer interrogation of interferometric synthetic aperture radar (IfSAR) digital terrain models (DTM). Because photograph-interpreted methods depicted denning habitat as a line and IfSAR-derived methods depicted habitat as a polygon, we assessed agreement between the two methods with distance measurements. We found that 77.5 percent of IfSAR-derived denning habitat (79.6 km2 ; 1.2 percent of the 6,837.0 km2 1002 Area) was within 600 m of photograph-interpreted habitat (3,026.9 km), including 53.9 percent within 200 m. This distribution differed from that of randomly distributed points, as only 49.4 percent of these occurred within 600 m of photograph-interpreted habitat, including 18.3 percent within 200 m. Both methods appear to identify the major physiographic features that polar bears

  17. 50 CFR 17.40 - Special rules-mammals.

    Science.gov (United States)

    2010-10-01

    ... elephant ivory quota for the year of export; (B) All of the permit requirements of 50 CFR parts 13 and 23... accompanied by young means any grizzly bear having offspring, including one or more cubs, yearlings, or 2-year... handles grizzly bears. Young grizzly bear means a cub, yearling, or 2-year-old grizzly bear. EC01JN91.000...

  18. State of the Crown of the continent ecosystem : Flathead/Castle Transboundary Bioregion (draft)

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, E.; Peck, B.; Stewart, A.; Stewart, C.

    1999-01-01

    This state of the ecosystem report describes the ecological composition of the Flathead/Castle Transboundary bioregion, including human activity. The ecosystem (which does not follow political boundaries) extends from western Alberta, eastern British Columbia and Montana. The region encompasses 5088 square km. and occupies two watersheds of the greater Crown of the Continent Ecosystem. Ecological components of the North Fork of the Flathead and of the Castle Drainage including such ecological processes as fire and disease, vegetation, species, wildlife, the aquatic environment, and a century of human activity in the two regions are described. Forestry practices, petroleum extraction, mining, recreational activities, land development, ranching practices, and road development in the two regions are reviewed, along with ecosystem-wide trends. The advantages of ecosystem based management integrated with human based management practices was demonstrated by describing the Rocky Mountain Grizzly Bear Planning Committee`s work . The Committee consists of representatives of wildlife agencies of Montana, BC, Alberta and Canadian and US federal government agencies who share responsibility for jointly mapping grizzly habitat, grizzly mortality sinks, pooling data on mortalities to ensure that the regional grizzly bear population is managed as one population regardless of political boundaries. 221 refs., tabs., figs.

  19. Assessment of Probable Future Land Use and Habitat Conditions in Water Resources Planning.

    Science.gov (United States)

    1982-12-01

    R. Varney, and F. C. Craighead, Jr. 1974. A population analysis of the Yellowstone grizzly bears. Montana Forest Conservation Experiment Station Bull...34The wolves of Isle Royale." University of Georgia, Contributions in Systems Ecology. No. 5. Sargent, F. 0. and P. R. Berke. 1979. Planning undeveloped

  20. Final Environmental Assessment for Wide Area Coverage Construct Land Mobile Network Communications Infrastructure Malmstrom Air Force Base, Montana

    Science.gov (United States)

    2008-02-01

    Comunication Site ...................................................................................................2-29 3-1 Pallid Sturgeon Habitat...and Endangered Species within the ROI Common Name Scientific Name Federal Status Fish Pallid Sturgeon Scaphirynchus albus E Birds Bald Eagle...listed in Table 1. 2 --’ Common Name Scientific Name Fish I Scaphirhynchus albus Haliaeetus leucoce halus Charadrius melodus m Grizzly Bear Ursus

  1. The shared preference niche of sympatric Asiatic black bears and sun bears in a tropical forest mosaic.

    Science.gov (United States)

    Steinmetz, Robert; Garshelis, David L; Chutipong, Wanlop; Seuaturien, Naret

    2011-01-20

    Ecologically similar species often coexist by partitioning use of habitats or resources. Such partitioning can occur through divergent or shared niches. We investigated overlap in habitat use and spatial co-occurrence by sympatric Asiatic black bears and sun bears in three habitats in Thailand, and thereby assessed which niche model best accounts for their coexistence. We used density of species-specific signs to assess habitat use. Signs of both bear species occurred in all three habitats, and on >60% of sampling transects. Both species fed mostly on fruit; insect feeding signs were uncommon, and were mostly from sun bears. Significant differences in habitat use occurred only in montane forest, the habitat in which fruit was most abundant; incidence of black bear sign there was six times higher than that of sun bears. Habitat use was similar between the two species in the other habitats, which comprised 85% of the area. Of 10 habitat attributes examined, fruiting tree density was the best predictor of occurrence for both species. Models that included interspecific competition (fresh foraging activity of the other species) were less supported than the top models without competition. Bear species co-occurrence at both coarse and fine spatial scales and use of the same resources (fruit trees) indicated common niche preferences. However, their habitat use differed in ways expected from their physical differences: larger black bears dominated in the most fruit-rich habitat, and smaller sun bears used less-preferred insects. These results indicate broadly overlapping fundamental niches combined with asymmetric competition-features consistent with the concept of shared preference niches. This model of the niche has received little attention in ecology, but appears to be relatively common in nature.

  2. The shared preference niche of sympatric Asiatic black bears and sun bears in a tropical forest mosaic.

    Directory of Open Access Journals (Sweden)

    Robert Steinmetz

    2011-01-01

    Full Text Available Ecologically similar species often coexist by partitioning use of habitats or resources. Such partitioning can occur through divergent or shared niches. We investigated overlap in habitat use and spatial co-occurrence by sympatric Asiatic black bears and sun bears in three habitats in Thailand, and thereby assessed which niche model best accounts for their coexistence.We used density of species-specific signs to assess habitat use. Signs of both bear species occurred in all three habitats, and on >60% of sampling transects. Both species fed mostly on fruit; insect feeding signs were uncommon, and were mostly from sun bears. Significant differences in habitat use occurred only in montane forest, the habitat in which fruit was most abundant; incidence of black bear sign there was six times higher than that of sun bears. Habitat use was similar between the two species in the other habitats, which comprised 85% of the area. Of 10 habitat attributes examined, fruiting tree density was the best predictor of occurrence for both species. Models that included interspecific competition (fresh foraging activity of the other species were less supported than the top models without competition.Bear species co-occurrence at both coarse and fine spatial scales and use of the same resources (fruit trees indicated common niche preferences. However, their habitat use differed in ways expected from their physical differences: larger black bears dominated in the most fruit-rich habitat, and smaller sun bears used less-preferred insects. These results indicate broadly overlapping fundamental niches combined with asymmetric competition-features consistent with the concept of shared preference niches. This model of the niche has received little attention in ecology, but appears to be relatively common in nature.

  3. Sea-ice indicators of polar bear habitat

    Science.gov (United States)

    Stern, Harry L.; Laidre, Kristin L.

    2016-09-01

    Nineteen subpopulations of polar bears (Ursus maritimus) are found throughout the circumpolar Arctic, and in all regions they depend on sea ice as a platform for traveling, hunting, and breeding. Therefore polar bear phenology - the cycle of biological events - is linked to the timing of sea-ice retreat in spring and advance in fall. We analyzed the dates of sea-ice retreat and advance in all 19 polar bear subpopulation regions from 1979 to 2014, using daily sea-ice concentration data from satellite passive microwave instruments. We define the dates of sea-ice retreat and advance in a region as the dates when the area of sea ice drops below a certain threshold (retreat) on its way to the summer minimum or rises above the threshold (advance) on its way to the winter maximum. The threshold is chosen to be halfway between the historical (1979-2014) mean September and mean March sea-ice areas. In all 19 regions there is a trend toward earlier sea-ice retreat and later sea-ice advance. Trends generally range from -3 to -9 days decade-1 in spring and from +3 to +9 days decade-1 in fall, with larger trends in the Barents Sea and central Arctic Basin. The trends are not sensitive to the threshold. We also calculated the number of days per year that the sea-ice area exceeded the threshold (termed ice-covered days) and the average sea-ice concentration from 1 June through 31 October. The number of ice-covered days is declining in all regions at the rate of -7 to -19 days decade-1, with larger trends in the Barents Sea and central Arctic Basin. The June-October sea-ice concentration is declining in all regions at rates ranging from -1 to -9 percent decade-1. These sea-ice metrics (or indicators of habitat change) were designed to be useful for management agencies and for comparative purposes among subpopulations. We recommend that the National Climate Assessment include the timing of sea-ice retreat and advance in future reports.

  4. Life in the fat lane: seasonal regulation of insulin sensitivity, food intake, and adipose biology in brown bears.

    Science.gov (United States)

    Rigano, K S; Gehring, J L; Evans Hutzenbiler, B D; Chen, A V; Nelson, O L; Vella, C A; Robbins, C T; Jansen, H T

    2017-05-01

    Grizzly bears (Ursus arctos horribilis) have evolved remarkable metabolic adaptations including enormous fat accumulation during the active season followed by fasting during hibernation. However, these fluctuations in body mass do not cause the same harmful effects associated with obesity in humans. To better understand these seasonal transitions, we performed insulin and glucose tolerance tests in captive grizzly bears, characterized the annual profiles of circulating adipokines, and tested the anorectic effects of centrally administered leptin at different times of the year. We also used bear gluteal adipocyte cultures to test insulin and beta-adrenergic sensitivity in vitro. Bears were insulin resistant during hibernation but were sensitive during the spring and fall active periods. Hibernating bears remained euglycemic, possibly due to hyperinsulinemia and hyperglucagonemia. Adipokine concentrations were relatively low throughout the active season but peaked in mid-October prior to hibernation when fat content was greatest. Serum glycerol was highest during hibernation, indicating ongoing lipolysis. Centrally administered leptin reduced food intake in October, but not in August, revealing seasonal variation in the brain's sensitivity to its anorectic effects. This was supported by strong phosphorylated signal transducer and activator of transcription 3 labeling within the hypothalamus of hibernating bears; labeling virtually disappeared in active bears. Adipocytes collected during hibernation were insulin resistant when cultured with hibernation serum but became sensitive when cultured with active season serum. Heat treatment of active serum blocked much of this action. Clarifying the cellular mechanisms responsible for the physiology of hibernating bears may inform new treatments for metabolic disorders.

  5. A tale of two polar bear populations: Ice habitat, harvest, and body condition

    Science.gov (United States)

    Rode, Karyn D.; Peacock, Elizabeth; Taylor, Mitchell K.; Stirling, Ian; Born, Erik W.; Laidre, Kristin L.; Wiig, Øystein

    2012-01-01

    One of the primary mechanisms by which sea ice loss is expected to affect polar bears is via reduced body condition and growth resulting from reduced access to prey. To date, negative effects of sea ice loss have been documented for two of 19 recognized populations. Effects of sea ice loss on other polar bear populations that differ in harvest rate, population density, and/or feeding ecology have been assumed, but empirical support, especially quantitative data on population size, demography, and/or body condition spanning two or more decades, have been lacking. We examined trends in body condition metrics of captured bears and relationships with summertime ice concentration between 1977 and 2010 for the Baffin Bay (BB) and Davis Strait (DS) polar bear populations. Polar bears in these regions occupy areas with annual sea ice that has decreased markedly starting in the 1990s. Despite differences in harvest rate, population density, sea ice concentration, and prey base, polar bears in both populations exhibited positive relationships between body condition and summertime sea ice cover during the recent period of sea ice decline. Furthermore, females and cubs exhibited relationships with sea ice that were not apparent during the earlier period (1977–1990s) when sea ice loss did not occur. We suggest that declining body condition in BB may be a result of recent declines in sea ice habitat. In DS, high population density and/or sea ice loss, may be responsible for the declines in body condition.

  6. Sea-ice indicators of polar bear habitat

    Directory of Open Access Journals (Sweden)

    H. L. Stern

    2016-09-01

    Full Text Available Nineteen subpopulations of polar bears (Ursus maritimus are found throughout the circumpolar Arctic, and in all regions they depend on sea ice as a platform for traveling, hunting, and breeding. Therefore polar bear phenology – the cycle of biological events – is linked to the timing of sea-ice retreat in spring and advance in fall. We analyzed the dates of sea-ice retreat and advance in all 19 polar bear subpopulation regions from 1979 to 2014, using daily sea-ice concentration data from satellite passive microwave instruments. We define the dates of sea-ice retreat and advance in a region as the dates when the area of sea ice drops below a certain threshold (retreat on its way to the summer minimum or rises above the threshold (advance on its way to the winter maximum. The threshold is chosen to be halfway between the historical (1979–2014 mean September and mean March sea-ice areas. In all 19 regions there is a trend toward earlier sea-ice retreat and later sea-ice advance. Trends generally range from −3 to −9 days decade−1 in spring and from +3 to +9 days decade−1 in fall, with larger trends in the Barents Sea and central Arctic Basin. The trends are not sensitive to the threshold. We also calculated the number of days per year that the sea-ice area exceeded the threshold (termed ice-covered days and the average sea-ice concentration from 1 June through 31 October. The number of ice-covered days is declining in all regions at the rate of −7 to −19 days decade−1, with larger trends in the Barents Sea and central Arctic Basin. The June–October sea-ice concentration is declining in all regions at rates ranging from −1 to −9 percent decade−1. These sea-ice metrics (or indicators of habitat change were designed to be useful for management agencies and for comparative purposes among subpopulations. We recommend that the National Climate Assessment include the timing of sea-ice retreat and advance in

  7. Conservation challenges of managing lynx

    Science.gov (United States)

    John R. Squires

    2005-01-01

    Yellowstone National Park is hallowed ground when it comes to wildlife in America. The very word “Yellowstone” conjures up images of grizzly bears digging tubers, bands of elk dotting the landscape, and gray wolves pursuing elk along the Lamar River. However, Yellowstone also provides habitat to one of the rarest cats in the continental United States: the...

  8. Natural regeneration of whitebark pine: Factors affecting seedling density

    Science.gov (United States)

    S. Goeking; D. Izlar

    2014-01-01

    Whitebark pine (Pinus albicaulis) is an ecologically important species in high-altitude areas of the western United States and Canada due to the habitat and food source it provides for Clark’s nutcrackers, red squirrels, grizzly bears, and other animals. Whitebark pine stands have recently experienced high mortality due to wildfire, white pine blister rust, and a...

  9. The importance of meat, particularly salmon, to body size, population productivity, and conservation of North American brown bears.

    Science.gov (United States)

    G.V. Hilderbrand; C.C. Schwartz; C.T. Robbins; M.E. Hanley Jacoby; S.M. Arthur; C. Servheen

    1999-01-01

    We hypothesized that the relative availability of meat, indicated by contribution to the diet, would be positively related to body size and population productivity of North American brown, or grizzly, bears (Ursus arctos). Dietary contributions of plant matter and meat derived from both terrestrial and marine sources were quantified by stable-...

  10. Perception of human-derived risk influences choice at top of the food chain.

    Directory of Open Access Journals (Sweden)

    Bogdan Cristescu

    Full Text Available On human-used landscapes, animal behavior is a trade-off between maximizing fitness and minimizing human-derived risk. Understanding risk perception in wildlife can allow mitigation of anthropogenic risk, with benefits to long-term animal fitness. Areas where animals choose to rest should minimize risk from predators, which for large carnivores typically equate to humans. We hypothesize that high human activity leads to selection for habitat security, whereas low activity enables trading security for forage. We investigated selection of resting (bedding sites by GPS radiocollared adult grizzly bears (n = 10 in a low density population on a multiple-use landscape in Canada. We compared security and foods at resting and random locations while accounting for land use, season, and time of day. On reclaimed mines with low human access, bears selected high horizontal cover far from trails, but did not avoid open (herbaceous areas, resting primarily at night. In protected areas bears also bedded at night, in areas with berry shrubs and Hedysarum spp., with horizontal cover selected in the summer, during high human access. On public lands with substantial human recreation, bears bedded at day, selected resting sites with high horizontal cover in the summer and habitat edges, with bedding associated with herbaceous foods. These spatial and temporal patterns of selection suggest that bears perceive human-related risk differentially in relation to human activity level, season and time of day, and employ a security-food trade-off strategy. Although grizzly bears are presently not hunted in Alberta, their perceived risks associated with humans influence resting-site selection.

  11. Initial Probabilistic Evaluation of Reactor Pressure Vessel Fracture with Grizzly and Raven

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hoffman, William [Univ. of Idaho, Moscow, ID (United States); Sen, Sonat [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dickson, Terry [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bass, Richard [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. The first application of Grizzly has been to study fracture in embrittled reactor pressure vessels (RPVs). Grizzly can be used to model the thermal/mechanical response of an RPV under transient conditions that would be observed in a pressurized thermal shock (PTS) scenario. The global response of the vessel provides boundary conditions for local models of the material in the vicinity of a flaw. Fracture domain integrals are computed to obtain stress intensity factors, which can in turn be used to assess whether a fracture would initiate at a pre-existing flaw. These capabilities have been demonstrated previously. A typical RPV is likely to contain a large population of pre-existing flaws introduced during the manufacturing process. This flaw population is characterized stastistically through probability density functions of the flaw distributions. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation during a transient event. This report documents initial work to perform probabilistic analysis of RPV fracture during a PTS event using a combination of the RAVEN risk analysis code and Grizzly. This work is limited in scope, considering only a single flaw with deterministic geometry, but with uncertainty introduced in the parameters that influence fracture toughness. These results are benchmarked against equivalent models run in the FAVOR code. When fully developed, the RAVEN/Grizzly methodology for modeling probabilistic fracture in RPVs will provide a general capability that can be used to consider a wider variety of vessel and flaw conditions that are difficult to consider with current tools. In addition, this will provide access to advanced probabilistic techniques provided by RAVEN, including adaptive sampling and parallelism, which can dramatically

  12. Effects of roads on habitat quality for bears in the southern Appalachians: A long-term study

    Science.gov (United States)

    Reynolds-Hogland, M. J.; Mitchell, M.S.

    2007-01-01

    We tested the hypothesis that gravel roads, not paved roads, had the largest negative effect on habitat quality for a population of American black bears (Ursus americanus) that lived in a protected area, where vehicle collision was a relatively minimal source of mortality. We also evaluated whether road use by bears differed by sex or age and whether annual variation in hard mast productivity affected the way bears used areas near roads. In addition, we tested previous findings regarding the spatial extent to which roads affected bear behavior negatively. Using summer and fall home ranges for 118 black bears living in the Pisgah Bear Sanctuary in western North Carolina during 1981-2001, we estimated both home-range-scale (2nd-order) and within-home-range-scale (3rd-order) selection for areas within 250, 500, 800, and 1,600 m of paved and gravel roads. All bears avoided areas near gravel roads more than they avoided areas near paved roads during summer and fall for 2nd-order selection and during summer for 3rd-order selection. During fall, only adult females avoided areas near gravel roads more than they avoided areas near paved roads for 3rd-order selection. We found a positive relationship between use of roads by adults and annual variability in hard mast productivity. Overall, bears avoided areas within 800 m of gravel roads. Future research should determine whether avoidance of gravel roads by bears affects bear survival. ?? 2007 American Society of Mammalogists.

  13. 75 FR 76085 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Polar Bear...

    Science.gov (United States)

    2010-12-07

    ... undisturbed habitats; (7) secure resting areas that provide refuge from extreme weather, other bears, or... Seas population, which extends into the Russian Federation (Russia) (Figure 1) (Amstrup et al. 2004a, p... northern Bering Sea and adjacent coastal areas in Alaska and Russia. The eastern boundary of the Chukchi...

  14. Space and habitat use by black bears in the Elwha valley prior to dam removal

    Science.gov (United States)

    Sager-Fradkin, K.A.; Jenkins, K.J.; Happe, P.J.; Beecham, J.J.; Wright, R.G.; Hoffman, R.A.

    2008-01-01

    Dam removal and subsequent restoration of salmon to the Elwha River is expected to cause a shift in nutrient dynamics within the watershed. To document how this influx of nutrients and energy may affect black bear (Ursus americanus) ecology, we used radio-telemetry to record movements of 11 male and two female black bears in the Elwha Valley from 2002-06. Our objective was to collect baseline data on bear movements prior to dam removal. We calculated annual home ranges, described seasonal timing of den entry and emergence, and described seasonal patterns of distribution and habitat use. Adaptive kernel home ranges were larger formales (mean = 151.1 km2, SE = 21.4) than females (mean = 38.8 km2, SE = 13.0). Males ranged widely and frequently left the watershed during late summer. Further, they exhibited predictable and synchronous patterns of elevation change throughout each year. Bears entered their winter dens between 8 October and 15 December and emerged from dens between 10 March and 9 May. Male bears used low-elevation conifer and hardwood forests along the Elwha floodplain during spring, mid- to high-elevation forests and meadows during early summer, high-elevation forests, meadows and shrubs during late summer, and mid-elevation forests, shrubs and meadows during fall. Data acquired during this study provide important baseline information for comparison after dam removal, when bears may alter their late summer and fall movement and denning patterns to take advantage of energy-rich spawning salmon.

  15. Black bear density in Glacier National Park, Montana

    Science.gov (United States)

    Stetz, Jeff B.; Kendall, Katherine C.; Macleod, Amy C.

    2013-01-01

    We report the first abundance and density estimates for American black bears (Ursus americanus) in Glacier National Park (NP),Montana, USA.We used data from 2 independent and concurrent noninvasive genetic sampling methods—hair traps and bear rubs—collected during 2004 to generate individual black bear encounter histories for use in closed population mark–recapture models. We improved the precision of our abundance estimate by using noninvasive genetic detection events to develop individual-level covariates of sampling effort within the full and one-half mean maximum distance moved (MMDM) from each bear’s estimated activity center to explain capture probability heterogeneity and inform our estimate of the effective sampling area.Models including the one-halfMMDMcovariate received overwhelming Akaike’s Information Criterion support suggesting that buffering our study area by this distance would be more appropriate than no buffer or the full MMDM buffer for estimating the effectively sampled area and thereby density. Our modelaveraged super-population abundance estimate was 603 (95% CI¼522–684) black bears for Glacier NP. Our black bear density estimate (11.4 bears/100 km2, 95% CI¼9.9–13.0) was consistent with published estimates for populations that are sympatric with grizzly bears (U. arctos) and without access to spawning salmonids. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  16. Conservation of brown bear in the Alps: space use and settlement behavior of reintroduced bears

    Science.gov (United States)

    Preatoni, Damiano; Mustoni, Andrea; Martinoli, Adriano; Carlini, Eugenio; Chiarenzi, Barbara; Chiozzini, Simonetta; Van Dongen, Stefan; Wauters, Luc A.; Tosi, Guido

    2005-11-01

    Large carnivores typically need large home ranges containing habitats patches of different quality. Consequently, their conservation requires habitat protection and management at the landscape scale. In some cases, reintroduction might be used to support remnant or restore extinct populations. This is the case for the brown bear ( Ursus arctos) in the Italian Alps. We monitored spacing behavior and settlement of reintroduced brown bears in Adamello-Brenta Natural Park, North-Italy, using radio-tracking. Habitat use, dispersion and survival were studied to evaluate the success of reintroduction and possible conflicts with man. All three males and five of seven females settled in the study area. Most bears roamed widely the first months after release, exploring the new habitat. Patterns of home range overlap between seasons and years revealed that home range use stabilized the year after first hibernation. Home ranges were larger in the mating season (May-July) than in spring or autumn. Home ranges varied between 34 and 1813 km 2 the year after release, but core-areas, where feeding activity was concentrated, were much smaller. Some bears had exclusive core-areas in summer and autumn, but most showed considerable core-area overlap with animals of the same and/or the opposite sex. Bears selected deciduous forests, mixed and conifer forests were used according to availability, and areas with anthropogenic disturbance were avoided. Most bears settled and some reproduced successfully at the release site, causing high initial population growth, suggesting that reintroduction can help to re-establish a brown bear population in the Italian Alps.

  17. Frequency and distribution of highway crossings by Kenai Peninsula brown bears

    OpenAIRE

    Graves, Tabitha A.; Farley, Sean; Servheen, Christopher

    2003-01-01

    Highway construction and expansion through bear habitat can negatively affect brown bear populations. Highway structures can decrease habitat availability through habitat loss and restricted access, roads often displace animals and cause re-direction of natural movements, and highways can act as barriers to decrease gene flow. Lastly, highway traffic can cause direct bear and human mortality through car-animal collisions. We examined the spatial and temporal distribution of brown bear crossin...

  18. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Biner, Suleyman Bulent [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Spencer, Benjamin Whiting [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-07-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  19. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    International Nuclear Information System (INIS)

    Chakraborty, Pritam; Biner, Suleyman Bulent; Zhang, Yongfeng; Spencer, Benjamin Whiting

    2015-01-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  20. Troublemaking carnivores: conflicts with humans in a diverse assemblage of large carnivores

    Directory of Open Access Journals (Sweden)

    Andrea T. Morehouse

    2017-09-01

    Full Text Available Human-wildlife conflicts are a global conservation and management challenge. Multipredator systems present added complexity to the resolution of human-wildlife conflicts because mitigation strategies often are species-specific. Documenting the type and distribution of such conflicts is an important first step toward ensuring that subsequent management and mitigation efforts are appropriately targeted. We reviewed 16 years of records of complaints about two species of strict carnivores, wolves (Canis lupus and cougars (Puma concolor, and two species of omnivores, grizzly bears (Ursus arctos and black bears (Ursus americanus in southwestern Alberta and evaluated the temporal and spatial distribution of these complaints. Conflicts were most frequently associated with bears (68.7% of complaint records, reflecting a diversity of conflict types attributable to their omnivorous diets. Although grizzly bears killed and injured livestock, the majority of conflicts with bears were attributable to attractants (grain and dead livestock for grizzly bears, garbage for black bears. In contrast, wolf and cougar incidents were almost exclusively related to killing or injury of livestock. Complaints for both bear species have increased over the past 16 years while cougar and wolf complaints have remained relatively constant. Grizzly bear and cougar conflicts have been expanding into private lands used for agriculture. Although community driven, targeted mitigation measures have helped reduce conflicts with grizzly bears at the site level, conflicts at the broader scale have continued to increase and continued work is necessary. Long-term human-carnivore coexistence clearly is possible, facilitated by continued monitoring and local efforts to mitigate conflicts.

  1. Federal Government response to the September 12, 2000 environmental assessment report of the EUB-CEAA Joint Review Panel on the Cheviot Coal Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    The Federal Court noted four deficiencies in the joint EUB-CEAA environmental review dated September 12, 2000 for the Cheviot Coal Project. The Joint Review Panel reconvened to hear additional evidence about these deficiencies. This memorandum to cabinet comprises the Government of Canada's response to the additional evidence. Some of the Panel's recommendations are accepted. Comments are included regarding migratory birds, protection of traditional aboriginal sites, economic benefits, grizzly bears, and fish habitat.

  2. CanWEA regional issues and wind energy project siting : mountainous areas

    Energy Technology Data Exchange (ETDEWEB)

    D' Entremont, M. [Jacques Whitford Ltd., Vancouver, BC (Canada)]|[Axys Environmental Consulting Ltd., Vancouver, BC (Canada)

    2008-07-01

    Planning and permitting considerations for wind energy project siting in mountainous areas were discussed. Mountainous regions have a specific set of environmental and socio-economic concerns. Potential disruptions to wildlife, noise, and visual impacts are a primary concern in the assessment of potential wind farm projects. Alpine habitats are unique and often contain fragile and endangered species. Reclamation techniques for mountainous habitats have not been extensively tested, and the sites are not as resilient as sites located in other ecosystems. In addition, alpine habitats are often migratory corridors and breeding grounds for threatened or endangered birds. In the winter months, alpine habitats are used by caribou, grizzly bears, and wolverine dens. Bats are also present at high elevations. It is often difficult to conduct baseline and monitoring studies in mountainous areas since alpine habitat is subject to rapid weather changes, and has a very short construction period. tabs., figs.

  3. Salmon River Habitat Enhancement, 1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  4. Oak-Black Bear Relationships in Southeastern Uplands

    Science.gov (United States)

    Joseph D. Clark

    2004-01-01

    Bears (Ursus americanus) primarily occur in upland habitats in the Southeast because uplands were the last to be developed for agriculture and were more likely to become publicly owned. National parks and forests created in the early to mid-1900s served as sources to supply surrounding uplands with bears. Bears could not survive in southeastern...

  5. Impacts of Human Recreation on Brown Bears (Ursus arctos): A Review and New Management Tool.

    Science.gov (United States)

    Fortin, Jennifer K; Rode, Karyn D; Hilderbrand, Grant V; Wilder, James; Farley, Sean; Jorgensen, Carole; Marcot, Bruce G

    2016-01-01

    Increased popularity of recreational activities in natural areas has led to the need to better understand their impacts on wildlife. The majority of research conducted to date has focused on behavioral effects from individual recreations, thus there is a limited understanding of the potential for population-level or cumulative effects. Brown bears (Ursus arctos) are the focus of a growing wildlife viewing industry and are found in habitats frequented by recreationists. Managers face difficult decisions in balancing recreational opportunities with habitat protection for wildlife. Here, we integrate results from empirical studies with expert knowledge to better understand the potential population-level effects of recreational activities on brown bears. We conducted a literature review and Delphi survey of brown bear experts to better understand the frequencies and types of recreations occurring in bear habitats and their potential effects, and to identify management solutions and research needs. We then developed a Bayesian network model that allows managers to estimate the potential effects of recreational management decisions in bear habitats. A higher proportion of individual brown bears in coastal habitats were exposed to recreation, including photography and bear-viewing than bears in interior habitats where camping and hiking were more common. Our results suggest that the primary mechanism by which recreation may impact brown bears is through temporal and spatial displacement with associated increases in energetic costs and declines in nutritional intake. Killings in defense of life and property were found to be minimally associated with recreation in Alaska, but are important considerations in population management. Regulating recreation to occur predictably in space and time and limiting recreation in habitats with concentrated food resources reduces impacts on food intake and may thereby, reduce impacts on reproduction and survival. Our results suggest that

  6. Impacts of Human Recreation on Brown Bears (Ursus arctos: A Review and New Management Tool.

    Directory of Open Access Journals (Sweden)

    Jennifer K Fortin

    Full Text Available Increased popularity of recreational activities in natural areas has led to the need to better understand their impacts on wildlife. The majority of research conducted to date has focused on behavioral effects from individual recreations, thus there is a limited understanding of the potential for population-level or cumulative effects. Brown bears (Ursus arctos are the focus of a growing wildlife viewing industry and are found in habitats frequented by recreationists. Managers face difficult decisions in balancing recreational opportunities with habitat protection for wildlife. Here, we integrate results from empirical studies with expert knowledge to better understand the potential population-level effects of recreational activities on brown bears. We conducted a literature review and Delphi survey of brown bear experts to better understand the frequencies and types of recreations occurring in bear habitats and their potential effects, and to identify management solutions and research needs. We then developed a Bayesian network model that allows managers to estimate the potential effects of recreational management decisions in bear habitats. A higher proportion of individual brown bears in coastal habitats were exposed to recreation, including photography and bear-viewing than bears in interior habitats where camping and hiking were more common. Our results suggest that the primary mechanism by which recreation may impact brown bears is through temporal and spatial displacement with associated increases in energetic costs and declines in nutritional intake. Killings in defense of life and property were found to be minimally associated with recreation in Alaska, but are important considerations in population management. Regulating recreation to occur predictably in space and time and limiting recreation in habitats with concentrated food resources reduces impacts on food intake and may thereby, reduce impacts on reproduction and survival. Our

  7. Fracture Capabilities in Grizzly with the extended Finite Element Method (X-FEM)

    Energy Technology Data Exchange (ETDEWEB)

    Dolbow, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Ziyu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, Wen [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Efforts are underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). A capability was previously developed to calculate three-dimensional interaction- integrals to extract mixed-mode stress-intensity factors. This capability requires the use of a finite element mesh that conforms to the crack geometry. The eXtended Finite Element Method (X-FEM) provides a means to represent a crack geometry without explicitly fitting the finite element mesh to it. This is effected by enhancing the element kinematics to represent jump discontinuities at arbitrary locations inside of the element, as well as the incorporation of asymptotic near-tip fields to better capture crack singularities. In this work, use of only the discontinuous enrichment functions was examined to see how accurate stress intensity factors could still be calculated. This report documents the following work to enhance Grizzly’s engineering fracture capabilities by introducing arbitrary jump discontinuities for prescribed crack geometries; X-FEM Mesh Cutting in 3D: to enhance the kinematics of elements that are intersected by arbitrary crack geometries, a mesh cutting algorithm was implemented in Grizzly. The algorithm introduces new virtual nodes and creates partial elements, and then creates a new mesh connectivity; Interaction Integral Modifications: the existing code for evaluating the interaction integral in Grizzly was based on the assumption of a mesh that was fitted to the crack geometry. Modifications were made to allow for the possibility of a crack front that passes arbitrarily through the mesh; and Benchmarking for 3D Fracture: the new capabilities were benchmarked against mixed-mode three-dimensional fracture problems with known analytical solutions.

  8. The impacts of human recreation on brown bears (Ursus arctos): A review and new management tool

    Science.gov (United States)

    Fortin-noreus, Jennifer; Rode, Karyn D.; Hilderbrand, Grant V; Wilder, James; Farley, Sean; Jorgensen, Carole; Marcot, Bruce G.

    2016-01-01

    Increased popularity of recreational activities in natural areas has led to the need to better understand their impacts on wildlife. The majority of research conducted to date has focused on behavioral effects from individual recreations, thus there is a limited understanding of the potential for population-level or cumulative effects. Brown bears (Ursus arctos) are the focus of a growing wildlife viewing industry and are found in habitats frequented by recreationists. Managers face difficult decisions in balancing recreational opportunities with habitat protection for wildlife. Here, we integrate results from empirical studies with expert knowledge to better understand the potential population-level effects of recreational activities on brown bears. We conducted a literature review and Delphi survey of brown bear experts to better understand the frequencies and types of recreations occurring in bear habitats and their potential effects, and to identify management solutions and research needs. We then developed a Bayesian network model that allows managers to estimate the potential effects of recreational management decisions in bear habitats. A higher proportion of individual brown bears in coastal habitats were exposed to recreation, including photography and bear-viewing than bears in interior habitats where camping and hiking were more common. Our results suggest that the primary mechanism by which recreation may impact brown bears is through temporal and spatial displacement with associated increases in energetic costs and declines in nutritional intake. Killings in defense of life and property were found to be minimally associated with recreation in Alaska, but are important considerations in population management. Regulating recreation to occur predictably in space and time and limiting recreation in habitats with concentrated food resources reduces impacts on food intake and may thereby, reduce impacts on reproduction and survival. Our results suggest that

  9. Selection of den sites by black bears in the southern Appalachians

    Science.gov (United States)

    Reynolds-Hogland, M. J.; Mitchell, M.S.; Powell, R.A.; Brown, D.C.

    2007-01-01

    We evaluated selection of den sites by American black bears (Ursus americanus) in the Pisgah Bear Sanctuary, western North Carolina, by comparing characteristics of dens at 53 den sites with availability of habitat characteristics in annual home ranges of bears and in the study area. We also tested whether den-site selection differed by sex, age, and reproductive status of bears. In addition, we evaluated whether the den component of an existing habitat model for black bears predicted where bears would select den sites. We found bears selected den sites far from gravel roads, on steep slopes, and at high elevations relative to what was available in both annual home ranges and in the study area. Den-site selection did not differ by sex or age, but it differed by reproductive status. Adult females with cubs preferred to den in areas that were relatively far from gravel roads, but adult females without cubs did not. The habitat model overestimated the value of areas near gravel roads, underestimated the value of moderately steep areas, and did not include elevation as a predictor variable. Our results highlight the importance of evaluating den selection in terms of both use and availability of den characteristics. ?? 2007 American Society of Mammalogists.

  10. Assessing habitat selection when availability changes

    Science.gov (United States)

    Arthur, S.; Garner, G.; ,

    1996-01-01

    We present a method of comparing data on habitat use and availability that allows availability to differ among observations. This method is applicable when habitats change over time and when animals are unable to move throughout a predetermined study area between observations. We used maximum-likelihood techniques to derive an index that estimates the probability that each habitat type would be used if all were equally available. We also demonstrate how these indices can be used to compare relative use of available habitats, assign them ranks, and assess statistical differences between pairs of indices. The set of these indices for all habitats can be compared between groups of animals that represent different seasons, sex or age classes, or experimental treatments. This method allows quantitative comparisons among types and is not affected by arbitrary decisions about which habitats to include in the study. We provide an example by comparing the availability of four categories of sea ice concentration to their use by adult female polar bears, whose movements were monitored by satellite radio tracking in the Bering and Chukchi Seas during 1990. Use of ice categories by bears was nonrandom, and the pattern of use differed between spring and late summer seasons.

  11. Habitat selection of a large carnivore along human-wildlife boundaries in a highly modified landscape.

    Directory of Open Access Journals (Sweden)

    Chihiro Takahata

    Full Text Available When large carnivores occupy peripheral human lands conflict with humans becomes inevitable, and the reduction of human-carnivore interactions must be the first consideration for those concerned with conflict mitigation. Studies designed to identify areas of high human-bear interaction are crucial for prioritizing management actions. Due to a surge in conflicts, against a background of social intolerance to wildlife and the prevalent use of lethal control throughout Japan, Asiatic black bears (Ursus thibetanus are now threatened by high rates of mortality. There is an urgent need to reduce the frequency of human-bear encounters if bear populations are to be conserved. To this end, we estimated the habitats that relate to human-bear interactions by sex and season using resource selection functions (RSF. Significant seasonal differences in selection for and avoidance of areas by bears were estimated by distance-effect models with interaction terms of land cover and sex. Human-bear boundaries were delineated on the basis of defined bear-habitat edges in order to identify areas that are in most need of proactive management strategies. Asiatic black bears selected habitats in close proximity to forest edges, forest roads, rivers, and red pine and riparian forests during the peak conflict season and this was correctly predicted in our human-bear boundary maps. Our findings demonstrated that bears selected abandoned forests and agricultural lands, indicating that it should be possible to reduce animal use near human lands by restoring season-specific habitat in relatively remote areas. Habitat-based conflict mitigation may therefore provide a practical means of creating adequate separation between humans and these large carnivores.

