WorldWideScience

Sample records for gridded lidar bathymetry

  1. Mosaic of gridded multibeam bathymetry, gridded LiDAR bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Tinian Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with gridded LiDAR bathymetry and bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size)...

  2. Mosaic of gridded multibeam and lidar bathymetry of the US Territory of Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with gridded lidar bathymetry. Gridded (5 m cell size) multibeam bathymetry were collected aboard NOAA Ship Hiialaka'i and...

  3. Coverage map of gridded multibeam and lidar bathymetry of the US Territory of Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with gridded lidar bathymetry. Gridded (5 m cell size) multibeam bathymetry were collected aboard NOAA Ship Hiialaka'i and...

  4. Gridded multibeam bathymetry and SHOALS LIDAR bathymetry of Penguin Bank, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (5 m cell size) of Penguin Bank, Hawaii, USA. The netCDF grid and ArcGIS ASCII file include multibeam bathymetry from the Simrad EM3002d, and...

  5. Gridded bathymetry of Penguin Bank, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (5 m cell size) of Penguin Bank, Hawaii, USA. The netCDF grid and ArcGIS ASCII file include multibeam bathymetry from the Simrad EM3002d, and...

  6. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Tutuila Island, American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  7. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Rose Atoll, American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry were...

  8. Gridded multibeam bathymetry of Apra Harbor, Guam U.S. Territory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry from Apra Harbor, Guam U.S. Territory. The netCDF and Arc ASCII grids include multibeam bathymetry from the Reson SeaBat 8125 multibeam sonar...

  9. Gridded bathymetry of Barbers Point, Oahu Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (1m) of Barbers Point ship grounding site, Oahu, Hawaii, USA. The data include multibeam bathymetry from the Reson 8101 multibeam sonar collected...

  10. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Palmyra Atoll, Pacific Remote Island Area, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  11. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral World View-2 satellite imagery of Sarigan Island, Territory of Mariana, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral World View-2 satellite data. Gridded (10 m cell size) multibeam bathymetry...

  12. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral World View-2 satellite imagery of Rota Island, Territory of Mariana, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral World View-2 satellite data. Gridded (5 m cell size) multibeam bathymetry...

  13. Slope grid (5 m) derived from gridded bathymetry of US Territory of Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) bathymetry from four sources: Multibeam bathymetry collected by Coral Reef Ecosystem Division aboard NOAA R/V AHI, and...

  14. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Ofu and Olosega Islands, Territory of American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multipectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  15. Bathymetric Position Index (BPI) Structures 20 m grid derived from gridded bathymetry of Brooks Banks, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (20 m cell size) multibeam bathymetry,...

  16. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Brooks Banks, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA...

  17. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Kure Atoll, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  18. Bathymetric Position Index (BPI) Zones 20 m grid derived from gridded bathymetry of Brooks Banks, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (20 m cell size) multibeam bathymetry, collected aboard NOAA...

  19. Performance Assessment of High Resolution Airborne Full Waveform LiDAR for Shallow River Bathymetry

    Directory of Open Access Journals (Sweden)

    Zhigang Pan

    2015-04-01

    Full Text Available We evaluate the performance of full waveform LiDAR decomposition algorithms with a high-resolution single band airborne LiDAR bathymetry system in shallow rivers. A continuous wavelet transformation (CWT is proposed and applied in two fluvial environments, and the results are compared to existing echo retrieval methods. LiDAR water depths are also compared to independent field measurements. In both clear and turbid water, the CWT algorithm outperforms the other methods if only green LiDAR observations are available. However, both the definition of the water surface, and the turbidity of the water significantly influence the performance of the LiDAR bathymetry observations. The results suggest that there is no single best full waveform processing algorithm for all bathymetric situations. Overall, the optimal processing strategies resulted in a determination of water depths with a 6 cm mean at 14 cm standard deviation for clear water, and a 16 cm mean and 27 cm standard deviation in more turbid water.

  20. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Kure Atoll, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard R/V...

  1. Rugosity grid (5 m) derived from gridded bathymetry of the US Territory of Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) bathymetry from four sources: Multibeam bathymetry collected by Coral Reef Ecosystem Division aboard NOAA R/V AHI,...

  2. Mosaic of 10 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Alamagan Island, Commonwealth of Northern Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (10 m cell size) multibeam bathymetry collected...

  3. Mosaic of 5 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Alamagan Island, Commonwealth of Northern Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  4. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral World View-2 satellite imagery of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral World View-2 satellite data. Gridded (10 m cell size) multibeam bathymetry...

  5. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Wake Island, West Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  6. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Ni'ihau Island, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  7. Bathymetric Position Index (BPI) Zones 60 m grid derived from gridded bathymetry of Rota Island, Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA...

  8. Bathymetric Position Index (BPI) Structures 60 m grid derived from gridded bathymetry of Wake Island, West Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (60 m cell size) multibeam bathymetry,...

  9. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of French Frigate Shoals, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA...

  10. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Ni'ihau Island, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA...

  11. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of French Frigate Shoals, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  12. Bathymetric Position Index (BPI) Zones 60 m grid derived from gridded bathymetry of Wake Island, West Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (60 m cell size) multibeam bathymetry, collected aboard R/V...

  13. Mosaic of 10 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Asuncion Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral IKONOS satellite data. Gridded (10 m cell size) multibeam bathymetry collected...

  14. Mosaic of 5 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Asuncion Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  15. Mosaic of 10 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Maug Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral IKONOS satellite data. Gridded (5m and 10 m cell size) multibeam bathymetry...

  16. Mosaic of 5 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Maug Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral IKONOS satellite data. Gridded (5m and 10 m cell size) multibeam bathymetry...

  17. Bathymetric Position Index (BPI) Zones 60 m grid derived from gridded bathymetry of the U.S. Territory of Guam.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA...

  18. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Pearl and Hermes Atoll, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  19. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Pearl and Hermes Atoll, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard R/V...

  20. Slope grid derived from gridded bathymetry of Ofu and Olosega Islands, Territory of American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard R/V AHI, and bathymetry derived from multispectral IKONOS satellite imagery....

  1. Rugosity grid derived from gridded bathymetry of Kure Atoll, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, and IKONOS derived depths using the Benthic...

  2. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of the US Territory of Guam.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from a focal mean analysis on bathymetry and slope. The bathymetry grid (5 m cell size) is derived from bathymetry from four sources:...

  3. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of the US Territory of Guam.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The bathymetry grid (5 m cell size) is derived from bathymetry from four sources: Multibeam...

  4. Rugosity grid (5 m) derived from gridded bathymetry of Saipan Island, Commonwealth of the Northern Marianas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) bathymetry from two sources: Multibeam bathymetry collected by Coral Reef Ecosystem Division aboard NOAA R/V AHI,...

  5. Mosaic of 5m gridded multibeam bathymetry and bathymetry derived from multispectral World View-2 satellite imagery of Swains Island, Territory of American Samoa, South Pacific, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral World View-2 satellite data. Gridded (5 m cell size) multibeam bathymetry...

  6. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Tau Island, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard R/V...

  7. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Rose Atoll, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard R/V AHI...

  8. Rugosity grid derived from gridded bathymetry of Ni'ihau Island, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA ship Hi'ialakai and R/V AHI using the Benthic Terrain Modeler with...

  9. Rugosity grid derived from gridded bathymetry of French Frigate Shoals, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  10. Bathymetric Position Index (BPI) Structures 40 m grid derived from gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (40 m cell size) multibeam bathymetry,...

  11. Bathymetric Position Index (BPI) Structures 20 m grid derived from gridded bathymetry of Johnston Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (20 m cell size) multibeam bathymetry,...

  12. Bathymetric Position Index (BPI) Structures 20 m grid derived from gridded bathymetry of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (20 m cell size) multibeam bathymetry,...

  13. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Ta'u Island, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  14. Bathymetric Position Index (BPI) Structures 5m grid derived from gridded bathymetry of Saipan Island, Commonwealth of the Northern Marianas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from a focal mean analysis on bathymetry and slope. The bathymetry grid (5 m cell size) is derived from two sources: Multibeam bathymetry...

  15. Rugosity grid derived from gridded bathymetry of Ta'u Island of the Manu'a Island group, American Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard R/V AHI, and bathymetry derived from multispectral IKONOS satellite imagery...

  16. Rugosity grid derived from gridded bathymetry Ofu and Olosega Islands of the Manu'a Island group, American Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard R/V AHI, and bathymetry derived from multispectral IKONOS satellite imagery...

  17. Bathymetric Position Index (BPI) Zones 5m grid derived from gridded bathymetry of Saipan Island, Commonwealth of the Northern Marianas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The bathymetry grid (5 m cell size) is derived from bathymetry from two sources: Multibeam...

  18. Merged/integrated Bathymetric Data Derived from Multibeam Sonar, LiDAR, and Satellite-derived Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with derived bathymetry from alternate sources to provide a GIS layer with expanded spatial coverage. Integrated products...

  19. Rugosity grid derived from gridded bathymetry of Apra Harbor, Guam U.S. Territory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (1 m cell size) multibeam bathymetry, collected aboard the Survey Vessel Swamp Fox using the Terrain Modeler with rugosity methods...

  20. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Sarigan Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA...

  1. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Maug Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA...

  2. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Asuncion Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry collected aboard NOAA...

  3. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Rota Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA...

  4. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Agrihan Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA...

  5. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Ofu and Olosega Islands, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  6. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Ofu and Olosega Islands, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard R/V...

  7. Slope grid derived from gridded bathymetry of Apra Harbor, Guam U.S. Territory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (1 m cell size) multibeam bathymetry, collected aboard the Survey Vessel Swamp Fox. Cell values reflect the maximum rate of change (in...

  8. Rugosity 5m grid derived from gridded bathymetry of Brooks Banks, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA ship Hi'ialakai and R/V AHI using the Benthic Terrain Modeler with...

  9. Slope 20 m grid derived from gridded bathymetry of Brooks Banks, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (20 m cell size) multibeam bathymetry, collected aboard NOAA ship Hi'ialakai and R/V AHI. Cell values reflect the maximum rate of...

  10. Rugosity grid derived from gridded bathymetry of Pearl and Hermes Atoll, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, and IKONOS derived depths using the Benthic...

  11. CRED 20m Gridded bathymetry of Necker Island, Hawaii, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry of the shelf and slope environments of Necker Island, Northwestern Hawaiian Islands, Hawaii, USA. This ASCII includes multibeam bathymetry from...

  12. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Supply Reef, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  13. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Maug Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  14. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Alamagan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  15. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Rota Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  16. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Guguan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  17. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Pagan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  18. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Asuncion Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry...

  19. CRED 20m Gridded bathymetry of Nihoa Island, Hawaii, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (20m) of the shelf and slope environments of Nihoa Island, Hawaii, USA. The ASCII includes multibeam bathymetry from the Simrad EM120, Simrad...

  20. 60 m Rugosity grid derived from gridded bathymetry of Wake Island, West Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA ship Hi'ialakai and R/V AHI using the Benthic Terrain Modeler with...

  1. CRED Rugosity grid derived from gridded bathymetry of Tutuila Island, American Samoa, South Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  2. Rugosity 60 m grid derived from gridded bathymetry of Rota Island, Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  3. Slope 60 m grid derived from gridded bathymetry of Guam Island, Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  4. Slope 60 m grid derived from gridded bathymetry of Rota Island, Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  5. Gridded bathymetry of 35 fthm Bank, and 37 fthm Bank, north of Farallon de Medinilla, CNMI, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (5m) of the bank environment of 35-fthm Bank and 37 fthm Bank,CNMI USA. These netCDF and ASCII grids include multibeam bathymetry from the Reson...

  6. Rugosity grid derived from gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (40 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. Cell values reflect the (surface area) /...

  7. Slope grid derived from gridded bathymetry of Johnston Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI, and NOAA ship Hi'ialakai. Cell values reflect the maximum rate of...

  8. Slope grid derived from gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (40 m cell size) multibeam bathymetry, collected aboard R/V AHI, and NOAA ship Hi'ialakai. Cell values reflect the maximum rate of...

  9. Slope grid derived from gridded bathymetry of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI, and NOAA ship Hi'ialakai. Cell values reflect the maximum rate of...

  10. Feasibility study for airborne fluorescence/reflectivity lidar bathymetry

    Science.gov (United States)

    Steinvall, Ove; Kautsky, Hans; Tulldahl, Michael; Wollner, Erika

    2012-06-01

    There is a demand from the authorities to have good maps of the coastal environment for their exploitation and preservation of the coastal areas. The goal for environmental mapping and monitoring is to differentiate between vegetation and non-vegetated bottoms and, if possible, to differentiate between species. Airborne lidar bathymetry is an interesting method for mapping shallow underwater habitats. In general, the maximum depth range for airborne laser exceeds the possible depth range for passive sensors. Today, operational lidar systems are able to capture the bottom (or vegetation) topography as well as estimations of the bottom reflectivity using e.g. reflected bottom pulse power. In this paper we study the possibilities and advantages for environmental mapping, if laser sensing would be further developed from single wavelength depth sounding systems to include multiple emission wavelengths and fluorescence receiver channels. Our results show that an airborne fluorescence lidar has several interesting features which might be useful in mapping underwater habitats. An example is the laser induced fluorescence giving rise to the emission spectrum which could be used for classification together with the elastic lidar signal. In the first part of our study, vegetation and substrate samples were collected and their spectral reflectance and fluorescence were subsequently measured in laboratory. A laser wavelength of 532 nm was used for excitation of the samples. The choice of 532 nm as excitation wavelength is motivated by the fact that this wavelength is commonly used in bathymetric laser scanners and that the excitation wavelengths are limited to the visual region as e.g. ultraviolet radiation is highly attenuated in water. The second part of our work consisted of theoretical performance calculations for a potential real system, and comparison of separability between species and substrate signatures using selected wavelength regions for fluorescence sensing.

  11. Rugosity grid derived from gridded bathymetry of of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. Cell values reflect the (surface area) /...

  12. Rugosity grid derived from gridded bathymetry of of Johnston Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. Cell values reflect the (surface area) /...

  13. Bathymetric Position Index (BPI) Structures 5m grid derived from gridded bathymetry of Tinian Island, Aguijan Island and Tatsumi Bank, Commonwealth of the Northern Marianas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from a focal mean analysis on bathymetry and slope. The bathymetry grid (5 m cell size) is derived from bathymetry from three sources:...

  14. Bathymetric Position Index (BPI) Zones 5m grid derived from gridded bathymetry of Tinian Island, Aguijan Island and Tatsumi Bank, Commonwealth of the Northern Marianas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The bathymetry grid (5 m cell size) is derived from bathymetry from three sources:...

  15. Gridded multibeam bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry at 40m resolution surrounding Howland Island, within the Pacific Remote Island Areas - Central Pacific Ocean. Bottom coverage was achieved in...

  16. Gridded multibeam bathymetry of Baker Island, Pacific Remote Island Areas, Central Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry at 40m resolution surrounding Baker Island, within the Pacific Remote Island Areas - Central Pacific Ocean. Bottom coverage was achieved in depths...

  17. CRED 10 m Gridded multibeam bathymetry of Wake Island, West Central Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry shelf, bank and slope environments of Wake Island, West Central Pacific, under joint management of the United States Dept. of Interior and Air...

  18. CRED 60 m Gridded multibeam bathymetry of Wake Island, West Central Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry shelf, bank and slope environments of Wake Island, West Central Pacific, under joint management of the United States Dept. of Interior and Air...

  19. Bathymetry 2M Grid, US Virgin Islands, 2005, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified ESRI Grid with 2 meter cell size representing the bathymetry of selected portions of seafloor around St. Croix, St. Thomas, and St....

  20. CRED 20 m Gridded bathymetry of Brooks Banks and St. Rogatien Bank, Hawaii, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (20m) of the shelf and slope environments of Brooks Banks and St. Rogatien, Hawaii, USA. The ASCII includes multibeam bathymetry from the Simrad...

  1. Bathymetric Position Index (BPI) Structures derived from gridded bathymetry of Farallon de Medinilla (FDM), Commonwealth of the Northern Mariana (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  2. Bathymetric Position Index (BPI) Zones derived from gridded bathymetry of Farallon de Medinilla (FDM), Commonwealth of the Northern Mariana (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is derived from gridded (5 m cell size) bathymetry and was created using the...

  3. CRED 5m Gridded multibeam bathymetry of Guam Island, Guam U.S. Territory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry shelf, bank and slope environments of Guam Island, Guam U.S. Territory. Bottom coverage was achieved in depths between 0 and -3532 meters but this...

  4. Gridded multibeam bathymetry of Rota Island, Commonwealth of the Northern Mariana Islands (CNMI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry shelf, bank and slope environments of Rota Island, CNMI. Bottom coverage was achieved in depths between 0 and -1905 meters. The netCDF and Arc...

  5. Rugosity 10 m grid derived from gridded bathymetry of Alamagan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hi'ialakai and R/V AHI, using the Benthic Terrain Modeler with...

  6. Rugosity 10 m grid derived from gridded bathymetry of Pagan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  7. Rugosity 10 m grid derived from gridded bathymetry of Agrihan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  8. Rugosity 10 m grid derived from gridded bathymetry of Maug Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  9. Rugosity 10 m grid derived from gridded bathymetry of Asuncion Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (10 m cell size) multibeam bathymetry collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  10. Rugosity 10 m grid derived from gridded bathymetry of Guguan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  11. Slope 10 m grid derived from gridded bathymetry of Agrihan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  12. Slope 10 m grid derived from gridded bathymetry of Pagan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  13. Slope 10 m grid derived from gridded bathymetry of Guguan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  14. Slope 10 m grid derived from gridded bathymetry of Maug Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  15. Slope 10 m grid derived from gridded bathymetry of Sarigan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  16. Slope 10 m grid derived from gridded bathymetry of Supply Reef, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  17. Slope 10 m grid derived from gridded bathymetry of Asuncion Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of change...

  18. Slope 5 m grid derived from gridded bathymetry of Rota Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of change...

  19. Rugosity grid derived from gridded bathymetry of Thirty-Five Fathom Bank and Thirty-Seven Fathom Bank, Commonwealth of the Northern Marianas.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, aboard NOAA Ship Oscar Elton Sette. Cell values reflect the (surface area) / (planimetric...

  20. A Decade Remote Sensing River Bathymetry with the Experimental Advanced Airborne Research LiDAR

    Science.gov (United States)

    Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.; Skinner, K.

    2012-12-01

    Since 2002, the first generation of the Experimental Advanced Airborne Research LiDAR (EAARL-A) sensor has been deployed for mapping rivers and streams. We present and summarize the results of comparisons between ground truth surveys and bathymetry collected by the EAARL-A sensor in a suite of rivers across the United States. These comparisons include reaches on the Platte River (NE), Boise and Deadwood Rivers (ID), Blue and Colorado Rivers (CO), Klamath and Trinity Rivers (CA), and the Shenandoah River (VA). In addition to diverse channel morphologies (braided, single thread, and meandering) these rivers possess a variety of substrates (sand, gravel, and bedrock) and a wide range of optical characteristics which influence the attenuation and scattering of laser energy through the water column. Root mean square errors between ground truth elevations and those measured by the EAARL-A ranged from 0.15-m in rivers with relatively low turbidity and highly reflective sandy bottoms to over 0.5-m in turbid rivers with less reflective substrates. Mapping accuracy with the EAARL-A has proved challenging in pools where bottom returns are either absent in waveforms or are of such low intensity that they are treated as noise by waveform processing algorithms. Resolving bathymetry in shallow depths where near surface and bottom returns are typically convolved also presents difficulties for waveform processing routines. The results of these evaluations provide an empirical framework to discuss the capabilities and limitations of the EAARL-A sensor as well as previous generations of post-processing software for extracting bathymetry from complex waveforms. These experiences and field studies not only provide benchmarks for the evaluation of the next generation of bathymetric LiDARs for use in river mapping, but also highlight the importance of developing and standardizing more rigorous methods to characterize substrate reflectance and in-situ optical properties at study sites

  1. A geomorphologist's dream come true: synoptic high resolution river bathymetry with the latest generation of airborne dual wavelength lidar

    Science.gov (United States)

    Lague, Dimitri; Launeau, Patrick; Michon, Cyril; Gouraud, Emmanuel; Juge, Cyril; Gentile, William; Hubert-Moy, Laurence; Crave, Alain

    2016-04-01

    Airborne, terrestrial lidar and Structure From Motion have dramatically changed our approach of geomorphology, from low density/precision data, to a wealth of data with a precision adequate to actually measure topographic change across multiple scales, and its relation to vegetation. Yet, an important limitation in the context of fluvial geomorphology has been the inability of these techniques to penetrate water due to the use of NIR laser wavelengths or to the complexity of accounting for water refraction in SFM. Coastal bathymetric systems using a green lidar can penetrate clear water up to 50 m but have a resolution too coarse and deployment costs that are prohibitive for fluvial research and management. After early prototypes of narrow aperture green lidar (e.g., EEARL NASA), major lidar manufacturer are now releasing dual wavelength laser system that offer water penetration consistent with shallow fluvial bathymetry at very high resolution (> 10 pts/m²) and deployment costs that makes the technology, finally accessible. This offers unique opportunities to obtain synoptic high resolution, high precision data for academic research as well as for fluvial environment management (flood risk mapping, navigability,…). In this presentation, we report on the deployment of the latest generation Teledyne-Optech Titan dual-wavelength lidar (1064 nm + 532 nm) owned by the University of Nantes and Rennes. The instrument has been deployed over several fluvial and lacustrine environments in France. We present results and recommendation on how to optimize the bathymetric cover as a function of aerial and aquatic vegetation cover and the hydrology regime of the river. In the surveyed rivers, the penetration depth varies from 0.5 to 4 m with discrete echoes (i.e., onboard detection), heavily impacted by water clarity and bottom reflectance. Simple post-processing of the full waveform record allows to recover an additional 20 % depth. As for other lidar techniques, the main

  2. Bathymetry 1m GRID of St. Thomas, US Virgin Islands, 2004, UTM 20 WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 1 meter cell size representing the bathymetry of the south shore of St. Thomas, US Virgin Islands. NOAA's NOS/NCCOS/CCMA...

  3. Bathymetry 2M Grid of Grammanik Bank, US Virgin Islands, 2005, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 2 meter cell size representing the bathymetry of Grammanik Bank south of St. Thomas, US Virgin Islands. NOAA's NOS/NCCOS/CCMA...

  4. Rugosity 10 m grid derived from gridded bathymetry of Farallon de Pajaros (Uracas) Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  5. Slope 10 m grid derived from gridded bathymetry of Farallon de Pajaros (Uracas) Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  6. Improved Model for Depth Bias Correction in Airborne LiDAR Bathymetry Systems

    Directory of Open Access Journals (Sweden)

    Jianhu Zhao

    2017-07-01

    Full Text Available Airborne LiDAR bathymetry (ALB is efficient and cost effective in obtaining shallow water topography, but often produces a low-accuracy sounding solution due to the effects of ALB measurements and ocean hydrological parameters. In bathymetry estimates, peak shifting of the green bottom return caused by pulse stretching induces depth bias, which is the largest error source in ALB depth measurements. The traditional depth bias model is often applied to reduce the depth bias, but it is insufficient when used with various ALB system parameters and ocean environments. Therefore, an accurate model that considers all of the influencing factors must be established. In this study, an improved depth bias model is developed through stepwise regression in consideration of the water depth, laser beam scanning angle, sensor height, and suspended sediment concentration. The proposed improved model and a traditional one are used in an experiment. The results show that the systematic deviation of depth bias corrected by the traditional and improved models is reduced significantly. Standard deviations of 0.086 and 0.055 m are obtained with the traditional and improved models, respectively. The accuracy of the ALB-derived depth corrected by the improved model is better than that corrected by the traditional model.

  7. Bathymetric Bathymetric Position Index (BPI) Zones 20 m grid derived from gridded bathymetry of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. BPI Zones was created using the Benthic...

  8. Bathymetric Bathymetric Position Index (BPI) Zones 20 m grid derived from gridded bathymetry of Johnston Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. BPI Zones was created using the Benthic...

  9. Bathymetric Bathymetric Position Index (BPI) Zones 40 m grid derived from gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from gridded (40 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. BPI Zones was created using the Benthic...

  10. Bathymetry of Mid Shelf Reef, US Virgin Islands 2005, 1M Grid, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 1 meter cell size representing the bathymetry of the Mid Shelf Reef south of St. Thomas, US Virgin Islands. NOAA's...

  11. CRED 40 m Gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (40 m cell size) bathymetry of the shelf and slope environments of Howland Island, Pacific Remote Island Areas, Central Pacific. Almost complete bottom...

  12. CRED 5 m Gridded bathymetry of Jarvis Island, Pacific Remote Island Areas, Central Pacific (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (5 m cell size) bathymetry of the shelf and slope environments of Jarvis Island, Pacific Remote Island Areas, Central Pacific. Almost complete bottom...

  13. CRED 40 m Gridded bathymetry of Baker Island, Pacific Remote Island Areas, Central Pacific (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (40 m cell size) bathymetry of the shelf and slope environments of Baker Island, Pacific Remote Island Areas, Central Pacific. Almost complete bottom...

  14. CRED 5 m Gridded bathymetry of Baker Island, Pacific Remote Island Areas, Central Pacific (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (5 m cell size) bathymetry of the shelf and slope environments of Baker Island, Pacific Remote Isand Areas, Central Pacific. Almost complete bottom coverage...

  15. CRED Gridded Bathymetry of St. Rogatien and Brooks Banks (100-018) in the Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-018b is a 60-m ASCII grid of depth data collected near St. Rogatien multibeam bathymetry data from a SeaBeam 210 sonar aboard the R/V Kai'imikai-O-Kanaloa...

  16. Bathymetry 1M Grid of St. Croix (Buck Island), US Virgin Islands 2005, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 1 meter cell size representing the bathymetry of the north shore of St. Croix (Buck Island), US Virgin Islands. NOAA's...

  17. Bathymetry 1M GRID of St. Croix (Buck Island), US Virgin Islands, 2004, UTM 20 WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 1 meter cell size representing the bathymetry of the north shore of Buck Island St. Croix, US Virgin Islands. NOAA's...

  18. Bathymetric Position Index (BPI) Structures derived from gridded bathymetry of Swains Island,Territory of American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from gridded (40 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. BPI Zones was created using the...

  19. Bathymetric Position Index (BPI) Zones derived from gridded bathymetry of Swains Island,Territory of American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from gridded (40 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. BPI Zones was created using the Benthic...

  20. Gridded multibeam bathymetry of Aguijan, Tinian, Farallon de Medinilla and Saipan Islands and Tatsumi and Marpi Banks, CNMI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry shelf, bank and slope environments of Aguijan, Tinian, Farallon de Medinilla and Saipan Islands and Tatsumi and Marpi Banks, CNMI. Bottom coverage...

  1. CRED Gridded Bathymetry of the 1955 Eruption Site and Seamount (100-022) in the Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-022b is a 60-m ASCII grid of depth data collected near 1955 Eruption Site multibeam bathymetry data from a SeaBeam 210 sonar aboard the R/V...

  2. CRED Gridded Bathymetry of Nihoa Island and transit to Kauai (100-026) in the Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-026b is a 60-m ASCII grid of depth data collected near Nihoa multibeam bathymetry data from a SeaBeam 210 sonar aboard the R/V Kai'imikai-O-Kanaloa...

  3. Neural networks for the generation of sea bed models using airborne lidar bathymetry data

    Science.gov (United States)

    Kogut, Tomasz; Niemeyer, Joachim; Bujakiewicz, Aleksandra

    2016-06-01

    Various sectors of the economy such as transport and renewable energy have shown great interest in sea bed models. The required measurements are usually carried out by ship-based echo sounding, but this method is quite expensive. A relatively new alternative is data obtained by airborne lidar bathymetry. This study investigates the accuracy of these data, which was obtained in the context of the project `Investigation on the use of airborne laser bathymetry in hydrographic surveying'. A comparison to multi-beam echo sounding data shows only small differences in the depths values of the data sets. The IHO requirements of the total horizontal and vertical uncertainty for laser data are met. The second goal of this paper is to compare three spatial interpolation methods, namely Inverse Distance Weighting (IDW), Delaunay Triangulation (TIN), and supervised Artificial Neural Networks (ANN), for the generation of sea bed models. The focus of our investigation is on the amount of required sampling points. This is analyzed by manually reducing the data sets. We found that the three techniques have a similar performance almost independently of the amount of sampling data in our test area. However, ANN are more stable when using a very small subset of points.

  4. Neural networks for the generation of sea bed models using airborne lidar bathymetry data

    Directory of Open Access Journals (Sweden)

    Kogut Tomasz

    2016-06-01

    Full Text Available Various sectors of the economy such as transport and renewable energy have shown great interest in sea bed models. The required measurements are usually carried out by ship-based echo sounding, but this method is quite expensive. A relatively new alternative is data obtained by airborne lidar bathymetry. This study investigates the accuracy of these data, which was obtained in the context of the project ‘Investigation on the use of airborne laser bathymetry in hydrographic surveying’. A comparison to multi-beam echo sounding data shows only small differences in the depths values of the data sets. The IHO requirements of the total horizontal and vertical uncertainty for laser data are met. The second goal of this paper is to compare three spatial interpolation methods, namely Inverse Distance Weighting (IDW, Delaunay Triangulation (TIN, and supervised Artificial Neural Networks (ANN, for the generation of sea bed models. The focus of our investigation is on the amount of required sampling points. This is analyzed by manually reducing the data sets. We found that the three techniques have a similar performance almost independently of the amount of sampling data in our test area. However, ANN are more stable when using a very small subset of points.

