WorldWideScience

Sample records for gridded ion thruster

  1. Particle simulation of grid system for krypton ion thrusters

    Directory of Open Access Journals (Sweden)

    Maolin CHEN

    2018-04-01

    Full Text Available The transport processes of plasmas in grid systems of krypton (Kr ion thrusters at different acceleration voltages were simulated with a 3D-PIC model, and the result was compared with xenon (Xe ion thrusters. The variation of the screen grid transparency, the accelerator grid current ratio and the divergence loss were explored. It is found that the screen grid transparency increases with the acceleration voltage and decreases with the beam current, while the accelerator grid current ratio and divergence loss decrease first and then increase with the beam current. This result is the same with Xe ion thrusters. Simulation results also show that Kr ion thrusters have more advantages than Xe ion thrusters, such as higher screen grid transparency, smaller accelerator grid current ratio, larger cut-off current threshold, and better divergence loss characteristic. These advantages mean that Kr ion thrusters have the ability of operating in a wide range of current. Through comprehensive analyses, it can be concluded that using Kr as propellant is very suitable for a multi-mode ion thruster design. Keywords: Grid system, Ion thrusters, Krypton, Particle in cell method, Plasma

  2. Electric arc discharge damage to ion thruster grids

    Science.gov (United States)

    Beebe, D. D.; Nakanishi, S.; Finke, R. C.

    1974-01-01

    Arcs representative of those occurring between the grids of a mercury ion thruster were simulated. Parameters affecting an arc and the resulting damage were studied. The parameters investigated were arc energy, arc duration, and grid geometry. Arc attenuation techniques were also investigated. Potentially serious damage occurred at all energy levels representative of actual thruster operating conditions. Of the grids tested, the lowest open-area configuration sustained the least damage for given conditions. At a fixed energy level a long duration discharge caused greater damage than a short discharge. Attenuation of arc current using various impedances proved to be effective in reducing arc damage. Faults were also deliberately caused using chips of sputtered materials formed during the operation of an actual thruster. These faults were cleared with no serious grid damage resulting using the principles and methods developed in this study.

  3. Single Cathode Ion Thruster

    Data.gov (United States)

    National Aeronautics and Space Administration — Objective is to design an electrostatic ion thruster that is more efficient, simpler, and lower cost than the current gridded ion thruster. Initial objective is to...

  4. Ion thruster performance model

    International Nuclear Information System (INIS)

    Brophy, J.R.

    1984-01-01

    A model of ion thruster performance is developed for high flux density cusped magnetic field thruster designs. This model is formulated in terms of the average energy required to produce an ion in the discharge chamber plasma and the fraction of these ions that are extracted to form the beam. The direct loss of high energy (primary) electrons from the plasma to the anode is shown to have a major effect on thruster performance. The model provides simple algebraic equations enabling one to calculate the beam ion energy cost, the average discharge chamber plasma ion energy cost, the primary electron density, the primary-to-Maxwellian electron density ratio and the Maxwellian electron temperature. Experiments indicate that the model correctly predicts the variation in plasma ion energy cost for changes in propellant gas (Ar, Kr, and Xe), grid transparency to neutral atoms, beam extraction area, discharge voltage, and discharge chamber wall temperature

  5. Study of the key factors affecting the triple grid lifetime of the LIPS-300 ion thruster

    Science.gov (United States)

    Mingming, SUN; Liang, WANG; Juntai, YANG; Xiaodong, WEN; Yongjie, HUANG; Meng, WANG

    2018-04-01

    In order to ascertain the key factors affecting the lifetime of the triple grids in the LIPS-300 ion thruster, the thermal deformation, upstream ion density and component lifetime of the grids are simulated with finite element analysis, fluid simulation and charged-particle tracing simulation methods on the basis of a 1500 h short lifetime test. The key factor affecting the lifetime of the triple grids in the LIPS-300 ion thruster is obtained and analyzed through the test results. The results show that ion sputtering erosion of the grids in 5 kW operation mode is greater than in the case of 3 kW. In 5 kW mode, the decelerator grid shows the most serious corrosion, the accelerator grid shows moderate corrosion, and the screen grid shows the least amount of corrosion. With the serious corrosion of the grids in 5 kW operation mode, the intercept current of the acceleration and deceleration grids increases substantially. Meanwhile, the cold gap between the accelerator grid and the screen grid decreases from 1 mm to 0.7 mm, while the cold gap between the accelerator grid and the decelerator grid increases from 1 mm to 1.25 mm after 1500 h of thruster operation. At equilibrium temperature with 5 kW power, the finite element method (FEM) simulation results show that the hot gap between the screen grid and the accelerator grid reduces to 0.2 mm. Accordingly, the hot gap between the accelerator grid and the decelerator grid increases to 1.5 mm. According to the fluid method, the plasma density simulated in most regions of the discharge chamber is 1 × 1018‑8 × 1018 m‑3. The upstream plasma density of the screen grid is in the range 6 × 1017‑6 × 1018 m‑3 and displays a parabolic characteristic. The charged particle tracing simulation method results show that the ion beam current without the thermal deformation of triple grids has optimal perveance status. The ion sputtering rates of the accelerator grid hole and the decelerator hole are 5.5 × 10‑14 kg s‑1 and

  6. Brayton-Cycle Power-Conversion Unit Tested With Ion Thruster

    Science.gov (United States)

    Hervol, David S.

    2005-01-01

    Nuclear electric propulsion has been identified as an enabling technology for future NASA space science missions, such as the Jupiter Icy Moons Orbiter (JIMO) now under study. An important element of the nuclear electric propulsion spacecraft is the power conversion system, which converts the reactor heat to electrical power for use by the ion propulsion system and other spacecraft loads. The electrical integration of the power converter and ion thruster represents a key technical challenge in making nuclear electric propulsion technology possible. This technical hurdle was addressed extensively on December 1, 2003, when a closed- Brayton-cycle power-conversion unit was tested with a gridded ion thruster at the NASA Glenn Research Center. The test demonstrated end-to-end power throughput and marked the first-ever coupling of a Brayton turbo alternator and a gridded ion thruster, both of which are candidates for use on JIMO-type missions. The testing was conducted at Glenn's Vacuum Facility 6, where the Brayton unit was installed in the 3-m-diameter vacuum test port and the ion thruster was installed in the 7.6-m-diameter main chamber.

  7. Advanced-technology 30-cm-diameter mercury ion thruster

    Science.gov (United States)

    Beattie, J. R.; Kami, S.

    1982-01-01

    An advanced-technology mercury ion thruster designed for operation at high thrust and high thrust-to-power ratio is described. The laboratory-model thruster employs a highly efficient discharge-chamber design that uses high-field-strength samarium-cobalt magnets arranged in a ring-cusp configuration. Ion extraction is achieved using an advanced three-grid ion-optics assembly which utilizes flexible mounts for supporting the screen, accel, and decel electrodes. Performance results are presented for operation at beam currents in the range from 1 to 5 A. The baseline specific discharge power is shown to be about 125 eV/ion, and the acceptable range of net-to-total accelerating-voltage ratio is shown to be in the range of 0.2-0.8 for beam currents in the range of 1-5 A.

  8. The physics, performance and predictions of the PEGASES ion-ion thruster

    Science.gov (United States)

    Aanesland, Ane

    2014-10-01

    Electric propulsion (EP) is now used systematically in space applications (due to the fuel and lifetime economy) to the extent that EP is now recognized as the next generation space technology. The uses of EP systems have though been limited to attitude control of GEO-stationary satellites and scientific missions. Now, the community envisages the use of EP for a variety of other applications as well; such as orbit transfer maneuvers, satellites in low altitudes, space debris removal, cube-sat control, challenging scientific missions close to and far from earth etc. For this we need a platform of EP systems providing much more variety in performance than what classical Hall and Gridded thrusters can provide alone. PEGASES is a gridded thruster that can be an alternative for some new applications in space, in particular for space debris removal. Unlike classical ion thrusters, here positive and negative ions are alternately accelerated to produce thrust. In this presentation we will look at the fundamental aspects of PEGASES. The emphasis will be put on our current understanding, obtained via analytical models, PIC simulations and experimental measurements, of the alternate extraction and acceleration process. We show that at low grid bias frequencies (10 s of kHz), the system can be described as a sequence of negative and positive ions accelerated as packets within a classical DC mode. Here secondary electrons created in the downstream chamber play an important role in the beam space charge compensation. At higher frequencies (100 s of kHz) the transit time of the ions in the grid gap becomes comparable to the bias period, leading to an ``AC acceleration mode.'' Here the beam is fully space charge compensated and the ion energy and current are functions of the applied frequency and waveform. A generalization of the Child-Langmuir space charge limited law is developed for pulsed voltages and allows evaluating the optimal parameter space and performance of PEGASES

  9. Project of an ion thruster

    International Nuclear Information System (INIS)

    Perche, G.E.

    1983-07-01

    The mercury bombardment electrostatic ion thruster is the most successful electric thruster available today. This work describes a 5 cm diameter ion thruster with 3.000 s specific impulse and 5 mN thrust. The advantages of electric propulsion and the tests that will be performed are also presented. (Author) [pt

  10. Inert gas thrusters

    Science.gov (United States)

    Kaufman, H. R.; Robinson, R. S.

    1980-01-01

    Some advances in component technology for inert gas thrusters are described. The maximum electron emission of a hollow cathode with Ar was increased 60-70% by the use of an enclosed keeper configuration. Operation with Ar, but without emissive oxide, was also obtained. A 30 cm thruster operated with Ar at moderate discharge voltages give double-ion measurements consistent with a double ion correlation developed previously using 15 cm thruster data. An attempt was made to reduce discharge losses by biasing anodes positive of the discharge plasma. The reason this attempt was unsuccessful is not yet clear. The performance of a single-grid ion-optics configuration was evaluated. The ion impingement on the single grid accelerator was found to approach the value expected from the projected blockage when the sheath thickness next to the accelerator was 2-3 times the aperture diameter.

  11. One-millipound mercury ion thruster

    Science.gov (United States)

    Hyman, J., Jr.; Dulgeroff, C. R.; Kami, S.; Williamson, W. S.

    1975-01-01

    A mercury ion thruster has been developed for efficient operation at the nominal 1-mlb thrust level with a specific impulse of about 3,000 sec and a total power consumption of about 120 W. At a beam voltage of 1,200 V and beam current of 72 mA, the discharge chamber operates with a propellant efficiency of 93.8% at an ion-generation energy of 276 eV/ion. The 8-cm diameter thruster advances proven component technology to assure the capability for thruster operation over an accumulated beam-on time in excess of 20,000 hours with a capability for 10,000 on-off duty cycles. Discharge chamber optimization has combined stable current-voltage characteristics with high performance efficiency by careful placement of the discharge cathode near the location of a magnetic-field zero just upstream of the thruster endplate.

  12. Development of an Ion Thruster and Power Processor for New Millennium's Deep Space 1 Mission

    Science.gov (United States)

    Sovey, James S.; Hamley, John A.; Haag, Thomas W.; Patterson, Michael J.; Pencil, Eric J.; Peterson, Todd T.; Pinero, Luis R.; Power, John L.; Rawlin, Vincent K.; Sarmiento, Charles J.; hide

    1997-01-01

    The NASA Solar Electric Propulsion Technology Applications Readiness Program (NSTAR) will provide a single-string primary propulsion system to NASA's New Millennium Deep Space 1 Mission which will perform comet and asteroid flybys in the years 1999 and 2000. The propulsion system includes a 30-cm diameter ion thruster, a xenon feed system, a power processing unit, and a digital control and interface unit. A total of four engineering model ion thrusters, three breadboard power processors, and a controller have been built, integrated, and tested. An extensive set of development tests has been completed along with thruster design verification tests of 2000 h and 1000 h. An 8000 h Life Demonstration Test is ongoing and has successfully demonstrated more than 6000 h of operation. In situ measurements of accelerator grid wear are consistent with grid lifetimes well in excess of the 12,000 h qualification test requirement. Flight hardware is now being assembled in preparation for integration, functional, and acceptance tests.

  13. Ion thruster design and analysis

    Science.gov (United States)

    Kami, S.; Schnelker, D. E.

    1976-01-01

    Questions concerning the mechanical design of a thruster are considered, taking into account differences in the design of an 8-cm and a 30-cm model. The components of a thruster include the thruster shell assembly, the ion extraction electrode assembly, the cathode isolator vaporizer assembly, the neutralizer isolator vaporizer assembly, ground screen and mask, and the main isolator vaporizer assembly. Attention is given to the materials used in thruster fabrication, the advanced manufacturing methods used, details of thruster performance, an evaluation of thruster life, structural and thermal design considerations, and questions of reliability and quality assurance.

  14. Electrostatic ion thrusters - towards predictive modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kalentev, O.; Matyash, K.; Duras, J.; Lueskow, K.F.; Schneider, R. [Ernst-Moritz-Arndt Universitaet Greifswald, D-17489 (Germany); Koch, N. [Technische Hochschule Nuernberg Georg Simon Ohm, Kesslerplatz 12, D-90489 Nuernberg (Germany); Schirra, M. [Thales Electronic Systems GmbH, Soeflinger Strasse 100, D-89077 Ulm (Germany)

    2014-02-15

    The development of electrostatic ion thrusters so far has mainly been based on empirical and qualitative know-how, and on evolutionary iteration steps. This resulted in considerable effort regarding prototype design, construction and testing and therefore in significant development and qualification costs and high time demands. For future developments it is anticipated to implement simulation tools which allow for quantitative prediction of ion thruster performance, long-term behavior and space craft interaction prior to hardware design and construction. Based on integrated numerical models combining self-consistent kinetic plasma models with plasma-wall interaction modules a new quality in the description of electrostatic thrusters can be reached. These open the perspective for predictive modeling in this field. This paper reviews the application of a set of predictive numerical modeling tools on an ion thruster model of the HEMP-T (High Efficiency Multi-stage Plasma Thruster) type patented by Thales Electron Devices GmbH. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Krypton Ion Thruster Performance

    Science.gov (United States)

    Patterson, Michael J.; Williams, George J.

    1992-01-01

    Preliminary data were obtained from a 30 cm ion thruster operating on krypton propellant over the input power range of 0.4 to 5.5 kW. The data presented are compared and contrasted to the data obtained with xenon propellant over the same input power envelope. Typical krypton thruster efficiency was 70 percent at a specific impulse of approximately 5000 s, with a maximum demonstrated thrust to power ratio of approximately 42 mN/kW at 2090 s specific impulse and 1580 watts input power. Critical thruster performance and component lifetime issues were evaluated. Order of magnitude power throttling was demonstrated using a simplified power-throttling strategy.

  16. HG ion thruster component testing

    Science.gov (United States)

    Mantenieks, M. A.

    1979-01-01

    Cathodes, isolators, and vaporizers are critical components in determining the performance and lifetime of mercury ion thrusters. The results of life tests of several of these components are reported. A 30-cm thruster CIV test in a bell jar has successfully accumulated over 26,000 hours. The cathode has undergone 65 restarts during the life test without requiring any appreciable increases in starting power. Recently, all restarts have been achieved with only the 44 volt keeper supply with no change required in the starting power. Another ongoing 30-cm Hg thruster cathode test has successfully passed the 10,000 hour mark. A solid-insert, 8-cm thruster cathode has accumulated over 4,000 hours of thruster operation. All starts have been achieved without the use of a high voltage ignitor. The results of this test indicate that the solid impregnated insert is a viable neutralizer cathode for the 8-cm thruster.

  17. Ion extraction capabilities of two-grid accelerator systems

    International Nuclear Information System (INIS)

    Rovang, D.C.; Wilbur, P.J.

    1984-02-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems

  18. Magnetoelectrostatic thruster physical geometry tests

    Science.gov (United States)

    Ramsey, W. D.

    1981-01-01

    Inert gas tests are conducted with several magnetoelectrostatic containment discharge chamber geometries. The configurations tested include three discharge chamber lengths; three boundary magnet patterns; two different flux density magnet materials; hemispherical and conical shaped thrusters having different surface-to-volume ratios; and two and three grid ion optics. Argon mass utilizations of 60 to 79% are attained at 210 to 280 eV/ion in different test configurations. Short hemi thruster configurations are found to produce 70 to 92% xenon mass utilization at 185 to 220 eV/ion.

  19. NASA's Evolutionary Xenon Thruster (NEXT) Project Qualification Propellant Throughput Milestone: Performance, Erosion, and Thruster Service Life Prediction After 450 kg

    Science.gov (United States)

    Herman, Daniel A.

    2010-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is tasked with significantly improving and extending the capabilities of current state-of-the-art NSTAR thruster. The service life capability of the NEXT ion thruster is being assessed by thruster wear test and life-modeling of critical thruster components, such as the ion optics and cathodes. The NEXT Long-Duration Test (LDT) was initiated to validate and qualify the NEXT thruster propellant throughput capability. The NEXT thruster completed the primary goal of the LDT; namely to demonstrate the project qualification throughput of 450 kg by the end of calendar year 2009. The NEXT LDT has demonstrated 28,500 hr of operation and processed 466 kg of xenon throughput--more than double the throughput demonstrated by the NSTAR flight-spare. Thruster performance changes have been consistent with a priori predictions. Thruster erosion has been minimal and consistent with the thruster service life assessment, which predicts the first failure mode at greater than 750 kg throughput. The life-limiting failure mode for NEXT is predicted to be loss of structural integrity of the accelerator grid due to erosion by charge-exchange ions.

  20. High-thrust and low-power operation of a 30-cm-diameter mercury ion thruster

    Science.gov (United States)

    Beattie, J. R.; Kami, S.

    1981-01-01

    An investigation of a 30-cm-diameter mercury ion thruster designed for high-thrust and low-power operation is described. Experimental results are presented which indicate that good performance and long lifetime are achieved by using a boundary magnetic field arrangement to confine the ionizing electrons. Details of advanced ion-optics designs are discussed, and performance measurements obtained with an advanced two-grid ion-optics assembly are presented. Scaling of the state-of-the-art hollow cathode for higher emission-current capability is described, and performance and lifetime measurements are presented for the scaled cathode.

  1. High-Power Ion Thruster Technology

    Science.gov (United States)

    Beattie, J. R.; Matossian, J. N.

    1996-01-01

    Performance data are presented for the NASA/Hughes 30-cm-diam 'common' thruster operated over the power range from 600 W to 4.6 kW. At the 4.6-kW power level, the thruster produces 172 mN of thrust at a specific impulse of just under 4000 s. Xenon pressure and temperature measurements are presented for a 6.4-mm-diam hollow cathode operated at emission currents ranging from 5 to 30 A and flow rates of 4 sccm and 8 sccm. Highly reproducible results show that the cathode temperature is a linear function of emission current, ranging from approx. 1000 C to 1150 C over this same current range. Laser-induced fluorescence (LIF) measurements obtained from a 30-cm-diam thruster are presented, suggesting that LIF could be a valuable diagnostic for real-time assessment of accelerator-arid erosion. Calibration results of laminar-thin-film (LTF) erosion badges with bulk molybdenum are presented for 300-eV xenon, krypton, and argon sputtering ions. Facility-pressure effects on the charge-exchange ion current collected by 8-cm-diam and 30-cm-diam thrusters operated on xenon propellant are presented to show that accel current is nearly independent of facility pressure at low pressures, but increases rapidly under high-background-pressure conditions.

  2. Prediction of plasma properties in mercury ion thrusters

    Science.gov (United States)

    Longhurst, G. R.

    1978-01-01

    A simplified theoretical model was developed which obtains to first order the plasma properties in the discharge chamber of a mercury ion thruster from basic thruster design and controllable operating parameters. The basic operation and design of ion thrusters is discussed, and the important processes which influence the plasma properties are described in terms of the design and control parameters. The conservation for mass, charge and energy were applied to the ion production region, which was defined as the region of the discharge chamber having as its outer boundary the surface of revolution of the innermost field line to intersect the anode. Mass conservation and the equations describing the various processes involved with mass addition and removal from the ion production region are satisfied by a Maxwellian electron density spatial distribution in that region.

  3. Power processing systems for ion thrusters.

    Science.gov (United States)

    Herron, B. G.; Garth, D. R.; Finke, R. C.; Shumaker, H. A.

    1972-01-01

    The proposed use of ion thrusters to fulfill various communication satellite propulsion functions such as east-west and north-south stationkeeping, attitude control, station relocation and orbit raising, naturally leads to the requirement for lightweight, efficient and reliable thruster power processing systems. Collectively, the propulsion requirements dictate a wide range of thruster power levels and operational lifetimes, which must be matched by the power processing. This paper will discuss the status of such power processing systems, present system design alternatives and project expected near future power system performance.

  4. Status of the J-series 30-cm mercury ion thruster

    Science.gov (United States)

    Kami, S.; Dulgeroff, C. R.; Bechtel, R. T.

    1982-01-01

    This paper describes the status of the 30-cm J-series mercury ion thruster. This thruster was baselined for the Solar Electric Propulsion System (SEPS) vehicle. This thruster is described and several modifications plus suggested modifications are presented. Some of the modifications resulted from tests performed with the thruster. The operational characteristics of eight J-series thrusters are presented. Isolator contamination and flake formation are also discussed.

  5. Electric field measurement in microwave discharge ion thruster with electro-optic probe.

    Science.gov (United States)

    Ise, Toshiyuki; Tsukizaki, Ryudo; Togo, Hiroyoshi; Koizumi, Hiroyuki; Kuninaka, Hitoshi

    2012-12-01

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  6. Thermal Environmental Testing of NSTAR Engineering Model Ion Thrusters

    Science.gov (United States)

    Rawlin, Vincent K.; Patterson, Michael J.; Becker, Raymond A.

    1999-01-01

    NASA's New Millenium program will fly a xenon ion propulsion system on the Deep Space 1 Mission. Tests were conducted under NASA's Solar Electric Propulsion Technology Applications Readiness (NSTAR) Program with 3 different engineering model ion thrusters to determine thruster thermal characteristics over the NSTAR operating range in a variety of thermal environments. A liquid nitrogen-cooled shroud was used to cold-soak the thruster to -120 C. Initial tests were performed prior to a mature spacecraft design. Those results and the final, severe, requirements mandated by the spacecraft led to several changes to the basic thermal design. These changes were incorporated into a final design and tested over a wide range of environmental conditions.

  7. Performance optimization of 20 cm xenon ion thruster discharge chamber

    International Nuclear Information System (INIS)

    Chen Juanjuan; Zhang Tianping; Jia Yanhui; Li Xiaoping

    2012-01-01

    This paper describes the performance of the LIPS-200 ion thruster discharge chamber which was developed by Lanzhou Institute of Physics. Based on the discharge chamber geometric configuration and magnetic field, the completely self-consistent analytical model is utilized to discuss performance optimization of the discharge chamber of the LIPS-200. The thrust is enhanced from 40 mN up to 60 mN at rated impulse and efficiency. The results show that the 188.515 W/A beam ion production cost at a propellant flow rate of 2.167 × 10 17 m -3 requires that the thruster runs at a discharge current of 6.9 A to produce 1.2 A ion beam current. Also, during the process of LIPS-200 ion thruster discharge chamber performance optimization, the sheath potential is always within 3.80 ∼ 6.65 eV. (authors)

  8. Plasma property and performance prediction for mercury ion thrusters

    Science.gov (United States)

    Longhurst, G. R.; Wilbur, P. J.

    1979-01-01

    The discharge chambers of mercury ion thrusters are modelled so the principal effects and processes which govern discharge plasma properties and thruster performance are described. The conservation relations for mass, charge and energy when applied to the Maxwellian electron population in the ion production region yield equations which may be made one-dimensional by the proper choice of coordinates. Solutions to these equations with the appropriate boundary conditions give electron density and temperature profiles which agree reasonably well with measurements. It is then possible to estimate plasma properties from thruster design data and those operating parameters which are directly controllable. By varying the operating parameter inputs to the computer code written to solve these equations, perfromance curves are obtained which agree quite well with measurements.

  9. Ion ejection from a permanent-magnet mini-helicon thruster

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Francis F. [Electrical Engineering Department, University of California, Los Angeles 90095-1594 (United States)

    2014-09-15

    A small helicon source, 5 cm in diameter and 5 cm long, using a permanent magnet (PM) to create the DC magnetic field B, is investigated for its possible use as an ion spacecraft thruster. Such ambipolar thrusters do not require a separate electron source for neutralization. The discharge is placed in the far-field of the annular PM, where B is fairly uniform. The plasma is ejected into a large chamber, where the ion energy distribution is measured with a retarding-field energy analyzer. The resulting specific impulse is lower than that of Hall thrusters but can easily be increased to relevant values by applying to the endplate of the discharge a small voltage relative to spacecraft ground.

  10. Thermo-mechanical design aspects of mercury bombardment ion thrusters.

    Science.gov (United States)

    Schnelker, D. E.; Kami, S.

    1972-01-01

    The mechanical design criteria are presented as background considerations for solving problems associated with the thermomechanical design of mercury ion bombardment thrusters. Various analytical procedures are used to aid in the development of thruster subassemblies and components in the fields of heat transfer, vibration, and stress analysis. Examples of these techniques which provide computer solutions to predict and control stress levels encountered during launch and operation of thruster systems are discussed. Computer models of specific examples are presented.

  11. Retrofit and verification test of a 30-cm ion thruster

    Science.gov (United States)

    Dulgeroff, C. R.; Poeschel, R. L.

    1980-01-01

    Twenty modifications were found to be necessary and were approved by design review. These design modifications were incorporated in the thruster documents (drawings and procedures) to define the J series thruster. Sixteen of the design revisions were implemented in a 900 series thruster by retrofit modification. A standardized set of test procedures was formulated, and the retrofit J series thruster design was verified by test. Some difficulty was observed with the modification to the ion optics assembly, but the overall effect of the design modification satisfies the design objectives. The thruster was tested over a wide range of operating parameters to demonstrate its capabilities.

  12. Mechanical Design of Carbon Ion Optics

    Science.gov (United States)

    Haag, Thomas

    2005-01-01

    Carbon Ion Optics are expected to provide much longer thruster life due to their resistance to sputter erosion. There are a number of different forms of carbon that have been used for fabricating ion thruster optics. The mechanical behavior of carbon is much different than that of most metals, and poses unique design challenges. In order to minimize mission risk, the behavior of carbon must be well understood, and components designed within material limitations. Thermal expansion of the thruster structure must be compatible with thermal expansion of the carbon ion optics. Specially designed interfaces may be needed so that grid gap and aperture alignment are not adversely affected by dissimilar material properties within the thruster. The assembled thruster must be robust and tolerant of launch vibration. The following paper lists some of the characteristics of various carbon materials. Several past ion optics designs are discussed, identifying strengths and weaknesses. Electrostatics and material science are not emphasized so much as the mechanical behavior and integration of grid electrodes into an ion thruster.

  13. Recycle Requirements for NASA's 30 cm Xenon Ion Thruster

    Science.gov (United States)

    Pinero, Luis R.; Rawlin, Vincent K.

    1994-01-01

    Electrical breakdowns have been observed during ion thruster operation. These breakdowns, or arcs, can be caused by several conditions. In flight systems, the power processing unit must be designed to handle these faults autonomously. This has a strong impact on power processor requirements and must be understood fully for the power processing unit being designed for the NASA Solar Electric Propulsion Technology Application Readiness program. In this study, fault conditions were investigated using a NASA 30 cm ion thruster and a power console. Power processing unit output specifications were defined based on the breakdown phenomena identified and characterized.

  14. Analysis and design of ion thruster for large space systems

    Science.gov (United States)

    Poeschel, R. L.; Kami, S.

    1980-01-01

    Design analyses showed that an ion thruster of approximately 50 cm in diameter will be required to produce a thrust of 0.5 N using xenon or argon as propellants, and operating the thruster at a specific impulse of 3530 sec or 6076 sec respectively. A multipole magnetic confinement discharge chamber was specified.

  15. Performance of an iodine-fueled radio-frequency ion-thruster

    Science.gov (United States)

    Holste, Kristof; Gärtner, Waldemar; Zschätzsch, Daniel; Scharmann, Steffen; Köhler, Peter; Dietz, Patrick; Klar, Peter J.

    2018-01-01

    Two sets of performance data of the same radio-frequency ion-thruster (RIT) have been recorded using iodine and xenon, respectively, as propellant. To characterize the thruster's performance, we have recorded the radio-frequency DC-power, required for yielding preset values of the extracted ion-beam currents, as a function of mass flow. For that purpose, an iodine mass flow system had to be developed, calibrated, and integrated into a newly-built test facility for studying corrosive propellants. The performance mappings for iodine and xenon differ significantly despite comparable operation conditions. At low mass flows, iodine exhibits the better performance. The situation changes at higher mass flows where the performance of iodine is significantly poorer than that of xenon. The reason is very likely related to the molecular nature of iodine. Our results show that iodine as propellant is compatible with RIT technology. Furthermore, it is a viable alternative as propellant for dedicated space missions. In particular, when taking into account additional benefits such as possible storage as a solid and its low price the use of iodine as propellant in ion thrusters is competitive.

  16. Use of an ions thruster to dispose of type II long-lived fission products into outer space

    International Nuclear Information System (INIS)

    Takahashi, H.; Yu, A.

    1997-01-01

    To dispose of long-lived fission products (LLFPs) into outer space, an ions thruster can be used instead of a static accelerator. The specifications of the ions thrusters which are presently studies for space propulsion are presented, and their usability discussed. Using of a rocket with an ions thruster for disposing of the LLFPs directly into the sun required a larger amount of energy than does the use of an accelerator

  17. Diagnostics Systems for Permanent Hall Thrusters Development

    Science.gov (United States)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall

  18. Development of a 30-cm ion thruster thermal-vacuum power processor

    Science.gov (United States)

    Herron, B. G.

    1976-01-01

    The 30-cm Hg electron-bombardment ion thruster presently under development has reached engineering model status and is generally accepted as the prime propulsion thruster module to be used on the earliest solar electric propulsion missions. This paper presents the results of a related program to develop a transistorized 3-kW Thermal-Vacuum Breadboard (TVBB) Power Processor for this thruster. Emphasized in the paper are the implemented electrical and mechanical designs as well as the resultant system performance achieved over a range of test conditions. In addition, design modifications affording improved performance are identified and discussed.

  19. Enabling Ring-Cusp Ion Thruster Technology for NASA Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — ESA is flying T6 Kaufman ion thrusters on the BepiColombo Mission to Mercury in 2018. They are planning to develop a longer life, higher performing, 30-cm ring-cusp...

  20. Coincident ion acceleration and electron extraction for space propulsion using the self-bias formed on a set of RF biased grids bounding a plasma source

    International Nuclear Information System (INIS)

    Rafalskyi, D; Aanesland, A

    2014-01-01

    We propose an alternative method to accelerate ions in classical gridded ion thrusters and ion sources such that co-extracted electrons from the source may provide beam space charge neutralization. In this way there is no need for an additional electron neutralizer. The method consists of applying RF voltage to a two-grid acceleration system via a blocking capacitor. Due to the unequal effective area of the two grids in contact with the plasma, a dc self-bias is formed, rectifying the applied RF voltage. As a result, ions are continuously accelerated within the grid system while electrons are emitted in brief instants within the RF period when the RF space charge sheath collapses. This paper presents the first experimental results and a proof-of-principle. Experiments are carried out using the Neptune thruster prototype which is a gridded Inductively Coupled Plasma (ICP) source operated at 4 MHz, attached to a larger beam propagation chamber. The RF power supply is used both for the ICP discharge (plasma generation) and powering the acceleration grids via a capacitor for ion acceleration and electron extraction without any dc power supplies. The ion and electron energies, particle flux and densities are measured using retarding field energy analyzers (RFEA), Langmuir probes and a large beam target. The system operates in Argon and N 2 . The dc self-bias is found to be generated within the gridded extraction system in all the range of operating conditions. Broad quasi-neutral ion-electron beams are measured in the downstream chamber with energies up to 400 eV. The beams from the RF acceleration method are compared with classical dc acceleration with an additional external electron neutralizer. It is found that the two acceleration techniques provide similar performance, but the ion energy distribution function from RF acceleration is broader, while the floating potential of the beam is lower than for the dc accelerated beam. (paper)

  1. Post-Test Inspection of Nasa's Evolutionary Xenon Thruster Long Duration Test Hardware: Ion Optics

    Science.gov (United States)

    Soulas, George C.; Shastry, Rohit

    2016-01-01

    A Long Duration Test (LDT) was initiated in June 2005 as a part of NASAs Evolutionary Xenon Thruster (NEXT) service life validation approach. Testing was voluntarily terminated in February 2014, with the thruster accumulating 51,184 hours of operation, processing 918 kg of xenon propellant, and delivering 35.5 MN-s of total impulse. This presentation will present the post-test inspection results to date for the thrusters ion optics.