  12. Habitat selection of a large carnivore along human-wildlife boundaries in a highly modified landscape.

    Science.gov (United States)

    Takahata, Chihiro; Nielsen, Scott Eric; Takii, Akiko; Izumiyama, Shigeyuki

    2014-01-01

    When large carnivores occupy peripheral human lands conflict with humans becomes inevitable, and the reduction of human-carnivore interactions must be the first consideration for those concerned with conflict mitigation. Studies designed to identify areas of high human-bear interaction are crucial for prioritizing management actions. Due to a surge in conflicts, against a background of social intolerance to wildlife and the prevalent use of lethal control throughout Japan, Asiatic black bears (Ursus thibetanus) are now threatened by high rates of mortality. There is an urgent need to reduce the frequency of human-bear encounters if bear populations are to be conserved. To this end, we estimated the habitats that relate to human-bear interactions by sex and season using resource selection functions (RSF). Significant seasonal differences in selection for and avoidance of areas by bears were estimated by distance-effect models with interaction terms of land cover and sex. Human-bear boundaries were delineated on the basis of defined bear-habitat edges in order to identify areas that are in most need of proactive management strategies. Asiatic black bears selected habitats in close proximity to forest edges, forest roads, rivers, and red pine and riparian forests during the peak conflict season and this was correctly predicted in our human-bear boundary maps. Our findings demonstrated that bears selected abandoned forests and agricultural lands, indicating that it should be possible to reduce animal use near human lands by restoring season-specific habitat in relatively remote areas. Habitat-based conflict mitigation may therefore provide a practical means of creating adequate separation between humans and these large carnivores.

  13. Comparative analysis of fecal microbiota and intestinal microbial metabolic activity in captive polar bears.

    Science.gov (United States)

    Schwab, Clarissa; Gänzle, Michael

    2011-03-01

    The composition of the intestinal microbiota depends on gut physiology and diet. Ursidae possess a simple gastrointestinal system composed of a stomach, small intestine, and indistinct hindgut. This study determined the composition and stability of fecal microbiota of 3 captive polar bears by group-specific quantitative PCR and PCR-DGGE (denaturing gradient gel electrophoresis) using the 16S rRNA gene as target. Intestinal metabolic activity was determined by analysis of short-chain fatty acids in feces. For comparison, other Carnivora and mammals were included in this study. Total bacterial abundance was approximately log 8.5 DNA gene copies·(g feces)-1 in all 3 polar bears. Fecal polar bear microbiota was dominated by the facultative anaerobes Enterobacteriaceae and enterococci, and the Clostridium cluster I. The detection of the Clostridium perfringens α-toxin gene verified the presence of C. perfringens. Composition of the fecal bacterial population was stable on a genus level; according to results obtained by PCR-DGGE, dominant bacterial species fluctuated. The total short-chain fatty acid content of Carnivora and other mammals analysed was comparable; lactate was detected in feces of all carnivora but present only in trace amounts in other mammals. In comparison, the fecal microbiota and metabolic activity of captive polar bears mostly resembled the closely related grizzly and black bears.

  14. Predictive modeling and mapping of Malayan Sun Bear (Helarctos malayanus) distribution using maximum entropy.

    Science.gov (United States)

    Nazeri, Mona; Jusoff, Kamaruzaman; Madani, Nima; Mahmud, Ahmad Rodzi; Bahman, Abdul Rani; Kumar, Lalit

    2012-01-01

    One of the available tools for mapping the geographical distribution and potential suitable habitats is species distribution models. These techniques are very helpful for finding poorly known distributions of species in poorly sampled areas, such as the tropics. Maximum Entropy (MaxEnt) is a recently developed modeling method that can be successfully calibrated using a relatively small number of records. In this research, the MaxEnt model was applied to describe the distribution and identify the key factors shaping the potential distribution of the vulnerable Malayan Sun Bear (Helarctos malayanus) in one of the main remaining habitats in Peninsular Malaysia. MaxEnt results showed that even though Malaysian sun bear habitat is tied with tropical evergreen forests, it lives in a marginal threshold of bio-climatic variables. On the other hand, current protected area networks within Peninsular Malaysia do not cover most of the sun bears potential suitable habitats. Assuming that the predicted suitability map covers sun bears actual distribution, future climate change, forest degradation and illegal hunting could potentially severely affect the sun bear's population.

  15. Predictive modeling and mapping of Malayan Sun Bear (Helarctos malayanus distribution using maximum entropy.

    Directory of Open Access Journals (Sweden)

    Mona Nazeri

    Full Text Available One of the available tools for mapping the geographical distribution and potential suitable habitats is species distribution models. These techniques are very helpful for finding poorly known distributions of species in poorly sampled areas, such as the tropics. Maximum Entropy (MaxEnt is a recently developed modeling method that can be successfully calibrated using a relatively small number of records. In this research, the MaxEnt model was applied to describe the distribution and identify the key factors shaping the potential distribution of the vulnerable Malayan Sun Bear (Helarctos malayanus in one of the main remaining habitats in Peninsular Malaysia. MaxEnt results showed that even though Malaysian sun bear habitat is tied with tropical evergreen forests, it lives in a marginal threshold of bio-climatic variables. On the other hand, current protected area networks within Peninsular Malaysia do not cover most of the sun bears potential suitable habitats. Assuming that the predicted suitability map covers sun bears actual distribution, future climate change, forest degradation and illegal hunting could potentially severely affect the sun bear's population.

  16. Black and Brown Bear Activity at Selected Coastal Sites in Glacier Bay National Park and Preserve, Alaska: A Preliminary Assessment Using Noninvasive Procedures

    Science.gov (United States)

    Partridge, Steve; Smith, Tom; Lewis, Tania

    2009-01-01

    A number of efforts in recent years have sought to predict bear activity in various habitats to minimize human disturbance and bear/human conflicts. Alaskan coastal areas provide important foraging areas for bears (Ursus americanus and U. arctos), particularly following den emergence when there may be no snow-free foraging alternatives. Additionally, coastal areas provide important food items for bears throughout the year. Glacier Bay National Park and Preserve (GLBA) in southeastern Alaska has extensive coastal habitats, and the National Park Service (NPS) has been long interested in learning more about the use of these coastal habitats by bears because these same habitats receive extensive human use by park visitors, especially kayaking recreationists. This study provides insight regarding the nature and intensity of bear activity at selected coastal sites within GLBA. We achieved a clearer understanding of bear/habitat relationships within GLBA by analyzing bear activity data collected with remote cameras, bear sign mapping, scat collections, and genetic analysis of bear hair. Although we could not quantify actual levels of bear activity at study sites, agreement among measures of activity (for example, sign counts, DNA analysis, and video record) lends support to our qualitative site assessments. This work suggests that habitat evaluation, bear sign mapping, and periodic scat counts can provide a useful index of bear activity for sites of interest.

  17. Consumption choice by bears feeding on salmon.

    Science.gov (United States)

    Gende, S M; Quinn, T P; Willson, M F

    2001-05-01

    Consumption choice by brown (Ursus arctos) and black bears (U. americanus) feeding on salmon was recorded for over 20,000 bear-killed fish from 1994 to 1999 in Bristol Bay (sockeye salmon, Oncorhynchus nerka) and southeastern Alaska (pink, O. gorbuscha and chum salmon O. keta). These data revealed striking patterns of partial and selective consumption that varied with relative availability and attributes of the fish. As the availability of salmon decreased, bears consumed a larger proportion of each fish among both years and habitats. When availability was high (absolute number and density of salmon), bears consumed less biomass per captured fish, targeting energy-rich fish (those that had not spawned) or energy-rich body parts (eggs in females; brain in males). In contrast, individual fish were consumed to a much greater extent, regardless of sex or spawning status, in habitats or years of low salmon availability. The proportion of biomass consumed per fish was similar for males and females, when spawning status was statistically controlled, but bears targeted different body parts: the body flesh, brain and dorsal hump in males and the roe in females. Bears thus appeared to maximize energy intake by modifying the amount and body parts consumed, based on availability and attributes of spawning salmon.

  18. Contributions of vital rates to growth of a protected population of American black bears

    Science.gov (United States)

    Mitchell, M.S.; Pacifici, L.B.; Grand, J.B.; Powell, R.A.

    2009-01-01

    Analyses of large, long-lived animals suggest that adult survival generally has the potential to contribute more than reproduction to population growth rate (??), but because survival varies little, high variability in reproduction can have a greater influence. This pattern has been documented for several species of large mammals, but few studies have evaluated such contributions of vital rates to ?? for American black bears (Ursus americanus). We used variance-based perturbation analyses (life table response experiments, LTRE) and analytical sensitivity and elasticity analyses to examine the actual and potential contributions of variation of vital rates to variation in growth rate (??) of a population of black bears inhabiting the Pisgah Bear Sanctuary in the southern Appalachian Mountains of North Carolina, using a 22-year dataset. We found that recruitment varied more than other vital rates; LTRE analyses conducted over several time intervals thus indicated that recruitment generally contributed at least as much as juvenile and adult survival to observed variation in ??, even though the latter 2 vital rates had the greater potential to affect ??. Our findings are consistent with predictions from studies on polar bears (U. maritimus) and grizzly bears (U. arctos), but contrast with the few existing studies on black bears in ways that suggest levels of protection from human-caused mortality might explain whether adult survival or recruitment contribute most to variation in ?? for this species. We hypothesize that ?? is most strongly influenced by recruitment in protected populations where adult survival is relatively high and constant, whereas adult survival will most influence ?? for unprotected populations. ?? 2009 International Association for Bear Research and Management.

  19. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence

    Science.gov (United States)

    Amstrup, Steven C.; Deweaver, E.T.; Douglas, David C.; Marcot, B.G.; Durner, George M.; Bitz, C.M.; Bailey, D.A.

    2010-01-01

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the worlds polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  20. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence.

    Science.gov (United States)

    Amstrup, Steven C; Deweaver, Eric T; Douglas, David C; Marcot, Bruce G; Durner, George M; Bitz, Cecilia M; Bailey, David A

    2010-12-16

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  1. The economics of roadside bear viewing

    Science.gov (United States)

    Richardson, Leslie; Rosen, Tatjana; Gunther, Kerry; Schwartz, Chuck

    2014-01-01

    Viewing bears along roadside habitats is a popular recreational activity in certain national parks throughout the United States. However, safely managing visitors during traffic jams that result from this activity often requires the use of limited park resources. Using unique visitor survey data, this study quantifies economic values associated with roadside bear viewing in Yellowstone National Park, monetary values that could be used to determine whether this continued use of park resources is warranted on economic grounds. Based on visitor expenditure data and results of a contingent visitation question, it is estimated that summer Park visitation would decrease if bears were no longer allowed to stay along roadside habitats, resulting in a loss of 155 jobs in the local economy. Results from a nonmarket valuation survey question indicate that on average, visitors to Yellowstone National Park are willing to pay around $41 more in Park entrance fees to ensure that bears are allowed to remain along roads within the Park. Generalizing this value to the relevant population of visitors indicates that the economic benefits of allowing this wildlife viewing opportunity to continue could outweigh the costs of using additional resources to effectively manage these traffic jams.

  2. Implications of rapid environmental change for polar bear behavior and sociality

    Science.gov (United States)

    Atwood, Todd C.

    2017-01-01

    Historically, the Arctic sea ice has functioned as a structural barrier that has limited the nature and extent of interactions between humans and polar bears (Ursus maritimus). However, declining sea ice extent, brought about by global climate change, is increasing the potential for human-polar bear interactions. Loss of sea ice habitat is driving changes to both human and polar bear behavior—it is facilitating increases in human activities (e.g., offshore oil and gas exploration and extraction, trans-Arctic shipping, recreation), while also causing the displacement of bears from preferred foraging habitat (i.e., sea ice over biologically productive shallow) to land in some portions of their range. The end result of these changes is that polar bears are spending greater amounts of time in close proximity to people. Coexistence between humans and polar bears will require imposing mechanisms to manage further development, as well as mitigation strategies that reduce the burden to local communities.

  3. Salmon River Habitat Enhancement, Part 1, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Konopacky, Richard C.

    1985-06-01

    This volume contains reports on subprojects involving the determining of alternatives to enhance salmonid habitat on patented land in Bear Valley Creek, Idaho, coordination activities for habitat projects occurring on streams within fishing areas of the Shoshone-Bannock Indian Tribes, and habitat and fish inventories in the Salmon River. Separate abstracts have been prepared for individual reports. (ACR)

  4. Gulf-Wide Information System, Environmental Sensitivity Index Bear Database, Geographic NAD83, LDWF (2001) [esi_bear_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains sensitive biological resource data for the Louisiana black bear in coastal Louisiana. Vector polygons represent occupied habitat for this...

  5. Linking GPS Telemetry Surveys and Scat Analyses Helps Explain Variability in Black Bear Foraging Strategies.

    Science.gov (United States)

    Lesmerises, Rémi; Rebouillat, Lucie; Dussault, Claude; St-Laurent, Martin-Hugues

    2015-01-01

    Studying diet is fundamental to animal ecology and scat analysis, a widespread approach, is considered a reliable dietary proxy. Nonetheless, this method has weaknesses such as non-random sampling of habitats and individuals, inaccurate evaluation of excretion date, and lack of assessment of inter-individual dietary variability. We coupled GPS telemetry and scat analyses of black bears Ursus americanus Pallas to relate diet to individual characteristics and habitat use patterns while foraging. We captured 20 black bears (6 males and 14 females) and fitted them with GPS/Argos collars. We then surveyed GPS locations shortly after individual bear visits and collected 139 feces in 71 different locations. Fecal content (relative dry matter biomass of ingested items) was subsequently linked to individual characteristics (sex, age, reproductive status) and to habitats visited during foraging bouts using Brownian bridges based on GPS locations prior to feces excretion. At the population level, diet composition was similar to what was previously described in studies on black bears. However, our individual-based method allowed us to highlight different intra-population patterns, showing that sex and female reproductive status had significant influence on individual diet. For example, in the same habitats, females with cubs did not use the same food sources as lone bears. Linking fecal content (i.e., food sources) to habitat previously visited by different individuals, we demonstrated a potential differential use of similar habitats dependent on individual characteristics. Females with cubs-of-the-year tended to use old forest clearcuts (6-20 years old) to feed on bunchberry, whereas females with yearling foraged for blueberry and lone bears for ants. Coupling GPS telemetry and scat analyses allows for efficient detection of inter-individual or inter-group variations in foraging strategies and of linkages between previous habitat use and food consumption, even for cryptic

  6. Linking GPS Telemetry Surveys and Scat Analyses Helps Explain Variability in Black Bear Foraging Strategies.

    Directory of Open Access Journals (Sweden)

    Rémi Lesmerises

    Full Text Available Studying diet is fundamental to animal ecology and scat analysis, a widespread approach, is considered a reliable dietary proxy. Nonetheless, this method has weaknesses such as non-random sampling of habitats and individuals, inaccurate evaluation of excretion date, and lack of assessment of inter-individual dietary variability. We coupled GPS telemetry and scat analyses of black bears Ursus americanus Pallas to relate diet to individual characteristics and habitat use patterns while foraging. We captured 20 black bears (6 males and 14 females and fitted them with GPS/Argos collars. We then surveyed GPS locations shortly after individual bear visits and collected 139 feces in 71 different locations. Fecal content (relative dry matter biomass of ingested items was subsequently linked to individual characteristics (sex, age, reproductive status and to habitats visited during foraging bouts using Brownian bridges based on GPS locations prior to feces excretion. At the population level, diet composition was similar to what was previously described in studies on black bears. However, our individual-based method allowed us to highlight different intra-population patterns, showing that sex and female reproductive status had significant influence on individual diet. For example, in the same habitats, females with cubs did not use the same food sources as lone bears. Linking fecal content (i.e., food sources to habitat previously visited by different individuals, we demonstrated a potential differential use of similar habitats dependent on individual characteristics. Females with cubs-of-the-year tended to use old forest clearcuts (6-20 years old to feed on bunchberry, whereas females with yearling foraged for blueberry and lone bears for ants. Coupling GPS telemetry and scat analyses allows for efficient detection of inter-individual or inter-group variations in foraging strategies and of linkages between previous habitat use and food consumption, even

  7. Removal of Lipid from Serum Increases Coherence between Brucellosis Rapid Agglutination Test and Enzyme-linked Immunosorbent Assay in Bears in Alaska, USA.

    Science.gov (United States)

    Godfroid, Jacques; Beckmen, Kimberlee; Helena Nymo, Ingebjørg

    2016-10-01

    In cases of chronic Brucella spp. infection, results of the rose bengal plate test (RBPT) and indirect enzyme-linked immunosorbent assay (ELISA) should be coherent, as reported in controlled conditions in the literature. We compared RBPT and ELISA results in 58 Alaska grizzly bears ( Ursus arctos horribilis), eight Kodiak brown bears ( Ursus arctos middendorffi), and six Alaska Peninsula brown bears ( Ursus arctos gyas). Of the 72 bears tested, 42 (58%) were ELISA positive and 53 (73%) were RBPT positive. However, the coherence between the tests was only fair (K=0.37, SE=0.11), suggesting that either the serologic results were not compatible with Brucella spp. infection or that there was a technical problem with the tests. To address a potential technical problem, we performed a 30-min chloroform/centrifugation cleanup. Following cleanup, the ELISA identified 43 positives (59%) and the RBPT identified 47 (65%), and the coherence between the tests was much improved (K=0.80, SE=0.07). We recommend cleaning wildlife sera with a high lipid content before performing RBPT and performing RBPT and ELISA in parallel to assess coherence. Our results suggest that Alaskan brown bears have been exposed to Brucella spp.

  8. Increased Land Use by Chukchi Sea Polar Bears in Relation to Changing Sea Ice Conditions.

    Science.gov (United States)

    Rode, Karyn D; Wilson, Ryan R; Regehr, Eric V; St Martin, Michelle; Douglas, David C; Olson, Jay

    2015-01-01

    Recent observations suggest that polar bears (Ursus maritimus) are increasingly using land habitats in some parts of their range, where they have minimal access to their preferred prey, likely in response to loss of their sea ice habitat associated with climatic warming. We used location data from female polar bears fit with satellite radio collars to compare land use patterns in the Chukchi Sea between two periods (1986-1995 and 2008-2013) when substantial summer sea-ice loss occurred. In both time periods, polar bears predominantly occupied sea-ice, although land was used during the summer sea-ice retreat and during the winter for maternal denning. However, the proportion of bears on land for > 7 days between August and October increased between the two periods from 20.0% to 38.9%, and the average duration on land increased by 30 days. The majority of bears that used land in the summer and for denning came to Wrangel and Herald Islands (Russia), highlighting the importance of these northernmost land habitats to Chukchi Sea polar bears. Where bears summered and denned, and how long they spent there, was related to the timing and duration of sea ice retreat. Our results are consistent with other studies supporting increased land use as a common response of polar bears to sea-ice loss. Implications of increased land use for Chukchi Sea polar bears are unclear, because a recent study observed no change in body condition or reproductive indices between the two periods considered here. This result suggests that the ecology of this region may provide a degree of resilience to sea ice loss. However, projections of continued sea ice loss suggest that polar bears in the Chukchi Sea and other parts of the Arctic may increasingly use land habitats in the future, which has the potential to increase nutritional stress and human-polar bear interactions.

  9. GRIZZLY Model of Multi-Reactive Species Diffusion, Moisture/Heat Transfer and Alkali-Silica Reaction for Simulating Concrete Aging and Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, Benjamin W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Vanderbilt Univ., Nashville, TN (United States)

    2015-09-01

    Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear power plants for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have accurate and reliable predictive tools to address concerns related to various aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to document the progress of the development and implementation of a fully coupled thermo-hydro-mechanical-chemical model in GRIZZLY code with the ultimate goal to reliably simulate and predict long-term performance and response of aged NPP concrete structures subjected to a number of aging mechanisms including external chemical attacks and volume-changing chemical reactions within concrete structures induced by alkali-silica reactions and long-term exposure to irradiation. Based on a number of survey reports of concrete aging mechanisms relevant to nuclear power plants and recommendations from researchers in concrete community, we’ve implemented three modules during FY15 in GRIZZLY code, (1) multi-species reactive diffusion model within cement materials; (2) coupled moisture and heat transfer model in concrete; and (3) anisotropic, stress-dependent, alkali-silica reaction induced swelling model. The multi-species reactive diffusion model was implemented with the objective to model aging of concrete structures subjected to aggressive external chemical attacks (e.g., chloride attack, sulfate attack, etc.). It considers multiple processes relevant to external chemical attacks such as diffusion of ions in aqueous phase within pore spaces, equilibrium chemical speciation reactions and kinetic mineral dissolution/precipitation. The moisture

  10. Potential impacts of offshore oil spills on polar bears in the Chukchi Sea.

    Science.gov (United States)

    Wilson, Ryan R; Perham, Craig; French-McCay, Deborah P; Balouskus, Richard

    2018-04-01

    Sea ice decline is anticipated to increase human access to the Arctic Ocean allowing for offshore oil and gas development in once inaccessible areas. Given the potential negative consequences of an oil spill on marine wildlife populations in the Arctic, it is important to understand the magnitude of impact a large spill could have on wildlife to inform response planning efforts. In this study we simulated oil spills that released 25,000 barrels of oil for 30 days in autumn originating from two sites in the Chukchi Sea (one in Russia and one in the U.S.) and tracked the distribution of oil for 76 days. We then determined the potential impact such a spill might have on polar bears (Ursus maritimus) and their habitat by overlapping spills with maps of polar bear habitat and movement trajectories. Only a small proportion (1-10%) of high-value polar bear sea ice habitat was directly affected by oil sufficient to impact bears. However, 27-38% of polar bears in the region were potentially exposed to oil. Oil consistently had the highest probability of reaching Wrangel and Herald islands, important areas of denning and summer terrestrial habitat. Oil did not reach polar bears until approximately 3 weeks after the spills. Our study found the potential for significant impacts to polar bears under a worst case discharge scenario, but suggests that there is a window of time where effective containment efforts could minimize exposure to bears. Our study provides a framework for wildlife managers and planners to assess the level of response that would be required to treat exposed wildlife and where spill response equipment might be best stationed. While the size of spill we simulated has a low probability of occurring, it provides an upper limit for planners to consider when crafting response plans. Published by Elsevier Ltd.

  11. Proposed open-pit mine threatens Jasper National Park

    Energy Technology Data Exchange (ETDEWEB)

    Mikelcic, S.

    1996-12-31

    Concerns by the Sierra Club, the Alberta Wilderness Association, and other environmental groups about the proposed Cheviot Mine are discussed. Cardinal River Coals, which is owned by Luscar Ltd. and Consolidated Coals of Pittsburgh, is proposing the mining operation, which includes 26 deep open pit mines of which 14 will not be backfilled. The mine extends to within 2 km of Jasper National Park`s border. Concerns about the mine include: disruption of an environmentally sensitive area, interference with grizzly bear movement and bighorn sheep habitat and diet, destruction of flora and fauna, and pollution of two major watersheds. Hearings for the mine commence in January 1997.

  12. Reduced body size and cub recruitment in polar bears associated with sea ice decline

    Science.gov (United States)

    Rode, Karyn D.; Amstrup, Steven C.; Regehr, Eric V.

    2010-01-01

    Rates of reproduction and survival are dependent upon adequate body size and condition of individuals. Declines in size and condition have provided early indicators of population decline in polar bears (Ursus maritimus) near the southern extreme of their range. We tested whether patterns in body size, condition, and cub recruitment of polar bears in the southern Beaufort Sea of Alaska were related to the availability of preferred sea ice habitats and whether these measures and habitat availability exhibited trends over time, between 1982 and 2006. The mean skull size and body length of all polar bears over three years of age declined over time, corresponding with long‐term declines in the spatial and temporal availability of sea ice habitat. Body size of young, growing bears declined over time and was smaller after years when sea ice availability was reduced. Reduced litter mass and numbers of yearlings per female following years with lower availability of optimal sea ice habitat, suggest reduced reproductive output and juvenile survival. These results, based on analysis of a long‐term data set, suggest that declining sea ice is associated with nutritional limitations that reduced body size and reproduction in this population.

  13. USDA Forest Service Roadless Areas: Potential Biodiversity Conservation Reserves

    Directory of Open Access Journals (Sweden)

    Colby Loucks

    2003-12-01

    Full Text Available In January 2001, approximately 23 x 106 ha of land in the U.S. National Forest System were slated to remain roadless and protected from timber extraction under the Final Roadless Conservation Rule. We examined the potential contributions of these areas to the conservation of biodiversity. Using GIS, we analyzed the concordance of inventoried roadless areas (IRAs with ecoregion-scale biological importance and endangered and imperiled species distributions on a scale of 1:24,000. We found that more than 25% of IRAs are located in globally or regionally outstanding ecoregions and that 77% of inventoried roadless areas have the potential to conserve threatened, endangered, or imperiled species. IRAs would increase the conservation reserve network containing these species by 156%. We further illustrate the conservation potential of IRAs by highlighting their contribution to the conservation of the grizzly bear (Ursos arctos, a wide-ranging carnivore. The area created by the addition of IRAs to the existing system of conservation reserves shows a strong concordance with grizzly bear recovery zones and habitat range. Based on these findings, we conclude that IRAs belonging to the U.S. Forest Service are one of the most important biotic areas in the nation, and that their status as roadless areas could have lasting and far-reaching effects for biodiversity conservation.

  14. Headwater Stream Management Dichotomies: Local Amphibian Habitat vs. Downstream Fish Habitat

    Science.gov (United States)

    Jackson, C. R.

    2002-12-01

    Small headwater streams in mountainous areas of the Pacific Northwest often do not harbor fish populations because of low water depth and high gradients. Rather, these streams provide habitat for dense assemblages of stream-dwelling amphibians. A variety of management goals have been suggested for such streams such as encouraging large woody debris recruitment to assist in sediment trapping and valley floor formation, encouraging large woody debris recruitment to provide downstream wood when debris flows occur, providing continuous linear stream buffers within forest harvest areas to provide shade and bank stability, etc. A basic problem with analying the geomorphic or biotic benefits of any of these strategies is the lack of explicit management goals for such streams. Should managers strive to optimize downstream fish habitat, local amphibian habitat, or both? Through observational data and theoretical considerations, it will be shown that these biotic goals will lead to very different geomorphic management recommendations. For instance, woody debris greater than 60 cm diameter may assist in valley floor development, but it is likely to create subsurface channel flow of unknown value to amphibians. Trapping and retention of fine sediments within headwater streams may improve downstream spawning gravels, but degrades stream-dwelling amphibian habitat. In response to the need for descriptive information on habitat and channel morphology specific to small, non-fish-bearing streams in the Pacific Northwest, morphologies and wood frequencies in forty-two first- and second-order forested streams less than four meters wide were surveyed. Frequencies and size distributions of woody debris were compared between small streams and larger fish-bearing streams as well as between second-growth and virgin timber streams. Statistical models were developed to explore dominant factors affecting channel morphology and habitat. Findings suggest geomorphological relationships

  15. Increased Land Use by Chukchi Sea Polar Bears in Relation to Changing Sea Ice Conditions.

    Directory of Open Access Journals (Sweden)

    Karyn D Rode

    Full Text Available Recent observations suggest that polar bears (Ursus maritimus are increasingly using land habitats in some parts of their range, where they have minimal access to their preferred prey, likely in response to loss of their sea ice habitat associated with climatic warming. We used location data from female polar bears fit with satellite radio collars to compare land use patterns in the Chukchi Sea between two periods (1986-1995 and 2008-2013 when substantial summer sea-ice loss occurred. In both time periods, polar bears predominantly occupied sea-ice, although land was used during the summer sea-ice retreat and during the winter for maternal denning. However, the proportion of bears on land for > 7 days between August and October increased between the two periods from 20.0% to 38.9%, and the average duration on land increased by 30 days. The majority of bears that used land in the summer and for denning came to Wrangel and Herald Islands (Russia, highlighting the importance of these northernmost land habitats to Chukchi Sea polar bears. Where bears summered and denned, and how long they spent there, was related to the timing and duration of sea ice retreat. Our results are consistent with other studies supporting increased land use as a common response of polar bears to sea-ice loss. Implications of increased land use for Chukchi Sea polar bears are unclear, because a recent study observed no change in body condition or reproductive indices between the two periods considered here. This result suggests that the ecology of this region may provide a degree of resilience to sea ice loss. However, projections of continued sea ice loss suggest that polar bears in the Chukchi Sea and other parts of the Arctic may increasingly use land habitats in the future, which has the potential to increase nutritional stress and human-polar bear interactions.

  16. 50 CFR 100.25 - Subsistence taking of fish, wildlife, and shellfish: general regulations.

    Science.gov (United States)

    2010-10-01

    ... all prying edges rounded and smooth. ADF&G means the Alaska Department of Fish and Game. Airborne.... Bear means black bear, or brown or grizzly bear. Big game means black bear, brown bear, bison, caribou... staked, anchored, or otherwise fixed in one place. Edible meat means the breast meat of ptarmigan and...

  17. Anthropogenic flank attack on polar bears: Interacting consequences of climate warming and pollutant exposure

    Directory of Open Access Journals (Sweden)

    Bjørn Munro Jenssen

    2015-02-01

    Full Text Available Polar bears (Ursus maritimus are subjected to several anthropogenic threats, climate warming and exposure to pollutants being two of these. For polar bears, one of the main effects of climate warming is limited access to prey, due to loss of their sea ice habitat. This will result in prolonged fasting periods and emaciation and condition related negative effects on survival and reproduction success. Prolonged fasting will result in increases of the tissue concentrations of persistent organic pollutants (POPs in polar bears, and thus increase the probability for POP levels to exceed threshold levels for effects on health, and thus on reproductive success and survival. There are clear potentials for interactions between impacts of climate warming and impacts of pollutant exposure on polar bears. It is likely that that fasting-induced increases of POPs will add to mortality rates and decrease reproductive success beyond effects caused by loss of habitat alone. However, there is a lack of studies that have addressed this. Thus, there is a need to focus on population effects of POP exposure in polar bears, and to consider such effects in relation to the effects of climate induced habitat loss.

  18. Using tri-axial accelerometers to identify wild polar bear behaviors

    Science.gov (United States)

    Pagano, Anthony M.; Rode, Karyn D.; Cutting, A.; Owen, M.A.; Jensen, S.; Ware, J.V.; Robbins, C.T.; Durner, George M.; Atwood, Todd C.; Obbard, M.E.; Middel, K.R.; Thiemann, G.W.; Williams, T.M.

    2017-01-01

    Tri-axial accelerometers have been used to remotely identify the behaviors of a wide range of taxa. Assigning behaviors to accelerometer data often involves the use of captive animals or surrogate species, as their accelerometer signatures are generally assumed to be similar to those of their wild counterparts. However, this has rarely been tested. Validated accelerometer data are needed for polar bears Ursus maritimus to understand how habitat conditions may influence behavior and energy demands. We used accelerometer and water conductivity data to remotely distinguish 10 polar bear behaviors. We calibrated accelerometer and conductivity data collected from collars with behaviors observed from video-recorded captive polar bears and brown bears U. arctos, and with video from camera collars deployed on free-ranging polar bears on sea ice and on land. We used random forest models to predict behaviors and found strong ability to discriminate the most common wild polar bear behaviors using a combination of accelerometer and conductivity sensor data from captive or wild polar bears. In contrast, models using data from captive brown bears failed to reliably distinguish most active behaviors in wild polar bears. Our ability to discriminate behavior was greatest when species- and habitat-specific data from wild individuals were used to train models. Data from captive individuals may be suitable for calibrating accelerometers, but may provide reduced ability to discriminate some behaviors. The accelerometer calibrations developed here provide a method to quantify polar bear behaviors to evaluate the impacts of declines in Arctic sea ice.

  19. Negative binomial models for abundance estimation of multiple closed populations

    Science.gov (United States)

    Boyce, Mark S.; MacKenzie, Darry I.; Manly, Bryan F.J.; Haroldson, Mark A.; Moody, David W.

    2001-01-01

    Counts of uniquely identified individuals in a population offer opportunities to estimate abundance. However, for various reasons such counts may be burdened by heterogeneity in the probability of being detected. Theoretical arguments and empirical evidence demonstrate that the negative binomial distribution (NBD) is a useful characterization for counts from biological populations with heterogeneity. We propose a method that focuses on estimating multiple populations by simultaneously using a suite of models derived from the NBD. We used this approach to estimate the number of female grizzly bears (Ursus arctos) with cubs-of-the-year in the Yellowstone ecosystem, for each year, 1986-1998. Akaike's Information Criteria (AIC) indicated that a negative binomial model with a constant level of heterogeneity across all years was best for characterizing the sighting frequencies of female grizzly bears. A lack-of-fit test indicated the model adequately described the collected data. Bootstrap techniques were used to estimate standard errors and 95% confidence intervals. We provide a Monte Carlo technique, which confirms that the Yellowstone ecosystem grizzly bear population increased during the period 1986-1998.

  20. Polar bears at risk

    Energy Technology Data Exchange (ETDEWEB)

    Norris, S.; Rosentrater, L.; Eid, P.M. [WWF International Arctic Programme, Oslo (Norway)

    2002-05-01

    rains also destroy the denning habitat of ringed seals, the polar bears' primary prey. Declines in the ringed seal population would mean a loss of food for polar bears. A trend toward stronger winds and increasing ice drift observed in some parts of the Arctic over the last five decades will likely increase energy expenditures and stress levels in polar bears that spend most of their lives on drifting sea ice. Polar bears face other limiting factors as well. Historically, the main threat to polar bears has been hunting. Satisfactory monitoring information has been obtained for most polar bear populations in recent years, however there is concern about hunting in areas without formal quota systems, such as Greenland. A range of toxic pollutants, including heavy metals, radioactivity, and persistent organic pollutants (POPs) are found throughout the Arctic. Of greatest concern are the effects of POPs on polar bears, which include a general weakening of the immune system, reduced reproductive success and physical deformities. The expansion of oil development in the Arctic poses additional threats; for example, disturbances to denning females in the Arctic National Wildlife Refuge in Alaska could undermine recruitment of the Beaufort Sea polar bear population. These threats, along with other effects of human activity in the Arctic, combine to pressure polar bears and their habitat. Large carnivores are sensitive indicators of ecosystem health and can be used to define the minimum area necessary to preserve intact ecosystems. WWF has identified the polar bear as a unique symbol of the complexities and interdependencies of the arctic marine ecosystem as it works toward its goal of preserving biodiversity for future generations.

  1. Predicting the Distribution of Asiatic Cheetah, Persian Leopard and Brown Bear in Response to EnvironmentalFactors in Isfahan Province

    Directory of Open Access Journals (Sweden)

    M. R. Hemami

    2015-12-01

    Full Text Available Distribution modelling is important for assessing threats and conservation status of species and for planning conservation programs. We studied the distribution of suitable habitats of Asiatic cheetah (Acinonyx jubatus venaticus, Persian leopard (Panthera pardus saxicolor and brown bear (Ursus arctos in Isfahan province within and outside the protected areas. Suitable habitats of the three studied carnivores in Isfahan province were mapped in relation to climatic, topographic and anthropogenic variables using MAXENT. Assessing the developed model using the area under the ROC function showed that predictions for the three carnivore species were significantly better than random. Potential suitable habitats of Asiatic cheetah, Persian leopard and brown bear constituted 5.2%, 12% and 3.4% of the Isfahan province area, respectively. Slope was the most important factor determining Persian leopard habitat suitability, while climatic factors (mainly mean autumn and mean annual precipitation were the most important determinants of Asiatic cheetah and brown bear distribution. The protected area network within the province covers 55.7%, 23.7%, and 11.6% of the suitable habitats for Asiatic cheetah, Persian leopard and brown bear, respectively. Parts of suitable habitats of the three species are located outside the protected areas, which could be considered in planning conservation programs as potential movement corridors.

  2. Evaluation of protected, threatened, and endangered fish species in Upper Bear Creek watershed

    International Nuclear Information System (INIS)

    Ryon, M.G.

    1998-07-01

    The East Bear Creek Site for the proposed centralized waste facility on the US Department of Energy's Oak Ridge Reservation was evaluated for potential rare, threatened or endangered (T and E) fish species in the six primary tributaries and the main stem of Bear Creek that are within or adjacent to the facility footprint. These tributaries and portion of Bear Creek comprise the upper Bear Creek watershed. One T and E fish species, the Tennessee dace (Phoxinus tennesseensis), was located in these streams. The Tennessee dace is listed by the State of Tennessee as being in need of management, and as such its habitat is afforded some protection. Surveys indicated that Tennessee dace occupy the northern tributaries NT-1, NT-4, and NT-5, as well as Bear Creek. Several specimens of the dace were gravid females, indicating that the streams may function as reproductive habitat for the species. The implications of impacts on the species are discussed and mitigation objectives are included

  3. Salmon River Habitat Enhancement, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Konopacky, Richard C.

    1986-04-01

    This report has four volumes: a Tribal project annual report (Part 1) and three reports (Parts 2, 3, and 4) prepared for the Tribes by their engineering subcontractor. The Tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved habitat and fish inventories in Bear Valley Creek, Valley County, Idaho that will be used to evaluate responses to ongoing habitat enhancement. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur within the traditional Treaty (Fort Bridger Treaty of 1868) fishing areas of the Shoshone-Bannock Tribes, Fort Hall Reservation, Idaho. Subproject III involved habitat and fish inventories (pretreatment) and habitat problem identification on the Yankee Fork of the Salmon River (including Jordan Creek). Subproject IV during 1985 involved habitat problem identification in the East Fork of the Salmon River and habitat and fish inventories (pretreatment) in Herd Creek, a tributary to the East Fork.

  4. 36 CFR 242.25 - Subsistence taking of fish, wildlife, and shellfish: general regulations.

    Science.gov (United States)

    2010-07-01

    ... the Alaska Department of Fish and Game. Airborne means transported by aircraft. Aircraft means any... grizzly bear. Big game means black bear, brown bear, bison, caribou, Sitka black-tailed deer, elk... gillnet that has not been intentionally staked, anchored, or otherwise fixed in one place. Edible meat...

  5. Population-level resource selection by sympatric brown and American black bears in Alaska

    Science.gov (United States)

    Belant, Jerrold L.; Griffith, Brad; Zhang, Yingte; Follmann, Erich H.; Adams, Layne G.