  5. Erosion - deposition evaluation through hybrid DTMs derived by LiDAR and colour bathymetry: the case study of the Brenta, Piave and Tagliamento rivers

    Directory of Open Access Journals (Sweden)

    J. Moretto

    2013-09-01

    Full Text Available Risk management and flood protection are frequently assessed through geo-morphometric evaluations resulting by floods events. If we aim at elevation models with high resolutions and covering large areas, airborne LiDAR surveys can represent a good compromise among costs, time and uncertainty. The major limitation of the nonbathymetric LiDAR surveys consists in the detection of wet areas. Indeed, accounting for more than 20 cm of water depth, LiDAR signal increases exponentially its error. In this paper we present a comparison of the results concerning the application of a colour bathymetry methodology for the production of hybrid DTMs (HDTM. These elevation models were derived by merging LiDAR data for the dry areas and colour bathymetry for the wet areas. The methodological approach consists in a statistical regression between water depth and RGB band intensity values from contemporary aerial images. This methodology includes the use of filters in order to reduce possible errors due to the application of the model, to estimate precise “in-channel” points. The study areas are three different human impacted gravel-bed rivers of the North-East of Italy. This methodology has been applied in three sub-reaches of Brenta River, two of Piave River and two of Tagliamento River before and after relevant flood events with recurrence interval 10 years. Potentials and limitations of the applied bathymetric method, the comparison of its use in different fluvial contexts and its possibility of employment for geo-morphometric evaluations, were then tested. DGPS control points (1841, 2638, 10473 respectively for Brenta, Piave and Tagliamento River were finally used to evaluate the accuracy of wet areas. Results showed that, in each model, wet areas vertical errors were comparable to those featured by LiDAR data for the dry areas.

  6. CRED 20m Gridded bathymetry and IKONOS estimated depths of Pearl and Hermes Atoll, Hawaii, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of Pearl and Hermes Atoll, Hawaii, USA. Bottom coverage was achieved in depths...

  7. CRED 5 m Gridded bathymetry and IKONOS estimated depths of Pearl and Hermes Atoll, Hawaii, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of Pearl and Hermes Atoll, Hawaii, USA. Bottom coverage was achieved in depths...

  8. CRED 20 m Gridded bathymetry and IKONOS estimated depths of Pearl and Hermes Atoll, Hawaii, USA (NetCDF format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of Pearl and Hermes Atoll, Hawaii, USA. Bottom coverage was achieved in depths...

  9. CRED 5 m Gridded bathymetry and IKONOS estimated depths of Pearl and Hermes Atoll, Hawaii, USA (NetCDF format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of Pearl and Hermes Atoll, Hawaii, USA. Bottom coverage was achieved in depths...

  10. Bathymetry 1M GRID of St. John (South Shore - Area 1), US Virgin Islands, 2004, UTM 20 WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 1 meter cell size representing the bathymetry of the south shore of St. John, US Virgin Islands. Due to the large file size...

  11. CRED 60 m Gridded bathymetry and IKONOS estimated depths of UTM Zone 2, Northwestern Hawaiian Islands, USA (NetCDF format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of the Northwestern Hawaiian Islands, USA within UTM Zone 2. Bottom coverage was...

  12. CRED 60 m Gridded bathymetry and IKONOS estimated depths of UTM Zone 2, Northwestern Hawaiian Islands, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of the Northwestern Hawaiian Islands, USA within UTM Zone 2. Bottom coverage was...

  13. CRED 60m Gridded bathymetry and IKONOS estimated depths of UTM Zone 3, Northwestern Hawaiian Islands, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of the Northwestern Hawaiian Islands, USA within UTM Zone 3. Bottom coverage was...

  14. CRED 60 m Gridded bathymetry and IKONOS estimated depths of UTM Zone 3, Northwestern Hawaiian Islands, USA (netCDF format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of the Northwestern Hawaiian Islands, USA within UTM Zone 3. Bottom coverage was...

  15. CRED 60 m Gridded bathymetry and IKONOS estimated depths of UTM Zone 1, Northwestern Hawaiian Islands, USA (NetCDF format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of the Northwestern Hawaiian Islands, USA within UTM Zone 1. Bottom coverage was...

  16. NOAA ESRI Grid - 3m Multibeam Bathymetry, Puerto Rico (Tourmaline Bank) - Project NF-08-04, , UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 3 meter cell size representing the bathymetry of selected portions of seafloor around Tourmaline Bank in Puerto Rico, derived...

  17. NOAA ESRI Grid - 6m Multibeam Bathymetry, Puerto Rico (Tourmaline Bank) - Project NF-08-04, , UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 6 meter cell size representing the bathymetry of selected portions of seafloor around Tourmaline Bank in Puerto Rico, derived...

  18. NOAA ESRI Grid Puerto Rico, La Parguera, 2006: 3M Multibeam Bathymetry, Project NF-06-03, UTM 19 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 3 meter cell size representing the bathymetry of the southwest shore of La Parguera, Puerto Rico. NOAA's NOS/NCCOS/CCMA...

  19. Computational modeling of river flow using bathymetry collected with an experimental, water-penetrating, green LiDAR

    Science.gov (United States)

    Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.

    2009-12-01

    Airborne bathymetric Light Detection and Ranging (LiDAR) systems designed for coastal and marine surveys are increasingly being deployed in fluvial environments. While the adaptation of this technology to rivers and streams would appear to be straightforward, currently technical challenges remain with regard to achieving high levels of vertical accuracy and precision when mapping bathymetry in shallow fluvial settings. Collectively these mapping errors have a direct bearing on hydraulic model predictions made using these data. We compared channel surveys conducted along the Platte River, Nebraska, and the Trinity River, California, using conventional ground-based methods with those made with the hybrid topographic/bathymetric Experimental Advanced Airborne Research LiDAR (EAARL). In the turbid and braided Platte River, a bathymetric-waveform processing algorithm was shown to enhance the definition of thalweg channels over a more simplified, first-surface waveform processing algorithm. Consequently flow simulations using data processed with the shallow bathymetric algorithm resulted in improved prediction of wetted area relative to the first-surface algorithm, when compared to the wetted area in concurrent aerial imagery. However, when compared to using conventionally collected data for flow modeling, the inundation extent was over predicted with the EAARL topography due to higher bed elevations measured by the LiDAR. In the relatively clear, meandering Trinity River, bathymetric processing algorithms were capable of defining a 3 meter deep pool. However, a similar bias in depth measurement was observed, with the LiDAR measuring the elevation of the river bottom above its actual position, resulting in a predicted water surface higher than that measured by field data. This contribution addresses the challenge of making bathymetric measurements with the EAARL in different environmental conditions encountered in fluvial settings, explores technical issues related to

  20. Analysis of MABEL Bathymetry in Keweenaw Bay and Implications for ICESat-2 ATLAS

    Directory of Open Access Journals (Sweden)

    Nicholas A. Forfinski-Sarkozi

    2016-09-01

    Full Text Available In 2018, the National Aeronautics and Space Administration (NASA is scheduled to launch the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2, with a new six-beam, green-wavelength, photon-counting lidar system, Advanced Topographic Laser Altimeter System (ATLAS. The primary objectives of the ICESat-2 mission are to measure ice-sheet elevations, sea-ice thickness, and global biomass. However, if bathymetry can be reliably retrieved from ATLAS data, this could assist in addressing a key data need in many coastal and inland water body areas, including areas that are poorly-mapped and/or difficult to access. Additionally, ATLAS-derived bathymetry could be used to constrain bathymetry derived from complementary data, such as passive, multispectral imagery and synthetic aperture radar (SAR. As an important first step in evaluating the ability to map bathymetry from ATLAS, this study involves a detailed assessment of bathymetry from the Multiple Altimeter Beam Experimental Lidar (MABEL, NASA’s airborne ICESat-2 simulator, flown on the Earth Resources 2 (ER-2 high-altitude aircraft. An interactive, web interface, MABEL Viewer, was developed and used to identify bottom returns in Keweenaw Bay, Lake Superior. After applying corrections for refraction and channel-specific elevation biases, MABEL bathymetry was compared against National Oceanic and Atmospheric Administration (NOAA data acquired two years earlier. The results indicate that MABEL reliably detected bathymetry in depths of up to 8 m, with a root mean square (RMS difference of 0.7 m, with respect to the reference data. Additionally, a version of the lidar equation was developed for predicting bottom-return signal levels in MABEL and tested using the Keweenaw Bay data. Future work will entail extending these results to ATLAS, as the technical specifications of the sensor become available.

  1. CRED 20 m Gridded bathymetry and IKONOS estimated depths of Northampton Seamounts to Laysan Island, Northwestern Hawaiian Islands, USA (NetCDF format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of Northampton Seamounts to Laysan Island, Northwestern Hawaiian Islands, Hawaii,...

  2. CRED 20 m Gridded bathymetry and IKONOS estimated depths of Northampton Seamounts to Laysan Island, Northwestern Hawaiian Islands, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of Northampton Seamounts to Laysan Island, Northwestern Hawaiian Islands, Hawaii,...

  3. NOAA ESRI Grid - 9m Multibeam Bathymetry, Puerto Rico (Isla de Mona) - Project NF-08-04, UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 9 meter cell size representing the bathymetry of selected portions of seafloor around Isla de Mona in Puerto Rico, derived...

  4. NOAA ESRI Grid - 6m Multibeam Bathymetry, Puerto Rico (Isla de Mona) - Project NF-08-04, , UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 6 meter cell size representing the bathymetry of selected portions of seafloor around Isla de Mona in Puerto Rico, derived...

  5. NOAA ESRI Grid - 3m Bathymetry around Isla de Mona, Puerto Rico, Project NF-07-06, 2007, UTM 19 NAD 83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 3 meter cell size representing the bathymetry of selected portions of seafloor around Isla De Mona in Puerto Rico, derived...

  6. NOAA ESRI Grid - 3m Multibeam Bathymetry, Puerto Rico (Isla de Mona) - Project NF-08-04, , UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 3 meter cell size representing the bathymetry of selected portions of seafloor around Isla de Mona in Puerto Rico, derived...

  7. NOAA ESRI Grid - 3m Bathymetry around Bajo de Cico, Puerto Rico, Project NF-07-06, 2007, UTM 19 NAD 83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 3 meter cell size representing the bathymetry of selected portions of seafloor around Bajo De Cico in Puerto Rico, derived...

  8. NOAA ESRI Grid - 5m Bathymetry around Isla de Mona, Puerto Rico, Project NF-07-06, 2007, UTM 19 NAD 83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 5 meter cell size representing the bathymetry of selected portions of seafloor around Isla De Mona in Puerto Rico, derived...

  9. NOAA ESRI Grid - 5m Bathymetry around Bajo de Cico, Puerto Rico, Project NF-07-06, 2007, UTM 19 NAD 83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 5 meter cell size representing the bathymetry of selected portions of seafloor around Bajo De Cico in Puerto Rico, derived...

  10. NOAA ESRI Grid - 5m Bathymetry around Abrir La Sierra Bank, Puerto Rico, Project NF-07-06, 2007, UTM 19 NAD 83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 5 meter cell size representing the bathymetry of selected portions of seafloor around Abrir La Sierra Bank in Puerto Rico,...

  11. NOAA ESRI Grid - 10m Bathymetry around Abrir La Sierra Bank, Puerto Rico, Project NF-07-06, 2007, UTM 19 NAD 83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 10 meter cell size representing the bathymetry of selected portions of seafloor around Abrir La Sierra Bank in Puerto Rico,...

  12. CRED 5m Gridded bathymetry of the banktop and slope environments of Northeast Bank (sometimes called "Muli" Seamount), American Samoa (NetCDF Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (5 m cell size) bathymetry of the banktop and slope environments of Northeast Bank (sometimes called "Muli" Seamount), American Samoa, South Pacific. Almost...

  13. Bathymetry of NPS's Virgin Islands Coral Reef National Monument (Inshore), St. John, US Virgin Islands 2005, 1M Grid, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 1 meter cell size representing the bathymetry of an inshore portion of the NPS's Virgin Islands Coral Reef National Monument,...

  14. Airborne 3D Imaging Lidar for Contiguous Decimeter Resolution Terrain Mapping and Shallow Water Bathymetry

    Science.gov (United States)

    Degnan, J. J.; Wells, D. N.; Huet, H.; Chauvet, N.; Lawrence, D. W.; Mitchell, S. E.; Eklund, W. D.

    2005-12-01

    A 3D imaging lidar system, developed for the University of Florida at Gainesville and operating at the water transmissive wavelength of 532 nm, is designed to contiguously map underlying terrain and/or perform shallow water bathymetry on a single overflight from an altitude of 600 m with a swath width of 225 m and a horizontal spatial resolution of 20 cm. Each 600 psec pulse from a frequency-doubled, low power (~3 microjoules @ 8 kHz = 24 mW), passively Q-switched Nd:YAG microchip laser is passed through a holographic element which projects a 10x10 array of spots onto a 2m x 2m target area. The individual ground spots are then imaged onto individual anodes within a 10x10 segmented anode photomultiplier. The latter is followed by a 100 channel multistop ranging receiver with a range resolution of about 4 cm. The multistop feature permits single photon detection in daylight with wide range gates as well as multiple single photon returns per pixel per laser fire from volumetric scatterers such as tree canopies or turbid water columns. The individual single pulse 3D images are contiguously mosaiced together through the combined action of the platform velocity and a counter-rotating dual wedge optical scanner whose rotations are synchronized to the laser pulse train. The paper provides an overview of the lidar opto-mechanical design, the synchronized dual wedge scanner and servo controller, and the experimental results obtained to date.

  15. NOAA ESRI Grid- 5m Multibeam Bathymetry of St. Croix (Buck Island), US Virgin Islands, Project NF-05-05, 2005, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 5 meter cell size representing the bathymetry of the north shore of St. Croix (Buck Island), US Virgin Islands.NOAA's...

  16. NOS ESRI Grid, St. Croix (Buck Island), 2006: 3M Multibeam Bathymetry of, US Virgin Islands, Project NF-06-03, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 3 meter cell size representing the bathymetry of the north shore of St. Croix, U.S. Virgin Islands. NOAA's NOS/NCCOS/CCMA...

  17. Bathymetry 2M Grid of NPS's Salt River Bay National Historical Park and Ecological Reserve, St. Croix, US Virgin Islands, 2005, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 2 meter cell size representing the bathymetry of the a portion of the NPS's Salt River Bay National Historical Park and...

  18. Alabama 2003 Lidar Coverage, USACE

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2003. The data...

  19. Automatic building extraction from LiDAR data fusion of point and grid-based features

    Science.gov (United States)

    Du, Shouji; Zhang, Yunsheng; Zou, Zhengrong; Xu, Shenghua; He, Xue; Chen, Siyang

    2017-08-01

    This paper proposes a method for extracting buildings from LiDAR point cloud data by combining point-based and grid-based features. To accurately discriminate buildings from vegetation, a point feature based on the variance of normal vectors is proposed. For a robust building extraction, a graph cuts algorithm is employed to combine the used features and consider the neighbor contexture information. As grid feature computing and a graph cuts algorithm are performed on a grid structure, a feature-retained DSM interpolation method is proposed in this paper. The proposed method is validated by the benchmark ISPRS Test Project on Urban Classification and 3D Building Reconstruction and compared to the state-art-of-the methods. The evaluation shows that the proposed method can obtain a promising result both at area-level and at object-level. The method is further applied to the entire ISPRS dataset and to a real dataset of the Wuhan City. The results show a completeness of 94.9% and a correctness of 92.2% at the per-area level for the former dataset and a completeness of 94.4% and a correctness of 95.8% for the latter one. The proposed method has a good potential for large-size LiDAR data.

  20. NOS ESRI Grid, Unified 10m Multibeam Bathymetry La Parguera, Puerto Rico and Buck Island, St. Croix 2006: Project NF-06-03, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified ESRI Grid with 10 meter cell size representing the bathymetry of selected portions of seafloor around La Parguera, P.R. and Buck...

  1. Combined effect of pulse density and grid cell size on predicting and mapping aboveground carbon in fast-growing Eucalyptus forest plantation using airborne LiDAR data.

    Science.gov (United States)

    Silva, Carlos Alberto; Hudak, Andrew Thomas; Klauberg, Carine; Vierling, Lee Alexandre; Gonzalez-Benecke, Carlos; de Padua Chaves Carvalho, Samuel; Rodriguez, Luiz Carlos Estraviz; Cardil, Adrián

    2017-12-01

    LiDAR remote sensing is a rapidly evolving technology for quantifying a variety of forest attributes, including aboveground carbon (AGC). Pulse density influences the acquisition cost of LiDAR, and grid cell size influences AGC prediction using plot-based methods; however, little work has evaluated the effects of LiDAR pulse density and cell size for predicting and mapping AGC in fast-growing Eucalyptus forest plantations. The aim of this study was to evaluate the effect of LiDAR pulse density and grid cell size on AGC prediction accuracy at plot and stand-levels using airborne LiDAR and field data. We used the Random Forest (RF) machine learning algorithm to model AGC using LiDAR-derived metrics from LiDAR collections of 5 and 10 pulses m -2 (RF5 and RF10) and grid cell sizes of 5, 10, 15 and 20 m. The results show that LiDAR pulse density of 5 pulses m -2 provides metrics with similar prediction accuracy for AGC as when using a dataset with 10 pulses m -2 in these fast-growing plantations. Relative root mean square errors (RMSEs) for the RF5 and RF10 were 6.14 and 6.01%, respectively. Equivalence tests showed that the predicted AGC from the training and validation models were equivalent to the observed AGC measurements. The grid cell sizes for mapping ranging from 5 to 20 also did not significantly affect the prediction accuracy of AGC at stand level in this system. LiDAR measurements can be used to predict and map AGC across variable-age Eucalyptus plantations with adequate levels of precision and accuracy using 5 pulses m -2 and a grid cell size of 5 m. The promising results for AGC modeling in this study will allow for greater confidence in comparing AGC estimates with varying LiDAR sampling densities for Eucalyptus plantations and assist in decision making towards more cost effective and efficient forest inventory.

  2. Remote Sensing of Sub-Surface Suspended Sediment Concentration by Using the Range Bias of Green Surface Point of Airborne LiDAR Bathymetry

    Directory of Open Access Journals (Sweden)

    Xinglei Zhao

    2018-04-01

    Full Text Available Suspended sediment concentrations (SSCs have been retrieved accurately and effectively through waveform methods by using green-pulse waveforms of airborne LiDAR bathymetry (ALB. However, the waveform data are commonly difficult to analyze. Thus, this paper proposes a 3D point-cloud method for remote sensing of SSCs in calm waters by using the range biases of green surface points of ALB. The near water surface penetrations (NWSPs of green lasers are calculated on the basis of the green and reference surface points. The range biases (ΔS are calculated by using the corresponding NWSPs and beam-scanning angles. In situ measured SSCs (C and range biases (ΔS are used to establish an empirical C-ΔS model at SSC sampling stations. The SSCs in calm waters are retrieved by using the established C-ΔS model. The proposed method is applied to a practical ALB measurement performed by Optech Coastal Zone Mapping and Imaging LiDAR. The standard deviations of the SSCs retrieved by the 3D point-cloud method are less than 20 mg/L.

  3. NOAA Geotiff - 4 meter LiDAR bathymetry, U.S. Caribbean - Puerto Rico (southwest) - Projects OPR-I305-KRL-06, (2006), UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) bathymetric mosaic (mean 4 meter gridded) collected along the coastline of southwestern Puerto Rico....

  4. NOAA Geotiff - 4 meter LiDAR bathymetry, U.S. Caribbean - Puerto Rico (southwest) - Projects OPR-I305-KRL-06, (2006), UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection and Ranging) bathymetric mosaic (mean 4 meter gridded) collected along the coastline of southwestern Puerto Rico. The...

  5. Advances and perspectives in bathymetry by airborne lidar

    Science.gov (United States)

    Zhou, Guoqing; Wang, Chenxi; Li, Mingyan; Wang, Yuefeng; Ye, Siqi; Han, Caiyun

    2015-12-01

    In this paper, the history of the airborne lidar and the development stages of the technology are reviewed. The basic principle of airborne lidar and the method of processing point-cloud data were discussed. At present, single point laser scanning method is widely used in bathymetric survey. Although the method has high ranging accuracy, the data processing and hardware system is too much complicated and expensive. For this reason, this paper present a kind of improved dual-frequency method for bathymetric and sea surface survey, in this method 176 units of 1064nm wavelength laser has been used by push-broom scanning and due to the airborne power limits still use 532nm wavelength single point for bathymetric survey by zigzag scanning. We establish a spatial coordinates for obtaining the WGS-84 of point cloud by using airborne POS system.

  6. Michigan 2008 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the MI coasts of Lake Superior, Lake Michigan and...

  7. Indiana 2006 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Lake Michigan coastline in the summer of 2006....

  8. California 2009 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Pacific coast in 2009. The data types collected...

  9. Connecticut 2007 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic Coastline, in the summer of 2007. The...

  10. Nevada 2008 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along Truckee River in NV in 2008. The data types...

  11. California 2010 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Pacific coast in 2010. The data types collected...

  12. Georgia 2010 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic Coast in 2010. The data types collected...

  13. Lidar 2009 - IMG

    Data.gov (United States)

    Kansas Data Access and Support Center — ESRI Grids 1 meter resolution are created from the ground classified lidar points. The tiles are delivered in 5,000m by 5,000m tiles. The ESRI grids are exported to...

  14. Maine 2010 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic Coast of ME in 2010. The data types...

  15. Florida 2010 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic Coast and Gulf of Mexico in 2010. The...

  16. Wisconsin 2008 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Lake Michigan coast of WI in 2008. The data...

  17. Delaware 2005 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast in the summer of 2005. The data...

  18. Florida 2006 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic, Gulf of Mexico in the summer of 2006....

  19. Maryland 2010 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast in the summer of 2010. The data...

  20. Georgia 2006 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast in the summer of 2006. The data...

  1. Virginia 2005 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of VA in 2005. The data types...

  2. Louisiana 2011 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in 2011. The data types collected...

  3. Virginia 2010 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of VA in 2010. The data types...

  4. Illinois 2008 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along Lake Michigan in the summer of 2008. The data types...

  5. Maryland 2005 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast in the summer of 2005. The data...

  6. Maine 2005 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast in the summer of 2005. The data...

  7. Oregon 2011 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Pacific coast of OR in 2011. The data types...

  8. Hawaii 2007 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Pacific Coast, in the summer of 2007. The data...

  9. Virginia 2009 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of VA in 2009. The data types...

  10. Michigan 2011 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the MI coast of Lake Superior in 2011. The data...

  11. Minnesota 2009 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Lake Superior coast of MN in 2009. The data...

  12. Texas 2010 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf coast of TX in 2010. The data types...

  13. Oregon 2010 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Pacific coast of OR in 2010. The data types...

  14. Indiana 2008 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along Lake Michigan in the summer of 2008. The data types...

  15. Massachusetts 2011 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of MA in 2011. The data types...

  16. Michigan 2007 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the MI coasts of Lake Superior, Lake St. Clair and...

  17. Florida 2009 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in 2009. The data types collected...

  18. Louisiana 2010 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in 2010. The data types collected...

  19. Washington 2010 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Pacific coast of WA in 2010. The data types...

  20. Wisconsin 2007 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Lake Superior coast of WI in 2007. The data...

  1. Washington 2011 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Pacific coast of WA in 2011. The data types...

  2. Michigan 2009 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the MI coast of Lake Superior in 2009. The data...

  3. Delaware 2010 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast in the summer of 2010. The data...

  4. Alabama 2011 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in 2011. The data types collected...

  5. Massachusetts 2010 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic Coast of MA in 2010. The data types...

  6. Massachusetts 2005 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast in the summer of 2005. The data...

  7. Alabama 2010 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in 2010. The data types collected...

  8. Wisconsin 2009 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Lake Superior coast of WI in 2009. The data...

  9. Mississippi 2004 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico coastline of MS in 2004. The data...

  10. Michigan 2006 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the MI coasts of Lake Huron, Lake Erie and the St....

  11. Florida 2003 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2003. The data...

  12. Alabama 2004 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2004. The data...

  13. Pennsylvania 2006 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Lake Erie coast of PA in 2006. The data types...

  14. Ohio 2006 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Lake Erie coast of OH in 2006. The data types...

  15. Florida 2004 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2004. The data...

  16. Louisiana 2006 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2006. The data...

  17. Massachusetts 2007 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of MA in the summer of 2007. The...

  18. Louisiana 2007 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico, in the summer of 2007. The data...

  19. Alabama 2007 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico, in the summer of 2007. The data...

  20. Pennsylvania 2007 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Lake Erie coast of PA in 2007. The data types...

  1. Mississippi 2007 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico coastline of MS in 2007. The data...

  2. Mississippi 2011 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico coastline of MS in 2011. The data...

  3. Mississippi 2010 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico coastline of MS in 2010. The data...

  4. New York 2007 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Niagara River and Lake Erie and Lake Ontario...

  5. Generating High-Resolution Lake Bathymetry over Lake Mead using the ICESat-2 Airborne Simulator

    Science.gov (United States)

    Li, Y.; Gao, H.; Jasinski, M. F.; Zhang, S.; Stoll, J.

    2017-12-01

    Precise lake bathymetry (i.e., elevation/contour) mapping is essential for optimal decision making in water resources management. Although the advancement of remote sensing has made it possible to monitor global reservoirs from space, most of the existing studies focus on estimating the elevation, area, and storage of reservoirs—and not on estimating the bathymetry. This limitation is attributed to the low spatial resolution of satellite altimeters. With the significant enhancement of ICESat-2—the Ice, Cloud & Land Elevation Satellite #2, which is scheduled to launch in 2018—producing satellite-based bathymetry becomes feasible. Here we present a pilot study for deriving the bathymetry of Lake Mead by combining Landsat area estimations with airborne elevation data using the prototype of ICESat-2—the Multiple Altimeter Beam Experimental Lidar (MABEL). First, an ISODATA classifier was adopted to extract the lake area from Landsat images during the period from 1982 to 2017. Then the lake area classifications were paired with MABEL elevations to establish an Area-Elevation (AE) relationship, which in turn was applied to the classification contour map to obtain the bathymetry. Finally, the Lake Mead bathymetry image was embedded onto the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), to replace the existing constant values. Validation against sediment survey data indicates that the bathymetry derived from this study is reliable. This algorithm has the potential for generating global lake bathymetry when ICESat-2 data become available after next year's launch.

  6. North Carolina 2010 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of NC in 2010. The data types...

  7. North Carolina 2008 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of NC in 2008. The data types...

  8. North Carolina 2004 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of NC in 2004. The data types...

  9. North Carolina 2005 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of NC in 2005. The data types...

  10. New York 2010 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of NY in 2010. The data types...

  11. New York 2005 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of NY in 2005. The data types...

  12. New Jersey 2005 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of NJ in 2005. The data types...

  13. South Carolina 2006 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of SC in 2006. The data types...

  14. New Hampshire 2005 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of NH in 2005. The data types...

  15. New Hampshire 2011 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of NH in 2011. The data types...

  16. Rhode Island 2005 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of RI in 2005. The data types...

  17. South Carolina 2010 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of SC in 2010. The data types...

  18. New Hampshire 2010 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of NH in 2010. The data types...

  19. Rhode Island 2007 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of RI in 2007. The data types...

  20. North Carolina 2009 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of NC in 2009. The data types...

  1. Rhode Island 2010 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of RI in 2010. The data types...

  2. New Jersey 2010 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast of NJ in 2010. The data types...

  3. New York 2011 Lidar Coverage, USACE National Coastal Mapping Proram

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the NY coasts of Lake Erie and Lake Ontario in 2011....

  4. Mapping river bathymetry with a small footprint green LiDAR: Applications and challenges

    Science.gov (United States)

    Kinzel, Paul J.; Legleiter, Carl; Nelson, Jonathan M.

    2013-01-01

    Airborne bathymetric Light Detection And Ranging (LiDAR) systems designed for coastal and marine surveys are increasingly sought after for high-resolution mapping of fluvial systems. To evaluate the potential utility of bathymetric LiDAR for applications of this kind, we compared detailed surveys collected using wading and sonar techniques with measurements from the United States Geological Survey’s hybrid topographic⁄ bathymetric Experimental Advanced Airborne Research LiDAR (EAARL). These comparisons, based upon data collected from the Trinity and Klamath Rivers, California, and the Colorado River, Colorado, demonstrated

  5. Florida 2006 Post Wilma Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic in the summer of 2006. The data types...

  6. Massachusetts 2005 and 2007 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic coast in the summer of 2005 and 2007....

  7. Alabama 2009 Post Gustav Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in 2009. The data types collected...

  8. Louisiana 2009 Post Ike Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in 2009. The data types collected...

  9. Louisiana 2009 Post Gustav Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in 2009. The data types collected...

  10. Archive of bathymetry data collected in South Florida from 1995 to 2015

    Science.gov (United States)

    Hansen, Mark Erik; DeWitt, Nancy T.; Reynolds, Billy J.