  2. Endurance test of a 30-CM-diameter engineering model ion thruster. Task 12: Investigation of thin-film erosion monitors for ion thrusters

    Science.gov (United States)

    Beattie, J. R.

    1983-01-01

    An investigation of short term measurement techniques for predicting the wearout of ion thrusters resulting from sputter erosion damage is described. The previously established laminar thin film techniques to provide high precision erosion rate data. However, the erosion rates obtained using this technique are generally substantially higher than those obtained during long term endurance tests (by virtue of the as deposited nature of the thin films), so that the results must be interpreted in a relative sense. Absolute measurements can be performed using a new masked substrate arrangement which was developed during this study. This new technique provides a means for estimating the lifetimes of critical discharge chamber components based on direct measurements of sputter erosion depths obtained during short duration (10 hour) tests. The method enables the effects on lifetime of thruster design and operating parameters to be inferred without the investment of the time and capital required to conduct long term (1000 hour) endurance tests. Results obtained using the direct measurement technique are shown to agree with sputter erosion depths calculated for the plasma conditions of the test and also with lifetest results. The direct measurement approach is shown to be applicable to both mercury and argon discharge plasma environments and should be useful in estimating the lifetimes of inert gas and extended performance mercury ion thrusters presently under development.

  3. Enhanced Performance of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Y.; Smirnov, A.; Fisch, N.J.

    2007-01-01

    The cylindrical thruster differs significantly in its underlying physical mechanisms from the conventional annular Hall thruster. It features high ionization efficiency, quiet operation, ion acceleration in a large volume-to-surface ratio channel, and performance comparable with the state-of-the-art conventional Hall thrusters. Very significant plume narrowing, accompanied by the increase of the energetic ion fraction and improvement of ion focusing, led to 50-60% increase of the thruster anode efficiency. These improvements were achieved by overrunning the discharge current in the magnetized thruster plasma

  4. 3D ion velocity distribution function measurement in an electric thruster using laser induced fluorescence tomography

    Science.gov (United States)

    Elias, P. Q.; Jarrige, J.; Cucchetti, E.; Cannat, F.; Packan, D.

    2017-09-01

    Measuring the full ion velocity distribution function (IVDF) by non-intrusive techniques can improve our understanding of the ionization processes and beam dynamics at work in electric thrusters. In this paper, a Laser-Induced Fluorescence (LIF) tomographic reconstruction technique is applied to the measurement of the IVDF in the plume of a miniature Hall effect thruster. A setup is developed to move the laser axis along two rotation axes around the measurement volume. The fluorescence spectra taken from different viewing angles are combined using a tomographic reconstruction algorithm to build the complete 3D (in phase space) time-averaged distribution function. For the first time, this technique is used in the plume of a miniature Hall effect thruster to measure the full distribution function of the xenon ions. Two examples of reconstructions are provided, in front of the thruster nose-cone and in front of the anode channel. The reconstruction reveals the features of the ion beam, in particular on the thruster axis where a toroidal distribution function is observed. These findings are consistent with the thruster shape and operation. This technique, which can be used with other LIF schemes, could be helpful in revealing the details of the ion production regions and the beam dynamics. Using a more powerful laser source, the current implementation of the technique could be improved to reduce the measurement time and also to reconstruct the temporal evolution of the distribution function.

  5. NSTAR Ion Thruster and Breadboard Power Processor Functional Integration Test Results

    Science.gov (United States)

    Hamley, John A.; Pinero, Luis R.; Rawlin, Vincent K.; Miller, John R.; Myers, Roger M.; Bowers, Glen E.

    1996-01-01

    A 2.3 kW Breadboard Power Processing Unit (BBPPU) was developed as part of the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) Program. The NSTAR program will deliver an electric propulsion system based on a 30 cm xenon ion thruster to the New Millennium (NM) program for use as the primary propulsion system for the initial NM flight. The final development test for the BBPPU, the Functional Integration Test, was carried out to demonstrate all aspects of BBPPU operation with an Engineering Model Thruster. Test objectives included: (1) demonstration and validation of automated thruster start procedures, (2) demonstration of stable closed loop control of the thruster beam current, (3) successful response and recovery to thruster faults, and (4) successful safing of the system during simulated spacecraft faults. These objectives were met over the specified 80-120 VDC input voltage range and 0.5-2.3 output power capability of the BBPPU. Two minor anomalies were noted in discharge and neutralizer keeper current. These anomalies did not affect the stability of the system and were successfully corrected.

  6. Three Dimensional Simulation of Ion Thruster Plume-Spacecraft Interaction Based on a Graphic Processor Unit

    International Nuclear Information System (INIS)

    Ren Junxue; Xie Kan; Qiu Qian; Tang Haibin; Li Juan; Tian Huabing

    2013-01-01

    Based on the three-dimensional particle-in-cell (PIC) method and Compute Unified Device Architecture (CUDA), a parallel particle simulation code combined with a graphic processor unit (GPU) has been developed for the simulation of charge-exchange (CEX) xenon ions in the plume of an ion thruster. Using the proposed technique, the potential and CEX plasma distribution are calculated for the ion thruster plume surrounding the DS1 spacecraft at different thrust levels. The simulation results are in good agreement with measured CEX ion parameters reported in literature, and the GPU's results are equal to a CPU's. Compared with a single CPU Intel Core 2 E6300, 16-processor GPU NVIDIA GeForce 9400 GT indicates a speedup factor of 3.6 when the total macro particle number is 1.1×10 6 . The simulation results also reveal how the back flow CEX plasma affects the spacecraft floating potential, which indicates that the plume of the ion thruster is indeed able to alleviate the extreme negative floating potentials of spacecraft in geosynchronous orbit

  7. Experimental Investigations from the Operation of a 2 Kw Brayton Power Conversion Unit and a Xenon Ion Thruster

    Science.gov (United States)

    Mason, Lee; Birchenough, Arthur; Pinero, Luis

    2004-01-01

    A 2 kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton converters and ion thrusters are potential candidates for use on future high power NEP missions such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of existing lower power test hardware provided a cost-effective means to investigate the critical electrical interface between the power conversion system and ion propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  8. Hall-Effect Thruster Simulations with 2-D Electron Transport and Hydrodynamic Ions

    Science.gov (United States)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard H.; Goebel, Dan M.

    2009-01-01

    A computational approach that has been used extensively in the last two decades for Hall thruster simulations is to solve a diffusion equation and energy conservation law for the electrons in a direction that is perpendicular to the magnetic field, and use discrete-particle methods for the heavy species. This "hybrid" approach has allowed for the capture of bulk plasma phenomena inside these thrusters within reasonable computational times. Regions of the thruster with complex magnetic field arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons. This paper reports on the development of a computer code that solves numerically the 2-D axisymmetric vector form of Ohm's law, with no assumptions regarding the rate of electron transport in the parallel and perpendicular directions. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations in a computational mesh that is aligned with the magnetic field. The fully-2D approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction, and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the momentum equations. A first series of simulations of two Hall thrusters, namely the BPT-4000 and a 6-kW laboratory thruster, quantifies the significance of ion diffusion in the anode region and the importance of the extended physical domain on studies related to the impact of the transport coefficients on the electron flow field.

  9. Reduced power processor requirements for the 30-cm diameter HG ion thruster

    Science.gov (United States)

    Rawlin, V. K.

    1979-01-01

    The characteristics of power processors strongly impact the overall performance and cost of electric propulsion systems. A program was initiated to evaluate simplifications of the thruster-power processor interface requirements. The power processor requirements are mission dependent with major differences arising for those missions which require a nearly constant thruster operating point (typical of geocentric and some inbound planetary missions) and those requiring operation over a large range of input power (such as outbound planetary missions). This paper describes the results of tests which have indicated that as many as seven of the twelve power supplies may be eliminated from the present Functional Model Power Processor used with 30-cm diameter Hg ion thrusters.

  10. Study of Ion Beam Forming Process in Electric Thruster Using 3D FEM Simulation

    Science.gov (United States)

    Huang, Tao; Jin, Xiaolin; Hu, Quan; Li, Bin; Yang, Zhonghai

    2015-11-01

    There are two algorithms to simulate the process of ion beam forming in electric thruster. The one is electrostatic steady state algorithm. Firstly, an assumptive surface, which is enough far from the accelerator grids, launches the ion beam. Then the current density is calculated by theory formula. Secondly these particles are advanced one by one according to the equations of the motions of ions until they are out of the computational region. Thirdly, the electrostatic potential is recalculated and updated by solving Poisson Equation. At the end, the convergence is tested to determine whether the calculation should continue. The entire process will be repeated until the convergence is reached. Another one is time-depended PIC algorithm. In a global time step, we assumed that some new particles would be produced in the simulation domain and its distribution of position and velocity were certain. All of the particles that are still in the system will be advanced every local time steps. Typically, we set the local time step low enough so that the particle needs to be advanced about five times to move the distance of the edge of the element in which the particle is located.

  11. Pickup ion processes associated with spacecraft thrusters: Implications for solar probe plus

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, Adam, E-mail: a.j.clemens@qmul.ac.uk; Burgess, David [School of Physics and Astronomy, Queen Mary University of London, London (United Kingdom)

    2016-03-15

    Chemical thrusters are widely used in spacecraft for attitude control and orbital manoeuvres. They create an exhaust plume of neutral gas which produces ions via photoionization and charge exchange. Measurements of local plasma properties will be affected by perturbations caused by the coupling between the newborn ions and the plasma. A model of neutral expansion has been used in conjunction with a fully three-dimensional hybrid code to study the evolution and ionization over time of the neutral cloud produced by the firing of a mono-propellant hydrazine thruster as well as the interactions of the resulting ion cloud with the ambient solar wind. Results are presented which show that the plasma in the region near to the spacecraft will be perturbed for an extended period of time with the formation of an interaction region around the spacecraft, a moderate amplitude density bow wave bounding the interaction region and evidence of an instability at the forefront of the interaction region which causes clumps of ions to be ejected from the main ion cloud quasi-periodically.

  12. High Fidelity Multi-Objective Design Optimization of a Downscaled Cusped Field Thruster

    Directory of Open Access Journals (Sweden)

    Thomas Fahey

    2017-11-01

    Full Text Available The Cusped Field Thruster (CFT concept has demonstrated significantly improved performance over the Hall Effect Thruster and the Gridded Ion Thruster; however, little is understood about the complexities of the interactions and interdependencies of the geometrical, magnetic and ion beam properties of the thruster. This study applies an advanced design methodology combining a modified power distribution calculation and evolutionary algorithms assisted by surrogate modeling to a multi-objective design optimization for the performance optimization and characterization of the CFT. Optimization is performed for maximization of performance defined by five design parameters (i.e., anode voltage, anode current, mass flow rate, and magnet radii, simultaneously aiming to maximize three objectives; that is, thrust, efficiency and specific impulse. Statistical methods based on global sensitivity analysis are employed to assess the optimization results in conjunction with surrogate models to identify key design factors with respect to the three design objectives and additional performance measures. The research indicates that the anode current and the Outer Magnet Radius have the greatest effect on the performance parameters. An optimal value for the anode current is determined, and a trend towards maximizing anode potential and mass flow rate is observed.

  13. Electronegative Gas Thruster

    Science.gov (United States)

    Dankanich, John; Polzin, Kurt; Walker, Mitchell

    2015-01-01

    The project is an international collaboration and academic partnership to mature an innovative electric propulsion thruster concept to Technology Research Level-3 (TRL-3) through direct thrust measurement. The project includes application assessment of the technology ranging from small spacecraft to high power. The Plasma propulsion with Electronegative GASES(PEGASES) basic proof of concept has been matured to TRL-2 by Ane Aanesland of Laboratoire de Physique des Plasma at Ecole Polytechnique. The concept has advantages through eliminating the neutralizer requirement and should yield longer life and lower cost over conventional gridded ion engines. The objective of this research is to validate the proof of concept through the first direct thrust measurements and mature the concept to TRL-3.

  14. Electronegative Gas Thruster - Direct Thrust Measurement Project

    Science.gov (United States)

    Dankanich, John (Principal Investigator); Aanesland, Ane; Polzin, Kurt; Walker, Mitchell

    2015-01-01

    This effort is an international collaboration and academic partnership to mature an innovative electric propulsion (EP) thruster concept to TRL 3 through direct thrust measurement. The initial target application is for Small Satellites, but can be extended to higher power. The Plasma propulsion with Electronegative GASES (PEGASES) concept simplifies ion thruster operation, eliminates a neutralizer requirement and should yield longer life capabilities and lower cost implementation over conventional gridded ion engines. The basic proof-of concept has been demonstrated and matured to TRL 2 over the past several years by researchers at the Laboratoire de Physique des Plasma in France. Due to the low maturity of the innovation, there are currently no domestic investments in electronegative gas thrusters anywhere within NASA, industry or academia. The end product of this Center Innovation Fund (CIF) project will be a validation of the proof-of-concept, maturation to TRL 3 and technology assessment report to summarize the potential for the PEGASES concept to supplant the incumbent technology. Information exchange with the foreign national will be one-way with the exception of the test results. Those test results will first go through a standard public release ITAR/export control review, and the results will be presented in a public technical forum, and the results will be presented in a public technical forum.

  15. Magnetically filtered Faraday probe for measuring the ion current density profile of a Hall thruster

    International Nuclear Information System (INIS)

    Rovey, Joshua L.; Walker, Mitchell L.R.; Gallimore, Alec D.; Peterson, Peter Y.

    2006-01-01

    The ability of a magnetically filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating pressures within the range of 4.4x10 -4 Pa Xe (3.3x10 -6 Torr Xe) to 1.1x10 -3 Pa Xe (8.4x10 -6 Torr Xe) in order to study the ability of the Faraday probe designs to filter out CEX ions. Detailed examination of the results shows that the nude probe measures a greater ion current density profile than both the MFFP and BFP over the range of angular positions investigated for each operating condition. The differences between the current density profiles obtained by each probe are attributed to the ion filtering systems employed. Analysis of the results shows that the MFFP, operating at a +5 A solenoid current, provides the best agreement with flight-test data and across operating pressures

  16. Clearance of short circuited ion optics electrodes by capacitive discharge. [in ion thrusters

    Science.gov (United States)

    Poeschel, R. L.

    1976-01-01

    The ion optics electrodes of low specific impulse (3000 sec) mercury electron bombardment ion thrusters are vulnerable to short circuits by virtue of their relatively small interelectrode spacing (0.5 mm). Metallic flakes from backsputtered deposits are the most probable cause of such 'shorts' and 'typical' flakes have been simulated here using refractory wire that has a representative, but controllable, cross section. Shorting wires can be removed by capacitive discharge without significant damage to the electrodes. This paper describes an evaluation of 'short' removal versus electrode damage for several combinations of capacitor voltage, stored energy, and short circuit conditions.

  17. Experimental Investigation from the Operation of a 2 kW Brayton Power Conversion Unit and a Xenon Ion Thruster

    Science.gov (United States)

    Hervol, David; Mason, Lee; Birchenough, Art; Pinero, Luis

    2004-01-01

    A 2kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton Converters and ion thrusters are potential candidates for use on future high power NEP mission such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of a existing lower power test hardware provided a cost effective means to investigate the critical electrical interface between the power conversion system and the propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  18. Ion velocities in a micro-cathode arc thruster

    International Nuclear Information System (INIS)

    Zhuang Taisen; Shashurin, Alexey; Keidar, Michael; Beilis, Isak

    2012-01-01

    Ion velocities in the plasma jet generated by the micro-cathode arc thruster are studied by means of time-of-flight method using enhanced ion detection system (EIDS). The EIDS triggers perturbations (spikes) on arc current waveform, and the larger current in the spike generates denser plasma bunches propagating along with the mainstream plasma. The EIDS utilizes double electrostatic probes rather than single probes. The average Ti ion velocity is measured to be around 2×10 4 m/s without a magnetic field. It was found that the application of a magnetic field does not change ion velocities in the interelectrode region while leads to ion acceleration in the free expanding plasma plume by a factor of about 2. Ion velocities of about 3.5×10 4 m/s were detected for the magnetic field of about 300 mT at distance of about 100–200 mm from the cathode. It is proposed that plasma is accelerated due to Lorentz force. The average thrust is calculated using the ion velocity measurements and the cathode mass consumption rate, and its increase with the magnetic field is demonstrated.

  19. Cylindrical Hall Thrusters with Permanent Magnets

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Merino, Enrique; Fisch, Nathaniel J.

    2010-01-01

    The use of permanent magnets instead of electromagnet coils for low power Hall thrusters can offer a significant reduction of both the total electric power consumption and the thruster mass. Two permanent magnet versions of the miniaturized cylindrical Hall thruster (CHT) of different overall dimensions were operated in the power range of 50W-300 W. The discharge and plasma plume measurements revealed that the CHT thrusters with permanent magnets and electromagnet coils operate rather differently. In particular, the angular ion current density distribution from the permanent magnet thrusters has an unusual halo shape, with a majority of high energy ions flowing at large angles with respect to the thruster centerline. Differences in the magnetic field topology outside the thruster channel and in the vicinity of the channel exit are likely responsible for the differences in the plume characteristics measured for the CHTs with electromagnets and permanent magnets. It is shown that the presence of the reversing-direction or cusp-type magnetic field configuration inside the thruster channel without a strong axial magnetic field outside the thruster channel does not lead to the halo plasma plume from the CHT.

  20. ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS

    Science.gov (United States)

    2017-06-30

    NUMBER (Include area code) 30 June 2017 Briefing Charts 26 May 2017 - 30 June 2017 ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS ...Robert Martin N/A ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS Robert Martin1, Jonathan Tran2 1AIR FORCE...Approved for Public Release; Distribution is Unlimited. PA# 17394 1 / 13 OUTLINE 1 INTRODUCTION 2 TRANSPORT 3 DYNAMIC SYSTEM 4 SUMMARY AND CONCLUSION

  1. Ion mobility spectrometer with virtual aperture grid

    Science.gov (United States)

    Pfeifer, Kent B.; Rumpf, Arthur N.

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  2. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fisch, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.

  3. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fi, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation

  4. High Precision Beam Diagnostics for Ion Thrusters

    NARCIS (Netherlands)

    Van Reijen, B.; Koch, N.; Lazurenko, A.; Weis, S.; Schirra, M.; Genovese, A.; Haderspeck, J.; Gill, E.K.A.

    2011-01-01

    The Thales diagnostic equipment for ion beam characterization consists of a gridded and single orifice retarding potential analyzer (RPA) and an energy selective mass spectrometer (ESMS). During the development phase of these sensors considerable effort was put into the removal of ion optical

  5. A direct-measurement technique for estimating discharge-chamber lifetime. [for ion thrusters

    Science.gov (United States)

    Beattie, J. R.; Garvin, H. L.

    1982-01-01

    The use of short-term measurement techniques for predicting the wearout of ion thrusters resulting from sputter-erosion damage is investigated. The laminar-thin-film technique is found to provide high precision erosion-rate data, although the erosion rates are generally substantially higher than those found during long-term erosion tests, so that the results must be interpreted in a relative sense. A technique for obtaining absolute measurements is developed using a masked-substrate arrangement. This new technique provides a means for estimating the lifetimes of critical discharge-chamber components based on direct measurements of sputter-erosion depths obtained during short-duration (approximately 1 hr) tests. Results obtained using the direct-measurement technique are shown to agree with sputter-erosion depths calculated for the plasma conditions of the test. The direct-measurement approach is found to be applicable to both mercury and argon discharge-plasma environments and will be useful for estimating the lifetimes of inert gas and extended performance mercury ion thrusters currently under development.

  6. 15 cm mercury multipole thruster

    Science.gov (United States)

    Longhurst, G. R.; Wilbur, P. J.

    1978-01-01

    A 15 cm multipole ion thruster was adapted for use with mercury propellant. During the optimization process three separable functions of magnetic fields within the discharge chamber were identified: (1) they define the region where the bulk of ionization takes place, (2) they influence the magnitudes and gradients in plasma properties in this region, and (3) they control impedance between the cathode and main discharge plasmas in hollow cathode thrusters. The mechanisms for these functions are discussed. Data from SERT II and cusped magnetic field thrusters are compared with those measured in the multipole thruster. The performance of this thruster is shown to be similar to that of the other two thrusters. Means of achieving further improvement in the performance of the multipole thruster are suggested.

  7. Thrust performance, propellant ionization, and thruster erosion of an external discharge plasma thruster

    Science.gov (United States)

    Karadag, Burak; Cho, Shinatora; Funaki, Ikkoh

    2018-04-01

    It is quite a challenge to design low power Hall thrusters with a long lifetime and high efficiency because of the large surface area to volume ratio and physical limits to the magnetic circuit miniaturization. As a potential solution to this problem, we experimentally investigated the external discharge plasma thruster (XPT). The XPT produces and sustains a plasma discharge completely in the open space outside of the thruster structure through a magnetic mirror configuration. It eliminates the very fundamental component of Hall thrusters, discharge channel side walls, and its magnetic circuit consists solely of a pair of hollow cylindrical permanent magnets. Thrust, low frequency discharge current oscillation, ion beam current, and plasma property measurements were conducted to characterize the manufactured prototype thruster for the proof of concept. The thrust performance, propellant ionization, and thruster erosion were discussed. Thrust generated by the XPT was on par with conventional Hall thrusters [stationary plasma thruster (SPT) or thruster with anode layer] at the same power level (˜11 mN at 250 W with 25% anode efficiency without any optimization), and discharge current had SPT-level stability (Δ design and provide a successful proof of concept experiment of the XPT.

  8. Advanced electrostatic ion thruster for space propulsion

    Science.gov (United States)

    Masek, T. D.; Macpherson, D.; Gelon, W.; Kami, S.; Poeschel, R. L.; Ward, J. W.

    1978-01-01

    The suitability of the baseline 30 cm thruster for future space missions was examined. Preliminary design concepts for several advanced thrusters were developed to assess the potential practical difficulties of a new design. Useful methodologies were produced for assessing both planetary and earth orbit missions. Payload performance as a function of propulsion system technology level and cost sensitivity to propulsion system technology level are among the topics assessed. A 50 cm diameter thruster designed to operate with a beam voltage of about 2400 V is suggested to satisfy most of the requirements of future space missions.

  9. Ion beam collimating grid to reduce added defects

    Science.gov (United States)

    Lindquist, Walter B.; Kearney, Patrick A.

    2003-01-01

    A collimating grid for an ion source located after the exit grid. The collimating grid collimates the ion beamlets and disallows beam spread and limits the beam divergence during transients and steady state operation. The additional exit or collimating grid prevents beam divergence during turn-on and turn-off and prevents ions from hitting the periphery of the target where there is re-deposited material or from missing the target and hitting the wall of the vessel where there is deposited material, thereby preventing defects from being deposited on a substrate to be coated. Thus, the addition of a collimating grid to an ion source ensures that the ion beam will hit and be confined to a specific target area.

  10. Effect of Anode Magnetic Shield on Magnetic Field and Ion Beam in Cylindrical Hall Thruster

    International Nuclear Information System (INIS)

    Zhao Jie; Wang Shiqing; Liu Jian; Xu Li; Tang Deli; Geng Shaofei

    2010-01-01

    Numerical simulation of the effect of the anode magnetic shielding on the magnetic field and ion beam in a cylindrical Hall thruster is presented. The results show that after the anode is shielded by the magnetic shield, the magnetic field lines near the anode surface are obviously convex curved, the ratio of the magnetic mirror is enhanced, the width of the positive magnetic field gradient becomes larger than that without the anode magnetic shielding, the radial magnetic field component is enhanced, and the discharge plasma turbulence is reduced as a result of keeping the original saddle field profile and the important role the other two saddle field profiles play in restricting electrons. The results of the particle in cell (PIC) numerical simulation show that both the ion number and the energy of the ion beam increase after the anode is shielded by the magnetic shield. In other words, the specific impulse of the cylindrical Hall thruster is enhanced.

  11. Parametric Investigation of Miniaturized Cylindrical and Annular Hall Thrusters

    International Nuclear Information System (INIS)

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    Conventional annular Hall thrusters become inefficient when scaled to low power. An alternative approach, a 2.6-cm miniaturized cylindrical Hall thruster with a cusp-type magnetic field distribution, was developed and studied. Its performance was compared to that of a conventional annular thruster of the same dimensions. The cylindrical thruster exhibits discharge characteristics similar to those of the annular thruster, but it has a much higher propellant ionization efficiency. Significantly, a large fraction of multi-charged xenon ions might be present in the outgoing ion flux generated by the cylindrical thruster. The operation of the cylindrical thruster is quieter than that of the annular thruster. The characteristic peak in the discharge current fluctuation spectrum at 50-60 kHz appears to be due to ionization instabilities. In the power range 50-300 W, the cylindrical and annular thrusters have comparable efficiencies (15-32%) and thrusts (2.5-12 mN). For the annular configuration, a voltage less than 200 V was not sufficient to sustain the discharge at low propellant flow rates. The cylindrical thruster can operate at voltages lower than 200 V, which suggests that a cylindrical thruster can be designed to operate at even smaller power

  12. Bi-Modal Micro-Cathode Arc Thruster for Cube Satellites

    Science.gov (United States)

    Chiu, Dereck

    A new concept design, named the Bi-Modal Micro-Cathode Arc Thruster (BM-muCAT), has been introduced utilizing features from previous generations of muCATs and incorporating a multi-propellant functionality. This arc thruster is a micro-Newton level thruster based off of vacuum arc technology utilizing an enhanced magnetic field. Adjusting the magnetic field allows the thrusters performance to be varied. The goal of this thesis is to present a new generation of micro-cathode arc thrusters utilizing a bi-propellant, nickel and titanium, system. Three experimental procedures were run to test the new designs capabilities. Arc rotation experiment was used as a base experiment to ensure erosion was occurring uniformly along each electrode. Ion utilization efficiency was found, using an ion collector, to be up to 2% with the nickel material and 2.5% with the titanium material. Ion velocities were also studied using a time-of-flight method with an enhanced ion detection system. This system utilizes double electrostatic probes to measure plasma propagation. Ion velocities were measured to be 10km/s and 20km/s for nickel and titanium without a magnetic field. With an applied magnetic field of 0.2T, nickel ion velocities almost doubled to about 17km/s, while titanium ion velocities also increased to about 30km/s.

  13. A Numerical Study on Hydrodynamic Interactions between Dynamic Positioning Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Doo Hwa; Lee, Sang Wook [University of Ulsan, Ulsan (Korea, Republic of)

    2017-06-15

    In this study, we conducted computational fluid dynamics (CFD) simulations for the unsteady hydrodynamic interaction of multiple thrusters by solving Reynolds averaged Navier-Stokes equations. A commercial CFD software, STAR-CCM+ was used for all simulations by employing a ducted thruster model with combination of a propeller and No. 19a duct. A sliding mesh technique was used to treat dynamic motion of propeller rotation and non-conformal hexahedral grid system was considered. Four different combinations in tilting and azimuth angles of the thrusters were considered to investigate the effects on the propulsion performance. We could find that thruster-hull and thruster-thruster interactions has significant effect on propulsion performance and further study will be required for the optimal configurations with the best tilting and relative azimuth angle between thrusters.

  14. Particle-in-cell simulations of Hall plasma thrusters

    Science.gov (United States)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  15. A structural and thermal packaging approach for power processing units for 30-cm ion thrusters

    Science.gov (United States)

    Maloy, J. E.; Sharp, G. R.

    1975-01-01

    Solar Electric Propulsion (SEP) is currently being studied for possible use in a number of near earth and planetary missions. The thruster subsystem for these missions would consist of 30 centimeter ion thrusters with Power Processor Units (PPU) clustered in assemblies of from two to ten units. A preliminary design study of the electronic packaging of the PPU has been completed at Lewis Research Center of NASA. This study evaluates designs meeting the competing requirements of low system weight and overall mission flexibility. These requirements are evaluated regarding structural and thermal design, electrical efficiency, and integration of the electrical circuits into a functional PPU layout.

  16. A data acquisition and storage system for the ion auxiliary propulsion system cyclic thruster test

    Science.gov (United States)

    Hamley, John A.

    1989-01-01

    A nine-track tape drive interfaced to a standard personal computer was used to transport data from a remote test site to the NASA Lewis mainframe computer for analysis. The Cyclic Ground Test of the Ion Auxiliary Propulsion System (IAPS), which successfully achieved its goal of 2557 cycles and 7057 hr of thrusting beam on time generated several megabytes of test data over many months of continuous testing. A flight-like controller and power supply were used to control the thruster and acquire data. Thruster data was converted to RS232 format and transmitted to a personal computer, which stored the raw digital data on the nine-track tape. The tape format was such that with minor modifications, mainframe flight data analysis software could be used to analyze the Cyclic Ground Test data. The personal computer also converted the digital data to engineering units and displayed real time thruster parameters. Hardcopy data was printed at a rate dependent on thruster operating conditions. The tape drive provided a convenient means to transport the data to the mainframe for analysis, and avoided a development effort for new data analysis software for the Cyclic test. This paper describes the data system, interfacing and software requirements.

  17. Cathode Effects in Cylindrical Hall Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Granstedt, E.M.; Raitses, Y.; Fisch, N. J.

    2008-09-12

    Stable operation of a cylindrical Hall thruster (CHT) has been achieved using a hot wire cathode, which functions as a controllable electron emission source. It is shown that as the electron emission from the cathode increases with wire heating, the discharge current increases, the plasma plume angle reduces, and the ion energy distribution function shifts toward higher energies. The observed effect of cathode electron emission on thruster parameters extends and clarifies performance improvements previously obtained for the overrun discharge current regime of the same type of thruster, but using a hollow cathode-neutralizer. Once thruster discharge current saturates with wire heating, further filament heating does not affect other discharge parameters. The saturated values of thruster discharge parameters can be further enhanced by optimal placement of the cathode wire with respect to the magnetic field.

  18. Electromagnetic Spacecraft Propulsion Motor and a Permanent Magnet (PM-Drive) Thruster

    Science.gov (United States)

    Ahmadov, B. A.

    2018-04-01

    Ion thrusters are designed to be used for realization of a Mars Sample Return mission. The competing technologies with ion thrusters are electromagnetic spacecraft propulsion motors. I'm an engineer and engage in the creation of the new electromagnetic propulsion motors.

  19. Monte Carlo simulation of ion-neutral charge exchange collisions and grid erosion in an ion thruster

    Science.gov (United States)

    Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis

    1991-01-01

    A combined particle-in-cell (PIC)/Monte Carlo simulation model has been developed in which the PIC method is used to simulate the charge exchange collisions. It is noted that a number of features were reproduced correctly by this code, but that its assumption of two-dimensional axisymmetry for a single set of grid apertures precluded the reproduction of the most characteristic feature of actual test data; namely, the concentrated grid erosion at the geometric center of the hexagonal aperture array. The first results of a three-dimensional code, which takes into account the hexagonal symmetry of the grid, are presented. It is shown that, with this code, the experimentally observed erosion patterns are reproduced correctly, demonstrating explicitly the concentration of sputtering between apertures.

  20. Retrofit and acceptance test of 30-cm ion thrusters

    Science.gov (United States)

    Poeschel, R. L.