    2010-01-01

    Distribution theory predicts that for two species living in sympatry, the subordinate species would be constrained from using the most suitable resources (e.g., habitat), resulting in its use of less suitable habitat and spatial segregation between species. We used negative binomial generalized linear mixed models with fixed effects to estimate seasonal population-level resource selection at two spatial resolutions for female brown bears (Ursus arctos) and female American black bears (U. americanus) in southcentral Alaska during May–September 2000. Black bears selected areas occupied by brown bears during spring which may be related to spatially restricted (i.e., restricted to low elevations) but dispersed or patchy availability of food. In contrast, black bears avoided areas occupied by brown bears during summer. Brown bears selected areas near salmon streams during summer, presumably to access spawning salmon. Use of areas with high berry production by black bears during summer appeared in response to avoidance of areas containing brown bears. Berries likely provided black bears a less nutritious, but adequate food source. We suggest that during summer, black bears were displaced by brown bears, which supports distribution theory in that black bears appeared to be partially constrained from areas containing salmon, resulting in their use of areas containing less nutritious forage. Spatial segregation of brown and American black bears apparently occurs when high-quality resources are spatially restricted and alternate resources are available to the subordinate species. This and previous work suggest that individual interactions between species can result in seasonal population-level responses.

  6. Are pumas subordinate carnivores, and does it matter?

    Directory of Open Access Journals (Sweden)

    L. Mark Elbroch

    2018-01-01

    Full Text Available Background Interspecific competition affects species fitness, community assemblages and structure, and the geographic distributions of species. Established dominance hierarchies among species mitigate the need for fighting and contribute to the realized niche for subordinate species. This is especially important for apex predators, many of which simultaneous contend with the costs of competition with more dominant species and the costs associated with human hunting and lethal management. Methods Pumas are a widespread solitary felid heavily regulated through hunting to reduce conflicts with livestock and people. Across their range, pumas overlap with six apex predators (gray wolf, grizzly bear, American black bear, jaguar, coyote, maned wolf, two of which (gray wolf, grizzly bear are currently expanding in North America following recovery efforts. We conducted a literature search to assess whether pumas were subordinate or dominant with sympatric apex predators, as well as with three felid mesocarnivores with similar ecology (ocelot, bobcat, Canada lynx. We also conducted an analysis of the spatial distributions of pumas and their dominant sympatric competitors to estimate in what part of their range, pumas are dominant versus subordinate. Results We used 64 sources to assess dominance among pumas and other apex predators, and 13 sources to assess their relationships with felid mesocarnivores. Evidence suggested that wolves, grizzly bears, black bears, and jaguars are dominant over pumas, but that pumas are dominant over coyotes and maned wolves. Evidence suggested that pumas are also dominant over all three felid mesocarnivores with which they share range. More broadly, pumas are subordinate to at least one other apex carnivore in 10,799,252 (47.5% of their 22,735,268 km2 range across North and South America. Discussion Subordinate pumas change their habitat use, suffer displacement at food sources, likely experience increased energetic demands

  7. Are pumas subordinate carnivores, and does it matter?

    Science.gov (United States)

    Elbroch, L Mark; Kusler, Anna

    2018-01-01

    Interspecific competition affects species fitness, community assemblages and structure, and the geographic distributions of species. Established dominance hierarchies among species mitigate the need for fighting and contribute to the realized niche for subordinate species. This is especially important for apex predators, many of which simultaneous contend with the costs of competition with more dominant species and the costs associated with human hunting and lethal management. Pumas are a widespread solitary felid heavily regulated through hunting to reduce conflicts with livestock and people. Across their range, pumas overlap with six apex predators (gray wolf, grizzly bear, American black bear, jaguar, coyote, maned wolf), two of which (gray wolf, grizzly bear) are currently expanding in North America following recovery efforts. We conducted a literature search to assess whether pumas were subordinate or dominant with sympatric apex predators, as well as with three felid mesocarnivores with similar ecology (ocelot, bobcat, Canada lynx). We also conducted an analysis of the spatial distributions of pumas and their dominant sympatric competitors to estimate in what part of their range, pumas are dominant versus subordinate. We used 64 sources to assess dominance among pumas and other apex predators, and 13 sources to assess their relationships with felid mesocarnivores. Evidence suggested that wolves, grizzly bears, black bears, and jaguars are dominant over pumas, but that pumas are dominant over coyotes and maned wolves. Evidence suggested that pumas are also dominant over all three felid mesocarnivores with which they share range. More broadly, pumas are subordinate to at least one other apex carnivore in 10,799,252 (47.5%) of their 22,735,268 km 2 range across North and South America. Subordinate pumas change their habitat use, suffer displacement at food sources, likely experience increased energetic demands from harassment, exhibit increased starvation, and

  8. Increased Arctic sea ice drift alters adult female polar bear movements and energetics.

    Science.gov (United States)

    Durner, George M; Douglas, David C; Albeke, Shannon E; Whiteman, John P; Amstrup, Steven C; Richardson, Evan; Wilson, Ryan R; Ben-David, Merav

    2017-09-01

    Recent reductions in thickness and extent have increased drift rates of Arctic sea ice. Increased ice drift could significantly affect the movements and the energy balance of polar bears (Ursus maritimus) which forage, nearly exclusively, on this substrate. We used radio-tracking and ice drift data to quantify the influence of increased drift on bear movements, and we modeled the consequences for energy demands of adult females in the Beaufort and Chukchi seas during two periods with different sea ice characteristics. Westward and northward drift of the sea ice used by polar bears in both regions increased between 1987-1998 and 1999-2013. To remain within their home ranges, polar bears responded to the higher westward ice drift with greater eastward movements, while their movements north in the spring and south in fall were frequently aided by ice motion. To compensate for more rapid westward ice drift in recent years, polar bears covered greater daily distances either by increasing their time spent active (7.6%-9.6%) or by increasing their travel speed (8.5%-8.9%). This increased their calculated annual energy expenditure by 1.8%-3.6% (depending on region and reproductive status), a cost that could be met by capturing an additional 1-3 seals/year. Polar bears selected similar habitats in both periods, indicating that faster drift did not alter habitat preferences. Compounding reduced foraging opportunities that result from habitat loss; changes in ice drift, and associated activity increases, likely exacerbate the physiological stress experienced by polar bears in a warming Arctic. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  9. Differential Habitat Use or Intraguild Interactions: What Structures a Carnivore Community?

    Directory of Open Access Journals (Sweden)

    Matthew E Gompper

    Full Text Available Differential habitat use and intraguild competition are both thought to be important drivers of animal population sizes and distributions. Habitat associations for individual species are well-established, and interactions between particular pairs of species have been highlighted in many focal studies. However, community-wide assessments of the relative strengths of these two factors have not been conducted. We built multi-scale habitat occupancy models for five carnivore taxa of New York's Adirondack landscape and assessed the relative performance of these models against ones in which co-occurrences of potentially competing carnivore species were also incorporated. Distribution models based on habitat performed well for all species. Black bear (Ursus americanus and fisher (Martes pennanti distribution was similar in that occupancy of both species was negatively associated with paved roads. However, black bears were also associated with larger forest fragments and fishers with smaller forest fragments. No models with habitat features were more supported than the null habitat model for raccoons (Procyon lotor. Martens (Martes americana were most associated with increased terrain ruggedness and elevation. Weasel (Mustela spp. occupancy increased with the cover of deciduous forest. For most species dyads habitat-only models were more supported than those models with potential competitors incorporated. The exception to this finding was for the smallest carnivore taxa (marten and weasel where habitat plus coyote abundance models typically performed better than habitat-only models. Assessing this carnivore community as whole, we conclude that differential habitat use is more important than species interactions in maintaining the distribution and structure of this carnivore guild.

  10. Relative influences of climate change and human activity on the onshore distribution of polar bears

    Science.gov (United States)

    Wilson, Ryan R.; Regehr, Eric V.; St. Martin, Michelle; Atwood, Todd C.; Peacock, Elizabeth; Miller, Susanne; Divoky, George J.

    2017-01-01

    Climate change is altering habitat for many species, leading to shifts in distributions that can increase levels of human-wildlife conflict. To develop effective strategies for minimizing human-wildlife conflict, we must understand the relative influences that climate change and other factors have on wildlife distributions. Polar bears (Ursus maritimus) are increasingly using land during summer and autumn due to sea ice loss, leading to higher incidents of conflict and concerns for human safety. We sought to understand the relative influence of sea ice conditions, onshore habitat characteristics, and human-provisioned food attractants on the distribution and abundance of polar bears while on shore. We also wanted to determine how mitigation measures might reduce human-polar bear conflict associated with an anthropogenic food source. We built a Bayesian hierarchical model based on 14 years of aerial survey data to estimate the weekly number and distribution of polar bears on the coast of northern Alaska in autumn. We then used the model to predict how effective two management options for handling subsistence-harvested whale remains in the community of Kaktovik, Alaska might be. The distribution of bears on shore was most strongly influenced by the presence of whale carcasses and to a lesser extent sea ice and onshore habitat conditions. The numbers of bears on shore were related to sea ice conditions. The two management strategies for handling the whale carcasses reduced the estimated number of bears near Kaktovik by > 75%. By considering multiple factors associated with the onshore distribution and abundance of polar bears we discerned what role human activities played in where bears occur and how successful efforts to manage the whale carcasses might be for reducing human-polar bear conflict.

  11. Large carnivores response to recreational big game hunting along the Yellowstone National Park and Absaroka-Beartooth Wilderness boundary

    Science.gov (United States)

    Ruth, T.E.; Smith, D.W.; Haroldson, M.A.; Buotte, P.C.; Schwartz, C.C.; Quigley, H.B.; Cherry, S.; Tyres, D.; Frey, K.

    2003-01-01

    The Greater Yellowstone Ecosystem contains the rare combination of an intact guild of native large carnivores, their prey, and differing land management policies (National Park versus National Forest; no hunting versus hunting). Concurrent field studies on large carnivores allowed us to investigate activities of humans and carnivores on Yellowstone National Park's (YNP) northern boundary. Prior to and during the backcountry big-game hunting season, we monitored movements of grizzly bears (Ursus arctos), wolves (Canis lupus), and cougars (Puma concolor) on the northern boundary of YNP. Daily aerial telemetry locations (September 1999), augmented with weekly telemetry locations (August and October 1999), were obtained for 3 grizzly bears, 7 wolves in 2 groups of 1 pack, and 3 cougars in 1 family group. Grizzly bears were more likely located inside the YNP boundary during the pre-hunt period and north of the boundary once hunting began. The cougar family tended to be found outside YNP during the pre-hunt period and moved inside YNP when hunting began. Wolves did not significantly change their movement patterns during the pre-hunt and hunting periods. Qualitative information on elk (Cervus elaphus) indicated they moved into YNP once hunting started, suggesting that cougars followed living prey or responded to hunting activity, grizzly bears focused on dead prey (e.g., gut piles, crippled elk), and wolves may have taken advantage of both. Measures of association (Jacob's Index) were positive within carnivore species but inconclusive among species. Further collaborative research and the use of new technologies such as Global Positioning System (GPS) telemetry collars will advance our ability to understand these species, the carnivore community and its interactions, and human influences on carnivores.

  12. Human-polar bear interactions in a changing Arctic: Existing and emerging concerns

    Science.gov (United States)

    Atwood, Todd C.; Simac, Kristin; Breck, Stewart; York, Geoff; Wilder, James

    2017-01-01

    The behavior and sociality of polar bears (Ursus maritimus) have been shaped by evolved preferences for sea ice habitat and preying on marine mammals. However, human behavior is causing changes to the Arctic marine ecosystem through the influence of greenhouse gas emissions that drive long-term change in ecosystem processes and via the presence of in situ stressors associated with increasing human activities. These changes are making it more difficult for polar bears to reliably use their traditional habitats and maintain fitness. Here, we provide an overview of how human activities in the Arctic are likely to change a polar bear’s behavior and to influence their resilience to environmental change. Developing a more thorough understanding of polar bear behavior and their capacity for flexibility in response to anthropogenic disturbances and subsequent mitigations may lead to successful near-term management interventions.

  13. Identification of functional corridors with movement characteristics of brown bears on the Kenai Peninsula, Alaska

    Science.gov (United States)

    Graves, T.A.; Farley, S.; Goldstein, M.I.; Servheen, C.

    2007-01-01

    We identified primary habitat and functional corridors across a landscape using Global Positioning System (GPS) collar locations of brown bears (Ursus arctos). After deriving density, speed, and angular deviation of movement, we classified landscape function for a group of animals with a cluster analysis. We described areas with high amounts of sinuous movement as primary habitat patches and areas with high amounts of very directional, fast movement as highly functional bear corridors. The time between bear locations and scale of analysis influenced the number and size of corridors identified. Bear locations should be collected at intervals ???6 h to correctly identify travel corridors. Our corridor identification technique will help managers move beyond the theoretical discussion of corridors and linkage zones to active management of landscape features that will preserve connectivity. ?? 2007 Springer Science+Business Media, Inc.

  14. Ecology of Florida black bears in the Okefenokee-Osceola ecosystem

    Science.gov (United States)

    Dobey, S.; Masters, D.V.; Scheick, B.K.; Clark, J.D.; Pelton, M.R.; Sunquist, M.E.

    2005-01-01

    The population status of the Florida black bear (Ursus americanus floridanus) is problematic within many portions of its range and its potential listing as a federally threatened species has been the subject of legal debate. We studied Florida black bears in 2 areas in the Okefenokee-Osceola ecosystem in southeast Georgia (i.e.,Okefenokee) and north Florida (i.e., Osceola) from 1995 to 1999 to evaluate relationships between population characteristics, habitat conditions, and human activities. Bears in Okefenokee were hunted and those in Osceola were not. We captured 205 different black bears (124M:81F) 345 times from June 1995 to September  1998. We obtained 13,573 radiolocations from 87 (16M:71F) individual bears during the study.

  15. Bear-inflicted injuries - a report from Nepal.

    Science.gov (United States)

    Atreya, Alok; Kanchan, Tanuj; Nepal, Samata; Acharya, Jenash

    2016-06-01

    Upper Mustang in the Northern Himalayan range of Nepal is the home of brown bears (Ursusarctos). Low-plant biomass as a result of scanty rainfall in Upper Mustang is a reason for habitat overlap of humans and wild animals. Humans who enter into the wild to collect firewood and graze cattle are liable to wild animal attacks. Such attacks, especially by brown bears, are readily identified by the type of injuries. These are more commonly confined to head and neck regions. Cutting, gnawing and tearing by sharp teeth and claws produces specific pattern of injuries, which are devastating but seldom fatal. This article reports a rare case of brown bear injury inflicted upon a man from the Upper Mustang region in Nepal. © The Author(s) 2016.

  16. A demographic comparison of two black bear populations in the Interior Highlands of Arkansas

    Science.gov (United States)

    Clark, Joseph D.; Smith, Kimberly G.

    1994-01-01

    The Ozark and Ouachita mountain regions of western Arkansas, collectively known as the Interior Highlands, historically supported large numbers of black bears (Ursus americanus). Indiscriminate killing of bears by early settlers and subsequent habitat reductions due to extensive logging and changes in land use resulted in their decline (Smith et al. 1991). By the late 1940's, bears had been extirpated from both regions (Holder 1951).

  17. High contributions of sea ice derived carbon in polar bear (Ursus maritimus) tissue.

    Science.gov (United States)

    Brown, Thomas A; Galicia, Melissa P; Thiemann, Gregory W; Belt, Simon T; Yurkowski, David J; Dyck, Markus G

    2018-01-01

    Polar bears (Ursus maritimus) rely upon Arctic sea ice as a physical habitat. Consequently, conservation assessments of polar bears identify the ongoing reduction in sea ice to represent a significant threat to their survival. However, the additional role of sea ice as a potential, indirect, source of energy to bears has been overlooked. Here we used the highly branched isoprenoid lipid biomarker-based index (H-Print) approach in combination with quantitative fatty acid signature analysis to show that sympagic (sea ice-associated), rather than pelagic, carbon contributions dominated the marine component of polar bear diet (72-100%; 99% CI, n = 55), irrespective of differences in diet composition. The lowest mean estimates of sympagic carbon were found in Baffin Bay bears, which were also exposed to the most rapidly increasing open water season. Therefore, our data illustrate that for future Arctic ecosystems that are likely to be characterised by reduced sea ice cover, polar bears will not only be impacted by a change in their physical habitat, but also potentially in the supply of energy to the ecosystems upon which they depend. This data represents the first quantifiable baseline that is critical for the assessment of likely ongoing changes in energy supply to Arctic predators as we move into an increasingly uncertain future for polar ecosystems.

  18. Socioeconomic issues for the Bear River Watershed Conservation Land Area Protection Plan

    Science.gov (United States)

    Thomas, Catherine Cullinane; Huber, Christopher; Gascoigne, William; Koontz, Lynne

    2012-01-01

    The Bear River Watershed Conservation Area is located in the Bear River Watershed, a vast basin covering fourteen counties across three states. Located in Wyoming, Utah, and Idaho, the watershed spans roughly 7,500 squares miles: 1,500 squares miles in Wyoming; 2,700 squares miles in Idaho; and 3,300 squares miles in Utah (Utah Division of Water Resources, 2004). Three National Wildlife Refuges are currently contained within the boundary of the BRWCA: the Bear River Migratory Bird Refuge in Utah, the Bear Lake National Wildlife Refuge in Idaho, and the Cokeville Meadows National Wildlife Refuge in Wyoming. In 2010, the U.S. Fish and Wildlife Service conducted a Preliminary Project Proposal and identified the Bear River Watershed Conservation Area as having high-value wildlife habitat. This finding initiated the Land Protection Planning process, which is used by the U.S. Fish and Wildlife Service to study land conservation opportunities including adding lands to the National Wildlife Refuge System. The U.S. Fish and Wildlife Service proposes to include part of the Bear River Watershed Conservation Area in the Refuge System by acquiring up to 920,000 acres of conservation easements from willing landowners to maintain landscape integrity and habitat connectivity in the region. The analysis described in this report provides a profile of the social and economic conditions in the Bear River Watershed Conservation Area and addresses social and economic questions and concerns raised during public involvement in the Land Protection Planning process.

  19. An experimental investigation of chemical communication in the polar bear

    Science.gov (United States)

    Owen, Megan A.; Swaisgood, Ronald R.; Slocomb, C.; Amstrup, Steven C.; Durner, George M.; Simac, Kristin S.; Pessier, Allan P.

    2015-01-01

    The polar bear (Ursus maritimus), with its wide-ranging movements, solitary existence and seasonal reproduction, is expected to favor chemosignaling over other communication modalities. However, the topography of its Arctic sea ice habitat is generally lacking in stationary vertical substrates routinely used for targeted scent marking in other bears. These environmental constraints may have shaped a marking strategy, unique to polar bears, for widely dispersed continuous dissemination of scent via foot pads. To investigate the role of chemical communication, pedal scents were collected from free-ranging polar bears of different sex and reproductive classes captured on spring sea ice in the Beaufort and Chukchi seas, and presented in a controlled fashion to 26 bears in zoos. Results from behavioral bioassays indicated that bears, especially females, were more likely to approach conspecific scent during the spring than the fall. Male flehmen behavior, indicative of chemosignal delivery to the vomeronasal organ, differentiated scent donor by sex and reproductive condition. Histologic examination of pedal skin collected from two females indicated prominent and profuse apocrine glands in association with large compound hair follicles, suggesting that they may produce scents that function as chemosignals. These results suggest that pedal scent, regardless of origin, conveys information to conspecifics that may facilitate social and reproductive behavior, and that chemical communication in this species has been adaptively shaped by environmental constraints of its habitat. However, continuously distributed scent signals necessary for breeding behavior may prove less effective if current and future environmental conditions cause disruption of scent trails due to increased fracturing of sea ice.

  20. Eco-Heroes out of Place and Relations: Decolonizing the Narratives of "Into the Wild" and "Grizzly Man" through Land Education

    Science.gov (United States)

    Korteweg, Lisa; Oakley, Jan

    2014-01-01

    Eco-heroic quests for environmental communion continue to be represented, mediated, and glorified through film and media narratives. This paper examines two eco-heroic quests in the Alaskan "wilderness" that have been portrayed in two Hollywood motion pictures: the movies "Grizzly Man" and "Into the Wild". Both films…

  1. Pitfalls in comparing modern hair and fossil bone collagen C and N isotopic data to reconstruct ancient diets: a case study with cave bears (Ursus spelaeus).

    Science.gov (United States)

    Bocherens, Hervé; Grandal-d'Anglade, Aurora; Hobson, Keith A

    2014-01-01

    Stable isotope analyses provide one of the few means to evaluate diet of extinct taxa. However, interpreting isotope data from bone collagen of extinct animals based on isotopic patterns in different tissues of modern animal proxies is precarious. For example, three corrections are needed before making comparisons of recent hair and ancient bone collagen: calibration of carbon-13 variations in atmospheric CO2, different isotopic discrimination between diet-hair keratin and diet-bone collagen, and time averaging of bone collagen versus short-term record in hair keratin. Recently, Robu et al. [Isotopic evidence for dietary flexibility among European Late Pleistocene cave bears (Ursus spelaeus). Can J Zool. 2013;91:227-234] published an article comparing extant carbon (δ(13)C) and nitrogen (δ(15)N) stable isotopic data of European cave bear bone collagen with those of Yellowstone Park grizzly bear hair in order to test the prevailing assumption of a largely vegetarian diet among cave bears. The authors concluded that cave bears were carnivores. This work is unfortunately unfounded as the authors failed to consider the necessary corrections listed above. When these corrections are applied to the Romanian cave bears, these individuals can be then interpreted without involving consumption of high trophic-level food, and environmental changes are probably the reason for the unusual isotopic composition of these cave bears in comparison with other European cave bears, rather than a change of diet. We caution researchers to pay careful attention to these factors when interpreting feeding ecology of extinct fauna using stable isotope techniques.

  2. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis)

    OpenAIRE

    McGee, Meghan E.; Maki, Aaron J.; Johnson, Steven E.; Lynne Nelson, O.; Robbins, Charles T.; Donahue, Seth W.

    2007-01-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. ...

  3. Bear-human interactions at Glacier Bay National Park and Preserve: Conflict risk assessment

    Science.gov (United States)

    Smith, Tom S.; DeBruyn, Terry D.; Lewis, Tania; Yerxa, Rusty; Partridge, Steven T.

    2003-01-01

    Many bear-human conflicts have occurred in Alaska parks and refuges, resulting in area closures, property damage, human injury, and loss of life. Human activity in bear country has also had negative and substantial consequences for bears: disruption of their natural activity patterns, displacement from important habitats, injury, and death. It is unfortunate for both people and bears when conflicts occur. Fortunately, however, solutions exist for reducing, and in some instances eliminating, bear-human conflict. This article presents ongoing work at Glacier Bay National Park and Preserve by U.S. Geological Survey (USGS) and National Park Service scientists who are committed to finding solutions for the bear-human conflicts that periodically occurs there.

  4. Fine-spatial scale predictions of understory species using climate- and LiDAR-derived terrain and canopy metrics

    Science.gov (United States)

    Nijland, Wiebe; Nielsen, Scott E.; Coops, Nicholas C.; Wulder, Michael A.; Stenhouse, Gordon B.

    2014-01-01

    Food and habitat resources are critical components of wildlife management and conservation efforts. The grizzly bear (Ursus arctos) has diverse diets and habitat requirements particularly for understory plant species, which are impacted by human developments and forest management activities. We use light detection and ranging (LiDAR) data to predict the occurrence of 14 understory plant species relevant to bear forage and compare our predictions with more conventional climate- and land cover-based models. We use boosted regression trees to model each of the 14 understory species across 4435 km2 using occurrence (presence-absence) data from 1941 field plots. Three sets of models were fitted: climate only, climate and basic land and forest covers from Landsat 30-m imagery, and a climate- and LiDAR-derived model describing both the terrain and forest canopy. Resulting model accuracies varied widely among species. Overall, 8 of 14 species models were improved by including the LiDAR-derived variables. For climate-only models, mean annual precipitation and frost-free periods were the most important variables. With inclusion of LiDAR-derived attributes, depth-to-water table, terrain-intercepted annual radiation, and elevation were most often selected. This suggests that fine-scale terrain conditions affect the distribution of the studied species more than canopy conditions.

  5. Assessing sloth bears as surrogates for carnivore conservation in Sri Lanka

    Science.gov (United States)

    Ratnayeke, Shyamala; Van Manen, Frank T.

    2012-01-01

    Bears are large, charismatic mammals whose presence often garners conservation attention. Because healthy bear populations typically require large, contiguous areas of habitat, land conservation actions often are assumed to benefit co-occurring species, including other mammalian carnivores. However, we are not aware of an empirical test of this assumption. We used remote camera data from 2 national parks in Sri Lanka to test the hypothesis that the frequency of detection of sloth bears (Melursus ursinus) is associated with greater richness of carnivore species. We focused on mammalian carnivores because they play a pivotal role in the stability of ecological communities and are among Sri Lanka's most endangered species. Seven of Sri Lanka's carnivores are listed as endangered, vulnerable, or near threatened, and little empirical information exists on their status and distribution. During 2002–03, we placed camera traps at 152 sites to document carnivore species presence. We used Poisson regression to develop predictive models for 3 categories of dependent variables: species richness of (1) all carnivores, (2) carnivores considered at risk, and (3) carnivores of least conservation concern. For each category, we analyzed 8 a priori models based on combinations of sloth bear detections, sample year, and study area and used Akaike's information criterion (AICc) to test our research hypothesis. We detected sloth bears at 55 camera sites and detected 13 of Sri Lanka's 14 Carnivora species. Species richness of all carnivores showed positive associations with the number of sloth bear detections, regardless of study area. Sloth bear detections were also positively associated with species richness of carnivores at risk across both study years and study areas, but not with species richness of common carnivores. Sloth bears may serve as a valuable surrogate species whose habitat protection would contribute to conservation of other carnivores in Sri Lanka.

  6. High contributions of sea ice derived carbon in polar bear (Ursus maritimus tissue.

    Directory of Open Access Journals (Sweden)

    Thomas A Brown

    Full Text Available Polar bears (Ursus maritimus rely upon Arctic sea ice as a physical habitat. Consequently, conservation assessments of polar bears identify the ongoing reduction in sea ice to represent a significant threat to their survival. However, the additional role of sea ice as a potential, indirect, source of energy to bears has been overlooked. Here we used the highly branched isoprenoid lipid biomarker-based index (H-Print approach in combination with quantitative fatty acid signature analysis to show that sympagic (sea ice-associated, rather than pelagic, carbon contributions dominated the marine component of polar bear diet (72-100%; 99% CI, n = 55, irrespective of differences in diet composition. The lowest mean estimates of sympagic carbon were found in Baffin Bay bears, which were also exposed to the most rapidly increasing open water season. Therefore, our data illustrate that for future Arctic ecosystems that are likely to be characterised by reduced sea ice cover, polar bears will not only be impacted by a change in their physical habitat, but also potentially in the supply of energy to the ecosystems upon which they depend. This data represents the first quantifiable baseline that is critical for the assessment of likely ongoing changes in energy supply to Arctic predators as we move into an increasingly uncertain future for polar ecosystems.

  7. Climate change and the increasing impact of polar bears on bird populations

    Directory of Open Access Journals (Sweden)

    Jouke eProp

    2015-03-01

    Full Text Available The Arctic is becoming warmer at a high rate, and contractions in the extent of sea ice are currently changing the habitats of marine top-predators dependent on ice. Polar bears (Ursus maritimus depend on sea ice for hunting seals. For these top-predators, longer ice-free seasons are hypothesized to force the bears to hunt for alternative terrestrial food, such as eggs from colonial breeding birds. We analyzed time-series of polar bear observations at four locations on Spitsbergen (Svalbard and one in east Greenland. Summer occurrence of polar bears, measured as the probability of encountering bears and the number of days with bear presence, has increased significantly from the 1970/80s to the present. The shifts in polar bear occurrence coincided with trends for shorter sea ice seasons and less sea ice during the spring in the study area. This resulted in a strong inverse relationship between the probability of bear encounters on land and the length of the sea ice season. Within ten years after their first appearance on land, polar bears had advanced their arrival dates by almost 30 days. Direct observations of nest predation showed that polar bears may severely affect reproductive success of the barnacle goose (Branta leucopsis, common eider (Somateria mollissima and glaucous gull (Larus hyperboreus. Nest predation was strongest in years when the polar bears arrived well before hatch, with more than 90% of all nests being predated. The results are similar to findings from Canada, and large-scale processes, such as climate and subsequent habitat changes, are pinpointed as the most likely drivers in various parts of the Arctic. We suggest that the increasing, earlier appearance of bears on land in summer reflects behavioral adaptations by a small segment of the population to cope with a reduced hunting range on sea ice. This exemplifies how behavioral adaptations may contribute to the cascading effects of climate change.

  8. Get Fit with the Grizzlies: a community-school-home initiative to fight childhood obesity.

    Science.gov (United States)

    Irwin, Carol C; Irwin, Richard L; Miller, Maureen E; Somes, Grant W; Richey, Phyllis A

    2010-07-01

    Professional sport organizations in the United States have notable celebrity status, and several teams have used this "star power" to collaborate with local school districts toward the goal of affecting children's health. Program effectiveness is unknown due to the absence of comprehensive evaluations for these initiatives. The Memphis Grizzlies, the city's National Basketball Association franchise, launched "Get Fit with the Grizzlies," a 6-week, curricular addition focusing on nutrition and physical activity for the fourth and fifth grades in Memphis City Schools (MCS). The health-infused mini-unit was delivered by physical education teachers during their classes. The purpose of this study was to evaluate the "Get Fit" program effectiveness. Survey research was employed which measured health knowledge acquisition and health behavior change using a matched pre/posttest design in randomly chosen schools (n = 11) from all elementary schools in the MCS system (N = 110). The total number of matched pre/posttests (n = 888) equaled approximately 5% of the total fourth-/fifth-grade population. McNemar's test for significance (p < .05) was applied. Odds ratios were calculated for each question. Analyses confirmed that there was significant health knowledge acquisition (7 of 8 questions) with odds ratios confirming moderate to strong associations. Seven out of 10 health behavior change questions significantly improved after intervention, whereas odds ratios indicated a low level of association after intervention. This community-school-home initiative using a professional team's celebrity platform within a certain locale is largely overlooked by school districts and should be considered as a positive strategy to confront childhood obesity.

  9. 75 FR 17763 - Arctic National Wildlife Refuge, Fairbanks, AK

    Science.gov (United States)

    2010-04-07

    ... diversity, including, but not limited to, the Porcupine caribou herd (including participation in coordinated ecological studies and management of this herd and the Western Arctic caribou herd), polar bears, grizzly...

  10. Application of brown bear (Ursus arctos) records for retrospective assessment of mercury.

    Science.gov (United States)

    Solgi, Eisa; Ghasempouri, Seyed Mahmoud

    2015-01-01

    Because mercury (Hg) is released into the atmosphere, wildlife living in habitats located far from point sources of metal may still be at risk. Mercury accumulation, previously considered a risk for aquatic ecosystems, is also found in many wildlife terrestrial species. The aim of the present study was to examine total Hg concentrations in the brown bear (Ursus arctos) by measurement of metal in hair from museum collections in Iran. Another objective of this investigation was to characterize the risk of Hg exposure in bears in several parts of Iran. Brown bear (Ursus arctos) hair samples (n = 35) were collected from 14 provinces in Iran for analysis of Hg contamination, performed using an advanced mercury analyzer (model Leco 254 AMA, USA) according to ASTM standard D-6722. Total Hg levels in Iranian bears from all areas ranged from 115.81 to 505.82 μg/kg, with a mean of 193.39 ng/g. Mercury concentrations in brown bear hair from different provinces in Iran were as follows in descending order: Khorasan Razavi > Esfahan > Khozestan > Yazd > Lorestan > Charmahalva Bakhtiari > Bushehr > Mazandaran > Markazi > Tehran > Ardebil > Gilan > East Azerbaijan. The highest content of Hg was found in the south (206.62 ± 31.95 ng/g), whereas the lowest levels were detected in the west (167.71 ± 32.97 ng/g). Overall total Hg content in bear hair was below harmful levels for this species. A decreasing trend was noted in the period 1986-2006, which may be mainly due to reduction of global Hg emissions. Data suggest that food habits and habitat are two important factors that influence Hg accumulation in bears.

  11. Black bears in Arkansas: Characteristics of a successful translocation

    Science.gov (United States)

    Smith, Kimberly G.; Clark, Joseph D.

    1994-01-01

    In 1958, the Arkansas Game and Fish Commission began translocating black bears (Ursus americanus) from Minnesota to the Interior Highlands (Ozark and Ouachita mountains) of Arkansas where bears had been extirpated early in this century. This project continued for 11 years with little public imput, during which time an estimated 254 bears were released. We estimate there are now >2,500 bears in the Interior Highlands of Arkansas, Missouri, and Oklahoma, making it one of the most successful translocations of a Carnivora. Factors that contributed to the success include use of wild-captured animals, elimination of major factors associated with extirpation, release into prime habitats within the former range, multiple release sites, release of 20–40 animals/year for eight years, and release of mostly males prior to release of mostly females. Studies on two allopatric populations demonstrate that they are now diverging in some demographic characteristics, including litter size, cub survivorship, and adult sex-ratio. Translocation of black bears to the Interior Highlands is successful in terms of numbers of animals, but it will not be truly successful until people accept black bears as part of the regional fauna. To that end, those associated with management and research of bears in Arkansas are now focussing on public education and control of nuisance bears.

  12. Bet-hedging applications for conservation

    Indian Academy of Sciences (India)

    Unknown

    Bet hedging; Bitterroot wilderness; environmental correlation; grizzly bear; least tern; Sterna antillarum; Ursus arctos horribilis ... market, a hedging investor can reduce the risk of devas- ..... populations were approximated by three methods:.

  13. Implications of the circumpolar genetic structure of polar bears for their conservation in a rapidly warming Arctic.

    Directory of Open Access Journals (Sweden)

    Elizabeth Peacock

    Full Text Available We provide an expansive analysis of polar bear (Ursus maritimus circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1-3 generations directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation

  14. Implications of the circumpolar genetic structure of polar bears for their conservation in a rapidly warming Arctic.

    Science.gov (United States)

    Peacock, Elizabeth; Sonsthagen, Sarah A; Obbard, Martyn E; Boltunov, Andrei; Regehr, Eric V; Ovsyanikov, Nikita; Aars, Jon; Atkinson, Stephen N; Sage, George K; Hope, Andrew G; Zeyl, Eve; Bachmann, Lutz; Ehrich, Dorothee; Scribner, Kim T; Amstrup, Steven C; Belikov, Stanislav; Born, Erik W; Derocher, Andrew E; Stirling, Ian; Taylor, Mitchell K; Wiig, Øystein; Paetkau, David; Talbot, Sandra L

    2015-01-01

    We provide an expansive analysis of polar bear (Ursus maritimus) circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1-3 generations) directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos) uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation connectivity will allow

  15. Implications of the circumpolar genetic structure of polar bears for their conservation in a rapidly warming Arctic

    Science.gov (United States)

    Peacock, Elizabeth; Sonsthagen, Sarah A.; Obbard, Martyn E.; Boltunov, Andrei N.; Regehr, Eric V.; Ovsyanikov, Nikita; Aars, Jon; Atkinson, Stephen N.; Sage, George K.; Hope, Andrew G.; Zeyl, Eve; Bachmann, Lutz; Ehrich, Dorothee; Scribner, Kim T.; Amstrup, Steven C.; Belikov, Stanislav; Born, Erik W.; Derocher, Andrew E.; Stirling, Ian; Taylor, Mitchell K.; Wiig, Øystein; Paetkau, David; Talbot, Sandra L.

    2015-01-01

    We provide an expansive analysis of polar bear (Ursus maritimus) circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1–3 generations) directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos) uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation connectivity will

  16. 76 FR 61266 - Special Regulations; Areas of the National Park System, Grand Teton National Park, Bicycle Routes...

    Science.gov (United States)

    2011-10-04

    ... Yellowstone National Park, Grand Teton is at the heart of the Greater Yellowstone Ecosystem, and includes the... elk, moose, bison, pronghorn, grizzly and black bears, grey wolves, and coyotes. Other species such as...

  17. Population viability and connectivity of the Louisiana black bear (Ursus americanus luteolus)

    Science.gov (United States)

    Laufenberg, Jared S.; Clark, Joseph D.

    2014-01-01

    In 1992, the U.S. Fish and Wildlife Service (USFWS) granted Ursus americanus luteolus (Louisiana black bear) threatened status under the U.S. Endangered Species Act of 1973, listing loss and fragmentation of habitat as the primary threats. A study was developed by the U.S. Geological Survey in cooperation with the University of Tennessee, the Louisiana Department of Wildlife and Fisheries, and the USFWS to estimate demographic rates and genetic structure of Louisiana black bear populations; evaluate relations between environmental and anthropogenic factors and demographic, genetic, and movement characteristics of Louisiana black bear populations; and develop data-driven stochastic population projection models to assess long-term persistence of individual subpopulations and the overall black bear population in Louisiana.

  18. Salmon River Habitat Enhancement. 1990 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  19. Helminths of brown bears (Ursus arctos) in the Kola Peninsula.

    Science.gov (United States)

    Bugmyrin, S V; Tirronen, K F; Panchenko, D V; Kopatz, A; Hagen, S B; Eiken, H G; Kuznetsova, A S

    2017-06-01

    We present data on the species composition of helminths in brown bears (Ursus arctos) from the Murmansk Region, Russia. The absence of any information about helminths of brown bear in the region necessitated the conduct of these studies. Samples were collected in 2014 and 2015 in the southern part of the Kola Peninsula from the White Sea coastal habitats. Annually, in the study area, 1-3 bears are legally hunted and biological samples for examination are very difficult to obtain. Therefore, we used fecal samples. We studied 93 feces and identified parasite eggs identified in 43 of them by morphometric criteria. The surveys revealed eggs of the following helminths: Dicrocoelium sp., Diphyllobothrium sp., Anoplocephalidae, Capillariidae, Baylisascaris sp., Strongylida 1, and Strongylida 2. These results represent the first reconnaissance stage, which allowed characterizing the taxonomic diversity and prevalence of parasites of brown bears of the Kola Peninsula.