    2017-08-10

    the data collection for all these projects was to support one or more of the following scientific aspects: numerical model applications, sea floor change analysis, or marine habitat investigations.This report serves as an archive of processed bathymetry sounding data, digital bathymetric contours, digital bathymetric maps, sea floor surface grids, and formal Federal Geographic Data Committee (FGDC) metadata. Refer to the Abbreviations page for explanations of acronyms and abbreviations used in this report. Since 2006, the USGS St. Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier or Field Activity Number (FAN) for each field data collection. Projects described in this report conducted prior to 2006 do not have a FAN.Data from the 13 projects presented in this report provided critical hydrographic information to support multiple science projects in south Florida. The projects and the types of sounding data collected are:Florida Bay (1995-1999) - single-beamLake Okeechobee (2001) - single-beamTampa Bay (2001-2004) - single-beamCaloosahatchee River (2002)- single-beamEstero Bay to Matlacha Pass and offshore to Wiggins Pass (2003) - single-beam and airborne lidarNorth and Northwest Forks of the Loxahatchee and Lower St. Lucie Rivers (2003) - single-beamSouth Charlotte Harbor and offshore Sanibel Island (2003-2004) - single-beamShark River and Trout Creek (2004) - single-beam and interferometric swathSouthwest Florida Rivers (2004) - interferometric swathOffshore from Wiggins Pass to Cape Romano (2005) - single-beamTen Thousand Islands (2009) - single-beamLemon Bay (2011) - single-beamSouthwest Florida Rivers (2015) - interferometric swath

  11. Bayou Portage, Mississippi 2004 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico coastline of MS in 2004. The data...

  12. Gaillard Island, AL 2004 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2004. The data...

  13. Florida 2004 Post Ivan Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2004. The data...

  14. Bayou Cadet, Mississippi 2004 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico coastline of MS in 2004. The data...

  15. Florida 2005 Post Dennis Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2005. The data...

  16. Deer Island, Mississippi 2004 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico coastline of MS in 2004. The data...

  17. Alabama 2005 Post Dennis Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2005. The data...

  18. Alabama 2005 Post Katrina Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2005. The data...

  19. Florida 2005 Post Katrina Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2005. The data...

  20. Looe Key, Florida 2004 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2004. The data...

  1. Mississippi 2009 Post Gustav Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico coastline of MS in 2009. The data...

  2. Mississippi 2005 Post Hurricane Katrina Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico coastline of MS in 2005 after...

  3. Texas 2009 Post Hurricane Ike Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf coast of TX in 2009. The data types...

  4. Little Dauphin Island, AL 2004 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2004. The data...

  5. Louisiana 2005 Post Hurricane Katrina Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2005. The data...

  6. NOS ESRI Grid Unified 10m Multibeam Bathymetry La Parguera, Puerto Rico, St Croix, St. John and St. Thomas, 2004-2006: Projects NF-04-06, NF-05-05 and NF-06-03, UTM 20N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified ESRI Grid with 10 meter cell size representing the bathymetry of selected portions of seafloor around La Parguera, P.R. and St....

  7. Remote Sensing-Derived Bathymetry of Lake Poopó

    Directory of Open Access Journals (Sweden)

    Adalbert Arsen

    2013-12-01

    Full Text Available Located within the Altiplano at 3,686 m above sea level, Lake Poopó is remarkably shallow and very sensitive to hydrologic recharge. Progressive drying has been observed in the entire Titicaca-Poopó-Desaguadero-Salar de Coipasa (TPDS system during the last decade, causing dramatic changes to Lake Poopó’s surface and its regional water supplies. Our research aims to improve understanding of Lake Poopó water storage capacity. Thus, we propose a new method based on freely available remote sensing data to reproduce Lake Poopó bathymetry. Laser ranging altimeter ICESat (Ice, Cloud, and land Elevation Satellite is used during the lake’s lowest stages to measure vertical heights with high precision over dry land. These heights are used to estimate elevations of water contours obtained with Landsat imagery. Contour points with assigned elevation are filtered and grouped in a points cloud. Mesh gridding and interpolation function are then applied to construct 3D bathymetry. Complementary analysis of Moderate Resolution Imaging Spectroradiometer (MODIS surfaces from 2000 to 2012 combined with bathymetry gives water levels and storage evolution every 8 days.

  8. Evaluation of LIDAR for Automating Recognition of Roads and Trails Beneath Forest Canopy

    Science.gov (United States)

    2011-09-01

    Measurement Unit InSAR Interferometric Synthetic Aperture Radar ISS International Space Station JALBTCX Joint Airborne LiDAR Bathymetry Technical Center of...California police arrest 100 over marijuana growing. Retrieved July 29, 2011, from http://www.bbc.co.uk/news/world–us–canada–14351501 Contreras, M

  9. Bathymetric Structure from Motion Photogrammetry: Extracting stream bathymetry from multi-view stereo photogrammetry

    Science.gov (United States)

    Dietrich, J. T.

    2016-12-01

    Stream bathymetry is a critical variable in a number of river science applications. In larger rivers, bathymetry can be measured with instruments such as sonar (single or multi-beam), bathymetric airborne LiDAR, or acoustic doppler current profilers. However, in smaller streams with depths less than 2 meters, bathymetry is one of the more difficult variables to map at high-resolution. Optical remote sensing techniques offer several potential solutions for collecting high-resolution bathymetry. In this research, I focus on direct photogrammetric measurements of bathymetry using multi-view stereo photogrammetry, specifically Structure from Motion (SfM). The main barrier to accurate bathymetric mapping with any photogrammetric technique is correcting for the refraction of light as it passes between the two different media (air and water), which causes water depths to appear shallower than they are. I propose and test an iterative approach that calculates a series of refraction correction equations for every point/camera combination in a SfM point cloud. This new method is meant to address shortcomings of other correction techniques and works within the current preferred method for SfM data collection, oblique and highly convergent photographs. The multi-camera refraction correction presented here produces bathymetric datasets with accuracies of 0.02% of the flying height and precisions of 0.1% of the flying height. This methodology, like many fluvial remote sensing methods, will only work under ideal conditions (e.g. clear water), but it provides an additional tool for collecting high-resolution bathymetric datasets for a variety of river, coastal, and estuary systems.

  10. Tenneco and Greenwood Islands Disposal Sites (Mississippi) 2004 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico coastline of MS in 2004. The data...

  11. High Spatio-Temporal Resolution Bathymetry Estimation and Morphology

    Science.gov (United States)

    Bergsma, E. W. J.; Conley, D. C.; Davidson, M. A.; O'Hare, T. J.

    2015-12-01

    In recent years, bathymetry estimates using video images have become increasingly accurate. With the cBathy code (Holman et al., 2013) fully operational, bathymetry results with 0.5 metres accuracy have been regularly obtained at Duck, USA. cBathy is based on observations of the dominant frequencies and wavelengths of surface wave motions and estimates the depth (and hence allows inference of bathymetry profiles) based on linear wave theory. Despite the good performance at Duck, large discrepancies were found related to tidal elevation and camera height (Bergsma et al., 2014) and on the camera boundaries. A tide dependent floating pixel and camera boundary solution have been proposed to overcome these issues (Bergsma et al., under review). The video-data collection is set estimate depths hourly on a grid with resolution in the order of 10x25 meters. Here, the application of the cBathy at Porthtowan in the South-West of England is presented. Hourly depth estimates are combined and analysed over a period of 1.5 years (2013-2014). In this work the focus is on the sub-tidal region, where the best cBathy results are achieved. The morphology of the sub-tidal bar is tracked with high spatio-temporal resolution on short and longer time scales. Furthermore, the impact of the storm and reset (sudden and large changes in bathymetry) of the sub-tidal area is clearly captured with the depth estimations. This application shows that the high spatio-temporal resolution of cBathy makes it a powerful tool for coastal research and coastal zone management.

  12. Bathymetry and digital elevation models of Coyote Creek and Alviso Slough, South San Francisco Bay, California

    Science.gov (United States)

    Foxgrover, Amy C.; Finlayson, David P.; Jaffe, Bruce E.; Fregoso, Theresa A.

    2012-01-05

    In 2010 the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center completed three cruises to map the bathymetry of the main channel and shallow intertidal mudflats in the southernmost part of south San Francisco Bay. The three surveys were merged to generate comprehensive maps of Coyote Creek (from Calaveras Point east to the railroad bridge) and Alviso Slough (from the bay to the town of Alviso) to establish baseline bathymetry prior to the breaching of levees adjacent to Alviso and Guadalupe Sloughs as part of the South Bay Salt Pond Restoration Project (http://www.southbayrestoration.org). Since 2010 the USGS has conducted twelve additional surveys to monitor bathymetric change in this region as restoration progresses.The bathymetry surveys were conducted using the state-of-the-art research vessel R/V Parke Snavely outfitted with an interferometric sidescan sonar for swath mapping in extremely shallow water. This publication provides high-resolution bathymetric data collected by the USGS. For the 2010 baseline survey we have merged the bathymetry with aerial lidar data that were collected for the USGS during the same time period to create a seamless, high-resolution digital elevation model (DEM) of the study area. The series of bathymetry datasets are provided at 1 m resolution and the 2010 bathymetric/topographic DEM at 2 m resolution. The data are formatted as both X, Y, Z text files and ESRI Arc ASCII files that are accompanied by Federal Geographic Data Committee (FGDC) compliant metadata.

  13. Evaluating the potential for near-shore bathymetry on the Majuro Atoll, Republic of the Marshall Islands, using Landsat 8 and WorldView-3 imagery

    Science.gov (United States)

    Poppenga, Sandra K.; Palaseanu-Lovejoy, Monica; Gesch, Dean B.; Danielson, Jeffrey J.; Tyler, Dean J.

    2018-04-16

    Satellite-derived near-shore bathymetry (SDB) is becoming an increasingly important method for assessing vulnerability to climate change and natural hazards in low-lying atolls of the northern tropical Pacific Ocean. Satellite imagery has become a cost-effective means for mapping near-shore bathymetry because ships cannot collect soundings safely while operating close to the shore. Also, green laser light detection and ranging (lidar) acquisitions are expensive in remote locations. Previous research has demonstrated that spectral band ratio-based techniques, commonly called the natural logarithm approach, may lead to more precise measurements and modeling of bathymetry because of the phenomenon that different substrates at the same depth have approximately equal ratio values. The goal of this research was to apply the band ratio technique to Landsat 8 at-sensor radiance imagery and WorldView-3 atmospherically corrected imagery in the coastal waters surrounding the Majuro Atoll, Republic of the Marshall Islands, to derive near-shore bathymetry that could be incorporated into a seamless topobathymetric digital elevation model of Majuro. Attenuation of light within the water column was characterized by measuring at-sensor radiance and reflectance at different depths and calculating an attenuation coefficient. Bathymetric lidar data, collected by the U.S. Naval Oceanographic Office in 2006, were used to calibrate the SDB results. The bathymetric lidar yielded a strong linear relation with water depths. The Landsat 8-derived SDB estimates derived from the blue/green band ratio exhibited a water attenuation extinction depth of 6 meters with a coefficient of determination R2=0.9324. Estimates derived from the coastal/red band ratio had an R2=0.9597. At the same extinction depth, SDB estimates derived from WorldView-3 imagery exhibited an R2=0.9574. Because highly dynamic coastal shorelines can be affected by erosion, wetland loss, hurricanes, sea-level rise, urban

  14. LiDAR data for the Delta Area of California

    Data.gov (United States)

    California Natural Resource Agency — LiDAR data for the Delta Area of California from the California Department of Water Resources. Bare earth grids from LiDAR.This data is in ESRI Grid format with 2...

  15. A variable resolution right TIN approach for gridded oceanographic data

    Science.gov (United States)

    Marks, David; Elmore, Paul; Blain, Cheryl Ann; Bourgeois, Brian; Petry, Frederick; Ferrini, Vicki

    2017-12-01

    Many oceanographic applications require multi resolution representation of gridded data such as for bathymetric data. Although triangular irregular networks (TINs) allow for variable resolution, they do not provide a gridded structure. Right TINs (RTINs) are compatible with a gridded structure. We explored the use of two approaches for RTINs termed top-down and bottom-up implementations. We illustrate why the latter is most appropriate for gridded data and describe for this technique how the data can be thinned. While both the top-down and bottom-up approaches accurately preserve the surface morphology of any given region, the top-down method of vertex placement can fail to match the actual vertex locations of the underlying grid in many instances, resulting in obscured topology/bathymetry. Finally we describe the use of the bottom-up approach and data thinning in two applications. The first is to provide thinned, variable resolution bathymetry data for tests of storm surge and inundation modeling, in particular hurricane Katrina. Secondly we consider the use of the approach for an application to an oceanographic data grid of 3-D ocean temperature.

  16. Fast and low-cost method for VBES bathymetry generation in coastal areas

    Science.gov (United States)

    Sánchez-Carnero, N.; Aceña, S.; Rodríguez-Pérez, D.; Couñago, E.; Fraile, P.; Freire, J.

    2012-12-01

    Sea floor topography is key information in coastal area management. Nowadays, LiDAR and multibeam technologies provide accurate bathymetries in those areas; however these methodologies are yet too expensive for small customers (fishermen associations, small research groups) willing to keep a periodic surveillance of environmental resources. In this paper, we analyse a simple methodology for vertical beam echosounder (VBES) bathymetric data acquisition and postprocessing, using low-cost means and free customizable tools such as ECOSONS and gvSIG (that is compared with industry standard ArcGIS). Echosounder data was filtered, resampled and, interpolated (using kriging or radial basis functions). Moreover, the presented methodology includes two data correction processes: Monte Carlo simulation, used to reduce GPS errors, and manually applied bathymetric line transformations, both improving the obtained results. As an example, we present the bathymetry of the Ría de Cedeira (Galicia, NW Spain), a good testbed area for coastal bathymetry methodologies given its extension and rich topography. The statistical analysis, performed by direct ground-truthing, rendered an upper bound of 1.7 m error, at 95% confidence level, and 0.7 m r.m.s. (cross-validation provided 30 cm and 25 cm, respectively). The methodology presented is fast and easy to implement, accurate outside transects (accuracy can be estimated), and can be used as a low-cost periodical monitoring method.

  17. 2016 USACE NCMP Topobathy Lidar DEM: Stamp Sands, Lake Superior (MI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These files contain rasterized, bare earth topobathy lidar elevations at a 1 m grid size, generated from data collected by the Coastal Zone Mapping and Imaging Lidar...

  18. 2016 USACE National Coastal Mapping Program (NCMP) Gulf Coast Lidar and Imagery Acquisition - Texas, Louisiana, Mississippi, Alabama and Florida

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) plans to perform a coastal survey along the Gulf Coast in 2016 with funding provided by...

  19. Mapping elevations of tidal wetland restoration sites in San Francisco Bay: Comparing accuracy of aerial lidar with a singlebeam echosounder

    Science.gov (United States)

    Athearn, N.D.; Takekawa, John Y.; Jaffe, B.; Hattenbach, B.J.; Foxgrover, A.C.

    2010-01-01

    The southern edge of San Francisco Bay is surrounded by former salt evaporation ponds, where tidal flow has been restricted since the mid to late 1890s. These ponds are now the focus of a large wetland restoration project, and accurate measurement of current pond bathymetry and adjacent mud flats has been critical to restoration planning. Aerial light detection and ranging (lidar) has become a tool for mapping surface elevations, but its accuracy had rarely been assessed for wetland habitats. We used a singlebeam echosounder system we developed for surveying shallow wetlands to map submerged pond bathymetry in January of 2004 and compared those results with aerial lidar surveys in two ponds that were dry in May of 2004. From those data sets, we compared elevations for 5164 (Pond E9, 154 ha) and 2628 (Pond E14, 69 ha) echosounder and lidar points within a 0.375-m radius of each other (0.750-m diameter lidar spot size). We found that mean elevations of the lidar points were lower than the echosounder results by 5 ?? 0.1 cm in Pond E9 and 2 ?? 0.2 cm in Pond E14. Only a few points (5% in Pond E9, 2% in Pond E14) differed by more than 20 cm, and some of these values may be explained by residual water in the ponds during the lidar survey or elevation changes that occurred between surveys. Our results suggest that aerial lidar may be a very accurate and rapid way to assess terrain elevations for wetland restoration projects. ?? 2010 Coastal Education and Research Foundation.

  20. 2008 US Army Corps of Engineers (USACE) Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) Topobathy Lidar: North Carolina

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These files contain topographic lidar data collected by the Compact Hydrographic Airborne Rapid Total Survey (CHARTS) system along the coast of North Carolina near...

  1. A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry

    Science.gov (United States)

    Schaffer, Janin; Timmermann, Ralph; Arndt, Jan Erik; Savstrup Kristensen, Steen; Mayer, Christoph; Morlighem, Mathieu; Steinhage, Daniel

    2016-10-01

    The ocean plays an important role in modulating the mass balance of the polar ice sheets by interacting with the ice shelves in Antarctica and with the marine-terminating outlet glaciers in Greenland. Given that the flux of warm water onto the continental shelf and into the sub-ice cavities is steered by complex bathymetry, a detailed topography data set is an essential ingredient for models that address ice-ocean interaction. We followed the spirit of the global RTopo-1 data set and compiled consistent maps of global ocean bathymetry, upper and lower ice surface topographies, and global surface height on a spherical grid with now 30 arcsec grid spacing. For this new data set, called RTopo-2, we used the General Bathymetric Chart of the Oceans (GEBCO_2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the International Bathymetric Chart of the Southern Ocean (IBCSO) version 1. While RTopo-1 primarily aimed at a good and consistent representation of the Antarctic ice sheet, ice shelves, and sub-ice cavities, RTopo-2 now also contains ice topographies of the Greenland ice sheet and outlet glaciers. In particular, we aimed at a good representation of the fjord and shelf bathymetry surrounding the Greenland continent. We modified data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ, and Sermilik Fjord, assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off Northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79° N, we incorporated a high-resolution digital bathymetry model considering original multibeam survey data for the region. Radar data for surface topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centres of Technical University of Denmark (DTU), Operation Icebridge (NASA

  2. Gridded Data in the Arctic; Benefits and Perils of Publicly Available Grids

    Science.gov (United States)

    Coakley, B.; Forsberg, R.; Gabbert, R.; Beale, J.; Kenyon, S. C.

    2015-12-01

    Our understanding of the Arctic Ocean has been hugely advanced by release of gridded bathymetry and potential field anomaly grids. The Arctic Gravity Project grid achieves excellent, near-isotropic coverage of the earth north of 64˚N by combining land, satellite, airborne, submarine, surface ship and ice set-out measurements of gravity anomalies. Since the release of the V 2.0 grid in 2008, there has been extensive icebreaker activity across the Amerasia Basin due to mapping of the Arctic coastal nation's Extended Continental Shelves (ECS). While grid resolution has been steadily improving over time, addition of higher resolution and better navigated data highlights some distortions in the grid that may influence interpretation. In addition to the new ECS data sets, gravity anomaly data has been collected from other vessels; notably the Korean Icebreaker Araon, the Japanese icebreaker Mirai and the German icebreaker Polarstern. Also the GRAV-D project of the US National Geodetic Survey has flown airborne surveys over much of Alaska. These data will be Included in the new AGP grid, which will result in a much improved product when version 3.0 is released in 2015. To make use of these measurements, it is necessary to compile them into a continuous spatial representation. Compilation is complicated by differences in survey parameters, gravimeter sensitivity and reduction methods. Cross-over errors are the classic means to assess repeatability of track measurements. Prior to the introduction of near-universal GPS positioning, positional uncertainty was evaluated by cross-over analysis. GPS positions can be treated as more or less true, enabling evaluation of differences due to contrasting sensitivity, reference and reduction techniques. For the most part, cross-over errors for racks of gravity anomaly data collected since 2008 are less than 0.5 mGals, supporting the compilation of these data with only slight adjustments. Given the different platforms used for various

  3. 2014 USACE NCMP Topobathy Lidar DEM: Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations at a 1 m grid size, generated from data collected by the Coastal Zone Mapping...

  4. CRED Gridded Bathymetry near Northampton Seamounts (100-004), Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-004b is a 60-m ASCII grid of depth data collected near Northampton Seamounts in the Northwestern Hawaiian Islands as of May 2003. This grid has been...

  5. CRED Gridded Bathymetry near Laysan Island (100-006), Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-006b is a 60-m ASCII grid of depth data collected near Laysan Island in the Northwestern Hawaiian Islands as of May 2003. This grid has been produced as...

  6. CRED Gridded Bathymetry near Lisianski Island (100-001), Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-001b is a 60-m ASCII grid of depth data collected near Lisianski Island in the Northwestern Hawaiian Islands as of May 2003. This grid has been produced as...

  7. 2006 NOAA Bathymetric Lidar: Puerto Rico (Southwest)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set (Project Number OPR-I305-KRL-06) depicts depth values (mean 5 meter gridded) collected using LiDAR (Light Detection & Ranging) from the shoreline...

  8. CRED Gridded Bathymetry near Midway Atoll (100-102), Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-102b is a 60-m ASCII grid of depth data collected near Midway Atoll in the Northwestern Hawaiian Islands as of May 2003. This grid has been produced as part...

  9. CRED Gridded Bathymetry near Maro Reef (100-007), Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-007b is a 60-m ASCII grid of depth data collected near Maro Reef in the Northwestern Hawaiian Islands as of May 2003. This grid has been produced as part of...

  10. Achieving Accuracy Requirements for Forest Biomass Mapping: A Data Fusion Method for Estimating Forest Biomass and LiDAR Sampling Error with Spaceborne Data

    Science.gov (United States)

    Montesano, P. M.; Cook, B. D.; Sun, G.; Simard, M.; Zhang, Z.; Nelson, R. F.; Ranson, K. J.; Lutchke, S.; Blair, J. B.

    2012-01-01

    The synergistic use of active and passive remote sensing (i.e., data fusion) demonstrates the ability of spaceborne light detection and ranging (LiDAR), synthetic aperture radar (SAR) and multispectral imagery for achieving the accuracy requirements of a global forest biomass mapping mission. This data fusion approach also provides a means to extend 3D information from discrete spaceborne LiDAR measurements of forest structure across scales much larger than that of the LiDAR footprint. For estimating biomass, these measurements mix a number of errors including those associated with LiDAR footprint sampling over regional - global extents. A general framework for mapping above ground live forest biomass (AGB) with a data fusion approach is presented and verified using data from NASA field campaigns near Howland, ME, USA, to assess AGB and LiDAR sampling errors across a regionally representative landscape. We combined SAR and Landsat-derived optical (passive optical) image data to identify forest patches, and used image and simulated spaceborne LiDAR data to compute AGB and estimate LiDAR sampling error for forest patches and 100m, 250m, 500m, and 1km grid cells. Forest patches were delineated with Landsat-derived data and airborne SAR imagery, and simulated spaceborne LiDAR (SSL) data were derived from orbit and cloud cover simulations and airborne data from NASA's Laser Vegetation Imaging Sensor (L VIS). At both the patch and grid scales, we evaluated differences in AGB estimation and sampling error from the combined use of LiDAR with both SAR and passive optical and with either SAR or passive optical alone. This data fusion approach demonstrates that incorporating forest patches into the AGB mapping framework can provide sub-grid forest information for coarser grid-level AGB reporting, and that combining simulated spaceborne LiDAR with SAR and passive optical data are most useful for estimating AGB when measurements from LiDAR are limited because they minimized

  11. 2015 USACE NCMP Topobathy Lidar DEM: Avalon (NJ)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations at a 1 m grid size, generated from data collected by the Coastal Zone Mapping...

  12. Elevation - LiDAR Survey Minnehaha Creek, MN Watershed

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LiDAR Bare-Earth Grid - Minnehaha Creek Watershed District. The Minnehaha Creek watershed is located primarily in Hennepin County, Minnesota. The watershed covers...

  13. 2013 USACE NCMP Topobathy Lidar DEM: Niihau (HI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations at a 1 m grid size, generated from data collected by the Coastal Zone Mapping...

  14. 2010-2011 US Army Corps of Engineers (USACE) Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) Topobathy Lidar: Oregon and Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These files contain topographic and bathymetric lidar data collected with the Leica ALS60 (topo) and SHOALS-1000T (bathy) systems along the coasts of Oregon and...

  15. A consistent data set of Antarctic ice sheet topography, cavity geometry, and global bathymetry

    Directory of Open Access Journals (Sweden)

    R. Timmermann

    2010-12-01

    Full Text Available Sub-ice shelf circulation and freezing/melting rates in ocean general circulation models depend critically on an accurate and consistent representation of cavity geometry. Existing global or pan-Antarctic topography data sets have turned out to contain various inconsistencies and inaccuracies. The goal of this work is to compile independent regional surveys and maps into a global data set. We use the S-2004 global 1-min bathymetry as the backbone and add an improved version of the BEDMAP topography (ALBMAP bedrock topography for an area that roughly coincides with the Antarctic continental shelf. The position of the merging line is individually chosen in different sectors in order to capture the best of both data sets. High-resolution gridded data for ice shelf topography and cavity geometry of the Amery, Fimbul, Filchner-Ronne, Larsen C and George VI Ice Shelves, and for Pine Island Glacier are carefully merged into the ambient ice and ocean topographies. Multibeam survey data for bathymetry in the former Larsen B cavity and the southeastern Bellingshausen Sea have been obtained from the data centers of Alfred Wegener Institute (AWI, British Antarctic Survey (BAS and Lamont-Doherty Earth Observatory (LDEO, gridded, and blended into the existing bathymetry map. The resulting global 1-min Refined Topography data set (RTopo-1 contains self-consistent maps for upper and lower ice surface heights, bedrock topography, and surface type (open ocean, grounded ice, floating ice, bare land surface. The data set is available in NetCDF format from the PANGAEA database at doi:10.1594/pangaea.741917.

  16. Efficient data assimilation algorithm for bathymetry application

    Science.gov (United States)

    Ghorbanidehno, H.; Lee, J. H.; Farthing, M.; Hesser, T.; Kitanidis, P. K.; Darve, E. F.

    2017-12-01

    Information on the evolving state of the nearshore zone bathymetry is crucial to shoreline management, recreational safety, and naval operations. The high cost and complex logistics of using ship-based surveys for bathymetry estimation have encouraged the use of remote sensing techniques. Data assimilation methods combine the remote sensing data and nearshore hydrodynamic models to estimate the unknown bathymetry and the corresponding uncertainties. In particular, several recent efforts have combined Kalman Filter-based techniques such as ensembled-based Kalman filters with indirect video-based observations to address the bathymetry inversion problem. However, these methods often suffer from ensemble collapse and uncertainty underestimation. Here, the Compressed State Kalman Filter (CSKF) method is used to estimate the bathymetry based on observed wave celerity. In order to demonstrate the accuracy and robustness of the CSKF method, we consider twin tests with synthetic observations of wave celerity, while the bathymetry profiles are chosen based on surveys taken by the U.S. Army Corps of Engineer Field Research Facility (FRF) in Duck, NC. The first test case is a bathymetry estimation problem for a spatially smooth and temporally constant bathymetry profile. The second test case is a bathymetry estimation problem for a temporally evolving bathymetry from a smooth to a non-smooth profile. For both problems, we compare the results of CSKF with those obtained by the local ensemble transform Kalman filter (LETKF), which is a popular ensemble-based Kalman filter method.

  17. 2015 USACE NCMP Topobathy Lidar DEM: Egmont Key (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These 1 m gridded bare earth Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations generated from data collected by the Coastal Zone...

  18. Lidar to lidar calibration of Ground-based Lidar

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Courtney, Michael

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  19. 2016 USACE NCMP Topobathy Lidar DEM: Gulf Coast (TX)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These bare earth Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations at a 1 meter grid size, generated from data collected by the...

  20. Combined multibeam and LIDAR bathymetry data from eastern Long Island Sound and westernmost Block Island Sound-A regional perspective

    Science.gov (United States)

    Poppe, L.J.; Danforth, W.W.; McMullen, K.Y.; Parker, Castle E.; Doran, E.F.

    2011-01-01

    Detailed bathymetric maps of the sea floor in Long Island Sound are of great interest to the Connecticut and New York research and management communities because of this estuary's ecological, recreational, and commercial importance. The completed, geologically interpreted digital terrain models (DTMs), ranging in area from 12 to 293 square kilometers, provide important benthic environmental information, yet many applications require a geographically broader perspective. For example, individual surveys are of limited use for the planning and construction of cross-sound infrastructure, such as cables and pipelines, or for the testing of regional circulation models. To address this need, we integrated 12 multibeam and 2 LIDAR (Light Detection and Ranging) contiguous bathymetric DTMs, produced by the National Oceanic and Atmospheric Administration during charting operations, into one dataset that covers much of eastern Long Island Sound and extends into westernmost Block Island Sound. The new dataset is adjusted to mean lower low water, is gridded to 4-meter resolution, and is provided in UTM Zone 18 NAD83 and geographic WGS84 projections. This resolution is adequate for sea floor-feature and process interpretation but is small enough to be queried and manipulated with standard Geographic Information System programs and to allow for future growth. Natural features visible in the grid include exposed bedrock outcrops, boulder lag deposits of submerged moraines, sand-wave fields, and scour depressions that reflect the strength of the oscillating and asymmetric tidal currents. Bedform asymmetry allows interpretations of net sediment transport. Anthropogenic artifacts visible in the bathymetric data include a dredged channel, shipwrecks, dredge spoils, mooring anchors, prop-scour depressions, buried cables, and bridge footings. Together the merged data reveal a larger, more continuous perspective of bathymetric topography than previously available, providing a fundamental

  1. Lidar to lidar calibration

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Villanueva, Héctor

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  2. 2015 USACE NCMP Topobathy Lidar DEM: Sand Island (WA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations at a 1 m grid size, generated from data collected by the Coastal Zone Mapping...

  3. CryoSat-2 altimetry derived Arctic bathymetry map: first results and validation

    Science.gov (United States)

    Andersen, O. B.; Abulaitijiang, A.; Cancet, M.; Knudsen, P.