    1981-01-01

    Six 30 cm mercury thrusters were modified to the J-series design and evaluated using standardized test procedures. The thruster performance meets the design objectives (lifetime objective requires verification), and documentation (drawings, etc.) for the design is completed and upgraded. The retrofit modifications are described and the test data for the modifications are presented and discussed.

  1. Characteristics of the LeRC/Hughes J-series 30-cm engineering model thruster

    Science.gov (United States)

    Collett, C. R.; Poeschel, R. L.; Kami, S.

    1981-01-01

    As a consequence of endurance and structural tests performed on 900-series engineering model thrusters (EMT), several modifications in design were found to be necessary for achieving performance goals. The modified thruster is known as the J-series EMT. The most important of the design modifications affect the accelerator grid, gimbal mount, cathode polepiece, and wiring harness. The paper discusses the design modifications incorporated, the condition(s) they corrected, and the characteristics of the modified thruster.

  2. Magnetically enhanced vacuum arc thruster

    International Nuclear Information System (INIS)

    Keidar, Michael; Schein, Jochen; Wilson, Kristi; Gerhan, Andrew; Au, Michael; Tang, Benjamin; Idzkowski, Luke; Krishnan, Mahadevan; Beilis, Isak I

    2005-01-01

    A hydrodynamic model of the vacuum arc thruster and its plume is described. Primarily an effect of the magnetic field on the plume expansion and plasma generation is considered. Two particular examples are investigated, namely the magnetically enhanced co-axial vacuum arc thruster (MVAT) and the vacuum arc thruster with ring electrodes (RVAT). It is found that the magnetic field significantly decreases the plasma plume radial expansion under typical conditions. Predicted plasma density profiles in the plume of the MVAT are compared with experimental profiles, and generally a good agreement is found. In the case of the RVAT the influence of the magnetic field leads to plasma jet deceleration, which explains the non-monotonic dependence of the ion current density, on an axial magnetic field observed experimentally

  3. Magnetically enhanced vacuum arc thruster

    Energy Technology Data Exchange (ETDEWEB)

    Keidar, Michael [University of Michigan, Ann Arbor 48109 MI (United States); Schein, Jochen [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Wilson, Kristi [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Gerhan, Andrew [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Au, Michael [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Tang, Benjamin [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Idzkowski, Luke [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Krishnan, Mahadevan [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Beilis, Isak I [Tel Aviv University, Tel Aviv (Israel)

    2005-11-01

    A hydrodynamic model of the vacuum arc thruster and its plume is described. Primarily an effect of the magnetic field on the plume expansion and plasma generation is considered. Two particular examples are investigated, namely the magnetically enhanced co-axial vacuum arc thruster (MVAT) and the vacuum arc thruster with ring electrodes (RVAT). It is found that the magnetic field significantly decreases the plasma plume radial expansion under typical conditions. Predicted plasma density profiles in the plume of the MVAT are compared with experimental profiles, and generally a good agreement is found. In the case of the RVAT the influence of the magnetic field leads to plasma jet deceleration, which explains the non-monotonic dependence of the ion current density, on an axial magnetic field observed experimentally.

  4. Thermal-environmental testing of a 30-cm engineering model thruster

    Science.gov (United States)

    Mirtich, M. J.

    1976-01-01

    An experimental test program was carried out to document all 30-cm electron bombardment Hg ion bombardment thruster functions and characteristics over the thermal environment of several proposed missions. An engineering model thruster was placed in a thermal test facility equipped with -196 C walls and solar simulation. The thruster was cold soaked and exposed to simulated eclipses lasting in duration from 17 to 72 minutes. The thruster was operated at quarter, to full beam power in various thermal configurations which simulated multiple thruster operation, and was also exposed to 1 and 2 suns solar simulation. Thruster control characteristics and constraints; performance, including thrust magnitude and direction; and structural integrity were evaluated over the range of thermal environments tested.

  5. Influence of Triply-Charged Ions and Ionization Cross-Sections in a Hybrid-PIC Model of a Hall Thruster Discharge

    Science.gov (United States)

    Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani

    2014-01-01

    The sensitivity of xenon ionization rates to collision cross-sections is studied within the framework of a hybrid-PIC model of a Hall thruster discharge. A revised curve fit based on the Drawin form is proposed and is shown to better reproduce the measured crosssections at high electron energies, with differences in the integrated rate coefficients being on the order of 10% for electron temperatures between 20 eV and 30 eV. The revised fit is implemented into HPHall and the updated model is used to simulate NASA's HiVHAc EDU2 Hall thruster at discharge voltages of 300, 400, and 500 V. For all three operating points, the revised cross-sections result in an increase in the predicted thrust and anode efficiency, reducing the error relative to experimental performance measurements. Electron temperature and ionization reaction rates are shown to follow the trends expected based on the integrated rate coefficients. The effects of triply-charged xenon are also assessed. The predicted thruster performance is found to have little or no dependence on the presence of triply-charged ions. The fraction of ion current carried by triply-charged ions is found to be on the order of 1% and increases slightly with increasing discharge voltage. The reaction rates for the 0?III, I?III, and II?III ionization reactions are found to be of similar order of magnitude and are about one order of magnitude smaller than the rate of 0?II ionization in the discharge channel.

  6. Los Alamos NEP research in advanced plasma thrusters

    Science.gov (United States)

    Schoenberg, Kurt; Gerwin, Richard

    1991-01-01

    Research was initiated in advanced plasma thrusters that capitalizes on lab capabilities in plasma science and technology. The goal of the program was to examine the scaling issues of magnetoplasmadynamic (MPD) thruster performance in support of NASA's MPD thruster development program. The objective was to address multi-megawatt, large scale, quasi-steady state MPD thruster performance. Results to date include a new quasi-steady state operating regime which was obtained at space exploration initiative relevant power levels, that enables direct coaxial gun-MPD comparisons of thruster physics and performance. The radiative losses are neglible. Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters. Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions. Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway. Model applications to advanced mission logistics are also underway.

  7. The influence of magnetic field strength in ionization stage on ion transport between two stages of a double stage Hall thruster

    International Nuclear Information System (INIS)

    Yu Daren; Song Maojiang; Li Hong; Liu Hui; Han Ke

    2012-01-01

    It is futile for a double stage Hall thruster to design a special ionization stage if the ionized ions cannot enter the acceleration stage. Based on this viewpoint, the ion transport under different magnetic field strengths in the ionization stage is investigated, and the physical mechanisms affecting the ion transport are analyzed in this paper. With a combined experimental and particle-in-cell simulation study, it is found that the ion transport between two stages is chiefly affected by the potential well, the potential barrier, and the potential drop at the bottom of potential well. With the increase of magnetic field strength in the ionization stage, there is larger plasma density caused by larger potential well. Furthermore, the potential barrier near the intermediate electrode declines first and then rises up while the potential drop at the bottom of potential well rises up first and then declines as the magnetic field strength increases in the ionization stage. Consequently, both the ion current entering the acceleration stage and the total ion current ejected from the thruster rise up first and then decline as the magnetic field strength increases in the ionization stage. Therefore, there is an optimal magnetic field strength in the ionization stage to guide the ion transport between two stages.

  8. Thermo-mechanical design of the extraction grids for RF negative ion source at HUST

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Chen; Liu, Kaifeng, E-mail: kfliuhust@hust.edu.cn; Li, Dong; Mei, Zhiyuan; Zhang, Zhe; Chen, Dezhi

    2017-01-15

    Highlights: • An extraction system with cooling channels has been designed for HUST negative ion source. • Corresponding heat loads onto three grids has been used in thermo-mechanical analysis. • The analysis results could be very useful for driving the engineering design. - Abstract: Huazhong University of Science and Technology (HUST) is developing a small radio frequency negative ion source experimental setup to promote research on neutral beam injection ion sources. The extraction system for the negative ion source is the key component to obtain the negative ions. The extraction system is composed of three grids: the plasma grid, the extraction grid and the grounded grid. Each grid is impacted by different heat loads. As the grids have to fulfil specific requirements regarding ion extraction, beam optics, and thermo-mechanical issues, grid cooling systems have been included for ensuring reliable operation. This paper focuses on the thermo-hydraulic and thermo-mechanical design of the grids. Finite element calculations have been carried out to analyse the temperature and deformation of the grids under heat loads using the fluid dynamics code CFX. Based on these results, the cooling circuit design and cooling parameters are optimised to satisfy the grid requirements.

  9. ExB Measurements of a 200 W Xenon Hall Thruster (Preprint)

    National Research Council Canada - National Science Library

    Ekholm, Jared M; Hargus, Jr, William A

    2007-01-01

    Angularly resolved ion species fractions of Xe+1, Xe+2, and Xe+3 in a low power xenon Hall thruster Busek BHT-200 plume were measured using an ExB probe under a variety of thruster operating conditions and background pressures...

  10. Grid Inertial Response with Lithium-ion Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Knap, Vaclav; Sinha, Rakesh; Swierczynski, Maciej Jozef

    2014-01-01

    of this paper is to evaluate the technical viability of utilizing energy storage systems based on Lithium-ion batteries for providing inertial response in grids with high penetration levels of wind power. In order to perform this evaluation, the 12-bus system grid model was used; the inertia of the grid...... was varied by decreasing the number of conventional power plants in the studied grid model while in the same time increasing the load and the wind power penetration levels. Moreover, in order to perform a realistic investigation, a dynamic model of the Lithium-ion battery was considered and parameterized...

  11. Maximizing Ion Current by Space Charge Neutralization using Negative Ions and Dust Particles

    International Nuclear Information System (INIS)

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2005-01-01

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space charge neutralization are introduced. Space charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster

  12. A mechanical, thermal and electrical packaging design for a prototype power management and control system for the 30 cm mercury ion thruster

    Science.gov (United States)

    Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.

    1978-01-01

    A prototype electric power management and thruster control system for a 30 cm ion thruster is described. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The power management and control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete power management and control system measures 45.7 cm (18 in.) x 15.2 cm (6 in.) x 114.8 cm (45.2 in.) and weighs 36.2 kg (79.7 lb). At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.

  13. A mechanical, thermal and electrical packaging design for a prototype power management and control system for the 30 cm mercury ion thruster

    Science.gov (United States)

    Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.

    1978-01-01

    A prototype Electric Power Management and Thruster Control System for a 30 cm ion thruster has been built and is ready to support a first mission application. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The Power Management and Control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is designed to be easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete Power Management and Control system measures 45.7 cm x 15.2 cm x 114.8 cm and weighs 36.2 kg. At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.

  14. Improvement of Flow Characteristics for an Advanced Plasma Thruster

    International Nuclear Information System (INIS)

    Inutake, M.; Hosokawa, Y.; Sato, R.; Ando, A.; Tobari, H.; Hattori, K.

    2005-01-01

    A higher specific impulse and a larger thrust are required for a manned interplanetary space thruster. Until the realization of a fusion-plasma thruster, a magneto-plasma-dynamic arcjet (MPDA) powered by a fission reactor is one of the promising candidates for a manned Mars space thruster. The MPDA plasma is accelerated axially by a self-induced j x B force. Thrust performance of the MPDA is expected to increase by applying a magnetic nozzle instead of a solid nozzle. In order to get a much higher thruster performance, two methods have been investigated in the HITOP device, Tohoku University. One is to use a magnetic Laval nozzle in the vicinity of the MPDA muzzle for converting the high ion thermal energy to the axial flow energy. The other is to heat ions by use of an ICRF antenna in the divergent magnetic nozzle. It is found that by use of a small-sized Laval-type magnetic nozzle, the subsonic flow near the muzzle is converted to be supersonic through the magnetic Laval nozzle. A fast-flowing plasma is successfully heated by use of an ICRF antenna in the magnetic beach configuration

  15. Transit-time instability in Hall thrusters

    International Nuclear Information System (INIS)

    Barral, Serge; Makowski, Karol; Peradzynski, Zbigniew; Dudeck, Michel

    2005-01-01

    Longitudinal waves characterized by a phase velocity of the order of the velocity of ions have been recurrently observed in Hall thruster experiments and simulations. The origin of this so-called ion transit-time instability is investigated with a simple one-dimensional fluid model of a Hall thruster discharge in which cold ions are accelerated between two electrodes within a quasineutral plasma. A short-wave asymptotics applied to linearized equations shows that plasma perturbations in such a device consist of quasineutral ion acoustic waves superimposed on a background standing wave generated by discharge current oscillations. Under adequate circumstances and, in particular, at high ionization levels, acoustic waves are amplified as they propagate, inducing strong perturbation of the ion density and velocity. Responding to the subsequent perturbation of the column resistivity, the discharge current generates a standing wave, the reflection of which sustains the generation of acoustic waves at the inlet boundary. A calculation of the frequency and growth rate of this resonance mechanism for a supersonic ion flow is proposed, which illustrates the influence of the ionization degree on their onset and the approximate scaling of the frequency with the ion transit time. Consistent with experimental reports, the traveling wave can be observed on plasma density and velocity perturbations, while the plasma potential ostensibly oscillates in phase along the discharge

  16. Spatiotemporal study of gas heating mechanisms in a radio-frequency electrothermal plasma micro-thruster

    Directory of Open Access Journals (Sweden)

    Amelia eGreig

    2015-10-01

    Full Text Available A spatiotemporal study of neutral gas temperature during the first 100 s of operation for a radio-frequency electrothermal plasma micro-thruster operating on nitrogen at 60 W and 1.5 Torr is performed to identify the heating mechanisms involved. Neutral gas temperature is estimated from rovibrational band fitting of the nitrogen second positive system. A set of baffles are used to restrict the optical image and separate the heating mechanisms occurring in the central bulk discharge region and near the thruster walls.For each spatial region there are three distinct gas heating mechanisms being fast heating from ion-neutral collisions with timescales of tens of milliseconds, intermediate heating with timescales of 10 s from ion bombardment on the inner thruster tube surface creating wall heating, and slow heating with timescales of 100 s from gradual warming of the entire thruster housing. The results are discussed in relation to optimising the thermal properties of future thruster designs.

  17. Performance of a Permanent-Magnet Cylindrical Hall-Effect Thruster

    Science.gov (United States)

    Polzin, K. A.; Sooby, E. S.; Kimberlin, A. C.; Raites, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic topologies. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying higher thrust efficiency. Thruster performance measurements on this configuration were obtained over a power range of 70-350 W and with the cathode orifice located at three different axial positions relative to the thruster exit plane. The thrust levels over this power range were 1.25-6.5 mN, with anode efficiencies and specific impulses spanning 4-21% and 400-1950 s, respectively. The anode efficiency of the permanent-magnet thruster compares favorable with the efficiency of the electromagnet thruster when the power consumed by the electromagnets is taken into account.

  18. Testing of an Arcjet Thruster with Capability of Direct-Drive Operation

    Science.gov (United States)

    Martin, Adam K.; Polzin, Kurt A.; Eskridge, Richard H.; Smith, James W.; Schoenfeld, Michael P.; Riley, Daniel P.

    2015-01-01

    Electric thrusters typically require a power processing unit (PPU) to convert the spacecraft provided power to the voltage-current that a thruster needs for operation. Testing has been initiated to study whether an arcjet thruster can be operated directly with the power produced by solar arrays without any additional conversion. Elimination of the PPU significantly reduces system-level complexity of the propulsion system, and lowers developmental cost and risk. The work aims to identify and address technical questions related to power conditioning and noise suppression in the system and heating of the thruster in long-duration operation. The apparatus under investigation has a target power level from 400-1,000 W. However, the proposed direct-drive arcjet is potentially a highly scalable concept, applicable to solar-electric spacecraft with up to 100's of kW and beyond. A direct-drive electric propulsion system would be comprised of a thruster that operates with the power supplied directly from the power source (typically solar arrays) with no further power conditioning needed between those two components. Arcjet thrusters are electric propulsion devices, with the power supplied as a high current at low voltage; of all the different types of electric thruster, they are best suited for direct drive from solar arrays. One advantage of an arcjet over Hall or gridded ion thrusters is that for comparable power the arcjet is a much smaller device and can provide more thrust and orders of magnitude higher thrust density (approximately 1-10 N/sq m), albeit at lower I(sub sp) (approximately 800-1000 s). In addition, arcjets are capable of operating on a wide range of propellant options, having been demonstrated on H2, ammonia, N2, Ar, Kr, Xe, while present SOA Hall and ion thrusters are primarily limited to Xe propellant. Direct-drive is often discussed in terms of Hall thrusters, but they require 250-300 V for operation, which is difficult even with high-voltage solar

  19. Sources plasma RF magnétisées : applications à la propulsion spatiale

    OpenAIRE

    Gerst , Jan Dennis

    2013-01-01

    The PEGASES thruster (Plasma Propulsion with Electronegative Gases) is a novel type of electric thruster for space propulsion. It uses negative and positive ions produced by an inductively coupled radio frequency discharge to create the thrust by electrostatically accelerating the ions through a set of grids. A magnetic filter is used to increase the amount of negative ions in the cavity of the thruster. The PEGASES thruster is not only a source to create a strongly negative ion plasma or eve...

  20. Ion extraction capabilities of closely spaced grids

    Science.gov (United States)

    Rovang, D. C.; Wilbur, P. J.

    1982-01-01

    The ion extraction capabilities of accelerator systems with small screen hole diameters (less than 2.0 mm) are investigated at net-accelerating voltages of 100, 300, and 500 V. Results show that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 1.0 mm, but impingement-limited performance was found to be dependent on the grid separation distance, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained using small hole diameters and closely spaced grids indicate a new mode of grid operation where high current density operation can be achieved with a specified net acceleration voltage by operating the grids at a high rather than low net-to-total acceleration voltage. Beam current densities as high as 25 mA/sq cm were obtained using grids with 1.0 mm diameter holes operating at a net accelerating voltage of 500 V.

  1. Control Valve for Miniature Xenon Ion Thruster, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is continuing its development of electric propulsion engines for various applications. Efforts have been directed toward both large and small thrusters,...

  2. Low Frequency Plasma Oscillations in a 6-kW Magnetically Shielded Hall Thruster

    Science.gov (United States)

    Jorns, Benjamin A.; Hofery, Richard R.

    2013-01-01

    The oscillations from 0-100 kHz in a 6-kW magnetically shielded thruster are experimen- tally characterized. Changes in plasma parameters that result from the magnetic shielding of Hall thrusters have the potential to significantly alter thruster transients. A detailed investigation of the resulting oscillations is necessary both for the purpose of determin- ing the underlying physical processes governing time-dependent behavior in magnetically shielded thrusters as well as for improving thruster models. In this investigation, a high speed camera and a translating ion saturation probe are employed to examine the spatial extent and nature of oscillations from 0-100 kHz in the H6MS thruster. Two modes are identified at 8 kHz and 75-90 kHz. The low frequency mode is azimuthally uniform across the thruster face while the high frequency oscillation is concentrated close to the thruster centerline with an m = 1 azimuthal dependence. These experimental results are discussed in the context of wave theory as well as published observations from an unshielded variant of the H6MS thruster.

  3. Thermal Modeling for Pulsed Inductive FRC Plasmoid Thrusters

    Science.gov (United States)

    Pfaff, Michael

    Due to the rising importance of space based infrastructure, long-range robotic space missions, and the need for active attitude control for spacecraft, research into Electric Propulsion is becoming increasingly important. Electric Propulsion (EP) systems utilize electric power to accelerate ions in order to produce thrust. Unlike traditional chemical propulsion, this means that thrust levels are relatively low. The trade-off is that EP thrusters have very high specific impulses (Isp), and can therefore make do with far less onboard propellant than cold gas, monopropellant, or bipropellant engines. As a consequence of the high power levels used to accelerate the ionized propellant, there is a mass and cost penalty in terms of solar panels and a power processing unit. Due to the large power consumption (and waste heat) from electric propulsion thrusters, accurate measurements and predictions of thermal losses are needed. Excessive heating in sensitive locations within a thruster may lead to premature failure of vital components. Between the fixed cost required to purchase these components, as well as the man-hours needed to assemble (or replace) them, attempting to build a high-power thruster without reliable thermal modeling can be expensive. This paper will explain the usage of FEM modeling and experimental tests in characterizing the ElectroMagnetic Plasmoid Thruster (EMPT) and the Electrodeless Lorentz Force (ELF) thruster at the MSNW LLC facility in Redmond, Washington. The EMPT thruster model is validated using an experimental setup, and steady state temperatures are predicted for vacuum conditions. Preliminary analysis of the ELF thruster indicates possible material failure in absence of an active cooling system for driving electronics and for certain power levels.

  4. Oxygen-Methane Thruster

    Science.gov (United States)

    Pickens, Tim

    2012-01-01

    An oxygen-methane thruster was conceived with integrated igniter/injector capable of nominal operation on either gaseous or liquid propellants. The thruster was designed to develop 100 lbf (approximately 445 N) thrust at vacuum conditions and use oxygen and methane as propellants. This continued development included refining the design of the thruster to minimize part count and manufacturing difficulties/cost, refining the modeling tools and capabilities that support system design and analysis, demonstrating the performance of the igniter and full thruster assembly with both gaseous and liquid propellants, and acquiring data from this testing in order to verify the design and operational parameters of the thruster. Thruster testing was conducted with gaseous propellants used for the igniter and thruster. The thruster was demonstrated to work with all types of propellant conditions, and provided the desired performance. Both the thruster and igniter were tested, as well as gaseous propellants, and found to provide the desired performance using the various propellant conditions. The engine also served as an injector testbed for MSFC-designed refractory combustion chambers made of rhenium.

  5. Empirical electron cross-field mobility in a Hall effect thruster

    International Nuclear Information System (INIS)

    Garrigues, L.; Perez-Luna, J.; Lo, J.; Hagelaar, G. J. M.; Boeuf, J. P.; Mazouffre, S.

    2009-01-01

    Electron transport across the magnetic field in Hall effect thrusters is still an open question. Models have so far assumed 1/B 2 or 1/B scaling laws for the 'anomalous' electron mobility, adjusted to reproduce the integrated performance parameters of the thruster. We show that models based on such mobility laws predict very different ion velocity distribution functions (IVDF) than measured by laser induced fluorescence (LIF). A fixed spatial mobility profile, obtained by analysis of improved LIF measurements, leads to much better model predictions of thruster performance and IVDF than 1/B 2 or 1/B mobility laws for discharge voltages in the 500-700 V range.

  6. Study of ion flow dynamics in an inertial electrostatic confinement device through sequential grid construction

    International Nuclear Information System (INIS)

    Murali, S. Krupakar; Kulcinski, G. L.; Santarius, J. F.

    2008-01-01

    Experiments were performed to understand the dynamics of the ion flow in an inertial electrostatic confinement (IEC) device. This was done by monitoring the fusion rate as the symmetry of the grid was increased starting with a single loop all the way until the entire grid is constructed. The fusion rate was observed to increase with grid symmetry and eventually saturate. A single loop grid was observed to generate a cylindrical (∼line) fusion source. The ion flow distribution was measured by introducing fine wires across a single loop of the grid in the form of a chord of a circle (chord wires). This study revealed that with increased symmetry of the cathode grid wires the convergence of the ions improves. The chord wires provided electrons for ionization even at low pressures (∼6.67 mPa) and helped sustain the plasma. The impinging ions heat these wires locally and the temperature of the wires was measured using an infrared thermometer that was used to understand the ion flow distribution across the cathode grid. The presence of the grid wires seems to affect the fusion rate more drastically than previously thought (was assumed to be uniform around the central grid). Most of the fusion reactions were observed to occur in the ion microchannels that form in gaps between the cathode wires. This work helps understand the fusion source regimes and calibrate the IEC device.

  7. Pocket rocket: An electrothermal plasma micro-thruster

    Science.gov (United States)

    Greig, Amelia Diane

    Recently, an increase in use of micro-satellites constructed from commercial off the shelf (COTS) components has developed, to address the large costs associated with designing, testing and launching satellites. One particular type of micro-satellite of interest are CubeSats, which are modular 10 cm cubic satellites with total weight less than 1.33 kg. To assist with orbit boosting and attitude control of CubeSats, micro-propulsion systems are required, but are currently limited. A potential electrothermal plasma micro-thruster for use with CubeSats or other micro-satellites is under development at The Australian National University and forms the basis for this work. The thruster, known as ‘Pocket Rocket’, utilises neutral gas heating from ion-neutral collisions within a weakly ionised asymmetric plasma discharge, increasing the exhaust thermal velocity of the propellant gas, thereby producing higher thrust than if the propellant was emitted cold. In this work, neutral gas temperature of the Pocket Rocket discharge is studied in depth using rovibrational spectroscopy of the nitrogen (N2) second positive system (C3Πu → B3Πg), using both pure N2 and argon/N2 mixtures as the operating gas. Volume averaged steady state gas temperatures are measured for a range of operating conditions, with an analytical collisional model developed to verify experimental results. Results show that neutral gas heating is occurring with volume averaged steady state temperatures reaching 430 K in N2 and 1060 K for argon with 1% N2 at standard operating conditions of 1.5 Torr pressure and 10 W power input, demonstrating proof of concept for the Pocket Rocket thruster. Spatiotemporal profiles of gas temperature identify that the dominant heating mechanisms are ion-neutral collisions within the discharge and wall heating from ion bombardment of the thruster walls. To complement the experimental results, computational fluid dynamics (CFD) simulations using the commercial CFD

  8. Quantitative evaluation of potential irradiation geometries for carbon-ion beam grid therapy.

    Science.gov (United States)

    Tsubouchi, Toshiro; Henry, Thomas; Ureba, Ana; Valdman, Alexander; Bassler, Niels; Siegbahn, Albert

    2018-03-01

    Radiotherapy using grids containing cm-wide beam elements has been carried out sporadically for more than a century. During the past two decades, preclinical research on radiotherapy with grids containing small beam elements, 25 μm-0.7 mm wide, has been performed. Grid therapy with larger beam elements is technically easier to implement, but the normal tissue tolerance to the treatment is decreasing. In this work, a new approach in grid therapy, based on irradiations with grids containing narrow carbon-ion beam elements was evaluated dosimetrically. The aim formulated for the suggested treatment was to obtain a uniform target dose combined with well-defined grids in the irradiated normal tissue. The gain, obtained by crossfiring the carbon-ion beam grids over a simulated target volume, was quantitatively evaluated. The dose distributions produced by narrow rectangular carbon-ion beams in a water phantom were simulated with the PHITS Monte Carlo code. The beam-element height was set to 2.0 cm in the simulations, while the widths varied from 0.5 to 10.0 mm. A spread-out Bragg peak (SOBP) was then created for each beam element in the grid, to cover the target volume with dose in the depth direction. The dose distributions produced by the beam-grid irradiations were thereafter constructed by adding the dose profiles simulated for single beam elements. The variation of the valley-to-peak dose ratio (VPDR) with depth in water was thereafter evaluated. The separation of the beam elements inside the grids were determined for different irradiation geometries with a selection criterion. The simulated carbon-ion beams remained narrow down to the depths of the Bragg peaks. With the formulated selection criterion, a beam-element separation which was close to the beam-element width was found optimal for grids containing 3.0-mm-wide beam elements, while a separation which was considerably larger than the beam-element width was found advantageous for grids containing 0.5-mm

  9. Optimizing ideal ion propulsion systems depending on the nature of the propellant

    Directory of Open Access Journals (Sweden)

    Grigore CICAN

    2016-12-01

    Full Text Available From all accounts the ion thrusters are characterized by the fact that they produce a very high exhaust velocity and specific impulse, sometimes too high for many missions. The exhaust velocity of the ionized particles is a function of the ratio between electrical charge and mass. The obvious solution is the use of ions with low electrical charge – mass ratio, but many of these substances have a corrosive effect on the acceleration grids, they are toxic and hard to store on board the spacecraft. Currently the most used propellant for the ionic propulsion systems is xenon gas having many advantages, but it is expensive when compared to other propellants. The current paper aims to make an optimization study of ideal ion thrusters depending on the nature of the propellant using for studying a significant number of substances. It will study the variation of the performances: force, specific impulse, efficiency, etc for the same power available on board, for the same accelerating voltage and the same ionic current.

  10. Long Life Cold Cathodes for Hall effect Thrusters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An electron source incorporating long life, high current density cold cathodes inside a microchannel plate for use with ion thrusters is proposed. Cathode lifetime...

  11. Energy dissipation on ion-accelerator grids during high-voltage breakdown

    International Nuclear Information System (INIS)

    Menon, M.M.; Ponte, N.S.

    1981-01-01

    The effects of stored energy in the system capacitance across the accelerator grids during high voltage vacuum breakdown are examined. Measurements were made of the current flow and the energy deposition on the grids during breakdown. It is shown that only a portion (less than or equal to 40 J) of the total stored energy (congruent to 100 J) is actually dissipated on the grids. Most of the energy is released during the formation phase of the vacuum arc and is deposited primarily on the most positive grid. Certain abnormal situations led to energy depositions of about 200 J on the grid, but the ion accelerator endured them without exhibiting any deterioration in performance

  12. Numerical research of a 2D axial symmetry hybrid model for the radio-frequency ion thruster

    Science.gov (United States)

    Chenchen, WU; Xinfeng, SUN; Zuo, GU; Yanhui, JIA

    2018-04-01

    Since the high efficiency discharge is critical to the radio-frequency ion thruster (RIT), a 2D axial symmetry hybrid model has been developed to study the plasma evolution of RIT. The fluid method and the drift energy correction of the electron energy distribution function (EEDF) are applied to the analysis of the RIT discharge. In the meantime, the PIC-MCC method is used to investigate the ion beam current extraction character for the plasma plume region. The beam current simulation results, with the hybrid model, agree well with the experimental results, and the error is lower than 11%, which shows the validity of the model. The further study shows there is an optimal ratio for the radio-frequency (RF) power and the beam current extraction power under the fixed RIT configuration. And the beam extraction efficiency will decrease when the discharge efficiency beyond a certain threshold (about 87 W). As the input parameters of the hybrid model are all the design values, it can be directly used to the optimum design for other kinds of RITs and radio-frequency ion sources.

  13. Experimental and theoretical studies of cylindrical Hall thrusters

    International Nuclear Information System (INIS)

    Smirnov, Artem; Raitses, Yegeny; Fisch, Nathaniel J.

    2007-01-01

    The Hall thruster is a mature electric propulsion device that holds considerable promise in terms of the propellant saving potential. The annular design of the conventional Hall thruster, however, does not naturally scale to low power. The efficiency tends to be lower and the lifetime issues are more aggravated. Cylindrical geometry Hall thrusters have lower surface-to-volume ratio than conventional thrusters and, thus, seem to be more promising for scaling down. The cylindrical Hall thruster (CHT) is fundamentally different from the conventional design in the way the electrons are confined and the ion space charge is neutralized. The performances of both the large (9-cm channel diameter, 600-1000 W) and miniaturized (2.6-cm channel diameter, 50-300 W) CHTs are comparable with those of the state-of-the-art conventional (annular) design Hall thrusters of similar sizes. A comprehensive experimental and theoretical study of the CHT physics has been conducted, addressing the questions of electron cross-field transport, propellant ionization, plasma-wall interaction, and formation of the electron distribution function. Probe measurements in the harsh plasma environment of the microthruster were performed. Several interesting effects, such as the unusually high ionization efficiency and enhanced electron transport, were observed. Kinetic simulations suggest the existence of the strong fluctuation-enhanced electron diffusion and predict the non-Maxwellian shape of the electron distribution function. Through the acquired understanding of the new physics, ways for further optimization of this means for low-power space propulsion are suggested. Substantial flexibility in the magnetic field configuration of the CHT is the key tool in achieving the high-efficiency operation

  14. Effects of thruster firings on the shuttle's plasma and electric field environment

    International Nuclear Information System (INIS)

    Machuzak, J.S.; Burke, W.J.; Retterer, J.M.; Hunton, D.E.; Jasperse, J.R.; Smiddy, M.