  20. Acute gastric dilatation and volvulus in a free-living polar bear

    Science.gov (United States)

    Amstrup, Steven C.; Nielsen, Carol A.

    1989-01-01

    A large, adult male polar bear (Ursus maritimus) was found dead on a barrier island north of Prudhoe Bay, Alaska (USA), in June 1987. There were no external signs of trauma. A twisted distended stomach, distinctive parenchymal and fascial congestion, and significant difficulty in repositioning the anterior abdominal organs, indicated that gastric dilatation-volvulus (GDV) was the proximate cause of death. Polar bears frequently consume large quantities of food at one time and have large stomachs that are well adapted to periodic gorging. The scarcity of food in winter and early spring, combined with voluntary fasting and protracted vigorous activity during the breeding season in late spring may have predisposed this bear to GDV. The relationship between GDV and postprandial exercise emphasizes the need for a better understanding of how the present human invasion of arctic habitats may influence polar bear activities.

  1. Identifying polar bear resource selection patterns to inform offshore development in a dynamic and changing Arctic

    Science.gov (United States)

    Wilson, Ryan R.; Horne, Jon S.; Rode, Karyn D.; Regehr, Eric V.; Durner, George M.

    2014-01-01

    Although sea ice loss is the primary threat to polar bears (Ursus maritimus), little can be done to mitigate its effects without global efforts to reduce greenhouse gas emissions. Other factors, however, could exacerbate the impacts of sea ice loss on polar bears, such as exposure to increased industrial activity. The Arctic Ocean has enormous oil and gas potential, and its development is expected to increase in the coming decades. Estimates of polar bear resource selection will inform managers how bears use areas slated for oil development and to help guide conservation planning. We estimated temporally-varying resource selection patterns for non-denning adult female polar bears in the Chukchi Sea population (2008–2012) at two scales (i.e., home range and weekly steps) to identify factors predictive of polar bear use throughout the year, before any offshore development. From the best models at each scale, we estimated scale-integrated resource selection functions to predict polar bear space use across the population's range and determined when bears were most likely to use the region where offshore oil and gas development in the United States is slated to occur. Polar bears exhibited significant intra-annual variation in selection patterns at both scales but the strength and annual patterns of selection differed between scales for most variables. Bears were most likely to use the offshore oil and gas planning area during ice retreat and growth with the highest predicted use occurring in the southern portion of the planning area. The average proportion of predicted high-value habitat in the planning area was >15% of the total high-value habitat for the population during sea ice retreat and growth and reached a high of 50% during November 2010. Our results provide a baseline on which to judge future changes to non-denning adult female polar bear resource selection in the Chukchi Sea and help guide offshore development in the region. Lastly, our study provides a

  2. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities?

    OpenAIRE

    Rode, Karyn D.; Robbins, Charles T.; Nelson, Lynne; Amstrup, Steven C.

    2015-01-01

    Increased land use by polar bears (Ursus maritimus) due to climate‐change‐induced reduction of their sea‐ice habitat illustrates the impact of climate change on species distributions and the difficulty of conserving a large, highly specialized carnivore in the face of this global threat. Some authors have suggested that terrestrial food consumption by polar bears will help them withstand sea‐ice loss as they are forced to spend increasing amounts of time on land. Here, we evaluate the nutriti...

  3. Predator avoidance during reproduction: diel movements by spawning sockeye salmon between stream and lake habitats.

    Science.gov (United States)

    Bentley, Kale T; Schindler, Daniel E; Cline, Timothy J; Armstrong, Jonathan B; Macias, Daniel; Ciepiela, Lindsy R; Hilborn, Ray

    2014-11-01

    Daily movements of mobile organisms between habitats in response to changing trade-offs between predation risk and foraging gains are well established; however, less in known about whether similar tactics are used during reproduction, a time period when many organisms are particularly vulnerable to predators. We investigated the reproductive behaviour of adult sockeye salmon (Oncorhynchus nerka) and the activity of their principal predator, brown bears (Ursus arctos), on streams in south-western Alaska. Specifically, we continuously monitored movements of salmon between lake habitat, where salmon are invulnerable to bears, and three small streams, where salmon spawn and are highly vulnerable to bears. We conducted our study across 2 years that offered a distinct contrast in bear activity and predation rates. Diel movements by adult sockeye salmon between stream and lake habitat were observed in 51.3% ± 17.7% (mean ± SD) of individuals among years and sites. Fish that moved tended to hold in the lake for most of the day and then migrated into spawning streams during the night, coincident with when bear activity on streams tended to be lowest. Additionally, cyclic movements between lakes and spawning streams were concentrated earlier in the spawning season. Individuals that exhibited diel movements had longer average reproductive life spans than those who made only one directed movement into a stream. However, the relative effect was dependent on the timing of bear predation, which varied between years. When predation pressure primarily occurred early in the spawning run (i.e., during the height of the diel movements), movers lived 120-310% longer than non-movers. If predation pressure was concentrated later in the spawning run (i.e. when most movements had ceased), movers only lived 10-60% longer. Our results suggest a dynamic trade-off in reproductive strategies of sockeye salmon; adults must be in the stream to reproduce, but must also avoid predation long

  4. Managing brown bears and wilderness recreation on the Kenai Peninsula, Alaska, USA

    Science.gov (United States)

    Jacobs, Michael J.; Schloeder, Catherine A.

    1992-03-01

    The Russian River-Cooper Lake-Resurrection River trail system, on the Kenai Peninsula, Alaska, traverses essential brown bear habitat. To set management guidelines for this area, the trail system was monitored using questionnaire cards and electronic trail counters from 1984 through 1987. This helped to determine the extent and type of human use and human-bear encounters in the area. Management recommendations were intended to reduce the potential displacement of brown bears by hikers and to inform wilderness users of the proper camping techniques to avoid attracting bears to the campsite. An average of 5800 visitors hiked or camped along the trail system each year. Encounters between hikers and brown bears averaged 7/yr while encounters with black bears averaged 35/yr. Minor problems occurred with both the electronic trail counters and the questionnaire. Modilications to these methods are discussed. A Limits of Acceptable Change format should be considered for the trail system to determine the character and future direction of recreational activities and monitoring of the trail system should continue in the future.

  5. Connectivity among subpopulations of Louisiana black bears as estimated by a step selection function

    Science.gov (United States)

    Clark, Joseph D.; Jared S. Laufenberg,; Maria Davidson,; Jennifer L. Murrow,

    2015-01-01

    Habitat fragmentation is a fundamental cause of population decline and increased risk of extinction for many wildlife species; animals with large home ranges and small population sizes are particularly sensitive. The Louisiana black bear (Ursus americanus luteolus) exists only in small, isolated subpopulations as a result of land clearing for agriculture, but the relative potential for inter-subpopulation movement by Louisiana black bears has not been quantified, nor have characteristics of effective travel routes between habitat fragments been identified. We placed and monitored global positioning system (GPS) radio collars on 8 female and 23 male bears located in 4 subpopulations in Louisiana, which included a reintroduced subpopulation located between 2 of the remnant subpopulations. We compared characteristics of sequential radiolocations of bears (i.e., steps) with steps that were possible but not chosen by the bears to develop step selection function models based on conditional logistic regression. The probability of a step being selected by a bear increased as the distance to natural land cover and agriculture at the end of the step decreased and as distance from roads at the end of a step increased. To characterize connectivity among subpopulations, we used the step selection models to create 4,000 hypothetical correlated random walks for each subpopulation representing potential dispersal events to estimate the proportion that intersected adjacent subpopulations (hereafter referred to as successful dispersals). Based on the models, movement paths for males intersected all adjacent subpopulations but paths for females intersected only the most proximate subpopulations. Cross-validation and genetic and independent observation data supported our findings. Our models also revealed that successful dispersals were facilitated by a reintroduced population located between 2 distant subpopulations. Successful dispersals for males were dependent on natural land

  6. Happy 50th Birthday Smokey Bear! A Learning Kit about Forests and Fire Safety for Grades K-3.

    Science.gov (United States)

    Hall, Meryl

    For over 50 years, the primary goal of Smokey Bear has been to introduce the forest fire prevention message to young children. This learning kit provides the K-3 teacher with activities and resources to help students learn about Smokey Bear and fire safety, about forests as habitats, and about what they can do to protect forests. Students are…

  7. Behavioural differences between single scandinavian brown bears (Ursus arctos) and females with dependent young when experimentally approached by humans.

    Science.gov (United States)

    Sahlén, Veronica; Ordiz, Andrés; Swenson, Jon E; Støen, Ole Gunnar

    2015-01-01

    Carnivore-human encounters that result in human injury present a conservation and management challenge and it is therefore important to understand under what conditions such incidents occur. Females with cubs are often involved when humans are injured by brown bears Ursus arctos. In Scandinavia, this is particularly true for unarmed recreational forest users. Our aim was to document behavioural differences between single bears and females with cubs in order to develop recommendations to minimize the risk of injuries to recreational forest users. We documented the reactions of GPS-collared females with cubs and single brown bears to experimental approaches by humans to 50 m from the bear on 42 and 108 occasions, respectively. The majority of females with cubs (95%) and single bears (89%) left when approached. Bears that left were passed at shorter distances and were in more open areas than those that stayed. Both groups had similar flight initiation distances, which were longer for bears that were active at the time of the disturbance. Females with cubs selected more open habitat than single bears, also for the new site they selected following disturbance. Females with cubs, particularly active females with cubs of the year, moved greater distances and spent more time active following the approach. Females with cubs and single bears were seen or heard in 26% and 14% of the approaches, respectively. None of the bears displayed any aggressive behaviour during the approaches. Females with cubs selected more open habitat, perhaps predisposing them to encountering people that are not involved in hunting activities, which might be the primary explanation why females with cubs are most frequently involved when unarmed people are injured by bears in Scandinavia. To mitigate injury risks, one must consider factors that bring bears closer to human activity in the first place.

  8. A circumpolar monitoring framework for polar bears

    Science.gov (United States)

    Vongraven, Dag; Aars, Jon; Amstrup, Steven C.; Atkinson, Stephen N.; Belikov, Stanislav; Born, Erik W.; DeBruyn, T.D.; Derocher, Andrew E.; Durner, George M.; Gill, Michael J.; Lunn, Nicholas J.; Obbard, Martyn E.; Omelak, Jack; Ovsyanikov, Nikita; Peacock, Elizabeth; Richardson, E.E.; Sahanatien, Vicki; Stirling, Ian; Wiig, Øystein

    2012-01-01

    Polar bears (Ursus maritimus) occupy remote regions that are characterized by harsh weather and limited access. Polar bear populations can only persist where temporal and spatial availability of sea ice provides adequate access to their marine mammal prey. Observed declines in sea ice availability will continue as long as greenhouse gas concentrations rise. At the same time, human intrusion and pollution levels in the Arctic are expected to increase. A circumpolar understanding of the cumulative impacts of current and future stressors is lacking, long-term trends are known from only a few subpopulations, and there is no globally coordinated effort to monitor effects of stressors. Here, we describe a framework for an integrated circumpolar monitoring plan to detect ongoing patterns, predict future trends, and identify the most vulnerable polar bear subpopulations. We recommend strategies for monitoring subpopulation abundance and trends, reproduction, survival, ecosystem change, human-caused mortality, human–bear conflict, prey availability, health, stature, distribution, behavioral change, and the effects that monitoring itself may have on polar bears. We assign monitoring intensity for each subpopulation through adaptive assessment of the quality of existing baseline data and research accessibility. A global perspective is achieved by recommending high intensity monitoring for at least one subpopulation in each of four major polar bear ecoregions. Collection of data on harvest, where it occurs, and remote sensing of habitat, should occur with the same intensity for all subpopulations. We outline how local traditional knowledge may most effectively be combined with the best scientific methods to provide comparable and complementary lines of evidence. We also outline how previously collected intensive monitoring data may be sub-sampled to guide future sampling frequencies and develop indirect estimates or indices of subpopulation status. Adoption of this framework

  9. Could brown bears (Ursus arctos) have survived in Ireland during the Last Glacial Maximum?

    Science.gov (United States)

    Leonard, Saoirse A; Risley, Claire L; Turvey, Samuel T

    2013-08-23

    Brown bears are recorded from Ireland during both the Late Pleistocene and early-mid Holocene. Although most of the Irish landmass was covered by an ice sheet during the Last Glacial Maximum (LGM), Irish brown bears are known to have hybridized with polar bears during the Late Pleistocene, and it is suggested that the Irish brown bear population did not become extinct but instead persisted in situ through the LGM in a southwestern ice-free refugium. We use historical population modelling to demonstrate that brown bears are highly unlikely to have survived through the LGM in Ireland under any combination of life-history parameters shown by living bear populations, but instead would have rapidly become extinct following advance of the British-Irish ice sheet, and probably recolonized Ireland during the end-Pleistocene Woodgrange Interstadial from a closely related nearby source population. The time available for brown bear-polar bear hybridization was therefore restricted to narrow periods at the beginning or end of the LGM. Brown bears would have been extremely vulnerable to extinction in Quaternary habitat refugia and required areas substantially larger than southwestern Ireland to survive adverse glacial conditions.

  10. KAJIAN LINGKUNGAN RENCANA RELOKASI KWPLH BERUANG MADU DI KOTA BALIKPAPAN-PROVINSI KALIMANTAN TIMUR (Environmental Study of Sun Bear KWPLH Relocation Plan in Balikpapan-East Kalimantan

    Directory of Open Access Journals (Sweden)

    Sri Ngabekti

    2015-11-01

    Full Text Available ABSTRAK Kawasan Wisata Pendidikan Lingkungan Hidup (KWPLH beruang madu (Helarctos malayanus Balikpapan merupakan pusat pendidikan lingkungan yang dianggap sangat profesional, bersih dan dikelola dengan baik. Permasalahannya muncul pada tahun 2013 dengan adanya usulan relokasi beruang madu (dan enklosur ke Km 10 (Arboretum Wana Wisata Inhutani, karena lokasi yang lama akan dialihfungsikan menjadi bumi perkemahan. Relokasi beruang madu ke habitat baru memerlukan kajian lingkungan yang mendalam untuk menentukan kelayakan lokasi baru sebagai habitat beruang madu. Penelitian ini bertujuan untuk melakukan kajian lingkungan rencana relokasi beruang madu di Balikpapan. Metode penelitian yang digunakan adalah metode survei langsung dengan pengamatan dan pengukuran kondisi lingkungan (fisik/abiotik, biotik. Kuesioner dan pedoman wawancara digunakan untuk mengkaji aspek sosial-budaya di lokasi KWPLH beruang madu (Km 23 dan rencana relokasi di Km 10. Berdasarkan hasil pengukuran, observasi, dan analisis ketiga aspek lingkungan tersebut, dapat disimpulkan bahwa Km 10 dapat digunakan untuk relokasi beruang madu. Namun untuk meminimalisir dampak sosial, direkomendasikan agar beruang madu di Km 23 tidak direlokasi, dan dibuat lagi enklosur beruang madu di Km 10 untuk merawat beruang madu hasil sitaan yang lain.   ABSTRACT “Kawasan Wisata Pendidikan Lingkungan Hidup” (KWPLH of sun bear (Helarctos malayanus Balikpapan is an environmental education center which is considered to be very professional, clean and well managed. The problem appeared in 2013 with the proposal of sun bear relocation (and enclosure to Km 10 (Arboretum Wana Wisata Inhutani because the old location will be converted into a camping ground . Sun bear relocation to a new habitat needs depth environmental study to determine the feasibility of the new location as sun bear habitat. This study aims to conduct an environmental study of sun bear relocation plan in Balikpapan. Research method

  11. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities?

    Science.gov (United States)

    Rode, Karyn D.; Robbins, Charles T.; Nelson, Lynne; Amstrup, Steven C.

    2015-01-01

    Increased land use by polar bears (Ursus maritimus) due to climate-change-induced reduction of their sea-ice habitat illustrates the impact of climate change on species distributions and the difficulty of conserving a large, highly specialized carnivore in the face of this global threat. Some authors have suggested that terrestrial food consumption by polar bears will help them withstand sea-ice loss as they are forced to spend increasing amounts of time on land. Here, we evaluate the nutritional needs of polar bears as well as the physiological and environmental constraints that shape their use of terrestrial ecosystems. Only small numbers of polar bears have been documented consuming terrestrial foods even in modest quantities. Over much of the polar bear's range, limited terrestrial food availability supports only low densities of much smaller, resident brown bears (Ursus arctos), which use low-quality resources more efficiently and may compete with polar bears in these areas. Where consumption of terrestrial foods has been documented, polar bear body condition and survival rates have declined even as land use has increased. Thus far, observed consumption of terrestrial food by polar bears has been insufficient to offset lost ice-based hunting opportunities but can have ecological consequences for other species. Warming-induced loss of sea ice remains the primary threat faced by polar bears.

  12. Ancient Hybridization and an Irish Origin for the Modern Polar Bear Matriline

    Science.gov (United States)

    Edwards, Ceiridwen J.; Suchard, Marc A.; Lemey, Philippe; Welch, John J.; Barnes, Ian; Fulton, Tara L.; Barnett, Ross; O’Connell, Tamsin C.; Coxon, Peter; Monaghan, Nigel; Valdiosera, Cristina E.; Lorenzen, Eline D.; Willerslev, Eske; Baryshnikov, Gennady F.; Rambaut, Andrew; Thomas, Mark G.; Bradley, Daniel G.; Shapiro, Beth

    2015-01-01

    Summary Background Polar bears (Ursus maritimus) are among those species most susceptible to the rapidly changing arctic climate, and their survival is of global concern. Despite this, little is known about polar bear species history. Future conservation strategies would significantly benefit from an understanding of basic evolutionary information, such as the timing and conditions of their initial divergence from brown bears (U. arctos) or their response to previous environmental change. Results We used a spatially explicit phylogeographic model to estimate the dynamics of 242 brown bear and polar bear matrilines sampled throughout the last 120,000 years and across their present and past geographic ranges. Our results show that the present distribution of these matrilines was shaped by a combination of regional stability and rapid, long-distance dispersal from ice-age refugia. In addition, hybridization between polar bears and brown bears may have occurred multiple times throughout the Late Pleistocene. Conclusions The reconstructed matrilineal history of brown and polar bears has two striking features. First, it is punctuated by dramatic and discrete climate-driven dispersal events. Second, opportunistic mating between these two species as their ranges overlapped has left a strong genetic imprint. In particular, a likely genetic exchange with extinct Irish brown bears forms the origin of the modern polar bear matriline. This suggests that interspecific hybridization not only may be more common than previously considered but may be a mechanism by which species deal with marginal habitats during periods of environmental deterioration. PMID:21737280

  13. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    Science.gov (United States)

    Chavarie, Louise; Howland, Kimberly L; Harris, Les N; Hansen, Michael J; Harford, William J; Gallagher, Colin P; Baillie, Shauna M; Malley, Brendan; Tonn, William M; Muir, Andrew M; Krueger, Charles C

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0-150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats

  14. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    Science.gov (United States)

    Chavarie, Louise; Howland, Kimberly L.; Harris, Les N.; Hansen, Michael J.; Harford, William J.; Gallagher, Colin P.; Baillie, Shauna M.; Malley, Brendan; Tonn, William M.; Muir, Andrew M.; Krueger, Charles C.

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0–150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats

  15. Scale dependence in habitat selection: The case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain)

    Science.gov (United States)

    Maria C. Mateo Sanchez; Samuel A. Cushman; Santiago Saura

    2013-01-01

    Animals select habitat resources at multiple spatial scales. Thus, explicit attention to scale dependency in species-habitat relationships is critical to understand the habitat suitability patterns as perceived by organisms in complex landscapes. Identification of the scales at which particular environmental variables influence habitat selection may be as important as...

  16. Using satellite telemetry to define spatial population structure in polar bears in the Norwegian and western Russian Arctic

    Science.gov (United States)

    Mauritzen, Mette; Derocher, Andrew E.; Wiig, Øystein; Belikov, Stanislav; Boltunov, Andrei N.; Garner, Gerald W.

    2002-01-01

    1. Animal populations, defined by geographical areas within a species’ distribution where population dynamics are largely regulated by births and deaths rather than by migration from surrounding areas, may be the correct unit for wildlife management. However, in heterogeneous landscapes varying habitat quality may yield subpopulations with distinct patterns in resource use and demography significant to the dynamics of populations.2. To define the spatial population structure of polar bears Ursus maritimus in the Norwegian and western Russian Arctic, and to assess the existence of a shared population between the two countries, we analysed satellite telemetry data obtained from 105 female polar bears over 12 years.3. Using both cluster analyses and home-range estimation methods, we identified five population units inhabiting areas with different sea-ice characteristics and prey availability.4. The continuous distribution of polar bear positions indicated that the different subpopulations formed one continuous polar bear population in the Norwegian and western Russian Arctic. Hence, Norway and Russia have a shared management responsibility.5. The spatial population structure identified will provide a guide for evaluating geographical patterns in polar bear ecology, the dynamics of polar bear–seal relationships and the effects of habitat alteration due to climate change. The work illustrates the importance of defining population borders and subpopulation structure in understanding the dynamics and management of larger animals.

  17. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence

    Science.gov (United States)

    Steven C. Amstrup; Eric T. DeWeaver; David C. Douglas; Bruce G. Marcot; George M. Durner; Cecilia M. Bitz; David A. Bailey

    2010-01-01

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible...

  18. Shallow-water habitats as sources of fallback foods for hominins.

    Science.gov (United States)

    Wrangham, Richard; Cheney, Dorothy; Seyfarth, Robert; Sarmiento, Esteban

    2009-12-01

    Underground storage organs (USOs) have been proposed as critical fallback foods for early hominins in savanna, but there has been little discussion as to which habitats would have been important sources of USOs. USOs consumed by hominins could have included both underwater and underground storage organs, i.e., from both aquatic and terrestrial habitats. Shallow aquatic habitats tend to offer high plant growth rates, high USO densities, and relatively continuous USO availability throughout the year. Baboons in the Okavango delta use aquatic USOs as a fallback food, and aquatic or semiaquatic USOs support high-density human populations in various parts of the world. As expected given fossilization requisites, the African early- to mid-Pleistocene shows an association of Homo and Paranthropus fossils with shallow-water and flooded habitats where high densities of plant-bearing USOs are likely to have occurred. Given that early hominins in the tropics lived in relatively dry habitats, while others occupied temperate latitudes, ripe, fleshy fruits of the type preferred by African apes would not normally have been available year round. We therefore suggest that water-associated USOs were likely to have been key fallback foods, and that dry-season access to aquatic habitats would have been an important predictor of hominin home range quality. This study differs from traditional savanna chimpanzee models of hominin origins by proposing that access to aquatic habitats was a necessary condition for adaptation to savanna habitats. It also raises the possibility that harvesting efficiency in shallow water promoted adaptations for habitual bipedality in early hominins.

  19. Ancient hybridization and an Irish origin for the modern polar bear matriline.

    Science.gov (United States)

    Edwards, Ceiridwen J; Suchard, Marc A; Lemey, Philippe; Welch, John J; Barnes, Ian; Fulton, Tara L; Barnett, Ross; O'Connell, Tamsin C; Coxon, Peter; Monaghan, Nigel; Valdiosera, Cristina E; Lorenzen, Eline D; Willerslev, Eske; Baryshnikov, Gennady F; Rambaut, Andrew; Thomas, Mark G; Bradley, Daniel G; Shapiro, Beth

    2011-08-09

    Polar bears (Ursus maritimus) are among those species most susceptible to the rapidly changing arctic climate, and their survival is of global concern. Despite this, little is known about polar bear species history. Future conservation strategies would significantly benefit from an understanding of basic evolutionary information, such as the timing and conditions of their initial divergence from brown bears (U. arctos) or their response to previous environmental change. We used a spatially explicit phylogeographic model to estimate the dynamics of 242 brown bear and polar bear matrilines sampled throughout the last 120,000 years and across their present and past geographic ranges. Our results show that the present distribution of these matrilines was shaped by a combination of regional stability and rapid, long-distance dispersal from ice-age refugia. In addition, hybridization between polar bears and brown bears may have occurred multiple times throughout the Late Pleistocene. The reconstructed matrilineal history of brown and polar bears has two striking features. First, it is punctuated by dramatic and discrete climate-driven dispersal events. Second, opportunistic mating between these two species as their ranges overlapped has left a strong genetic imprint. In particular, a likely genetic exchange with extinct Irish brown bears forms the origin of the modern polar bear matriline. This suggests that interspecific hybridization not only may be more common than previously considered but may be a mechanism by which species deal with marginal habitats during periods of environmental deterioration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Environmental Impact Analysis Process. Draft Environmental Impact Statement Proposed Alaskan Radar System Over-the-Horizon Backscatter Radar Program

    Science.gov (United States)

    1986-08-01

    Mustela vison wolverine Gulo Kulo river otter Lutra canadensis lynx Lynx canadensis moose Alces alces caribou Rangifer tarandus Dall’s sheep Ovic dalli...tissue respiratory chain function at a power density of 5 mW/cm2 . It is unlikely that such effects would be detectable at the power densities at ground...Vulves vulpes black bear Ursus americanus grizzly bear Ursus arctos marten Martes americana ermine Mustela erminea least weasel Mustela nivalis mink

  1. Bear maul craniocerebral trauma in Kashmir Valley.

    Science.gov (United States)

    Bashir, Sheikh Adil; Rasool, Altaf; Zaroo, Mohamad Inam; Wani, Adil Hafeez; Zargar, Haroon Rashid; Darzi, Mohammad Ashraf; Khursheed, Nayil

    2013-01-01

    Craniocerebral injuries constitute the bulk of the trauma patients in all the tertiary-care hospitals. Bear attacks as a cause of trauma to the brain and its protective covering are rare. This was a hospital-based retrospective (January 1990 to July 2005) and prospective study (August 2005 to December 2010). Craniocerebral trauma was seen in 49 patients of bear maul injuries. Loss of scalp tissue was seen in 17 patients, 13 of whom had exposed pericranium and needed split-thickness skin grafting, while 4 patients with exposed skull bones required scalp transposition flaps as an initial procedure. Skull bone fractures without associated brain injury were observed in 24 cases. Frontal bone was the site of fracture in the majority of cases (95%). Surgical intervention was needed in 18 patients for significantly depressed fractures. Three of these patients had depressed frontal bone fractures with underlying contusions and needed brain debridement and duraplasty. Injury to the brain was observed in 8 patients. Trauma to the brain and its protective coverings as a result of bear attacks is rarely known. Brain injury occurs less commonly as compared to soft tissue and bony injury. Craniocerebral trauma as a result of bear assaults has been a hitherto neglected area of trauma as the past reported incidence has been very low. Of late, the incidence and severity of such attacks has assumed grave proportions in areas adjacent to known bear habitats. An innocuous-looking surface wound might be the only presentation of an underlying severe brain trauma. Public awareness has to be generated to protect the people living in hilly areas.

  2. Use of spatial capture–recapture to estimate density of Andean bears in northern Ecuador

    Science.gov (United States)

    Molina, Santiago; Fuller, Angela K.; Morin, Dana J.; Royle, J. Andrew

    2017-01-01

    The Andean bear (Tremarctos ornatus) is the only extant species of bear in South America and is considered threatened across its range and endangered in Ecuador. Habitat loss and fragmentation is considered a critical threat to the species, and there is a lack of knowledge regarding its distribution and abundance. The species is thought to occur at low densities, making field studies designed to estimate abundance or density challenging. We conducted a pilot camera-trap study to estimate Andean bear density in a recently identified population of Andean bears northwest of Quito, Ecuador, during 2012. We compared 12 candidate spatial capture–recapture models including covariates on encounter probability and density and estimated a density of 7.45 bears/100 km2 within the region. In addition, we estimated that approximately 40 bears used a recently named Andean bear corridor established by the Secretary of Environment, and we produced a density map for this area. Use of a rub-post with vanilla scent attractant allowed us to capture numerous photographs for each event, improving our ability to identify individual bears by unique facial markings. This study provides the first empirically derived density estimate for Andean bears in Ecuador and should provide direction for future landscape-scale studies interested in conservation initiatives requiring spatially explicit estimates of density.

  3. Software Review.

    Science.gov (United States)

    McGrath, Diane, Ed.

    1989-01-01

    Reviewed is a computer software package entitled "Audubon Wildlife Adventures: Grizzly Bears" for Apple II and IBM microcomputers. Included are availability, hardware requirements, cost, and a description of the program. The murder-mystery flavor of the program is stressed in this program that focuses on illegal hunting and game…

  4. Future sea ice conditions in Western Hudson Bay and consequences for polar bears in the 21st century.

    Science.gov (United States)

    Castro de la Guardia, Laura; Derocher, Andrew E; Myers, Paul G; Terwisscha van Scheltinga, Arjen D; Lunn, Nick J

    2013-09-01

    The primary habitat of polar bears is sea ice, but in Western Hudson Bay (WH), the seasonal ice cycle forces polar bears ashore each summer. Survival of bears on land in WH is correlated with breakup and the ice-free season length, and studies suggest that exceeding thresholds in these variables will lead to large declines in the WH population. To estimate when anthropogenic warming may have progressed sufficiently to threaten the persistence of polar bears in WH, we predict changes in the ice cycle and the sea ice concentration (SIC) in spring (the primary feeding period of polar bears) with a high-resolution sea ice-ocean model and warming forced with 21st century IPCC greenhouse gas (GHG) emission scenarios: B1 (low), A1B (medium), and A2 (high). We define critical years for polar bears based on proposed thresholds in breakup and ice-free season and we assess when ice-cycle conditions cross these thresholds. In the three scenarios, critical years occur more commonly after 2050. From 2001 to 2050, 2 critical years occur under B1 and A2, and 4 under A1B; from 2051 to 2100, 8 critical years occur under B1, 35 under A1B and 41 under A2. Spring SIC in WH is high (>90%) in all three scenarios between 2001 and 2050, but declines rapidly after 2050 in A1B and A2. From 2090 to 2100, the mean spring SIC is 84 (±7)% in B1, 56 (±26)% in A1B and 20 (±13)% in A2. Our predictions suggest that the habitat of polar bears in WH will deteriorate in the 21st century. Ice predictions in A1B and A2 suggest that the polar bear population may struggle to persist after ca. 2050. Predictions under B1 suggest that reducing GHG emissions could allow polar bears to persist in WH throughout the 21st century. © 2013 John Wiley & Sons Ltd.

  5. Regional Assessment of Remote Forests and Black Bear Habitat from Forest Resource Surveys

    Science.gov (United States)

    Victor A. Rudis; John B. Tansey

    1995-01-01

    We developed a spatially explicit modeling approach, using a county-scaled remote forest (i.e., forested area reserved from or having no direct human interference) assessment derived from 1984-1990 forest resource inventory data and a 1984 black bear (Ursus americantus) range map for 12 states in the southern United States.We defined minimum suitable and optimal black...

  6. Grande Ronde Basin Fish Habitat Enhancement Project : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Powell, Russ M.; Stennfeld, Scott P.

    2001-04-01

    project that will protect an additional 1.3 miles of stream and 298.3 acres of habitat; (2) Conducting instream work activities in 3 streams to enhance habitat and/or restore natural channel dimensions, patterns or profiles; (3) Improving fish passage in Bear Creek to restore tributary and mainstem access; (4) Planting and seeding 6.7 stream miles with 7,100 plants and 365 lbs. of seed; (5) Establishing 18 new photopoints and retaking 229 existing photopoint pictures; (6) Monitoring stream temperatures at 12 locations on 6 streams; (7) completing riparian fence, water gap and other maintenance on 98.7 miles of project fences. Since initiation of the project in 1984 over 62 miles of anadromous fish bearing streams and 1,910 acres of habitat have been protected, enhanced and maintained.

  7. Idaho Habitat Evaluation for Off-Site Mitigation Record : Annual Report 1987.

    Energy Technology Data Exchange (ETDEWEB)

    Petrosky, Charles E.; Holubetz, Terry B. (Idaho Dept. of Fish and Game, Boise, ID (USA)

    1988-04-01

    The Idaho Department of Fish and Game has been monitoring and evaluating existing and proposed habitat improvement projects for steelhead (Salmo gairdneri) and chinook salmon (Oncorhynchus tshawytscha) in the Clearwater and Salmon River drainages over the last four years. Projects included in the evaluation are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia rivers. A mitigation record is being developed to use increased smolt production at full seeding as the best measure of benefit from a habitat enhancement project. Determination of full benefit from a project depends on presence of adequate numbers of fish to document actual increases in fish production. The depressed nature of upriver anadromous stocks have precluded attainment of full benefit of any habitat project in Idaho. Partial benefit will be credited to the mitigation record in the interim period of run restoration. According to the BPA Work Plan, project implementors have the primary responsibility for measuring physical habitat and estimating habitat change. To date, Idaho habitat projects have been implemented primarily by the US Forest Service (USFS). The Shoshone-Bannock Tribes (SBT) have sponsored three projects (Bear Valley Mine, Yankee Fork, and the proposed East Fork Salmon River projects). IDFG implemented two barrier-removal projects (Johnson Creek and Boulder Creek) that the USFS was unable to sponsor at that time. The role of IDFG in physical habitat monitoring is primarily to link habitat quality and habitat change to changes in actual, or potential, fish production. Individual papers were processed separately for the data base.

  8. Geostatistical analysis of allele presence patterns among American black bears in eastern North Carolina

    Science.gov (United States)

    Thompson, L.M.; Van Manen, F.T.; King, T.L.

    2005-01-01

    Highways are one of the leading causes of wildlife habitat fragmentation and may particularly affect wide-ranging species, such as American black bears (Ursus americanus). We initiated a research project in 2000 to determine potential effects of a 4-lane highway on black bear ecology in Washington County, North Carolina. The research design included a treatment area (highway construction) and a control area and a pre- and post-construction phase. We used data from the pre-construction phase to determine whether we could detect scale dependency or directionality among allele occurrence patterns using geostatistics. Detection of such patterns could provide a powerful tool to measure the effects of landscape fragmentation on gene flow. We sampled DNA from roots of black bear hair at 70 hair-sampling sites on each study area for 7 weeks during fall of 2000. We used microsatellite analysis based on 10 loci to determine unique multi-locus genotypes. We examined all alleles sampled at ???25 sites on each study area and mapped their presence or absence at each hair-sample site. We calculated semivariograms, which measure the strength of statistical correlation as a function of distance, and adjusted them for anisotropy to determine the maximum direction of spatial continuity. We then calculated the mean direction of spatial continuity for all examined alleles. The mean direction of allele frequency variation was 118.3?? (SE = 8.5) on the treatment area and 172.3?? (SE = 6.0) on the control area. Rayleigh's tests showed that these directions differed from random distributions (P = 0.028 and P < 0.001, respectively), indicating consistent directional patterns for the alleles we examined in each area. Despite the small spatial scale of our study (approximately 11,000 ha for each study area), we observed distinct and consistent patterns of allele occurrence, suggesting different directions of gene flow between the study areas. These directions seemed to coincide with the

  9. Development of a pan-Arctic monitoring plan for polar bears: Background paper

    Science.gov (United States)

    Vongraven, Dag; Peacock, Lily

    2011-01-01

    Polar bears (Ursus maritimus), by their very nature, and the extreme, remote environment in which they live, are inherently difficult to study and monitor. Monitoring polar bear populations is both arduous and costly and, to be effective, must be a long-term commitment. There are few jurisdictional governments and management boards with a mandate for polar bear research and management, and many have limited resources. Although population monitoring of polar bears has been a focus to some degree within most jurisdictions around the Arctic, of the 19 subpopulations recognised by the IUCN/Species Survival Commission Polar Bear Specialist Group (PBSG), adequate scientific trend data exist for only three of the subpopulations, fair trend data for five and poor or no trend data for the remaining 11 subpopulations (PBSG 2010a). There are especially critical knowledge gaps for the subpopulations in East Greenland, in the Russian Kara and Laptev seas, and in the Chukchi Sea, which is shared between Russia and the United States. The range covered by these subpopulations represents a third of the total area (approx. 23 million km2) of polar bears’ current range, and more than half if the Arctic Basin is included. If we use popular terms, we know close to nothing about polar bears in this portion of their range.As summer sea-ice extent, and to a lesser degree, spring-time extent, continues to retreat, outpacing model forecasts (Stroeve et al. 2007, Pedersen et al. 2009), polar bears face the challenge of adapting to rapidly changing habitats. There is a need to use current and synthesised information across the Arctic, and to develop new methods that will facilitate monitoring to generate new knowledge at a pan-Arctic scale. The circumpolar dimension can be lost when efforts are channelled into regional monitoring. Developing and implementing a plan that harmonises local, regional and global efforts will increase our power to detect and understand important trends for polar

  10. Polar bears: the fate of an icon.

    Science.gov (United States)

    Fitzgerald, Kevin T

    2013-11-01

    the bears are so vulnerable to the effects of climate change. Polar bears have few alternatives if their habitat (the sea ice) and their access to their ringed seal prey rapidly disappear. Predictions that polar bears may be able to adjust and sustain themselves on alternative food sources are not based on reality. Spring breakup of the sea ice is happening much earlier as well as fall freezeup is getting later, thereby prolonging the open water period that the bears are shore bound. If trends continue and the ice continues to disappear, the effect on polar bears would be devastating. Veterinarians must stay involved in polar bear studies and in multidisciplinary conservation studies dealing with threatened and endangered species worldwide. On account of their training, veterinarians can offer a unique skill set that can provide access to a number of technologies critical to conservation efforts. The oath veterinarians take on graduation from veterinary school charges them to be sworn to the "conservation of animal resources" and in the education of the public. We are only as good as the oaths we keep. © 2013 Published by Elsevier Inc.

  11. Detection of Dirofilaria immitis in a brown bear (Ursus arctos in Greece

    Directory of Open Access Journals (Sweden)

    Papadopoulos E.