    2017-12-01

    The Technical University of Denmark (DTU), DTU Space has been developing high quality high resolution gravity fields including the new highly accurate CryoSat-2 radar altimetry satellite data which extends the global coverage of altimetry data up to latitude 88°. With its exceptional Synthetic Aperture Radar (SAR) mode being operating throughout the Arctic Ocean, leads, i.e., the ocean surface heights, is used to retrieve the sea surface height with centimeter-level range precision. Combined with the long repeat cycle ( 369 days), i.e., dense cross-track coverage, the high-resolution Arctic marine gravity can be modelled using the CryoSat-2 altimetry. Further, the polar gap can be filled by the available ArcGP product, thus yielding the complete map of the Arctic bathymetry map. In this presentation, we will make use of the most recent DTU17 marine gravity, to derive the arctic bathymetry map using inversion based on best available hydrographic maps. Through the support of ESA a recent evaluation of existing hydrographic models of the Arctic Ocean Bathymetry models (RTOPO, GEBCO, IBCAO etc) and various inconsistencies have been identified and means to rectify these inconsistencies have been taken prior to perform the inversion using altimetry. Simultaneously DTU Space has been placing great effort on the Arctic data screening, filtering, and de-noising using various altimetry retracking solutions and classifications. All the pre-processing contributed to the fine modelling of Actic gravity map. Thereafter, the arctic marine gravity grids will eventually be translated (downward continuation operation) to a new altimetry enhanced Arctic bathymetry map using appropriate band-pass filtering.

  4. Evaluating Mesoscale Simulations of the Coastal Flow Using Lidar Measurements

    Science.gov (United States)

    Floors, R.; Hahmann, A. N.; Peña, A.

    2018-03-01

    The atmospheric flow in the coastal zone is investigated using lidar and mast measurements and model simulations. Novel dual-Doppler scanning lidars were used to investigate the flow over a 7 km transect across the coast, and vertically profiling lidars were used to study the vertical wind profile at offshore and onshore positions. The Weather, Research and Forecasting model is set up in 12 different configurations using 2 planetary boundary layer schemes, 3 horizontal grid spacings and varied sources of land use, and initial and lower boundary conditions. All model simulations describe the observed mean wind profile well at different onshore and offshore locations from the surface up to 500 m. The simulated mean horizontal wind speed gradient across the shoreline is close to that observed, although all simulations show wind speeds that are slightly higher than those observed. Inland at the lowest observed height, the model has the largest deviations compared to the observations. Taylor diagrams show that using ERA-Interim data as boundary conditions improves the model skill scores. Simulations with 0.5 and 1 km horizontal grid spacing show poorer model performance compared to those with a 2 km spacing, partially because smaller resolved wave lengths degrade standard error metrics. Modeled and observed velocity spectra were compared and showed that simulations with the finest horizontal grid spacing resolved more high-frequency atmospheric motion.

  5. NOAA TIFF Image - 2m Multibeam Bathymetry, US Virgin Islands - Vieques Island - Project NF-09-01 - (2009), UTM 20N NAD83 (NCEI Accession 0131857)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified ESRI Grid with 2x2 meter cell size representing the bathymetry of two selected portions of seafloor - one area southwest of Vieques...

  6. EMODnet High Resolution Seabed Mapping - further developing a high resolution digital bathymetry for European seas

    Science.gov (United States)

    Schaap, D.; Schmitt, T.

    2017-12-01

    Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODnet) initiative. EMODnet aims at assembling European marine data, data products and metadata from diverse sources in a uniform way. The EMODnet Bathymetry project has developed Digital Terrain Models (DTM) for the European seas. These have been produced from survey and aggregated data sets that are indexed with metadata by adopting the SeaDataNet Catalogue services. SeaDataNet is a network of major oceanographic data centres around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. The latest EMODnet Bathymetry DTM release has a grid resolution of 1/8 arcminute and covers all European sea regions. Use has been made of circa 7800 gathered survey datasets and composite DTMs. Catalogues and the EMODnet DTM are published at the dedicated EMODnet Bathymetry portal including a versatile DTM viewing and downloading service. End December 2016 the Bathymetry project has been succeeded by EMODnet High Resolution Seabed Mapping (HRSM). This continues gathering of bathymetric in-situ data sets with extra efforts for near coastal waters and coastal zones. In addition Satellite Derived Bathymetry data are included to fill gaps in coverage of the coastal zones. The extra data and composite DTMs will increase the coverage of the European seas and its coastlines, and provide input for producing an EMODnet DTM with a common resolution of 1/16 arc minutes. The Bathymetry Viewing and Download service will be upgraded to provide a multi-resolution map and including 3D viewing. The higher resolution DTMs will also be used to determine best-estimates of the European coastline for a range of tidal levels (HAT, MHW, MSL, Chart Datum, LAT), thereby making use of a tidal model for Europe. Extra challenges will be `moving to the

  7. CRED Gridded Bathymetry of Necker Island (100-021) in the Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-021b is a 60-m ASCII grid of depth data collected near Necker Island in the Northwestern Hawaiian Islands as of May 2003. This grid has been produced as...

  8. EMODNet Bathymetry - building and providing a high resolution digital bathymetry for European seas

    Science.gov (United States)

    Schaap, Dick M. A.

    2016-04-01

    Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODNet) initiative. EMODNet aims at assembling European marine data, data products and metadata from diverse sources in a uniform way. The EMODNet data infrastructure is developed through a stepwise approach in three major phases. Currently EMODNet is entering its 3rd phase with operational portals providing access to marine data for bathymetry, geology, physics, chemistry, biology, seabed habitats and human activities, complemented by checkpoint projects, analyzing the fitness for purpose of data provision. The EMODNet Bathymetry project develops and publishes Digital Terrain Models (DTM) for the European seas. These are produced from survey and aggregated data sets that are indexed with metadata by adopting from SeaDataNet the Common Data Index (CDI) data discovery and access service and the Sextant data products catalogue service. SeaDataNet is a network of major oceanographic data centers around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. SeaDataNet is also setting and governing marine data standards, and exploring and establishing interoperability solutions to connect to other e-infrastructures on the basis of standards such as ISO and OGC. The SeaDataNet portal provides users a number of interrelated meta directories, an extensive range of controlled vocabularies, and the various SeaDataNet standards and tools. SeaDataNet at present gives overview and access to more than 1.8 million data sets for physical oceanography, chemistry, geology, geophysics, bathymetry and biology from more than 100 connected data centers from 34 countries riparian to European seas. The latest EMODNet Bathymetry DTM has a resolution of 1/8 arc minute * 1/8 arc minute and covers all European sea regions. Use is made of

  9. CRED Gridded Bathymetry of Nihoa Island (100-025) in the Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-025b is a 60-m ASCII grid of depth data collected near Nihoa Island in the Northwestern Hawaiian Islands as of May 2003. This grid has been produced as part...

  10. CRED Gridded Bathymetry of Raita Bank (100-009), in the Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-009b is a 60-m ASCII grid of depth data collected near Raita Bank in the Northwestern Hawaiian Islands as of May 2003. This grid has been produced as part...

  11. 2011 NOAA Bathymetric Lidar: U.S. Virgin Islands - St. Thomas, St. John, St. Croix (Salt River Bay, Buck Island)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data represents a LiDAR (Light Detection & Ranging) gridded bathymetric surface and a gridded relative seafloor reflectivity surface (incorporated into the...

  12. A LiDAR method of canopy structure retrieval for wind modeling of heterogeneous forests

    DEFF Research Database (Denmark)

    Boudreault, Louis-Etienne; Bechmann, Andreas; Taryainen, Lasse

    2015-01-01

    and this information is required for each grid point in the three-dimensional computational domain. By using raw data from aerial LiDAR scans together with the Beer-Lambert law, we propose and test a method to calculate and grid highly variable and realistic frontal area density input. An extensive comparison...

  13. Scanning, Multibeam, Single Photon Lidars for Rapid, Large Scale, High Resolution, Topographic and Bathymetric Mapping

    Directory of Open Access Journals (Sweden)

    John J. Degnan

    2016-11-01

    Full Text Available Several scanning, single photon sensitive, 3D imaging lidars are herein described that operate at aircraft above ground levels (AGLs between 1 and 11 km, and speeds in excess of 200 knots. With 100 beamlets and laser fire rates up to 60 kHz, we, at the Sigma Space Corporation (Lanham, MD, USA, have interrogated up to 6 million ground pixels per second, all of which can record multiple returns from volumetric scatterers such as tree canopies. High range resolution has been achieved through the use of subnanosecond laser pulsewidths, detectors and timing receivers. The systems are presently being deployed on a variety of aircraft to demonstrate their utility in multiple applications including large scale surveying, bathymetry, forestry, etc. Efficient noise filters, suitable for near realtime imaging, have been shown to effectively eliminate the solar background during daytime operations. Geolocation elevation errors measured to date are at the subdecimeter level. Key differences between our Single Photon Lidars, and competing Geiger Mode lidars are also discussed.

  14. Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar

    Directory of Open Access Journals (Sweden)

    Juan Carlos Fernandez-Diaz

    2016-11-01

    Full Text Available In this paper we present a description of a new multispectral airborne mapping light detection and ranging (lidar along with performance results obtained from two years of data collection and test campaigns. The Titan multiwave lidar is manufactured by Teledyne Optech Inc. (Toronto, ON, Canada and emits laser pulses in the 1550, 1064 and 532 nm wavelengths simultaneously through a single oscillating mirror scanner at pulse repetition frequencies (PRF that range from 50 to 300 kHz per wavelength (max combined PRF of 900 kHz. The Titan system can perform simultaneous mapping in terrestrial and very shallow water environments and its multispectral capability enables new applications, such as the production of false color active imagery derived from the lidar return intensities and the automated classification of target and land covers. Field tests and mapping projects performed over the past two years demonstrate capabilities to classify five land covers in urban environments with an accuracy of 90%, map bathymetry under more than 15 m of water, and map thick vegetation canopies at sub-meter vertical resolutions. In addition to its multispectral and performance characteristics, the Titan system is designed with several redundancies and diversity schemes that have proven to be beneficial for both operations and the improvement of data quality.

  15. NOAA TIFF Image - 1m Multibeam Bathymetry, US Virgin Islands - Vieques Island (El Seco) - Project NF-09-01 - (2009), UTM 20N NAD83 (NCEI Accession 0131857)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified ESRI Grid with 1x1 meter cell size representing the bathymetry of El Seco, a selected portion of seafloor east of Vieques Island,...

  16. New Multibeam Bathymetry Mosaic at NOAA/NCEI

    Science.gov (United States)

    Varner, J. D.; Cartwright, J.; Rosenberg, A. M.; Amante, C.; Sutherland, M.; Jencks, J. H.

    2017-12-01

    NOAA's National Centers for Environmental Information (NCEI) maintains an ever-growing archive of multibeam bathymetric data acquired from U.S. and international government and academic sources. The data are partitioned in the individual survey files in which they were originally received, and are stored in various formats not directly accessible by popular analysis and visualization tools. In order to improve the discoverability and accessibility of the data, NCEI created a new Multibeam Bathymetry Mosaic. Each survey was gridded at 3 arcsecond cell size and organized in an ArcGIS mosaic dataset, which was published as a set of standards-based web services usable in desktop GIS and web clients. In addition to providing a "seamless" grid of all surveys, a filter can be applied to isolate individual surveys. Both depth values in meters and shaded relief visualizations are available. The product represents the current state of the archive; no QA/QC was performed on the data before being incorporated, and the mosaic will be updated incrementally as new surveys are added to the archive. We expect the mosaic will address customer needs for visualization/extraction that existing tools (e.g. NCEI's AutoGrid) are unable to meet, and also assist data managers in identifying problem surveys, missing data, quality control issues, etc. This project complements existing efforts such as the Global Multi-Resolution Topography Data Synthesis (GMRT) at LDEO. Comprehensive visual displays of bathymetric data holdings are invaluable tools for seafloor mapping initiatives, such as Seabed 2030, that will aid in minimizing data collection redundancies and ensuring that valuable data are made available to the broadest community.

  17. FastSLAM Using Compressed Occupancy Grids

    Directory of Open Access Journals (Sweden)

    Christopher Cain

    2016-01-01

    Full Text Available Robotic vehicles working in unknown environments require the ability to determine their location while learning about obstacles located around them. In this paper a method of solving the SLAM problem that makes use of compressed occupancy grids is presented. The presented approach is an extension of the FastSLAM algorithm which stores a compressed form of the occupancy grid to reduce the amount of memory required to store the set of occupancy grids maintained by the particle filter. The performance of the algorithm is presented using experimental results obtained using a small inexpensive ground vehicle equipped with LiDAR, compass, and downward facing camera that provides the vehicle with visual odometry measurements. The presented results demonstrate that although with our approach the occupancy grid maintained by each particle uses only 40% of the data needed to store the uncompressed occupancy grid, we can still achieve almost identical results to the approach where each particle filter stores the full occupancy grid.

  18. Detailed Hydrographic Feature Extraction from High-Resolution LiDAR Data

    Energy Technology Data Exchange (ETDEWEB)

    Danny L. Anderson

    2012-05-01

    Detailed hydrographic feature extraction from high-resolution light detection and ranging (LiDAR) data is investigated. Methods for quantitatively evaluating and comparing such extractions are presented, including the use of sinuosity and longitudinal root-mean-square-error (LRMSE). These metrics are then used to quantitatively compare stream networks in two studies. The first study examines the effect of raster cell size on watershed boundaries and stream networks delineated from LiDAR-derived digital elevation models (DEMs). The study confirmed that, with the greatly increased resolution of LiDAR data, smaller cell sizes generally yielded better stream network delineations, based on sinuosity and LRMSE. The second study demonstrates a new method of delineating a stream directly from LiDAR point clouds, without the intermediate step of deriving a DEM. Direct use of LiDAR point clouds could improve efficiency and accuracy of hydrographic feature extractions. The direct delineation method developed herein and termed “mDn”, is an extension of the D8 method that has been used for several decades with gridded raster data. The method divides the region around a starting point into sectors, using the LiDAR data points within each sector to determine an average slope, and selecting the sector with the greatest downward slope to determine the direction of flow. An mDn delineation was compared with a traditional grid-based delineation, using TauDEM, and other readily available, common stream data sets. Although, the TauDEM delineation yielded a sinuosity that more closely matches the reference, the mDn delineation yielded a sinuosity that was higher than either the TauDEM method or the existing published stream delineations. Furthermore, stream delineation using the mDn method yielded the smallest LRMSE.

  19. CRED Gridded Bathymetry of French Frigate Shoals (100-019) in the Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-019b is a 60-m ASCII grid of depth data collected near French Frigate Shoals in the Northwestern Hawaiian Islands as of May 2003. This grid has been...

  20. CRED Gridded Bathymetry of East Gardner Pinnacles (100-016) in the Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-016b is a 60-m ASCII grid of depth data collected near E Gardner Pinnacles in the Northwestern Hawaiian Islands as of May 2003. This grid has been produced...

  1. CRED Gridded Bathymetry of Northeast Gardner Pinnacles (100-013) in the Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-013b is a 60-m ASCII grid of depth data collected near NE Gardner Pinnacles in the Northwestern Hawaiian Islands as of May 2003. This grid has been produced...

  2. CRED Gridded Bathymetry of East Necker Seamount (100-023) in the Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-023b is a 60-m ASCII grid of depth data collected near E. Necker Seamount in the Northwestern Hawaiian Islands as of May 2003. This grid has been produced...

  3. CRED Gridded Bathymetry of Southwest Gardner Pinnacles (100-012) in the Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-012b is a 60-m ASCII grid of depth data collected near SW Gardner Pinnacles in the Northwestern Hawaiian Islands as of May 2003. This grid has been produced...

  4. CRED Gridded Bathymetry near Lisianski Island and Pioneer Bank (100-002), Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-002b is a 60-m ASCII grid of depth data collected near Lisianski Island and Pioneer Bank in the Northwestern Hawaiian Islands as of May 2003. This grid has...

  5. Bathymetry for Louisiana, Geographic NAD83, LOSCO (1994) [bathymetry_NOAA_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a line data depicting the offshore bathymetry_NOAA_1994 for Louisiana. The contour interval is 2 meters. These data were derived from point depths depicted...

  6. CRED Gridded Bathymetry of Northwest Gardner Pinnacles (100-011) in the Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-011b is a 60-m ASCII grid of depth data collected near Kure Atoll in the Northwestern Hawaiian Islands as of May 2003. This grid has been produced as part...

  7. CRED Gridded Bathymetry of Southeast Maro Reef (100-010) in the Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-010b is a 60-m ASCII grid of depth data collected near SE Maro Reef in the Northwestern Hawaiian Islands as of May 2003. This grid has been produced as part...

  8. Great Lakes Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lakes Michigan, Erie, Saint Clair, Ontario and Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and...

  9. Lidar to lidar calibration phase 1

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents a feasibility study of a lidar to lidar (L2L) calibration procedure. Phase one of the project was conducted at Høvsøre, Denmark. Two windcubes were placed next to the 116m met mast and different methods were applied to obtain the sensing height error of the lidars. The purpose...... is to find the most consistent method and use it in a potential lidar to lidar calibration procedure....

  10. Lidar to lidar calibration phase 2

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents the results from phase 2 of a lidar to lidar (L2L) calibration procedure. Phase two of the project included two measurement campaigns conducted at given sites. The purpose was to find out if the lidar-to-lidar calibration procedure can be conducted with similar results...

  11. Coastal and tidal landform detection from high resolution topobathymetric LiDAR data

    DEFF Research Database (Denmark)

    Andersen, Mikkel S.; Al-Hamdani, Zyad K.; Steinbacher, Frank

    -resolution mapping of these land-water transition zones. We have carried out topobathymetric LiDAR surveys in the Knudedyb tidal inlet system, a coastal environment in the Danish Wadden Sea which is part of the Wadden Sea National Park and UNESCO World Heritage. Detailed digital elevation models (DEMs) with a grid...... to tides. Furthermore, we demonstrate the potential of morphometric analysis on high-resolution topobathymetric LiDAR data for automatic identification, characterisation and classification of different landforms present in coastal land-water transition zones. Acknowledgements This work was funded...

  12. Preliminary hard and soft bottom seafloor substrate map (40m grid) derived from an unsupervised classification of gridded backscatter and bathymetry derivatives at Rose Atoll, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from an unsupervised classification of multibeam backscatter and bathymetry derivatives at Rose Atoll,...

  13. Satellite derived bathymetry: mapping the Irish coastline

    Science.gov (United States)

    Monteys, X.; Cahalane, C.; Harris, P.; Hanafin, J.

    2017-12-01

    Ireland has a varied coastline in excess of 3000 km in length largely characterized by extended shallow environments. The coastal shallow water zone can be a challenging and costly environment in which to acquire bathymetry and other oceanographic data using traditional survey methods or airborne LiDAR techniques as demonstrated in the Irish INFOMAR program. Thus, large coastal areas in Ireland, and much of the coastal zone worldwide remain unmapped using modern techniques and is poorly understood. Earth Observations (EO) missions are currently being used to derive timely, cost effective, and quality controlled information for mapping and monitoring coastal environments. Different wavelengths of the solar light penetrate the water column to different depths and are routinely sensed by EO satellites. A large selection of multispectral imagery (MS) from many platforms were examined, as well as from small aircrafts and drones. A number of bays representing very different coastal environments were explored in turn. The project's workflow is created by building a catalogue of satellite and field bathymetric data to assess the suitability of imagery captured at a range of spatial, spectral and temporal resolutions. Turbidity indices are derived from the multispectral information. Finally, a number of spatial regression models using water-leaving radiance parameters and field calibration data are examined. Our assessment reveals that spatial regression algorithms have the potential to significantly improve the accuracy of the predictions up to 10m WD and offer a better handle on the error and uncertainty budget. The four spatial models investigated show better adjustments than the basic non-spatial model. Accuracy of the predictions is better than 10% WD at 95% confidence. Future work will focus on improving the accuracy of the predictions incorporating an analytical model in conjunction with improved empirical methods. The recently launched ESA Sentinel 2 will become the

  14. Optimizing Lidar Scanning Strategies for Wind Energy Measurements (Invited)

    Science.gov (United States)

    Newman, J. F.; Bonin, T. A.; Klein, P.; Wharton, S.; Chilson, P. B.

    2013-12-01

    Environmental concerns and rising fossil fuel prices have prompted rapid development in the renewable energy sector. Wind energy, in particular, has become increasingly popular in the United States. However, the intermittency of available wind energy makes it difficult to integrate wind energy into the power grid. Thus, the expansion and successful implementation of wind energy requires accurate wind resource assessments and wind power forecasts. The actual power produced by a turbine is affected by the wind speeds and turbulence levels experienced across the turbine rotor disk. Because of the range of measurement heights required for wind power estimation, remote sensing devices (e.g., lidar) are ideally suited for these purposes. However, the volume averaging inherent in remote sensing technology produces turbulence estimates that are different from those estimated by a sonic anemometer mounted on a standard meteorological tower. In addition, most lidars intended for wind energy purposes utilize a standard Doppler beam-swinging or Velocity-Azimuth Display technique to estimate the three-dimensional wind vector. These scanning strategies are ideal for measuring mean wind speeds but are likely inadequate for measuring turbulence. In order to examine the impact of different lidar scanning strategies on turbulence measurements, a WindCube lidar, a scanning Halo lidar, and a scanning Galion lidar were deployed at the Southern Great Plains Atmospheric Radiation Measurement (ARM) site in Summer 2013. Existing instrumentation at the ARM site, including a 60-m meteorological tower and an additional scanning Halo lidar, were used in conjunction with the deployed lidars to evaluate several user-defined scanning strategies. For part of the experiment, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every 1 second. In another part of the experiment, one of

  15. EMODNet Bathymetry - building and providing a high resolution digital bathymetry for European seas

    Science.gov (United States)

    Schaap, D.

    2016-12-01

    Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODnet) initiative. The EMODnet Bathymetry project develops and publishes Digital Terrain Models (DTM) for the European seas. These are produced from survey and aggregated data sets that are indexed with metadata by adopting from SeaDataNet the Common Data Index (CDI) data discovery and access service and the Sextant data products catalogue service. SeaDataNet is a network of major oceanographic data centres around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. SeaDataNet is also setting and governing marine data standards, and exploring and establishing interoperability solutions to connect to other e-infrastructures on the basis of standards such as ISO and OGC. The SeaDataNet portal provides users a number of interrelated meta directories, an extensive range of controlled vocabularies, and the various SeaDataNet standards and tools. SeaDataNet at present gives overview and access to more than 1.8 million data sets for physical oceanography, chemistry, geology, geophysics, bathymetry and biology from more than 100 connected data centres from 34 countries riparian to European seas. The latest EMODnet Bathymetry DTM has a resolution of 1/8 arcminute * 1/8 arcminute and covers all European sea regions. Use is made of available and gathered surveys and already more than 13.000 surveys have been indexed by 27 European data providers from 15 countries. Also use is made of composite DTMs as generated and maintained by several data providers for their areas of interest. Already 44 composite DTMs are included in the Sextant data products catalogue. For areas without coverage use is made of the latest global DTM of GEBCO who is partner in the EMODnet Bathymetry project. In return GEBCO integrates the EMODnet

  16. 5 m Gridded multibeam bathymetry of Rota Island, Commonwealth of the Northern Mariana Islands (CNMI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rota Island, CNMI. Bottom coverage was achieved in depths between 0 and -1905 meters; this 5-m grid has data only to -400 m. The netCDF and Arc ASCII grids include...

  17. Flood Modeling Using a Synthesis of Multi-Platform LiDAR Data

    Directory of Open Access Journals (Sweden)

    Ryan M. Csontos

    2013-09-01

    Full Text Available This study examined the utility of a high resolution ground-based (mobile and terrestrial Light Detection and Ranging (LiDAR dataset (0.2 m point-spacing supplemented with a coarser resolution airborne LiDAR dataset (5 m point-spacing for use in a flood inundation analysis. The techniques for combining multi-platform LiDAR data into a composite dataset in the form of a triangulated irregular network (TIN are described, and quantitative comparisons were made to a TIN generated solely from the airborne LiDAR dataset. For example, a maximum land surface elevation difference of 1.677 m and a mean difference of 0.178 m were calculated between the datasets based on sample points. Utilizing the composite and airborne LiDAR-derived TINs, a flood inundation comparison was completed using a one-dimensional steady flow hydraulic modeling analysis. Quantitative comparisons of the water surface profiles and depth grids indicated an underestimation of flooding extent, volume, and maximum flood height using the airborne LiDAR data alone. A 35% increase in maximum flood height was observed using the composite LiDAR dataset. In addition, the extents of the water surface profiles generated from the two datasets were found to be statistically significantly different. The urban and mountainous characteristics of the study area as well as the density (file size of the high resolution ground based LiDAR data presented both opportunities and challenges for flood modeling analyses.

  18. EMODNet Bathymetry - building and providing a high resolution digital bathymetry for European seas

    Science.gov (United States)

    Schaap, Dick M. A.

    2015-04-01

    Access to marine data is a key issue for the implementation of the EU Marine Strategy Framework Directive (MSFD). The EU communication 'Marine Knowledge 2020' underpins the importance of data availability and harmonising access to marine data from different sources. The European Marine Observation and Data Network (EMODnet) is a long term marine data initiative from the European Commission Directorate-General for Maritime Affairs and Fisheries (DG MARE) underpinning the Marine Knowledge 2020 strategy. EMODnet is a consortium of organisations assembling European marine data, data products and metadata from diverse sources in a uniform way. The main purpose of EMODnet is to unlock fragmented and hidden marine data resources and to make these available to individuals and organisations (public and private), and to facilitate investment in sustainable coastal and offshore activities through improved access to quality-assured, standardised and harmonised marine data which are interoperable and free of restrictions on use. The EMODnet data infrastructure is developed through a stepwise approach in three major phases. Currently EMODnet is in the 2nd phase of development with seven sub-portals in operation that provide access to marine data from the following themes: bathymetry, geology, physics, chemistry, biology, seabed habitats and human activities. EMODnet development is a dynamic process so new data, products and functionality are added regularly while portals are continuesly improved to make the service more fit for purpose and user friendly with the help of users and stakeholders. The EMODnet Bathymetry project develops and publishes Digital Terrain Models (DTM) for the European seas. These are produced from survey and aggregated data sets, that are indexed with metadata by adopting the SeaDataNet Common Data Index (CDI) data discovery and access service and the SeaDataNet Sextant data products catalogue service. The new EMODnet DTM will have a resolution of 1

  19. Leveraging Open Standards and Technologies to Enhance Community Access to Earth Science Lidar Data

    Science.gov (United States)

    Crosby, C. J.; Nandigam, V.; Krishnan, S.; Cowart, C.; Baru, C.; Arrowsmith, R.

    2011-12-01

    Lidar (Light Detection and Ranging) data, collected from space, airborne and terrestrial platforms, have emerged as an invaluable tool for a variety of Earth science applications ranging from ice sheet monitoring to modeling of earth surface processes. However, lidar present a unique suite of challenges from the perspective of building cyberinfrastructure systems that enable the scientific community to access these valuable research datasets. Lidar data are typically characterized by millions to billions of individual measurements of x,y,z position plus attributes; these "raw" data are also often accompanied by derived raster products and are frequently terabytes in size. As a relatively new and rapidly evolving data collection technology, relevant open data standards and software projects are immature compared to those for other remote sensing platforms. The NSF-funded OpenTopography Facility project has developed an online lidar data access and processing system that co-locates data with on-demand processing tools to enable users to access both raw point cloud data as well as custom derived products and visualizations. OpenTopography is built on a Service Oriented Architecture (SOA) in which applications and data resources are deployed as standards compliant (XML and SOAP) Web services with the open source Opal Toolkit. To develop the underlying applications for data access, filtering and conversion, and various processing tasks, OpenTopography has heavily leveraged existing open source software efforts for both lidar and raster data. Operating on the de facto LAS binary point cloud format (maintained by ASPRS), open source libLAS and LASlib libraries provide OpenTopography data ingestion, query and translation capabilities. Similarly, raster data manipulation is performed through a suite of services built on the Geospatial Data Abstraction Library (GDAL). OpenTopography has also developed our own algorithm for high-performance gridding of lidar point cloud data

  20. CRED Gridded Bathymetry near Northampton Seamounts to West Laysan Island (100-005) Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-005b is a 60-m ASCII grid of depth data collected near Kure Atoll in the Northwestern Hawaiian Islands as of May 2003. This grid has been produced as part...

  1. CRED Gridded Bathymetry of West St. Rogatien Bank (100-017) in the Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-017b is a 60-m ASCII grid of depth data collected near Kure Atoll in the Northwestern Hawaiian Islands as of May 2003. This grid has been produced as part...

  2. Preliminary hard and soft bottom seafloor substrate map (5m grid) derived from an unsupervised classification of gridded backscatter and bathymetry derivatives at Rose Atoll Lagoon, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from an unsupervised classification of multibeam backscatter and bathymetry derivatives at Rose Atoll...

  3. Efficient Data Assimilation Algorithms for Bathymetry Applications

    Science.gov (United States)

    Ghorbanidehno, H.; Kokkinaki, A.; Lee, J. H.; Farthing, M.; Hesser, T.; Kitanidis, P. K.; Darve, E. F.