    1993-01-01

    Simultaneous plasma and AC/DC electric field measurements taken during the space shuttle mission STS-4 at times of prolonged thruster firings are analyzed and cross correlated. Depending on the orientation of the shuttle's velocity vector to the magnetic field, ion densities and electric field wave spectra were enhanced or decreased. The systematic picture of interactions within the shuttle's plasma/neutral gas environment of Cairns and Gurnett (1991b) is confirmed and extended. Waves are excited by outgassed and thruster-ejected molecules that ionize in close proximity to the shuttle. On time scales significantly less than an ion gyroperiod, the newly created ions act as beams in the background plasma. These beams are sources of VLF waves that propagate near the shuttle and intensify during thruster firings. Plasma density depletions and/or the shuttle's geometry may hinder wave detection in the payload bay. A modified two-stream analysis indicates that beam components propagating at large angles to the magnetic field are unstable to the growth of lower hybrid waves. The beam-excited, lower hybrid waves heat some electrons to sufficient energies to produce impact ionization. Empirical evidence for other wave-growth mechanisms outside the lower-hybrid band is presented. 42 refs., 15 figs., 3 tabs

  15. Direction for the Future - Successive Acceleration of Positive and Negative Ions Applied to Space Propulsion

    CERN Document Server

    Aanesland, A.; Popelier, L.; Chabert, P.

    2013-12-16

    Electrical space thrusters show important advantages for applications in outer space compared to chemical thrusters, as they allow a longer mission lifetime with lower weight and propellant consumption. Mature technologies on the market today accelerate positive ions to generate thrust. The ion beam is neutralized by electrons downstream, and this need for an additional neutralization system has some drawbacks related to stability, lifetime and total weight and power consumption. Many new concepts, to get rid of the neutralizer, have been proposed, and the PEGASES ion-ion thruster is one of them. This new thruster concept aims at accelerating both positive and negative ions to generate thrust, such that additional neutralization is redundant. This chapter gives an overview of the concept of electric propulsion and the state of the development of this new ion-ion thruster.

  16. Density and velocity measurements of a sheath plasma from MPD thruster

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J.J.; Cho, T.S.; Choi, M.C.; Choi, E.H.; Cho, G.S.; Uhm, H.S.

    1999-07-01

    Magnetoplasma is the plasma that the electron and ion orbits are strongly confined by intense magnetic field. Recently, magnetoplasma dynamics (MPD) has been investigated in connection with applications to the rocket thruster in USA, Germany, etc. It can be widely applicable, including modification of satellite position and propulsion of the interplanetary space shuttle. A travel for a long distance journey is possible because a little amount of neutral gases is needed for the plasma source. Besides, this will provide a pollution free engine for future generations. MPD thruster is not a chemical engine. The authors have built a Mather type MPD thruster, which has 1 kV max charging, 10 kA max current flows, and has about 1 ms characteristic operation time. The Paschen curve of this thruster is measured and its minimum breakdown voltage occurs in the pressure range of 0.1 to 1 Torr. Langmuir and double probes are fabricated to diagnose the sheath plasma from the thruster. The temperature and density are calculated to be 2.5 eV and 10{sup 15} cm {sup {minus}3}, respectively, from the probe data. Making use of photo diode, an optical probe is fabricated to measure propagation velocity of the sheath plasma. The sheath plasma from the MPD thruster in the experiment propagates with velocity of 1 cm/{micro}s.

  17. 1000 Hours of Testing Completed on 10-kW Hall Thruster

    Science.gov (United States)

    Mason, Lee S.

    2001-01-01

    Between the months of April and August 2000, a 10-kW Hall effect thruster, designated T- 220, was subjected to a 1000-hr life test evaluation. Hall effect thrusters are propulsion devices that electrostatically accelerate xenon ions to produce thrust. Hall effect propulsion has been in development for many years, and low-power devices (1.35 kW) have been used in space for satellite orbit maintenance. The T-220, shown in the photo, produces sufficient thrust to enable efficient orbital transfers, saving hundreds of kilograms in propellant over conventional chemical propulsion systems. This test is the longest operation ever achieved on a high-power Hall thruster (greater than 4.5 kW) and is a key milestone leading to the use of this technology for future NASA, commercial, and military missions.

  18. Experimental Investigation of the Near-Wall Region in the NASA HiVHAc EDU2 Hall Thruster

    Science.gov (United States)

    Shastry, Rohit; Kamhawi, Hani; Huang, Wensheng; Haag, Thomas W.

    2015-01-01

    The HiVHAc propulsion system is currently being developed to support Discovery-class NASA science missions. Presently, the thruster meets the required operational lifetime by utilizing a novel discharge channel replacement mechanism. As a risk reduction activity, an alternative approach is being investigated that modifies the existing magnetic circuit to shift the ion acceleration zone further downstream such that the magnetic components are not exposed to direct ion impingement during the thruster's lifetime while maintaining adequate thruster performance and stability. To measure the change in plasma properties between the original magnetic circuit configuration and the modified, "advanced" configuration, six Langmuir probes were flush-mounted within each channel wall near the thruster exit plane. Plasma potential and electron temperature were measured for both configurations across a wide range of discharge voltages and powers. Measurements indicate that the upstream edge of the acceleration zone shifted downstream by as much as 0.104 channel lengths, depending on operating condition. The upstream edge of the acceleration zone also appears to be more insensitive to operating condition in the advanced configuration, remaining between 0.136 and 0.178 channel lengths upstream of the thruster exit plane. Facility effects studies performed on the original configuration indicate that the plasma and acceleration zone recede further upstream into the channel with increasing facility pressure. These results will be used to inform further modifications to the magnetic circuit that will provide maximum protection of the magnetic components without significant changes to thruster performance and stability.

  19. Ion Beam Propulsion Study

    Science.gov (United States)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  20. A centre-triggered magnesium fuelled cathodic arc thruster uses sublimation to deliver a record high specific impulse

    Science.gov (United States)

    Neumann, Patrick R. C.; Bilek, Marcela; McKenzie, David R.

    2016-08-01

    The cathodic arc is a high current, low voltage discharge that operates in vacuum and provides a stream of highly ionised plasma from a solid conducting cathode. The high ion velocities, together with the high ionisation fraction and the quasineutrality of the exhaust stream, make the cathodic arc an attractive plasma source for spacecraft propulsion applications. The specific impulse of the cathodic arc thruster is substantially increased when the emission of neutral species is reduced. Here, we demonstrate a reduction of neutral emission by exploiting sublimation in cathode spots and enhanced ionisation of the plasma in short, high-current pulses. This, combined with the enhanced directionality due to the efficient erosion profiles created by centre-triggering, substantially increases the specific impulse. We present experimentally measured specific impulses and jet power efficiencies for titanium and magnesium fuels. Our Mg fuelled source provides the highest reported specific impulse for a gridless ion thruster and is competitive with all flight rated ion thrusters. We present a model based on cathode sublimation and melting at the cathodic arc spot explaining the outstanding performance of the Mg fuelled source. A further significant advantage of an Mg-fuelled thruster is the abundance of Mg in asteroidal material and in space junk, providing an opportunity for utilising these resources in space.

  1. Rarefied gas electro jet (RGEJ) micro-thruster for space propulsion

    Science.gov (United States)

    Blanco, Ariel; Roy, Subrata

    2017-11-01

    This article numerically investigates a micro-thruster for small satellites which utilizes plasma actuators to heat and accelerate the flow in a micro-channel with rarefied gas in the slip flow regime. The inlet plenum condition is considered at 1 Torr with flow discharging to near vacuum conditions (consumption and the thrust effectiveness of the thruster are predicted based on these results. The ionized gas is modelled using local mean energy approximation. An electrically induced body force and a thermal heating source are calculated based on the space separated charge distribution and the ion Joule heating, respectively. The rarefied gas flow with these electric force and heating source is modelled using density-based compressible flow equations with slip flow boundary conditions. The results show that a significant improvement of specific impulse can be achieved over highly optimized cold gas thrusters using the same propellant.

  2. Iodine Hall Thruster

    Science.gov (United States)

    Szabo, James

    2015-01-01

    Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).

  3. Effects of facility backpressure on the performance and plume of a Hall thruster

    Science.gov (United States)

    Walker, Mitchell Louis Ronald

    2005-07-01

    This dissertation presents research aimed at understanding the relationship between facility background pressure, Hall thruster performance, and plume characteristics. Due to the wide range of facilities used in Hall thruster testing, it is difficult for researchers to make adequate comparisons between data sets because of both dissimilar instrumentation and backpressures. The differences in the data sets are due to the ingestion of background gas into the Hall thruster discharge channel and charge-exchange collisions in the plume. Thus, this research aims to understand facility effects and to develop the tools needed to allow researchers to obtain relevant plume and performance data for a variety of chambers and backpressures. The first portion of this work develops a technique for calibrating a vacuum chamber in terms of pressure to account for elevated backpressures while testing Hall thrusters. Neutral gas background pressure maps of the Large Vacuum Test Facility are created at a series of cold anode flow rates and one hot flow rate at two UM/AFRL P5 5 kW Hall thruster operating conditions. These data show that a cold flow pressure map can be used to approximate the neutral background pressure in the chamber with the thruster in operation. In addition, the data are used to calibrate a numerical model that accurately predicts facility backpressure within a vacuum chamber of specified geometry and pumping speed. The second portion of this work investigates how facility backpressure influences the plume, plume diagnostics, and performance of the P5 Hall thruster. Measurements of the plume and performance characteristics over a wide range of pressures show that ingestion, a decrease in the downstream plasma potential, and broadening of the ion energy distribution function cause the increase in thrust with backpressure. Furthermore, a magnetically-filtered Faraday probe accurately measures ion current density at elevated operating pressures. The third portion of

  4. Magnetic Field Effects on the Plume of a Diverging Cusped-Field Thruster

    KAUST Repository

    Matlock, Taylor

    2010-07-25

    The Diverging Cusped-Field Thruster (DCFT) uses three permanent ring magnets of alternating polarity to create a unique magnetic topology intended to reduce plasma losses to the discharge chamber surfaces. The magnetic field strength within the DCFT discharge chamber (up to 4 kG on axis) is much higher than in thrusters of similar geometry, which is believed to be a driving factor in the high measured anode efficiencies. The field strength in the near plume region is large as well, which may bear on the high beam divergences measured, with peaks in ion current found at angles of around 30-35 from the thruster axis. Characterization of the DCFT has heretofore involved only one magnetic topology. It is then the purpose of this study to investigate changes to the near-field plume caused by altering the shape and strength of the magnetic field. A thick magnetic collar, encircling the thruster body, is used to lower the field strength outside of the discharge chamber and thus lessen any effects caused by the external field. Changes in the thruster plume with field topology are monitored by the use of normal Langmuir and emissive probes interrogating the near-field plasma. Results are related to other observations that suggest a unified conceptual framework for the important near-exit region of the thruster.

  5. Grids heat loading of an ion source in two-stage acceleration system

    International Nuclear Information System (INIS)

    Okumura, Yoshikazu; Ohara, Yoshihiro; Ohga, Tokumichi

    1978-05-01

    Heat loading of the extraction grids, which is one of the critical problems limiting the beam pulse duration at high power level, has been investigated experimentally, with an ion source in a two-stage acceleration system of four multi-aperture grids. The loading of each grid depends largely on extraction current and grid gap pressures; it decreases with improvement of the beam optics and with decrease of the pressures. In optimum operating modes, its level is typically less than -- 2% of the total beam power or -- 200 W/cm 2 at beam energies of 50 - 70 kV. (auth.)

  6. Ion engine auxiliary propulsion applications and integration study

    Science.gov (United States)

    Zafran, S. (Editor)

    1977-01-01

    The benefits derived from application of the 8-cm mercury electron bombardment ion thruster were assessed. Two specific spacecraft missions were studied. A thruster was tested to provide additional needed information on its efflux characteristics and interactive effects. A Users Manual was then prepared describing how to integrate the thruster for auxiliary propulsion on geosynchronous satellites. By incorporating ion engines on an advanced communications mission, the weight available for added payload increases by about 82 kg (181 lb) for a 100 kg (2200 lb) satellite which otherwise uses electrothermal hydrazine. Ion engines can be integrated into a high performance propulsion module that is compatible with the multimission modular spacecraft and can be used for both geosynchronous and low earth orbit applications. The low disturbance torques introduced by the ion engines permit accurate spacecraft pointing with the payload in operation during thrusting periods. The feasibility of using the thruster's neutralizer assembly for neutralization of differentially charged spacecraft surfaces at geosynchronous altitude was demonstrated during the testing program.

  7. Advanced laboratory for testing plasma thrusters and Hall thruster measurement campaign

    Directory of Open Access Journals (Sweden)

    Szelecka Agnieszka

    2016-06-01

    Full Text Available Plasma engines are used for space propulsion as an alternative to chemical thrusters. Due to the high exhaust velocity of the propellant, they are more efficient for long-distance interplanetary space missions than their conventional counterparts. An advanced laboratory of plasma space propulsion (PlaNS at the Institute of Plasma Physics and Laser Microfusion (IPPLM specializes in designing and testing various electric propulsion devices. Inside of a special vacuum chamber with three performance pumps, an environment similar to the one that prevails in space is created. An innovative Micro Pulsed Plasma Thruster (LμPPT with liquid propellant was built at the laboratory. Now it is used to test the second prototype of Hall effect thruster (HET operating on krypton propellant. Meantime, an improved prototype of krypton Hall thruster is constructed.

  8. Magnesium Hall Thruster

    Science.gov (United States)

    Szabo, James J.

    2015-01-01

    This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.

  9. Design, fabrication and testing of porous tungsten vaporizers for mercury ion thrusters

    Science.gov (United States)

    Zavesky, R.; Kroeger, E.; Kami, S.

    1983-01-01

    The dispersions in the characteristics, performance and reliability of vaporizers for early model 30-cm thrusters were investigated. The purpose of the paper is to explore the findings and to discuss the approaches that were taken to reduce the observed dispersion and present the results of a program which validated those approaches. The information that is presented includes porous tungsten materials specifications, a discussion of assembly procedures, and a description of a test program which screens both material and fabrication processes. There are five appendices providing additional detail in the areas of vaporizer contamination, nitrogen flow testing, bubble testing, porosimeter testing, and mercury purity. Four neutralizers, seven cathodes and five main vaporizers were successfully fabricated, tested, and operated on thrusters. Performance data from those devices is presented and indicates extremely repeatable results from using the design and fabrication procedures.

  10. Performance Evaluation of the T6 Ion Engine

    Science.gov (United States)

    Snyder, John Steven; Goebel, Dan M.; Hofer, Richard R.; Polk, James E.; Wallace, Neil C.; Simpson, Huw

    2010-01-01

    The T6 ion engine is a 22-cm diameter, 4.5-kW Kaufman-type ion thruster produced by QinetiQ, Ltd., and is baselined for the European Space Agency BepiColombo mission to Mercury and is being qualified under ESA sponsorship for the extended range AlphaBus communications satellite platform. The heritage of the T6 includes the T5 ion thruster now successfully operating on the ESA GOCE spacecraft. As a part of the T6 development program, an engineering model thruster was subjected to a suite of performance tests and plume diagnostics at the Jet Propulsion Laboratory. The engine was mounted on a thrust stand and operated over its nominal throttle range of 2.5 to 4.5 kW. In addition to the typical electrical and flow measurements, an E x B mass analyzer, scanning Faraday probe, thrust vector probe, and several near-field probes were utilized. Thrust, beam divergence, double ion content, and thrust vector movement were all measured at four separate throttle points. The engine performance agreed well with published data on this thruster. At full power the T6 produced 143 mN of thrust at a specific impulse of 4120 seconds and an efficiency of 64%; optimization of the neutralizer for lower flow rates increased the specific impulse to 4300 seconds and the efficiency to nearly 66%. Measured beam divergence was less than, and double ion content was greater than, the ring-cusp-design NSTAR thruster that has flown on NASA missions. The measured thrust vector offset depended slightly on throttle level and was found to increase with time as the thruster approached thermal equilibrium.

  11. Improvement of the low frequency oscillation model for Hall thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Wang, Huashan [Yanshan University, College of Vehicles and Energy, Qinhuangdao 066004, Hebei (China)

    2016-08-15

    The low frequency oscillation of the discharge current in Hall thrusters is a major aspect of these devices that requires further study. While the existing model captures the ionization mechanism of the low frequency oscillation, it unfortunately fails to express the dynamic characteristics of the ion acceleration. The analysis in this paper shows this is because of the simplification of the electron equation, which affects both the electric field distribution and the ion acceleration process. Additionally, the electron density equation is revised and a new model that is based on the physical properties of ion movement is proposed.

  12. Modeling of the near field plume of a Hall thruster

    International Nuclear Information System (INIS)

    Boyd, Iain D.; Yim, John T.

    2004-01-01

    In this study, a detailed numerical model is developed to simulate the xenon plasma near-field plume from a Hall thruster. The model uses a detailed fluid model to describe the electrons and a particle-based kinetic approach is used to model the heavy xenon ions and atoms. The detailed model is applied to compute the near field plume of a small, 200 W Hall thruster. Results from the detailed model are compared with the standard modeling approach that employs the Boltzmann model. The usefulness of the model detailed is assessed through direct comparisons with a number of different measured data sets. The comparisons illustrate that the detailed model accurately predicts a number of features of the measured data not captured by the simpler Boltzmann approach

  13. Ball-grid array architecture for microfabricated ion traps

    Science.gov (United States)

    Guise, Nicholas D.; Fallek, Spencer D.; Stevens, Kelly E.; Brown, K. R.; Volin, Curtis; Harter, Alexa W.; Amini, Jason M.; Higashi, Robert E.; Lu, Son Thai; Chanhvongsak, Helen M.; Nguyen, Thi A.; Marcus, Matthew S.; Ohnstein, Thomas R.; Youngner, Daniel W.

    2015-05-01

    State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with 40Ca+ ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with 171Yb+ ions in a second BGA trap.

  14. Ball-grid array architecture for microfabricated ion traps

    International Nuclear Information System (INIS)

    Guise, Nicholas D.; Fallek, Spencer D.; Stevens, Kelly E.; Brown, K. R.; Volin, Curtis; Harter, Alexa W.; Amini, Jason M.; Higashi, Robert E.; Lu, Son Thai; Chanhvongsak, Helen M.; Nguyen, Thi A.; Marcus, Matthew S.; Ohnstein, Thomas R.; Youngner, Daniel W.

    2015-01-01

    State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with 40 Ca + ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with 171 Yb + ions in a second BGA trap

  15. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lundstrom, Blake R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cao, Ziwei [SunPower Corporation; Roc, Albert [SunPower Corp.

    2017-08-25

    Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity and resistance as the battery degrades. Across 9 aging test conditions from 0oC to 55oC, the model predicts capacity fade with 1.4 percent RMS error and resistance growth with 15 percent RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.

  16. Electron temperature measurement in Maxwellian non-isothermal beam plasma of an ion thruster

    International Nuclear Information System (INIS)

    Zhang, Zun; Tang, Haibin; Kong, Mengdi; Zhang, Zhe; Ren, Junxue

    2015-01-01

    Published electron temperature profiles of the beam plasma from ion thrusters reveal many divergences both in magnitude and radial variation. In order to know exactly the radial distributions of electron temperature and understand the beam plasma characteristics, we applied five different experimental approaches to measure the spatial profiles of electron temperature and compared the agreement and disagreement of the electron temperature profiles obtained from these techniques. Experimental results show that the triple Langmuir probe and adiabatic poly-tropic law methods could provide more accurate space-resolved electron temperature of the beam plasma than other techniques. Radial electron temperature profiles indicate that the electrons in the beam plasma are non-isothermal, which is supported by a radial decrease (∼2 eV) of electron temperature as the plume plasma expands outward. Therefore, the adiabatic “poly-tropic law” is more appropriate than the isothermal “barometric law” to be used in electron temperature calculations. Moreover, the calculation results show that the electron temperature profiles derived from the “poly-tropic law” are in better agreement with the experimental data when the specific heat ratio (γ) lies in the range of 1.2-1.4 instead of 5/3

  17. A Small Modular Laboratory Hall Effect Thruster

    Science.gov (United States)

    Lee, Ty Davis

    Electric propulsion technologies promise to revolutionize access to space, opening the door for mission concepts unfeasible by traditional propulsion methods alone. The Hall effect thruster is a relatively high thrust, moderate specific impulse electric propulsion device that belongs to the class of electrostatic thrusters. Hall effect thrusters benefit from an extensive flight history, and offer significant performance and cost advantages when compared to other forms of electric propulsion. Ongoing research on these devices includes the investigation of mechanisms that tend to decrease overall thruster efficiency, as well as the development of new techniques to extend operational lifetimes. This thesis is primarily concerned with the design and construction of a Small Modular Laboratory Hall Effect Thruster (SMLHET), and its operation on argon propellant gas. Particular attention was addressed at low-cost, modular design principles, that would facilitate simple replacement and modification of key thruster parts such as the magnetic circuit and discharge channel. This capability is intended to facilitate future studies of device physics such as anomalous electron transport and magnetic shielding of the channel walls, that have an impact on thruster performance and life. Preliminary results demonstrate SMLHET running on argon in a manner characteristic of Hall effect thrusters, additionally a power balance method was utilized to estimate thruster performance. It is expected that future thruster studies utilizing heavier though more expensive gases like xenon or krypton, will observe increased efficiency and stability.

  18. Concept Study of Radio Frequency (RF Plasma Thruster for Space Propulsion

    Directory of Open Access Journals (Sweden)

    Anna-Maria Theodora ANDREESCU

    2016-12-01

    Full Text Available Electric thrusters are capable of accelerating ions to speeds that are impossible to reach using chemical reaction. Recent advances in plasma-based concepts have led to the identification of electromagnetic (RF generation and acceleration systems as able to provide not only continuous thrust, but also highly controllable and wide-range exhaust velocities. For Future Space Propulsion there is a pressing need for low pressure, high mass flow rate and controlled ion energies. This paper explores the potential of using RF heated plasmas for space propulsion in order to mitigate the electric propulsion problems caused by erosion and gain flexibility in plasma manipulation. The main key components of RF thruster architecture are: a feeding system able to provide the required neutral gas flow, plasma source chamber, antenna/electrodes wrapped around the discharge tube and optimized electromagnetic field coils for plasma confinement. A preliminary analysis of system performance (thrust, specific impulse, efficiency is performed along with future plans of Space Propulsion based on this new concept of plasma mechanism.

  19. Rarefied gas electro jet (RGEJ) micro-thruster for space propulsion

    International Nuclear Information System (INIS)

    Blanco, Ariel; Roy, Subrata

    2017-01-01

    This article numerically investigates a micro-thruster for small satellites which utilizes plasma actuators to heat and accelerate the flow in a micro-channel with rarefied gas in the slip flow regime. The inlet plenum condition is considered at 1 Torr with flow discharging to near vacuum conditions (<0.05 Torr). The Knudsen numbers at the inlet and exit planes are ∼0.01 and ∼0.1, respectively. Although several studies have been performed in micro-hallow cathode discharges at constant pressure, to our knowledge, an integrated study of the glow discharge physics and resulting fluid flow of a plasma thruster under these low pressure and low Knudsen number conditions is yet to be reported. Numerical simulations of the charge distribution due to gas ionization processes and the resulting rarefied gas flow are performed using an in-house code. The mass flow rate, thrust, specific impulse, power consumption and the thrust effectiveness of the thruster are predicted based on these results. The ionized gas is modelled using local mean energy approximation. An electrically induced body force and a thermal heating source are calculated based on the space separated charge distribution and the ion Joule heating, respectively. The rarefied gas flow with these electric force and heating source is modelled using density-based compressible flow equations with slip flow boundary conditions. The results show that a significant improvement of specific impulse can be achieved over highly optimized cold gas thrusters using the same propellant. (paper)

  20. Anode sheath in Hall thrusters

    International Nuclear Information System (INIS)

    Dorf, L.; Semenov, V.; Raitses, Y.

    2003-01-01

    A set of hydrodynamic equations is used to describe quasineutral plasma in ionization and acceleration regions of a Hall thruster. The electron distribution function and Poisson equation are invoked for description of a near-anode region. Numerical solutions suggest that steady-state operation of a Hall thruster can be achieved at different anode sheath regimes. It is shown that the anode sheath depends on the thruster operating conditions, namely the discharge voltage and the mass flow rate

  1. Low power arcjet thruster pulse ignition

    Science.gov (United States)

    Sarmiento, Charles J.; Gruber, Robert P.

    1987-01-01

    An investigation of the pulse ignition characteristics of a 1 kW class arcjet using an inductive energy storage pulse generator with a pulse width modulated power converter identified several thruster and pulse generator parameters that influence breakdown voltage including pulse generator rate of voltage rise. This work was conducted with an arcjet tested on hydrogen-nitrogen gas mixtures to simulate fully decomposed hydrazine. Over all ranges of thruster and pulser parameters investigated, the mean breakdown voltages varied from 1.4 to 2.7 kV. Ignition tests at elevated thruster temperatures under certain conditions revealed occasional breakdowns to thruster voltages higher than the power converter output voltage. These post breakdown discharges sometimes failed to transition to the lower voltage arc discharge mode and the thruster would not ignite. Under the same conditions, a transition to the arc mode would occur for a subsequent pulse and the thruster would ignite. An automated 11 600 cycle starting and transition to steady state test demonstrated ignition on the first pulse and required application of a second pulse only two times to initiate breakdown.

  2. Internal plasma potential measurements of a Hall thruster using xenon and krypton propellant

    International Nuclear Information System (INIS)

    Linnell, Jesse A.; Gallimore, Alec D.

    2006-01-01

    For krypton to become a realistic option for Hall thruster operation, it is necessary to understand the performance gap between xenon and krypton and what can be done to reduce it. A floating emissive probe is used with the Plasmadynamics and Electric Propulsion Laboratory's High-speed Axial Reciprocating Probe system to map the internal plasma potential structure of the NASA-173Mv1 Hall thruster [R. R. Hofer, R. S. Jankovsky, and A. D. Gallimore, J. Propulsion Power 22, 721 (2006); and ibid.22, 732 (2006)] using xenon and krypton propellant. Measurements are taken for both propellants at discharge voltages of 500 and 600 V. Electron temperatures and electric fields are also reported. The acceleration zone and equipotential lines are found to be strongly linked to the magnetic-field lines. The electrostatic plasma lens of the NASA-173Mv1 Hall thruster strongly focuses the xenon ions toward the center of the discharge channel, whereas the krypton ions are defocused. Krypton is also found to have a longer acceleration zone than the xenon cases. These results explain the large beam divergence observed with krypton operation. Krypton and xenon have similar maximum electron temperatures and similar lengths of the high electron temperature zone, although the high electron temperature zone is located farther downstream in the krypton case

  3. Oxygen-Methane Thruster, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Orion Propulsion, Inc. proposes to develop an Oxygen and Methane RCS Thruster to advance the technology of alternate fuels. A successful Oxygen/CH4 RCS Thruster will...

  4. Two-Dimensional Modelling of the Hall Thruster Discharge: Final Report

    Science.gov (United States)

    2007-09-10

    ion energy flux to wall, qWi, and electron energy flux to wall, qWe for Vd= 300 V, 600 V and 750 V. All variables are evaluated at the outer wall (r... qWe for Vd= 300 V, 600 V and 750 V. All variables are evaluated at the outer wall (r=0.05m). The vertical dashed line represents the thruster exit

  5. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.

    Science.gov (United States)

    West, Michael D; Charles, Christine; Boswell, Rod W

    2009-05-01

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 microN. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  6. Scale Model Thruster Acoustic Measurement Results

    Science.gov (United States)

    Vargas, Magda; Kenny, R. Jeremy

    2013-01-01

    The Space Launch System (SLS) Scale Model Acoustic Test (SMAT) is a 5% scale representation of the SLS vehicle, mobile launcher, tower, and launch pad trench. The SLS launch propulsion system will be comprised of the Rocket Assisted Take-Off (RATO) motors representing the solid boosters and 4 Gas Hydrogen (GH2) thrusters representing the core engines. The GH2 thrusters were tested in a horizontal configuration in order to characterize their performance. In Phase 1, a single thruster was fired to determine the engine performance parameters necessary for scaling a single engine. A cluster configuration, consisting of the 4 thrusters, was tested in Phase 2 to integrate the system and determine their combined performance. Acoustic and overpressure data was collected during both test phases in order to characterize the system's acoustic performance. The results from the single thruster and 4- thuster system are discussed and compared.

  7. Electron energy distribution function in a low-power Hall thruster discharge and near-field plume

    Science.gov (United States)

    Tichý, M.; Pétin, A.; Kudrna, P.; Horký, M.; Mazouffre, S.

    2018-06-01

    Electron temperature and plasma density, as well as the electron energy distribution function (EEDF), have been obtained inside and outside the dielectric channel of a 200 W permanent magnet Hall thruster. Measurements were carried out by means of a cylindrical Langmuir probe mounted onto a compact fast moving translation stage. The 3D particle-in cell numerical simulations complement experiments. The model accounts for the crossed electric and magnetic field configuration in a weakly collisional regime where only electrons are magnetized. Since only the electron dynamics is of interest in this study, an artificial mass of ions corresponding to mi = 30 000me was used to ensure ions could be assumed at rest. The simulation domain is located at the thruster exit plane and does not include the cathode. The measured EEDF evidences a high-energy electron population that is superimposed onto the low energy bulk population outside the channel. Inside the channel, the EEDF is close to Maxwellian. Both the experimental and numerical EEDF depart from an equilibrium distribution at the channel exit plane, a region of high magnetic field. We therefore conclude that the fast electron group found in the experiment corresponds to the electrons emitted by the external cathode that reach the thruster discharge without experiencing collision events.

  8. Laser Induced Fluorescence Measurements in a Hall Thruster Plume as a Function of Background Pressure

    Science.gov (United States)

    Spektor, R.; Tighe, W. G.; Kamhawi, H.

    2016-01-01

    A set of Laser Induced Fluorescence (LIF) measurements in the near-field region of the NASA- 173M Hall thruster plume is presented at four background pressure conditions varying from 9.4 x 10(exp -6) torr to 3.3 x 10(exp -5) torr. The xenon ion velocity distribution function was measured simultaneously along the axial and radial directions. An ultimate exhaust velocity of 19.6+/-0.25 km/s achieved at a distance of 20 mm was measured, and that value was not sensitive to pressure. On the other hand, the ion axial velocity at the thruster exit was strongly influenced by pressure, indicating that the accelerating electric field moved inward with increased pressure. The shift in electric field corresponded to an increase in measured thrust. Pressure had a minor effect on the radial component of ion velocity, mainly affecting ions exiting close to the channel inner wall. At that radial location the radial component of ion velocity was approximately 1000 m/s greater at the lowest pressure than at the highest pressure. A reduction of the inner magnet coil current by 0.6 A resulted in a lower axial ion velocity at the channel exit while the radial component of ion velocity at the channel inner wall location increased by 1300 m/s, and at the channel outer wall location the radial ion velocity remained unaffected. The ultimate exhaust velocity was not significantly affected by the inner magnet current.

  9. Q-Thruster Breadboard Campaign Project

    Science.gov (United States)

    White, Harold

    2014-01-01

    Dr. Harold "Sonny" White has developed the physics theory basis for utilizing the quantum vacuum to produce thrust. The engineering implementation of the theory is known as Q-thrusters. During FY13, three test campaigns were conducted that conclusively demonstrated tangible evidence of Q-thruster physics with measurable thrust bringing the TRL up from TRL 2 to early TRL 3. This project will continue with the development of the technology to a breadboard level by leveraging the most recent NASA/industry test hardware. This project will replace the manual tuning process used in the 2013 test campaign with an automated Radio Frequency (RF) Phase Lock Loop system (precursor to flight-like implementation), and will redesign the signal ports to minimize RF leakage (improves efficiency). This project will build on the 2013 test campaign using the above improvements on the test implementation to get ready for subsequent Independent Verification and Validation testing at Glenn Research Center (GRC) and Jet Propulsion Laboratory (JPL) in FY 2015. Q-thruster technology has a much higher thrust to power than current forms of electric propulsion (7x Hall thrusters), and can significantly reduce the total power required for either Solar Electric Propulsion (SEP) or Nuclear Electric Propulsion (NEP). Also, due to the high thrust and high specific impulse, Q-thruster technology will greatly relax the specific mass requirements for in-space nuclear reactor systems. Q-thrusters can reduce transit times for a power-constrained architecture.