    2017-09-01

    Full Text Available Dirofilaria immitis (canine heartworm is a filarial nematode found in the pulmonary circulation and the heart of susceptible hosts. It represents an important zoonotic vector-borne disease of domestic dogs and several wildlife species. Herein we report for the first time, the finding of Dirofilaria immitis worms in a brown bear killed in a vehicle collision in Northern Greece. The worms were morphologically identified; molecular examination, based on the analysis of the mitochondrial genes 12S (433 bp and CO1 (610 bp, verified the identification by demonstrating 100% similarity to D. immitis specimens deposited in GenBank. Brown bears in Greece occupy habitats that are shared with the potential wild and domestic hosts and the vectors of D. immitis and thus may be particularly susceptible to this parasite. This report contributes to the knowledge of dirofilariosis spread in Europe and on the epidemiological threats that may affect the survival of the endangered brown bear in Greece.

  12. Demography and behavior of polar bears summering on land in Alaska

    Science.gov (United States)

    Peacock, Lily

    2014-01-01

    Polar bears (Ursus maritimus) in the southern Beaufort Sea population (SB) are spending increased time on the coastal North Slope of Alaska between July and October (Gleason and Rode 2010). The duration spent on land by polar bears, satellite collared on the sea-ice in the spring, during the summer and fall has also increased (USGS, unpublished data; Figure 1). This change in polar bear ecology has relevance for human-bear interactions, subsistence harvest, prevalence of defense kills, and disturbance associated with existing land-based development [e.g., National Petroleum Reserve of Alaska (NPRA), Arctic National Wildlife Refuge (ANWR)], Native Alaskan communities, recreation (ANWR) and tourism (e.g., bear viewing in Kaktovik, AK). These activities have the potential to impact, in new ways, the status of the entire SB population. Concomitantly, the change in polar bear ecology will impact these human activities, and a base-line characterization of this phenomenon can better inform mitigation (e.g., industry permitting under the Endangered Species Act and Marine Mammal Protection Act). In this study we aim to characterize the demography, habitat-use, and aspects of foraging ecology and health of polar bears spending fall on land. The SB population is characterized by a divergent-sea ice ecology, where polar bears typically spend most of the year on the sea-ice, even as the pack ice retreats northward, away from the coast, to its minimal extent in September (Amstrup et al. 2008; Durner et al. 2009). From 2000 – 2005, using coastal aerial surveys, Schliebe et al. (2008) observed between 3.7 and 8% of polar bears from SB (~ 60 – 120 of 1526, Regher et al. 2006) on land during the autumn. Sighting probability was not estimated in these surveys, and therefore the numbers represent minimum numbers of bears on land. Our analysis of USGS data suggest an annual average of 15% (± 3%, SE) of polar bears satellite-tagged on the spring-time sea ice (total n = 18 of 124

  13. If Animals Could Talk: Bald Eagle, Bear, Florida Panther, Gopher Tortoise, Indigo Snake, Manatee, Otter, Raccoon.

    Science.gov (United States)

    Pinellas County District School Board, Clearwater, FL.

    In this series of booklets, eight Florida animals describe their appearance, habitats, food, behavior, and relationships with humans. Each entry is written for elementary students from the animal's point of view and includes a bibliography. Contained are the life stories of the bald eagle, black bear, Florida panther, gopher tortoise, Eastern…

  14. Bearing system

    Science.gov (United States)

    Kapich, Davorin D.

    1987-01-01

    A bearing system includes backup bearings for supporting a rotating shaft upon failure of primary bearings. In the preferred embodiment, the backup bearings are rolling element bearings having their rolling elements disposed out of contact with their associated respective inner races during normal functioning of the primary bearings. Displacement detection sensors are provided for detecting displacement of the shaft upon failure of the primary bearings. Upon detection of the failure of the primary bearings, the rolling elements and inner races of the backup bearings are brought into mutual contact by axial displacement of the shaft.

  15. Effects of extreme habitat conditions on otolith morphology: a case study on extremophile live bearing fishes (Poecilia mexicana, P. sulphuraria).

    Science.gov (United States)

    Schulz-Mirbach, Tanja; Riesch, Rüdiger; García de León, Francisco J; Plath, Martin

    2011-12-01

    Our study was designed to evaluate if, and to what extent, restrictive environmental conditions affect otolith morphology. As a model, we chose two extremophile livebearing fishes: (i) Poecilia mexicana, a widespread species in various Mexican freshwater habitats, with locally adapted populations thriving in habitats characterized by the presence of one (or both) of the natural stressors hydrogen sulphide and darkness, and (ii) the closely related Poecilia sulphuraria living in a highly sulphidic habitat (Baños del Azufre). All three otolith types (lapilli, sagittae, and asterisci) of P. mexicana showed a decrease in size ranging from the non-sulphidic cave habitat (Cueva Luna Azufre), to non-sulphidic surface habitats, to the sulphidic cave (Cueva del Azufre), to sulphidic surface habitats (El Azufre), to P. sulphuraria. Although we found a distinct differentiation between ecotypes with respect to their otolith morphology, no clear-cut pattern of trait evolution along the two ecological gradients was discernible. Otoliths from extremophiles captured in the wild revealed only slight similarities to aberrant otoliths found in captive-bred fish. We therefore hypothesize that extremophile fishes have developed coping mechanisms enabling them to avoid aberrant otolith growth - an otherwise common phenomenon in fishes reared under stressful conditions. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. American black bears and bee yard depredation at Okefenokee Swamp, Georgia

    Science.gov (United States)

    Clark, J.D.; Dobey, S.; Masters, D.V.; Scheick, B.K.; Pelton, M.R.; Sunquist, M.E.

    2005-01-01

    We studied American black bears (Ursus americanus), on the northwest periphery of Okefenokee Swamp in southeast Georgia, to assess landowner attitudes toward bears, estimate the extent of damage to commercial honey bee operations by bears, and evaluate methods to reduce bear depredations to apiaries. We collected 8,351 black bear radiolocations and identified 51 bee yards on our study area. Twenty-seven of 43 home ranges contained ≥1 bee yard, averaging 11.3 and 5.1 bee yards/home range of males (n = 7) and females (n = 20), respectively. From 1996 to 1998, we documented 7 instances of bears raiding bee yards within our study area and 6 instances in adjacent areas. All but 1 of the 13 raided yards were enclosed by electric fencing. In the 12 cases of damage to electrically fenced yards, however, the fences were not active because of depleted batteries. Based on compositional analysis, bear use of areas 800–1,400 m from bee yards was disproportionately greater than use 0–800 m from bee yards. Bears disproportionately used bay (red bay: Persea borbonia, loblolly bay: Gordonia lasianthus, and southern magnolia: Magnolia virginia), gum (water tupelo: Nyssa aquatic and black gum: N. sylvatica), and cypress (Taxodium spp.) and loblolly bay habitats, however, compared with slash pine (Pinus elliottii) or pine–oak (Quercus spp.), where bee yards usually were placed. The distribution of bear radiolocations likely reflected the use of those swamp and riparian areas, rather than avoidance of bee yards. Distances to streams from damaged bee yards (x̄ = 1,750 m) were less than from undamaged yards (x̄ = 4,442 m), and damaged bee yards were closer to unimproved roads (x̄ = 134 m) than were undamaged bee yards (x̄ = 802 m). Our analysis suggests that bee yard placement away from bear travel routes (such as streams and unimproved roads) can reduce bear depredation problems. Our results strongly indicate that working electric fences are effective deterrents to bear

  17. Population ecology of polar bears in Davis Strait, Canada and Greenland

    Science.gov (United States)

    Peacock, Elizabeth; Taylor, Mitchell K.; Laake, Jeffrey L.; Stirling, Ian

    2013-01-01

    Until recently, the sea ice habitat of polar bears was understood to be variable, but environmental variability was considered to be cyclic or random, rather than progressive. Harvested populations were believed to be at levels where density effects were considered not significant. However, because we now understand that polar bear demography can also be influenced by progressive change in the environment, and some populations have increased to greater densities than historically lower numbers, a broader suite of factors should be considered in demographic studies and management. We analyzed 35 years of capture and harvest data from the polar bear (Ursus maritimus) subpopulation in Davis Strait, including data from a new study (2005–2007), to quantify its current demography. We estimated the population size in 2007 to be 2,158 ± 180 (SE), a likely increase from the 1970s. We detected variation in survival, reproductive rates, and age-structure of polar bears from geographic sub-regions. Survival and reproduction of bears in southern Davis Strait was greater than in the north and tied to a concurrent dramatic increase in breeding harp seals (Pagophilus groenlandicus) in Labrador. The most supported survival models contained geographic and temporal variables. Harp seal abundance was significantly related to polar bear survival. Our estimates of declining harvest recovery rate, and increasing total survival, suggest that the rate of harvest declined over time. Low recruitment rates, average adult survival rates, and high population density, in an environment of high prey density, but deteriorating and variable ice conditions, currently characterize the Davis Strait polar bears. Low reproductive rates may reflect negative effects of greater densities or worsening ice conditions.

  18. Evaluating and ranking threats to the long-term persistence of polar bears

    Science.gov (United States)

    Atwood, Todd C.; Marcot, Bruce G.; Douglas, David C.; Amstrup, Steven C.; Rode, Karyn D.; Durner, George M.; Bromaghin, Jeffrey F.

    2015-01-01

    substantively lowered the probability of a decreased or greatly decreased outcome, while an elevated marine prey base was slightly less influential in lowering the probability of a decreased or greatly decreased outcome. Stressors associated with in situ human activities exerted considerably less influence on population outcomes. Reduced mortality from hunting and defense of life and property interactions resulted inmodest declines in the probability of a decreased or greatly decreased population outcome. Minimizing other stressors such as trans-Arctic shipping, oil and gas exploration, and point-source pollution had negligible effects on polar bear outcomes, but that could be attributed to uncertainties in the ecological relevance of those specific stressors. Our findings suggest adverse consequences of loss of sea ice habitat become more pronounced as the summer ice-free period lengthens beyond 4 months, which could occur in portions of the Arctic by the middle of this century under the unabated pathway. The long-term persistence of polar bears may be achieved through ameliorating the loss of sea ice habitat, which will likely require stabilizing CO2emissions at or below the ceiling represented by RCP 4.5. Management of other stressors may serve to slow the transition of polar bear populations to progressively worsened outcomes, and improve the prospects of persistence, pending GHG mitigation.

  19. Increased stress in Asiatic black bears relates to food limitation, crop raiding, and foraging beyond nature reserve boundaries in China

    Directory of Open Access Journals (Sweden)

    Karl D. Malcolm

    2014-12-01

    Full Text Available Asiatic black bears (Ursus thibetanus are declining throughout much of their range. In China they are partially protected by a nature reserve system and rely heavily on hard mast as a food source prior to winter denning. Bears may compensate for mast shortages by raiding agricultural crops and killing livestock, mainly outside reserves where they are exposed to increased threats of poaching. We hypothesized that stress would vary with availability of high-quality refugia and fluctuations in mast abundance. We collected fecal samples from free-ranging bears in and around nature reserves in southwestern China, recorded habitat characteristics at each fecal sample location, and quantified abundance of hard mast. We used feces for genetic and endocrine analysis and identified 106 individuals. Feces collected outside reserves, or in agricultural fields within reserves, contained elevated concentrations of glucocorticoid metabolites compared to samples collected in intact, mast-producing forests within reserves. Relationships with habitat variables indicated that the hypothalamic–pituitary–adrenal (HPA axis of the Asiatic black bear is responsive to human activity, abundance of hard mast, extent of forest cover, and quality of diet. Our findings demonstrate biological reactions of a large mammal to variable forest quality, human threats, and foraging relative to boundaries of protected areas. Keywords: Agriculture, Fecal glucocorticoids, Mast, Poaching, Protected areas, Stress

  20. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes

    Science.gov (United States)

    Hauer, F. Richard; Locke, Harvey; Dreitz, Victoria; Hebblewhite, Mark; Lowe, Winsor; Muhlfeld, Clint C.; Nelson, Cara; Proctor, Michael F.; Rood, Stewart B.

    2016-01-01

    Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologicaltering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.

  1. Field metabolic rate and PCB adipose tissue deposition efficiency in East Greenland polar bears derived from contaminant monitoring data.

    Science.gov (United States)

    Pavlova, Viola; Nabe-Nielsen, Jacob; Dietz, Rune; Svenning, Jens-Christian; Vorkamp, Katrin; Rigét, Frank Farsø; Sonne, Christian; Letcher, Robert J; Grimm, Volker

    2014-01-01

    Climate change will increasingly affect the natural habitat and diet of polar bears (Ursus maritimus). Understanding the energetic needs of polar bears is therefore important. We developed a theoretical method for estimating polar bear food consumption based on using the highly recalcitrant polychlorinated biphenyl (PCB) congener, 2,2',4,4',55-hexaCB (CB153) in bear adipose tissue as an indicator of food intake. By comparing the CB153 tissue concentrations in wild polar bears with estimates from a purposely designed individual-based model, we identified the possible combinations of field metabolic rates (FMR) and CB153 deposition efficiencies in East Greenland polar bears. Our simulations indicate that if 30% of the CB153 consumed by polar bear individuals were deposited into their adipose tissue, the corresponding FMR would be only two times the basal metabolic rate. In contrast, if the modelled CB153 deposition efficiency were 10%, adult polar bears would require six times more energy than that needed to cover basal metabolism. This is considerably higher than what has been assumed for polar bears in previous studies though it is similar to FMRs found in other marine mammals. An implication of this result is that even relatively small reductions in future feeding opportunities could impact the survival of East Greenland polar bears.

  2. Journal bearing

    Science.gov (United States)

    Menke, John R.; Boeker, Gilbert F.

    1976-05-11

    1. An improved journal bearing comprising in combination a non-rotatable cylindrical bearing member having a first bearing surface, a rotatable cylindrical bearing member having a confronting second bearing surface having a plurality of bearing elements, a source of lubricant adjacent said bearing elements for supplying lubricant thereto, each bearing element consisting of a pair of elongated relatively shallowly depressed surfaces lying in a cylindrical surface co-axial with the non-depressed surface and diverging from one another in the direction of rotation and obliquely arranged with respect to the axis of rotation of said rotatable member to cause a flow of lubricant longitudinally along said depressed surfaces from their distal ends toward their proximal ends as said bearing members are rotated relative to one another, each depressed surface subtending a radial angle of less than 360.degree., and means for rotating said rotatable bearing member to cause the lubricant to flow across and along said depressed surfaces, the flow of lubricant being impeded by the non-depressed portions of said second bearing surface to cause an increase in the lubricant pressure.

  3. Camshaft bearing arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Aoi, K.; Ozawa, T.

    1986-06-10

    A bearing arrangement is described for the camshaft of an internal combustion engine or the like which camshaft is formed along its length in axial order with a first bearing surface, a first cam lobe, a second bearing surface, a second cam lobe, a third bearing surface, a third cam lobe and a fourth bearing surface, the improvement comprising first bearing means extending around substantially the full circumference of the first bearing surface and journaling the first bearing surface, second bearing means extending around substantially less than the circumference of the second bearing surface and journaling the second bearing surface, third bearing means extending around substantially less than the circumference of the third bearing surface and journaling the third bearing surface, and fourth bearing means extending around substantially the full circumference of the fourth bearing surface and journaling the first bearing surface.

  4. Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines

    Science.gov (United States)

    Laidre, K. L.; Regehr, E. V.; Akcakaya, H. R.; Amstrup, S. C.; Atwood, T.; Lunn, N.; Obbard, M.; Stern, H. L., III; Thiemann, G.; Wiig, O.

    2016-12-01

    Loss of Arctic sea ice due to climate change is the most serious threat to polar bears (Ursus maritimus) throughout their circumpolar range. We performed a data-based sensitivity analysis with respect to this threat by evaluating the potential response of the global polar bear population to projected sea-ice conditions. We conducted 1) an assessment of generation length for polar bears, 2) developed of a standardized sea-ice metric representing important habitat characteristics for the species; and 3) performed population projections over three generations, using computer simulation and statistical models representing alternative relationships between sea ice and polar bear abundance. Using three separate approaches, the median percent change in mean global population size for polar bears between 2015 and 2050 ranged from -4% (95% CI = -62%, 50%) to -43% (95% CI = -76%, -20%). Results highlight the potential for large reductions in the global population if sea-ice loss continues. They also highlight the large amount of uncertainty in statistical projections of polar bear abundance and the sensitivity of projections to plausible alternative assumptions. The median probability of a reduction in the mean global population size of polar bears greater than 30% over three generations was approximately 0.71 (range 0.20-0.95. The median probability of a reduction greater than 50% was approximately 0.07 (range 0-0.35), and the probability of a reduction greater than 80% was negligible.

  5. Anaerobic oral flora in the North American black bear (Ursus americanus) in eastern North Carolina.

    Science.gov (United States)

    Clarke, Elsburgh O; Stoskopf, Michael K; Minter, Larry J; Stringer, Elizabeth M

    2012-06-01

    Microbial flora can provide insight into the ecology and natural history of wildlife in addition to improving understanding of health risks. This study examines the anaerobic oral flora of hunter killed black bears (Ursus americanus) in eastern North Carolina. Oral swabs from the buccal and lingual supragingival tooth surfaces of the first and second mandibular and maxillary molars of 22 black bears were inoculated onto Brucella Blood Agar plates supplemented with hemin and vitamin K after transport from the field using reduced oxoid nutrient broth. Sixteen anaerobic bacterial species, representing nine genera were identified using the RapID ANA II Micromethod Kit system and a number of organisms grown that could not be identified with the system. The most frequently identified anaerobes were Peptostreptococcus prevotii, Streptococcus constellatus, and Porphyromonas gingivalis. The diversity in the anaerobic oral flora of black bear in eastern North Carolina suggests the importance of including these organisms in basic health risk assessment protocols and suggests a potential tool for assessment of bear/habitat interactions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Quantifying the net benefit impacts of the Troy Waste Water Treatment Plant on Steelhead Habitat in the West Fork Little Bear Creek drainage

    Science.gov (United States)

    Sanchez-Murillo, R.; Brooks, E. S.; Boll, J.

    2010-12-01

    Discharge of waste water treatment plants (WWTPs) typically is viewed to result in water quality impairment. However, WWTPs can also be a source of nutrients to enhance the salmonid food web as well as an efficient way to maintain acceptable water temperature regimes and flow conditions during summer. We observed this paradox in West Fork Little Bear Creek (WFLB) in the City of Troy, Idaho. Despite the nutrient load, the WFLB had the highest Steelhead trout density in the watershed, with a mean density of 13.2 fish/100 m2. The objective of this project was to utilize a water quality model, QUAL2kw, and an ecology assessment to examine how the nutrient load from the WWTP affects: a) habitat conditions for steelhead juveniles, and b) physic-chemical parameters. Four monitoring stations were installed from May through November in 2009 and 2010. An undisturbed creek was used as a control site in 2010. Dissolved oxygen (DO), electrical conductivity, temperature, and discharge were measured continuously at each monitoring station. Weekly samples were collected at each monitoring station and analyzed for nitrate, nitrite, ammonia, total Kjeldahl nitrogen, total phosphorous, and orthophosphates. In 2010, Chlorophyll a was analyzed weekly, while bottom algae biomass was determined monthly. Results show that during summer months, the WWTP provides the majority of the flow (0.1 cfs) in the creek. Water samples and DO measurements taken 200 m downstream of the plant during late summer months indicate that nitrification process leads to low DO level well below the state standard of 6 mg/L for cold water biota. However dissolved oxygen levels recover within 1 km downstream. Discharge data suggest that without the flow from the treatment most of the creek would dry during late summer months. Abundance of macroinverbrates, high primary productivity, and sustained flow during summer suggests that the effluent from the WWTP is a net benefit to the Steelhead habitat in the basin

  7. Effects of body weight and season on serum lipid concentrations in sloth bears (Melursus ursinus ursinus).

    Science.gov (United States)

    Shanmugam, Arun Attur; Kumar, Jadav Kajal; Selvaraj, Illayaraja; Selvaraj, Vimal

    2011-09-01

    Serum lipid levels were measured in 66 healthy sloth bears (Melursus ursinus ursinus) living under semicaptive conditions with access to natural food resources in the Bannerghatta Biological Park (Karnataka, India), a portion of their native habitat range in the Indian peninsula. Total cholesterol, triglycerides, high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein cholesterol levels were analyzed. The effects of age, body weight, and season on these lipid parameters were statistically evaluated. There were no correlations between age and any of the serum lipid parameters analyzed. Positive correlations of body weight to both triglyceride and HDL cholesterol levels in these bears were identified. In addition, seasonal trends in physiological serum lipid values, potentially due to variations in the sloth bear diet, were identified. Serum triglyceride levels were higher during postmonsoon season and cholesterol levels were higher during winter compared to other seasons. Serum lipid values obtained from sloth bears in this study were also compared to previously published data on other members of the family Ursidae. This is the first report of serum lipid values as a reference for sloth bears. These values can be used as sensitive predictors of overall health and nutritional status to aid in the captive management and feeding of these bears.

  8. Diet and metabolic state are the main factors determining concentrations of perfluoroalkyl substances in female polar bears from Svalbard.

    Science.gov (United States)

    Tartu, Sabrina; Bourgeon, Sophie; Aars, Jon; Andersen, Magnus; Lone, Karen; Jenssen, Bjørn Munro; Polder, Anuschka; Thiemann, Gregory W; Torget, Vidar; Welker, Jeffrey M; Routti, Heli

    2017-10-01

    Perfluoroalkyl substances (PFASs) have been detected in organisms worldwide, including Polar Regions. The polar bear (Ursus maritimus), the top predator of Arctic marine ecosystems, accumulates high concentrations of PFASs, which may be harmful to their health. The aim of this study was to investigate which factors (habitat quality, season, year, diet, metabolic state [i.e. feeding/fasting], breeding status and age) predict PFAS concentrations in female polar bears captured on Svalbard (Norway). We analysed two perfluoroalkyl sulfonates (PFSAs: PFHxS and PFOS) and C 8 -C 13 perfluoroalkyl carboxylates (PFCAs) in 112 plasma samples obtained in April and September 2012-2013. Nitrogen and carbon stable isotope ratios (δ 15 N, δ 13 C) in red blood cells and plasma, and fatty acid profiles in adipose tissue were used as proxies for diet. We determined habitat quality based on movement patterns, capture position and resource selection functions, which are models that predict the probability of use of a resource unit. Plasma urea to creatinine ratios were used as proxies for metabolic state (i.e. feeding or fasting state). Results were obtained from a conditional model averaging of 42 general linear mixed models. Diet was the most important predictor of PFAS concentrations. PFAS concentrations were positively related to trophic level and marine diet input. High PFAS concentrations in females feeding on the eastern part of Svalbard, where the habitat quality was higher than on the western coast, were likely related to diet and possibly to abiotic factors. Concentrations of PFSAs and C 8 -C 10 PFCAs were higher in fasting than in feeding polar bears and PFOS was higher in females with cubs of the year than in solitary females. Our findings suggest that female polar bears that are exposed to the highest levels of PFAS are those 1) feeding on high trophic level sea ice-associated prey, 2) fasting and 3) with small cubs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Field metabolic rate and PCB adipose tissue deposition efficiency in East Greenland polar bears derived from contaminant monitoring data.

    Directory of Open Access Journals (Sweden)

    Viola Pavlova

    Full Text Available Climate change will increasingly affect the natural habitat and diet of polar bears (Ursus maritimus. Understanding the energetic needs of polar bears is therefore important. We developed a theoretical method for estimating polar bear food consumption based on using the highly recalcitrant polychlorinated biphenyl (PCB congener, 2,2',4,4',55-hexaCB (CB153 in bear adipose tissue as an indicator of food intake. By comparing the CB153 tissue concentrations in wild polar bears with estimates from a purposely designed individual-based model, we identified the possible combinations of field metabolic rates (FMR and CB153 deposition efficiencies in East Greenland polar bears. Our simulations indicate that if 30% of the CB153 consumed by polar bear individuals were deposited into their adipose tissue, the corresponding FMR would be only two times the basal metabolic rate. In contrast, if the modelled CB153 deposition efficiency were 10%, adult polar bears would require six times more energy than that needed to cover basal metabolism. This is considerably higher than what has been assumed for polar bears in previous studies though it is similar to FMRs found in other marine mammals. An implication of this result is that even relatively small reductions in future feeding opportunities could impact the survival of East Greenland polar bears.

  10. The food habits of the Himalayan Brown Bear Ursus arctos (Mammalia: Carnivora: Ursidae in Kugti Wildlife Sanctuary, Himachal Pradesh, India

    Directory of Open Access Journals (Sweden)

    Bipan C. Rathore

    2014-12-01

    Full Text Available We documented the food habits of the Himalayan Brown Bear Ursus arctos in Kugti Wildlife Sanctuary, Himachal Pradesh, India, between 2002 and 2004 using scat analysis (n=222, direct observation (n=57, and feeding sign observations (n=57.  We concluded that Himalayan Brown Bears lead a predominantly herbivorous life style as plant matter occurred more frequently in scats (79% than animal matter (21%.  During summer, monsoon and fall, the frequency occurrence of plant matter was 72.2%, 77% and 91% respectively.  During early summer, brown bears foraged primarily on green vegetation such as Rumex nepalensis followed by Chaerophyllum reflexum.  Based on direct feeding observations, brown bears were observed to be feeding on 29 species of plants including agricultural crops and one fungi, Morchella esculenta.  The overuse by livestock, decline in local herbs and excessive extraction of high altitudinal medicinal plants in this habitat may pose a threat to the fragmented brown bear population. 

  11. Hematology of southern Beaufort Sea polar bears (2005-2007): biomarker for an Arctic ecosystem health sentinel.

    Science.gov (United States)

    Kirk, Cassandra M; Amstrup, Steven; Swor, Rhonda; Holcomb, Darce; O'Hara, Todd M

    2010-09-01

    Declines in sea-ice habitats have resulted in declining stature, productivity, and survival of polar bears in some regions. With continuing sea-ice declines, negative population effects are projected to expand throughout the polar bear's range. Precise causes of diminished polar bear life history performance are unknown, however, climate and sea-ice condition change are expected to adversely impact polar bear (Ursus maritimus) health and population dynamics. As apex predators in the Arctic, polar bears integrate the status of lower trophic levels and are therefore sentinels of ecosystem health. Arctic residents feed at the apex of the ecosystem, thus polar bears can serve as indicators of human health in the Arctic. Despite their value as indicators of ecosystem welfare, population-level health data for U.S. polar bears are lacking. We present hematological reference ranges for southern Beaufort Sea polar bears. Hematological parameters in southern Beaufort Sea polar bears varied by age, geographic location, and reproductive status. Total leukocytes, lymphocytes, monocytes, eosinophils, and serum immunoglobulin G were significantly greater in males than females. These measures were greater in nonlactating females ages ≥5, than lactating adult females ages ≥5, suggesting that females encumbered by young may be less resilient to new immune system challenges that may accompany ongoing climate change. Hematological values established here provide a necessary baseline for anticipated changes in health as arctic temperatures warm and sea-ice declines accelerate. Data suggest that females with dependent young may be most vulnerable to these changes and should therefore be a targeted cohort for monitoring in this sentinel.

  12. Brown bear (Ursus arctos attacks resulting in human casualties in Scandinavia 1977-2016; management implications and recommendations.

    Directory of Open Access Journals (Sweden)

    Ole-Gunnar Støen

    Full Text Available Human persecution and habitat loss have endangered large carnivore populations worldwide, but some are recovering, exacerbating old conflicts. Carnivores can injure and kill people; the most dramatic form of wildlife-human conflict. In Scandinavia, the brown bear (Ursus arctos population increased from ~500 bears in 1977 to ~3300 in 2008, with an increase in injuries, fatalities, and public fear of bear attacks. We reviewed media coverage and interviewed victims to explore how bear population trends, hunter education, and other factors may have influenced the number of injuries and fatalities in Scandinavia from 1977 to 2016. We found 42 incidents with 42 injuries and 2 fatalities; 42 were adult men, one was an adult woman conducting forestry work, and one was a boy skiing off-piste. Thirty-three adult men were hunting bears, moose, or small game, often with a hunting dog, and 26 had shot at the bear at 8±11 m before injury. Eleven nonhunters were conducting forestry work, inspecting a hunting area, picking berries, tending livestock, hiking, harassing a denned bear, and one person was killed outside his house at night. Eight of the 11 incidents of nonhunters involved female bears with cubs; three of these family groups were in dens and two were on carcasses. The annual number of hunters injured/killed was mostly influenced by the increase in the bear population size. The pattern was similar regarding injuries/fatalities to other outdoor users, but the relation with the bear population size was weaker than for hunters, and the null model was equally supported. Bear physiology at denning may make encounters with bears more risky in the fall, when bears show prehibernation behavior. Awareness and education efforts, especially among hunters, seem important to ensure human safety. Recreationists and forestry workers should avoid dense vegetation or make noise to warn bears of their presence.

  13. Parasite diversity of disease-bearing rodents of Southeast Asia: habitat determinants and effects on sexual size dimorphism and life-traits

    Directory of Open Access Journals (Sweden)

    Serge eMorand

    2015-10-01

    Full Text Available We investigated a causal chain of relationships between habitat specialization and parasite species richness in rodent communities in Southeast Asia, and the consequences for variation in immune investment (using spleen size, the degree of sexual competition (using testes and sexual size dimorphism (SSD. We used data gathered on rodents, their habitat specialization and their parasites (macro- and micro-parasites in Southeast Asian landscapes. The results supported the hypotheses that parasite diversity drives the evolution of host life-traits and sexual selection. Firstly host habitat specialization explained the variation in parasite species richness. Secondly high parasite species richness was linked to host immune investment, using the relative spleen size of rodents. Thirdly according to the potential costs associated with immune investment, the relative spleen size was found to be negatively correlated with the relative size of testes among rodents. Fourthly, a positive relationship between male-biased SSD and parasite species richness was observed supporting the role of parasitism in sexual selection. Finally, the variation in SSD was positively associated with the degree of habitat specialization. Highest values of female-biased SSD were associated with habitat specialization, whereas highest values of male-biased SSD concerned synanthropic or generalist rodent species. These results, also correlative, will help to facilitate selection of the species that should be thoroughly investigated at the population level to better understand the selective effects of parasites on rodent life-history and behavior.

  14. Application of large-scale parentage analysis for investigating natal dispersal in highly vagile vertebrates: a case study of American black bears (Ursus americanus).

    Science.gov (United States)

    Moore, Jennifer A; Draheim, Hope M; Etter, Dwayne; Winterstein, Scott; Scribner, Kim T

    2014-01-01

    Understanding the factors that affect dispersal is a fundamental question in ecology and conservation biology, particularly as populations are faced with increasing anthropogenic impacts. Here we collected georeferenced genetic samples (n = 2,540) from three generations of black bears (Ursus americanus) harvested in a large (47,739 km2), geographically isolated population and used parentage analysis to identify mother-offspring dyads (n = 337). We quantified the effects of sex, age, habitat type and suitability, and local harvest density at the natal and settlement sites on the probability of natal dispersal, and on dispersal distances. Dispersal was male-biased (76% of males dispersed) but a small proportion (21%) of females also dispersed, and female dispersal distances (mean ± SE  =  48.9±7.7 km) were comparable to male dispersal distances (59.0±3.2 km). Dispersal probabilities and dispersal distances were greatest for bears in areas with high habitat suitability and low harvest density. The inverse relationship between dispersal and harvest density in black bears suggests that 1) intensive harvest promotes restricted dispersal, or 2) high black bear population density decreases the propensity to disperse. Multigenerational genetic data collected over large landscape scales can be a powerful means of characterizing dispersal patterns and causal associations with demographic and landscape features in wild populations of elusive and wide-ranging species.

  15. Application of large-scale parentage analysis for investigating natal dispersal in highly vagile vertebrates: a case study of American black bears (Ursus americanus.

    Directory of Open Access Journals (Sweden)

    Jennifer A Moore

    Full Text Available Understanding the factors that affect dispersal is a fundamental question in ecology and conservation biology, particularly as populations are faced with increasing anthropogenic impacts. Here we collected georeferenced genetic samples (n = 2,540 from three generations of black bears (Ursus americanus harvested in a large (47,739 km2, geographically isolated population and used parentage analysis to identify mother-offspring dyads (n = 337. We quantified the effects of sex, age, habitat type and suitability, and local harvest density at the natal and settlement sites on the probability of natal dispersal, and on dispersal distances. Dispersal was male-biased (76% of males dispersed but a small proportion (21% of females also dispersed, and female dispersal distances (mean ± SE  =  48.9±7.7 km were comparable to male dispersal distances (59.0±3.2 km. Dispersal probabilities and dispersal distances were greatest for bears in areas with high habitat suitability and low harvest density. The inverse relationship between dispersal and harvest density in black bears suggests that 1 intensive harvest promotes restricted dispersal, or 2 high black bear population density decreases the propensity to disperse. Multigenerational genetic data collected over large landscape scales can be a powerful means of characterizing dispersal patterns and causal associations with demographic and landscape features in wild populations of elusive and wide-ranging species.

  16. Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines

    Science.gov (United States)

    Regehr, Eric V.; Laidre, Kristin L.; Akçakaya, H. Resit; Amstrup, Steven C.; Atwood, Todd C.; Lunn, Nicholas J.; Obbard, Martyn E.; Stern, Harry; Thiemann, Gregory W.; Wiig, Øystein

    2016-01-01

    Loss of Arctic sea ice owing to climate change is the primary threat to polar bears throughout their range. We evaluated the potential response of polar bears to sea-ice declines by (i) calculating generation length (GL) for the species, which determines the timeframe for conservation assessments; (ii) developing a standardized sea-ice metric representing important habitat; and (iii) using statistical models and computer simulation to project changes in the global population under three approaches relating polar bear abundance to sea ice. Mean GL was 11.5 years. Ice-covered days declined in all subpopulation areas during 1979–2014 (median −1.26 days year−1). The estimated probabilities that reductions in the mean global population size of polar bears will be greater than 30%, 50% and 80% over three generations (35–41 years) were 0.71 (range 0.20–0.95), 0.07 (range 0–0.35) and less than 0.01 (range 0–0.02), respectively. According to IUCN Red List reduction thresholds, which provide a common measure of extinction risk across taxa, these results are consistent with listing the species as vulnerable. Our findings support the potential for large declines in polar bear numbers owing to sea-ice loss, and highlight near-term uncertainty in statistical projections as well as the sensitivity of projections to different plausible assumptions.

  17. Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines.

    Science.gov (United States)

    Regehr, Eric V; Laidre, Kristin L; Akçakaya, H Resit; Amstrup, Steven C; Atwood, Todd C; Lunn, Nicholas J; Obbard, Martyn; Stern, Harry; Thiemann, Gregory W; Wiig, Øystein

    2016-12-01

    Loss of Arctic sea ice owing to climate change is the primary threat to polar bears throughout their range. We evaluated the potential response of polar bears to sea-ice declines by (i) calculating generation length (GL) for the species, which determines the timeframe for conservation assessments; (ii) developing a standardized sea-ice metric representing important habitat; and (iii) using statistical models and computer simulation to project changes in the global population under three approaches relating polar bear abundance to sea ice. Mean GL was 11.5 years. Ice-covered days declined in all subpopulation areas during 1979-2014 (median -1.26 days year -1 ). The estimated probabilities that reductions in the mean global population size of polar bears will be greater than 30%, 50% and 80% over three generations (35-41 years) were 0.71 (range 0.20-0.95), 0.07 (range 0-0.35) and less than 0.01 (range 0-0.02), respectively. According to IUCN Red List reduction thresholds, which provide a common measure of extinction risk across taxa, these results are consistent with listing the species as vulnerable. Our findings support the potential for large declines in polar bear numbers owing to sea-ice loss, and highlight near-term uncertainty in statistical projections as well as the sensitivity of projections to different plausible assumptions. © 2016 The Authors.

  18. 77 FR 70423 - Black Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC...

    Science.gov (United States)

    2012-11-26

    ... Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC; Notice of..., 2012, Black Bear Hydro Partners, LLC, sole licensee (transferor) and Black Bear Development Holdings, LLC and Black Bear SO, LLC (transferees) filed an application for the partial the transfer of licenses...

  19. Phylogeography of mitochondrial DNA variation in brown bears and polar bears.

    Science.gov (United States)

    Shields, G F; Adams, D; Garner, G; Labelle, M; Pietsch, J; Ramsay, M; Schwartz, C; Titus, K; Williamson, S

    2000-05-01

    We analyzed 286 nucleotides of the middle portion of the mitochondrial cytochrome b gene of 61 brown bears from three locations in Alaska and 55 polar bears from Arctic Canada and Arctic Siberia to test our earlier observations of paraphyly between polar bears and brown bears as well as to test the extreme uniqueness of mitochondrial DNA types of brown bears on Admiralty, Baranof, and Chichagof (ABC) islands of southeastern Alaska. We also investigated the phylogeography of brown bears of Alaska's Kenai Peninsula in relation to other Alaskan brown bears because the former are being threatened by increased human development. We predicted that: (1) mtDNA paraphyly between brown bears and polar bears would be upheld, (2) the mtDNA uniqueness of brown bears of the ABC islands would be upheld, and (3) brown bears of the Kenai Peninsula would belong to either clade II or clade III of brown bears of our earlier studies of mtDNA. All of our predictions were upheld through the analysis of these additional samples. Copyright 2000 Academic Press.

  20. Phylogeography of mitochondrial DNA variation in brown bears and polar bears

    Science.gov (United States)

    Shields, Gerald F.; Adams, Deborah; Garner, Gerald W.; Labelle, Martine; Pietsch, Jacy; Ramsay, Malcolm; Schwartz, Charles; Titus, Kimberly; Williamson, Scott

    2000-01-01

    We analyzed 286 nucleotides of the middle portion of the mitochondrial cytochrome b gene of 61 brown bears from three locations in Alaska and 55 polar bears from Arctic Canada and Arctic Siberia to test our earlier observations of paraphyly between polar bears and brown bears as well as to test the extreme uniqueness of mitochondrial DNA types of brown bears on Admiralty, Baranof, and Chichagof (ABC) islands of southeastern Alaska. We also investigated the phylogeography of brown bears of Alaska's Kenai Peninsula in relation to other Alaskan brown bears because the former are being threatened by increased human development. We predicted that: (1) mtDNA paraphyly between brown bears and polar bears would be upheld, (2) the mtDNA uniqueness of brown bears of the ABC islands would be upheld, and (3) brown bears of the Kenai Peninsula would belong to either clade II or clade III of brown bears of our earlier studies of mtDNA. All of our predictions were upheld through the analysis of these additional samples.