    2016-12-01

    Information on the evolving state of the nearshore zone bathymetry is crucial to shoreline management, recreational safety, and naval operations. The high cost and complex logistics of using ship-based surveys for bathymetry estimation have encouraged the use of remote sensing monitoring. Data assimilation methods combine monitoring data and models of nearshore dynamics to estimate the unknown bathymetry and the corresponding uncertainties. Existing applications have been limited to the basic Kalman Filter (KF) and the Ensemble Kalman Filter (EnKF). The former can only be applied to low-dimensional problems due to its computational cost; the latter often suffers from ensemble collapse and uncertainty underestimation. This work explores the use of different variants of the Kalman Filter for bathymetry applications. In particular, we compare the performance of the EnKF to the Unscented Kalman Filter and the Hierarchical Kalman Filter, both of which are KF variants for non-linear problems. The objective is to identify which method can better handle the nonlinearities of nearshore physics, while also having a reasonable computational cost. We present two applications; first, the bathymetry of a synthetic one-dimensional cross section normal to the shore is estimated from wave speed measurements. Second, real remote measurements with unknown error statistics are used and compared to in situ bathymetric survey data collected at the USACE Field Research Facility in Duck, NC. We evaluate the information content of different data sets and explore the impact of measurement error and nonlinearities.

  4. Evaluating a small footprint, waveform-resolving lidar over coastal vegetation communities

    Science.gov (United States)

    Nayegandhl, A.; Brock, J.C.; Wright, C.W.; O'Connell, M. J.

    2006-01-01

    NASA's Experimental Advanced Airborne Research Lidar (EAARL) is a raster-scanning, waveform-resolving, green-wavelength (532 nm) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor records the time history of the return waveform within a small footprint (20 cm diameter) for each laser pulse, enabling characterization of vegetation canopy structure and "bare earth" topography under a variety of vegetation types. A collection of individual waveforms combined within a synthesized large footprint was used to define three metrics: canopy height (CH), canopy reflection ratio (CRR), and height of median energy (HOME). Bare Earth Elevation (BEE) metric was derived using the individual small-footprint waveforms. All four metrics were tested for reproducibility, which resulted in an average of 95 percent correspondence within two standard deviations of the mean. CH and BEE values were also tested for accuracy using ground-truth data. The results presented in this paper show that combining several individual small-footprint laser pulses to define a composite "large-footprint" waveform is a possible method to depict the vertical structure of a vegetation canopy. ?? 2006 American Society for Photogrammetry and Remote Sensing.

  5. Automatic 3d Building Model Generations with Airborne LiDAR Data

    Science.gov (United States)

    Yastikli, N.; Cetin, Z.

    2017-11-01

    LiDAR systems become more and more popular because of the potential use for obtaining the point clouds of vegetation and man-made objects on the earth surface in an accurate and quick way. Nowadays, these airborne systems have been frequently used in wide range of applications such as DEM/DSM generation, topographic mapping, object extraction, vegetation mapping, 3 dimensional (3D) modelling and simulation, change detection, engineering works, revision of maps, coastal management and bathymetry. The 3D building model generation is the one of the most prominent applications of LiDAR system, which has the major importance for urban planning, illegal construction monitoring, 3D city modelling, environmental simulation, tourism, security, telecommunication and mobile navigation etc. The manual or semi-automatic 3D building model generation is costly and very time-consuming process for these applications. Thus, an approach for automatic 3D building model generation is needed in a simple and quick way for many studies which includes building modelling. In this study, automatic 3D building models generation is aimed with airborne LiDAR data. An approach is proposed for automatic 3D building models generation including the automatic point based classification of raw LiDAR point cloud. The proposed point based classification includes the hierarchical rules, for the automatic production of 3D building models. The detailed analyses for the parameters which used in hierarchical rules have been performed to improve classification results using different test areas identified in the study area. The proposed approach have been tested in the study area which has partly open areas, forest areas and many types of the buildings, in Zekeriyakoy, Istanbul using the TerraScan module of TerraSolid. The 3D building model was generated automatically using the results of the automatic point based classification. The obtained results of this research on study area verified that automatic 3D

  6. AUTOMATIC 3D BUILDING MODEL GENERATIONS WITH AIRBORNE LiDAR DATA

    Directory of Open Access Journals (Sweden)

    N. Yastikli

    2017-11-01

    Full Text Available LiDAR systems become more and more popular because of the potential use for obtaining the point clouds of vegetation and man-made objects on the earth surface in an accurate and quick way. Nowadays, these airborne systems have been frequently used in wide range of applications such as DEM/DSM generation, topographic mapping, object extraction, vegetation mapping, 3 dimensional (3D modelling and simulation, change detection, engineering works, revision of maps, coastal management and bathymetry. The 3D building model generation is the one of the most prominent applications of LiDAR system, which has the major importance for urban planning, illegal construction monitoring, 3D city modelling, environmental simulation, tourism, security, telecommunication and mobile navigation etc. The manual or semi-automatic 3D building model generation is costly and very time-consuming process for these applications. Thus, an approach for automatic 3D building model generation is needed in a simple and quick way for many studies which includes building modelling. In this study, automatic 3D building models generation is aimed with airborne LiDAR data. An approach is proposed for automatic 3D building models generation including the automatic point based classification of raw LiDAR point cloud. The proposed point based classification includes the hierarchical rules, for the automatic production of 3D building models. The detailed analyses for the parameters which used in hierarchical rules have been performed to improve classification results using different test areas identified in the study area. The proposed approach have been tested in the study area which has partly open areas, forest areas and many types of the buildings, in Zekeriyakoy, Istanbul using the TerraScan module of TerraSolid. The 3D building model was generated automatically using the results of the automatic point based classification. The obtained results of this research on study area verified

  7. Comparisons of Simultaneously Acquired Airborne Sfm Photogrammetry and Lidar

    Science.gov (United States)

    Larsen, C. F.

    2014-12-01

    Digital elevation models (DEMs) created using images from a consumer DSLR camera are compared against simultaneously acquired LiDAR on a number of airborne mapping projects across Alaska, California and Utah. The aircraft used is a Cessna 180, and is equipped with the University of Alaska Geophysical Institute (UAF-GI) scanning airborne LiDAR system. This LiDAR is the same as described in Johnson et al, 2013, and is the principal instrument used for NASA's Operation IceBridge flights in Alaska. The system has been in extensive use since 2009, and is particularly well characterized with dozens of calibration flights and a careful program of boresight angle determination and monitoring. The UAF-GI LiDAR has a precision of +/- 8 cm and accuracy of +/- 15 cm. The photogrammetry DEM simultaneously acquired with the LiDAR relies on precise shutter timing using an event marker input to the IMU associated with the LiDAR system. The photo positions are derived from the fully coupled GPS/IMU processing, which samples at 100 Hz and is able to directly calculate the antenna to image plane offset displacements from the full orientation data. This use of the GPS/IMU solution means that both the LiDAR and Cessna 180 photogrammetry DEM share trajectory input data, however no orientation data nor ground control is used for the photorammetry processing. The photogrammetry DEMs are overlaid on the LiDAR point cloud and analyzed for horizontal shifts or warps relative to the LiDAR. No warping or horizontal shifts have been detectable for a number of photogrammetry DEMs. Vertical offsets range from +/- 30 cm, with a typical standard deviation about that mean of 10 cm or better. LiDAR and photogrammetry function inherently differently over trees and brush, and direct comparisons between the two methods show much larger differences over vegetated areas. Finally, the differences in flight patterns associated with the two methods will be discussed, highlighting the photogrammetry

  8. Bathymetry of Lake Ontario

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Ontario has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  9. Bathymetry of Lake Michigan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Michigan has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  10. Bathymetry of Lake Superior

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Superior has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  11. Bathymetry of Lake Huron

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  12. River bathymetry estimation based on the floodplains topography.

    Science.gov (United States)

    Bureš, Luděk; Máca, Petr; Roub, Radek; Pech, Pavel; Hejduk, Tomáš; Novák, Pavel

    2017-04-01

    Topographic model including River bathymetry (bed topography) is required for hydrodynamic simulation, water quality modelling, flood inundation mapping, sediment transport, ecological and geomorphologic assessments. The most common way to create the river bathymetry is to use of the spatial interpolation of discrete points or cross sections data. The quality of the generated bathymetry is dependent on the quality of the measurements, on the used technology and on the size of input dataset. Extensive measurements are often time consuming and expensive. Other option for creating of the river bathymetry is to use the methods of mathematical modelling. In the presented contribution we created the river bathymetry model. Model is based on the analytical curves. The curves are bent into shape of the cross sections. For the best description of the river bathymetry we need to know the values of the model parameters. For finding these parameters we use of the global optimization methods. The global optimization schemes is based on heuristics inspired by the natural processes. We use new type of DE (differential evolution) for finding the solutions of inverse problems, related to the parameters of mathematical model of river bed surfaces. The presented analysis discuss the dependence of model parameters on the selected characteristics. Selected characteristics are: (1) Topographic characteristics (slope and curvature in the left and right floodplains) determined on the base of DTM 5G (digital terrain model). (2) Optimization scheme. (3) Type of used analytical curves. The novel approach is applied on the three parts of Vltava river in Czech Republic. Each part of the river is described on the base of the point field. The point fields was measured with ADCP probe River surveyor M9. This work was supported by the Technology Agency of the Czech Republic, programme Alpha (project TA04020042 - New technologies bathymetry of rivers and reservoirs to determine their storage

  13. CRED Gridded Bathymetry along a transit to Nihoa Island (100-027) in the Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-027b is a 60-m ASCII grid of depth data collected near Transit to Nihoa in the Northwestern Hawaiian Islands as of May 2003. This grid has been produced as...

  14. Some New Lidar Equations for Laser Pulses Scattered Back from Optically Thick Media Such as Clouds, Dense Aerosol Plumes, Sea Ice, Snow, and Turbid Coastal Waters

    Science.gov (United States)

    Davis, Anthony B.

    2013-01-01

    I survey the theoretical foundations of the slowly-but-surely emerging field of multiple scattering lidar, which has already found applications in atmospheric and cryospheric optics that I also discuss. In multiple scattering lidar, returned pulses are stretched far beyond recognition, and there is no longer a one-to-one connection between range and return-trip timing. Moreover, one can exploit the radial profile of the diffuse radiance field excited by the laser source that, by its very nature, is highly concentrated in space and collimated in direction. One needs, however, a new class of lidar equations to explore this new phenomenology. A very useful set is derived from radiative diffusion theory, which is found at the opposite asymptotic limit of radiative transfer theory than the conventional (single-scattering) limit used to derive the standard lidar equation. In particular, one can use it to show that, even if the simple time-of-flight-to-range connection is irretrievably lost, multiply-scattered lidar light can be used to restore a unique profiling capability with coarser resolution but much deeper penetration into a wide variety of optical thick media in nature. Several new applications are proposed, including a laser bathymetry technique that should work for highly turbid coastal waters.

  15. Improving Watershed-Scale Hydrodynamic Models by Incorporating Synthetic 3D River Bathymetry Network

    Science.gov (United States)

    Dey, S.; Saksena, S.; Merwade, V.

    2017-12-01

    Digital Elevation Models (DEMs) have an incomplete representation of river bathymetry, which is critical for simulating river hydrodynamics in flood modeling. Generally, DEMs are augmented with field collected bathymetry data, but such data are available only at individual reaches. Creating a hydrodynamic model covering an entire stream network in the basin requires bathymetry for all streams. This study extends a conceptual bathymetry model, River Channel Morphology Model (RCMM), to estimate the bathymetry for an entire stream network for application in hydrodynamic modeling using a DEM. It is implemented at two large watersheds with different relief and land use characterizations: coastal Guadalupe River basin in Texas with flat terrain and a relatively urban White River basin in Indiana with more relief. After bathymetry incorporation, both watersheds are modeled using HEC-RAS (1D hydraulic model) and Interconnected Pond and Channel Routing (ICPR), a 2-D integrated hydrologic and hydraulic model. A comparison of the streamflow estimated by ICPR at the outlet of the basins indicates that incorporating bathymetry influences streamflow estimates. The inundation maps show that bathymetry has a higher impact on flat terrains of Guadalupe River basin when compared to the White River basin.

  16. Statistical correction of lidar-derived digital elevation models with multispectral airborne imagery in tidal marshes

    Science.gov (United States)

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.; Takekawa, John Y.

    2016-01-01

    Airborne light detection and ranging (lidar) is a valuable tool for collecting large amounts of elevation data across large areas; however, the limited ability to penetrate dense vegetation with lidar hinders its usefulness for measuring tidal marsh platforms. Methods to correct lidar elevation data are available, but a reliable method that requires limited field work and maintains spatial resolution is lacking. We present a novel method, the Lidar Elevation Adjustment with NDVI (LEAN), to correct lidar digital elevation models (DEMs) with vegetation indices from readily available multispectral airborne imagery (NAIP) and RTK-GPS surveys. Using 17 study sites along the Pacific coast of the U.S., we achieved an average root mean squared error (RMSE) of 0.072 m, with a 40–75% improvement in accuracy from the lidar bare earth DEM. Results from our method compared favorably with results from three other methods (minimum-bin gridding, mean error correction, and vegetation correction factors), and a power analysis applying our extensive RTK-GPS dataset showed that on average 118 points were necessary to calibrate a site-specific correction model for tidal marshes along the Pacific coast. By using available imagery and with minimal field surveys, we showed that lidar-derived DEMs can be adjusted for greater accuracy while maintaining high (1 m) resolution.

  17. A Three Tier Architecture Applied to LiDAR Processing and Monitoring

    Directory of Open Access Journals (Sweden)

    Efrat Jaeger-Frank

    2006-01-01

    Full Text Available Emerging Grid technologies enable solving scientific problems that involve large datasets and complex analyses, which in the past were often considered difficult to solve. Coordinating distributed Grid resources and computational processes requires adaptable interfaces and tools that provide modularized and configurable environments for accessing Grid clusters and executing high performance computational tasks. Computationally intensive processes are also subject to a high risk of component failures and thus require close monitoring. In this paper we describe a scientific workflow approach to coordinate various resources via data analysis pipelines. We present a three tier architecture for LiDAR interpolation and analysis, a high performance processing of point intensive datasets, utilizing a portal, a scientific workflow engine and Grid technologies. Our proposed solution is available to the community in a unified framework through a shared cyberinfrastructure, the GEON portal, enabling scientists to focus on their scientific work and not be concerned with the implementation of the underlying infrastructure.

  18. Unsupervised classification of lidar-based vegetation structure metrics at Jean Lafitte National Historical Park and Preserve

    Science.gov (United States)

    Kranenburg, Christine J.; Palaseanu-Lovejoy, Monica; Nayegandhi, Amar; Brock, John; Woodman, Robert

    2012-01-01

    Traditional vegetation maps capture the horizontal distribution of various vegetation properties, for example, type, species and age/senescence, across a landscape. Ecologists have long known, however, that many important forest properties, for example, interior microclimate, carbon capacity, biomass and habitat suitability, are also dependent on the vertical arrangement of branches and leaves within tree canopies. The objective of this study was to use a digital elevation model (DEM) along with tree canopy-structure metrics derived from a lidar survey conducted using the Experimental Advanced Airborne Research Lidar (EAARL) to capture a three-dimensional view of vegetation communities in the Barataria Preserve unit of Jean Lafitte National Historical Park and Preserve, Louisiana. The EAARL instrument is a raster-scanning, full waveform-resolving, small-footprint, green-wavelength (532-nanometer) lidar system designed to map coastal bathymetry, topography and vegetation structure simultaneously. An unsupervised clustering procedure was then applied to the 3-dimensional-based metrics and DEM to produce a vegetation map based on the vertical structure of the park's vegetation, which includes a flotant marsh, scrub-shrub wetland, bottomland hardwood forest, and baldcypress-tupelo swamp forest. This study was completed in collaboration with the National Park Service Inventory and Monitoring Program's Gulf Coast Network. The methods presented herein are intended to be used as part of a cost-effective monitoring tool to capture change in park resources.

  19. A 3D convolutional neural network approach to land cover classification using LiDAR and multi-temporal Landsat imagery

    Science.gov (United States)

    Xu, Z.; Guan, K.; Peng, B.; Casler, N. P.; Wang, S. W.

    2017-12-01

    Landscape has complex three-dimensional features. These 3D features are difficult to extract using conventional methods. Small-footprint LiDAR provides an ideal way for capturing these features. Existing approaches, however, have been relegated to raster or metric-based (two-dimensional) feature extraction from the upper or bottom layer, and thus are not suitable for resolving morphological and intensity features that could be important to fine-scale land cover mapping. Therefore, this research combines airborne LiDAR and multi-temporal Landsat imagery to classify land cover types of Williamson County, Illinois that has diverse and mixed landscape features. Specifically, we applied a 3D convolutional neural network (CNN) method to extract features from LiDAR point clouds by (1) creating occupancy grid, intensity grid at 1-meter resolution, and then (2) normalizing and incorporating data into a 3D CNN feature extractor for many epochs of learning. The learned features (e.g., morphological features, intensity features, etc) were combined with multi-temporal spectral data to enhance the performance of land cover classification based on a Support Vector Machine classifier. We used photo interpretation for training and testing data generation. The classification results show that our approach outperforms traditional methods using LiDAR derived feature maps, and promises to serve as an effective methodology for creating high-quality land cover maps through fusion of complementary types of remote sensing data.

  20. Motion field estimation for a dynamic scene using a 3D LiDAR.

    Science.gov (United States)

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-09-09

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  1. Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR

    Directory of Open Access Journals (Sweden)

    Qingquan Li

    2014-09-01

    Full Text Available This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  2. Leveraging North Carolina's QL2 Lidar to Quantify Sensitivity of National Water Model Derived Flood Inundation Extent to DEM Resolution

    Science.gov (United States)

    Lovette, J. P.; Lenhardt, W. C.; Blanton, B.; Duncan, J. M.; Stillwell, L.

    2017-12-01

    The National Water Model (NWM) has provided a novel framework for near real time flood inundation mapping across CONUS at a 10m resolution. In many regions, this spatial scale is quickly being surpassed through the collection of high resolution lidar (1 - 3m). As one of the leading states in data collection for flood inundation mapping, North Carolina is currently improving their previously available 20 ft statewide elevation product to a Quality Level 2 (QL2) product with a nominal point spacing of 0.7 meters. This QL2 elevation product increases the ground points by roughly ten times over the previous statewide lidar product, and by over 250 times when compared to the 10m NED elevation grid. When combining these new lidar data with the discharge estimates from the NWM, we can further improve statewide flood inundation maps and predictions of at-risk areas. In the context of flood risk management, these improved predictions with higher resolution elevation models consistently represent an improvement on coarser products. Additionally, the QL2 lidar also includes coarse land cover classification data for each point return, opening the possibility for expanding analysis beyond the use of only digital elevation models (e.g. improving estimates of surface roughness, identifying anthropogenic features in floodplains, characterizing riparian zones, etc.). Using the NWM Height Above Nearest Drainage approach, we compare flood inundation extents derived from multiple lidar-derived grid resolutions to assess the tradeoff between precision and computational load in North Carolina's coastal river basins. The elevation data distributed through the state's new lidar collection program provide spatial resolutions ranging from 5-50 feet, with most inland areas also including a 3 ft product. Data storage increases by almost two orders of magnitude across this range, as does processing load. In order to further assess the validity of the higher resolution elevation products on

  3. CRED Gridded Bathymetry of Twin Banks and Northwest Nihoa Island (100-024) in the Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-024b is a 60-m ASCII grid of depth data collected near Twin Banks NW Nihoa in the Northwestern Hawaiian Islands as of May 2003. This grid has been produced...

  4. Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar.

    Science.gov (United States)

    Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V; Kolka, Randall

    2015-01-01

    A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C.

  5. Bathymetry of Torssukatak fjord and one century of glacier stability

    Science.gov (United States)

    An, L.; Rignot, E. J.; Morlighem, M.

    2017-12-01

    Marine-terminating glaciers dominate the evolution of the Greenland Ice Sheet(GrIS) mass balance as they control 90% of the ice discharge into the ocean. Warm air temperatures thin the glaciers from the top to unground ice fronts from the bed. Warm oceans erode the submerged grounded ice, causing the grounding line to retreat. To interpret the recent and future evolution of two outlet glaciers, Sermeq Avangnardleq (AVA) and Sermeq Kujatdleq (KUJ) in central West Greenland, flowing into the ice-choked Torssukatak fjord (TOR), we need to know their ice thickness and bed topography and the fjord bathymetry. Here, we present a novel mapping of the glacier bed topography, ice thickness and sea floor bathymetry near the grounding line using high resolution airborne gravity data from AIRGrav collected in August 2012 with a helicopter platform, at 500 m spacing grid, 50 knots ground speed, 80 m ground clearance, with submilligal accuracy, i.e. higher than NASA Operation IceBridge (OIB)'s 5.2 km resolution, 290 knots, and 450 m clearance. We also employ MultiBeam Echo Sounding data (MBES) collected in the fjord since 2009. We had to wait until the summer of 2016, during Ocean Melting Greenland (OMG), to map the fjord bathymetry near the ice fronts for the first time. We constrain the 3D inversion of the gravity data with MBES in the fjord and a reconstruction of the glacier bed topography using mass conservation (MC) on land ice. The seamless topography obtained across the grounding line reveal the presence of a 300-m sill for AVA, which explains why this glacier has been stable for a century, despite changes in surface melt and ocean-induced melt and the presence of a deep fjord (800 m) in front of the glacier. For KUJ, we also reveal the presence of a wide sill (300 m depth) near the current ice front which explains its stability and the stranding of iceberg debris in front of the glacier. The results shed new light on the evolution of these glaciers and explain their

  6. Grid occupancy estimation for environment perception based on belief functions and PCR6

    Science.gov (United States)

    Moras, Julien; Dezert, Jean; Pannetier, Benjamin

    2015-05-01

    In this contribution, we propose to improve the grid map occupancy estimation method developed so far based on belief function modeling and the classical Dempster's rule of combination. Grid map offers a useful representation of the perceived world for mobile robotics navigation. It will play a major role for the security (obstacle avoidance) of next generations of terrestrial vehicles, as well as for future autonomous navigation systems. In a grid map, the occupancy of each cell representing a small piece of the surrounding area of the robot must be estimated at first from sensors measurements (typically LIDAR, or camera), and then it must also be classified into different classes in order to get a complete and precise perception of the dynamic environment where the robot moves. So far, the estimation and the grid map updating have been done using fusion techniques based on the probabilistic framework, or on the classical belief function framework thanks to an inverse model of the sensors. Mainly because the latter offers an interesting management of uncertainties when the quality of available information is low, and when the sources of information appear as conflicting. To improve the performances of the grid map estimation, we propose in this paper to replace Dempster's rule of combination by the PCR6 rule (Proportional Conflict Redistribution rule #6) proposed in DSmT (Dezert-Smarandache) Theory. As an illustrating scenario, we consider a platform moving in dynamic area and we compare our new realistic simulation results (based on a LIDAR sensor) with those obtained by the probabilistic and the classical belief-based approaches.

  7. Lidar calibration experiments

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Mikkelsen, T.; Streicher, J.

    1997-01-01

    detection to test the reproducibility and uncertainty of lidars. Lidar data were obtained from both single-ended and double-ended Lidar configurations. A backstop was introduced in one of the experiments and a new method was developed where information obtained from the backstop can be used in the inversion...... algorithm. Independent in-situ aerosol plume concentrations were obtained from a simultaneous tracer gas experiment with SF6, and comparisons with the two lidars were made. The study shows that the reproducibility of the lidars is within 15%, including measurements from both sides of a plume...

  8. Research on bathymetry estimation by Worldview-2 based with the semi-analytical model

    Science.gov (United States)

    Sheng, L.; Bai, J.; Zhou, G.-W.; Zhao, Y.; Li, Y.-C.

    2015-04-01

    South Sea Islands of China are far away from the mainland, the reefs takes more than 95% of south sea, and most reefs scatter over interested dispute sensitive area. Thus, the methods of obtaining the reefs bathymetry accurately are urgent to be developed. Common used method, including sonar, airborne laser and remote sensing estimation, are limited by the long distance, large area and sensitive location. Remote sensing data provides an effective way for bathymetry estimation without touching over large area, by the relationship between spectrum information and bathymetry. Aimed at the water quality of the south sea of China, our paper develops a bathymetry estimation method without measured water depth. Firstly the semi-analytical optimization model of the theoretical interpretation models has been studied based on the genetic algorithm to optimize the model. Meanwhile, OpenMP parallel computing algorithm has been introduced to greatly increase the speed of the semi-analytical optimization model. One island of south sea in China is selected as our study area, the measured water depth are used to evaluate the accuracy of bathymetry estimation from Worldview-2 multispectral images. The results show that: the semi-analytical optimization model based on genetic algorithm has good results in our study area;the accuracy of estimated bathymetry in the 0-20 meters shallow water area is accepted.Semi-analytical optimization model based on genetic algorithm solves the problem of the bathymetry estimation without water depth measurement. Generally, our paper provides a new bathymetry estimation method for the sensitive reefs far away from mainland.

  9. Mapping and quantifying geodiversity in land-water transition zones using MBES and topobathymetric LiDAR

    DEFF Research Database (Denmark)

    Ernstsen, Verner Brandbyge; Andersen, Mikkel Skovgaard; Gergely, Aron

    due to the challenging environmental conditions. Combining vessel borne shallow water multibeam echosounder (MBES) surveys ,to cover the subtidal coastal areas and the river channel areas, with airborne topobathymetric light detection and ranging (LiDAR) surveys, to cover the intertidal and supratidal...... coastal areas and the river floodplain areas, potentially enables full-coverage and high-resolution mapping in these challenging environments. We have carried out MBES and topobathymetric LiDAR surveys in the Knudedyb tidal inlet system, a coastal environment in the Danish Wadden Sea which is part...... of the Wadden Sea National Park and UNESCO World Heritage, and in the Ribe Vesterå, a fluvial environment in the Ribe Å river catchment discharging into the Knudedyb tidal basin. Detailed digital elevation models (DEMs) with a grid cell size of 0.5 m x 0.5 m were generated from the MBES and the LiDAR point...

  10. Ground-Truthing of Airborne LiDAR Using RTK-GPS Surveyed Data in Coastal Louisiana's Wetlands

    Science.gov (United States)

    Lauve, R. M.; Alizad, K.; Hagen, S. C.

    2017-12-01

    Airborne LiDAR (Light Detection and Ranging) data are used by engineers and scientists to create bare earth digital elevation models (DEM), which are essential to modeling complex coastal, ecological, and hydrological systems. However, acquiring accurate bare earth elevations in coastal wetlands is difficult due to the density of marsh grasses that prevent the sensors reflection off the true ground surface. Previous work by Medeiros et al. [2015] developed a technique to assess LiDAR error and adjust elevations according to marsh vegetation density and index. The aim of this study is the collection of ground truth points and the investigation on the range of potential errors found in existing LiDAR datasets within coastal Louisiana's wetlands. Survey grids were mapped out in an area dominated by Spartina alterniflora and a survey-grade Trimble Real Time Kinematic (RTK) GPS device was employed to measure bare earth ground elevations in the marsh system adjacent to Terrebonne Bay, LA. Elevations were obtained for 20 meter-spaced surveyed grid points and were used to generate a DEM. The comparison between LiDAR derived and surveyed data DEMs yield an average difference of 23 cm with a maximum difference of 68 cm. Considering the local tidal range of 45 cm, these differences can introduce substantial error when the DEM is used for ecological modeling [Alizad et al., 2016]. Results from this study will be further analyzed and implemented in order to adjust LiDAR-derived DEMs closer to their true elevation across Louisiana's coastal wetlands. ReferencesAlizad, K., S. C. Hagen, J. T. Morris, S. C. Medeiros, M. V. Bilskie, and J. F. Weishampel (2016), Coastal wetland response to sea-level rise in a fluvial estuarine system, Earth's Future, 4(11), 483-497, 10.1002/2016EF000385. Medeiros, S., S. Hagen, J. Weishampel, and J. Angelo (2015), Adjusting Lidar-Derived Digital Terrain Models in Coastal Marshes Based on Estimated Aboveground Biomass Density, Remote Sensing, 7

  11. The impact of bathymetry input on flood simulations

    Science.gov (United States)

    Khanam, M.; Cohen, S.

    2017-12-01

    Flood prediction and mitigation systems are inevitable for improving public safety and community resilience all over the worldwide. Hydraulic simulations of flood events are becoming an increasingly efficient tool for studying and predicting flood events and susceptibility. A consistent limitation of hydraulic simulations of riverine dynamics is the lack of information about river bathymetry as most terrain data record water surface elevation. The impact of this limitation on the accuracy on hydraulic simulations of flood has not been well studies over a large range of flood magnitude and modeling frameworks. Advancing our understanding of this topic is timely given emerging national and global efforts for developing automated flood predictions systems (e.g. NOAA National Water Center). Here we study the response of flood simulation to the incorporation of different bathymetry and floodplain surveillance source. Different hydraulic models are compared, Mike-Flood, a 2D hydrodynamic model, and GSSHA, a hydrology/hydraulics model. We test a hypothesis that the impact of inclusion/exclusion of bathymetry data on hydraulic model results will vary in its magnitude as a function of river size. This will allow researcher and stake holders more accurate predictions of flood events providing useful information that will help local communities in a vulnerable flood zone to mitigate flood hazards. Also, it will help to evaluate the accuracy and efficiency of different modeling frameworks and gage their dependency on detailed bathymetry input data.

  12. Making lidar more photogenic: creating band combinations from lidar information

    Science.gov (United States)

    Stoker, Jason M.