  10. Effect of plasma distribution on propulsion performance in electrodeless plasma thrusters

    Science.gov (United States)

    Takao, Yoshinori; Takase, Kazuki; Takahashi, Kazunori

    2016-09-01

    A helicon plasma thruster consisting of a helicon plasma source and a magnetic nozzle is one of the candidates for long-lifetime thrusters because no electrodes are employed to generate or accelerate plasma. A recent experiment, however, detected the non-negligible axial momentum lost to the lateral wall boundary, which degrades thruster performance, when the source was operated with highly ionized gases. To investigate this mechanism, we have conducted two-dimensional axisymmetric particle-in-cell (PIC) simulations with the neutral distribution obtained by Direct Simulation Monte Carlo (DSMC) method. The numerical results have indicated that the axially asymmetric profiles of the plasma density and potential are obtained when the strong decay of neutrals occurs at the source downstream. This asymmetric potential profile leads to the accelerated ion towards the lateral wall, leading to the non-negligible net axial force in the opposite direction of the thrust. Hence, to reduce this asymmetric profile by increasing the neutral density at downstream and/or by confining plasma with external magnetic field would result in improvement of the propulsion performance. These effects are also analyzed by PIC/DSMC simulations.

  11. Numerical investigation of a Hall thruster plasma

    International Nuclear Information System (INIS)

    Roy, Subrata; Pandey, B.P.

    2002-01-01

    The dynamics of the Hall thruster is investigated numerically in the framework of a one-dimensional, multifluid macroscopic description of a partially ionized xenon plasma using finite element formulation. The model includes neutral dynamics, inelastic processes, and plasma-wall interaction. Owing to disparate temporal scales, ions and neutrals have been described by set of time-dependent equations, while electrons are considered in steady state. Based on the experimental observations, a third order polynomial in electron temperature is used to calculate ionization rate. The results show that in the acceleration channel the increase in the ion number density is related to the decrease in the neutral number density. The electron and ion velocity profiles are consistent with the imposed electric field. The electron temperature remains uniform for nearly two-thirds of the channel; then sharply increases to a peak before dropping slightly at the exit. This is consistent with the predicted electron gyration velocity distribution

  12. Lifecycle comparison of selected Li-ion battery chemistries under grid and electric vehicle duty cycle combinations

    Science.gov (United States)

    Crawford, Alasdair J.; Huang, Qian; Kintner-Meyer, Michael C. W.; Zhang, Ji-Guang; Reed, David M.; Sprenkle, Vincent L.; Viswanathan, Vilayanur V.; Choi, Daiwon

    2018-03-01

    Li-ion batteries are expected to play a vital role in stabilizing the electrical grid as solar and wind generation capacity becomes increasingly integrated into the electric infrastructure. This article describes how two different commercial Li-ion batteries based on LiNi0.8Co0.15Al0.05O2 (NCA) and LiFePO4 (LFP) chemistries were tested under grid duty cycles recently developed for two specific grid services: (1) frequency regulation (FR) and (2) peak shaving (PS) with and without being subjected to electric vehicle (EV) drive cycles. The lifecycle comparison derived from the capacity, round-trip efficiency (RTE), resistance, charge/discharge energy, and total used energy of the two battery chemistries are discussed. The LFP chemistry shows better stability for the energy-intensive PS service, while the NCA chemistry is more conducive to the FR service under the operating regimes investigated. The results can be used as a guideline for selection, deployment, operation, and cost analyses of Li-ion batteries used for different applications.

  13. NASA HERMeS Hall Thruster Electrical Configuration Characterization

    Science.gov (United States)

    Peterson, Peter; Kamhawi, Hani; Huang, Wensheng; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Hofer, Richard

    2016-01-01

    NASAs Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight ready propulsion system. Part of the technology maturation was to test the TDU-1 thruster in several ground based electrical configurations to assess the thruster robustness and suitability to successful in-space operation. The ground based electrical configuration testing has recently been demonstrated as an important step in understanding and assessing how a Hall thruster may operate differently in space compared to ground based testing, and to determine the best configuration to conduct development and qualification testing. This presentation will cover the electrical configuration testing of the TDU-1 HERMeS Hall thruster in NASA Glenn Research Centers Vacuum Facility 5. The three electrical configurations examined are the thruster body tied to facility ground, thruster floating, and finally the thruster body electrically tied to cathode common. The TDU-1 HERMeS was configured with two different exit plane boundary conditions, dielectric and conducting, to examine the influence on the electrical configuration characterization.

  14. Investigation of excited states populations density of Hall thruster plasma in three dimensions by laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Krivoruchko, D. D.; Skrylev, A. V.

    2018-01-01

    The article deals with investigation of the excited states populations distribution of a low-temperature xenon plasma in the thruster with closed electron drift at 300 W operating conditions were investigated by laser-induced fluorescence (LIF) over the 350-1100 nm range. Seven xenon ions (Xe II) transitions were analyzed, while for neutral atoms (Xe I) just three transitions were explored, since the majority of Xe I emission falls into the ultraviolet or infrared part of the spectrum and are difficult to measure. The necessary spontaneous emission probabilities (Einstein coefficients) were calculated. Measurements of the excited state distribution were made for points (volume of about 12 mm3) all over the plane perpendicular to thruster axis in four positions on it (5, 10, 50 and 100 mm). Measured LIF signal intensity have differences for each location of researched point (due to anisotropy of thruster plume), however the structure of states populations distribution persisted at plume and is violated at the thruster exit plane and cathode area. Measured distributions show that for describing plasma of Hall thruster one needs to use a multilevel kinetic model, classic model can be used just for far plume region or for specific electron transitions.

  15. Recovery Act - Demonstration of Sodium Ion Battery for Grid Level Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, Ted [Aquion Energy, Inc., Pittsburgh, PA (United States); Whitacre, Jay [Aquion Energy, Inc., Pittsburgh, PA (United States); Weber, Eric [Aquion Energy, Inc., Pittsburgh, PA (United States); Eshoo, Michael [Aquion Energy, Inc., Pittsburgh, PA (United States); Noland, James [Aquion Energy, Inc., Pittsburgh, PA (United States); Blackwood, David [Aquion Energy, Inc., Pittsburgh, PA (United States); Campbell, Williams [Aquion Energy, Inc., Pittsburgh, PA (United States); Sheen, Eric [Aquion Energy, Inc., Pittsburgh, PA (United States); Spears, Christopher [Aquion Energy, Inc., Pittsburgh, PA (United States); Smith, Christopher [Aquion Energy, Inc., Pittsburgh, PA (United States)

    2012-08-31

    Aquion Energy received a $5.179 million cooperative research agreement under the Department of Energy's Smart Grid Demonstration Program Demonstration of Promising Energy Storage Technologies (Program Area 2.5) of FOA DE-FOE-0000036. The main objective of this project was to demonstrate Aquion's low cost, grid-scale, ambient temperature sodium ion energy storage device. The centerpiece of the technology is a novel hybrid energy storage chemistry that has been proven in a laboratory environment. The objective was to translate these groundbreaking results from the small-batch, small-cell test environment to the pilot scale to enable significant numbers of multiple ampere-hour cells to be manufactured and assembled into test batteries. Aquion developed a proof of concept demonstration unit that showed similar performance and major cost improvement over existing technologies. Beyond minimizing cell and system cost, Aquion built a technology that is safe, environmentally benign and durable over many thousands of cycles as used in a variety of grid support roles.

  16. Hall Thruster Thermal Modeling and Test Data Correlation

    Science.gov (United States)

    Myers, James; Kamhawi, Hani; Yim, John; Clayman, Lauren

    2016-01-01

    The life of Hall Effect thrusters are primarily limited by plasma erosion and thermal related failures. NASA Glenn Research Center (GRC) in cooperation with the Jet Propulsion Laboratory (JPL) have recently completed development of a Hall thruster with specific emphasis to mitigate these limitations. Extending the operational life of Hall thursters makes them more suitable for some of NASA's longer duration interplanetary missions. This paper documents the thermal model development, refinement and correlation of results with thruster test data. Correlation was achieved by minimizing uncertainties in model input and recognizing the relevant parameters for effective model tuning. Throughout the thruster design phase the model was used to evaluate design options and systematically reduce component temperatures. Hall thrusters are inherently complex assemblies of high temperature components relying on internal conduction and external radiation for heat dispersion and rejection. System solutions are necessary in most cases to fully assess the benefits and/or consequences of any potential design change. Thermal model correlation is critical since thruster operational parameters can push some components/materials beyond their temperature limits. This thruster incorporates a state-of-the-art magnetic shielding system to reduce plasma erosion and to a lesser extend power/heat deposition. Additionally a comprehensive thermal design strategy was employed to reduce temperatures of critical thruster components (primarily the magnet coils and the discharge channel). Long term wear testing is currently underway to assess the effectiveness of these systems and consequently thruster longevity.

  17. High Accuracy Positioning using Jet Thrusters for Quadcopter

    Directory of Open Access Journals (Sweden)

    Pi ChenHuan

    2018-01-01

    Full Text Available A quadcopter is equipped with four additional jet thrusters on its horizontal plane and vertical to each other in order to improve the maneuverability and positioning accuracy of quadcopter. A dynamic model of the quadcopter with jet thrusters is derived and two controllers are implemented in simulation, one is a dual loop state feedback controller for pose control and another is an auxiliary jet thruster controller for accurate positioning. Step response simulations showed that the jet thruster can control the quadcopter with less overshoot compared to the conventional one. Over 10s loiter simulation with disturbance, the quadcopter with jet thruster decrease 85% of RMS error of horizontal disturbance compared to a conventional quadcopter with only a dual loop state feedback controller. The jet thruster controller shows the possibility for further accurate in the field of quadcopter positioning.

  18. Proposal for Testing and Validation of Vacuum Ultra-Violet Atomic Laser-Induced Fluorescence as a Method to Analyze Carbon Grid Erosion in Ion Thrusters

    Science.gov (United States)

    Stevens, Richard

    2003-01-01

    Previous investigation under award NAG3-25 10 sought to determine the best method of LIF to determine the carbon density in a thruster plume. Initial reports from other groups were ambiguous as to the number of carbon clusters that might be present in the plume of a thruster. Carbon clusters would certainly affect the ability to LIF; if they were the dominant species, then perhaps the LIF method should target clusters. The results of quadrupole mass spectroscopy on sputtered carbon determined that minimal numbers of clusters were sputtered from graphite under impact from keV Krypton. There were some investigations in the keV range by other groups that hinted at clusters, but at the time the proposal was presented to NASA, there was no data from low-energy sputtering available. Thus, the proposal sought to develop a method to characterize the population only of atoms sputtered from a graphite target in a test cell. Most of the ground work had been established by the previous two years of investigation. The proposal covering 2003 sought to develop an anti-Stokes Raman shifting cell to generate VUW light and test this cell on two different laser systems, ArF and YAG- pumped dye. The second goal was to measure the lowest detectable amounts of carbon atoms by 156.1 nm and 165.7 nm LIF. If equipment was functioning properly, it was expected that these goals would be met easily during the timeframe of the proposal, and that is the reason only modest funding was requested. The PI was only funded at half- time by Glenn during the summer months. All other work time was paid for by Whitworth College. The college also funded a student, Charles Shawley, who worked on the project during the spring.

  19. Temperature Gradient in Hall Thrusters

    International Nuclear Information System (INIS)

    Staack, D.; Raitses, Y.; Fisch, N.J.

    2003-01-01

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons

  20. Coaxial plasma thrusters for high specific impulse propulsion

    Science.gov (United States)

    Schoenberg, Kurt F.; Gerwin, Richard A.; Barnes, Cris W.; Henins, Ivars; Mayo, Robert; Moses, Ronald, Jr.; Scarberry, Richard; Wurden, Glen

    1991-01-01

    A fundamental basis for coaxial plasma thruster performance is presented and the steady-state, ideal MHD properties of a coaxial thruster using an annular magnetic nozzle are discussed. Formulas for power usage, thrust, mass flow rate, and specific impulse are acquired and employed to assess thruster performance. The performance estimates are compared with the observed properties of an unoptimized coaxial plasma gun. These comparisons support the hypothesis that ideal MHD has an important role in coaxial plasma thruster dynamics.

  1. Magnetic Electron Filtering by Fluid Models for the PEGASES Thruster

    Science.gov (United States)

    Leray, Gary; Chabert, Pascal; Lichtenberg, Allan; Lieberman, Michael

    2009-10-01

    The PEGASES thruster produces thrust by creating positive and negative ions, which are then accelerated. To accelerate both type of ions, electrons need to be filtered, which is achieved by applying a static magnetic field strong enough to magnetize the electrons but not the ions. A 1D fluid model with three species (electrons, positive and negative ions) and an analytical model are proposed to understand this process for an oxygen plasma with p = 10 mTorr and B0 = 300 G [1]. The resulting ion-ion plasma formation in the transverse direction (perpendicular to the magnetic field) is demonstrated. It is shown that an additional electron/positive ion loss term is required. The solutions are evaluated for two main parameters: the ionizing fraction at the plasma center (x = 0), ne0/ng, and the electronegativity ratio at the center, α0=nn0/ne0. The effect of geometry and magnetic field amplitude are also discussed. [4pt] [1] Leray G, Chabert P, Lichtenberg A J and Lieberman M A, J. Phys. D: Appl. Phys., Plasma Modelling Cluster issue, to appear (2009)

  2. Performance and flow characteristics of MHD seawater thruster

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D.

    1990-01-01

    The main goal of the research is to investigate the effects of strong magnetic fields on the electrical and flow fields inside MHD thrusters. The results of this study is important in the assessment of the feasibility of MHD seawater propulsion for the Navy. To accomplish this goal a three-dimensional fluid flow computer model has been developed and applied to study the concept of MHD seawater propulsion. The effects of strong magnetic fields on the current and electric fields inside the MHD thruster and their interaction with the flow fields, particularly those in the boundary layers, have been investigated. The results of the three-dimensional computations indicate that the velocity profiles are flatter over the sidewalls of the thruster walls in comparison to the velocity profiles over the electrode walls. These nonuniformities in the flow fields give rise to nonuniform distribution of the skin friction along the walls of the thrusters, where higher values are predicted over the sidewalls relative to those over the electrode walls. Also, a parametric study has been performed using the three-dimensional MHD flow model to analyze the performance of continuous electrode seawater thrusters under different operating parameters. The effects of these parameters on the fluid flow characteristics, and on the thruster efficiency have been investigated. Those parameters include the magnetic field (10--20 T), thruster diameter, surface roughness, flow velocity, and the electric load factor. The results show also that the thruster performance improves with the strength of the magnetic field and thruster diameter, and the efficiency decreases with the flow velocity and surface roughness.

  3. Pressure History Measurement in a Microwave Beaming Thruster

    International Nuclear Information System (INIS)

    Oda, Yasuhisa; Ushio, Masato; Komurasaki, Kimiya; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi

    2006-01-01

    In a microwave beaming thruster with a 1-dimensional nozzle, plasma and shock wave propagates in the nozzle absorbing microwave power. In this study, pressure histories in the thruster are measured using pressure gauges. Measured pressure history at the thruster wall shows constant pressure during plasma propagation in the nozzle. The result of measurement of the propagating velocities of shock wave and plasma shows that both propagate in the same velocity. These result shows that thrust producing model of analogy of pulse detonation engine is successful for the 1D thruster

  4. Investigations of Probe Induced Perturbations in a Hall Thruster

    International Nuclear Information System (INIS)

    D. Staack; Y. Raitses; N.J. Fisch

    2002-01-01

    An electrostatic probe used to measure spatial plasma parameters in a Hall thruster generates perturbations of the plasma. These perturbations are examined by varying the probe material, penetration distance, residence time, and the nominal thruster conditions. The study leads us to recommendations for probe design and thruster operating conditions to reduce discharge perturbations, including metal shielding of the probe insulator and operation of the thruster at lower densities

  5. A cavity ring-down spectroscopy sensor for real-time Hall thruster erosion measurements

    International Nuclear Information System (INIS)

    Lee, B. C.; Huang, W.; Tao, L.; Yamamoto, N.; Yalin, A. P.; Gallimore, A. D.

    2014-01-01

    A continuous-wave cavity ring-down spectroscopy sensor for real-time measurements of sputtered boron from Hall thrusters has been developed. The sensor uses a continuous-wave frequency-quadrupled diode laser at 250 nm to probe ground state atomic boron sputtered from the boron nitride insulating channel. Validation results from a controlled setup using an ion beam and target showed good agreement with a simple finite-element model. Application of the sensor for measurements of two Hall thrusters, the H6 and SPT-70, is described. The H6 was tested at power levels ranging from 1.5 to 10 kW. Peak boron densities of 10 ± 2 × 10 14 m −3 were measured in the thruster plume, and the estimated eroded channel volume agreed within a factor of 2 of profilometry. The SPT-70 was tested at 600 and 660 W, yielding peak boron densities of 7.2 ± 1.1 × 10 14 m −3 , and the estimated erosion rate agreed within ∼20% of profilometry. Technical challenges associated with operating a high-finesse cavity in the presence of energetic plasma are also discussed

  6. Arcjet space thrusters

    Science.gov (United States)

    Keefer, Dennis; Rhodes, Robert

    1993-05-01

    Electrically powered arc jets which produce thrust at high specific impulse could provide a substantial cost reduction for orbital transfer and station keeping missions. There is currently a limited understanding of the complex, nonlinear interactions in the plasma propellant which has hindered the development of high efficiency arc jet thrusters by making it difficult to predict the effect of design changes and to interpret experimental results. A computational model developed at the University of Tennessee Space Institute (UTSI) to study laser powered thrusters and radio frequency gas heaters has been adapted to provide a tool to help understand the physical processes in arc jet thrusters. The approach is to include in the model those physical and chemical processes which appear to be important, and then to evaluate our judgement by the comparison of numerical simulations with experimental data. The results of this study have been presented at four technical conferences. The details of the work accomplished in this project are covered in the individual papers included in the appendix of this report. We present a brief description of the model covering its most important features followed by a summary of the effort.

  7. Design of a Laboratory Hall Thruster with Magnetically Shielded Channel Walls, Phase III: Comparison of Theory with Experiment

    Science.gov (United States)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.

    2012-01-01

    A proof-of-principle effort to demonstrate a technique by which erosion of the acceleration channel in Hall thrusters of the magnetic-layer type can be eliminated has been completed. The first principles of the technique, now known as "magnetic shielding," were derived based on the findings of numerical simulations in 2-D axisymmetric geometry. The simulations, in turn, guided the modification of an existing 6-kW laboratory Hall thruster. This magnetically shielded (MS) thruster was then built and tested. Because neither theory nor experiment alone can validate fully the first principles of the technique, the objective of the 2-yr effort was twofold: (1) to demonstrate in the laboratory that the erosion rates can be reduced by >order of magnitude, and (2) to demonstrate that the near-wall plasma properties can be altered according to the theoretical predictions. This paper concludes the demonstration of magnetic shielding by reporting on a wide range of comparisons between results from numerical simulations and laboratory diagnostics. Collectively, we find that the comparisons validate the theory. Near the walls of the MS thruster, theory and experiment agree: (1) the plasma potential has been sustained at values near the discharge voltage, and (2) the electron temperature has been lowered by at least 2.5-3 times compared to the unshielded (US) thruster. Also, based on carbon deposition measurements, the erosion rates at the inner and outer walls of the MS thruster are found to be lower by at least 2300 and 1875 times, respectively. Erosion was so low along these walls that the rates were below the resolution of the profilometer. Using a sputtering yield model with an energy threshold of 25 V, the simulations predict a reduction of 600 at the MS inner wall. At the outer wall ion energies are computed to be below 25 V, for which case we set the erosion to zero in the simulations. When a 50-V threshold is used the computed ion energies are below the threshold at both

  8. Trade Study of Multiple Thruster Options for the Mars Airplane Concept

    Science.gov (United States)

    Kuhl, Christopher A.; Gayle, Steven W.; Hunter, Craig A.; Kenney, Patrick S.; Scola, Salvatore; Paddock, David A.; Wright, Henry S.; Gasbarre, Joseph F.

    2009-01-01

    A trade study was performed at NASA Langley Research Center under the Planetary Airplane Risk Reduction (PARR) project (2004-2005) to examine the option of using multiple, smaller thrusters in place of a single large thruster on the Mars airplane concept with the goal to reduce overall cost, schedule, and technical risk. The 5-lbf (22N) thruster is a common reaction control thruster on many satellites. Thousands of these types of thrusters have been built and flown on numerous programs, including MILSTAR and Intelsat VI. This study has examined the use of three 22N thrusters for the Mars airplane propulsion system and compared the results to those of the baseline single thruster system.

  9. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.

    Science.gov (United States)

    Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki

    2016-02-01

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  10. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hiratsuka, Junichi, E-mail: hiratsuka.junichi@jaea.go.jp; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka 311-0193 (Japan); Miyamoto, Kenji [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan)

    2016-02-15

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  11. Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device

    Energy Technology Data Exchange (ETDEWEB)

    Bandara, R.; Khachan, J. [Plasma Physics, School of Physics, University of Sydney, Camperdown, New South Wales 2006 (Australia)

    2013-07-15

    A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.

  12. Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device

    Science.gov (United States)

    Bandara, R.; Khachan, J.

    2013-07-01

    A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.

  13. Comparisons in Performance of Electromagnet and Permanent-Magnet Cylindrical Hall-Effect Thrusters

    Science.gov (United States)

    Polzin, K. A.; Raitses, Y.; Gayoso, J. C.; Fisch, N. J.

    2010-01-01

    Three different low-power cylindrical Hall thrusters, which more readily lend themselves to miniaturization and low-power operation than a conventional (annular) Hall thruster, are compared to evaluate the propulsive performance of each. One thruster uses electromagnet coils to produce the magnetic field within the discharge channel while the others use permanent magnets, promising power reduction relative to the electromagnet thruster. A magnetic screen is added to the permanent magnet thruster to improve performance by keeping the magnetic field from expanding into space beyond the exit of the thruster. The combined dataset spans a power range from 50-350 W. The thrust levels over this range were 1.3-7.3 mN, with thruster efficiencies and specific impulses spanning 3.5-28.7% and 400-1940 s, respectively. The efficiency is generally higher for the permanent magnet thruster with the magnetic screen, while That thruster s specific impulse as a function of discharge voltage is comparable to the electromagnet thruster.

  14. Mechanical design of SERT 2 thruster system

    Science.gov (United States)

    Zavesky, R. J.; Hurst, E. B.

    1972-01-01

    The mechanical design of the mercury bombardment thruster that was tested on SERT is described. The report shows how the structural, thermal, electrical, material compatibility, and neutral mercury coating considerations affected the design and integration of the subsystems and components. The SERT 2 spacecraft with two thrusters was launched on February 3, 1970. One thruster operated for 3782 hours and the other for 2011 hours. A high voltage short resulting from buildup of loose eroded material was believed to be the cause of failure.

  15. Control of the electric-field profile in the Hall thruster

    International Nuclear Information System (INIS)

    Fruchtman, A.; Fisch, N.J.; Raitses, Y.

    2001-01-01

    Control of the electric-field profile in the Hall thruster through the positioning of an additional electrode along the channel is shown theoretically to enhance the efficiency. The reduction of the potential drop near the anode by use of the additional electrode increases the plasma density there, through the increase of the electron and ion transit times, causing the ionization in the vicinity of the anode to increase. The resulting separation of the ionization and acceleration regions increases the propellant and energy utilizations. An abrupt sonic transition is forced to occur at the axial location of the additional electrode, accompanied by the generation of a large (theoretically infinite) electric field. This ability to generate a large electric field at a specific location along the channel, in addition to the ability to specify the electric potential there, allows us further control of the electric-field profile in the thruster. In particular, when the electron temperature is high, a large abrupt voltage drop is induced at the vicinity of the additional electrode, a voltage drop that can comprise a significant part of the applied voltage

  16. Studies of Non-Conventional Configuration Closed Electron Drift Thrusters

    International Nuclear Information System (INIS)

    Y. Raitses; D. Staack; A. Smirnov; A.A. Litvak; L.A. Dorf; T. Graves; N.J. Fisch

    2001-01-01

    In this paper, we review recent results obtained for segmented electrode and cylindrical Hall thrusters. A low sputtering graphite segmented electrode, placed at the exit of the annular thruster, is shown to affect the plasma potential distribution in the ceramic channel. This effect appears to be correlated with an observed plume reduction compared to a conventional, nonsegmented thruster. In preliminary experiments a 3-cm thruster was operated in the 50-200 W power range. Two operating regimes, stable and oscillating, were observed and investigated

  17. Effect of Anode Dielectric Coating on Hall Thruster Operation

    International Nuclear Information System (INIS)

    Dorf, L.; Raitses, Y.; Fisch, N.J.; Semenov, V.

    2003-01-01

    An interesting phenomenon observed in the near-anode region of a Hall thruster is that the anode fall changes from positive to negative upon removal of the dielectric coating, which is produced on the anode surface during the normal course of Hall thruster operation. The anode fall might affect the thruster lifetime and acceleration efficiency. The effect of the anode coating on the anode fall is studied experimentally using both biased and emissive probes. Measurements of discharge current oscillations indicate that thruster operation is more stable with the coated anode

  18. System analysis and test-bed for an atmosphere-breathing electric propulsion system using an inductive plasma thruster

    Science.gov (United States)

    Romano, F.; Massuti-Ballester, B.; Binder, T.; Herdrich, G.; Fasoulas, S.; Schönherr, T.

    2018-06-01

    Challenging space mission scenarios include those in low altitude orbits, where the atmosphere creates significant drag to the S/C and forces their orbit to an early decay. For drag compensation, propulsion systems are needed, requiring propellant to be carried on-board. An atmosphere-breathing electric propulsion system (ABEP) ingests the residual atmosphere particles through an intake and uses them as propellant for an electric thruster. Theoretically applicable to any planet with atmosphere, the system might allow to orbit for unlimited time without carrying propellant. A new range of altitudes for continuous operation would become accessible, enabling new scientific missions while reducing costs. Preliminary studies have shown that the collectible propellant flow for an ion thruster (in LEO) might not be enough, and that electrode erosion due to aggressive gases, such as atomic oxygen, will limit the thruster lifetime. In this paper an inductive plasma thruster (IPT) is considered for the ABEP system. The starting point is a small scale inductively heated plasma generator IPG6-S. These devices are electrodeless and have already shown high electric-to-thermal coupling efficiencies using O2 and CO2 . The system analysis is integrated with IPG6-S tests to assess mean mass-specific energies of the plasma plume and estimate exhaust velocities.

  19. Evaluation of ion collection area in Faraday probes.

    Science.gov (United States)

    Brown, Daniel L; Gallimore, Alec D

    2010-06-01

    A Faraday probe with three concentric rings was designed and fabricated to assess the effect of gap width and collector diameter in a systematic study of the diagnostic ion collection area. The nested Faraday probe consisted of two concentric collector rings and an outer guard ring, which enabled simultaneous current density measurements on the inner and outer collectors. Two versions of the outer collector were fabricated to create gaps of 0.5 and 1.5 mm between the rings. Distribution of current density in the plume of a low-power Hall thruster ion source was measured in azimuthal sweeps at constant radius from 8 to 20 thruster diameters downstream of the exit plane with variation in facility background pressure. A new analytical technique is proposed to account for ions collected in the gap between the Faraday probe collector and guard ring. This method is shown to exhibit excellent agreement between all nested Faraday probe configurations, and to reduce the magnitude of integrated ion beam current to levels consistent with Hall thruster performance analyses. The technique is further studied by varying the guard ring bias potential with a fixed collector bias potential, thereby controlling ion collection in the gap. Results are in agreement with predictions based on the proposed analytical technique. The method is applied to a past study comparing the measured ion current density profiles of two Faraday probe designs. These findings provide new insight into the nature of ion collection in Faraday probe diagnostics, and lead to improved accuracy with a significant reduction in measurement uncertainty.

  20. Evaluation of ion collection area in Faraday probes

    International Nuclear Information System (INIS)

    Brown, Daniel L.; Gallimore, Alec D.

    2010-01-01

    A Faraday probe with three concentric rings was designed and fabricated to assess the effect of gap width and collector diameter in a systematic study of the diagnostic ion collection area. The nested Faraday probe consisted of two concentric collector rings and an outer guard ring, which enabled simultaneous current density measurements on the inner and outer collectors. Two versions of the outer collector were fabricated to create gaps of 0.5 and 1.5 mm between the rings. Distribution of current density in the plume of a low-power Hall thruster ion source was measured in azimuthal sweeps at constant radius from 8 to 20 thruster diameters downstream of the exit plane with variation in facility background pressure. A new analytical technique is proposed to account for ions collected in the gap between the Faraday probe collector and guard ring. This method is shown to exhibit excellent agreement between all nested Faraday probe configurations, and to reduce the magnitude of integrated ion beam current to levels consistent with Hall thruster performance analyses. The technique is further studied by varying the guard ring bias potential with a fixed collector bias potential, thereby controlling ion collection in the gap. Results are in agreement with predictions based on the proposed analytical technique. The method is applied to a past study comparing the measured ion current density profiles of two Faraday probe designs. These findings provide new insight into the nature of ion collection in Faraday probe diagnostics, and lead to improved accuracy with a significant reduction in measurement uncertainty.

  1. Engineering Risk Assessment of Space Thruster Challenge Problem

    Science.gov (United States)

    Mathias, Donovan L.; Mattenberger, Christopher J.; Go, Susie

    2014-01-01

    The Engineering Risk Assessment (ERA) team at NASA Ames Research Center utilizes dynamic models with linked physics-of-failure analyses to produce quantitative risk assessments of space exploration missions. This paper applies the ERA approach to the baseline and extended versions of the PSAM Space Thruster Challenge Problem, which investigates mission risk for a deep space ion propulsion system with time-varying thruster requirements and operations schedules. The dynamic mission is modeled using a combination of discrete and continuous-time reliability elements within the commercially available GoldSim software. Loss-of-mission (LOM) probability results are generated via Monte Carlo sampling performed by the integrated model. Model convergence studies are presented to illustrate the sensitivity of integrated LOM results to the number of Monte Carlo trials. A deterministic risk model was also built for the three baseline and extended missions using the Ames Reliability Tool (ART), and results are compared to the simulation results to evaluate the relative importance of mission dynamics. The ART model did a reasonable job of matching the simulation models for the baseline case, while a hybrid approach using offline dynamic models was required for the extended missions. This study highlighted that state-of-the-art techniques can adequately adapt to a range of dynamic problems.

  2. Calendar aging of a 250 kW/500 kWh Li-ion battery deployed for the grid storage application

    Science.gov (United States)

    Kubiak, Pierre; Cen, Zhaohui; López, Carmen M.; Belharouak, Ilias

    2017-12-01

    The introduction of Li-ion batteries for grid applications has become evidence as the cost per kWh is continuously decreasing. Although the Li-ion battery is a mature technology for automotive applications and portable electronics, its use for stationary applications needs more validation. The Li-ion technology is considered safe enough for grid storage application, but its lifetime is generally evaluated to be around 10 years. Higher market penetration will be achieved if a longer lifespan could be demonstrated. Therefore, aging evaluation of the batteries becomes crucial. In this paper we investigated the effects of aging after a three years' standby field deployment of a 250 kW/500 kWh Li-ion battery integrated with the grid and solar farm under the harsh climate conditions of Qatar. The development of tools for acquisition and analysis of data from the battery management system (BMS) allows the assessment of the battery performance at the battery stack, string and cell levels. The analysis of the residual capacity after aging showed that the stack suffered from a low decrease of capacity, whereas some inconsistencies have been found between the strings. These inconsistencies are caused by misalignment of a small number of cells that underwent self-discharge during standby at high state of charge.