  1. Establishing a definition of polar bear (Ursus maritimus) health: A guide to research and management activities

    Science.gov (United States)

    Patyk, Kelly A.; Duncan, Colleen G.; Nol, Pauline; Sonne, C.; Laidre, Kristin L.; Obbard, Martyn E.; Wiig, Øystein; Aars, Jon; Regehr, Eric V.; Gustafson, L.; Atwood, Todd C.

    2015-01-01

    The meaning of health for wildlife and perspectives on how to assess and measure health, are not well characterized. For wildlife at risk, such as some polar bear (Ursus maritimus) subpopulations, establishing comprehensive monitoring programs that include health status is an emerging need. Environmental changes, especially loss of sea ice habitat, have raised concern about polar bear health. Effective and consistent monitoring of polar bear health requires an unambiguous definition of health. We used the Delphi method of soliciting and interpreting expert knowledge to propose a working definition of polar bear health and to identify current concerns regarding health, challenges in measuring health, and important metrics for monitoring health. The expert opinion elicited through the exercise agreed that polar bear health is defined by characteristics and knowledge at the individual, population, and ecosystem level. The most important threats identified were in decreasing order: climate change, increased nutritional stress, chronic physiological stress, harvest management, increased exposure to contaminants, increased frequency of human interaction, diseases and parasites, and increased exposure to competitors. Fifteen metrics were identified to monitor polar bear health. Of these, indicators of body condition, disease and parasite exposure, contaminant exposure, and reproductive success were ranked as most important. We suggest that a cumulative effects approach to research and monitoring will improve the ability to assess the biological, ecological, and social determinants of polar bear health and provide measurable objectives for conservation goals and priorities and to evaluate progress.

  2. Establishing a definition of polar bear (Ursus maritimus) health: a guide to research and management activities.

    Science.gov (United States)

    Patyk, Kelly A; Duncan, Colleen; Nol, Pauline; Sonne, Christian; Laidre, Kristin; Obbard, Martyn; Wiig, Øystein; Aars, Jon; Regehr, Eric; Gustafson, Lori L; Atwood, Todd

    2015-05-01

    The meaning of health for wildlife and perspectives on how to assess and measure health, are not well characterized. For wildlife at risk, such as some polar bear (Ursus maritimus) subpopulations, establishing comprehensive monitoring programs that include health status is an emerging need. Environmental changes, especially loss of sea ice habitat, have raised concern about polar bear health. Effective and consistent monitoring of polar bear health requires an unambiguous definition of health. We used the Delphi method of soliciting and interpreting expert knowledge to propose a working definition of polar bear health and to identify current concerns regarding health, challenges in measuring health, and important metrics for monitoring health. The expert opinion elicited through the exercise agreed that polar bear health is defined by characteristics and knowledge at the individual, population, and ecosystem level. The most important threats identified were in decreasing order: climate change, increased nutritional stress, chronic physiological stress, harvest management, increased exposure to contaminants, increased frequency of human interaction, diseases and parasites, and increased exposure to competitors. Fifteen metrics were identified to monitor polar bear health. Of these, indicators of body condition, disease and parasite exposure, contaminant exposure, and reproductive success were ranked as most important. We suggest that a cumulative effects approach to research and monitoring will improve the ability to assess the biological, ecological, and social determinants of polar bear health and provide measurable objectives for conservation goals and priorities and to evaluate progress. Published by Elsevier B.V.

  3. Circumpolar Genetic Structure and Recent Gene Flow of Polar Bears: A Reanalysis.

    Science.gov (United States)

    Malenfant, René M; Davis, Corey S; Cullingham, Catherine I; Coltman, David W

    2016-01-01

    Recently, an extensive study of 2,748 polar bears (Ursus maritimus) from across their circumpolar range was published in PLOS ONE, which used microsatellites and mitochondrial haplotypes to apparently show altered population structure and a dramatic change in directional gene flow towards the Canadian Archipelago-an area believed to be a future refugium for polar bears as their southernmost habitats decline under climate change. Although this study represents a major international collaborative effort and promised to be a baseline for future genetics work, methodological shortcomings and errors of interpretation undermine some of the study's main conclusions. Here, we present a reanalysis of this data in which we address some of these issues, including: (1) highly unbalanced sample sizes and large amounts of systematically missing data; (2) incorrect calculation of FST and of significance levels; (3) misleading estimates of recent gene flow resulting from non-convergence of the program BayesAss. In contrast to the original findings, in our reanalysis we find six genetic clusters of polar bears worldwide: the Hudson Bay Complex, the Western and Eastern Canadian Arctic Archipelago, the Western and Eastern Polar Basin, and-importantly-we reconfirm the presence of a unique and possibly endangered cluster of bears in Norwegian Bay near Canada's expected last sea-ice refugium. Although polar bears' abundance, distribution, and population structure will certainly be negatively affected by ongoing-and increasingly rapid-loss of Arctic sea ice, these genetic data provide no evidence of strong directional gene flow in response to recent climate change.

  4. Circumpolar Genetic Structure and Recent Gene Flow of Polar Bears: A Reanalysis.

    Directory of Open Access Journals (Sweden)

    René M Malenfant

    Full Text Available Recently, an extensive study of 2,748 polar bears (Ursus maritimus from across their circumpolar range was published in PLOS ONE, which used microsatellites and mitochondrial haplotypes to apparently show altered population structure and a dramatic change in directional gene flow towards the Canadian Archipelago-an area believed to be a future refugium for polar bears as their southernmost habitats decline under climate change. Although this study represents a major international collaborative effort and promised to be a baseline for future genetics work, methodological shortcomings and errors of interpretation undermine some of the study's main conclusions. Here, we present a reanalysis of this data in which we address some of these issues, including: (1 highly unbalanced sample sizes and large amounts of systematically missing data; (2 incorrect calculation of FST and of significance levels; (3 misleading estimates of recent gene flow resulting from non-convergence of the program BayesAss. In contrast to the original findings, in our reanalysis we find six genetic clusters of polar bears worldwide: the Hudson Bay Complex, the Western and Eastern Canadian Arctic Archipelago, the Western and Eastern Polar Basin, and-importantly-we reconfirm the presence of a unique and possibly endangered cluster of bears in Norwegian Bay near Canada's expected last sea-ice refugium. Although polar bears' abundance, distribution, and population structure will certainly be negatively affected by ongoing-and increasingly rapid-loss of Arctic sea ice, these genetic data provide no evidence of strong directional gene flow in response to recent climate change.

  5. Monitoring the welfare of polar bear populations in a rapidly changing Arctic

    Science.gov (United States)

    Atwood, Todd C.; Duncan, Colleen G.; Patyk, Kelly A.; Sonsthagen, Sarah A.

    2017-01-01

    Most programs for monitoring the welfare of wildlife populations support efforts aimed at reaching discrete management objectives, like mitigating conflict with humans. While such programs can be effective, their limited scope may preclude systemic evaluations needed for large-scale conservation initiatives, like the recovery of at-risk species. We discuss select categories of metrics that can be used to monitor how polar bears (Ursus maritimus) are responding to the primary threat to their long-term persistence—loss of sea ice habitat due to the unabated rise in atmospheric greenhouse gas (GHG; e.g., CO2) concentrations—that can also provide information on ecosystem function and health. Monitoring key aspects of polar bear population dynamics, spatial behavior, health and resiliency can provide valuable insight into ecosystem state and function, and could be a powerful tool for achieving Arctic conservation objectives, particularly those that have transnational policy implications.

  6. Introgressive hybridization: brown bears as vectors for polar bear alleles.

    Science.gov (United States)

    Hailer, Frank

    2015-03-01

    The dynamics and consequences of introgression can inform about numerous evolutionary processes. Biologists have therefore long been interested in hybridization. One challenge, however, lies in the identification of nonadmixed genotypes that can serve as a baseline for accurate quantification of admixture. In this issue of Molecular Ecology, Cahill et al. (2015) analyse a genomic data set of 28 polar bears, eight brown bears and one American black bear. Polar bear alleles are found to be introgressed into brown bears not only near a previously identified admixture zone on the Alaskan Admiralty, Baranof and Chichagof (ABC) Islands, but also far into the North American mainland. Elegantly contrasting admixture levels at autosomal and X chromosomal markers, Cahill and colleagues infer that male-biased dispersal has spread these introgressed alleles away from the Late Pleistocene contact zone. Compared to a previous study on the ABC Island population in which an Alaskan brown bear served as a putatively admixture-free reference, Cahill et al. (2015) utilize a newly sequenced Swedish brown bear as admixture baseline. This approach reveals that brown bears have been impacted by introgression from polar bears to a larger extent (up to 8.8% of their genome), than previously known, including the bear that had previously served as admixture baseline. No evidence for introgression of brown bear into polar bear is found, which the authors argue could be a consequence of selection. Besides adding new exciting pieces to the puzzle of polar/brown bear evolutionary history, the study by Cahill and colleagues highlights that wildlife genomics is moving from analysing single genomes towards a landscape genomics approach. © 2015 John Wiley & Sons Ltd.

  7. Hematology of southern Beaufort Sea polar bears (2005-2007): Biomarker for an arctic ecosystem health sentinel

    Science.gov (United States)

    Kirk, Cassandra M.; Amstrup, Steven C.; Swor, Rhonda; Holcomb, Darce; O'Hara, T. M.

    2010-01-01

    Declines in sea-ice habitats have resulted in declining stature, productivity, and survival of polar bears in some regions. With continuing sea-ice declines, negative population effects are projected to expand throughout the polar bear's range. Precise causes of diminished polar bear life history performance are unknown, however, climate and sea-ice condition change are expected to adversely impact polar bear (Ursus maritimus) health and population dynamics. As apex predators in the Arctic, polar bears integrate the status of lower trophic levels and are therefore sentinels of ecosystem health. Arctic residents feed at the apex of the ecosystem, thus polar bears can serve as indicators of human health in the Arctic. Despite their value as indicators of ecosystem welfare, population-level health data for U.S. polar bears are lacking. We present hematological reference ranges for southern Beaufort Sea polar bears. Hematological parameters in southern Beaufort Sea polar bears varied by age, geographic location, and reproductive status. Total leukocytes, lymphocytes, monocytes, eosinophils, and serum immunoglobulin G were significantly greater in males than females. These measures were greater in nonlactating females ages ???5, than lactating adult females ages ???5, suggesting that females encumbered by young may be less resilient to new immune system challenges that may accompany ongoing climate change. Hematological values established here provide a necessary baseline for anticipated changes in health as arctic temperatures warm and sea-ice declines accelerate. Data suggest that females with dependent young may be most vulnerable to these changes and should therefore be a targeted cohort for monitoring in this sentinel. ?? 2010 International Association for Ecology and Health.

  8. Lactational transfer of mercury and polychlorinated biphenyls in polar bears.

    Science.gov (United States)

    Knott, Katrina K; Boyd, Daryle; Ylitalo, Gina M; O'Hara, Todd M

    2012-07-01

    We examined concentrations of total mercury (tHg, inorganic and methylated forms) and polychlorinated biphenyls (PCBs) in blood and milk from free-ranging Southern Beaufort-Chukchi Sea polar bears (Ursus maritimus) to assess maternal transfer of contaminants during lactation and the potential health risk to nursing young. Concentrations of contaminants in the blood of dependent and juvenile animals (ages 1-5 years) ranged from 35.9 to 52.2 μg kg(-1) ww for tHg and 13.9 to 52.2 μg kg(-1) ww (3255.81-11067.79 μg kg(-1) lw) for ΣPCB(7)s, similar to those of adult females, but greater than adult males. Contaminant concentrations in milk ranged from 5.7 to 71.8 μg tHg kg(-1)ww and 160 to 690 μg ΣPCB(11)s kg(-1) ww (547-5190 μg kg(-1) lw). The daily intake levels for tHg by milk consumption estimated for dependent young were below the tolerable daily intake level (TDIL) of tHg established for adult humans. Although the daily intake levels of PCBs through milk consumption for cubs of the year exceeded the TDIL thresholds, calculated dioxin equivalents for PCBs in milk were below adverse physiological thresholds for aquatic mammals. Relatively high concentrations of non-dioxin like PCBs in polar bear milk and blood could impact endocrine function of Southern Beaufort-Chukchi Sea polar bears, but this is uncertain. Transfer of contaminants during mid to late lactation likely limits bioaccumulation of dietary contaminants in female polar bears during spring. As polar bears respond to changes in their arctic sea ice habitat, the adverse health impacts associated with nutritional stress may be exacerbated by tHg and PCBs exposure, especially in ecologically and toxicologically sensitive polar bear cohorts such as reproductive females and young. Copyright © 2012. Published by Elsevier Ltd.

  9. Effects of sample size and sampling frequency on studies of brown bear home ranges and habitat use

    Science.gov (United States)

    Arthur, Steve M.; Schwartz, Charles C.

    1999-01-01

    We equipped 9 brown bears (Ursus arctos) on the Kenai Peninsula, Alaska, with collars containing both conventional very-high-frequency (VHF) transmitters and global positioning system (GPS) receivers programmed to determine an animal's position at 5.75-hr intervals. We calculated minimum convex polygon (MCP) and fixed and adaptive kernel home ranges for randomly-selected subsets of the GPS data to examine the effects of sample size on accuracy and precision of home range estimates. We also compared results obtained by weekly aerial radiotracking versus more frequent GPS locations to test for biases in conventional radiotracking data. Home ranges based on the MCP were 20-606 km2 (x = 201) for aerial radiotracking data (n = 12-16 locations/bear) and 116-1,505 km2 (x = 522) for the complete GPS data sets (n = 245-466 locations/bear). Fixed kernel home ranges were 34-955 km2 (x = 224) for radiotracking data and 16-130 km2 (x = 60) for the GPS data. Differences between means for radiotracking and GPS data were due primarily to the larger samples provided by the GPS data. Means did not differ between radiotracking data and equivalent-sized subsets of GPS data (P > 0.10). For the MCP, home range area increased and variability decreased asymptotically with number of locations. For the kernel models, both area and variability decreased with increasing sample size. Simulations suggested that the MCP and kernel models required >60 and >80 locations, respectively, for estimates to be both accurate (change in area bears. Our results suggest that the usefulness of conventional radiotracking data may be limited by potential biases and variability due to small samples. Investigators that use home range estimates in statistical tests should consider the effects of variability of those estimates. Use of GPS-equipped collars can facilitate obtaining larger samples of unbiased data and improve accuracy and precision of home range estimates.

  10. Effects of a flooding event on a threatened black bear population in Louisiana

    Science.gov (United States)

    O'Connell-Goode, Kaitlin C.; Lowe, Carrie L.; Clark, Joseph D.

    2014-01-01

    The Louisiana black bear, Ursus americanus luteolus, is listed as threatened under the Endangered Species Act as a result of habitat loss and human-related mortality. Information on population-level responses of large mammals to flooding events is scarce, and we had a unique opportunity to evaluate the viability of the Upper Atchafalaya River Basin (UARB) black bear population before and after a significant flooding event. We began collecting black bear hair samples in 2007 for a DNA mark-recapture study to estimate abundance (N) and apparent survival (φ). In 2011, the Morganza Spillway was opened to divert floodwaters from the Mississippi River through the UARB, inundating > 50% of our study area, potentially impacting recovery of this important bear population. To evaluate the effects of this flooding event on bear population dynamics, we used a robust design multistate model to estimate changes in transition rates from the flooded area to non-flooded area (ψF→NF) before (2007–2010), during (2010–2011) and after (2011–2012) the flood. Average N across all years of study was 63.2 (SE = 5.2), excluding the year of the flooding event. Estimates of ψF→NF increased from 0.014 (SE = 0.010; meaning that 1.4% of the bears moved from the flooded area to non-flooded areas) before flooding to 0.113 (SE = 0.045) during the flood year, and then decreased to 0.028 (SE= 0.035) after the flood. Although we demonstrated a flood effect on transition rates as hypothesized, the effect was small (88.7% of the bears remained in the flooded area during flooding) and φ was unchanged, suggesting that the 2011 flooding event had minimal impact on survival and site fidelity.

  11. Dietary composition and spatial patterns of polar bear foraging on land in western Hudson Bay.

    Science.gov (United States)

    Gormezano, Linda J; Rockwell, Robert F

    2013-12-21

    Flexible foraging strategies, such as prey switching, omnivory and food mixing, are key to surviving in a labile and changing environment. Polar bears (Ursus maritimus) in western Hudson Bay are versatile predators that use all of these strategies as they seasonally exploit resources across trophic levels. Climate warming is reducing availability of their ice habitat, especially in spring when polar bears gain most of their annual fat reserves by consuming seal pups before coming ashore in summer. How polar bears combine these flexible foraging strategies to obtain and utilize terrestrial food will become increasingly important in compensating for energy deficits from lost seal hunting opportunities. We evaluated patterns in the composition of foods in scat to characterize the foraging behaviors that underpin the diet mixing and omnivory observed in polar bears on land in western Hudson Bay. Specifically, we measured diet richness, proportions of plant and animal foods, patterns in co-occurrence of foods, spatial composition and an index of temporal composition. Scats contained between 1 and 6 foods, with an average of 2.11 (SE = 0.04). Most scats (84.9%) contained at least one type of plant, but animals (35.4% of scats) and both plants and animals occurring together (34.4% of scats) were also common. Certain foods, such as Lyme grass seed heads (Leymus arenarius), berries and marine algae, were consumed in relatively higher proportions, sometimes to the exclusion of others, both where and when they occurred most abundantly. The predominance of localized vegetation in scats suggests little movement among habitat types between feeding sessions. Unlike the case for plants, no spatial patterns were found for animal remains, likely due the animals' more vagile and ubiquitous distribution. Our results suggest that polar bears are foraging opportunistically in a manner consistent with maximizing intake while minimizing energy expenditure associated with movement. The

  12. Stratification of habitats for identifying habitat selection by Merriam's turkeys

    Science.gov (United States)

    Mark A. Rumble; Stanley H. Anderson

    1992-01-01

    Habitat selection patterns of Merriam’s Turkeys were compared in hierarchical analyses of three levels of habitat stratification. Habitat descriptions in first-level analyses were based on dominant species of vegetation. Habitat descriptions in second-level analyses were based on dominant species of vegetation and overstory canopy cover. Habitat descriptions in third-...

  13. EcoBears

    DEFF Research Database (Denmark)

    Nielsen, Nick; Pedersen, Sandra Bleuenn; Sørensen, Jens Ager

    2015-01-01

    In this paper, we introduce the EcoBears concept that aims to augment household appliances with functional and aesthetic features to promote their "use'' and "longevity of use'' to prevent their disposal. The EcoBears also aim to support the communication of environmental issues in the home setting....... We present our initial design and implementation of the EcoBears that consist of two bear modules (a mother and her cub). We also present our preliminary concept validations and lessons learned to be considered for future directions....

  14. Stable isotopes to detect food-conditioned bears and to evaluate human-bear management

    Science.gov (United States)

    Hopkins, John B.; Koch, Paul L.; Schwartz, Charles C.; Ferguson, Jake M.; Greenleaf, Schuyler S.; Kalinowski, Steven T.

    2012-01-01

    We used genetic and stable isotope analysis of hair from free-ranging black bears (Ursus americanus) in Yosemite National Park, California, USA to: 1) identify bears that consume human food, 2) estimate the diets of these bears, and 3) evaluate the Yosemite human–bear management program. Specifically, we analyzed the isotopic composition of hair from bears known a priori to be food-conditioned or non-food-conditioned and used these data to predict whether bears with an unknown management status were food-conditioned (FC) or non-food-conditioned (NFC). We used a stable isotope mixing model to estimate the proportional contribution of natural foods (plants and animals) versus human food in the diets of FC bears. We then used results from both analyses to evaluate proactive (population-level) and reactive (individual-level) human–bear management, and discussed new metrics to evaluate the overall human–bear management program in Yosemite. Our results indicated that 19 out of 145 (13%) unknown bears sampled from 2005 to 2007 were food-conditioned. The proportion of human food in the diets of known FC bears likely declined from 2001–2003 to 2005–2007, suggesting proactive management was successful in reducing the amount of human food available to bears. In contrast, reactive management was not successful in changing the management status of known FC bears to NFC bears, or in reducing the contribution of human food to the diets of FC bears. Nine known FC bears were recaptured on 14 occasions from 2001 to 2007; all bears were classified as FC during subsequent recaptures, and human–bear management did not reduce the amount of human food in the diets of FC bears. Based on our results, we suggest Yosemite continue implementing proactive human–bear management, reevaluate reactive management, and consider removing problem bears (those involved in repeated bear incidents) from the population.

  15. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics.

    Science.gov (United States)

    Tse, Peter W; Wang, Dong

    2017-02-14

    Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To extend bearing diagnostics to bearing prognostics, this paper reports the design of a state space formulation of nonlinear vibration responses collected from a dynamic rotor-bearing system in order to intelligently predict bearing remaining useful life (RUL). Firstly, analyses of nonlinear vibration responses were conducted to construct a bearing health indicator (BHI) so as to assess the current bearing health condition. Secondly, a state space model of the BHI was developed to mathematically track the health evolution of the BHI. Thirdly, unscented particle filtering was used to predict bearing RUL. Lastly, a new bearing acceleration life testing setup was designed to collect natural bearing degradation data, which were used to validate the effectiveness of the proposed bearing prognostic method. Results show that the prediction accuracy of the proposed bearing prognostic method is promising and the proposed bearing prognostic method is able to reflect future bearing health conditions.

  16. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics

    Directory of Open Access Journals (Sweden)

    Peter W. Tse

    2017-02-01

    Full Text Available Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To extend bearing diagnostics to bearing prognostics, this paper reports the design of a state space formulation of nonlinear vibration responses collected from a dynamic rotor-bearing system in order to intelligently predict bearing remaining useful life (RUL. Firstly, analyses of nonlinear vibration responses were conducted to construct a bearing health indicator (BHI so as to assess the current bearing health condition. Secondly, a state space model of the BHI was developed to mathematically track the health evolution of the BHI. Thirdly, unscented particle filtering was used to predict bearing RUL. Lastly, a new bearing acceleration life testing setup was designed to collect natural bearing degradation data, which were used to validate the effectiveness of the proposed bearing prognostic method. Results show that the prediction accuracy of the proposed bearing prognostic method is promising and the proposed bearing prognostic method is able to reflect future bearing health conditions.

  17. Index of Relative Importance of the Dietary Proportions of Sloth Bear (Melursus ursinus in Semi-Arid Region

    Directory of Open Access Journals (Sweden)

    Tana P. MEWADA

    2015-09-01

    Full Text Available Characterisations of the Sloth bear (Melursus ursinus diet during three distinguished seasons (monsoon, winter and summer in the semi-arid region of western India was under study. Diet was estimated using scat analysis, based on the calculation of Index of Relative Importance (IRI in order to determine the contribution of different food items in the Sloth bear diet. Sloth bears were observed to feed on a wide variety of prey items. They are specialized on insect prey, particularly termites or ants, and are considered as myrmecophagous. The myrmecophagousis character was confirmed by the highest score of insect part (IRI = 21.37 from the samples (n = 566, which was followed by Diospyros melanoxylon (IRI Score 13.51, Ficus spp. (IRI score 12.69 and Cassia fistula (IRI Score 10.13. Sloth bear dietary proportions varied among the three seasons under the study interval. Data suggested that the Sloth bear is essentially behaving as an omnivore, having similar diet (in terms of high incidence of wild fruits and insects with the bears inhabiting semi-arid regions. The opportunistic and generalist strategy of selecting diet ingredients has probably helped the species to survive in semi-arid habitat across the North Gujarat.

  18. Habitat Use Database - Groundfish Essential Fish Habitat (EFH) Habitat Use Database (HUD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Habitat Use Database (HUD) was specifically designed to address the need for habitat-use analyses in support of groundfish EFH, HAPCs, and fishing and nonfishing...

  19. Does despotic behavior or food search explain the occurrence of problem brown bears in Europe?

    Science.gov (United States)

    Elfström, Marcus; Zedrosser, Andreas; Jerina, Klemen; Støen, Ole-Gunnar; Kindberg, Jonas; Budic, Lara; Jonozovič, Marko; Swenson, Jon E

    2014-01-01

    Bears foraging near human developments are often presumed to be responding to food shortage, but this explanation ignores social factors, in particular despotism in bears. We analyzed the age distribution and body condition index (BCI) of shot brown bears in relation to densities of bears and people, and whether the shot bears were killed by managers (i.e., problem bears; n = 149), in self-defense (n = 51), or were hunter-killed nonproblem bears (n = 1,896) during 1990–2010. We compared patterns between areas with (Slovenia) and without supplemental feeding (Sweden) of bears relative to 2 hypotheses. The food-search/food-competition hypothesis predicts that problem bears should have a higher BCI (e.g., exploiting easily accessible and/or nutritious human-derived foods) or lower BCI (e.g., because of food shortage) than nonproblem bears, that BCI and human density should have a positive correlation, and problem bear occurrence and seasonal mean BCI of nonproblem bears should have a negative correlation (i.e., more problem bears during years of low food availability). Food competition among bears additionally predicts an inverse relationship between BCI and bear density. The safety-search/naivety hypothesis (i.e., avoiding other bears or lack of human experience) predicts no relationship between BCI and human density, provided no dietary differences due to spatiotemporal habitat use among bears, no relationship between problem bear occurrence and seasonal mean BCI of nonproblem bears, and does not necessarily predict a difference between BCI for problem/nonproblem bears. If food competition or predation avoidance explained bear occurrence near settlements, we predicted younger problem than nonproblem bears and a negative correlation between age and human density. However, if only food search explained bear occurrence near settlements, we predicted no relation between age and problem or nonproblem bear status, or between age and human density. We found

  20. Comparison of Alignment Correction Angles Between Fixed-Bearing and Mobile-Bearing UKA.

    Science.gov (United States)

    Inoue, Atsuo; Arai, Yuji; Nakagawa, Shuji; Inoue, Hiroaki; Yamazoe, Shoichi; Kubo, Toshikazu

    2016-01-01

    Good outcomes have been reported with both fixed-bearing and mobile-bearing unicompartmental knee arthroplasty (UKA). However, overcorrected alignment could induce the progression of arthritis on the non-arthroplasty side. Changes of limb alignment after UKA with both types of bearings (fixed bearing: 24 knees, mobile bearing: 28 knees) were investigated. The mean difference between the preoperative standing femoral-tibial angle (FTA) and postoperative standing FTA was significantly larger in mobile bearing UKA group. In fixed-bearing UKA, there must be some laxity in MCL tension so that a 2-mm tension gauge can be inserted. In mobile-bearing UKA, appropriate MCL tension is needed to prevent bearing dislocation. This difference in MCL tension may have caused the difference in the correction angle between the groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Voices from Denali: "it's bigger than wilderness"

    Science.gov (United States)

    Alan E. Watson; Katie Knotek; Neal Christensen

    2005-01-01

    Denali National Park and Preserve, at over 6 million acres (2.5 million ha) contains the highest point in North America. Mount McKinley, at more than 20,000 feet (more than 6,000 m) above sea level, watches over thousands of caribou, moose, packs of wolves, grizzly bears, and Dall sheep, as well as many other mountains and a vast amount of rare plant life. Research was...

  2. Surface Habitat Systems

    Science.gov (United States)

    Kennedy, Kriss J.

    2009-01-01

    The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are

  3. Riverine habitat dynamics

    Science.gov (United States)

    Jacobson, R.B.

    2013-01-01

    The physical habitat template is a fundamental influence on riverine ecosystem structure and function. Habitat dynamics refers to the variation in habitat through space and time as the result of varying discharge and varying geomorphology. Habitat dynamics can be assessed at spatial scales ranging from the grain (the smallest resolution at which an organism relates to its environment) to the extent (the broadest resolution inclusive of all space occupied during its life cycle). In addition to a potentially broad range of spatial scales, assessments of habitat dynamics may include dynamics of both occupied and nonoccupied habitat patches because of process interactions among patches. Temporal aspects of riverine habitat dynamics can be categorized into hydrodynamics and morphodynamics. Hydrodynamics refers to habitat variation that results from changes in discharge in the absence of significant change of channel morphology and at generally low sediment-transport rates. Hydrodynamic assessments are useful in cases of relatively high flow exceedance (percent of time a flow is equaled or exceeded) or high critical shear stress, conditions that are applicable in many studies of instream flows. Morphodynamics refers to habitat variation resulting from changes to substrate conditions or channel/floodplain morphology. Morphodynamic assessments are necessary when channel and floodplain boundary conditions have been significantly changed, generally by relatively rare flood events or in rivers with low critical shear stress. Morphodynamic habitat variation can be particularly important as disturbance mechanisms that mediate population growth or for providing conditions needed for reproduction, such as channel-migration events that erode cutbanks and provide new pointbar surfaces for germination of riparian trees. Understanding of habitat dynamics is increasing in importance as societal goals shift toward restoration of riverine ecosystems. Effective investment in restoration

  4. Piloting a Non-Invasive Genetic Sampling Method for Evaluating Population-Level Benefits of Wildlife Crossing Structures

    Directory of Open Access Journals (Sweden)

    Anthony P. Clevenger

    2010-03-01

    Full Text Available Intuitively, wildlife crossing structures should enhance the viability of wildlife populations. Previous research has demonstrated that a broad range of species will use crossing structures, however, questions remain as to whether these measures actually provide benefits to populations. To assess this, studies will need to determine the number of individuals using crossings, their sex, and their genetic relationships. Obtaining empirical data demonstrating population-level benefits for some species can be problematic and challenging at best. Molecular techniques now make it possible to identify species, individuals, their sex, and their genetic relatedness from hair samples collected through non-invasive genetic sampling (NGS. We describe efforts to pilot a method to assess potential population-level benefits of wildlife crossing structures. We tested the feasibility of a prototype NGS system designed to sample hair from black bears (Ursus americanus and grizzly bears (U. arctos at two wildlife underpasses. The piloted hair-sampling method did not deter animal use of the trial underpasses and was effective at sampling hair from more than 90% of the bear crossing events at the underpasses. Hair samples were also obtained from non-target carnivore species, including three out of five (60% cougar (Puma concolor crossing events. Individual identification analysis revealed that three female and two male grizzly bears used one wildlife underpass, whereas two female and three male black bears were identified as using the other underpass. Of the 36 hair samples from bears analyzed, five failed, resulting in an 87% extraction success rate, and six more were only identified to species. Overall, 70% of the hair samples from bears collected in the field had sufficient DNA for extraction purposes. Preliminary data from our NGS suggest the technique can be a reliable method to assess the population-level benefits of Banff wildlife crossings. Furthermore, NGS

  5. Captivity Shapes the Gut Microbiota of Andean Bears: Insights into Health Surveillance

    Directory of Open Access Journals (Sweden)

    Andrea Borbón-García

    2017-07-01

    Full Text Available The Andean bear is an endemic species of the tropical Andes who has an almost exclusively plant-based diet. Since herbivorous mammals do not carry enzymes for fiber degradation, the establishment of symbiosis with cellulolytic microorganisms in their gastrointestinal (GI tract is necessary to help them fulfill their nutritional needs. Furthermore, as described for other mammals, a stable, diverse, and balanced gut microbial composition is an indicator of a healthy status of the host; under disturbances this balance can be lost, leading to potential diseases of the host. The goal of this study was to describe the gut microbiota of wild and captive Andean bears and determine how habitat status influences the composition and diversity of the gut symbiotic community. Fecal samples from wild (n = 28 and captive (n = 8 Andean bears were collected in “Reserva Pantano de Martos” and “Fundación Bioandina”, Colombia. Composition and diversity analyses were performed using amplicons from the V4 region of the 16S rDNA gene sequenced using the Ion PGM platform. PICRUSt algorithm was applied to predict the gene content of the gut microbiome of wild and captive Andean bears. A total of 5,411 and 838 OTUs were identified for wild and captive bears, respectively. Captive bears contained a lower number of bacterial phyla (n = 7 compared to wild individuals (n = 9. Proteobacteria (59.03% and Firmicutes (14.03% were the phyla that contributed the most to differences between wild and captive bears (overall dissimilarity = 87.72%. At family level, Enterobacteriaceae drove the main differences between the two groups (13.7%. PICRUSt metagenomics predictions suggested a similar pattern of relative abundance of gene families associated with the metabolism of carbohydrates across samples in wild individuals, despite the taxonomic differences of their gut microbiota. Captivity alters the availability and diversity of food resources, which likely reduces microbiota

  6. A preliminary baseline status of the Syrian Brown Bear Ursus arctos syriacus (Mammalia: Carnivora: Ursidae in Golestanak, Northern Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Farhadinia

    2015-01-01

    Full Text Available Baseline information is lacking for the Syrian Brown Bear across the sub-species range, making it difficult to assess at any level.  In the present investigation, our goal was to illustrate the population status of the Brown Bear in the Golestanak area, northern Iran, based on field surveys we conducted during the summers of 2011 and 2012.  We counted a total of 30 and 21 bears in two consecutive years, with family groups consisting of more than half of the identified individuals.  Sub-adults had the lowest contribution among the observed individuals, just below 10%, which may be due to their high dispersal behaviour to avoid adults.  Our results provide a foundation for future systematic baseline investigations on the population status of the brown bear in northern Iran, which can be used in management programs.  Aside from improving monitoring efforts within key habitats of the species, enhancing conservation efforts to secure the population is essential to safeguard this female core area. 

  7. A review of bear farming and bear trade in Lao People's Democratic Republic

    Directory of Open Access Journals (Sweden)

    E. Livingstone

    2018-01-01

    Full Text Available This study reviews the bear farming industry in Lao PDR with the objective of documenting the current number of commercial bear facilities (i.e. captive bear facilities judged to be trading in bear bile and/or bears and bear parts and the number of bears contained within these facilities, noting changes since it was last examined between 2000 and 2012 by Livingstone and Shepherd (2014. We surveyed all known commercial bear facilities and searched for previously unrecorded facilities. We compared our records with Livingstone and Shepherd (2014 and corrected some duplicate records from their study. In 2017, we recorded seven commercial facilities; four dedicated bear farms, and three tiger farms that were reportedly also keeping bears. We found that between 2012 and 2017 the recorded number of dedicated bear farms reduced by two, and the recorded number of tiger farms also keeping bears increased by one. Within the same period, the total number of captive bears among all facilities in Lao PDR hardly changed (+one, but the number of bears within each facility did. The northern facilities, owned by ethnic Chinese, have expanded since 2012, and central and southern facilities have downsized or closed. While bear farming appears to be downsizing in Lao PDR overall, efforts to phase it out are undermined by the expansion of foreign owned facilities in the north, within Special and Specific Economic Zones that largely cater to a Chinese market, and where the Lao government's efforts to enforce laws and protect wildlife appear to be lacking. Closing the facilities in the north will require political will and decisive law enforcement. Keywords: Bear farms, Bear bile, Gall bladder, Urso-deoxycholic acid, Bear bile extraction facilities, Lao PDR, Ursus thibetanus

  8. Molecular phylogeny and SNP variation of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) derived from genome sequences.

    Science.gov (United States)

    Cronin, Matthew A; Rincon, Gonzalo; Meredith, Robert W; MacNeil, Michael D; Islas-Trejo, Alma; Cánovas, Angela; Medrano, Juan F

    2014-01-01

    We assessed the relationships of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) with high throughput genomic sequencing data with an average coverage of 25× for each species. A total of 1.4 billion 100-bp paired-end reads were assembled using the polar bear and annotated giant panda (Ailuropoda melanoleuca) genome sequences as references. We identified 13.8 million single nucleotide polymorphisms (SNP) in the 3 species aligned to the polar bear genome. These data indicate that polar bears and brown bears share more SNP with each other than either does with black bears. Concatenation and coalescence-based analysis of consensus sequences of approximately 1 million base pairs of ultraconserved elements in the nuclear genome resulted in a phylogeny with black bears as the sister group to brown and polar bears, and all brown bears are in a separate clade from polar bears. Genotypes for 162 SNP loci of 336 bears from Alaska and Montana showed that the species are genetically differentiated and there is geographic population structure of brown and black bears but not polar bears.

  9. Habitat-related specialization of lateral-line system morphology in a habitat-generalist and a habitat-specialist New Zealand eleotrid.

    Science.gov (United States)

    Vanderpham, J P; Nakagawa, S; Senior, A M; Closs, G P

    2016-04-01

    An investigation of intraspecific habitat-related patterns of variation in oculoscapular lateral-line superficial neuromasts (SN) identified a decrease in the ratio of total SNs to pores, and a trend towards decreased asymmetry in SNs in the habitat-generalist common bully Gobiomorphus cotidianus from fluvial habitats compared to lacustrine habitats, suggesting habitat-related phenotypic variability. A greater ratio of pores to SNs, as well as less variation in the total number and asymmetry of SNs observed in the fluvial habitat-specialist redfin bully Gobiomorphus huttoni may provide further evidence of variations in the oculoscapular lateral-line morphology of fluvial habitat G. cotidianus individuals serving as adaptations to more turbulent environments. © 2016 The Fisheries Society of the British Isles.