    2010-01-01

    Over the past five to ten years the use and applicability of light detection and ranging (lidar) technology has increased dramatically. As a result, an almost exponential amount of lidar data is being collected across the country for a wide range of applications, and it is currently the technology of choice for high resolution terrain model creation, 3-dimensional city and infrastructure modeling, forestry and a wide range of scientific applications (Lin and Mills, 2010). The amount of data that is being delivered across the country is impressive. For example, the U.S. Geological Survey’s (USGS) Center for Lidar Information Coordination and Knowledge (CLICK), which is a National repository of USGS and partner lidar point cloud datasets (Stoker et al., 2006), currently has 3.5 percent of the United States covered by lidar, and has approximately another 5 percent in the processing queue. The majority of data being collected by the commercial sector are from discrete-return systems, which collect billions of lidar points in an average project. There are also a lot of discussions involving a potential National-scale Lidar effort (Stoker et al., 2008).

  13. Specular and diffuse object extraction from a LiDAR derived Digital Surface Model (DSM)

    International Nuclear Information System (INIS)

    Saraf, N M; Hamid, J R A; Kamaruddin, M H

    2014-01-01

    This paper intents to investigate the indifferent behaviour quantitatively of target objects of interest due to specular and diffuse reflectivity based on generated LiDAR DSM of the study site in Ampang, Kuala Lumpur. The LiDAR data to be used was initially checked for its reliability and accuracy. The point cloud LiDAR data was converted to raster to allow grid analysis of the next process of generating the DSM and DTM. Filtering and masking were made removing the features of interest (i.e. building and tree) and other unwanted above surface features. A normalised DSM and object segmentation approach were conducted on the trees and buildings separately. Error assessment and findings attained were highlighted and documented. The result of LiDAR verification certified that the data is reliable and useable. The RMSE obtained is within the tolerance value of horizontal and vertical accuracy (x, y, z) i.e. 0.159 m, 0.211 m 0.091 m respectively. Building extraction inclusive of roof top based on slope and contour analysis undertaken indicate the capability of the approach while single tree extraction through aspect analysis appears to preserve the accuracy of the extraction accordingly. The paper has evaluated the suitable methods of extracting non-ground features and the effective segmentation of the LiDAR data

  14. Multibeam swath bathymetry signal processing techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Ranade, G.; Sudhakar, T.

    Mathematical advances and the advances in the real time signal processing techniques in the recent times, have considerably improved the state of art in the bathymetry systems. These improvements have helped in developing high resolution swath...

  15. CRED Gridded Bathymetry of Bank 66 and east French Frigate Shoals (100-020) in the Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-020b is a 60-m ASCII grid of depth data collected near Bank 66, East French Frigate Shoals in the Northwestern Hawaiian Islands as of May 2003. This grid...

  16. NEPR Bathymetry Model - NOAA TIFF Image

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This GeoTiff is a bathymetry model of the seafloor of Northeast Puerto Rico that contains the shallow water area (0-35m deep) of the Northeast Ecological Reserve:...

  17. Accuracy limits on rapid assessment of gently varying bathymetry

    Science.gov (United States)

    McDonald, B. Edward; Holland, Charles

    2002-05-01

    Accuracy limits for rapidly probing shallow water bathymetry are investigated as a function of bottom slope and other relevant parameters. The probe scheme [B. E. McDonald and Charles Holland, J. Acoust. Soc. Am. 110, 2767 (2001)] uses a time reversed mirror (TRM) to ensonify a thin annulus on the ocean bottom at ranges of a few km from a vertical send/ receive array. The annulus is shifted in range by variable bathymetry (perturbation theory shows that the focal annulus experiences a radial shift proportional to the integrated bathymetry along a given azimuth). The range shift implies an azimuth-dependent time of maximum reverberation. Thus the reverberant return contains information that might be inverted to give bathymetric parameters. The parameter range over which the perturbation result is accurate is explored using the RAM code for propagation in arbitrarily range-dependent environments. [Work supported by NRL.

  18. Bathymetry Determination via X-Band Radar Data: A New Strategy and Numerical Results

    Directory of Open Access Journals (Sweden)

    Francesco Soldovieri

    2010-07-01

    Full Text Available This work deals with the question of sea state monitoring using marine X-band radar images and focuses its attention on the problem of sea depth estimation. We present and discuss a technique to estimate bathymetry by exploiting the dispersion relation for surface gravity waves. This estimation technique is based on the correlation between the measured and the theoretical sea wave spectra and a simple analysis of the approach is performed through test cases with synthetic data. More in detail, the reliability of the estimate technique is verified through simulated data sets that are concerned with different values of bathymetry and surface currents for two types of sea spectrum: JONSWAP and Pierson-Moskowitz. The results show how the estimated bathymetry is fairly accurate for low depth values, while the estimate is less accurate as the bathymetry increases, due to a less significant role of the bathymetry on the sea surface waves as the water depth increases.

  19. Estimated Bathymetry of the Puerto Rico shelf

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This classification of estimated depth represents the relative bathymetry of Puerto Rico's shallow waters based on Landsat imagery for NOAA's Coastal Centers for...

  20. Preliminary hard and soft bottom seafloor substrate map derived from an unsupervised classification of gridded backscatter and bathymetry derivatives at Swains Island, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from an unsupervised classification of multibeam backscatter and bathymetry derivatives at Swains Island,...

  1. NOAA Geotiff - 5 meter LiDAR Reflectivity, U.S. Caribbean - Puerto Rico (southwest) - Projects OPR-I305-KRL-06, (2006), UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) intensity mosaic (mean 5 meter gridded) from the shoreline of southwestern Puerto Rico to about 50...

  2. Radio-controlled boat for measuring water velocities and bathymetry

    Science.gov (United States)

    Vidmar, Andrej; Bezak, Nejc; Sečnik, Matej

    2016-04-01

    Radio-controlled boat named "Hi3" was designed and developed in order to facilitate water velocity and bathymetry measurements. The boat is equipped with the SonTek RiverSurveyor M9 instrument that is designed for measuring open channel hydraulics (discharge and bathymetry). Usually channel cross sections measurements are performed either from a bridge or from a vessel. However, these approaches have some limitations such as performing bathymetry measurements close to the hydropower plant turbine or downstream from a hydropower plant gate where bathymetry changes are often the most extreme. Therefore, the radio-controlled boat was designed, built and tested in order overcome these limitations. The boat is made from a surf board and two additional small balance support floats. Additional floats are used to improve stability in fast flowing and turbulent parts of rivers. The boat is powered by two electric motors, steering is achieved with changing the power applied to left and right motor. Furthermore, remotely controlled boat "Hi3" can be powered in two ways, either by a gasoline electric generator or by lithium batteries. Lithium batteries are lighter, quieter, but they operation time is shorter compared to an electrical generator. With the radio-controlled boat "Hi3" we can perform measurements in potentially dangerous areas such as under the lock gates at hydroelectric power plant or near the turbine outflow. Until today, the boat "Hi3" has driven more than 200 km in lakes and rivers, performing various water speed and bathymetry measurements. Moreover, in future development the boat "Hi3" will be upgraded in order to be able to perform measurements automatically. The future plans are to develop and implement the autopilot. With this approach the user will define the route that has to be driven by the boat and the boat will drive the pre-defined route automatically. This will be possible because of the very accurate differential GPS from the Sontek River

  3. Tropical Airborne LiDAR for Landslide Assessment in Malaysia: a technical perspective

    Science.gov (United States)

    Abd Manap, Mohamad; Azhari Razak, Khamarrul; Mohamad, Zakaria; Ahmad, Azhari; Ahmad, Ferdaus; Mohamad Zin, Mazlan; A'zad Rosle, Qalam

    2015-04-01

    results of the study produced 4 point/m2 density of LiDAR data point cloud, very detailed DEM and DSM of 0.5 m grid and high resolution digital aerial photograph of 7 cm grid, as well as an inventory of the landslide. A reliable landslide inventory has been critically developed with the input of LIDAR derivatives data and field investigation emphasizing on its crucial attributes, e.g., the landslide types, depth, style-, states and distribution of landslide activity. As a result of this study, guidelines and recommendation on the technical aspect of LIDAR-derived landslide assessment are explicitly presented and critically discussed. The finding of this project will be very useful for future planning of slope management, sustainable land use planning and development by related government agencies and local authorities in Malaysia. Keywords: Airborne LiDAR; landslide assessment; hazard and risk analysis; 3D point cloud density; slope failures; Malaysia

  4. Parallel Landscape Driven Data Reduction & Spatial Interpolation Algorithm for Big LiDAR Data

    Directory of Open Access Journals (Sweden)

    Rahil Sharma

    2016-06-01

    Full Text Available Airborne Light Detection and Ranging (LiDAR topographic data provide highly accurate digital terrain information, which is used widely in applications like creating flood insurance rate maps, forest and tree studies, coastal change mapping, soil and landscape classification, 3D urban modeling, river bank management, agricultural crop studies, etc. In this paper, we focus mainly on the use of LiDAR data in terrain modeling/Digital Elevation Model (DEM generation. Technological advancements in building LiDAR sensors have enabled highly accurate and highly dense LiDAR point clouds, which have made possible high resolution modeling of terrain surfaces. However, high density data result in massive data volumes, which pose computing issues. Computational time required for dissemination, processing and storage of these data is directly proportional to the volume of the data. We describe a novel technique based on the slope map of the terrain, which addresses the challenging problem in the area of spatial data analysis, of reducing this dense LiDAR data without sacrificing its accuracy. To the best of our knowledge, this is the first ever landscape-driven data reduction algorithm. We also perform an empirical study, which shows that there is no significant loss in accuracy for the DEM generated from a 52% reduced LiDAR dataset generated by our algorithm, compared to the DEM generated from an original, complete LiDAR dataset. For the accuracy of our statistical analysis, we perform Root Mean Square Error (RMSE comparing all of the grid points of the original DEM to the DEM generated by reduced data, instead of comparing a few random control points. Besides, our multi-core data reduction algorithm is highly scalable. We also describe a modified parallel Inverse Distance Weighted (IDW spatial interpolation method and show that the DEMs it generates are time-efficient and have better accuracy than the one’s generated by the traditional IDW method.

  5. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-05-01

    Full Text Available We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m−1 to 1.6e-4 m−1 and particle backscatter coefficient (between 1.1e-05 m−1sr−1 and 1.7e-06 m−1sr−1 in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr and summer (33 ± 10 sr. The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind.

  6. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China.

    Science.gov (United States)

    Wang, Wei; Gong, Wei; Mao, Feiyue; Pan, Zengxin; Liu, Boming

    2016-05-18

    We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio) at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m(-1) to 1.6e-4 m(-1)) and particle backscatter coefficient (between 1.1e-05 m(-1)sr(-1) and 1.7e-06 m(-1)sr(-1)) in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr) and summer (33 ± 10 sr). The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind.

  7. The design, development, and test of balloonborne and groundbased lidar systems. Volume 3: Groundbased lidar systems

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Hurd, A. G.; Robertie, N. F.

    1991-06-01

    This is Volume 3 of a three volume final report on the design, development and test of balloonborne and groundbased lidar systems. Volume 1 describes the design and fabrication of a balloonborne CO2 coherent payload to measure the 10.6 micrometers backscatter from atmospheric aerosols as a function of altitude. Volume 2 describes the August 1987 flight test of Atmospheric Balloonborne Lidar Experiment, ABLE 2. In this volume we describe groundbased lidar development and measurements. A design was developed for installation of the ABLE lidar in the GL rooftop dome. A transportable shed was designed to house the ABLE lidar at the various remote measurement sites. Refurbishment and modification of the ABLE lidar were completed to permit groundbased lidar measurements of clouds and aerosols. Lidar field measurements were made at Ascension Island during SABLE 89. Lidar field measurements were made at Terciera, Azores during GABLE 90. These tasks have been successfully completed, and recommendations for further lidar measurements and data analysis have been made.

  8. NOAA Geotiff - 5 meter LiDAR Reflectivity, U.S. Caribbean - Puerto Rico (southwest) - Projects OPR-I305-KRL-06, (2006), UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection and Ranging) intensity mosaic (mean 5 meter gridded) from the shoreline of southwestern Puerto Rico to about 50 meters...

  9. Auv Multibeam Bathymetry and Sidescan Survey of the SS Montebello wreck Offshore Cambria CA

    Science.gov (United States)

    Caress, D. W.; Thomas, H.; Conlin, D.; Thompson, D.; Paull, C. K.

    2010-12-01

    An MBARI Mapping AUV survey of the SS Montebello wreck offshore Cambria, CA collected high-resolution multibeam bathymetry and sidescan imagery of the vessel and the surrounding seafloor. The Montebello was an oil tanker that was torpedoed and sunk about 11 km offshore in 275 m water depth by a Japanese submarine on December 23, 1941. The Montebello was loaded with 3,000,000 gallons of crude oil, and there is no evidence that significant leakage of that cargo occurred at the time of the sinking or in the 69 years since. The California Department of Fish and Game’s Office of Spill Prevention and Response (OSPR) commissioned the AUV survey as part of a multi-agency Montebello Task Force effort to assess the potential pollution threat. The survey data will be used to determine the extent and general character of the wreckage for a pending Task Force report and to guide any future ROV dive or assessment activity . The AUV surveyed the wreck site from altitudes of 75 and 25 m; the low-altitude high-resolution survey consists of a grid with a 50 m line spacing both parallel and orthogonal to the ship. The 200 kHz multibeam bathymetry images the wreck from both above and from the sides with an 0.5 m lateral resolution. The combination of soundings from all of the survey lines results in a three-dimensional distribution of soundings that delineates the external morphology and some of the internal structure of the wreck. 410 kHz chirp sidescan sonar data also image the site from both directions. The bathymetry data indicate that the Montebello was pitched forward down when it impacted the bottom, crushing and breaking off the bow section. Both forward and aft deckhouses are largely intact, and in fact the multibeam images the individual decks within those structures. About half of the forward mast remains, both amidships masts and the smokestack are missing. A good deal of the deck piping and equipment appears intact, and aside from the bow, the ship’s sides appear

  10. Linear LIDAR versus Geiger-mode LIDAR: impact on data properties and data quality

    Science.gov (United States)

    Ullrich, A.; Pfennigbauer, M.

    2016-05-01

    LIDAR has become the inevitable technology to provide accurate 3D data fast and reliably even in adverse measurement situations and harsh environments. It provides highly accurate point clouds with a significant number of additional valuable attributes per point. LIDAR systems based on Geiger-mode avalanche photo diode arrays, also called single photon avalanche photo diode arrays, earlier employed for military applications, now seek to enter the commercial market of 3D data acquisition, advertising higher point acquisition speeds from longer ranges compared to conventional techniques. Publications pointing out the advantages of these new systems refer to the other category of LIDAR as "linear LIDAR", as the prime receiver element for detecting the laser echo pulses - avalanche photo diodes - are used in a linear mode of operation. We analyze the differences between the two LIDAR technologies and the fundamental differences in the data they provide. The limitations imposed by physics on both approaches to LIDAR are also addressed and advantages of linear LIDAR over the photon counting approach are discussed.

  11. Comparison of publically available Moho depth and crustal thickness grids with newly derived grids by 3D gravity inversion for the High Arctic region.

    Science.gov (United States)

    Lebedeva-Ivanova, Nina; Gaina, Carmen; Minakov, Alexander; Kashubin, Sergey

    2016-04-01

    We derived Moho depth and crustal thickness for the High Arctic region by 3D forward and inverse gravity modelling method in the spectral domain (Minakov et al. 2012) using lithosphere thermal gravity anomaly correction (Alvey et al., 2008); a vertical density variation for the sedimentary layer and lateral crustal variation density. Recently updated grids of bathymetry (Jakobsson et al., 2012), gravity anomaly (Gaina et al, 2011) and dynamic topography (Spasojevic & Gurnis, 2012) were used as input data for the algorithm. TeMAr sedimentary thickness grid (Petrov et al., 2013) was modified according to the most recently published seismic data, and was re-gridded and utilized as input data. Other input parameters for the algorithm were calibrated using seismic crustal scale profiles. The results are numerically compared with publically available grids of the Moho depth and crustal thickness for the High Arctic region (CRUST 1 and GEMMA global grids; the deep Arctic Ocean grids by Glebovsky et al., 2013) and seismic crustal scale profiles. The global grids provide coarser resolution of 0.5-1.0 geographic degrees and not focused on the High Arctic region. Our grids better capture all main features of the region and show smaller error in relation to the seismic crustal profiles compare to CRUST 1 and GEMMA grids. Results of 3D gravity modelling by Glebovsky et al. (2013) with separated geostructures approach show also good fit with seismic profiles; however these grids cover the deep part of the Arctic Ocean only. Alvey A, Gaina C, Kusznir NJ, Torsvik TH (2008). Integrated crustal thickness mapping and plate recon-structions for the high Arctic. Earth Planet Sci Lett 274:310-321. Gaina C, Werner SC, Saltus R, Maus S (2011). Circum-Arctic mapping project: new magnetic and gravity anomaly maps of the Arctic. Geol Soc Lond Mem 35, 39-48. Glebovsky V.Yu., Astafurova E.G., Chernykh A.A., Korneva M.A., Kaminsky V.D., Poselov V.A. (2013). Thickness of the Earth's crust in the

  12. Analysis of the possibilities of using aerial photographs to determine the bathymetry in shallow coastal zone of the selected section of the Baltic Sea

    Science.gov (United States)

    Cieszynski, Lukasz; Furmanczyk, Kazimierz

    2017-04-01

    Bathymetry data for the coastal zone of the Baltic Sea are usually created in profiles based on echo sounding measurements. However, in the shallow coastal zone (up to 4 m depth), the quality and accuracy of data is insufficient because of the spatial variability of the seabed. The green laser - LIDAR - can comprise a solution for studies of such shallow areas. However, this method is still an expensive one and that is why we have decided to use the RGB digital aerial photographs to create a model for mapping the seabed of the shallow coastal zone. So far, in the 60's, researchers in the USA (Musgrove, 1969) and Russia (Zdanowicz, 1963) developed the first method of bathymetry determining from aerial panchromatic (black-white) photographs. This method was adapted for the polish conditions by Furmanczyk in 1975 and in 2014 we have returned to his concept using more advanced techniques of recording and image processing. In our study, we propose to determine the bathymetry in shallow coastal zone of the Baltic Sea by using the digital vertical aerial photographs (both single and multi-channel spectral). These photos are the high-resolution matrix (10 cm per pixel) containing values of the grey level in the individual spectral bands (RGB). This gives great possibilities to determine the bathymetry in order to analyze the changes in the marine coastal zone. Comparing the digital bathymetry maps - obtained by proposed method - in the following periods, you can develop differential maps, which reflect the movements of sea-bottom sediments. This can be used to indicate the most dynamic regions in the examined area. The model is based on the image pixel values and relative depths measured in situ (in selected checkpoints). As a result, the relation of the pixel brightness and sea depth (the algorithm) was defined. Using the algorithm, depth calculations for the whole scene were done and high resolution bathymetric map created. However, the algorithm requires numbers of

  13. Probabilistic change mapping from airborne LiDAR for post-disaster damage assessment

    Science.gov (United States)

    Jalobeanu, A.; Runyon, S. C.; Kruse, F. A.

    2013-12-01

    When both pre- and post-event LiDAR point clouds are available, change detection can be performed to identify areas that were most affected by a disaster event, and to obtain a map of quantitative changes in terms of height differences. In the case of earthquakes in built-up areas for instance, first responders can use a LiDAR change map to help prioritize search and recovery efforts. The main challenge consists of producing reliable change maps, robust to collection conditions, free of processing artifacts (due for instance to triangulation or gridding), and taking into account the various sources of uncertainty. Indeed, datasets acquired within a few years interval are often of different point density (sometimes an order of magnitude higher for recent data), different acquisition geometries, and very likely suffer from georeferencing errors and geometric discrepancies. All these differences might not be important for producing maps from each dataset separately, but they are crucial when performing change detection. We have developed a novel technique for the estimation of uncertainty maps from the LiDAR point clouds, using Bayesian inference, treating all variables as random. The main principle is to grid all points on a common grid before attempting any comparison, as working directly with point clouds is cumbersome and time consuming. A non-parametric approach based on local linear regression was implemented, assuming a locally linear model for the surface. This enabled us to derive error bars on gridded elevations, and then elevation differences. In this way, a map of statistically significant changes could be computed - whereas a deterministic approach would not allow testing of the significance of differences between the two datasets. This approach allowed us to take into account not only the observation noise (due to ranging, position and attitude errors) but also the intrinsic roughness of the observed surfaces occurring when scanning vegetation. As only

  14. USACE National Coastal Mapping Program Update

    Science.gov (United States)

    Sylvester, C.

    2017-12-01

    The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) formed in 1998 to support the coastal mapping and charting requirements of the USACE, NAVO, NOAA and USGS. This partnership fielded three generations of airborne lidar bathymeters, executed operational data collection programs within the U.S. and overseas, and advanced research and development in airborne lidar bathymetry and complementary technologies. JALBTCX executes a USACE Headquarters-funded National Coastal Mapping Program (NCMP). Initiated in 2004, the NCMP provides high-resolution, high-accuracy elevation and imagery data along the sandy shorelines of the U.S. on a recurring basis. NCMP mapping activities are coordinated with Federal mapping partners through the Interagency Working Group on Ocean and Coastal Mapping and the 3D Elevation Program. The NCMP, currently in it's third cycle, is performing operations along the East Coast in 2017, after having completed surveys along the Gulf Coast in 2016 and conducting emergency response operations in support of Hurricane Matthew. This presentation will provide an overview of JALBTCX, its history in furthering airborne lidar bathymetry technology to meet emerging mapping requirements, current NCMP operations and data products, and Federal mapping coordination activities.

  15. Integrated hard and soft bottom seafloor substrate map derived from an unsupervised classification of gridded backscatter, World-View 2 imagery and bathymetry derivatives of Ni'ihau Island, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from an unsupervised classification of multibeam backscatter, bathymety derivatives, and bathymetry derived...

  16. Estimated Bathymetry of the U.S. Virgin Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This classification of estimated depth represents the relative bathymetry of the U.S. Virgin Islands shallow waters based on Landsat imagery for NOAA's Coastal...

  17. Mid-Ocean Ridge Melt Supply and Glacial Cycles: A 3D EPR Study of Crustal Thickness, Layer 2A, and Bathymetry

    Science.gov (United States)

    Boulahanis, B.; Aghaei, O.; Carbotte, S. M.; Huybers, P. J.; Langmuir, C. H.; Nedimovic, M. R.; Carton, H. D.; Canales, J. P.

    2017-12-01

    Recent studies suggest that eustatic sea level fluctuations induced by glacial cycles in the Pleistocene may influence mantle-melting and volcanic eruptions at mid-ocean ridges (MOR), with models predicting variation in oceanic crustal thickness linked to sea level change. Previous analyses of seafloor bathymetry as a proxy for crustal thickness show significant spectral energy at frequencies linked to Milankovitch cycles of 1/23, 1/41, and 1/100 ky-1, however the effects of faulting in seafloor relief and its spectral characteristics are difficult to separate from climatic signals. Here we investigate the hypothesis of climate driven periodicity in MOR magmatism through spectral analysis, time series comparisons, and statistical characterization of bathymetry data, seismic layer 2A thickness (as a proxy for extrusive volcanism), and seafloor-to-Moho thickness (as a proxy for total magma production). We utilize information from a three-dimensional multichannel seismic study of the East Pacific Rise and its flanks from 9°36`N to 9°57`N. We compare these datasets to the paleoclimate "LR04" benthic δ18O stack. The seismic dataset covers 770 km2 and provides resolution of Moho for 92% of the imaged region. This is the only existing high-resolution 3-D image across oceanic crust, making it ideal for assessing the possibility that glacial cycles modulate magma supply at fast spreading MORs. The layer 2A grid extends 9 km (170 ky) from the ridge axis, while Moho imaging extends to a maximum of 16 km (310 ky). Initial results from the East Pacific Rise show a relationship between sea level and both crustal thickness and sea floor depth, consistent with the hypothesis that magma supply to MORs may be modulated by glacial cycles. Analysis of crustal thickness and bathymetry data reveals spectral peaks at Milankovitch frequencies of 1/100 ky-1 and 1/41 ky-1 where datasets extend sufficiently far from the ridge. The layer 2A grid does not extend sufficiently far from the

  18. Lidar Remote Sensing for Industry and Environment Monitoring

    Science.gov (United States)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space

  19. High-Density LiDAR Mapping of the Ancient City of Mayapán

    Directory of Open Access Journals (Sweden)

    Timothy Hare

    2014-09-01

    Full Text Available A 2013 survey of a 40 square kilometer area surrounding Mayapán, Yucatan, Mexico used high-density LiDAR data to map prehispanic architecture and related natural features. Most of the area is covered by low canopy dense forest vegetation over karstic hilly terrain that impedes full coverage archaeological survey. We used LiDAR at 40 laser points per square meter to generate a bare earth digital elevation model (DEM. Results were evaluated with comparisons to previously mapped areas and with traditional archaeological survey methods for 38 settlement clusters outside of the city wall. Ground checking employed full coverage survey of selected 500 m grid squares, as well as documentation of the chronology and detail of new public and domestic settlement features and cenotes. Results identify the full extent of continued, contemporary Postclassic settlement (A.D. 1150–1450 outside of the city wall to at least 500 meters to the east, north, and west. New data also reveal an extensive modified landscape of terraformed residential hills, rejolladas, and dense settlement dating from Preclassic through Classic Periods. The LiDAR data also allow for the identification of rooms, benches, and stone property walls and lanes within the city.

  20. Bathymetry and acoustic backscatter-outer mainland shelf, eastern Santa Barbara Channel, California

    Science.gov (United States)

    Dartnell, Peter; Finlayson, David P.; Ritchie, Andrew C.; Cochrane, Guy R.; Erdey, Mercedes D.

    2012-01-01

    In 2010 and 2011, scientists from the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC), acquired bathymetry and acoustic-backscatter data from the outer shelf region of the eastern Santa Barbara Channel, California. These surveys were conducted in cooperation with the Bureau of Ocean Energy Management (BOEM). BOEM is interested in maps of hard-bottom substrates, particularly natural outcrops that support reef communities in areas near oil and gas extraction activity. The surveys were conducted using the USGS R/V Parke Snavely, outfitted with an interferometric sidescan sonar for swath mapping and real-time kinematic navigation equipment. This report provides the bathymetry and backscatter data acquired during these surveys in several formats, a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee (FGDC) metadata.

  1. 2015 Lowndes County (GA) Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: NOAA OCM Lidar for Lowndes County, GA with the option to Collect Lidar in Cook and Tift Counties, GA Lidar Data Acquisition and Processing Production Task...

  2. 2015 OLC Lidar: Wasco, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Wasco County, WA, study area. The Oregon LiDAR Consortium's Wasco County...

  3. Let’s agree on the casing of Lidar

    Science.gov (United States)

    Deering, Carol; Stoker, Jason M.

    2014-01-01

    Is it lidar, Lidar, LiDAR, LIDAR, LiDar, LiDaR, or liDAR? A comprehensive review of the scientific/technical literature reveals seven different casings of this short form for light detection and ranging. And there could be more.

  4. 2012 MEGIS Topographic Lidar: Statewide Lidar Project Area 1 (Aroostook), Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS...

  5. OESbathy version 1.0: a method for reconstructing ocean bathymetry with realistic continental shelf-slope-rise structures

    Science.gov (United States)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-04-01

    We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in the geologic past, and to isolate locations where anomalous processes such as mantle convection may affect bathymetry. Parameters of the plate cooling model are combined with ocean crustal age to calculate depth-to-basement. To the depth-to-basement we add an isostatically adjusted, multicomponent sediment layer, constrained by sediment thickness in the modern oceans and marginal seas. A continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Shelf-slope-rise structures at active and passive margins are parameterized using modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and Central Atlantic Ocean, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth-to-basement, ocean bathymetry with an isostatically adjusted, multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  6. Bathymetry of Lake Erie and Lake Saint Clair

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Erie and Lake Saint Clair has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and...

  7. Quantification of Surf Zone Bathymetry from Video Observations of Wave Breaking

    Science.gov (United States)

    Aarninkhof, S.; Ruessink, G.

    2002-12-01

    Cost-efficient methods to quantify surf zone bathymetry with high resolution in time and space would be of great value for coastal research and management. Automated video techniques provide the potential to do so. Time-averaged video observations of the nearshore zone show bright intensities at locations where waves preferentially break. Highly similar patterns are found from model simulations of depth-induced wave breaking, which show increasing rates of wave dissipation in shallow areas like sand bars. Thus, video observations of wave breaking - at least qualitatively - reflect sub-merged beach bathymetry. In search of the quantification of this relationship, we present a new model concept to map sub-merged beach bathymetry from time-averaged video images. This is achieved by matching model-predicted and video-observed rates of wave dissipation. First, time-averaged image intensities are sampled along a cross-shore array and interpreted in terms of a wave dissipation parameter. This involves a correction for the effect of persistent foam, which is visible at time-averaged video images but not predicted by common wave propagation models. The dissipation profiles thus obtained are used to update an initial beach bathymetry through optimisation of the match between measured and modelled rates of wave dissipation. The latter is done by raising the bottom elevation in areas where the measured dissipation rate exceeds the computed dissipation and vice versa. Since the model includes video data with high resolution in time (typically multiple images over a tidal cycle), it allows for virtually continous monitoring of surfzone bathymetry . Model tests against a synthetic data set of artificially generated wave dissipation profiles have shown the model's capability to accurately reconstruct beach bathymetry, over a wide range of morphological configurations. Maximum model deviations were found in the case of highly developed bar-trough systems (bar heights up to 4 m) and

  8. Balloonborne lidar payloads for remote sensing

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Hurd, A. G.; Rappaport, S. A.; Reidy, W. P.; Rieder, R. J.; Bedo, D. E.; Swirbalus, R. A.