  3. Improving the growth of Ge/Si islands by modulating the spacing between screen and accelerator grids in ion beam sputtering deposition system

    International Nuclear Information System (INIS)

    Yang, Jie; Zhao, Bo; Wang, Chong; Qiu, Feng; Wang, Rongfei; Yang, Yu

    2016-01-01

    Highlights: • Ge islands were prepared by ion beam sputtering with different grid-to-grid gaps. • Ge islands with larger sizes and low density are observed in 1-mm-spaced samples. • The island growth was determined by sputter energy and the quality of Si buffer. • The crystalline volume fraction of buffer must be higher than 72% to grow islands. - Abstract: Ge islands were fabricated on Si buffer layer by ion beam sputtering deposition with a spacing between the screen and accelerator grids of either 1 mm or 2 mm. The Si buffer layer exhibits mixed-phase microcrystallinity for samples grown with 1 mm spacing and crystallinity for those with 2 mm spacing. Ge islands are larger and less dense than those grown on the crystalline buffer because of the selective growth mechanism on the microcrystalline buffer. Moreover, the nucleation site of Ge islands formed on the crystalline Si buffer is random. Ge islands grown at different grid-to-grid gaps are characterized by two key factors, namely, divergence half angle of ion beam and crystallinity of buffer layer. High grid-to-grid spacing results in small divergence half angle, thereby enhancing the sputtering energy and redistribution of sputtered atoms. The crystalline volume fraction of the microcrystalline Si buffer was obtained based on the integrated intensity ratio of Raman peaks. The islands show decreased density with decreasing crystalline volume fraction and are difficult to observe at crystalline volume fractions lower than 72%.

  4. Improving the growth of Ge/Si islands by modulating the spacing between screen and accelerator grids in ion beam sputtering deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jie; Zhao, Bo [Institute of Optoelectronic Information Materials, School of Materials Science and Engineering, Yunnan University, Kunming 650091 (China); Yunnan Key Laboratory for Micro/Nano Materials and Technology, Yunnan University, Kunming 650091 (China); Wang, Chong, E-mail: cwang@mail.sitp.ac.cn [Institute of Optoelectronic Information Materials, School of Materials Science and Engineering, Yunnan University, Kunming 650091 (China); Yunnan Key Laboratory for Micro/Nano Materials and Technology, Yunnan University, Kunming 650091 (China); Qiu, Feng; Wang, Rongfei [Institute of Optoelectronic Information Materials, School of Materials Science and Engineering, Yunnan University, Kunming 650091 (China); Yunnan Key Laboratory for Micro/Nano Materials and Technology, Yunnan University, Kunming 650091 (China); Yang, Yu, E-mail: yuyang@ynu.edu.cn [Institute of Optoelectronic Information Materials, School of Materials Science and Engineering, Yunnan University, Kunming 650091 (China); Yunnan Key Laboratory for Micro/Nano Materials and Technology, Yunnan University, Kunming 650091 (China)

    2016-11-15

    Highlights: • Ge islands were prepared by ion beam sputtering with different grid-to-grid gaps. • Ge islands with larger sizes and low density are observed in 1-mm-spaced samples. • The island growth was determined by sputter energy and the quality of Si buffer. • The crystalline volume fraction of buffer must be higher than 72% to grow islands. - Abstract: Ge islands were fabricated on Si buffer layer by ion beam sputtering deposition with a spacing between the screen and accelerator grids of either 1 mm or 2 mm. The Si buffer layer exhibits mixed-phase microcrystallinity for samples grown with 1 mm spacing and crystallinity for those with 2 mm spacing. Ge islands are larger and less dense than those grown on the crystalline buffer because of the selective growth mechanism on the microcrystalline buffer. Moreover, the nucleation site of Ge islands formed on the crystalline Si buffer is random. Ge islands grown at different grid-to-grid gaps are characterized by two key factors, namely, divergence half angle of ion beam and crystallinity of buffer layer. High grid-to-grid spacing results in small divergence half angle, thereby enhancing the sputtering energy and redistribution of sputtered atoms. The crystalline volume fraction of the microcrystalline Si buffer was obtained based on the integrated intensity ratio of Raman peaks. The islands show decreased density with decreasing crystalline volume fraction and are difficult to observe at crystalline volume fractions lower than 72%.

  5. Electric propulsion reliability: Statistical analysis of on-orbit anomalies and comparative analysis of electric versus chemical propulsion failure rates

    Science.gov (United States)

    Saleh, Joseph Homer; Geng, Fan; Ku, Michelle; Walker, Mitchell L. R.

    2017-10-01

    With a few hundred spacecraft launched to date with electric propulsion (EP), it is possible to conduct an epidemiological study of EP's on orbit reliability. The first objective of the present work was to undertake such a study and analyze EP's track record of on orbit anomalies and failures by different covariates. The second objective was to provide a comparative analysis of EP's failure rates with those of chemical propulsion. Satellite operators, manufacturers, and insurers will make reliability- and risk-informed decisions regarding the adoption and promotion of EP on board spacecraft. This work provides evidence-based support for such decisions. After a thorough data collection, 162 EP-equipped satellites launched between January 1997 and December 2015 were included in our dataset for analysis. Several statistical analyses were conducted, at the aggregate level and then with the data stratified by severity of the anomaly, by orbit type, and by EP technology. Mean Time To Anomaly (MTTA) and the distribution of the time to (minor/major) anomaly were investigated, as well as anomaly rates. The important findings in this work include the following: (1) Post-2005, EP's reliability has outperformed that of chemical propulsion; (2) Hall thrusters have robustly outperformed chemical propulsion, and they maintain a small but shrinking reliability advantage over gridded ion engines. Other results were also provided, for example the differentials in MTTA of minor and major anomalies for gridded ion engines and Hall thrusters. It was shown that: (3) Hall thrusters exhibit minor anomalies very early on orbit, which might be indicative of infant anomalies, and thus would benefit from better ground testing and acceptance procedures; (4) Strong evidence exists that EP anomalies (onset and likelihood) and orbit type are dependent, a dependence likely mediated by either the space environment or differences in thrusters duty cycles; (5) Gridded ion thrusters exhibit both

  6. Experimental test of 200 W Hall thruster with titanium wall

    Science.gov (United States)

    Ding, Yongjie; Sun, Hezhi; Peng, Wuji; Xu, Yu; Wei, Liqiu; Li, Hong; Li, Peng; Su, Hongbo; Yu, Daren

    2017-05-01

    We designed a 200 W Hall thruster based on the technology of pushing down a magnetic field with two permanent magnetic rings. Boron nitride (BN) is an important insulating wall material for Hall thrusters. The discharge characteristics of the designed Hall thruster were studied by replacing BN with titanium (Ti). Experimental results show that the designed Hall thruster can discharge stably for a long time under a Ti channel. Experiments were performed to determine whether the channel and cathode are electrically connected. When the channel wall and cathode are insulated, the divergence angle of the plume increases, but the performance of the Hall thruster is improved in terms of thrust, specific impulse, anode efficiency, and thrust-to-power ratio. Ti exhibits a powerful antisputtering capability, a low emanation rate of gas, and a large structural strength, making it a potential candidate wall material in the design of low-power Hall thrusters.

  7. Near-Surface Plasma Characterization of the 12.5-kW NASA TDU1 Hall Thruster

    Science.gov (United States)

    Shastry, Rohit; Huang, Wensheng; Kamhawi, Hani

    2015-01-01

    To advance the state-of-the-art in Hall thruster technology, NASA is developing a 12.5-kW, high-specific-impulse, high-throughput thruster for the Solar Electric Propulsion Technology Demonstration Mission. In order to meet the demanding lifetime requirements of potential missions such as the Asteroid Redirect Robotic Mission, magnetic shielding was incorporated into the thruster design. Two units of the resulting thruster, called the Hall Effect Rocket with Magnetic Shielding (HERMeS), were fabricated and are presently being characterized. The first of these units, designated the Technology Development Unit 1 (TDU1), has undergone extensive performance and thermal characterization at NASA Glenn Research Center. A preliminary lifetime assessment was conducted by characterizing the degree of magnetic shielding within the thruster. This characterization was accomplished by placing eight flush-mounted Langmuir probes within each discharge channel wall and measuring the local plasma potential and electron temperature at various axial locations. Measured properties indicate a high degree of magnetic shielding across the throttle table, with plasma potential variations along each channel wall being less than or equal to 5 eV and electron temperatures being maintained at less than or equal to 5 eV, even at 800 V discharge voltage near the thruster exit plane. These properties indicate that ion impact energies within the HERMeS will not exceed 26 eV, which is below the expected sputtering threshold energy for boron nitride. Parametric studies that varied the facility backpressure and magnetic field strength at 300 V, 9.4 kW, illustrate that the plasma potential and electron temperature are insensitive to these parameters, with shielding being maintained at facility pressures 3X higher and magnetic field strengths 2.5X higher than nominal conditions. Overall, the preliminary lifetime assessment indicates a high degree of shielding within the HERMeS TDU1, effectively

  8. Pulsed Electrogasdynamic Thruster for Attitude Control and Orbit Maneuver, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A new pulsed electric thruster, named "pulsed electrogasdynamic thruster," for attitude control and orbit maneuver is proposed. In this thruster, propellant gas is...

  9. Magnetically Filtered Faraday Probe for Measuring the Ion Current Density Profile of a Hall Thruster

    National Research Council Canada - National Science Library

    Rovey, Joshua L; Walker, Mitchell L. R; Gallimore, Alec D; Peterson, Peter Y

    2006-01-01

    .../s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating pressures within the range of 4.4 x 10(-4) Pa Xe (3.3 x 10(-6) Torr Xe) to 1.1 10(-3) Pa Xe (8.4 x 10(-6) Torr Xe...

  10. Development and characterization of high-efficiency, high-specific impulse xenon Hall thrusters

    Science.gov (United States)

    Hofer, Richard Robert

    decrease of efficiency due to multiply-charged ions was minor. Efficiency was largely determined by the current utilization, which suggested maximum Hall thruster efficiency has yet to be reached. The electron Hall parameter was approximately constant with voltage, decreasing from an average of 210 at 300 V to an average of 160 between 400--900 V, which confirmed efficient operation can be realized only over a limited range of Hall parameters.

  11. Design and model experiments on thruster assisted mooring system; Futaishiki kaiyo kozobutsu no thruster ni yoru choshuki doyo seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Koterayama, W [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Kajiwara, H [Kyushu Institute of Technology, Kitakyushu (Japan). Faculty of Computer Science and System Engineering; Hyakudome, T [Kyushu University, Fukuoka (Japan)

    1997-12-31

    Described herein are dynamics and model experiments of the system in which positioning of a floating marine structure by mooring is combined with thruster-controlled positioning. Coefficients of dynamic forces acting on a floating structure model are determined experimentally and by the three-dimensional singularity distribution method, and the controller is designed by the PID, LQI and H{infinity} control theories. A model having a scale ratio of 1/100 was used for the experiments, where 2 thrusters were arranged in a diagonal line, one on the X-axis. It is found that the LQI and H{infinity} controllers of the thruster can control long-cycle rolling of the floating structure. They allow thruster control which is insensitive to wave cycle motion, and efficiently reduce positioning energy. The H{infinity} control regulates frequency characteristics of a closed loop more finely than the LQI control, and exhibits better controllability. 25 refs., 25 figs.

  12. Design and model experiments on thruster assisted mooring system; Futaishiki kaiyo kozobutsu no thruster ni yoru choshuki doyo seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M.; Koterayama, W. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Kajiwara, H. [Kyushu Institute of Technology, Kitakyushu (Japan). Faculty of Computer Science and System Engineering; Hyakudome, T. [Kyushu University, Fukuoka (Japan)

    1996-12-31

    Described herein are dynamics and model experiments of the system in which positioning of a floating marine structure by mooring is combined with thruster-controlled positioning. Coefficients of dynamic forces acting on a floating structure model are determined experimentally and by the three-dimensional singularity distribution method, and the controller is designed by the PID, LQI and H{infinity} control theories. A model having a scale ratio of 1/100 was used for the experiments, where 2 thrusters were arranged in a diagonal line, one on the X-axis. It is found that the LQI and H{infinity} controllers of the thruster can control long-cycle rolling of the floating structure. They allow thruster control which is insensitive to wave cycle motion, and efficiently reduce positioning energy. The H{infinity} control regulates frequency characteristics of a closed loop more finely than the LQI control, and exhibits better controllability. 25 refs., 25 figs.

  13. 50 KW Class Krypton Hall Thruster Performance

    Science.gov (United States)

    Jacobson, David T.; Manzella, David H.

    2003-01-01

    The performance of a 50-kilowatt-class Hall thruster designed for operation on xenon propellant was measured using kryton propellant. The thruster was operated at discharge power levels ranging from 6.4 to 72.5 kilowatts. The device produced thrust ranging from 0.3 to 2.5 newtons. The thruster was operated at discharge voltages between 250 and 1000 volts. At the highest anode mass flow rate and discharge voltage and assuming a 100 percent singly charged condition, the discharge specific impulse approached the theoretical value. Discharge specific impulse of 4500 seconds was demonstrated at a discharge voltage of 1000 volts. The peak discharge efficiency was 64 percent at 650 volts.

  14. E × B electron drift instability in Hall thrusters: Particle-in-cell simulations vs. theory

    Science.gov (United States)

    Boeuf, J. P.; Garrigues, L.

    2018-06-01

    The E × B Electron Drift Instability (E × B EDI), also called Electron Cyclotron Drift Instability, has been observed in recent particle simulations of Hall thrusters and is a possible candidate to explain anomalous electron transport across the magnetic field in these devices. This instability is characterized by the development of an azimuthal wave with wavelength in the mm range and velocity on the order of the ion acoustic velocity, which enhances electron transport across the magnetic field. In this paper, we study the development and convection of the E × B EDI in the acceleration and near plume regions of a Hall thruster using a simplified 2D axial-azimuthal Particle-In-Cell simulation. The simulation is collisionless and the ionization profile is not-self-consistent but rather is given as an input parameter of the model. The aim is to study the development and properties of the instability for different values of the ionization rate (i.e., of the total ion production rate or current) and to compare the results with the theory. An important result is that the wavelength of the simulated azimuthal wave scales as the electron Debye length and that its frequency is on the order of the ion plasma frequency. This is consistent with the theory predicting destruction of electron cyclotron resonance of the E × B EDI in the non-linear regime resulting in the transition to an ion acoustic instability. The simulations also show that for plasma densities smaller than under nominal conditions of Hall thrusters the field fluctuations induced by the E × B EDI are no longer sufficient to significantly enhance electron transport across the magnetic field, and transit time instabilities develop in the axial direction. The conditions and results of the simulations are described in detail in this paper and they can serve as benchmarks for comparisons between different simulation codes. Such benchmarks would be very useful to study the role of numerical noise (numerical

  15. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lundstrom, Blake R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cao, Ziwei [SunPower Corporation; Roc, Albert [SunPower Corporation

    2017-09-06

    Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity and resistance as the battery degrades. Across 9 aging test conditions from 0oC to 55oC, the model predicts capacity fade with 1.4% RMS error and resistance growth with 15% RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.

  16. Oscillating plasma bubbles. IV. Grids, geometry, and gradients

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States); Urrutia, J. M. [Urrutia Scientific, Van Nuys, California 91406 (United States)

    2012-08-15

    Plasma bubbles are created in an ambient plasma. The bubble is formed inside a cavity bounded by a negatively biased grid. Ions are injected through the grid and neutralized by electrons from either the background plasma or an internal electron emitter. The external electron supply is controlled by the grid bias relative to the external plasma potential. When the electron flux is restricted to the ion flux, the sheath of the bubble becomes unstable and causes the plasma potential to oscillate near the ion plasma frequency. The exact frequency depends on the net space charge density in the bubble sheath. The frequency increases with density and grid voltage, provided the grid forms a parallel equipotential surface. The present investigation shows that when the Debye length becomes smaller than the grid openings the electron flux cannot be controlled by the grid voltage. The frequency dependence on grid voltage and density is modified creating frequency and amplitude jumps. Low frequency sheath oscillations modulate the high frequency normal oscillations. Harmonics and subharmonics are excited by electrons in an ion-rich sheath. When the plasma parameters vary over the bubble surface, the sheath may oscillate at different frequencies. A cavity with two isolated grids has been used to investigate anisotropies of the energetic electron flux in a discharge plasma. The frequency dependence on grid voltage is entirely different when the grid controls the energetic electrons or the bulk electrons. These observations are important to several fields of basic plasma physics, such as sheaths, sheath instabilities, diagnostic probes, current, and space charge neutralization of ion beams.

  17. Preliminary thermal analysis of grids for twin source extraction system

    International Nuclear Information System (INIS)

    Pandey, Ravi; Bandyopadhyay, Mainak; Chakraborty, Arun K.

    2017-01-01

    The TWIN (Two driver based Indigenously built Negative ion source) source provides a bridge between the operational single driver based negative ion source test facility, ROBIN in IPR and an ITER-type multi driver based ion source. The source is designed to be operated in CW mode with 180kW, 1MHz, 5s ON/600s OFF duty cycle and also in 5Hz modulation mode with 3s ON/20s OFF duty cycle for 3 such cycle. TWIN source comprises of ion source sub-assembly (consist of driver and plasma box) and extraction system sub-assembly. Extraction system consists of Plasma grid (PG), extraction grid (EG) and Ground grid (GG) sub assembly. Negative ion beams produced at plasma grid seeing the plasma side of ion source will receive moderate heat flux whereas the extraction grid and ground grid would be receiving majority of heat flux from extracted negative ion and co-extracted electron beams. Entire Co-extracted electron beam would be dumped at extraction grid via electron deflection magnetic field making the requirement of thermal and hydraulic design for extraction grid to be critical. All the three grids are made of OFHC Copper and would be actively water cooled keeping the peak temperature rise of grid surface within allowable limit with optimum uniformity. All the grids are to be made by vacuum brazing process where joint strength becomes crucial at elevated temperature. Hydraulic design must maintain the peak temperature at the brazing joint within acceptable limit

  18. Anode Fall Formation in a Hall Thruster

    International Nuclear Information System (INIS)

    Dorf, Leonid A.; Raitses, Yevgeny F.; Smirnov, Artem N.; Fisch, Nathaniel J.

    2004-01-01

    As was reported in our previous work, accurate, nondisturbing near-anode measurements of the plasma density, electron temperature, and plasma potential performed with biased and emissive probes allowed the first experimental identification of both electron-repelling (negative anode fall) and electron-attracting (positive anode fall) anode sheaths in Hall thrusters. An interesting new phenomenon revealed by the probe measurements is that the anode fall changes from positive to negative upon removal of the dielectric coating, which appears on the anode surface during the course of Hall thruster operation. As reported in the present work, energy dispersion spectroscopy analysis of the chemical composition of the anode dielectric coating indicates that the coating layer consists essentially of an oxide of the anode material (stainless steel). However, it is still unclear how oxygen gets into the thruster channel. Most importantly, possible mechanisms of anode fall formation in a Hall thruster with a clean and a coated anodes are analyzed in this work; practical implication of understanding the general structure of the electron-attracting anode sheath in the case of a coated anode is also discussed

  19. Stability test and analysis of the Space Shuttle Primary Reaction Control Subsystem thruster

    Science.gov (United States)

    Applewhite, John; Hurlbert, Eric; Krohn, Douglas; Arndt, Scott; Clark, Robert

    1992-01-01

    The results are reported of a test program conducted on the Space Shuttle Primary Reaction Control Subsystem thruster in order to investigate the effects of trapped helium bubbles and saturated propellants on stability, determine if thruster-to-thruster stability variations are significant, and determine stability under STS-representative conditions. It is concluded that the thruster design is highly reliable in flight and that burn-through has not occurred. Significantly unstable thrusters are screened out, and wire wrap is found to protect against chamber burn-throughs and to provide a fail-safe thruster for this situation.

  20. Spectrum Diagnosis for Fuchsia Plume of Hall Effect Thruster with Xenon as Propellant

    International Nuclear Information System (INIS)

    Yu Daren; Ding Jiapeng; Dai Jingmin

    2006-01-01

    The colour of the Hall effect thruster's plume is often light-green, and sometimes a fuchsia plume appears during experiments. Based on a spectrum and colour analysis, and a comparison with normal plumes, a conclusion is made that the density of the Xe ions and the temperature of electrons are low when the plume appears fuchsia. In this condition, most of the components of the plume are Xe atoms, and the ionization rate of the propellant is low

  1. MPD thruster research issues, activities, strategies

    Science.gov (United States)

    1991-01-01

    The following activities and plans in the MPD thruster development are summarized: (1) experimental and theoretical research (magnetic nozzles at present and high power levels, MPD thrusters with applied fields extending into the thrust chamber, and improved electrode performance); and (2) tools (MACH2 code for MPD and nozzle flow calculation, laser diagnostics and spectroscopy for non-intrusive measurements of flow conditions, and extension to higher power). National strategies are also outlined.

  2. Effects of Enhanced Eathode Electron Emission on Hall Thruster Operation

    International Nuclear Information System (INIS)

    Raitses, Y.; Smirnov, A.; Fisch, N.J.

    2009-01-01

    Interesting discharge phenomena are observed that have to do with the interaction between the magnetized Hall thruster plasma and the neutralizing cathode. The steadystate parameters of a highly ionized thruster discharge are strongly influenced by the electron supply from the cathode. The enhancement of the cathode electron emission above its self-sustained level affects the discharge current and leads to a dramatic reduction of the plasma divergence and a suppression of large amplitude, low frequency discharge current oscillations usually related to an ionization instability. These effects correlate strongly with the reduction of the voltage drop in the region with the fringing magnetic field between the thruster channel and the cathode. The measured changes of the plasma properties suggest that the electron emission affects the electron cross-field transport in the thruster discharge. These trends are generalized for Hall thrusters of various configurations.

  3. Design and Testing of a Hall Effect Thruster with Additively Manufactured Components

    Science.gov (United States)

    Hopping, Ethan

    The UAH-78AM is a low-power Hall effect thruster developed at the University of Alabama in Huntsville to study the application of low-cost additive manufacturing in the design and fabrication of Hall thrusters. The goal of this project is to assess the feasibility of using unconventional materials to produce a low-cost functioning Hall effect thruster and consider how additive manufacturing can expand the design space and provide other benefits. The thruster features channel walls and a propellant distributor that were manufactured using 3D printing with a variety of materials including ABS, ULTEM, and glazed ceramic. A version of the thruster was tested at NASA Glenn Research Center to obtain performance metrics and to validate the ability of the thruster to produce thrust and sustain a discharge. The design of the thruster and the transient performance measurements are presented here. Measured thrust ranged from 17.2 mN to 30.4 mN over a discharge power of 280 W to 520 W with an anode Isp range of 870 s to 1450 s. Temperature limitations of materials used for the channel walls and propellant distributor limit the ability to run the thruster at thermal steady-state. While the current thruster design is not yet ready for continuous operation, revisions to the device that could enable longer duration tests are discussed.

  4. High Power MPD Thruster Development at the NASA Glenn Research Center

    Science.gov (United States)

    LaPointe, Michael R.; Mikellides, Pavlos G.; Reddy, Dhanireddy (Technical Monitor)

    2001-01-01

    Propulsion requirements for large platform orbit raising, cargo and piloted planetary missions, and robotic deep space exploration have rekindled interest in the development and deployment of high power electromagnetic thrusters. Magnetoplasmadynamic (MPD) thrusters can effectively process megawatts of power over a broad range of specific impulse values to meet these diverse in-space propulsion requirements. As NASA's lead center for electric propulsion, the Glenn Research Center has established an MW-class pulsed thruster test facility and is refurbishing a high-power steady-state facility to design, build, and test efficient gas-fed MPD thrusters. A complimentary numerical modeling effort based on the robust MACH2 code provides a well-balanced program of numerical analysis and experimental validation leading to improved high power MPD thruster performance. This paper reviews the current and planned experimental facilities and numerical modeling capabilities at the Glenn Research Center and outlines program plans for the development of new, efficient high power MPD thrusters.

  5. Electron Cross-field Transport in a Miniaturized Cylindrical Hall Thruster

    International Nuclear Information System (INIS)

    Smirnov Artem; Raitses Yevgeny; Fisch Nathaniel J

    2005-01-01

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. The present paper gives a review of the experimental and numerical investigations of electron crossfield transport in the 2.6 cm miniaturized cylindrical Hall thruster (100 W power level). We show that, in order to explain the discharge current observed for the typical operating conditions, the electron anomalous collision frequency ν b has to be on the order of the Bohm value, ν B ∼ ω c /16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant. The optimal regimes of thruster operation at low background pressure (below 10 -5 Torr) in the vacuum tank appear to be different from those at higher pressure (∼ 10 -4 Torr)

  6. Fault-Tolerant Region-Based Control of an Underwater Vehicle with Kinematically Redundant Thrusters

    Directory of Open Access Journals (Sweden)

    Zool H. Ismail

    2014-01-01

    Full Text Available This paper presents a new control approach for an underwater vehicle with a kinematically redundant thruster system. This control scheme is derived based on a fault-tolerant decomposition for thruster force allocation and a region control scheme for the tracking objective. Given a redundant thruster system, that is, six or more pairs of thrusters are used, the proposed redundancy resolution and region control scheme determine the number of thruster faults, as well as providing the reference thruster forces in order to keep the underwater vehicle within the desired region. The stability of the presented control law is proven in the sense of a Lyapunov function. Numerical simulations are performed with an omnidirectional underwater vehicle and the results of the proposed scheme illustrate the effectiveness in terms of optimizing the thruster forces.

  7. Plasma Characterization of Hall Thruster with Active and Passive Segmented Electrodes

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Fisch, N.J.

    2002-01-01

    Non-emissive electrodes and ceramic spacers placed along the Hall thruster channel are shown to affect the plasma potential distribution and the thruster operation. These effects are associated with physical properties of the electrode material and depend on the electrode configuration, geometry and the magnetic field distribution. An emissive segmented electrode was able to maintain thruster operation by supplying an additional electron flux to sustain the plasma discharge between the anode and cathode neutralizer. These results indicate the possibility of new configurations for segmented electrode Hall thruster

  8. Emissive Ion Thruster -EMIT, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A propulsion system is proposed that is based on acceleration of ions emitted from a thin, solid-state electrochemical ceramic membrane. This technology would...

  9. High thrust-to-power ratio micro-cathode arc thruster

    Directory of Open Access Journals (Sweden)

    Joseph Lukas

    2016-02-01

    Full Text Available The Micro-Cathode Arc Thruster (μCAT is an electric propulsion device that ablates solid cathode material, through an electrical vacuum arc discharge, to create plasma and ultimately produce thrust in the μN to mN range. About 90% of the arc discharge current is conducted by electrons, which go toward heating the anode and contribute very little to thrust, with only the remaining 10% going toward thrust in the form of ion current. A preliminary set of experiments were conducted to show that, at the same power level, thrust may increase by utilizing an ablative anode. It was shown that ablative anode particles were found on a collection plate, compared to no particles from a non-ablative anode, while another experiment showed an increase in ion-to-arc current by approximately 40% at low frequencies compared to the non-ablative anode. Utilizing anode ablation leads to an increase in thrust-to-power ratio in the case of the μCAT.

  10. The FAST (FRC Acceleration Space Thruster) Experiment

    Science.gov (United States)

    Martin, Adam; Eskridge, R.; Lee, M.; Richeson, J.; Smith, J.; Thio, Y. C. F.; Slough, J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The Field Reverse Configuration (FRC) is a magnetized plasmoid that has been developed for use in magnetic confinement fusion. Several of its properties suggest that it may also be useful as a thruster for in-space propulsion. The FRC is a compact toroid that has only poloidal field, and is characterized by a high plasma beta = (P)/(B (sup 2) /2Mu0), the ratio of plasma pressure to magnetic field pressure, so that it makes efficient use of magnetic field to confine a plasma. In an FRC thruster, plasmoids would be repetitively formed and accelerated to high velocity; velocities of = 250 km/s (Isp = 25,000s) have already been achieved in fusion experiments. The FRC is inductively formed and accelerated, and so is not subject to the problem of electrode erosion. As the plasmoid may be accelerated over an extended length, it can in principle be made very efficient. And the achievable jet powers should be scalable to the MW range. A 10 kW thruster experiment - FAST (FRC Acceleration Space Thruster) has just started at the Marshall Space Flight Center. The design of FAST and the status of construction and operation will be presented.

  11. Comparison of Medium Power Hall Effect Thruster Ion Acceleration for Krypton and Xenon Propellants

    Science.gov (United States)

    2016-09-14

    Pumping is provided by four single-stage cryogenic panels (single-stage cold heads at 25 K) and one 50 cm two stage cryogenic pump (12 K). This vacuum...test chamber has a mea- sured pumping speed of 36 kL/s on xenon. The Hall thruster used in this study is a medium power laboratory Hall effect...The first compo- nent passes through a krypton opto-galvanic cell and is terminated by a beam dump . The opto-galvanic cell current is capacitively

  12. Supersonic plasma beams with controlled speed generated by the alternative low power hybrid ion engine (ALPHIE) for space propulsion

    Science.gov (United States)

    Conde, L.; Domenech-Garret, J. L.; Donoso, J. M.; Damba, J.; Tierno, S. P.; Alamillo-Gamboa, E.; Castillo, M. A.

    2017-12-01

    The characteristics of supersonic ion beams from the alternative low power hybrid ion engine (ALPHIE) are discussed. This simple concept of a DC powered plasma accelerator that only needs one electron source for both neutral gas ionization and ion beam neutralization is also examined. The plasma production and space charge neutralization processes are thus coupled in this plasma thruster that has a total DC power consumption of below 450 W, and uses xenon or argon gas as a propellant. The operation parameters of the plasma engine are studied in the laboratory in connection with the ion energy distribution function obtained with a retarding-field energy analyzer. The ALPHIE plasma beam expansion produces a mesothermal plasma flow with two-peaked ion energy distribution functions composed of low and high speed ion groups. The characteristic drift velocities of the fast ion groups, in the range 36.6-43.5 Km/s, are controlled by the acceleration voltage. These supersonic speeds are higher than the typical ion sound velocities of the low energy ion group produced by the expansion of the plasma jet. The temperatures of the slow ion population lead to ion Debye lengths longer than the electron Debye lengths. Furthermore, the electron impact ionization can coexist with collisional ionization by fast ions downstream the grids. Finally, the performance characteristics and comparisons with other plasma accelerator schemes are also discussed.

  13. Theoretical and experimental study of a thruster discharging a weight

    Science.gov (United States)

    Michaels, Dan; Gany, Alon

    2014-06-01

    An innovative concept for a rocket type thruster that can be beneficial for spacecraft trajectory corrections and station keeping was investigated both experimentally and theoretically. It may also be useful for divert and attitude control systems (DACS). The thruster is based on a combustion chamber discharging a weight through an exhaust tube. Calculations with granular double-base propellant and a solid ejected weight reveal that a specific impulse based on the propellant mass of well above 400 s can be obtained. An experimental thruster was built in order to demonstrate the new idea and validate the model. The thruster impulse was measured both directly with a load cell and indirectly by using a pressure transducer and high speed photography of the weight as it exits the tube, with both ways producing very similar total impulse measurement. The good correspondence between the computations and the measured data validates the model as a useful tool for studying and designing such a thruster.

  14. Advanced Propellants for Scalable, Multipurpose Electrospray Ion Thrusters

    Data.gov (United States)

    National Aeronautics and Space Administration — Ionic liquid ion sources (ILIS) have numerous applications in spacecraft propulsion and focused ion beam technologies. The Space Propulsion Lab at the Massachusetts...