  10. Harvesting wildlife affected by climate change: a modelling and management approach for polar bears.

    Science.gov (United States)

    Regehr, Eric V; Wilson, Ryan R; Rode, Karyn D; Runge, Michael C; Stern, Harry L

    2017-10-01

    The conservation of many wildlife species requires understanding the demographic effects of climate change, including interactions between climate change and harvest, which can provide cultural, nutritional or economic value to humans.We present a demographic model that is based on the polar bear Ursus maritimus life cycle and includes density-dependent relationships linking vital rates to environmental carrying capacity ( K ). Using this model, we develop a state-dependent management framework to calculate a harvest level that (i) maintains a population above its maximum net productivity level (MNPL; the population size that produces the greatest net increment in abundance) relative to a changing K , and (ii) has a limited negative effect on population persistence.Our density-dependent relationships suggest that MNPL for polar bears occurs at approximately 0·69 (95% CI = 0·63-0·74) of K . Population growth rate at MNPL was approximately 0·82 (95% CI = 0·79-0·84) of the maximum intrinsic growth rate, suggesting relatively strong compensation for human-caused mortality.Our findings indicate that it is possible to minimize the demographic risks of harvest under climate change, including the risk that harvest will accelerate population declines driven by loss of the polar bear's sea-ice habitat. This requires that (i) the harvest rate - which could be 0 in some situations - accounts for a population's intrinsic growth rate, (ii) the harvest rate accounts for the quality of population data (e.g. lower harvest when uncertainty is large), and (iii) the harvest level is obtained by multiplying the harvest rate by an updated estimate of population size. Environmental variability, the sex and age of removed animals and risk tolerance can also affect the harvest rate. Synthesis and applications . We present a coupled modelling and management approach for wildlife that accounts for climate change and can be used to balance trade-offs among multiple conservation

  11. An approach of habitat degradation assessment for characterization on coastal habitat conservation tendency.

    Science.gov (United States)

    Zhou, Xi-Yin; Lei, Kun; Meng, Wei

    2017-09-01

    Coastal zones are population and economy highly intensity regions all over the world, and coastal habitat supports the sustainable development of human society. The accurate assessment of coastal habitat degradation is the essential prerequisite for coastal zone protection. In this study, an integrated framework of coastal habitat degradation assessment including landuse classification, habitat classifying and zoning, evaluation criterion of coastal habitat degradation and coastal habitat degradation index has been established for better regional coastal habitat assessment. Through establishment of detailed three-class landuse classification, the fine landscape change is revealed, the evaluation criterion of coastal habitat degradation through internal comparison based on the results of habitat classifying and zoning could indicate the levels of habitat degradation and distinguish the intensity of human disturbances in different habitat subareas under the same habitat classification. Finally, the results of coastal habitat degradation assessment could be achieved through coastal habitat degradation index (CHI). A case study of the framework is carried out in the Circum-Bohai-Sea-Coast, China, and the main results show the following: (1) The accuracy of all land use classes are above 90%, which indicates a satisfactory accuracy for the classification map. (2) The Circum-Bohai-Sea-Coast is divided into 3 kinds of habitats and 5 subareas. (3) In the five subareas of the Circum-Bohai-Sea-Coast, the levels of coastal habitat degradation own significant difference. The whole Circum-Bohai-Sea-Coast generally is in a worse state according to area weighting of each habitat subarea. This assessment framework of coastal habitat degradation would characterize the landuse change trend, realize better coastal habitat degradation assessment, reveal the habitat conservation tendency and distinguish intensity of human disturbances. Furthermore, it would support for accurate coastal

  12. Teddy Bear Stories

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Caldas-Coulthardt, Carmen

    2014-01-01

    This paper presents a semiotic analysis of a key cultural artefact, the teddy bear. After introducing the iconography of the teddy bear, it analyses different kinds of stories to show how teddy bears are endowed with meaning in everyday life: stories from children's books, reminiscenses by adults...... bears have traditionally centred on interpersonal relations within the nuclear family, but have recently been institutionalized and commercialized....

  13. Effect of human disturbance on long-term habitat use and breeding success of the European Nightjar, Caprimulgus europaeus

    Directory of Open Access Journals (Sweden)

    Andrew Lowe

    2014-12-01

    Full Text Available Land managers often respond to declining numbers of target species by creating additional areas of habitat. If these habitats are also subject to human disturbance, then their efforts may be wasted. The European Nightjar (Caprimulgus europaeus is a ground-nesting bird that is listed as a species of European Conservation Concern. It appears to be susceptible to human disturbance during the breeding season. We examined habitat use and reproductive success over 10 years in a breeding population on 1335 ha of managed land in Nottinghamshire, England. The study site was divided into a heavily disturbed section and a less disturbed section of equal habitat availability, forming a natural long-term experiment. The site is open to the public, and visitor numbers approximately doubled during the study. We found that overall Nightjar density was significantly lower and there were significantly fewer breeding pairs in the heavily disturbed habitat compared with the less disturbed habitat. However, average breeding success per pair, in terms of eggs and fledglings produced, was not significantly different between the two sections across years. Our findings suggest that human recreational disturbance may drastically alter settlement patterns and nest site selection of arriving females in some migratory ground-nesting species and may reduce the utility of apparently suitable patches of remnant and created habitat. Land managers should bear this in mind when creating new areas of habitat that will also be accessible to the public. Our study also highlights the value of long-term population monitoring, which can detect trends that short-term studies may miss.

  14. Bear-ly” learning: Limits of abstraction in black bear cognition

    Directory of Open Access Journals (Sweden)

    Jennifer Vonk

    2018-02-01

    Full Text Available We presented two American black bears (Ursus americanus with a serial list learning memory task, and one of the bears with a matching-to-sample task. After extended training, both bears demonstrated some success with the memory task but failed to generalize the overarching rule of the task to novel stimuli. Matching to sample proved even more difficult for our bear to learn. We conclude that, despite previous success in training bears to respond to natural categories, quantity discriminations, and other related tasks, that bears may possess a cognitive limitation with regards to learning abstract rules. Future tests using different procedures are necessary to determine whether this is a limit of bears’ cognitive capacities, or a limitation of the current tasks as presented. Future tests should present a larger number of varying stimuli. Ideally, bears of various species should be tested on these tasks to demonstrate species as well as individual differences.

  15. Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline.

    Science.gov (United States)

    Bromaghin, Jeffrey F; Mcdonald, Trent L; Stirling, Ian; Derocher, Andrew E; Richardson, Evan S; Regehr, Eric V; Douglas, David C; Durner, George M; Atwood, Todd; Amstrup, Steven C

    2015-04-01

    In the southern Beaufort Sea of the United States and Canada, prior investigations have linked declines in summer sea ice to reduced physical condition, growth, and survival of polar bears (Ursus maritimus). Combined with projections of population decline due to continued climate warming and the ensuing loss of sea ice habitat, those findings contributed to the 2008 decision to list the species as threatened under the U.S. Endangered Species Act. Here, we used mark-recapture models to investigate the population dynamics of polar bears in the southern Beaufort Sea from 2001 to 2010, years during which the spatial and temporal extent of summer sea ice generally declined. Low survival from 2004 through 2006 led to a 25-50% decline in abundance. We hypothesize that low survival during this period resulted from (1) unfavorable ice conditions that limited access to prey during multiple seasons; and possibly, (2) low prey abundance. For reasons that are not clear, survival of adults and cubs began to improve in 2007 and abundance was comparatively stable from 2008 to 2010, with ~900 bears in 2010 (90% CI 606-1212). However, survival of subadult bears declined throughout the entire period. Reduced spatial and temporal availability of sea ice is expected to increasingly force population dynamics of polar bears as the climate continues to warm. However, in the short term, our findings suggest that factors other than sea ice can influence survival. A refined understanding of the ecological mechanisms underlying polar bear population dynamics is necessary to improve projections of their future status and facilitate development of management strategies.

  16. GAS BEARING

    Science.gov (United States)

    Skarstrom, C.W.

    1960-09-01

    A gas lubricated bearing for a rotating shaft is described. The assembly comprises a stationary collar having an annular member resiliently supported thereon. The collar and annular member are provided with cooperating gas passages arranged for admission of pressurized gas which supports and lubricates a bearing block fixed to the rotatable shaft. The resilient means for the annular member support the latter against movement away from the bearing block when the assembly is in operation.

  17. Polar bear population status in the northern Beaufort Sea, Canada, 1971-2006.

    Science.gov (United States)

    Stirling, Ian; McDonald, Trent L; Richardson, E S; Regehr, Eric V; Amstrup, Steven C

    2011-04-01

    Polar bears (Ursus maritimus) of the northern Beaufort Sea (NB) population occur on the perimeter of the polar basin adjacent to the northwestern islands of the Canadian Arctic Archipelago. Sea ice converges on the islands through most of the year. We used open-population capture-recapture models to estimate population size and vital rates of polar bears between 1971 and 2006 to: (1) assess relationships between survival, sex and age, and time period; (2) evaluate the long-term importance of sea ice quality and availability in relation to climate warming; and (3) note future management and conservation concerns. The highest-ranking models suggested that survival of polar bears varied by age class and with changes in the sea ice habitat. Model-averaged estimates of survival (which include harvest mortality) for senescent adults ranged from 0.37 to 0.62, from 0.22 to 0.68 for cubs of the year (COY) and yearlings, and from 0.77 to 0.92 for 2-4 year-olds and adults. Horvtiz-Thompson (HT) estimates of population size were not significantly different among the decades of our study. The population size estimated for the 2000s was 980 +/- 155 (mean and 95% CI). These estimates apply primarily to that segment of the NB population residing west and south of Banks Island. The NB polar bear population appears to have been stable or possibly increasing slightly during the period of our study. This suggests that ice conditions have remained suitable and similar for feeding in summer and fall during most years and that the traditional and legal Inuvialuit harvest has not exceeded sustainable levels. However, the amount of ice remaining in the study area at the end of summer, and the proportion that continues to lie over the biologically productive continental shelf (polar bear population in the northern Beaufort Sea will eventually decline. Management and conservation practices for polar bears in relation to both aboriginal harvesting and offshore industrial activity will need to

  18. Polar bear population status in the northern Beaufort Sea, Canada, 1971-2006

    Science.gov (United States)

    Stirling, I.; McDonald, T.L.; Richardson, E.S.; Regehr, E.V.; Amstrup, Steven C.

    2011-01-01

    Polar bears (Ursus maritimus) of the northern Beaufort Sea (NB) population occur on the perimeter of the polar basin adjacent to the northwestern islands of the Canadian Arctic Archipelago. Sea ice converges on the islands through most of the year. We used open-population capture–recapture models to estimate population size and vital rates of polar bears between 1971 and 2006 to: (1) assess relationships between survival, sex and age, and time period; (2) evaluate the long-term importance of sea ice quality and availability in relation to climate warming; and (3) note future management and conservation concerns. The highest-ranking models suggested that survival of polar bears varied by age class and with changes in the sea ice habitat. Model-averaged estimates of survival (which include harvest mortality) for senescent adults ranged from 0.37 to 0.62, from 0.22 to 0.68 for cubs of the year (COY) and yearlings, and from 0.77 to 0.92 for 2–4 year-olds and adults. Horvtiz-Thompson (HT) estimates of population size were not significantly different among the decades of our study. The population size estimated for the 2000s was 980 ± 155 (mean and 95% CI). These estimates apply primarily to that segment of the NB population residing west and south of Banks Island. The NB polar bear population appears to have been stable or possibly increasing slightly during the period of our study. This suggests that ice conditions have remained suitable and similar for feeding in summer and fall during most years and that the traditional and legal Inuvialuit harvest has not exceeded sustainable levels. However, the amount of ice remaining in the study area at the end of summer, and the proportion that continues to lie over the biologically productive continental shelf (polar bear population in the northern Beaufort Sea will eventually decline. Management and conservation practices for polar bears in relation to both aboriginal harvesting and offshore industrial activity will need

  19. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears.

    Science.gov (United States)

    Cahill, James A; Stirling, Ian; Kistler, Logan; Salamzade, Rauf; Ersmark, Erik; Fulton, Tara L; Stiller, Mathias; Green, Richard E; Shapiro, Beth

    2015-03-01

    Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we present an analysis of data from a large panel of polar bear and brown bear genomes that includes brown bears from the ABC islands, the Alaskan mainland and Europe. Our results provide clear evidence that gene flow between the two species had a geographically wide impact, with polar bear DNA found within the genomes of brown bears living both on the ABC islands and in the Alaskan mainland. Intriguingly, while brown bear genomes contain up to 8.8% polar bear ancestry, polar bear genomes appear to be devoid of brown bear ancestry, suggesting the presence of a barrier to gene flow in that direction. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  20. Identifying habitat patches and potential ecological corridors for remnant Asiatic black bear (Ursus thibetanus japonicus) populations in Japan

    NARCIS (Netherlands)

    Doko, T.; Fukui, H.; Kooiman, A.; Toxopeus, A.G.; Ichinose, T.; Chen, W.; Skidmore, A.K.

    2011-01-01

    The Japanese National Biodiversity Strategy 2010 calls for the creation of ecological networks as a biodiversity conservation policy. However, there is an obvious lack of information on the spatial distribution of many species and a lack of scientific methods for examining habitat requirements to

  1. EFFECT OF CLEARANCE THE BALL BEARINGS ON INCORRECT WORK OF THREE-SUPORT BEARING SHAFT

    Directory of Open Access Journals (Sweden)

    Jarosław KACZOR

    2014-06-01

    Full Text Available Durability deep groove ball bearings depends on factors (called attributes design, technological and operational. Among the design features one of the most important is play in the bearings. Polish Norm shows five groups of looseness in the bearings, in which the play range from 0 to 105 microns. Manufacturers of rolling bearings they only play group, which has a bearing data, without giving the exact value of the slack. Aim of this study is to determine how it affects the play in the bearings to work three-bearing shafts, including elasticity and resilience three-bearing shafts.

  2. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    Science.gov (United States)

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake

  3. The Habitat Connection.

    Science.gov (United States)

    Naturescope, 1987

    1987-01-01

    Consists of activities which address the causes of habitat destruction and the effects of habitat loss on animals and plants. Identifies habitat loss as the major reason for the endangerment and extinction of plant and animal species. (ML)

  4. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics

    OpenAIRE

    Peter W. Tse; Dong Wang

    2017-01-01

    Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To exten...

  5. Evaluation of bearing configurations using the single bearing tester in liquid nitrogen

    Science.gov (United States)

    Jett, T.; Hall, P.; Thom, R.

    1991-01-01

    Various bearing configurations were tested using the Marshall Space Flight Center single bearing tester with LN2 as the cryogenic coolant. The baseline was one Rocketdyne phase one high pressure oxidizer turbopump (HPOTP) pump end 45-mm bore bearing. The bearing configurations that were tested included a Salox/M cage configuration, a silicon nitride ball configuration, an elongated cage configuration, and a Bray 601 grease configuration.

  6. Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline

    Science.gov (United States)

    Bromaghin, Jeffrey F.; McDonald, Trent L.; Stirling, Ian; Derocher, Andrew E.; Richardson, Evan S.; Regehr, Eric V.; Douglas, David C.; Durner, George M.; Atwood, Todd C.; Amstrup, Steven C.

    2015-01-01

    In the southern Beaufort Sea of the United States and Canada, prior investigations have linked declines in summer sea ice to reduced physical condition, growth, and survival of polar bears (Ursus maritimus). Combined with projections of population decline due to continued climate warming and the ensuing loss of sea ice habitat, those findings contributed to the 2008 decision to list the species as threatened under the U.S. Endangered Species Act. Here, we used mark–recapture models to investigate the population dynamics of polar bears in the southern Beaufort Sea from 2001 to 2010, years during which the spatial and temporal extent of summer sea ice generally declined. Low survival from 2004 through 2006 led to a 25–50% decline in abundance. We hypothesize that low survival during this period resulted from (1) unfavorable ice conditions that limited access to prey during multiple seasons; and possibly, (2) low prey abundance. For reasons that are not clear, survival of adults and cubs began to improve in 2007 and abundance was comparatively stable from 2008 to 2010, with ~900 bears in 2010 (90% CI 606–1212). However, survival of subadult bears declined throughout the entire period. Reduced spatial and temporal availability of sea ice is expected to increasingly force population dynamics of polar bears as the climate continues to warm. However, in the short term, our findings suggest that factors other than sea ice can influence survival. A refined understanding of the ecological mechanisms underlying polar bear population dynamics is necessary to improve projections of their future status and facilitate development of management strategies.

  7. Planning the Brown Bear Ursus arctos reintroduction in the Adamello Brenta Natural Park. A tool to establish a metapopulation in the Central-Eastern Alps

    Directory of Open Access Journals (Sweden)

    Andrea Mustoni

    2003-10-01

    Full Text Available Abstract In the 17th century, brown bears (Ursus arctos were still abundant and widely distributed over the entire alpine area of northern Italy and even in large, dense forests of the prealps and the Po plain. The start of the decline coincided with increasing deforestation for farming at the end of the 18th century and, in the 19th century, increased access to previously remote wilderness areas of the prealpine and alpine mountains, where direct persecution by farmers and hunters caused the extinction of local bear populations. The last remnant population that occupied the Adamello-Brenta Alps was considered biologically extinct since 1989 (only three, non-reproducing bears. Here we present an analysis of the reintroduction process as the most suitable tool for brown bear recovery in the Italian Alps, taking into account both the benefits of reinstating a viable population and the risks that the coexistence between man and bear could cause. The reintroduction process is discussed aiming at an evaluation of its contribution to the global future efforts for brown bear conservation in the alpine region. A GIS-based habitat suitability analysis was implemented to test for good-quality bear habitat in a vast mountainous area around the Adamello-Brenta Natural Park (6500 km², the release site of bears. The model was based on presence/absence data, gathered over the last 20 years, and habitat parameters in 25 ha cells in the core-area of the remnant bear population (645 km² study area. Other parameters of human disturbance and livestock densities, were considered at the scale of the municipality. Bears positively selected deciduous forest but seemed to avoid areas with intensive pasture activity, mainly of horses and sheep, despite the latter being a potential prey. Habitats containing large amounts of bare rock, farmland and urbanised areas were avoided. There were no significant

  8. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments, on the Pacific Ocean Margin

    DEFF Research Database (Denmark)

    Inagaki, F.; Nunoura, T.; Nakagawa, S.

    2006-01-01

    The deep subseafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass therein plays an important role for potential long-term controls on global biogeochemical cycles. We report here the vertical and geographical distribution of microbes and their ......The deep subseafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass therein plays an important role for potential long-term controls on global biogeochemical cycles. We report here the vertical and geographical distribution of microbes...... of the uncultivated Deep-Sea Archaeal Group were consistently the dominant phylotype in sediments associated with methane hydrate. Sediment cores lacking methane hydrates displayed few or no Deep-Sea Archaeal Group phylotypes. Bacterial communities in the methane hydrate-bearing sediments were dominated by members...

  9. Improvement of journal bearing operation at heavy misalignment using bearing flexibility and compliant liners

    DEFF Research Database (Denmark)

    Thomsen, Kim; Klit, Peder

    2012-01-01

    A flexure journal bearing design is proposed that will improve operational behaviour of a journal bearing at pronounced misalignment. Using a thermoelastohydrodynamic model, it is shown that the proposed flexure journal bearing has vastly increased the hydrodynamic performance compared to the stiff...... bearing when misaligned. The hydrodynamic performance is evaluated on lubricant film thickness, pressure and temperature. Furthermore, the influence of a compliant bearing liner is investigated and it is found that it increases the hydrodynamic performance when applied to a stiff bearing, whereas...... the liner has practically no influence on the flexure journal bearing's performance....

  10. Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage.

    Science.gov (United States)

    Hailer, Frank; Kutschera, Verena E; Hallström, Björn M; Klassert, Denise; Fain, Steven R; Leonard, Jennifer A; Arnason, Ulfur; Janke, Axel

    2012-04-20

    Recent studies have shown that the polar bear matriline (mitochondrial DNA) evolved from a brown bear lineage since the late Pleistocene, potentially indicating rapid speciation and adaption to arctic conditions. Here, we present a high-resolution data set from multiple independent loci across the nuclear genomes of a broad sample of polar, brown, and black bears. Bayesian coalescent analyses place polar bears outside the brown bear clade and date the divergence much earlier, in the middle Pleistocene, about 600 (338 to 934) thousand years ago. This provides more time for polar bear evolution and confirms previous suggestions that polar bears carry introgressed brown bear mitochondrial DNA due to past hybridization. Our results highlight that multilocus genomic analyses are crucial for an accurate understanding of evolutionary history.

  11. Radio-tracking large wilderness mammals: integration of GPS and Argos technologies

    Science.gov (United States)

    Schwartz, Charles C.; Arthur, Steve M.

    1999-01-01

    We tested 30 prototype global positioning system (GPS) radiocollars on brown bears (Ursus arctos) over a 3-year period on the Kenai Peninsula, Alaska. Collars were of 2 design types: GPS units with an Argos (Argos Data collection and Location System) satellite uplink (n = 19) and GPS units where the data were stored on board (n = 10) for retrieval at a later date. All units also contained a conventional VHF (very high frequency) transmitter and weighed 1.7 kg. GPS-Argos units obtained 10-82% of expected GPS fixes, and fix rate declined significantly (P bears varied more and were lower than fix rates for stationary collars placed in various vegetation types, suggesting that the bear, terrain, and movement all influence both fix and uplink success rate. Application of this new technology to grizzly and brown bear research and comparisons to studies with moose (Alces alces) are discussed.

  12. Polar bears experience skeletal muscle atrophy in response to food deprivation and reduced activity in winter and summer

    Science.gov (United States)

    Whiteman, John P.; Harlow, Henry J.; Durner, George M.; Regehr, Eric V.; Rourke, Bryan C.; Robles, Manuel; Amstrup, Steven C.; Ben-David, Merav

    2017-01-01

    When reducing activity and using stored energy during seasonal food shortages, animals risk degradation of skeletal muscles, although some species avoid or minimize the resulting atrophy while experiencing these conditions during hibernation. Polar bears may be food deprived and relatively inactive during winter (when pregnant females hibernate and hunting success declines for other demographic groups) as well as summer (when sea ice retreats from key foraging habitats). We investigated muscle atrophy in samples of biceps femoris collected from free-ranging polar bears in the Southern Beaufort Sea (SBS) throughout their annual cycle. Atrophy was most pronounced in April–May as a result of food deprivation during the previous winter, with muscles exhibiting reduced protein concentration, increased water content, and lower creatine kinase mRNA. These animals increased feeding and activity in spring (when seal prey becomes more available), initiating a period of muscle recovery. During the following ice melt of late summer, ~30% of SBS bears abandon retreating sea ice for land; in August, these ‘shore’ bears exhibited no muscle atrophy, indicating that they had fully recovered from winter food deprivation. These individuals subsequently scavenged whale carcasses deposited by humans and by October, had retained good muscle condition. In contrast, ~70% of SBS bears follow the ice north in late summer, into deep water with less prey. These ‘ice’ bears fast; by October, they exhibited muscle protein loss and rapid changes in myosin heavy-chain isoforms in response to reduced activity. These findings indicate that, unlike other bears during winter hibernation, polar bears without food in summer cannot mitigate atrophy. Consequently, prolonged summer fasting resulting from climate change-induced ice loss creates a risk of greater muscle atrophy and reduced abilities to travel and hunt.

  13. Polar bears experience skeletal muscle atrophy in response to food deprivation and reduced activity in winter and summer

    Science.gov (United States)

    Harlow, Henry J.; Durner, George M.; Regehr, Eric V.; Rourke, Bryan C.; Robles, Manuel; Amstrup, Steven C.; Ben-David, Merav

    2017-01-01

    Abstract When reducing activity and using stored energy during seasonal food shortages, animals risk degradation of skeletal muscles, although some species avoid or minimize the resulting atrophy while experiencing these conditions during hibernation. Polar bears may be food deprived and relatively inactive during winter (when pregnant females hibernate and hunting success declines for other demographic groups) as well as summer (when sea ice retreats from key foraging habitats). We investigated muscle atrophy in samples of biceps femoris collected from free-ranging polar bears in the Southern Beaufort Sea (SBS) throughout their annual cycle. Atrophy was most pronounced in April–May as a result of food deprivation during the previous winter, with muscles exhibiting reduced protein concentration, increased water content, and lower creatine kinase mRNA. These animals increased feeding and activity in spring (when seal prey becomes more available), initiating a period of muscle recovery. During the following ice melt of late summer, ~30% of SBS bears abandon retreating sea ice for land; in August, these ‘shore’ bears exhibited no muscle atrophy, indicating that they had fully recovered from winter food deprivation. These individuals subsequently scavenged whale carcasses deposited by humans and by October, had retained good muscle condition. In contrast, ~70% of SBS bears follow the ice north in late summer, into deep water with less prey. These ‘ice’ bears fast; by October, they exhibited muscle protein loss and rapid changes in myosin heavy-chain isoforms in response to reduced activity. These findings indicate that, unlike other bears during winter hibernation, polar bears without food in summer cannot mitigate atrophy. Consequently, prolonged summer fasting resulting from climate change-induced ice loss creates a risk of greater muscle atrophy and reduced abilities to travel and hunt. PMID:28835844

  14. Polar bears experience skeletal muscle atrophy in response to food deprivation and reduced activity in winter and summer.

    Science.gov (United States)

    Whiteman, John P; Harlow, Henry J; Durner, George M; Regehr, Eric V; Rourke, Bryan C; Robles, Manuel; Amstrup, Steven C; Ben-David, Merav

    2017-01-01

    When reducing activity and using stored energy during seasonal food shortages, animals risk degradation of skeletal muscles, although some species avoid or minimize the resulting atrophy while experiencing these conditions during hibernation. Polar bears may be food deprived and relatively inactive during winter (when pregnant females hibernate and hunting success declines for other demographic groups) as well as summer (when sea ice retreats from key foraging habitats). We investigated muscle atrophy in samples of biceps femoris collected from free-ranging polar bears in the Southern Beaufort Sea (SBS) throughout their annual cycle. Atrophy was most pronounced in April-May as a result of food deprivation during the previous winter, with muscles exhibiting reduced protein concentration, increased water content, and lower creatine kinase mRNA. These animals increased feeding and activity in spring (when seal prey becomes more available), initiating a period of muscle recovery. During the following ice melt of late summer, ~30% of SBS bears abandon retreating sea ice for land; in August, these 'shore' bears exhibited no muscle atrophy, indicating that they had fully recovered from winter food deprivation. These individuals subsequently scavenged whale carcasses deposited by humans and by October, had retained good muscle condition. In contrast, ~70% of SBS bears follow the ice north in late summer, into deep water with less prey. These 'ice' bears fast; by October, they exhibited muscle protein loss and rapid changes in myosin heavy-chain isoforms in response to reduced activity. These findings indicate that, unlike other bears during winter hibernation, polar bears without food in summer cannot mitigate atrophy. Consequently, prolonged summer fasting resulting from climate change-induced ice loss creates a risk of greater muscle atrophy and reduced abilities to travel and hunt.

  15. Vibration model of rolling element bearings in a rotor-bearing system for fault diagnosis

    Science.gov (United States)

    Cong, Feiyun; Chen, Jin; Dong, Guangming; Pecht, Michael

    2013-04-01

    Rolling element bearing faults are among the main causes of breakdown in rotating machines. In this paper, a rolling bearing fault model is proposed based on the dynamic load analysis of a rotor-bearing system. The rotor impact factor is taken into consideration in the rolling bearing fault signal model. The defect load on the surface of the bearing is divided into two parts, the alternate load and the determinate load. The vibration response of the proposed fault signal model is investigated and the fault signal calculating equation is derived through dynamic and kinematic analysis. Outer race and inner race fault simulations are realized in the paper. The simulation process includes consideration of several parameters, such as the gravity of the rotor-bearing system, the imbalance of the rotor, and the location of the defect on the surface. The simulation results show that different amplitude contributions of the alternate load and determinate load will cause different envelope spectrum expressions. The rotating frequency sidebands will occur in the envelope spectrum in addition to the fault characteristic frequency. This appearance of sidebands will increase the difficulty of fault recognition in intelligent fault diagnosis. The experiments given in the paper have successfully verified the proposed signal model simulation results. The test rig design of the rotor bearing system simulated several operating conditions: (1) rotor bearing only; (2) rotor bearing with loader added; (3) rotor bearing with loader and rotor disk; and (4) bearing fault simulation without rotor influence. The results of the experiments have verified that the proposed rolling bearing signal model is important to the rolling bearing fault diagnosis of rotor-bearing systems.

  16. Transient Vibration Prediction for Rotors on Ball Bearings Using Load-dependent Non-linear Bearing Stiffness

    Science.gov (United States)

    Fleming, David P.; Poplawski, J. V.

    2002-01-01

    Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic transient analysis requires bearing forces to be determined at each step of the transient solution. Analyses have been carried out to show the effect of accurate bearing transient forces (accounting for non-linear speed and load dependent bearing stiffness) as compared to conventional use of average rolling-element bearing stiffness. Bearing forces were calculated by COBRA-AHS (Computer Optimized Ball and Roller Bearing Analysis - Advanced High Speed) and supplied to the rotordynamics code ARDS (Analysis of Rotor Dynamic Systems) for accurate simulation of rotor transient behavior. COBRA-AHS is a fast-running 5 degree-of-freedom computer code able to calculate high speed rolling-element bearing load-displacement data for radial and angular contact ball bearings and also for cylindrical and tapered roller beatings. Results show that use of nonlinear bearing characteristics is essential for accurate prediction of rotordynamic behavior.

  17. Local Attitudes towards Bear Management after Illegal Feeding and Problem Bear Activity.

    Science.gov (United States)

    Dubois, Sara; Fraser, David

    2013-09-12

    The "pot bears" received international media attention in 2010 after police discovered the intentional feeding of over 20 black bears during the investigation of an alleged marijuana-growing operation in Christina Lake, British Columbia, Canada. A two-phase random digit dialing survey of the community was conducted in 2011 to understand local perspectives on bear policy and management, before and after a summer of problem bear activity and government interventions. Of the 159 households surveyed in February 2011, most had neutral or positive attitudes towards bears in general, and supported the initial decision to feed the food-conditioned bears until the autumn hibernation. In contrast to wildlife experts however, most participants supported relocating the problem bears, or allowing them to remain in the area, ahead of killing; in part this arose from notions of fairness despite the acknowledged problems of relocation. Most locals were aware of the years of feeding but did not report it, evidently failing to see it as a serious form of harm, even after many bears had been killed. This underscores the importance of preventive action on wildlife feeding and the need to narrow the gap between public and expert opinion on the likely effects of relocation versus killing.

  18. Genetic relationships of extant brown bears (Ursus arctos) and polar bears (Ursus maritimus).

    Science.gov (United States)

    Cronin, Matthew A; MacNeil, Michael D

    2012-01-01

    Polar bears (Ursus maritimus) and brown bears (Ursus arctos) are closely related species for which extensive mitochondrial and nuclear phylogenetic comparisons have been made. We used previously published genotype data for 8 microsatellite DNA loci from 930 brown bears in 19 populations and 473 polar bears in 16 populations to compare the population genetic relationships of extant populations of the species. Genetic distances (Nei standard distance = 1.157), the proportion of private alleles (52% of alleles are not shared by the species), and Bayesian cluster analysis are consistent with morphological and life-history characteristics that distinguish polar bears and brown bears as different species with little or no gene flow among extant populations.

  19. Harvesting wildlife affected by climate change: a modelling and management approach for polar bears

    Science.gov (United States)

    Regehr, Eric V.; Wilson, Ryan R.; Rode, Karyn D.; Runge, Michael C.; Stern, Harry

    2017-01-01

    The conservation of many wildlife species requires understanding the demographic effects of climate change, including interactions between climate change and harvest, which can provide cultural, nutritional or economic value to humans.We present a demographic model that is based on the polar bear Ursus maritimus life cycle and includes density-dependent relationships linking vital rates to environmental carrying capacity (K). Using this model, we develop a state-dependent management framework to calculate a harvest level that (i) maintains a population above its maximum net productivity level (MNPL; the population size that produces the greatest net increment in abundance) relative to a changing K, and (ii) has a limited negative effect on population persistence.Our density-dependent relationships suggest that MNPL for polar bears occurs at approximately 0·69 (95% CI = 0·63–0·74) of K. Population growth rate at MNPL was approximately 0·82 (95% CI = 0·79–0·84) of the maximum intrinsic growth rate, suggesting relatively strong compensation for human-caused mortality.Our findings indicate that it is possible to minimize the demographic risks of harvest under climate change, including the risk that harvest will accelerate population declines driven by loss of the polar bear's sea-ice habitat. This requires that (i) the harvest rate – which could be 0 in some situations – accounts for a population's intrinsic growth rate, (ii) the harvest rate accounts for the quality of population data (e.g. lower harvest when uncertainty is large), and (iii) the harvest level is obtained by multiplying the harvest rate by an updated estimate of population size. Environmental variability, the sex and age of removed animals and risk tolerance can also affect the harvest rate.Synthesis and applications. We present a coupled modelling and management approach for wildlife that accounts for climate change and can be used to balance trade-offs among multiple

  20. R+D works for the further development of high temperature reactors. (1) Captive bearing experiments for active magnetic bearings. (2) Captive bearing test for HTR blowers

    International Nuclear Information System (INIS)

    1991-01-01

    When using active magnetic bearings as blower shaft bearings, blower motors and bearings must be protected against mechanical damage in case of faults (example: total electrical supply failure due to the supply cables breaking). So-called captive bearings are provided, in order to be able to shut the blowers down safely in such faults. These captive bearings are roller bearings which are additionally fitted in the area of the blower shaft bearings, to prevent mechanical contact between the blower rotor and stator. As there was little experience available for the given boundary conditions, such as - speed, - acceleration, - bearing load, - bearing dimensions, - ambient conditions, appropriate development and tests had to be carried out. It was important to determine suitable captive bearings and the necessary ambient conditions, which will make it possible to support the failures of the magnetic bearings to be expected in 40 years' operation of the reactor without damage and to meet the requirements of the captive bearings. (orig./GL) [de

  1. EFFECT OF BEARING MACROGEOMETRY ON BEARING PERFORMANCE IN ELASTOHYDRODYNAMIC LUBRICATION

    Directory of Open Access Journals (Sweden)

    Emin GÜLLÜ

    2000-01-01

    Full Text Available During manufacturing, ideal dimension and mutual positioning of machine elements proposed in project desing can be achieved only within certain range of tolerances. These tolerances, being classified in two groups, related to micro and macro geometry of machine elements, don't have to effect the functioning of these elements. So, as for all machine elements, investigation of the effects of macro and micro tolerances for journal bearings is important. In this study, we have investigated the effect of macro geometric irregularities of journal bearings on performance characteristics. In this regard, we have studied the change of bearing performance in respect to deviation from ideal circle for an elliptic shaft with small ovality rolling in circular journal bearing.

  2. Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance

    2003-08-01

    and 22.9 acres of habitat; (2) Conducting instream work activities in 3 streams to enhance habitat and/or restore natural channel dimensions, patterns or profiles; (3) Planting 31,733 plants along 3.7 stream miles, (4) Establishing 71 new photopoints and retaking 254 existing photopoint pictures; (5) Monitoring stream temperatures at 12 locations on 6 streams; (6) Completing riparian fence, water gap and other maintenance on 100.5 miles of project fences. Since initiation of the project in 1984 over 68.7 miles of anadromous fish bearing streams and 1,933 acres of habitat have been protected, enhanced and maintained.

  3. Passive magnetic bearing configurations

    Science.gov (United States)

    Post, Richard F [Walnut Creek, CA

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  4. Polar bear population status in the northern Beaufort Sea, Canada, 1971-2006

    Science.gov (United States)

    Stirling, I.; McDonald, T.L.; Richardson, E.S.; Regehr, E.V.; Amstrup, Steven C.

    2011-01-01

    Polar bears (Ursus maritimus) of the northern Beaufort Sea (NB) population occur on the perimeter of the polar basin adjacent to the northwestern islands of the Canadian Arctic Archipelago. Sea ice converges on the islands through most of the year. We used open-population capture–recapture models to estimate population size and vital rates of polar bears between 1971 and 2006 to: (1) assess relationships between survival, sex and age, and time period; (2) evaluate the long-term importance of sea ice quality and availability in relation to climate warming; and (3) note future management and conservation concerns. The highest-ranking models suggested that survival of polar bears varied by age class and with changes in the sea ice habitat. Model-averaged estimates of survival (which include harvest mortality) for senescent adults ranged from 0.37 to 0.62, from 0.22 to 0.68 for cubs of the year (COY) and yearlings, and from 0.77 to 0.92 for 2–4 year-olds and adults. Horvtiz-Thompson (HT) estimates of population size were not significantly different among the decades of our study. The population size estimated for the 2000s was 980 ± 155 (mean and 95% CI). These estimates apply primarily to that segment of the NB population residing west and south of Banks Island. The NB polar bear population appears to have been stable or possibly increasing slightly during the period of our study. This suggests that ice conditions have remained suitable and similar for feeding in summer and fall during most years and that the traditional and legal Inuvialuit harvest has not exceeded sustainable levels. However, the amount of ice remaining in the study area at the end of summer, and the proportion that continues to lie over the biologically productive continental shelf (Sea will eventually decline. Management and conservation practices for polar bears in relation to both aboriginal harvesting and offshore industrial activity will need to adapt.

  5. Comparison of fixed-bearing and mobile-bearing total knee arthroplasty after high tibial osteotomy.

    Science.gov (United States)

    Hernigou, Philippe; Huys, Maxime; Pariat, Jacques; Roubineau, François; Flouzat Lachaniette, Charles Henri; Dubory, Arnaud

    2018-02-01

    There is no information comparing the results of fixed-bearing total knee replacement and mobile-bearing total knee replacement in the same patients previously treated by high tibial osteotomy. The purpose was therefore to compare fixed-bearing and mobile-bearing total knee replacements in patients treated with previous high tibial osteotomy. We compared the results of 57 patients with osteoarthritis who had received a fixed-bearing prosthesis after high tibial osteotomy with the results of 41 matched patients who had received a rotating platform after high tibial osteotomy. The match was made for length of follow-up period. The mean follow-up was 17 years (range, 15-20 years). The patients were assessed clinically and radiographically. The pre-operative knee scores had no statistically significant differences between the two groups. So was the case with the intra-operative releases, blood loss, thromboembolic complications and infection rates in either group. There was significant improvement in both groups of knees, and no significant difference was observed between the groups (i.e., fixed-bearing and mobile-bearing knees) for the mean Knee Society knee clinical score (95 and 92 points, respectively), or the Knee Society knee functional score (82 and 83 points, respectively) at the latest follow-up. However, the mean post-operative knee motion was higher for the fixed-bearing group (117° versus 110°). In the fixed-bearing group, one knee was revised because of periprosthetic fracture. In the rotating platform mobile-bearing group, one knee was revised because of aseptic loosening of the tibial component. The Kaplan-Meier survivorship for revision at ten years of follow-up was 95.2% for the fixed bearing prosthesis and 91.1% for the rotating platform mobile-bearing prosthesis. Although we did manage to detect significant differences mainly in clinical and radiographic results between the two groups, we found no superiority or inferiority of the mobile-bearing

  6. Hydrodynamic sliding bearings vs. roller bearings. Segmented sliding bearings for higher rotational speed; Hydrodynamische Gleitlager versus Waelzlager. Segmentgleitlager fuer hoehere Drehzahlen

    Energy Technology Data Exchange (ETDEWEB)

    Hagenhoff, M.; Sauer, M. [Main-Metall-Giesserei Fritz Schorr GmbH und Co. KG, Altenglan (Germany)

    2004-10-01

    Hydrodynamic sliding bearings are considered only in cases when roller bearings reach their speed limits and there is no other solution. However, this view neglects the fact that there are modern, optimised sliding bearings which have more advantages over roller bearings than should be expected. Many producers of sliding bearings also have computer programs enabling them to offer customised solutions, i.e. optimal adaptation of the bearings to their specific operating conditions. (orig.) [German] Hydrodynamische Gleitlager werden oft erst dann in Betracht gezogen, wenn man an die Drehzahlgrenzen von Waelzlagern stoesst und keine andere sinnvolle Alternative mehr in Frage kommt. Dabei uebersieht man leicht, dass es moderne, optimierte Gleitlagerkonstruktionen gibt, die weitaus haeufiger ihre Staerken im Vergleich zu Waelzlagern ausspielen koennen als zunaechst vermutet. Viele Gleitlagerhersteller haben zudem heute Berechnungsprogramme zur Verfuegung, die eine optimale Anpassung der Lager an die speziellen Betriebsbedingungen erlauben. (orig.)