    1994-02-01

    A series of lidar experiments has been conducted using the Atmospheric Balloonborne Lidar Experiment payload (ABLE). These experiments included the measurement of atmospheric Rayleigh and Mie backscatter from near space (approximately 30 km) and Raman backscatter measurements of atmospheric constituents as a function of altitude. The ABLE payload consisted of a frequency-tripled Nd:YAG laser transmitter, a 50 cm receiver telescope, and filtered photodetectors in various focal plane configurations. The payload for lidar pointing, thermal control, data handling, and remote control of the lidar system. Comparison of ABLE performance with that of a space lidar shows significant performance advantages and cost effectiveness for balloonborne lidar systems.

  9. Mapping bathymetry in an active surf zone with the WorldView2 multispectral satellite

    Science.gov (United States)

    Trimble, S. M.; Houser, C.; Brander, R.; Chirico, P.

    2015-12-01

    Rip currents are strong, narrow seaward flows of water that originate in the surf zones of many global beaches. They are related to hundreds of international drownings each year, but exact numbers are difficult to calculate due to logistical difficulties in obtaining accurate incident reports. Annual average rip current fatalities are estimated to be ~100, 53 and 21 in the United States (US), Costa Rica, and Australia respectively. Current warning systems (e.g. National Weather Service) do not account for fine resolution nearshore bathymetry because it is difficult to capture. The method shown here could provide frequent, high resolution maps of nearshore bathymetry at a scale required for improved rip prediction and warning. This study demonstrates a method for mapping bathymetry in the surf zone (20m deep and less), specifically within rip channels, because rips form at topographically low spots in the bathymetry as a result of feedback amongst waves, substrate, and antecedent bathymetry. The methods employ the Digital Globe WorldView2 (WV2) multispectral satellite and field measurements of depth to generate maps of the changing bathymetry at two embayed, rip-prone beaches: Playa Cocles, Puerto Viejo de Talamanca, Costa Rica, and Bondi Beach, Sydney, Australia. WV2 has a 1.1 day pass-over rate with 1.84m ground pixel resolution of 8 bands, including 'yellow' (585-625 nm) and 'coastal blue' (400-450 nm). The data is used to classify bottom type and to map depth to the return in multiple bands. The methodology is tested at each site for algorithm consistency between dates, and again for applicability between sites.

  10. Lidar configurations for wind turbine control

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Mann, Jakob

    2016-01-01

    Lidar sensors have proved to be very beneficial in the wind energy industry. They can be used for yaw correction, feed-forward pitch control and load verification. However, the current lidars are expensive. One way to reduce the price is to use lidars with few measurement points. Finding the best...... by the lidar is compared against the effective wind speed on a wind turbine rotor both theoretically and through simulations. The study provides some results to choose the best configuration of the lidar with few measurement points....

  11. IEA Wind Task 32: Wind lidar identifying and mitigating barriers to the adoption of wind lidar

    DEFF Research Database (Denmark)

    Clifton, Andrew; Clive, Peter; Gottschall, Julia

    2018-01-01

    IEA Wind Task 32 exists to identify and mitigate barriers to the adoption of lidar for wind energy applications. It leverages ongoing international research and development activities in academia and industry to investigate site assessment, power performance testing, controls and loads, and complex...... flows. Since its initiation in 2011, Task 32 has been responsible for several recommended practices and expert reports that have contributed to the adoption of ground-based, nacelle-based, and floating lidar by the wind industry. Future challenges include the development of lidar uncertainty models......, best practices for data management, and developing community-based tools for data analysis, planning of lidar measurements and lidar configuration. This paper describes the barriers that Task 32 identified to the deployment of wind lidar in each of these application areas, and the steps that have been...

  12. LIDAR Research & Development Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The LIDAR Research and Development labs are used to investigate and improve LIDAR components such as laser sources, optical signal detectors and optical filters. The...

  13. Small Rov Marine Boat for Bathymetry Surveys of Shallow Waters - Potential Implementation in Malaysia

    Science.gov (United States)

    Suhari, K. T.; Karim, H.; Gunawan, P. H.; Purwanto, H.

    2017-10-01

    Current practices in bathymetry survey (available method) are indeed having some limitations. New technologies for bathymetry survey such as using unmanned boat has becoming popular in developed countries - filled in and served those limitations of existing survey methods. Malaysia as one of tropical country has it own river/water body characteristics and suitable approaches in conducting bathymetry survey. Thus, a study on this emerging technology should be conducted using enhanced version of small ROV boat with Malaysian rivers and best approaches so that the surveyors get benefits from the innovative surveying product. Among the available ROV boat for bathymetry surveying in the market, an Indonesian product called SHUMOO is among the promising products - economically and practically proven using a few sample areas in Indonesia. The boat was equipped and integrated with systems of remote sensing technology, GNSS, echo sounder and navigational engine. It was designed for riverbed surveys on shallow area such as small /medium river, lakes, reservoirs, oxidation/detention pond and other water bodies. This paper tries to highlight the needs and enhancement offered to Malaysian' bathymetry surveyors/practitioners on the new ROV boat which make their task easier, faster, safer, economically effective and better riverbed modelling results. The discussion continues with a sample of Indonesia river (data collection and modelling) since it is mostly similar to Malaysia's river characteristics and suggests some improvement for Malaysia best practice.

  14. Model of the Correlation between Lidar Systems and Wind Turbines for Lidar-Assisted Control

    DEFF Research Database (Denmark)

    Schlipf, David; Cheng, Po Wen; Mann, Jakob

    2013-01-01

    - or spinner-based lidar system. If on the one hand, the assumed correlation is overestimated, then the uncorrelated frequencies of the preview will cause unnecessary control action, inducing undesired loads. On the other hand, the benefits of the lidar-assisted controller will not be fully exhausted......, if correlated frequencies are filtered out. To avoid these miscalculations, this work presents a method to model the correlation between lidar systems and wind turbines using Kaimal wind spectra. The derived model accounts for different measurement configurations and spatial averaging of the lidar system......Investigations of lidar-assisted control to optimize the energy yield and to reduce loads of wind turbines have increased significantly in recent years. For this kind of control, it is crucial to know the correlation between the rotor effective wind speed and the wind preview provided by a nacelle...

  15. A Scalable Infrastructure for Lidar Topography Data Distribution, Processing, and Discovery

    Science.gov (United States)

    Crosby, C. J.; Nandigam, V.; Krishnan, S.; Phan, M.; Cowart, C. A.; Arrowsmith, R.; Baru, C.

    2010-12-01

    our end-users (such as generation of custom DEMs via various gridding algorithms, and hydrological modeling algorithms). In the future, the SOA will enable direct authenticated access to back-end functionality through simple Web service Application Programming Interfaces (APIs), so that users may access our data and compute resources via clients other than Web browsers. In addition to an overview of the OpenTopography SOA, this presentation will discuss our recently developed lidar data ingestion and management system for point cloud data delivered in the binary LAS standard. This system compliments our existing partitioned database approach for data delivered in ASCII format, and permits rapid ingestion of data. The system has significantly reduced data ingestion times and has implications for data distribution in emergency response situations. We will also address on ongoing work to develop a community lidar metadata catalog based on the OGC Catalogue Service for Web (CSW) standard, which will help to centralize discovery of public domain lidar data.

  16. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  17. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Tulalip Partnership

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDAR Consortium (PSLC)to collect Light Detection and Ranging (LiDAR) data on a...

  18. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Saddle Mountain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2013, WSI, a Quantum Spatial Company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  19. Bathymetry and acoustic backscatter data collected in 2010 from Cat Island, Mississippi

    Science.gov (United States)

    Buster, Noreen A.; Pfeiffer, William R.; Miselis, Jennifer L.; Kindinger, Jack G.; Wiese, Dana S.; Reynolds, B.J.

    2012-01-01

    Scientists from the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center (SPCMSC), in collaboration with the U.S. Army Corps of Engineers (USACE), conducted geophysical and sedimentological surveys around Cat Island, the westernmost island in the Mississippi-Alabama barrier island chain (fig. 1). The objectives of the study were to understand the geologic evolution of Cat Island relative to other barrier islands in the northern Gulf of Mexico and to identify relationships between the geologic history, present day morphology, and sediment distribution. This report contains data from the bathymetry and side-scan sonar portion of the study collected during two geophysical cruises. Interferometric swath bathymetry and side-scan sonar data were collected aboard the RV G.K. Gilbert September 7-15, 2010. Single-beam bathymetry was collected in shallow water around the island (Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FDGC) metadata.

  20. IEA Wind Task 32: Wind Lidar Identifying and Mitigating Barriers to the Adoption of Wind Lidar

    Directory of Open Access Journals (Sweden)

    Andrew Clifton

    2018-03-01

    Full Text Available IEA Wind Task 32 exists to identify and mitigate barriers to the adoption of lidar for wind energy applications. It leverages ongoing international research and development activities in academia and industry to investigate site assessment, power performance testing, controls and loads, and complex flows. Since its initiation in 2011, Task 32 has been responsible for several recommended practices and expert reports that have contributed to the adoption of ground-based, nacelle-based, and floating lidar by the wind industry. Future challenges include the development of lidar uncertainty models, best practices for data management, and developing community-based tools for data analysis, planning of lidar measurements and lidar configuration. This paper describes the barriers that Task 32 identified to the deployment of wind lidar in each of these application areas, and the steps that have been taken to confirm or mitigate the barriers. Task 32 will continue to be a meeting point for the international wind lidar community until at least 2020 and welcomes old and new participants.

  1. Surfzone Currents Over Irregular Bathymetry: Drifter Observations and Numerical Model Results

    Science.gov (United States)

    Schmidt, W. E.; Slinn, D. N.; Guza, R. T.

    2002-12-01

    Surfzone currents on alongshore variable bathymetry were observed with recently developed GPS-tracked drifters and numerically modeled with the time-dependent, nonlinear shallow water equations. These currents, forced by alongshore inhomogeneous pressure and radiation stress gradients, contain flow features difficult to resolve with fixed instrument arrays, such as rips, eddies, and meanders. Drifters were repeatedly released and recovered near Scripps Beach, La Jolla, California, in July 2000, 2001, and 2002. The most recent deployment of 10 drifters yielded about 32 hours of drifter data for each 5 hour deployment day. Offshore wave heights were moderate, between 0.3-1.0 m. The bathymetry, measured over a 600-700 m alongshore span with a GPS- and sonar-equipped jetski (2001 and 2002 deployments), was alongshore inhomogeneous primarily where an irregularly shaped bar-trough feature spanned the surf zone. The model simulations suggest that the alongshore inhomogeneous bathymetry strongly influences the location and strength of the observed flow features. Research supported by the California Sea Grant College Program and the Office of Naval Research.

  2. OESbathy version 1.0: a method for reconstructing ocean bathymetry with generalized continental shelf-slope-rise structures

    Science.gov (United States)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-09-01

    We present a method for reconstructing global ocean bathymetry that combines a standard plate cooling model for the oceanic lithosphere based on the age of the oceanic crust, global oceanic sediment thicknesses, plus generalized shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to develop a methodology for reconstructing ocean bathymetry in the geologic past that includes heterogeneous continental margins in addition to abyssal ocean floor. First, the plate cooling model is applied to maps of ocean crustal age to calculate depth to basement. To the depth to basement we add an isostatically adjusted, multicomponent sediment layer constrained by sediment thickness in the modern oceans and marginal seas. A three-parameter continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Parameters of the shelf-slope-rise structures at active and passive margins are determined from modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and central Atlantic, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth to basement, ocean bathymetry with an isostatically adjusted multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  3. GLOBE (Global Oceanographic Bathymetry Explorer) : an innovative and generic software combining all necessary functionalities for cruise preparation, for collection, linking, processing and display of scientific data acquired during sea cruises, and for exporting data and information to the main marine data centers and networks.

    Science.gov (United States)

    Sinquin, J. M.; Sorribas, J.

    2014-12-01

    Within the EUROFLEETS project, and linked to the EMODNet and Geo-Seas European projects, GLOBE (Global Oceanographic Bathymetry Explorer) is an innovative and generic software. I. INTRODUCTION The first version can be used onboard during the survey to get a quick overview of acquired data, or later, to re-process data with accurate environmental data. II. MAIN FUNCTIONALITIES The version shown at AGU-2014 will present several key items : - 3D visualization: DTM multi-layers from EMODNet, - Water Column echogram, Seismic lines, ... - Bathymetry Plug-In: manual and automatic data cleaning, integration of EMODNet methodology to introduce CDI concept, filtering, spline, data gridding, ... - Backscatter with compensation, - Tectonic toolset, - Photo/Video Plug-In - Navigation 3D including tide correction, MRU corrections, GPS offsets correction, - WMS/WFS interfaces. III. FOCUS ON EMODNET One of the main objectives of the EMODNet European project is to elaborate a common processing flow for gridding the bathymetry data and for generating harmonized digital terrain model (DTM) : this flow includes the definition of the DTM characteristics (geodetic parameters, grid spacing, interpolation and smoothing parameters…) and also the specifications of a set of layers which enrich the basic depth layer : statistical layers (sounding density, standard deviation,…) and an innovative data source layer which indicates the source of the soundings and and which is linked and collects to the associated metadata. GLOBE Software provides the required tools for applying this methodology and is offered to the project partners. V. FOCUS ON THE TECTONIC TOOLSET The tectonic toolset allows the user to associate any DTM to 3D rotation movements. These rotations represent the movement of tectonic plates along discrete time lines (from 200 million years ago to now). One rotation is described by its axes, its value angle and its date. GLOBE can display the movement of tectonic plates

  4. Lidar Inter-Comparison Exercise Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Protat, A [Australian Bureau of Meterology; Young, S

    2015-02-01

    The objective of this field campaign was to evaluate the performance of the new Leosphere R-MAN 510 lidar, procured by the Australian Bureau of Meteorology, by testing it against the MicroPulse Lidar (MPL) and Raman lidars, at the Darwin Atmospheric Radiation Measurement (ARM) site. This lidar is an eye-safe (355 nm), turn-key mini Raman lidar, which allows for the detection of aerosols and cloud properties, and the retrieval of particulate extinction profiles. To accomplish this evaluation, the R-MAN 510 lidar has been operated at the Darwin ARM site, next to the MPL, Raman lidar, and Vaisala ceilometer (VCEIL) for three months (from 20 January 2013 to 20 April 2013) in order to collect a sufficient sample size for statistical comparisons.

  5. 2015 OLC Lidar DEM: Wasco, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Wasco County, WA, study area. The Oregon LiDAR Consortium's Wasco County...

  6. Adaptive Data Processing Technique for Lidar-Assisted Control to Bridge the Gap between Lidar Systems and Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schlipf, David; Raach, Steffen; Haizmann, Florian; Cheng, Po Wen; Fleming, Paul; Scholbrock, Andrew, Krishnamurthy, Raghu; Boquet, Mathieu

    2015-12-14

    This paper presents first steps toward an adaptive lidar data processing technique crucial for lidar-assisted control in wind turbines. The prediction time and the quality of the wind preview from lidar measurements depend on several factors and are not constant. If the data processing is not continually adjusted, the benefit of lidar-assisted control cannot be fully exploited, or can even result in harmful control action. An online analysis of the lidar and turbine data are necessary to continually reassess the prediction time and lidar data quality. In this work, a structured process to develop an analysis tool for the prediction time and a new hardware setup for lidar-assisted control are presented. The tool consists of an online estimation of the rotor effective wind speed from lidar and turbine data and the implementation of an online cross correlation to determine the time shift between both signals. Further, initial results from an ongoing campaign in which this system was employed for providing lidar preview for feed-forward pitch control are presented.

  7. 2015 OLC Lidar: Chelan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Chelan FEMA study area. This study area is located in...

  8. 2009 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data for the Lewis County survey area for the Puget Sound LiDAR Consortium. This data...

  9. Charactering lidar optical subsystem using four quadrants method

    Science.gov (United States)

    Tian, Xiaomin; Liu, Dong; Xu, Jiwei; Wang, Zhenzhu; Wang, Bangxin; Wu, Decheng; Zhong, Zhiqing; Xie, Chenbo; Wang, Yingjian

    2018-02-01

    Lidar is a kind of active optical remote sensing instruments , can be applied to sound atmosphere with a high spatial and temporal resolution. Many parameter of atmosphere can be get by using different inverse algorithm with lidar backscatter signal. The basic setup of a lidar consist of a transmitter and a receiver. To make sure the quality of lidar signal data, the lidar must be calibrated before being used to measure the atmospheric variables. It is really significant to character and analyze lidar optical subsystem because a well equiped lidar optical subsystem contributes to high quality lidar signal data. we pay close attention to telecover test to character and analyze lidar optical subsystem.The telecover test is called four quadrants method consisting in dividing the telescope aperture in four quarants. when a lidar is well configured with lidar optical subsystem, the normalized signal from four qudrants will agree with each other on some level. Testing our WARL-II lidar by four quadrants method ,we find the signals of the four basically consistent with each other both in near range and in far range. But in detail, the signals in near range have some slight distinctions resulting from overlap function, some signals distinctions are induced by atmospheric instability.

  10. The design, development, and test of balloonborne and groundbased lidar systems. Volume 1: Balloonborne coherent CO2 lidar system

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Hurd, A. G.; Rappaport, S. A.

    1991-06-01

    This is Volume 1 of a three volume final report on the design, development, and test of balloonborne and groundbased lidar systems. Volume 2 describes the flight test of Atmospheric Balloonborne Lidar Experiment, ABLE 2, which successfully made atmospheric density backscatter measurements during a flight over White Sands Missile Range. Volume 3 describes groundbased lidar development and measurements, including the design of a telescope dome lidar installation, the design of a transportable lidar shed for remote field sites, and field measurements of atmospheric and cloud backscatter from Ascension Island during SABLE 89 and Terciera, Azores during GABLE 90. In this volume, Volume 1, the design and fabrication of a balloonborne CO2 coherent lidar payload are described. The purpose of this payload is to measure, from altitudes greater than 20 km, the 10.6 micrometers backscatter from atmospheric aerosols as a function of altitude. Minor modifications to the lidar would provide for aerosol velocity measurements to be made. The lidar and payload system design was completed, and major components were fabricated and assembled. These tasks have been successfully completed, and recommendations for further lidar measurements and data analysis have been made.

  11. Semiconductor Laser Wind Lidar for Turbine Control

    DEFF Research Database (Denmark)

    Hu, Qi

    This thesis describes an experimentally oriented study of continuous wave (CW) coherent Doppler lidar system design. The main application is remote wind sensing for active wind turbine control using nacelle mounted lidar systems; and the primary focus is to devise an industrial instrument that can...... historical overview within the topic of wind lidar systems. Both the potential and the challenges of an industrialized wind lidar has been addressed here. Furthermore, the basic concept behind the heterodyne detection and a brief overview of the lidar signal processing is explained; and a simple...... investigation of the telescope truncation and lens aberrations is conducted, both numerically and experimentally. It is shown that these parameters dictate the spatial resolution of the lidar system, and have profound impact on the SNR. In this work, an all-semiconductor light source is used in the lidar design...

  12. Airborne Lidar Bathymetry: The SHOALS System

    Science.gov (United States)

    2016-05-09

    with the depths. The application of this kind of data includes engineering evaluation of coastal structures, shoreline surveys, beach and dune surveys...similar manner, SHOALS data is a monitoring tool for beach fill projects. SHOALS data can extend from the dune , through the surf zone, and out to depth...requirements, above and below-water jetty conditions, toe scour at the jetties, and nearshore conditions. Table 3.2 Profile Spacing Volume

  13. Development of lidar techniques for environmental studies

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Mats

    1996-09-01

    The lidar group in Lund has performed many DIAL measurements with a mobile lidar system that was first described in 1987. The lidar system is based on a Nd:YAG-pumped dye laser. During the last few years the lidar group has focused on fluorescence imaging and mercury measurements in the troposphere. In 1994 we performed two campaigns: one fluorescence imaging measurement campaign outside Avignon, France and one unique lidar campaign at a mercury mine in Almaden, Spain. Both campaigns are described in this thesis. This thesis also describes how the mobile lidar system was updated with the graphical programming language LabVIEW to obtain a user friendly lidar system. The software controls the lidar system and analyses measured data. The measurement results are shown as maps of species concentration. All electronics and the major parts of the program are described. A new graphical technique to estimate wind speed from plumes is also discussed. First measurements have been performed with the new system. 31 refs, 19 figs, 1 tab

  14. Installation report - Lidar

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Villanueva, Héctor

    The report describes the installation, configuration and data transfer for the ground-based lidar. The unit is provided by a customer but is installed and operated by DTU while in this project.......The report describes the installation, configuration and data transfer for the ground-based lidar. The unit is provided by a customer but is installed and operated by DTU while in this project....

  15. An X-Band Radar System for Bathymetry and Wave Field Analysis in a Harbour Area

    Directory of Open Access Journals (Sweden)

    Giovanni Ludeno

    2015-01-01

    Full Text Available Marine X-band radar based systems are well tested to provide information about sea state and bathymetry. It is also well known that complex geometries and non-uniform bathymetries provide a much bigger challenge than offshore scenarios. In order to tackle this issue a retrieval method is proposed, based on spatial partitioning of the data and the application of the Normalized Scalar Product (NSP, which is an innovative procedure for the joint estimation of bathymetry and surface currents. The strategy is then applied to radar data acquired around a harbour entrance, and results show that the reconstructed bathymetry compares well with ground truth data obtained by an echo-sounder campaign, thus proving the reliability of the whole procedure. The spectrum thus retrieved is then analysed to show the evidence of reflected waves from the harbour jetties, as confirmed by chain of hydrodynamic models of the sea wave field. The possibility of using a land based radar to reveal sea wave reflection is entirely new and may open up new operational applications of the system.

  16. Frequency Stepped Pulse Train Modulated Wind Sensing Lidar

    DEFF Research Database (Denmark)

    Olesen, Anders Sig; Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2011-01-01

    of frequency shifts corresponding to a specific distance. The spatial resolution depends on the repetition rate of the pulses in the pulse train. Directional wind measurements are shown and compared to a CW lidar measurement. The carrier to noise ratio of the FSPT lidar compared to a CW lidar is discussed......In this paper a wind sensing lidar utilizing a Frequency Stepped Pulse Train (FSPT) is demonstrated. One of the advantages in the FSTP lidar is that it enables direct measurement of wind speed as a function of distance from the lidar. Theoretically the FSPT lidar continuously produces measurements...... as is the case with a CW lidar, but at the same time with a spatial resolution, and without the range ambiguity originating from e.g. clouds. The FSPT lidar utilizes a frequency sweeping source for generation of the FSPT. The source generates a pulse train where each pulse has an optical carrier frequency...

  17. Adaptive beamforming for low frequency SAS imagery and bathymetry

    NARCIS (Netherlands)

    Hayes, M.P.; Hunter, A.J.

    2012-01-01

    Synthetic aperture side-scan sonar (SAS) is a mature technology for high-resolution sea floor imaging [1]. Interferometric synthetic aperture sonars (InSAS) use additional hydrophones in a vertical array for bathymetric mapping [2]. This has created high-resolution bathymetry in deep water

  18. Comparision of Bathymetry and Bottom Characteristics From Hyperspectral Remote Sensing Data and Shipborne Acoustic Measurements

    Science.gov (United States)

    McIntyre, M. L.; Naar, D. F.; Carder, K. L.; Howd, P. A.; Lewis, J. M.; Donahue, B. T.; Chen, F. R.

    2002-12-01

    There is growing interest in applying optical remote sensing techniques to shallow-water geological applications such as bathymetry and bottom characterization. Model inversions of hyperspectral remote-sensing reflectance imagery can provide estimates of bottom albedo and depth. This research was conducted in support of the HyCODE (Hyperspectral Coupled Ocean Dynamics Experiment) project in order to test optical sensor performance and the use of a hyperspectral remote-sensing reflectance algorithm for shallow waters in estimating bottom depths and reflectance. The objective of this project was to compare optically derived products of bottom depths and reflectance to shipborne acoustic measurements of bathymetry and backscatter. A set of three high-resolution, multibeam surveys within an 18 km by 1.5 km shore-perpendicular transect 5 km offshore of Sarasota, Florida were collected at water depths ranging from 8 m to 16 m. These products are compared to bottom depths derived from aircraft remote-sensing data collected with the AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) instrument data by means of a semi-analytical remote sensing reflectance model. The pixel size of the multibeam bathymetry and AVIRIS data are 0.25 m and 10 m, respectively. When viewed at full resolution, the multibeam bathymetry data show small-scale sedimentary bedforms (wavelength ~10m, amplitude ~1m) that are not observed in the lower resolution hyperspectral bathymetry. However, model-derived bottom depths agree well with a smoothed version of the multibeam bathymetry. Depths derived from shipborne hyperspectral measurements were accurate within 13%. In areas where diver observations confirmed biological growth and bioturbation, derived bottom depths were less accurate. Acoustic backscatter corresponds well with the aircraft hyperspectral imagery and in situ measurements of bottom reflectance. Acoustic backscatter was used to define the distribution of different bottom types

  19. The design, development, and test of balloonborne and groundbased lidar systems. Volume 2: Flight test of Atmospheric Balloon Lidar Experiment, ABLE 2

    Science.gov (United States)

    Shepherd, O.; Bucknam, R. D.; Hurd, A. G.; Sheehan, W. H.

    1991-06-01

    This is Volume 3 of a three volume final report on the design, development, and test of balloonborne and groundbased lidar systems. Volume 1 describes the design and fabrication of a balloonborne CO2 coherent payload to measure the 10.6 micrometers backscatter from atmospheric aerosols as a function of altitude. Volume 2 describes the Aug. 1987 flight test of Atmospheric Balloonborne Lidar Experiment, ABLE 2. In this volume we describe groundbased lidar development and measurements. A design was developed for installation of the ABLE lidar in the GL rooftop dome. A transportable shed was designed to house the ABLE lidar at the various remote measurement sites. Refurbishment and modification of the ABLE lidar were completed to permit groundbased lidar measurements of clouds and aerosols. Lidar field measurements were made at Ascension Island during SABLE 89. Lidar field measurements were made at Terciera, Azores during GABLE 90. These tasks were successfully completed, and recommendations for further lidar measurements and data analysis were made.

  20. Evaluation of Airborne Lidar Elevation Surfaces for Propagation of Coastal Inundation: The Importance of Hydrologic Connectivity

    Directory of Open Access Journals (Sweden)

    Sandra Poppenga

    2015-09-01

    Full Text Available Detailed information about coastal inundation is vital to understanding dynamic and populated areas that are impacted by storm surge and flooding. To understand these natural hazard risks, lidar elevation surfaces are frequently used to model inundation in coastal areas. A single-value surface method is sometimes used to inundate areas in lidar elevation surfaces that are below a specified elevation value. However, such an approach does not take into consideration hydrologic connectivity between elevation grids cells resulting in inland areas that should be hydrologically connected to the ocean, but are not. Because inland areas that should drain to the ocean are hydrologically disconnected by raised features in a lidar elevation surface, simply raising the water level to propagate coastal inundation will lead to inundation uncertainties. We took advantage of this problem to identify hydrologically disconnected inland areas to point out that they should be considered for coastal inundation, and that a lidar-based hydrologic surface should be developed with hydrologic connectivity prior to inundation analysis. The process of achieving hydrologic connectivity with hydrologic-enforcement is not new, however, the application of hydrologically-enforced lidar elevation surfaces for improved coastal inundation mapping as approached in this research is innovative. In this article, we propagated a high-resolution lidar elevation surface in coastal Staten Island, New York to demonstrate that inland areas lacking hydrologic connectivity to the ocean could potentially be included in inundation delineations. For inland areas that were hydrologically disconnected, we evaluated if drainage to the ocean was evident, and calculated an area exceeding 11 ha (~0.11 km2 that could be considered in inundation delineations. We also assessed land cover for each inland area to determine the type of physical surfaces that would be potentially impacted if the inland areas

  1. Evaluation of airborne lidar elevation surfaces for propagation of coastal inundation: the importance of hydrologic connectivity

    Science.gov (United States)

    Poppenga, Sandra K.; Worstell, Bruce B.