  15. Mission and System Advantages of Iodine Hall Thrusters

    Science.gov (United States)

    Dankanich, John W.; Szabo, James; Pote, Bruce; Oleson, Steve; Kamhawi, Hani

    2014-01-01

    The exploration of alternative propellants for Hall thrusters continues to be of interest to the community. Investments have been made and continue for the maturation of iodine based Hall thrusters. Iodine testing has shown comparable performance to xenon. However, iodine has a higher storage density and resulting higher ?V capability for volume constrained systems. Iodine's vapor pressure is low enough to permit low-pressure storage, but high enough to minimize potential adverse spacecraft-thruster interactions. The low vapor pressure also means that iodine does not condense inside the thruster at ordinary operating temperatures. Iodine is safe, it stores at sub-atmospheric pressure, and can be stored unregulated for years on end; whether on the ground or on orbit. Iodine fills a niche for both low power (10kW) electric propulsion regimes. A range of missions have been evaluated for direct comparison of Iodine and Xenon options. The results show advantages of iodine Hall systems for both small and microsatellite application and for very large exploration class missions.

  16. Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model

    Energy Technology Data Exchange (ETDEWEB)

    Cannat, F., E-mail: felix.cannat@onera.fr, E-mail: felix.cannat@gmail.com; Lafleur, T. [Physics and Instrumentation Department, Onera -The French Aerospace Lab, Palaiseau, Cedex 91123 (France); Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France); Jarrige, J.; Elias, P.-Q.; Packan, D. [Physics and Instrumentation Department, Onera -The French Aerospace Lab, Palaiseau, Cedex 91123 (France); Chabert, P. [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France)

    2015-05-15

    A new cathodeless plasma thruster currently under development at Onera is presented and characterized experimentally and analytically. The coaxial thruster consists of a microwave antenna immersed in a magnetic field, which allows electron heating via cyclotron resonance. The magnetic field diverges at the thruster exit and forms a nozzle that accelerates the quasi-neutral plasma to generate a thrust. Different thruster configurations are tested, and in particular, the influence of the source diameter on the thruster performance is investigated. At microwave powers of about 30 W and a xenon flow rate of 0.1 mg/s (1 SCCM), a mass utilization of 60% and a thrust of 1 mN are estimated based on angular electrostatic probe measurements performed downstream of the thruster in the exhaust plume. Results are found to be in fair agreement with a recent analytical helicon thruster model that has been adapted for the coaxial geometry used here.

  17. Simulation of Main Plasma Parameters of a Cylindrical Asymmetric Capacitively Coupled Plasma Micro-Thruster using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Amelia eGreig

    2015-01-01

    Full Text Available Computational fluid dynamics (CFD simulations of a radio-frequency (13.56 MHz electro-thermal capacitively coupled plasma (CCP micro-thruster have been performed using the commercial CFD-ACE+ package. Standard operating conditions of a 10 W, 1.5 Torr argon discharge were used to compare with previously obtained experimental results for validation. Results show that the driving force behind plasma production within the thruster is ion-induced secondary electrons ejected from the surface of the discharge tube, accelerated through the sheath to electron temperatures up to 33.5 eV. The secondary electron coefficient was varied to determine the effect on the discharge, with results showing that full breakdown of the discharge did not occur for coefficients coefficients less than or equal to 0.01.

  18. Thermal Development Test of the NEXT PM1 Ion Engine

    Science.gov (United States)

    Anderson, John R.; Snyder, John S.; VanNoord, Jonathan L.; Soulas, George C.

    2010-01-01

    NASA's Evolutionary Xenon Thruster (NEXT) is a next-generation high-power ion propulsion system under development by NASA as a part of the In-Space Propulsion Technology Program. NEXT is designed for use on robotic exploration missions of the solar system using solar electric power. Potential mission destinations that could benefit from a NEXT Solar Electric Propulsion (SEP) system include inner planets, small bodies, and outer planets and their moons. This range of robotic exploration missions generally calls for ion propulsion systems with deep throttling capability and system input power ranging from 0.6 to 25 kW, as referenced to solar array output at 1 Astronomical Unit (AU). Thermal development testing of the NEXT prototype model 1 (PM1) was conducted at JPL to assist in developing and validating a thruster thermal model and assessing the thermal design margins. NEXT PM1 performance prior to, during and subsequent to thermal testing are presented. Test results are compared to the predicted hot and cold environments expected missions and the functionality of the thruster for these missions is discussed.

  19. Post-Test Inspection of NASA's Evolutionary Xenon Thruster Long-Duration Test Hardware: Discharge and Neutralizer Cathodes

    Science.gov (United States)

    Shastry, Rohit; Soulas, George C.

    2016-01-01

    The NEXT Long-Duration Test is part of a comprehensive thruster service life assessment intended to demonstrate overall throughput capability, validate service life models, quantify wear rates as a function of time and operating condition, and identify any unknown life-limiting mechanisms. The test was voluntarily terminated in February 2014 after demonstrating 51,184 hours of high-voltage operation, 918 kg of propellant throughput, and 35.5 MN-s of total impulse. The post-test inspection of the thruster hardware began shortly afterwards with a combination of non-destructive and destructive analysis techniques, and is presently nearing completion. This paper presents relevant results of the post-test inspection for both discharge and neutralizer cathodes. Discharge keeper erosion was found to be significantly reduced from what was observed in the NEXT 2 kh wear test and NSTAR Extended Life Test, providing adequate protection of vital cathode components throughout the test with ample lifetime remaining. The area of the discharge cathode orifice plate that was exposed by the keeper orifice exhibited net erosion, leading to cathode plate material building up in the cathode-keeper gap and causing a thermally-induced electrical short observed during the test. Significant erosion of the neutralizer cathode orifice was also found and is believed to be the root cause of an observed loss in flow margin. Deposition within the neutralizer keeper orifice as well as on the downstream surface was thicker than expected, potentially resulting in a facility-induced impact on the measured flow margin from plume mode. Neutralizer keeper wall erosion on the beam side was found to be significantly lower compared to the NEXT 2 kh wear test, likely due to the reduction in beam extraction diameter of the ion optics that resulted in decreased ion impingement. Results from the post-test inspection have led to some minor thruster design improvements.

  20. Comment on 'Effects of Magnetic Field Gradient on Ion Beam Current in Cylindrical Hall Ion Source

    International Nuclear Information System (INIS)

    Raitses, Y.; Smirnov A.; Fisch, N.J.

    2008-01-01

    It is argued that the key difference of the cylindrical Hall thruster (CHT) as compared to the end-Hall ion source cannot be exclusively attributed to the magnetic field topology [Tang et al. J. Appl. Phys., 102, 123305 (2007)]. With a similar mirror-type topology, the CHT configuration provides the electric field with nearly equipotential magnetic field surfaces and a better suppression of the electron cross-field transport, as compared to both the end-Hall ion source and the cylindrical Hall ion source of Tang et al

  1. Numerical simulation of SMART-1 Hall-thruster plasma interactions

    NARCIS (Netherlands)

    Tajmar, Martin; Sedmik, René; Scharlemann, Carsten

    2009-01-01

    SMART-1 has been the first European mission using a Hall thruster to reach the moon. An onboard plasma diagnostic package allowed a detailed characterization of the thruster exhaust plasma and its interactions with the spacecraft. Analysis of in-flight data revealed, amongst others, an unpredicted

  2. Performance prediction of electrohydrodynamic thrusters by the perturbation method

    International Nuclear Information System (INIS)

    Shibata, H.; Watanabe, Y.; Suzuki, K.

    2016-01-01

    In this paper, we present a novel method for analyzing electrohydrodynamic (EHD) thrusters. The method is based on a perturbation technique applied to a set of drift-diffusion equations, similar to the one introduced in our previous study on estimating breakdown voltage. The thrust-to-current ratio is generalized to represent the performance of EHD thrusters. We have compared the thrust-to-current ratio obtained theoretically with that obtained from the proposed method under atmospheric air conditions, and we have obtained good quantitative agreement. Also, we have conducted a numerical simulation in more complex thruster geometries, such as the dual-stage thruster developed by Masuyama and Barrett [Proc. R. Soc. A 469, 20120623 (2013)]. We quantitatively clarify the fact that if the magnitude of a third electrode voltage is low, the effective gap distance shortens, whereas if the magnitude of the third electrode voltage is sufficiently high, the effective gap distance lengthens.

  3. Experimental Studies of Anode Sheath Phenomena in a Hall Thruster Discharge

    International Nuclear Information System (INIS)

    Dorf, L.; Raitses, Y.; Fisch, N.J.

    2004-01-01

    Both electron-repelling and electron-attracting anode sheaths in a Hall thruster were characterized by measuring the plasma potential with biased and emissive probes [L. Dorf, Y. Raitses, V. Semenov, and N.J. Fisch, Appl. Phys. Let. 84 (2004) 1070]. In the present work, two-dimensional structures of the plasma potential, electron temperature, and plasma density in the near-anode region of a Hall thruster with clean and dielectrically coated anodes are identified. Possible mechanisms of anode sheath formation in a Hall thruster are analyzed. The path for current closure to the anode appears to be the determining factor in the anode sheath formation process. The main conclusion of this work is that the anode sheath formation in Hall thrusters differs essentially from that in the other gas discharge devices, like a glow discharge or a hollow anode, because the Hall thruster utilizes long electron residence times to ionize rather than high neutral pressures

  4. Operation of a Segmented Hall Thruster with Low-sputtering Carbon-velvet Electrodes

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Dunaevsky, A.; Fisch, N.J.

    2005-01-01

    Carbon fiber velvet material provides exceptional sputtering resistance properties exceeding those for graphite and carbon composite materials. A 2 kW Hall thruster with segmented electrodes made of this material was operated in the discharge voltage range of 200-700 V. The arcing between the floating velvet electrodes and the plasma was visually observed, especially, during the initial conditioning time, which lasted for about 1 h. The comparison of voltage versus current and plume characteristics of the Hall thruster with and without segmented electrodes indicates that the magnetic insulation of the segmented thruster improves with the discharge voltage at a fixed magnetic field. The observations reported here also extend the regimes wherein the segmented Hall thruster can have a narrower plume than that of the conventional nonsegmented thruster

  5. Thermal stability of the krypton Hall effect thruster

    Directory of Open Access Journals (Sweden)

    Szelecka Agnieszka

    2017-03-01

    Full Text Available The Krypton Large IMpulse Thruster (KLIMT ESA/PECS project, which has been implemented in the Institute of Plasma Physics and Laser Microfusion (IPPLM and now is approaching its final phase, was aimed at incremental development of a ~500 W class Hall effect thruster (HET. Xenon, predominantly used as a propellant in the state-of-the-art HETs, is extremely expensive. Krypton has been considered as a cheaper alternative since more than fifteen years; however, to the best knowledge of the authors, there has not been a HET model especially designed for this noble gas. To address this issue, KLIMT has been geared towards operation primarily with krypton. During the project, three subsequent prototype versions of the thruster were designed, manufactured and tested, aimed at gradual improvement of each next exemplar. In the current paper, the heat loads in new engine have been discussed. It has been shown that thermal equilibrium of the thruster is gained within the safety limits of the materials used. Extensive testing with both gases was performed to compare KLIMT’s thermal behaviour when supplied with krypton and xenon propellants.

  6. Parametric studies of the Hall Thruster at Soreq

    International Nuclear Information System (INIS)

    Ashkenazy, J.; Rattses, Y.; Appelbaum, G.

    1997-01-01

    An electric propulsion program was initiated at Soreq a few years ago, aiming at the research and development of advanced Hall thrusters for various space applications. The Hall thruster accelerates a plasma jet by an axial electric field and an applied radial magnetic field in an annular ceramic channel. A relatively large current density (> 0.1 A/cm 2 ) can be obtained, since the acceleration mechanism is not limited by space charge effects. Such a device can be used as a small rocket engine onboard spacecraft with the advantage of a large jet velocity compared with conventional rocket engines (10,000-30,000 m/s vs. 2,000-4,800 m/s). An experimental Hall thruster was constructed at Soreq and operated under a broad range of operating conditions and under various configurational variations. Electrical, magnetic and plasma diagnostics, as well as accurate thrust and gas flow rate measurements, have been used to investigate the dependence of thruster behavior on the applied voltage, gas flow rate, magnetic field, channel geometry and wall material. Representative results highlighting the major findings of the studies conducted so far are presented

  7. Modeling an Iodine Hall Thruster Plume in the Iodine Satellite (ISAT)

    Science.gov (United States)

    Choi, Maria

    2016-01-01

    An iodine-operated 200-W Hall thruster plume has been simulated using a hybrid-PIC model to predict the spacecraft surface-plume interaction for spacecraft integration purposes. For validation of the model, the plasma potential, electron temperature, ion current flux, and ion number density of xenon propellant were compared with available measurement data at the nominal operating condition. To simulate iodine plasma, various collision cross sections were found and used in the model. While time-varying atomic iodine species (i.e., I, I+, I2+) information is provided by HPHall simulation at the discharge channel exit, the molecular iodine species (i.e., I2, I2+) are introduced as Maxwellian particles at the channel exit. Simulation results show that xenon and iodine plasma plumes appear to be very similar under the assumptions of the model. Assuming a sticking coefficient of unity, iodine deposition rate is estimated.

  8. Ion source for ion beam deposition employing a novel electrode assembly

    Science.gov (United States)

    Hayes, A. V.; Kanarov, V.; Yevtukhov, R.; Hegde, H.; Druz, B.; Yakovlevitch, D.; Cheesman, W.; Mirkov, V.

    2000-02-01

    A rf inductively coupled ion source employing a novel electrode assembly for focusing a broad ion beam on a relatively small target area was developed. The primary application of this ion source is the deposition of thin films used in the fabrication of magnetic sensors and optical devices. The ion optics consists of a three-electrode set of multiaperture concave dished grids with a beam extraction diameter of 150 mm. Also described is a variation in the design providing a beam extraction diameter of 120 mm. Grid hole diameters and grid spacing were optimized for low beamlet divergence and low grid impingement currents. The radius of curvature of the grids was optimized to obtain an optimally focused ion beam at the target location. A novel grid fabrication and mounting design was employed which overcomes typical limitations of such grid assemblies, particularly in terms of maintaining optimum beam focusing conditions after multiple cycles of operation. Ion beam generation with argon and xenon gases in energy ranges from 0.3 to 2.0 keV was characterized. For operation with argon gas, beam currents greater than 0.5 A were obtained with a beam energy of 800 eV. At optimal beam formation conditions, beam profiles at distances about equal to the radius of curvature were found to be close to Gaussian, with 99.9% of the beam current located within a 150 mm target diameter. Repeatability of the beam profile over long periods of operation is also reported.

  9. Performance of a Cylindrical Hall-Effect Thruster Using Permanent Magnets

    Science.gov (United States)

    Polzin, Kurt A.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    While annular Hall thrusters can operate at high efficiency at kW power levels, it is difficult to construct one that operates over a broad envelope from 1 kW down to 100 W while maintaining an efficiency of 45-55%. Scaling to low power while holding the main dimensionless parameters constant requires a decrease in the thruster channel size and an increase in the magnetic field strength. Increasing the magnetic field becomes technically challenging since the field can saturate the miniaturized inner components of the magnetic circuit and scaling down the magnetic circuit leaves very little room for magnetic pole pieces and heat shields. In addition, the central magnetic pole piece defining the interior wall of the annular channel can experience excessive heat loads in a miniaturized Hall thruster, with the temperature eventually exceeding the Curie temperature of the material and in extreme circumstances leading to accelerated erosion of the channel wall. An alternative approach is to employ a cylindrical Hall thruster (CHT) geometry. Laboratory model CHTs have operated at power levels ranging from 50 W up to 1 kW. These thrusters exhibit performance characteristics that are comparable to conventional, annular Hall thrusters of similar size. Compared to the annular Hall thruster, the CHTs insulator surface area to discharge chamber volume ratio is lower. Consequently, there is the potential for reduced wall losses in the channel of a CHT, and any reduction in wall losses should translate into lower channel heating rates and reduced erosion, making the CHT geometry promising for low-power applications. This potential for high performance in the low-power regime has served as the impetus for research and development efforts aimed at understanding and improving CHT performance. Recently, a 2.6 cm channel diameter permanent magnet CHT (shown in Fig. 1) was tested. This thruster has the promise of reduced power consumption over previous CHT iterations that employed

  10. Iodine Hall Thruster Propellant Feed System for a CubeSat

    Science.gov (United States)

    Polzin, Kurt A.

    2014-01-01

    There has been significant work recently in the development of iodine-fed Hall thrusters for in-space propulsion applications.1 The use of iodine as a propellant provides many advantages over present xenon-gas-fed Hall thruster systems. Iodine is a solid at ambient temperature (no pressurization required) and has no special handling requirements, making it safe for secondary flight opportunities. It has exceptionally high ?I sp (density times specific impulse), making it an enabling technology for small satellite near-term applications and providing system level advantages over mid-term high power electric propulsion options. Iodine provides thrust and efficiency that are comparable to xenonfed Hall thrusters while operating in the same discharge current and voltage regime, making it possible to leverage the development of flight-qualified xenon Hall thruster power processing units for the iodine application. Work at MSFC is presently aimed at designing, integrating, and demonstrating a flight-like iodine feed system suitable for the Hall thruster application. This effort represents a significant advancement in state-of-the-art. Though Iodine thrusters have demonstrated high performance with mission enabling potential, a flight-like feed system has never been demonstrated and iodine compatible components do not yet exist. Presented in this paper is the end-to-end integrated feed system demonstration. The system includes a propellant tank with active feedback-control heating, fill and drain interfaces, latching and proportional flow control valves (PFCV), flow resistors, and flight-like CubeSat power and control electronics. Hardware is integrated into a CubeSat-sized structure, calibrated and tested under vacuum conditions, and operated under under hot-fire conditions using a Busek BHT-200 thruster designed for iodine. Performance of the system is evaluated thorugh accurate measurement of thrust and a calibrated of mass flow rate measurement, which is a function of

  11. Study and Developement of Compact Permanent Magnet Hall Thrusters for Future Brazillian Space Missions

    Science.gov (United States)

    Ferreira, Jose Leonardo; Martins, Alexandre; Cerda, Rodrigo

    2016-07-01

    . The main difficulty to reach these minor bodies is related to their specific orbits with high eccentricity and inclination. A good example is the case for sample return missions to NEOs-Near Earth Objects. They are small bodies consisting of primitive left over building blocks of the Solar System formation processes. These missions can be accomplished by using low thrust trajectories with spacecrafts propelled by plasma thrusters with total thrust below 0.5 N, and a specific impulse around2500 s. In this work, we will show the brazilian contribution to the development of a compact electrical propulsion engine named PHALL III, designed with DCFH and foreseen to be used in future cubesats microsatellites but with possible applications in geostationary attitude control systems and on low thrust trajectory missions to the Near Earth Asteroids region. We will show a particular new permanent magnet field designed for PHALL III . Computer based simulation codes such as VSIM are also used on the design of this new proposed cuped magnet field Hall Thruster. Based on the first results wee believed PHALL III will also allow a good spacecraft performance of long duration space missions for small size spacecrafts with limited low electric source power consumption. The PHALL III plasma source characterization is presented together with the ejected plasma plume ion current intensity, ion energy and plasma flow velocity parameters measured by an integrated Plasma Diagnostic Bench (BID). Based on plasma source and plume ejected parameters a merit figure of PHALL III is constructed and compared to computer calculated low thrust transfer requirements. From these results it is goig to be possible to analyse the potential use of PHALL III on future brazillian space missions , its working parameters are compared with parameters of existing space tested plasma thrusters already used on moon , deep space missions and also on satellite geostationary positioning using low thrust orbit

  12. Correction of Beam Distortion in Negative Hydrogen Ion Source with Multi-Slot Grounded Grid

    International Nuclear Information System (INIS)

    Tsumori, Katsuyoshi; Kaneko, Osamu; Takeiri, Yasuhiko; Oka, Yoshihide; Osakabe, Masaki; Ikeda, Katsunori; Nagaoka, Kenichi; Kawamoto, Toshikazu; Asano, Eiji; Sato, Mamoru; Kondo, Tomoki; Watanabe, Junko; Asano, Shiro; Suzuki, Yasuo

    2005-01-01

    The new beam accelerator with multi-slot grounded grid (MSGG) has been developed to increase the port-through power into large helical device (LHD). Using the accelerator, the maximum power of 5.7 MW was achieved at the beam energy of 186 keV in the beam injection to LHD plasma last year. Although the port-through power increased compared with conventional accelerators with multi-hole grounded grid (MHGG), the accelerator with the MSGG includes a disadvantage of bi-focal condition in parallel and perpendicular direction to the long side of the slots. When the beam width in one of those directions gets narrower, the width in another direction becomes wider. This disadvantage includes the loss of beam port-through power and induces internal damages in neutral beam line. In order to reduce the disadvantage, an experiment has been done using a small-scaled negative ion source with racetrack-shaped apertures for the steering grid installed at beam upstream of the MSGG. By applying the racetrack apertures to the accelerator, it is observed that the beam widths in the parallel and perpendicular directions to the slot long side have almost the same focal condition to obtain minimal beam widths

  13. Effect of electrode materials on a negative ion production in a cesium seeded negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takashi; Morishita, Takutoshi; Kashiwagi, Mieko; Hanada, Masaya; Iga, Takashi; Inoue, Takashi; Watanabe, Kazuhiro; Imai, Tsuyoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Wada, Motoi [Doshisha Univ., Kyoto (Japan)

    2003-03-01

    Effects of plasma grid materials on the negative ion production efficiency in a cesium seeded ion source have been experimentally studied. Grid materials of Au, Ag, Cu, Ni, and Mo were examined. A 2.45 GHz microwave ion source was utilized in the experiment to avoid contamination of tungsten from filament cathode. Relations between the negative ion currents and work functions of the grid were measured for these materials. Influence of the contamination by tungsten on the grid was also investigated. If was clarified that the negative ion production efficiency was determined only by the work function of the grid. The efficiency did not depend on the material itself. The lowest work function of 1.42 eV was obtained for Au grid with Cs, and a high H{sup -} production efficiency of 20.7 mA/kW was measured. This efficiency is about 1.3 times larger than that of Cs/Mo and Cs/Cu. Further improvement of the production efficiency was observed by covering the plasma grid with tungsten and cesium simultaneously. Such co-deposition of W and Cs on the plasma grid produced the negative ion production efficiency of 1.7 times higher than that from the tungsten grid simply covered with Cs. (author)

  14. Study on Endurance and Performance of Impregnated Ruthenium Catalyst for Thruster System.

    Science.gov (United States)

    Kim, Jincheol; Kim, Taegyu

    2018-02-01

    Performance and endurance of the Ru catalyst were studied for nitrous oxide monopropellant thruster system. The thermal decomposition of N2O requires a considerably high temperature, which make it difficult to be utilized as a thruster propellant, while the propellant decomposition temperature can be reduced by using the catalyst through the decomposition reaction with the propellant. However, the catalyst used for the thruster was frequently exposed to high temperature and high-pressure environment. Therefore, the state change of the catalyst according to the thruster operation was analyzed. Characterization of catalyst used in the operation condition of the thruster was performed using FE-SEM and EDS. As a result, performance degradation was occurred due to the volatilization of Ru catalyst and reduction of the specific surface area according to the phase change of Al2O3.

  15. Oxygen-Methane Thruster, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Two main innovations will be developed in the Phase II effort that are fundamentally associated with our gaseous oxygen/gaseous methane RCS thruster. The first...

  16. Performance, Facility Pressure Effects, and Stability Characterization Tests of NASA's Hall Effect Rocket with Magnetic Shielding Thruster

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Peterson, Peter; Hofer, Richard; Mikellides, Ioannis

    2016-01-01

    NASAs Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for flight system development. Part of the technology maturation effort included experimental evaluation of the TDU-1 thruster with conducting and dielectric front pole cover materials in two different electrical configurations. A graphite front pole cover thruster configuration with the thruster body electrically tied to cathode and an alumina front pole cover thruster configuration with the thruster body floating were evaluated. Both configurations were also evaluated at different facility background pressure conditions to evaluate background pressure effects on thruster operation. Performance characterization tests found that higher thruster performance was attained with the graphite front pole cover configuration with the thruster electrically tied to cathode. A total thrust efficiency of 68 and a total specific impulse of 2,820 s was demonstrated at a discharge voltage of 600 V and a discharge power of 12.5 kW. Thruster stability regimes were characterized with respect to the thruster discharge current oscillations and with maps of the current-voltage-magnetic field (IVB). Analysis of TDU-1 discharge current waveforms found that lower normalized discharge current peak-to-peak and root mean square magnitudes were attained when the thruster was electrically floated with alumina front pole covers. Background pressure effects characterization tests indicated that the thruster performance and stability was mostly invariant to changes in the facility background pressure for vacuum chamber pressure below 110-5 Torr-Xe (for thruster flow rate above 8 mgs). Power spectral density analysis of the discharge current waveform showed that increasing the vacuum chamber background pressure resulted in a higher discharge current dominant frequency. Finally the IVB maps of the TDU-1

  17. Low-Cost, High-Performance Hall Thruster Support System

    Science.gov (United States)

    Hesterman, Bryce

    2015-01-01

    Colorado Power Electronics (CPE) has built an innovative modular PPU for Hall thrusters, including discharge, magnet, heater and keeper supplies, and an interface module. This high-performance PPU offers resonant circuit topologies, magnetics design, modularity, and a stable and sustained operation during severe Hall effect thruster current oscillations. Laboratory testing has demonstrated discharge module efficiency of 96 percent, which is considerably higher than current state of the art.

  18. Simulations of momentum transfer process between solar wind plasma and bias voltage tethers of electric sail thruster

    Science.gov (United States)

    Xia, Guangqing; Han, Yajie; Chen, Liuwei; Wei, Yanming; Yu, Yang; Chen, Maolin

    2018-06-01

    The interaction between the solar wind plasma and the bias voltage of long tethers is the basic mechanism of the electric sail thruster. The momentum transfer process between the solar wind plasma and electric tethers was investigated using a 2D full particle PIC method. The coupled electric field distribution and deflected ion trajectory under different bias voltages were compared, and the influence of bias voltage on momentum transfer process was analyzed. The results show that the high potential of the bias voltage of long tethers will slow down, stagnate, reflect and deflect a large number of ions, so that ion cavities are formed in the vicinity of the tether, and the ions will transmit the axial momentum to the sail tethers to produce the thrust. Compared to the singe tether, double tethers show a better thrust performance.

  19. Particle-in-cell simulation for the effect of segmented electrodes near the exit of an aton-type Hall thruster on ion focusing acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Yu, D.R.; Qing, S.W.; Liu, H.; Li, H. [Lab. of Plasma Propulsion, Harbin Institute of Technology (China)

    2011-12-15

    The effect of floating conductive electrodes near the channel exit of an Aton-type Hall thruster on ion focusing acceleration is studied by simulating the two-dimensional plasma flow with a fully kinetic Particle-in-Cell method for the gas flow rate j{sub a} ranged in 1{proportional_to}3 mg/s. Numerical results show that low-emissive electrodes can reduce plume divergence if the electrode length is less than 2 mm due to the low secondary electron emissive characteristic, but widen plume in all the gas flow rate range if the electrode length is greater than 2mm since the conductive property of segmented electrodes trends to make equipotential lines convex toward channel exit and is even parallel to the wall surface in the near-wall region. Further investigation predicts that the combination of high emissive dielectric wall and segmented low-emissive dielectric wall is a promising way to reduce plume divergence (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Multi-Axis Thrust Measurements of the EO-1 Pulsed Plasma Thruster

    Science.gov (United States)

    Arrington, Lynn A.; Haag, Thomas W.

    1999-01-01

    Pulsed plasma thrusters are low thrust propulsive devices which have a high specific impulse at low power. A pulsed plasma thruster is currently scheduled to fly as an experiment on NASA's Earth Observing-1 satellite mission. The pulsed plasma thruster will be used to replace one of the reaction wheels. As part of the qualification testing of the thruster it is necessary to determine the nominal thrust as a function of charge energy. These data will be used to determine control algorithms. Testing was first completed on a breadboard pulsed plasma thruster to determine nominal or primary axis thrust and associated propellant mass consumption as a function of energy and then later to determine if any significant off-axis thrust component existed. On conclusion that there was a significant off-axis thrust component with the bread-board in the direction of the anode electrode, the test matrix was expanded on the flight hardware to include thrust measurements along all three orthogonal axes. Similar off-axis components were found with the flight unit.

  1. Development of HAN-based Liquid Propellant Thruster

    Science.gov (United States)

    Hisatsune, K.; Izumi, J.; Tsutaya, H.; Furukawa, K.

    2004-10-01

    Many of propellants that are applied to the conventional spacecraft propulsion system are toxic propellants. Because of its toxicity, considering the environmental pollution or safety on handling, it will be necessary to apply the "green" propellant to the spacecraft propulsion system. The purpose of this study is to apply HAN based liquid propellant (LP1846) to mono propellant thruster. Compared to the hydrazine that is used in conventional mono propellant thruster, HAN based propellant is not only lower toxic but also can obtain higher specific impulse. Moreover, HAN based propellant can be decomposed by the catalyst. It means there are the possibility of applying to the mono propellant thruster that can leads to the high reliability of the propulsion system.[1],[2] However, there are two technical subjects, to apply HAN based propellant to the mono propellant thruster. One is the high combustion temperature. The catalyst will be damaged under high temperature condition. The other is the low catalytic activity. It is the serious problem on application of HAN based propellant to the mono propellant thruster that is used for attitude control of spacecraft. To improve the catalytic activity of HAN based propellant, it is necessary to screen the best catalyst for HAN based propellant. The adsorption analysis is conducted by Monte Carlo Simulation to screen the catalyst metal for HAN and TEAN. The result of analysis shows the Iridium is the best catalyst metal for HAN and TEAN. Iridium is the catalyst metal that is used at conventional mono propellant thruster catalyst Shell405. Then, to confirm the result of analysis, the reaction test about catalyst is conducted. The result of this test is the same as the result of adsorption analysis. That means the adsorption analysis is effective in screening the catalyst metal. At the evaluating test, the various types of carrier of catalyst are also compared to Shell 405 to improve catalytic activity. The test result shows the

  2. Optical Diagnostic Characterization of High-Power Hall Thruster Wear and Operation

    Science.gov (United States)

    Williams, George J., Jr.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    Optical emission spectroscopy is employed to correlate BN insulator erosion with high-power Hall thruster operation. Specifically, actinometry leveraging excited xenon states is used to normalize the emission spectra of ground state boron as a function of thruster operating condition. Trends in the strength of the boron signal are correlated with thruster power, discharge voltage, and discharge current. In addition, the technique is demonstrated on metallic coupons embedded in the walls of the HiVHAc EM thruster. The OES technique captured the overall trend in the erosion of the coupons which boosts credibility in the method since there are no data to which to calibrate the erosion rates of high-power Hall thrusters. The boron signals are shown to trend linearly with discharge voltage for a fixed discharge current as expected. However, the boron signals of the higher-power NASA 300M and NASA 457Mv2 trend with discharge current and show an unexpectedly weak to inverse dependence on discharge voltage. Electron temperatures measured optically in the near-field plume of the thruster agree well with Langmuir probe data. However, the optical technique used to determine Te showed unacceptable sensitivity to the emission intensities. Near-field, single-frequency imaging of the xenon neutrals is also presented as a function of operating condition for the NASA 457 Mv2.

  3. The Plasmoid Thruster Experiment (PTX)

    Science.gov (United States)

    Eskridge, Richard; Martin, Adam; Koelfgen, Syri; Lee, Mike; Smith, James W.