  7. Temporal complexity of southern Beaufort Sea polar bear diets during a period of increasing land use

    Science.gov (United States)

    McKinney, Melissa A.; Atwood, Todd C.; Iverson, Sara J.; Peacock, Elizabeth

    2017-01-01

    From 2000 to 2013, use of land as a seasonal habitat by polar bears (Ursus maritimus) of the southern Beaufort Sea (SB) subpopulation substantially increased. This onshore use has been linked to reduced spatial and temporal availability of sea ice, as well as to the availability of subsistence‐harvested bowhead whale (Balaena mysticetus) bone piles. Here, we evaluated the role of climate conditions on consumption of traditional ice‐associated prey relative to onshore bowhead whale bone piles. We determined seasonal and interannual trends in the diets of SB polar bears using fatty acid‐based analysis during this period of increasing land use. Diet estimates of 569 SB polar bears from 2004 to 2012 showed high seasonal fluctuations in the proportions of prey consumed. Higher proportions of bowhead whale, as well as ringed seal (Pusa hispida) and beluga whale (Delphinapterus leucas), were estimated to occur in the winter–spring diet, while higher proportions of bearded seal (Erignathus barbatus) were estimated for summer–fall diets. Trends in the annual mean proportions of individual prey items were not found in either period, except for significant declines in the proportion of beluga in spring‐sampled bears. Nonetheless, in years following a high winter Arctic oscillation index, proportions of ice‐associated ringed seal were lower in the winter–spring diets of adult females and juveniles. Proportions of bowhead increased in the winter–spring diets of adult males with the number of ice‐free days over the continental shelf. In one or both seasons, polar bears that were in better condition were estimated to have consumed less ringed seal and/or more bowhead whale than those in worse condition. Therefore, climate variation over this recent period appeared to influence the extent of onshore vs. on‐ice food use, which in turn, appeared to be linked to fluctuating condition of SB polar bears.

  8. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears

    OpenAIRE

    Cahill, James A; Stirling, Ian; Kistler, Logan; Salamzade, Rauf; Ersmark, Erik; Fulton, Tara L; Stiller, Mathias; Green, Richard E; Shapiro, Beth

    2015-01-01

    © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd. Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we...

  9. Unbalance Response Prediction for Rotors on Ball Bearings Using Speed and Load Dependent Nonlinear Bearing Stiffness

    Science.gov (United States)

    Fleming, David P.; Poplawski, J. V.

    2003-01-01

    Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic analysis requires that bearing forces corresponding to the actual bearing deflection be utilized. For this work bearing forces were calculated by COBRA-AHS, a recently developed rolling-element bearing analysis code. Bearing stiffness was found to be a strong function of bearing deflection, with higher deflection producing markedly higher stiffness. Curves fitted to the bearing data for a range of speeds and loads were supplied to a flexible rotor unbalance response analysis. The rotordynamic analysis showed that vibration response varied nonlinearly with the amount of rotor imbalance. Moreover, the increase in stiffness as critical speeds were approached caused a large increase in rotor and bearing vibration amplitude over part of the speed range compared to the case of constant bearing stiffness. Regions of bistable operation were possible, in which the amplitude at a given speed was much larger during rotor acceleration than during deceleration. A moderate amount of damping will eliminate the bistable region, but this damping is not inherent in ball bearings.

  10. Local Attitudes towards Bear Management after Illegal Feeding and Problem Bear Activity

    Directory of Open Access Journals (Sweden)

    David Fraser

    2013-09-01

    Full Text Available The “pot bears” received international media attention in 2010 after police discovered the intentional feeding of over 20 black bears during the investigation of an alleged marijuana-growing operation in Christina Lake, British Columbia, Canada. A two-phase random digit dialing survey of the community was conducted in 2011 to understand local perspectives on bear policy and management, before and after a summer of problem bear activity and government interventions. Of the 159 households surveyed in February 2011, most had neutral or positive attitudes towards bears in general, and supported the initial decision to feed the food-conditioned bears until the autumn hibernation. In contrast to wildlife experts however, most participants supported relocating the problem bears, or allowing them to remain in the area, ahead of killing; in part this arose from notions of fairness despite the acknowledged problems of relocation. Most locals were aware of the years of feeding but did not report it, evidently failing to see it as a serious form of harm, even after many bears had been killed. This underscores the importance of preventive action on wildlife feeding and the need to narrow the gap between public and expert opinion on the likely effects of relocation versus killing.

  11. Bearing construction for refrigeration compresssor

    Science.gov (United States)

    Middleton, Marc G.; Nelson, Richard T.

    1988-01-01

    A hermetic refrigeration compressor has a cylinder block and a crankshaft rotatable about a vertical axis to reciprocate a piston in a cylinder on the cylinder block. A separate bearing housing is secured to the central portion of the cylinder block and extends vertically along the crankshaft, where it carries a pair of roller bearings to journal the crankshaft. The crankshaft has a radially extending flange which is journaled by a thrust-type roller bearing above the bearing housing to absorb the vertical forces on the crankshaft so that all three of the roller bearings are between the crankshaft and the bearing housing to maintain and control the close tolerances required by such bearings.

  12. A semi-analytical bearing model considering outer race flexibility for model based bearing load monitoring

    Science.gov (United States)

    Kerst, Stijn; Shyrokau, Barys; Holweg, Edward

    2018-05-01

    This paper proposes a novel semi-analytical bearing model addressing flexibility of the bearing outer race structure. It furthermore presents the application of this model in a bearing load condition monitoring approach. The bearing model is developed as current computational low cost bearing models fail to provide an accurate description of the more and more common flexible size and weight optimized bearing designs due to their assumptions of rigidity. In the proposed bearing model raceway flexibility is described by the use of static deformation shapes. The excitation of the deformation shapes is calculated based on the modelled rolling element loads and a Fourier series based compliance approximation. The resulting model is computational low cost and provides an accurate description of the rolling element loads for flexible outer raceway structures. The latter is validated by a simulation-based comparison study with a well-established bearing simulation software tool. An experimental study finally shows the potential of the proposed model in a bearing load monitoring approach.

  13. Thresholds of Detection and Identification of Halite Nodule Habitats in the Atacama Desert Using Remote Imaging

    Science.gov (United States)

    Phillips, M. S.; Moersch, J. E.; Cabrol, N. A.; Davila, A. F.

    2018-01-01

    The guiding theme of Mars exploration is shifting from global and regional habitability assessment to biosignature detection. To locate features likely to contain biosignatures, it is useful to focus on the reliable identification of specific habitats with high biosignature preservation potential. Proposed chloride deposits on Mars may represent evaporitic environments conducive to the preservation of biosignatures. Analogous chloride- bearing, salt-encrusted playas (salars) are a habitat for life in the driest parts of the Atacama Desert, and are also environments with a taphonomic window. The specific geologic features that harbor and preserve microorganisms in Atacama salars are sub- meter to meter scale salt protuberances, or halite nodules. This study focuses on the ability to recognize and map halite nodules using images acquired from an unmanned aerial vehicle (UAV) at spatial resolutions ranging from mm/pixel to that of the highest resolution orbital images available for Mars.

  14. EFFECT OF CLEARANCE THE BALL BEARINGS ON INCORRECT WORK OF THREE-SUPORT BEARING SHAFT

    OpenAIRE

    Jarosław KACZOR

    2014-01-01

    Durability deep groove ball bearings depends on factors (called attributes) design, technological and operational. Among the design features one of the most important is play in the bearings. Polish Norm shows five groups of looseness in the bearings, in which the play range from 0 to 105 microns. Manufacturers of rolling bearings they only play group, which has a bearing data, without giving the exact value of the slack. Aim of this study is to determine how it affects the play in the bea...

  15. Habitats and Species Covered by the EEC Habitats Directive

    DEFF Research Database (Denmark)

    Pihl, S.; Søgaard, B.; Ejrnæs, R.

    of Conservation (SAC's), Natura 2000. The designations are based upon the presence of 60 of the natural habitat types listed in Annex I of the Directive and approx. 44 of the species listed in Annex II which occur within the territory of Denmark and for the conservation of which the Community has a special...... and the Danish county authorities have initiated a co-operative programme to provide and compile the data necessary to assess the conservation status of the natural habitat types and species concerned. The purpose of this report is to present the conservation status of the habitats and species in Denmark...

  16. Modelling Fish Habitat Suitability in the Eastern English Channel. Application to community habitat level

    OpenAIRE

    Vaz, Sandrine; Carpentier, Andre; Loots, Christophe; Koubbi, Philippe

    2004-01-01

    Valuable marine habitats and living resources can be found in the Eastern English Channel and in 2003, a Franco-British Interreg IIIA project, ‘Eastern Channel Habitat Atlas for Marine Resource Management’ (CHARM), was initiated to support decision-making for management of essential fish habitats. Fish habitat corresponds to geographic areas within which ranges of environmental factors define the presence of a particular species. Habitat Suitability index (HSI) modelling was used to relate fi...

  17. Movements and Habitat Use of an Endangered Snake, Hoplocephalus bungaroides (Elapidae): Implications for Conservation

    Science.gov (United States)

    Croak, Benjamin M.; Crowther, Mathew S.; Webb, Jonathan K.; Shine, Richard

    2013-01-01

    A detailed understanding of how extensively animals move through the landscape, and the habitat features upon which they rely, can identify conservation priorities and thus inform management planning. For many endangered species, information on habitat use either is sparse, or is based upon studies from a small part of the species’ range. The broad-headed snake (Hoplocephalus bungaroides) is restricted to a specialized habitat (sandstone outcrops and nearby forests) within a small geographic range in south-eastern Australia. Previous research on this endangered taxon was done at a single site in the extreme south of the species’ geographic range. We captured and radio-tracked 9 adult broad-headed snakes at sites in the northern part of the species’ distribution, to evaluate the generality of results from prior studies, and to identify critical habitat components for this northern population. Snakes spent most of winter beneath sun-warmed rocks then shifted to tree hollows in summer. Thermal regimes within retreat-sites support the hypothesis that this shift is thermally driven. Intervals between successive displacements were longer than in the southern snakes but dispersal distances per move and home ranges were similar. Our snakes showed non-random preferences both in terms of macrohabitat (e.g., avoidance of some vegetation types) and microhabitat (e.g., frequent use of hollow-bearing trees). Despite many consistencies, the ecology of this species differs enough between southern and northern extremes of its range that managers need to incorporate information on local features to most effectively conserve this threatened reptile. PMID:23613912

  18. Movements and habitat use of an endangered snake, Hoplocephalus bungaroides (Elapidae: implications for conservation.

    Directory of Open Access Journals (Sweden)

    Benjamin M Croak

    Full Text Available A detailed understanding of how extensively animals move through the landscape, and the habitat features upon which they rely, can identify conservation priorities and thus inform management planning. For many endangered species, information on habitat use either is sparse, or is based upon studies from a small part of the species' range. The broad-headed snake (Hoplocephalus bungaroides is restricted to a specialized habitat (sandstone outcrops and nearby forests within a small geographic range in south-eastern Australia. Previous research on this endangered taxon was done at a single site in the extreme south of the species' geographic range. We captured and radio-tracked 9 adult broad-headed snakes at sites in the northern part of the species' distribution, to evaluate the generality of results from prior studies, and to identify critical habitat components for this northern population. Snakes spent most of winter beneath sun-warmed rocks then shifted to tree hollows in summer. Thermal regimes within retreat-sites support the hypothesis that this shift is thermally driven. Intervals between successive displacements were longer than in the southern snakes but dispersal distances per move and home ranges were similar. Our snakes showed non-random preferences both in terms of macrohabitat (e.g., avoidance of some vegetation types and microhabitat (e.g., frequent use of hollow-bearing trees. Despite many consistencies, the ecology of this species differs enough between southern and northern extremes of its range that managers need to incorporate information on local features to most effectively conserve this threatened reptile.

  19. Two-dimensional physical habitat modeling of effects of habitat structures on urban stream restoration

    Directory of Open Access Journals (Sweden)

    Dongkyun Im

    2011-12-01

    Full Text Available River corridors, even if highly modified or degraded, still provide important habitats for numerous biological species, and carry high aesthetic and economic values. One of the keys to urban stream restoration is recovery and maintenance of ecological flows sufficient to sustain aquatic ecosystems. In this study, the Hongje Stream in the Seoul metropolitan area of Korea was selected for evaluating a physically-based habitat with and without habitat structures. The potential value of the aquatic habitat was evaluated by a weighted usable area (WUA using River2D, a two-dimensional hydraulic model. The habitat suitability for Zacco platypus in the Hongje Stream was simulated with and without habitat structures. The computed WUA values for the boulder, spur dike, and riffle increased by about 2%, 7%, and 131%, respectively, after their construction. Also, the three habitat structures, especially the riffle, can contribute to increasing hydraulic heterogeneity and enhancing habitat diversity.

  20. Bearing restoration by grinding

    Science.gov (United States)

    Hanau, H.; Parker, R. J.; Zaretsky, E. V.; Chen, S. M.; Bull, H. L.

    1976-01-01

    A joint program was undertaken by the NASA Lewis Research Center and the Army Aviation Systems Command to restore by grinding those rolling-element bearings which are currently being discarded at aircraft engine and transmission overhaul. Three bearing types were selected from the UH-1 helicopter engine (T-53) and transmission for the pilot program. No bearing failures occurred related to the restoration by grinding process. The risk and cost of a bearing restoration by grinding programs was analyzed. A microeconomic impact analysis was performed.

  1. Impact of Fixed-Bearing and Mobile-Bearing Tibial Insert in Unicondylar Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    Mehmet Faruk Çatma

    2016-06-01

    Full Text Available INTRODUCTION: The aim of the study is to investigate the impact of fixed or mobile-bearing tibial inserts on patellofemoral arthrosis and evaluate which one to be preferred for patients with patellofemoral arthrosis. METHODS: Operated in our clinic between January 2009 and February 2013, 33 with patellofemoral arthritis together with anteromedial compartment arthritis were included in the study. Patellofemoral joints of patients were evaluated according to the scoring system defined by Fulkerson-Shea. RESULTS: Unicondylar knee arthroplasty with fixed-bearing tibial insertsand 22 (66,6% (male: 3, female: 19 and unicondylar knee arthroplasty with mobile-bearing tibial inserts 11 (33,9 % (male: 2, female: 9 were implanted.Average knee flexion was found to be 116,5 (100-135 degrees in 22 patients with mobile-bearing tibial inserts, and 114,5 (95-135 in 11 patients with fixed-bearing tibial inserts. DISCUSSION AND CONCLUSION: Patellofemoral arthrosis is an important factor for unicondylar knee arthroplasty prognosis and one of the determinants of patient satisfaction. Significantly less patellofemoral complaints were seen with UKA with fixed-bearing tibial insert compared to mobile-bearing tibial insert.

  2. Climate Drives Polar Bear Origins

    Science.gov (United States)

    In their provocative analysis of northern bears (“Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage,” Reports, 20 April, p. 344), F. Hailer et al. use independent nuclear loci to show that polar bears originated during the middle Pleistocene, rather than during t...

  3. An empirical assessment and comparison of species-based and habitat-based surrogates: a case study of forest vertebrates and large old trees.

    Science.gov (United States)

    Lindenmayer, David B; Barton, Philip S; Lane, Peter W; Westgate, Martin J; McBurney, Lachlan; Blair, David; Gibbons, Philip; Likens, Gene E

    2014-01-01

    A holy grail of conservation is to find simple but reliable measures of environmental change to guide management. For example, particular species or particular habitat attributes are often used as proxies for the abundance or diversity of a subset of other taxa. However, the efficacy of such kinds of species-based surrogates and habitat-based surrogates is rarely assessed, nor are different kinds of surrogates compared in terms of their relative effectiveness. We use 30-year datasets on arboreal marsupials and vegetation structure to quantify the effectiveness of: (1) the abundance of a particular species of arboreal marsupial as a species-based surrogate for other arboreal marsupial taxa, (2) hollow-bearing tree abundance as a habitat-based surrogate for arboreal marsupial abundance, and (3) a combination of species- and habitat-based surrogates. We also quantify the robustness of species-based and habitat-based surrogates over time. We then use the same approach to model overall species richness of arboreal marsupials. We show that a species-based surrogate can appear to be a valid surrogate until a habitat-based surrogate is co-examined, after which the effectiveness of the former is lost. The addition of a species-based surrogate to a habitat-based surrogate made little difference in explaining arboreal marsupial abundance, but altered the co-occurrence relationship between species. Hence, there was limited value in simultaneously using a combination of kinds of surrogates. The habitat-based surrogate also generally performed significantly better and was easier and less costly to gather than the species-based surrogate. We found that over 30 years of study, the relationships which underpinned the habitat-based surrogate generally remained positive but variable over time. Our work highlights why it is important to compare the effectiveness of different broad classes of surrogates and identify situations when either species- or habitat-based surrogates are likely

  4. Range contraction and increasing isolation of a polar bear subpopulation in an era of sea-ice loss.

    Science.gov (United States)

    Laidre, Kristin L; Born, Erik W; Atkinson, Stephen N; Wiig, Øystein; Andersen, Liselotte W; Lunn, Nicholas J; Dyck, Markus; Regehr, Eric V; McGovern, Richard; Heagerty, Patrick

    2018-02-01

    Climate change is expected to result in range shifts and habitat fragmentation for many species. In the Arctic, loss of sea ice will reduce barriers to dispersal or eliminate movement corridors, resulting in increased connectivity or geographic isolation with sweeping implications for conservation. We used satellite telemetry, data from individually marked animals (research and harvest), and microsatellite genetic data to examine changes in geographic range, emigration, and interpopulation connectivity of the Baffin Bay (BB) polar bear ( Ursus maritimus ) subpopulation over a 25-year period of sea-ice loss. Satellite telemetry collected from n  = 43 (1991-1995) and 38 (2009-2015) adult females revealed a significant contraction in subpopulation range size (95% bivariate normal kernel range) in most months and seasons, with the most marked reduction being a 70% decline in summer from 716,000 km 2 (SE 58,000) to 211,000 km 2 (SE 23,000) ( p  Bears in the 2000s were less likely to leave BB, with significant reductions in the numbers of bears moving into Davis Strait (DS) in winter and Lancaster Sound (LS) in summer. Harvest recoveries suggested both short and long-term fidelity to BB remained high over both periods (83-99% of marked bears remained in BB). Genetic analyses using eight polymorphic microsatellites confirmed a previously documented differentiation between BB, DS, and LS; yet weakly differentiated BB from Kane Basin (KB) for the first time. Our results provide the first multiple lines of evidence for an increasingly geographically and functionally isolated subpopulation of polar bears in the context of long-term sea-ice loss. This may be indicative of future patterns for other polar bear subpopulations under climate change.

  5. Polyhalogenated compounds (PCBs, chlordanes, HCB and BFRs) in four polar bears (Ursus maritimus) that swam malnourished from East Greenland to Iceland.

    Science.gov (United States)

    Vetter, Walter; Gall, Vanessa; Skírnisson, Karl

    2015-11-15

    Levels of organohalogen compounds (PCBs, chlordane, PBB 153, PBDEs, HCB) were determined in adipose tissue, liver, kidney and muscle of four polar bears which swam and/or drifted to Iceland in extremely malnourished condition. Since the colonization in the 9th century polar bears have been repeatedly observed in Iceland. However, in recent years three of the animals have clearly left their natural habitat in poor condition in May or June, i.e. at the end of the major feeding season. The fourth bear is believed to have drifted with melting ice to North-Eastern Iceland in mid-winter. The concentrations of the POPs were within the range or higher than the typical concentrations measured in polar bears from the East Greenland population. In addition to the targeted compounds, we tentatively detected Dechlorane 602 and its potential hydrodechlorinated Cl11-metabolite in all samples. Moreover, a polychlorinated compound which partly co-eluted with PCB 209 was detected in all liver samples but not in adipose tissue, kidney or muscle. The mass spectrum of the potential metabolite did not allow determining its structure. Polar bears are good swimmers and can reach Iceland from the ice edge of East Greenland within a few days. Potential reasons for the swims are briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Genetic and demographic recovery of an isolated population of brown bear Ursus arctos L., 1758

    Directory of Open Access Journals (Sweden)

    Elena G. Gonzalez

    2016-04-01

    Full Text Available The brown bear Ursus arctos L., 1758 population of the Cantabrian Mountains (northwestern Spain became isolated from other bear populations in Europe about 500 years ago and has declined due to hunting and habitat degradation. At the beginning of the 20th century, the Cantabrian population split into eastern and western subpopulations, and genetic exchange between them ceased. In the early 1990s, total population size was estimated to be < 100 bears. Subsequently, reduction in human-caused mortality has brought about an increase in numbers, mainly in the western subpopulation, likely promoting male-mediated migration and gene flow from the western nucleus to the eastern. To evaluate the possible genetic recovery of the small and genetically depauperate eastern subpopulation, in 2013 and 2014 we genotyped hair and faeces samples (116 from the eastern subpopulation and 36 from the western for 18 microsatellite markers. Data from the annual count of females with cubs of the year (COY during the past twenty-six years was used to analyze demographic changes. The number of females with COY fell to a minimum of seven in the western and three in eastern subpopulations in the biennium 1993–1994 and reached a respective maximum of 54 and 10 individuals in 2013–2014. We also observed increased bear dispersal and gene flow, mainly from the western to the eastern subpopulation. Of the 26 unique genotypes detected in the eastern subpopulation, 14 (54% presented an admixture composition, and seven (27% were determined to be migrants from the western subpopulation. Hence, the two separated and clearly structured subpopulations identified in the past currently show some degree of genetic admixture. This research shows the partial demographic recovery and a change in genetic composition due to migration process in a population of bears that has been isolated for several centuries.

  7. Assessing Nutritional Parameters of Brown Bear Diets among Ecosystems Gives Insight into Differences among Populations

    Science.gov (United States)

    López-Alfaro, Claudia; Coogan, Sean C. P.; Robbins, Charles T.; Fortin, Jennifer K.; Nielsen, Scott E.

    2015-01-01

    Food habit studies are among the first steps used to understand wildlife-habitat relationships. However, these studies are in themselves insufficient to understand differences in population productivity and life histories, because they do not provide a direct measure of the energetic value or nutritional composition of the complete diet. Here, we developed a dynamic model integrating food habits and nutritional information to assess nutritional parameters of brown bear (Ursus arctos) diets among three interior ecosystems of North America. Specifically, we estimate the average amount of digestible energy and protein (per kilogram fresh diet) content in the diet and across the active season by bears living in western Alberta, the Flathead River (FR) drainage of southeast British Columbia, and the Greater Yellowstone Ecosystem (GYE). As well, we estimate the proportion of energy and protein in the diet contributed by different food items, thereby highlighting important food resources in each ecosystem. Bear diets in Alberta had the lowest levels of digestible protein and energy through all seasons, which might help explain the low reproductive rates of this population. The FR diet had protein levels similar to the recent male diet in the GYE during spring, but energy levels were lower during late summer and fall. Historic and recent diets in GYE had the most energy and protein, which is consistent with their larger body sizes and higher population productivity. However, a recent decrease in consumption of trout (Oncorhynchus clarki), whitebark pine nuts (Pinus albicaulis), and ungulates, particularly elk (Cervus elaphus), in GYE bears has decreased the energy and protein content of their diet. The patterns observed suggest that bear body size and population densities are influenced by seasonal availability of protein an energy, likely due in part to nutritional influences on mass gain and reproductive success. PMID:26083536

  8. Assessing Nutritional Parameters of Brown Bear Diets among Ecosystems Gives Insight into Differences among Populations.

    Science.gov (United States)

    López-Alfaro, Claudia; Coogan, Sean C P; Robbins, Charles T; Fortin, Jennifer K; Nielsen, Scott E

    2015-01-01

    Food habit studies are among the first steps used to understand wildlife-habitat relationships. However, these studies are in themselves insufficient to understand differences in population productivity and life histories, because they do not provide a direct measure of the energetic value or nutritional composition of the complete diet. Here, we developed a dynamic model integrating food habits and nutritional information to assess nutritional parameters of brown bear (Ursus arctos) diets among three interior ecosystems of North America. Specifically, we estimate the average amount of digestible energy and protein (per kilogram fresh diet) content in the diet and across the active season by bears living in western Alberta, the Flathead River (FR) drainage of southeast British Columbia, and the Greater Yellowstone Ecosystem (GYE). As well, we estimate the proportion of energy and protein in the diet contributed by different food items, thereby highlighting important food resources in each ecosystem. Bear diets in Alberta had the lowest levels of digestible protein and energy through all seasons, which might help explain the low reproductive rates of this population. The FR diet had protein levels similar to the recent male diet in the GYE during spring, but energy levels were lower during late summer and fall. Historic and recent diets in GYE had the most energy and protein, which is consistent with their larger body sizes and higher population productivity. However, a recent decrease in consumption of trout (Oncorhynchus clarki), whitebark pine nuts (Pinus albicaulis), and ungulates, particularly elk (Cervus elaphus), in GYE bears has decreased the energy and protein content of their diet. The patterns observed suggest that bear body size and population densities are influenced by seasonal availability of protein an energy, likely due in part to nutritional influences on mass gain and reproductive success.

  9. Assessing Nutritional Parameters of Brown Bear Diets among Ecosystems Gives Insight into Differences among Populations.

    Directory of Open Access Journals (Sweden)

    Claudia López-Alfaro

    Full Text Available Food habit studies are among the first steps used to understand wildlife-habitat relationships. However, these studies are in themselves insufficient to understand differences in population productivity and life histories, because they do not provide a direct measure of the energetic value or nutritional composition of the complete diet. Here, we developed a dynamic model integrating food habits and nutritional information to assess nutritional parameters of brown bear (Ursus arctos diets among three interior ecosystems of North America. Specifically, we estimate the average amount of digestible energy and protein (per kilogram fresh diet content in the diet and across the active season by bears living in western Alberta, the Flathead River (FR drainage of southeast British Columbia, and the Greater Yellowstone Ecosystem (GYE. As well, we estimate the proportion of energy and protein in the diet contributed by different food items, thereby highlighting important food resources in each ecosystem. Bear diets in Alberta had the lowest levels of digestible protein and energy through all seasons, which might help explain the low reproductive rates of this population. The FR diet had protein levels similar to the recent male diet in the GYE during spring, but energy levels were lower during late summer and fall. Historic and recent diets in GYE had the most energy and protein, which is consistent with their larger body sizes and higher population productivity. However, a recent decrease in consumption of trout (Oncorhynchus clarki, whitebark pine nuts (Pinus albicaulis, and ungulates, particularly elk (Cervus elaphus, in GYE bears has decreased the energy and protein content of their diet. The patterns observed suggest that bear body size and population densities are influenced by seasonal availability of protein an energy, likely due in part to nutritional influences on mass gain and reproductive success.

  10. European red list of habitats. Part 1: Marine habitats

    NARCIS (Netherlands)

    Gubbay, S.; Sanders, N.; Haynes, T.; Janssen, J.A.M.; Rodwell, J.R.; Nieto, A.; Garcia Criado, M.; Beal, S.; Borg, J.

    2016-01-01

    The European Red List of Habitats provides an overview of the risk
    of collapse (degree of endangerment) of marine, terrestrial and
    freshwater habitats in the European Union (EU28) and adjacent
    regions (EU28+), based on a consistent set of categories and
    criteria, and detailed data

  11. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: manmade habitats.

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ira David Luman; Ralph. Anderson

    1979-01-01

    Manmade structures on rangelands provide specialized habitats for some species. These habitats and how they function as specialized habitat features are examined in this publication. The relationships of the wildlife of the Great Basin to such structures are detailed.

  12. Ancestral polymorphisms and sex-biased migration shaped the demographic history of brown bears and polar bears.

    Directory of Open Access Journals (Sweden)

    Shigeki Nakagome

    Full Text Available Recent studies have reported discordant gene trees in the evolution of brown bears and polar bears. Genealogical histories are different among independent nuclear loci and between biparentally inherited autosomal DNA (aDNA and matrilineal mitochondrial DNA (mtDNA. Based on multi-locus genomic sequences from aDNA and mtDNA, we inferred the population demography of brown and polar bears and found that brown bears have 6 times (aDNA or more than 14 times (mtDNA larger population sizes than polar bears and that polar bear lineage is derived from within brown bear diversity. In brown bears, the effective population size ratio of mtDNA to aDNA was at least 0.62, which deviated from the expected value of 0.25, suggesting matriarchal population due to female philopatry and male-biased migration. These results emphasize that ancestral polymorphisms and sex-biased migration may have contributed to conflicting branching patterns in brown and polar bears across aDNA genes and mtDNA.

  13. Ancestral polymorphisms and sex-biased migration shaped the demographic history of brown bears and polar bears.

    Science.gov (United States)

    Nakagome, Shigeki; Mano, Shuhei; Hasegawa, Masami

    2013-01-01

    Recent studies have reported discordant gene trees in the evolution of brown bears and polar bears. Genealogical histories are different among independent nuclear loci and between biparentally inherited autosomal DNA (aDNA) and matrilineal mitochondrial DNA (mtDNA). Based on multi-locus genomic sequences from aDNA and mtDNA, we inferred the population demography of brown and polar bears and found that brown bears have 6 times (aDNA) or more than 14 times (mtDNA) larger population sizes than polar bears and that polar bear lineage is derived from within brown bear diversity. In brown bears, the effective population size ratio of mtDNA to aDNA was at least 0.62, which deviated from the expected value of 0.25, suggesting matriarchal population due to female philopatry and male-biased migration. These results emphasize that ancestral polymorphisms and sex-biased migration may have contributed to conflicting branching patterns in brown and polar bears across aDNA genes and mtDNA.

  14. Bearing for liquid metal pump

    International Nuclear Information System (INIS)

    Dickinson, R.J.; Pennell, W.E.; Wasko, J.

    1984-01-01

    A liquid metal pump bearing support comprises a series of tangentially oriented spokes that connect the bearing cylinder to the pump internals structure. The spokes may be arranged in a plurality of planes extending from the bearing cylinder to the pump internals with the spokes in one plane being arranged alternately with those in the next plane. The bearing support structure provides the pump with sufficient lateral support for the bearing structure together with the capability of accommodating differential thermal expansion without adversely affecting pump performance

  15. Ultra-precision bearings

    CERN Document Server

    Wardle, F

    2015-01-01

    Ultra-precision bearings can achieve extreme accuracy of rotation, making them ideal for use in numerous applications across a variety of fields, including hard disk drives, roundness measuring machines and optical scanners. Ultraprecision Bearings provides a detailed review of the different types of bearing and their properties, as well as an analysis of the factors that influence motion error, stiffness and damping. Following an introduction to basic principles of motion error, each chapter of the book is then devoted to the basic principles and properties of a specific type of bearin

  16. Active magnetic bearings used as exciters for rolling element bearing outer race defect diagnosis.

    Science.gov (United States)

    Xu, Yuanping; Di, Long; Zhou, Jin; Jin, Chaowu; Guo, Qintao

    2016-03-01

    The active health monitoring of rotordynamic systems in the presence of bearing outer race defect is considered in this paper. The shaft is assumed to be supported by conventional mechanical bearings and an active magnetic bearing (AMB) is used in the mid of the shaft location as an exciter to apply electromagnetic force to the system. We investigate a nonlinear bearing-pedestal system model with the outer race defect under the electromagnetic force. The nonlinear differential equations are integrated using the fourth-order Runge-Kutta algorithm. The simulation and experimental results show that the characteristic signal of outer race incipient defect is significantly amplified under the electromagnetic force through the AMBs, which is helpful to improve the diagnosis accuracy of rolling element bearing׳s incipient outer race defect. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Morton, Winston H.

    2008-12-30

    coordinated by the Grande Ronde Model Watershed Program (Project. No.199202601). Work undertaken during 2007 included: (1) Starting 1 new fencing project in the NFJD subbasin that will protect an additional 1.82 miles of stream and 216.2 acres of habitat; (2) Constructing 0.47 miles of new channel on the Wallowa River to enhance habitat, restore natural channel dimensions, pattern and profile and reconnect approximately 18 acres of floodplain and wetland habitat; (3) Planting 22,100 plants along 3 streams totaling 3.6 stream miles; (4) Establishing 34 new photopoints on 5 projects and retaking 295 existing photopoint pictures; (5) Monitoring stream temperatures at 10 locations on 5 streams and conducting other monitoring activities; (6) Completing riparian fence, water gap and other maintenance on 116.8 miles of project fences; (7) Initiated writing of a comprehensive project summary report that will present a summary of conclusions of the benefits to focal species and management recommendations for the future. Since initiation of this program 56 individual projects have been implemented, monitored and maintained along 84.8 miles of anadromous fish bearing streams that protect and enhance 3,501 acres of riparian and instream habitat.

  18. Genomic Evidence of Widespread Admixture from Polar Bears into Brown Bears during the Last Ice Age.

    Science.gov (United States)

    Cahill, James A; Heintzman, Peter D; Harris, Kelley; Teasdale, Matthew D; Kapp, Joshua; Soares, Andre E R; Stirling, Ian; Bradley, Daniel; Edwards, Ceiridwen J; Graim, Kiley; Kisleika, Aliaksandr A; Malev, Alexander V; Monaghan, Nigel; Green, Richard E; Shapiro, Beth

    2018-05-01

    Recent genomic analyses have provided substantial evidence for past periods of gene flow from polar bears (Ursus maritimus) into Alaskan brown bears (Ursus arctos), with some analyses suggesting a link between climate change and genomic introgression. However, because it has mainly been possible to sample bears from the present day, the timing, frequency, and evolutionary significance of this admixture remains unknown. Here, we analyze genomic DNA from three additional and geographically distinct brown bear populations, including two that lived temporally close to the peak of the last ice age. We find evidence of admixture in all three populations, suggesting that admixture between these species has been common in their recent evolutionary history. In addition, analyses of ten fossil bears from the now-extinct Irish population indicate that admixture peaked during the last ice age, whereas brown bear and polar bear ranges overlapped. Following this peak, the proportion of polar bear ancestry in Irish brown bears declined rapidly until their extinction. Our results support a model in which ice age climate change created geographically widespread conditions conducive to admixture between polar bears and brown bears, as is again occurring today. We postulate that this model will be informative for many admixing species pairs impacted by climate change. Our results highlight the power of paleogenomics to reveal patterns of evolutionary change that are otherwise masked in contemporary data.

  19. Scaling laws for radial foil bearings

    Science.gov (United States)

    Honavara Prasad, Srikanth

    The effects of fluid pressurization, structural deformation of the compliant members and heat generation in foil bearings make the design and analysis of foil bearings very complicated. The complex fluid-structural-thermal interactions in foil bearings also make modeling efforts challenging because these phenomena are governed by highly non-linear partial differential equations. Consequently, comparison of various bearing designs require detailed calculation of the flow fields (velocities, pressures), bump deflections (structural compliance) and heat transfer phenomena (viscous dissipation in the fluid, frictional heating, temperature profile etc.,) resulting in extensive computational effort (time/hardware). To obviate rigorous computations and aid in feasibility assessments of foil bearings of various sizes, NASA developed the "rule of thumb" design guidelines for estimation of journal bearing load capacity. The guidelines are based on extensive experimental data. The goal of the current work is the development of scaling laws for radial foil bearings to establish an analytical "rule of thumb" for bearing clearance and bump stiffness. The use of scale invariant Reynolds equation and experimentally observed NASA "rule of thumb" yield scale factors which can be deduced from first principles. Power-law relationships between: a. Bearing clearance and bearing radius, and b. bump stiffness and bearing radius, are obtained. The clearance and bump stiffness values obtained from scaling laws are used as inputs for Orbit simulation to study various cases. As the clearance of the bearing reaches the dimensions of the material surface roughness, asperity contact breaks the fluid film which results in wear. Similarly, as the rotor diameter increases (requiring larger bearing diameters), the load capacity of the fluid film should increase to prevent dry rubbing. This imposes limits on the size of the rotor diameter and consequently bearing diameter. Therefore, this thesis aims

  20. Computational design of rolling bearings

    CERN Document Server

    Nguyen-Schäfer, Hung

    2016-01-01

    This book comprehensively presents the computational design of rolling bearings dealing with many interdisciplinary difficult working fields. They encompass elastohydrodynamics (EHD), Hertzian contact theory, oil-film thickness in elastohydrodynamic lubrication (EHL), bearing dynamics, tribology of surface textures, fatigue failure mechanisms, fatigue lifetimes of rolling bearings and lubricating greases, Weibull distribution, rotor balancing, and airborne noises (NVH) in the rolling bearings. Furthermore, the readers are provided with hands-on essential formulas based on the up-to-date DIN ISO norms and helpful examples for computational design of rolling bearings. The topics are intended for undergraduate and graduate students in mechanical and material engineering, research scientists, and practicing engineers who want to understand the interactions between these working fields and to know how to design the rolling bearings for automotive industry and many other industries.