    2015-01-01

    Detailed information about coastal inundation is vital to understanding dynamic and populated areas that are impacted by storm surge and flooding. To understand these natural hazard risks, lidar elevation surfaces are frequently used to model inundation in coastal areas. A single-value surface method is sometimes used to inundate areas in lidar elevation surfaces that are below a specified elevation value. However, such an approach does not take into consideration hydrologic connectivity between elevation grids cells resulting in inland areas that should be hydrologically connected to the ocean, but are not. Because inland areas that should drain to the ocean are hydrologically disconnected by raised features in a lidar elevation surface, simply raising the water level to propagate coastal inundation will lead to inundation uncertainties. We took advantage of this problem to identify hydrologically disconnected inland areas to point out that they should be considered for coastal inundation, and that a lidar-based hydrologic surface should be developed with hydrologic connectivity prior to inundation analysis. The process of achieving hydrologic connectivity with hydrologic-enforcement is not new, however, the application of hydrologically-enforced lidar elevation surfaces for improved coastal inundation mapping as approached in this research is innovative. In this article, we propagated a high-resolution lidar elevation surface in coastal Staten Island, New York to demonstrate that inland areas lacking hydrologic connectivity to the ocean could potentially be included in inundation delineations. For inland areas that were hydrologically disconnected, we evaluated if drainage to the ocean was evident, and calculated an area exceeding 11 ha (~0.11 km2) that could be considered in inundation delineations. We also assessed land cover for each inland area to determine the type of physical surfaces that would be potentially impacted if the inland areas were considered as

  2. SMALL ROV MARINE BOAT FOR BATHYMETRY SURVEYS OF SHALLOW WATERS – POTENTIAL IMPLEMENTATION IN MALAYSIA

    Directory of Open Access Journals (Sweden)

    K. T. Suhari

    2017-10-01

    Full Text Available Current practices in bathymetry survey (available method are indeed having some limitations. New technologies for bathymetry survey such as using unmanned boat has becoming popular in developed countries - filled in and served those limitations of existing survey methods. Malaysia as one of tropical country has it own river/water body characteristics and suitable approaches in conducting bathymetry survey. Thus, a study on this emerging technology should be conducted using enhanced version of small ROV boat with Malaysian rivers and best approaches so that the surveyors get benefits from the innovative surveying product. Among the available ROV boat for bathymetry surveying in the market, an Indonesian product called SHUMOO is among the promising products – economically and practically proven using a few sample areas in Indonesia. The boat was equipped and integrated with systems of remote sensing technology, GNSS, echo sounder and navigational engine. It was designed for riverbed surveys on shallow area such as small /medium river, lakes, reservoirs, oxidation/detention pond and other water bodies. This paper tries to highlight the needs and enhancement offered to Malaysian’ bathymetry surveyors/practitioners on the new ROV boat which make their task easier, faster, safer, economically effective and better riverbed modelling results. The discussion continues with a sample of Indonesia river (data collection and modelling since it is mostly similar to Malaysia’s river characteristics and suggests some improvement for Malaysia best practice.

  3. 2006 MDEQ Camp Shelby, MS Lidar Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata record describes the acquisition and processing of bare earth lidar data, raw point cloud lidar data, lidar intensity data, and floodmap breaklines...

  4. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  5. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Willapa Valley (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In January, 2014 WSI, a Quantum Spatial (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  6. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  7. Facade Reconstruction with Generalized 2.5d Grids

    Directory of Open Access Journals (Sweden)

    J. Demantke

    2013-10-01

    Full Text Available Reconstructing fine facade geometry from MMS lidar data remains a challenge: In addition to being inherently sparse, the point cloud provided by a single street point of view is necessarily incomplete. We propose a simple framework to estimate the facade surface with a deformable 2.5d grid. Computations are performed in a "sensor-oriented" coordinate system that maximizes consistency with the data. the algorithm allows to retrieve the facade geometry without priori knowledge. It can thus be automatically applied to a large amount of data in spite of the variability of encountered architectural forms. The 2.5d image structure of the output makes it compatible with storage and real-time constraints of immersive navigation.

  8. New constraints on the structure of Hess Deep from regional- and micro-bathymetry data acquired during RRS James Cook in Jan-Feb 2008 (JC021)

    Science.gov (United States)

    Shillington, D. J.; Ferrini, V. L.; MacLeod, C. J.; Teagle, D. A.; Gillis, K. M.; Cazenave, P. W.; Hurst, S. D.; Scientific Party, J.

    2008-12-01

    In January-February 2008, new geophysical and geological data were acquired in Hess Deep using the RRS James Cook and the British ROV Isis. Hess Deep provides a tectonic window into oceanic crust emplaced by fast seafloor spreading at the East Pacific Rise, thereby offering the opportunity to test competing hypotheses for oceanic crustal accretion. The goal of this cruise was to collect datasets that can constrain the structure and composition of the lower crustal section exposed in the south-facing slope of the Intrarift Ridge just north of the Deep, and thus provide insights into the emplacement of gabbroic lower crust at fast spreading rates. Additionally, the acquired datasets provide site survey data for IODP Proposal 551-Full. The following datasets were acquired during JC021: 1) regional multibeam bathymetry survey complemented with sub-bottom profiler (SBP) data (in selected areas), 2) two micro-bathymetry surveys, and 3) seafloor rock samples acquired with an ROV. Here we present grids of regional multibeam and microbathymetry data following post-cruise processing. Regional multibeam bathymetry were acquired using the hull-mounted Kongsberg Simrad EM120 system (12 kHz). These data provide new coverage of the northern flank of the rift as far east as 100°W, which show that it comprises of a series of 50- to 100-km-long en echelon segments. Both E-W and NE-SW striking features are observed in the immediate vicinity of the Deep, including in a newly covered region to the SW of the rift tip. Such features might arise due to the rotation of the Galapagos microplate(s), as proposed by other authors. The ROV Isis acquired micro-bathymetry data in two areas using a Simrad SM2000 (200 kHz) multibeam sonar. Data were acquired at a nominal altitude of ~100 m and speed of 0.3 kts to facilitate high-resolution mapping of seabed features and also permit coverage of two relatively large areas. Swath widths were ~200- 350 m depending on noise and seabed characteristics

  9. Combining Cluster Analysis and Small Unmanned Aerial Systems (sUAS) for Accurate and Low-cost Bathymetric Surveying

    Science.gov (United States)

    Maples, B. L.; Alvarez, L. V.; Moreno, H. A.; Chilson, P. B.; Segales, A.

    2017-12-01

    Given that classical in-situ direct surveying for geomorphological subsurface information in rivers is time-consuming, labor-intensive, costly, and often involves high-risk activities, it is obvious that non-intrusive technologies, like UAS-based, LIDAR-based remote sensing, have a promising potential and benefits in terms of efficient and accurate measurement of channel topography over large areas within a short time; therefore, a tremendous amount of attention has been paid to the development of these techniques. Over the past two decades, efforts have been undertaken to develop a specialized technique that can penetrate the water body and detect the channel bed to derive river and coastal bathymetry. In this research, we develop a low-cost effective technique for water body bathymetry. With the use of a sUAS and a light-weight sonar, the bathymetry and volume of a small reservoir have been surveyed. The sUAS surveying approach is conducted under low altitudes (2 meters from the water) using the sUAS to tow a small boat with the sonar attached. A cluster analysis is conducted to optimize the sUAS data collection and minimize the standard deviation created by under-sampling in areas of highly variable bathymetry, so measurements are densified in regions featured by steep slopes and drastic changes in the reservoir bed. This technique provides flexibility, efficiency, and free-risk to humans while obtaining high-quality information. The irregularly-spaced bathymetric survey is then interpolated using unstructured Triangular Irregular Network (TIN)-based maps to avoid re-gridding or re-sampling issues.

  10. Automatic River Network Extraction from LIDAR Data

    Science.gov (United States)

    Maderal, E. N.; Valcarcel, N.; Delgado, J.; Sevilla, C.; Ojeda, J. C.

    2016-06-01

    National Geographic Institute of Spain (IGN-ES) has launched a new production system for automatic river network extraction for the Geospatial Reference Information (GRI) within hydrography theme. The goal is to get an accurate and updated river network, automatically extracted as possible. For this, IGN-ES has full LiDAR coverage for the whole Spanish territory with a density of 0.5 points per square meter. To implement this work, it has been validated the technical feasibility, developed a methodology to automate each production phase: hydrological terrain models generation with 2 meter grid size and river network extraction combining hydrographic criteria (topographic network) and hydrological criteria (flow accumulation river network), and finally the production was launched. The key points of this work has been managing a big data environment, more than 160,000 Lidar data files, the infrastructure to store (up to 40 Tb between results and intermediate files), and process; using local virtualization and the Amazon Web Service (AWS), which allowed to obtain this automatic production within 6 months, it also has been important the software stability (TerraScan-TerraSolid, GlobalMapper-Blue Marble , FME-Safe, ArcGIS-Esri) and finally, the human resources managing. The results of this production has been an accurate automatic river network extraction for the whole country with a significant improvement for the altimetric component of the 3D linear vector. This article presents the technical feasibility, the production methodology, the automatic river network extraction production and its advantages over traditional vector extraction systems.

  11. AUTOMATIC RIVER NETWORK EXTRACTION FROM LIDAR DATA

    Directory of Open Access Journals (Sweden)

    E. N. Maderal

    2016-06-01

    Full Text Available National Geographic Institute of Spain (IGN-ES has launched a new production system for automatic river network extraction for the Geospatial Reference Information (GRI within hydrography theme. The goal is to get an accurate and updated river network, automatically extracted as possible. For this, IGN-ES has full LiDAR coverage for the whole Spanish territory with a density of 0.5 points per square meter. To implement this work, it has been validated the technical feasibility, developed a methodology to automate each production phase: hydrological terrain models generation with 2 meter grid size and river network extraction combining hydrographic criteria (topographic network and hydrological criteria (flow accumulation river network, and finally the production was launched. The key points of this work has been managing a big data environment, more than 160,000 Lidar data files, the infrastructure to store (up to 40 Tb between results and intermediate files, and process; using local virtualization and the Amazon Web Service (AWS, which allowed to obtain this automatic production within 6 months, it also has been important the software stability (TerraScan-TerraSolid, GlobalMapper-Blue Marble , FME-Safe, ArcGIS-Esri and finally, the human resources managing. The results of this production has been an accurate automatic river network extraction for the whole country with a significant improvement for the altimetric component of the 3D linear vector. This article presents the technical feasibility, the production methodology, the automatic river network extraction production and its advantages over traditional vector extraction systems.

  12. Calibration Methods for a Space Borne Backscatter Lidar

    NARCIS (Netherlands)

    Kunz, G.J.

    1996-01-01

    Lidar returns from cloud decks and from the Earth's surface are useful for calibrating single scatter lidar signals from space. To this end analytical methods (forward and backward) are presented for inverting lidar waveforms in terms of the path integrated lidar retum and the transmission losses

  13. New Generation Lidar Technology and Applications

    Science.gov (United States)

    Spinhirne, James D.

    1999-01-01

    Lidar has been a tool for atmospheric research for several decades. Until recently routine operational use of lidar was not known. Problems have involved a lack of appropriate technology rather than a lack of applications. Within the last few years, lidar based on a new generation of solid state lasers and detectors have changed the situation. Operational applications for cloud and aerosol research applications are now well established. In these research applications, the direct height profiling capability of lidar is typically an adjunct to other types of sensing, both passive and active. Compact eye safe lidar with the sensitivity for ground based monitoring of all significant cloud and aerosol structure and the reliability to operate full time for several years is now in routine use. The approach is known as micro pulse lidar (MPL). For MPL the laser pulse repetition rate is in the kilohertz range and the pulse energies are in the micro-Joule range. The low pulse energy permits the systems to be eye safe and reliable with solid state lasers. A number of MPL systems have been deployed since 1992 at atmospheric research sites at a variety of global locations. Accurate monitoring of cloud and aerosol vertical distribution is a critical measurement for atmospheric radiation. An airborne application of lidar cloud and aerosol profiling is retrievals of parameters from combined lidar and passive sensing involving visible, infrared and microwave frequencies. A lidar based on a large pulse, solid state diode pumped ND:YAG laser has been deployed on the NASA ER-2 high altitude research aircraft along with multi-spectral visible/IR and microwave imaging radiometers since 1993. The system has shown high reliability in an extensive series of experimental projects for cloud remote sensing. The retrieval of cirrus radiation parameters is an effective application for combined lidar and passive sensing. An approved NASA mission will soon begin long term lidar observation of

  14. Evaluating integration of inland bathymetry in the U.S. Geological Survey 3D Elevation Program, 2014

    Science.gov (United States)

    Miller-Corbett, Cynthia

    2016-09-01

    Inland bathymetry survey collections, survey data types, features, sources, availability, and the effort required to integrate inland bathymetric data into the U.S. Geological Survey 3D Elevation Program are assessed to help determine the feasibility of integrating three-dimensional water feature elevation data into The National Map. Available data from wading, acoustic, light detection and ranging, and combined technique surveys are provided by the U.S. Geological Survey, National Oceanic and Atmospheric Administration, U.S. Army Corps of Engineers, and other sources. Inland bathymetric data accessed through Web-hosted resources or contacts provide useful baseline parameters for evaluating survey types and techniques used for collection and processing, and serve as a basis for comparing survey methods and the quality of results. Historically, boat-mounted acoustic surveys have provided most inland bathymetry data. Light detection and ranging techniques that are beneficial in areas hard to reach by boat, that can collect dense data in shallow water to provide comprehensive coverage, and that can be cost effective for surveying large areas with good water clarity are becoming more common; however, optimal conditions and techniques for collecting and processing light detection and ranging inland bathymetry surveys are not yet well defined.Assessment of site condition parameters important for understanding inland bathymetry survey issues and results, and an evaluation of existing inland bathymetry survey coverage are proposed as steps to develop criteria for implementing a useful and successful inland bathymetry survey plan in the 3D Elevation Program. These survey parameters would also serve as input for an inland bathymetry survey data baseline. Integration and interpolation techniques are important factors to consider in developing a robust plan; however, available survey data are usually in a triangulated irregular network format or other format compatible with

  15. 2012 USGS Lidar: Juneau (AK)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This task order is for planning, acquisition, processing, and derivative products of LiDAR data to be collected for Juneau, Alaska. LiDAR data, and derivative...

  16. Generic methodology for calibrating profiling nacelle lidars

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Courtney, Michael; Wagner, Rozenn

    Improving power performance assessment by measuring at different heights has been demonstrated using ground-based profiling LIDARs. More recently, nacelle-mounted lidars studies have shown promising capabilities to assess power performance. Using nacelle lidars avoids the erection of expensive me...

  17. Iowa LiDAR Mapping Project

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — This is collection level metadata for LAS and ASCII data files from the statewide Iowa Lidar Project. The Iowa Light Detection and Ranging (LiDAR) Project collects...

  18. Clear-air lidar dark band

    Science.gov (United States)

    Girolamo, Paolo Di; Scoccione, Andrea; Cacciani, Marco; Summa, Donato; Schween, Jan H.

    2018-04-01

    This paper illustrates measurements carried out by the Raman lidar BASIL in the frame of HOPE, revealing the presence of a clear-air dark band phenomenon (i.e. the appearance of a minimum in lidar backscatter echoes) in the upper portion of the convective boundary layer. The phenomenon is clearly distinguishable in the lidar backscatter echoes at 1064 nm. This phenomenon is attributed to the presence of lignite aerosol particles advected from the surrounding open pit mines in the vicinity of the measuring site.

  19. Mapping South Baltic Near-Shore Bathymetry Using Sentinel-2 Observations

    Directory of Open Access Journals (Sweden)

    Chybicki Andrzej

    2017-09-01

    Full Text Available One of the most promising new applications of remote observation satellite systems (RO is the near-shore bathymetry estimation based on spaceborn multispectral imageries. In recent years, many experiments aiming to estimate bathymetry in optically shallow water with the use of remote optical observations have been presented. In this paper, optimal models of satellite derived bathymetry (SDB for relatively turbid waters of the South Baltic Sea were presented. The obtained results were analysed in terms of depth error estimation, spatial distribution, and overall quality. The models were calibrated based on sounding (in-situ data obtained by a single-beam echo sounder, which was retrieved from the Maritime Office in Gdynia, Poland. The remote observations for this study were delivered by the recently deployed European Space Agency Sentinel-2 satellite observation system. A detailed analysis of the obtained results has shown that the tested methods can be successfully applied for the South Baltic region at depths of 12-18 meters. However, significant limitations were observed. The performed experiments have revealed that the error of model calibration, expressed in meters (RMSE, equals up to 10-20% of the real depth and is, generally, case dependent. To overcome this drawback, a novel indicator of determining the maximal SDB depth was proposed. What is important, the proposed SDB quality indicator is derived only on the basis of remotely registered data and therefore can be applied operationally.

  20. 2014 OLC Lidar: Colville, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI, a Quantum Spatial company, has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Colville study area. This study area is...

  1. 2015 OLC Lidar DEM: Chelan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Chelan FEMA study area. This study area is located in...

  2. 2015 OLC Lidar: Okanogan WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Okanogan FEMA study area. This study area is located in...

  3. Occurrence and characteristics of mutual interference between LIDAR scanners

    Science.gov (United States)

    Kim, Gunzung; Eom, Jeongsook; Park, Seonghyeon; Park, Yongwan

    2015-05-01

    The LIDAR scanner is at the heart of object detection of the self-driving car. Mutual interference between LIDAR scanners has not been regarded as a problem because the percentage of vehicles equipped with LIDAR scanners was very rare. With the growing number of autonomous vehicle equipped with LIDAR scanner operated close to each other at the same time, the LIDAR scanner may receive laser pulses from other LIDAR scanners. In this paper, three types of experiments and their results are shown, according to the arrangement of two LIDAR scanners. We will show the probability that any LIDAR scanner will interfere mutually by considering spatial and temporal overlaps. It will present some typical mutual interference scenario and report an analysis of the interference mechanism.

  4. Methods from Information Extraction from LIDAR Intensity Data and Multispectral LIDAR Technology

    Science.gov (United States)

    Scaioni, M.; Höfle, B.; Baungarten Kersting, A. P.; Barazzetti, L.; Previtali, M.; Wujanz, D.

    2018-04-01

    LiDAR is a consolidated technology for topographic mapping and 3D reconstruction, which is implemented in several platforms On the other hand, the exploitation of the geometric information has been coupled by the use of laser intensity, which may provide additional data for multiple purposes. This option has been emphasized by the availability of sensors working on different wavelength, thus able to provide additional information for classification of surfaces and objects. Several applications ofmonochromatic and multi-spectral LiDAR data have been already developed in different fields: geosciences, agriculture, forestry, building and cultural heritage. The use of intensity data to extract measures of point cloud quality has been also developed. The paper would like to give an overview on the state-of-the-art of these techniques, and to present the modern technologies for the acquisition of multispectral LiDAR data. In addition, the ISPRS WG III/5 on `Information Extraction from LiDAR Intensity Data' has collected and made available a few open data sets to support scholars to do research on this field. This service is presented and data sets delivered so far as are described.

  5. METHODS FROM INFORMATION EXTRACTION FROM LIDAR INTENSITY DATA AND MULTISPECTRAL LIDAR TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    M. Scaioni

    2018-04-01

    Full Text Available LiDAR is a consolidated technology for topographic mapping and 3D reconstruction, which is implemented in several platforms On the other hand, the exploitation of the geometric information has been coupled by the use of laser intensity, which may provide additional data for multiple purposes. This option has been emphasized by the availability of sensors working on different wavelength, thus able to provide additional information for classification of surfaces and objects. Several applications ofmonochromatic and multi-spectral LiDAR data have been already developed in different fields: geosciences, agriculture, forestry, building and cultural heritage. The use of intensity data to extract measures of point cloud quality has been also developed. The paper would like to give an overview on the state-of-the-art of these techniques, and to present the modern technologies for the acquisition of multispectral LiDAR data. In addition, the ISPRS WG III/5 on ‘Information Extraction from LiDAR Intensity Data’ has collected and made available a few open data sets to support scholars to do research on this field. This service is presented and data sets delivered so far as are described.

  6. 2006 Fulton County Georgia Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) LAS dataset is a survey of Fulton County. The Fulton County LiDAR Survey project area consists of approximately 690.5 square...

  7. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Cedar River Watershed (Delivery 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In September 2013, WSI, a Quantum Spatial company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  8. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Cedar River Watershed (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In September 2013, WSI, a Quantum Spatial company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  9. SAR and LIDAR fusion: experiments and applications

    Science.gov (United States)

    Edwards, Matthew C.; Zaugg, Evan C.; Bradley, Joshua P.; Bowden, Ryan D.

    2013-05-01

    In recent years ARTEMIS, Inc. has developed a series of compact, versatile Synthetic Aperture Radar (SAR) systems which have been operated on a variety of small manned and unmanned aircraft. The multi-frequency-band SlimSAR has demonstrated a variety of capabilities including maritime and littoral target detection, ground moving target indication, polarimetry, interferometry, change detection, and foliage penetration. ARTEMIS also continues to build upon the radar's capabilities through fusion with other sensors, such as electro-optical and infrared camera gimbals and light detection and ranging (LIDAR) devices. In this paper we focus on experiments and applications employing SAR and LIDAR fusion. LIDAR is similar to radar in that it transmits a signal which, after being reflected or scattered by a target area, is recorded by the sensor. The differences are that a LIDAR uses a laser as a transmitter and optical sensors as a receiver, and the wavelengths used exhibit a very different scattering phenomenology than the microwaves used in radar, making SAR and LIDAR good complementary technologies. LIDAR is used in many applications including agriculture, archeology, geo-science, and surveying. Some typical data products include digital elevation maps of a target area and features and shapes extracted from the data. A set of experiments conducted to demonstrate the fusion of SAR and LIDAR data include a LIDAR DEM used in accurately processing the SAR data of a high relief area (mountainous, urban). Also, feature extraction is used in improving geolocation accuracy of the SAR and LIDAR data.

  10. A cloud masking algorithm for EARLINET lidar systems

    Science.gov (United States)

    Binietoglou, Ioannis; Baars, Holger; D'Amico, Giuseppe; Nicolae, Doina

    2015-04-01

    Cloud masking is an important first step in any aerosol lidar processing chain as most data processing algorithms can only be applied on cloud free observations. Up to now, the selection of a cloud-free time interval for data processing is typically performed manually, and this is one of the outstanding problems for automatic processing of lidar data in networks such as EARLINET. In this contribution we present initial developments of a cloud masking algorithm that permits the selection of the appropriate time intervals for lidar data processing based on uncalibrated lidar signals. The algorithm is based on a signal normalization procedure using the range of observed values of lidar returns, designed to work with different lidar systems with minimal user input. This normalization procedure can be applied to measurement periods of only few hours, even if no suitable cloud-free interval exists, and thus can be used even when only a short period of lidar measurements is available. Clouds are detected based on a combination of criteria including the magnitude of the normalized lidar signal and time-space edge detection performed using the Sobel operator. In this way the algorithm avoids misclassification of strong aerosol layers as clouds. Cloud detection is performed using the highest available time and vertical resolution of the lidar signals, allowing the effective detection of low-level clouds (e.g. cumulus humilis). Special attention is given to suppress false cloud detection due to signal noise that can affect the algorithm's performance, especially during day-time. In this contribution we present the details of algorithm, the effect of lidar characteristics (space-time resolution, available wavelengths, signal-to-noise ratio) to detection performance, and highlight the current strengths and limitations of the algorithm using lidar scenes from different lidar systems in different locations across Europe.

  11. 2012 MEGIS Topographic Lidar: Statewide Lidar Project Areas 2 and 3 (Mid-Coastal Cleanup), Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS...

  12. Standards – An Important Step for the (Public Use of Lidars

    Directory of Open Access Journals (Sweden)

    Althausen Dietrich

    2016-01-01

    Full Text Available Lidar standards are needed to ensure quality and lidar product control at the interface between lidar manufacturers and lidar users. Meanwhile three lidar standards have been published by German and international standardization organizations. This paper describes the cooperation between the lidar technique inventors, lidar instrument constructors, and lidar product users to establish useful standards. Presently a backscatter lidar standard is elaborated in Germany. Key points of this standard are presented here. Two German standards were already accepted as international standards by the International Organization for Standardization (ISO. Hence, German and international organizations for the establishment of lidar standards are introduced to encourage a cooperative work on lidar standards by lidar scientists.

  13. Turbulence estimation from a continuous-wave scanning lidar (SpinnerLidar)

    DEFF Research Database (Denmark)

    Barnhoorn, J.G.; Sjöholm, Mikael; Mikkelsen, Torben Krogh

    2017-01-01

    out, and 2) the mixing of velocity covariances from other components into the line-of-sight variance measurements. However, turbulence measurements based on upwind horizontal rotor plane scanning of the line-of-sight variance measurements combined with ensemble-averaged Doppler spectra width...... deviations averaged over 10-min sampling periods are compared. Lidar variances are inherently more prone to noise which always yields a positive bias. The 5.3 % higher turbulence level measured by the SpinnerLidar relative to the cup anemometer may equally well be attributed to truncation of turbulent...

  14. Saginaw Bay, MI LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME:(NRCS) Saginaw Bay, MI LiDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G11PD01254 Woolpert Order...

  15. Detection of Wind Evolution and Lidar Trajectory Optimization for Lidar-Assisted Wind Turbine Control

    Directory of Open Access Journals (Sweden)

    David Schlipf

    2015-11-01

    Full Text Available Recent developments in remote sensing are offering a promising opportunity to rethink conventional control strategies of wind turbines. With technologies such as lidar, the information about the incoming wind field - the main disturbance to the system - can be made available ahead of time. Initial field testing of collective pitch feedforward control shows, that lidar measurements are only beneficial if they are filtered properly to avoid harmful control action. However, commercial lidar systems developed for site assessment are usually unable to provide a usable signal for real time control. Recent research shows, that the correlation between the measurement of rotor effective wind speed and the turbine reaction can be modeled and that the model can be used to optimize a scan pattern. This correlation depends on several criteria such as turbine size, position of the measurements, measurement volume, and how the wind evolves on its way towards the rotor. In this work the longitudinal wind evolution is identified with the line-of-sight measurements of a pulsed lidar system installed on a large commercial wind turbine. This is done by staring directly into the inflowing wind during operation of the turbine and fitting the coherence between the wind at different measurement distances to an exponential model taking into account the yaw misalignment, limitation to line-of-sight measurements and the pulse volume. The identified wind evolution is then used to optimize the scan trajectory of a scanning lidar for lidar-assisted feedforward control in order to get the best correlation possible within the constraints of the system. Further, an adaptive filer is fitted to the modeled correlation to avoid negative impact of feedforward control because of uncorrelated frequencies of the wind measurement. The main results of the presented work are a first estimate of the wind evolution in front of operating wind turbines and an approach which manufacturers of

  16. Holographic Raman lidar

    International Nuclear Information System (INIS)

    Andersen, G.

    2000-01-01

    Full text: We have constructed a Raman lidar system that incorporates a holographic optical element. By resolving just 3 nitrogen lines in the Resonance Raman spectroscopy (RRS) spectrum, temperature fits as good as 1% at altitudes of 20km can be made in 30 minutes. Due to the narrowband selectivity of the HOE, the lidar provides measurements over a continuous 24hr period. By adding a 4th channel to capture the Rayleigh backscattered light, temperature profiles can be extended to 80km

  17. The use of radar for bathymetry assessment

    OpenAIRE

    Aardoom, J.H.; Greidanus, H.S.F.

    1998-01-01

    The bottom topography in shallow seas can be observed by air- and spaceborne imaging radar. Bathymetric information derived from radar data is limited in accuracy, but radar has a good spatial coverage. The accuracy can be increased by assimilating the radar imagery into existing or insitu gathered bathymetric data. The paper reviews the concepts of bathymetry assessment by radar, the radar imaging mechanism, and the possibilities and limitations of the use of radar data in rapid assessment.

  18. A Model-Driven Approach for 3D Modeling of Pylon from Airborne LiDAR Data

    Directory of Open Access Journals (Sweden)

    Qingquan Li

    2015-09-01

    Full Text Available Reconstructing three-dimensional model of the pylon from LiDAR (Light Detection And Ranging point clouds automatically is one of the key techniques for facilities management GIS system of high-voltage nationwide transmission smart grid. This paper presents a model-driven three-dimensional pylon modeling (MD3DM method using airborne LiDAR data. We start with constructing a parametric model of pylon, based on its actual structure and the characteristics of point clouds data. In this model, a pylon is divided into three parts: pylon legs, pylon body and pylon head. The modeling approach mainly consists of four steps. Firstly, point clouds of individual pylon are detected and segmented from massive high-voltage transmission corridor point clouds automatically. Secondly, an individual pylon is divided into three relatively simple parts in order to reconstruct different parts with different strategies. Its position and direction are extracted by contour analysis of the pylon body in this stage. Thirdly, the geometric features of the pylon head are extracted, from which the head type is derived with a SVM (Support Vector Machine classifier. After that, the head is constructed by seeking corresponding model from pre-build model library. Finally, the body is modeled by fitting the point cloud to planes. Experiment results on several point clouds data sets from China Southern high-voltage nationwide transmission grid from Yunnan Province to Guangdong Province show that the proposed approach can achieve the goal of automatic three-dimensional modeling of the pylon effectively.

  19. Pointing Verification Method for Spaceborne Lidars

    Directory of Open Access Journals (Sweden)

    Axel Amediek

    2017-01-01

    Full Text Available High precision acquisition of atmospheric parameters from the air or space by means of lidar requires accurate knowledge of laser pointing. Discrepancies between the assumed and actual pointing can introduce large errors due to the Doppler effect or a wrongly assumed air pressure at ground level. In this paper, a method for precisely quantifying these discrepancies for airborne and spaceborne lidar systems is presented. The method is based on the comparison of ground elevations derived from the lidar ranging data with high-resolution topography data obtained from a digital elevation model and allows for the derivation of the lateral and longitudinal deviation of the laser beam propagation direction. The applicability of the technique is demonstrated by using experimental data from an airborne lidar system, confirming that geo-referencing of the lidar ground spot trace with an uncertainty of less than 10 m with respect to the used digital elevation model (DEM can be obtained.

  20. Lidar-Radiometer Inversion Code (LIRIC) for the Retrieval of Vertical Aerosol Properties from Combined Lidar Radiometer Data: Development and Distribution in EARLINET

    Science.gov (United States)

    Chaikovsky, A.; Dubovik, O.; Holben, Brent N.; Bril, A.; Goloub, P.; Tanre, D.; Pappalardo, G.; Wandinger, U.; Chaikovskaya, L.; Denisov, S.; hide

    2015-01-01

    This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code)algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar radiometric input data we use measurements from European Aerosol Re-search Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data by the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height-dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Inter-comparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLNET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.