    2003-01-01

    A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are categorized according to the relative strength of the poloidal and toroidal magnetic field (B(phi), and B(tau), respectively). An object with B(phi)/B(tau) >> 1 is classified as a Field Reverse Configuration (FRC); if B(phi) = B(tau), it is called a Spheromak. There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A thruster based on this concept would operate by repetitively producing plasmoids and ejecting them from the device at high velocity. The plasmoid is formed inside of a single turn conical theta-pinch coil; as this process is inductive, there are no life-limiting electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s (l), and calculations indicate that velocities in excess of 100 km/s are possible. A thruster based on this concept would be capable of producing an I(sp) in the range of 5,000 - 10,OOO s, with thrust densities of order 10(exp 5) N/m(exp 2). The current experiment is designed to produce jet powers in the range of 5-10 kW, although the concept should be scalable to higher power. The purpose of this experiment is to determine the feasibility of this plasma propulsion concept. To accomplish this, it will be necessary to determine: a.) specific impulse and thrust, b.) efficiency and mass utilization, c.) which type of plasmoid (FRC-like or Spheromak-like) gives the best performance, and d.) the characteristics required of actual thruster components (i.e., switch and capacitor technology). The plasmoid mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras, and an interferometer. Simulations of the plasmoid thruster using MOQUI, a time dependent MHD code, will be carried out concurrently with experimental testing. The PTX

  4. DESIGN AND DEVELOPMENT OF AUTO DEPTH CONTROL OF REMOTELY OPERATED VEHICLE USING THRUSTER SYSTEM

    Directory of Open Access Journals (Sweden)

    F.A. Ali

    2014-12-01

    Full Text Available Remotely Operated Vehicles are underwater robots designed specifically for surveillance, monitoring and collecting data for underwater activities. In the underwater vehicle industries, the thruster is an important part in controlling the direction, depth and speed of the ROV. However, there are some ROVs that cannot be maintained at the specified depth for a long time because of disturbance. This paper proposes an auto depth control using a thruster system. A prototype of a thruster with an auto depth control is developed and attached to the previously fabricated UTeM ROV. This paper presents the operation of auto depth control as well as thrusters for submerging and emerging purposes and maintaining the specified depth. The thruster system utilizes a microcontroller as its brain, a piezoresistive strain gauge pressure sensor and a DC brushless motor to run the propeller. Performance analysis of the auto depth control system is conducted to identify the sensitivity of the pressure sensor, and the accuracy and stability of the system. The results show that the thruster system performs well in maintaining a specified depth as well as stabilizing itself when a disturbanceoccurs even with a simple proportional controller used to control the thruster, where the thruster is an important component of the ROV.

  5. Performance Test Results of the NASA-457M v2 Hall Thruster

    Science.gov (United States)

    Soulas, George C.; Haag, Thomas W.; Herman, Daniel A.; Huang, Wensheng; Kamhawi, Hani; Shastry, Rohit

    2012-01-01

    Performance testing of a second generation, 50 kW-class Hall thruster labeled NASA-457M v2 was conducted at the NASA Glenn Research Center. This NASA-designed thruster is an excellent candidate for a solar electric propulsion system that supports human exploration missions. Thruster discharge power was varied from 5 to 50 kW over discharge voltage and current ranges of 200 to 500 V and 15 to 100 A, respectively. Anode efficiencies varied from 0.56 to 0.71. The peak efficiency was similar to that of other state-of-the-art high power Hall thrusters, but outperformed these thrusters at lower discharge voltages. The 0.05 to 0.18 higher anode efficiencies of this thruster compared to its predecessor were primarily due to which of two stable discharge modes the thruster was operated. One stable mode was at low magnetic field strengths, which produced high anode efficiencies, and the other at high magnetic fields where its predecessor was operated. Cathode keeper voltages were always within 2.1 to 6.2 V and cathode voltages were within 13 V of tank ground during high anode efficiency operation. However, during operation at high magnetic fields, cathode-to-ground voltage magnitudes increased dramatically, exceeding 30 V, due to the high axial magnetic field strengths in the immediate vicinity of the centrally-mounted cathode. The peak thrust was 2.3 N and this occurred at a total thruster input power of 50.0 kW at a 500 V discharge voltage. The thruster demonstrated a thrust-to-power range of 76.4 mN/kW at low power to 46.1 mN/kW at full power, and a specific impulse range of 1420 to 2740 s. For a discharge voltage of 300 V, where specific impulses would be about 2000 s, thrust efficiencies varied from 0.57 to 0.63.

  6. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-08

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H{sup −}) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H{sup −} current at higher frequency of cathode heating current.

  7. Effects of cusped field thruster on the performance of drag-free control system

    Science.gov (United States)

    Cui, K.; Liu, H.; Jiang, W. J.; Sun, Q. Q.; Hu, P.; Yu, D. R.

    2018-03-01

    With increased measurement tasks of space science, more requirements for the spacecraft environment have been put forward. Those tasks (e.g. the measurement of Earth's steady state gravity field anomalies) lead to the desire for developing drag-free control. Higher requirements for the thruster performance are made due to the demand for the drag-free control system and real-time compensation for non-conservative forces. Those requirements for the propulsion system include wide continuous throttling ability, high resolution, rapid response, low noise and so on. As a promising candidate, the cusped field thruster has features such as the high working stability, the low erosion rate, a long lifetime and the simple structure, so that it is chosen as the thruster to be discussed in this paper. Firstly, the performance of a new cusped field thruster is tested and analyzed. Then a drag-free control scheme based on the cusped field thruster is designed to evaluate the performance of this thruster. Subsequently, the effects of the thrust resolution, transient response time and thrust uncertainty on the controller are calculated respectively. Finally, the performance of closed-loop system is analyzed, and the simulation results verify the feasibility of applying cusped field thruster to drag-free flight in the space science measurement tasks.

  8. Performance of multi-aperture grid extraction systems for an ITER-relevant RF-driven negative hydrogen ion source

    Science.gov (United States)

    Franzen, P.; Gutser, R.; Fantz, U.; Kraus, W.; Falter, H.; Fröschle, M.; Heinemann, B.; McNeely, P.; Nocentini, R.; Riedl, R.; Stäbler, A.; Wünderlich, D.

    2011-07-01

    The ITER neutral beam system requires a negative hydrogen ion beam of 48 A with an energy of 0.87 MeV, and a negative deuterium beam of 40 A with an energy of 1 MeV. The beam is extracted from a large ion source of dimension 1.9 × 0.9 m2 by an acceleration system consisting of seven grids with 1280 apertures each. Currently, apertures with a diameter of 14 mm in the first grid are foreseen. In 2007, the IPP RF source was chosen as the ITER reference source due to its reduced maintenance compared with arc-driven sources and the successful development at the BATMAN test facility of being equipped with the small IPP prototype RF source ( {\\sim}\\frac{1}{8} of the area of the ITER NBI source). These results, however, were obtained with an extraction system with 8 mm diameter apertures. This paper reports on the comparison of the source performance at BATMAN of an ITER-relevant extraction system equipped with chamfered apertures with a 14 mm diameter and 8 mm diameter aperture extraction system. The most important result is that there is almost no difference in the achieved current density—being consistent with ion trajectory calculations—and the amount of co-extracted electrons. Furthermore, some aspects of the beam optics of both extraction systems are discussed.

  9. Performance of multi-aperture grid extraction systems for an ITER-relevant RF-driven negative hydrogen ion source

    International Nuclear Information System (INIS)

    Franzen, P.; Gutser, R.; Fantz, U.; Kraus, W.; Falter, H.; Froeschle, M.; Heinemann, B.; McNeely, P.; Nocentini, R.; Riedl, R.; Staebler, A.; Wuenderlich, D.

    2011-01-01

    The ITER neutral beam system requires a negative hydrogen ion beam of 48 A with an energy of 0.87 MeV, and a negative deuterium beam of 40 A with an energy of 1 MeV. The beam is extracted from a large ion source of dimension 1.9 x 0.9 m 2 by an acceleration system consisting of seven grids with 1280 apertures each. Currently, apertures with a diameter of 14 mm in the first grid are foreseen. In 2007, the IPP RF source was chosen as the ITER reference source due to its reduced maintenance compared with arc-driven sources and the successful development at the BATMAN test facility of being equipped with the small IPP prototype RF source ( ∼ 1/8 of the area of the ITER NBI source). These results, however, were obtained with an extraction system with 8 mm diameter apertures. This paper reports on the comparison of the source performance at BATMAN of an ITER-relevant extraction system equipped with chamfered apertures with a 14 mm diameter and 8 mm diameter aperture extraction system. The most important result is that there is almost no difference in the achieved current density-being consistent with ion trajectory calculations-and the amount of co-extracted electrons. Furthermore, some aspects of the beam optics of both extraction systems are discussed.

  10. An evaluation of krypton propellant in Hall thrusters

    Science.gov (United States)

    Linnell, Jesse Allen

    Due to its high specific impulse and low price, krypton has long sparked interest as an alternate Hall thruster propellant. Unfortunately at the moment, krypton's relatively poor performance precludes it as a legitimate option. This thesis presents a detailed investigation into krypton operation in Hall thrusters. These findings suggest that the performance gap can be decreased to 4% and krypton can finally become a realistic propellant option. Although krypton has demonstrated superior specific impulse, the xenon-krypton absolute efficiency gap ranges between 2 and 15%. A phenomenological performance model indicates that the main contributors to the efficiency gap are propellant utilization and beam divergence. Propellant utilization and beam divergence have relative efficiency deficits of 5 and 8%, respectively. A detailed characterization of internal phenomena is conducted to better understand the xenon-krypton efficiency gap. Krypton's large beam divergence is found to be related to a defocusing equipotential structure and a weaker magnetic field topology. Ionization processes are shown to be linked to the Hall current, the magnetic mirror topology, and the perpendicular gradient of the magnetic field. Several thruster design and operational suggestions are made to optimize krypton efficiency. Krypton performance is optimized for discharge voltages above 500 V and flow rates corresponding to an a greater than 0.015 mg/(mm-s), where alpha is a function of flow rate and discharge channel dimensions (alpha = m˙alphab/Ach). Performance can be further improved by increasing channel length or decreasing channel width for a given flow rate. Also, several magnetic field design suggestions are made to enhance ionization and beam focusing. Several findings are presented that improve the understanding of general Hall thruster physics. Excellent agreement is shown between equipotential lines and magnetic field lines. The trim coil is shown to enhance beam focusing

  11. Integrated Stirling Convertor and Hall Thruster Test Conducted

    Science.gov (United States)

    Mason, Lee S.

    2002-01-01

    An important aspect of implementing Stirling Radioisotope Generators on future NASA missions is the integration of the generator and controller with potential spacecraft loads. Some recent studies have indicated that the combination of Stirling Radioisotope Generators and electric propulsion devices offer significant trip time and payload fraction benefits for deep space missions. A test was devised to begin to understand the interactions between Stirling generators and electric thrusters. An electrically heated RG- 350 (350-W output) Stirling convertor, designed and built by Stirling Technology Company of Kennewick, Washington, under a NASA Small Business Innovation Research agreement, was coupled to a 300-W SPT-50 Hall-effect thruster built for NASA by the Moscow Aviation Institute (RIAME). The RG-350 and the SPT-50 shown, were installed in adjacent vacuum chamber ports at NASA Glenn Research Center's Electric Propulsion Laboratory, Vacuum Facility 8. The Stirling electrical controller interfaced directly with the Hall thruster power-processing unit, both of which were located outside of the vacuum chamber. The power-processing unit accepted the 48 Vdc output from the Stirling controller and distributed the power to all the loads of the SPT-50, including the magnets, keeper, heater, and discharge. On February 28, 2001, the Glenn test team successfully operated the Hall-effect thruster with the Stirling convertor. This is the world's first known test of a dynamic power source with electric propulsion. The RG-350 successfully managed the transition from the purely resistive load bank within the Stirling controller to the highly capacitive power-processing unit load. At the time of the demonstration, the Stirling convertor was operating at a hot temperature of 530 C and a cold temperature of -6 C. The linear alternator was producing approximately 250 W at 109 Vac, while the power-processing unit was drawing 175 W at 48 Vdc. The majority of power was delivered to the

  12. Use of Cumulative Degradation Factor Prediction and Life Test Result of the Thruster Gimbal Assembly Actuator for the Dawn Flight Project

    Science.gov (United States)

    Lo, C. John; Brophy, John R.; Etters, M. Andy; Ramesham, Rajeshuni; Jones, William R., Jr.; Jansen, Mark J.

    2009-01-01

    The Dawn Ion Propulsion System is the ninth project in NASA s Discovery Program. The Dawn spacecraft is being developed to enable the scientific investigation of the two heaviest main-belt asteroids, Vesta and Ceres. Dawn is the first mission to orbit two extraterrestrial bodies, and the first to orbit a main-belt asteroid. The mission is enabled by the onboard Ion Propulsion System (IPS) to provide the post-launch delta-V. The three Ion Engines of the IPS are mounted on Thruster Gimbal Assembly (TGA), with only one engine operating at a time for this 10-year mission. The three TGAs weigh 14.6 kg.

  13. Combined tunable diode laser absorption spectroscopy and monochromatic radiation thermometry in ammonium dinitramide-based thruster

    Science.gov (United States)

    Zeng, Hui; Ou, Dongbin; Chen, Lianzhong; Li, Fei; Yu, Xilong

    2018-02-01

    Nonintrusive temperature measurements for a real ammonium dinitramide (ADN)-based thruster by using tunable diode laser absorption spectroscopy and monochromatic radiation thermometry are proposed. The ADN-based thruster represents a promising future space propulsion employing green, nontoxic propellant. Temperature measurements in the chamber enable quantitative thermal analysis for the thruster, providing access to evaluate thermal properties of the thruster and optimize thruster design. A laser-based sensor measures temperature of combustion gas in the chamber, while a monochromatic thermometry system based on thermal radiation is utilized to monitor inner wall temperature in the chamber. Additional temperature measurements of the outer wall temperature are conducted on the injector, catalyst bed, and combustion chamber of the thruster by using thermocouple, respectively. An experimental ADN thruster is redesigned with optimizing catalyst bed length of 14 mm and steady-state firing tests are conducted under various feed pressures over the range from 5 to 12 bar at a typical ignition temperature of 200°C. A threshold of feed pressure higher than 8 bar is required for the thruster's normal operation and upstream movement of the heat release zone is revealed in the combustion chamber out of temperature evolution in the chamber.

  14. The development of the micro-solid propellant thruster array with improved repeatability

    International Nuclear Information System (INIS)

    Seo, Daeban; Kwon, Sejin; Lee, Jongkwang

    2012-01-01

    This paper presents the development of a micro-solid propellant thruster array with improved repeatability. The repeatability and low performance variation of each thruster unit with a high ignition success rate is essential in micro-solid propellant thruster array. To date, the study on the improvement of the repeatability has not yet been reported. As the first step for this study, we propose a new type of micro igniter, using a glass wafer called the heater-contact micro igniter. This igniter is also designed to improve the ignition characteristics of a glass-based micro igniter. The prototype of the igniter array is designed and fabricated to establish its fabrication process and to conduct its performance evaluation. Through the firing test, the performance of the heater-contact micro igniter is verified. The 5 × 5 sized micro-solid propellant thruster array is designed and fabricated applying the developed heater-contact igniter. The measured average thrust of each thruster unit is 2.542 N, and calculated standard deviation is 0.369 N. The calculated average total impulse and its standard deviation are 0.182 and 0.04 mNs, respectively. Based on these results, the improvement of repeatability is verified. Finally, the ignition control system of the micro-thruster array is developed. (paper)

  15. Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project is to develop field emission electric propulsion (FEEP) thruster using carbon nanotubes (CNT) integrated anode. FEEP thrusters have gained...

  16. Pulsed inductive thruster performance data base for megawatt-class engine applications

    International Nuclear Information System (INIS)

    Dailey, C.L.; Lovberg, R.H.

    1993-01-01

    The pulsed inductive thruster (PIT) is an electrodeless plasma accelerator employing a large (1m diameter) spiral coil energized by a capacitor bank discharge. The bank can be repetitively recharged by a nuclear electric generator for continuous MW level operation. The coil can be designed as a transformer that permits thruster operation at the generator voltage, which results in a low thruster specific mass. Specific impulse (I sp ) can be readily altered by changing the propellant valve plenum pressure. Performance curves generated from mesausred impulse, injected mass and capacitor bank energy are presented for argon, ammonia, hydrazine, carbon dioxide and helium. The highest performance measured to date is 48% efficiency at 4000 seconds I sp with ammonia. The development of a theoretical model of the thruster, which assumes a fully ionized plasma, is presented in an appendix

  17. Mathematical Modeling of Liquid-fed Pulsed Plasma Thruster

    Directory of Open Access Journals (Sweden)

    Kaartikey Misra

    2018-01-01

    Full Text Available Liquid propellants are fast becoming attractive for pulsed plasma thrusters due to their high efficiency and low contamination issues. However, the complete plasma interaction and acceleration processes are still not very clear. Present paper develops a multi-layer numerical model for liquid propellant PPTs (pulsed plasma thrusters. The model is based on a quasi-steady flow assumption. The model proposes a possible acceleration mechanism for liquid-fed pulsed plasma thrusters and accurately predicts the propellant utilization capabilities and estimations for the fraction of propellant gas that is completely ionized and accelerated to high exit velocities. Validation of the numerical model and the assumptions on which the model is based on is achieved by comparing the experimental results and the simulation results for two different liquid-fed thrusters developed at the University of Tokyo. Simulation results shows that up-to 50 % of liquid propellant injected is completely ionized and accelerated to high exit velocities (>50 Km/s, whereas, neutral gas contribute to only 7 % of the total specific impulse and accelerated to low exit velocity (<4 Km/s. The model shows an accuracy up-to 92 % . Optimization methods are briefly discussed to ensure efficient propellant utilization and performance. The model acts as a tool to understand the background physics and to optimize the performance for liquid-fed PPTs.

  18. Electronegative Gas Thruster - Direct Thrust Measurement

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort is an international collaboration and academic partnership to mature an innovative electric propulsion (EP) thruster concept to TRL 3 through direct...

  19. Facility Effect Characterization Test of NASA's HERMeS Hall Thruster

    Science.gov (United States)

    Huang, Wensheng; Kamhawi, Hani; Haag, Thomas W.; Ortega, Alejandro Lopez; Mikellides, Ioannis G.

    2016-01-01

    A test to characterize the effect of varying background pressure on NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding had being completed. This thruster is the baseline propulsion system for the Solar Electric Propulsion Technology Demonstration Mission (SEP TDM). Potential differences in thruster performance and oscillation characteristics when in ground facilities versus on-orbit are considered a primary risk for the propulsion system of the Asteroid Redirect Robotic Mission, which is a candidate for SEP TDM. The first primary objective of this test was to demonstrate that the tools being developed to predict the zero-background-pressure behavior of the thruster can provide self-consistent results. The second primary objective of this test was to provide data for refining a physics-based model of the thruster plume that will be used in spacecraft interaction studies. Diagnostics deployed included a thrust stand, Faraday probe, Langmuir probe, retarding potential analyzer, Wien filter spectrometer, and high-speed camera. From the data, a physics-based plume model was refined. Comparisons of empirical data to modeling results are shown.

  20. Overview of NASA GRCs Green Propellant Infusion Mission Thruster Testing and Plume Diagnostics

    Science.gov (United States)

    Deans, Matthew C.; Reed, Brian D.; Yim, John T.; Arrington, Lynn A.; Williams, George J.; Kojima, Jun J.; McLean, Christopher H.

    2014-01-01

    The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The models describe the pressure, temperature, density, Mach number, and species concentration of the AF-M315E thruster exhaust plumes. The models are being used to assess the impingement effects of the AF-M315E thrusters on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters will be tested in a small rocket, altitude facility at NASA GRC. The GRC thruster testing will be conducted at duty cycles representatives of the planned GPIM maneuvers. A suite of laser-based diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, Schlieren imaging, and physical probes will be used to acquire plume measurements of AFM315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.

  1. Continuous Wheel Momentum Dumping Using Magnetic Torquers and Thrusters

    Science.gov (United States)

    Oh, Hwa-Suk; Choi, Wan-Sik; Eun, Jong-Won

    1996-12-01

    Two momentum management schemes using magnetic torquers and thrusters are sug-gested. The stability of the momentum dumping logic is proved at a general attitude equilibrium. Both momentum dumping control laws are implemented with Pulse-Width- Pulse-Frequency Modulated on-off control, and shown working equally well with the original continuous and variable strength control law. Thrusters are assummed to be asymmetrically configured as a contingency case. Each thruster is fired following separated control laws rather than paired thrusting. Null torque thrusting control is added on the thrust control calculated from the momentum control law for the gener-ation of positive thrusting force. Both magnetic and thrusting control laws guarantee the momentum dumping, however, the wheel inner loop control is needed for the "wheel speed" dumping, The control laws are simulated on the KOrea Multi-Purpose SATellite (KOMPSAT) model.

  2. Power Dependence of the Electron Mobility Profile in a Hall Thruster

    Science.gov (United States)

    Jorns, Benjamin A.; Hofery, Richard H.; Mikellides, Ioannis G.

    2014-01-01

    The electron mobility profile is estimated in a 4.5 kW commercial Hall thruster as a function of discharge power. Internal measurements of plasma potential and electron temperature are made in the thruster channel with a high-speed translating probe. These measurements are presented for a range of throttling conditions from 150 - 400 V and 0.6 - 4.5 kW. The fluid-based solver, Hall2De, is used in conjunction with these internal plasma parameters to estimate the anomalous collision frequency profile at fixed voltage, 300 V, and three power levels. It is found that the anomalous collision frequency profile does not change significantly upstream of the location of the magnetic field peak but that the extent and magnitude of the anomalous collision frequency downstream of the magnetic peak does change with thruster power. These results are discussed in the context of developing phenomenological models for how the collision frequency profile depends on thruster operating conditions.

  3. Modeling of physical processes in radio-frequency plasma thrusters

    OpenAIRE

    Tian, Bin

    2017-01-01

    This Thesis presents an investigation of the plasma-wave interaction in Helicon Plasma Thrusters (HPT). The HPT is a new concept of electric space propulsion, which generates plasmas with RF heating and provides thrust by the electrodeless acceleration of plasmas in a magnetic nozzle. An in-depth and extensive literature review of the state of the art of the models and experiments of plasma-wave interaction in helicon plasma sources and thrusters is carried out. Then, a theoret...

  4. Thruster allocation for dynamical positioning

    NARCIS (Netherlands)

    Poppe, K.; van den Berg, J.B.; Blank, E.; Archer, C.; Redeker, M.; Kutter, M.; Hemker, P.

    2010-01-01

    Positioning a vessel at a fixed position in deep water is of great importance when working offshore. In recent years a Dynamical Positioning (DP) system was developed at Marin [2]. After the measurement of the current position and external forces (like waves, wind etc.), each thruster of the vessel

  5. Micropulsed Plasma Thrusters for Attitude Control of a Low-Earth-Orbiting CubeSat

    Science.gov (United States)

    Gatsonis, Nikolaos A.; Lu, Ye; Blandino, John; Demetriou, Michael A.; Paschalidis, Nicholas

    2016-01-01

    This study presents a 3-Unit CubeSat design with commercial-off-the-shelf hardware, Teflon-fueled micropulsed plasma thrusters, and an attitude determination and control approach. The micropulsed plasma thruster is sized by the impulse bit and pulse frequency required for continuous compensation of expected maximum disturbance torques at altitudes between 400 and 1000 km, as well as to perform stabilization of up to 20 deg /s and slew maneuvers of up to 180 deg. The study involves realistic power constraints anticipated on the 3-Unit CubeSat. Attitude estimation is implemented using the q method for static attitude determination of the quaternion using pairs of the spacecraft-sun and magnetic-field vectors. The quaternion estimate and the gyroscope measurements are used with an extended Kalman filter to obtain the attitude estimates. Proportional-derivative control algorithms use the static attitude estimates in order to calculate the torque required to compensate for the disturbance torques and to achieve specified stabilization and slewing maneuvers or combinations. The controller includes a thruster-allocation method, which determines the optimal utilization of the available thrusters and introduces redundancy in case of failure. Simulation results are presented for a 3-Unit CubeSat under detumbling, pointing, and pointing and spinning scenarios, as well as comparisons between the thruster-allocation and the paired-firing methods under thruster failure.

  6. ONIX results: Comparison of grid geometry (BATMAN - ELISE - flat grid)

    Science.gov (United States)

    Revel, Adrien; Mochalskyy, Serhiy; Wünderlich, Dirk; Fantz, Ursel; Minea, Tiberiu

    2017-08-01

    The 3D PIC-MCC code ONIX is dedicated to the modelling of negative hydrogen or deuterium ion extraction and the co-extracted electrons from the plasma in radio-frequency driven sources. The extraction process highly depends on the plasma characteristics close to the plasma grid where it is difficult to obtain experimental data. ONIX brings valuable insights on the plasma behavior in this area. In the code, the numerical treatment of the boundaries have been improved in order to describe with more accuracy the potential and the electric field in this vicinity. The computation time has been reduced by a factor of 2 and the parallelization efficiency has been highly improved. The influence of the magnetic field in BATMAN on the plasma behaviour has been investigated by comparing two different configurations of the magnet bars producing the filter field (internal magnets: x = 3 cm; external magnets: x = 9 cm). A flat grid geometry for the PG instead of the usual conical grid geometry has been studied to evaluate its impact on the extracted current, especially for the negative ions emitted from the surface of the PG. Finally, the ONIX code has been used for the first 3D PIC calculations ever performed for the ELISE experiment.

  7. In-Situ Measurement of Hall Thruster Erosion Using a Fiber Optic Regression Probe

    Science.gov (United States)

    Polzin, Kurt; Korman, Valentin

    2009-01-01

    One potential life-limiting mechanism in a Hall thruster is the erosion of the ceramic material comprising the discharge channel. This is especially true for missions that require long thrusting periods and can be problematic for lifetime qualification, especially when attempting to qualify a thruster by analysis rather than a test lasting the full duration of the mission. In addition to lifetime, several analytical and numerical models include electrode erosion as a mechanism contributing to enhanced transport properties. However, there is still a great deal of dispute over the importance of erosion to transport in Hall thrusters. The capability to perform an in-situ measurement of discharge channel erosion is useful in addressing both the lifetime and transport concerns. An in-situ measurement would allow for real-time data regarding the erosion rates at different operating points, providing a quick method for empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over a thruster s operating envelope would also be useful in the modeling of the detailed physics inside the discharge chamber. There are many different sensors and techniques that have been employed to quantify discharge channel erosion in Hall thrusters. Snapshots of the wear pattern can be obtained at regular shutdown intervals using laser profilometry. Many non-intrusive techniques of varying complexity and sensitivity have been employed to detect the time-varying presence of erosion products in the thruster plume. These include the use quartz crystal microbalances, emission spectroscopy, laser induced flourescence, and cavity ring-down spectroscopy. While these techniques can provide a very accurate picture of the level of eroded material in the thruster plume, it is more difficult to use them to determine the location from which the material was eroded. Furthermore, none of the methods cited provide a true in-situ measure of erosion at the channel surface while

  8. Environmental Testing of the NEXT PM1R Ion Engine

    Science.gov (United States)

    Snyder, John S.; Anderson, John R.; VanNoord, Jonathan L.; Soulas, George C.

    2007-01-01

    The NEXT propulsion system is an advanced ion propulsion system presently under development that is oriented towards robotic exploration of the solar system using solar electric power. The subsystem includes an ion engine, power processing unit, feed system components, and thruster gimbal. The Prototype Model engine PM1 was subjected to qualification-level environmental testing in 2006 to demonstrate compatibility with environments representative of anticipated mission requirements. Although the testing was largely successful, several issues were identified including the fragmentation of potting cement on the discharge and neutralizer cathode heater terminations during vibration which led to abbreviated thermal testing, and generation of particulate contamination from manufacturing processes and engine materials. The engine was reworked to address most of these findings, renamed PM1R, and the environmental test sequence was repeated. Thruster functional testing was performed before and after the vibration and thermal-vacuum tests. Random vibration testing, conducted with the thruster mated to the breadboard gimbal, was executed at 10.0 Grms for 2 min in each of three axes. Thermal-vacuum testing included three thermal cycles from 120 to 215 C with hot engine re-starts. Thruster performance was nominal throughout the test program, with minor variations in a few engine operating parameters likely caused by facility effects. There were no significant changes in engine performance as characterized by engine operating parameters, ion optics performance measurements, and beam current density measurements, indicating no significant changes to the hardware as a result of the environmental testing. The NEXT PM1R engine and the breadboard gimbal were found to be well-designed against environmental requirements based on the results reported herein. The redesigned cathode heater terminations successfully survived the vibration environments. Based on the results of this test

  9. Integration Testing of a Modular Discharge Supply for NASA's High Voltage Hall Accelerator Thruster

    Science.gov (United States)

    Pinero, Luis R.; Kamhawi, hani; Drummond, Geoff

    2010-01-01

    NASA s In-Space Propulsion Technology Program is developing a high performance Hall thruster that can fulfill the needs of future Discovery-class missions. The result of this effort is the High Voltage Hall Accelerator thruster that can operate over a power range from 0.3 to 3.5 kW and a specific impulse from 1,000 to 2,800 sec, and process 300 kg of xenon propellant. Simultaneously, a 4.0 kW discharge power supply comprised of two parallel modules was developed. These power modules use an innovative three-phase resonant topology that can efficiently supply full power to the thruster at an output voltage range of 200 to 700 V at an input voltage range of 80 to 160 V. Efficiencies as high as 95.9 percent were measured during an integration test with the NASA103M.XL thruster. The accuracy of the master/slave current sharing circuit and various thruster ignition techniques were evaluated.

  10. Global Linear Stability Analysis of the Spoke Oscillation in Hall Effect Thrusters

    Science.gov (United States)

    2014-07-15

    meνeχ 2 nTe qex (4.1f) ddc dx = 2cpl vix ≡ γ (4.1g) where x is the axial coordinate along the thruster channel; e, me and mi are the electron charge...mi ) P − ( 5 2 Te mi nvex + qex mi ) 1 dc ddc dξ (4.25i) ddc dξ = Pγ (4.25j) Distribution A: Approved for public release; distribution is unlimited...Thruster. PhD thesis, Standford University , 2011. [128] D. Liu, R.E. Huffman, R.D. Branam, and W.A. Hargus. Ultrahigh-speed imaging of hall-thruster

  11. Current Driven Instabilities and Anomalous Mobility in Hall-effect Thrusters

    Science.gov (United States)

    Tran, Jonathan; Eckhardt, Daniel; Martin, Robert

    2017-10-01

    Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster (HET) modeling. Plasma turbulence and the resulting anomalous electron transport in HETs is a promising candidate for developing predictive models for the observed anomalous transport. In this work, we investigate the implementation of an anomalous electron cross field transport model for hybrid HET simulations such a HPHall. A theory for anomalous transport in HETs and current driven instabilities has been recently studied by Lafleur et al. This work has shown collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field. We will further adapt the previous results for related current driven instabilities to electric propulsion relevant mass ratios and conduct a preliminary study of resolving this instability with a modified hybrid (fluid electron and kinetic ion) simulation with the hope of integration with established hybrid HET simulations. This work is supported by the Air Force Office of Scientific Research award FA9950-17RQCOR465.

  12. Steady-State Ion Beam Modeling with MICHELLE

    Science.gov (United States)

    Petillo, John

    2003-10-01

    There is a need to efficiently model ion beam physics for ion implantation, chemical vapor deposition, and ion thrusters. Common to all is the need for three-dimensional (3D) simulation of volumetric ion sources, ion acceleration, and optics, with the ability to model charge exchange of the ion beam with a background neutral gas. The two pieces of physics stand out as significant are the modeling of the volumetric source and charge exchange. In the MICHELLE code, the method for modeling the plasma sheath in ion sources assumes that the electron distribution function is a Maxwellian function of electrostatic potential over electron temperature. Charge exchange is the process by which a neutral background gas with a "fast" charged particle streaming through exchanges its electron with the charged particle. An efficient method for capturing this is essential, and the model presented is based on semi-empirical collision cross section functions. This appears to be the first steady-state 3D algorithm of its type to contain multiple generations of charge exchange, work with multiple species and multiple charge state beam/source particles simultaneously, take into account the self-consistent space charge effects, and track the subsequent fast neutral particles. The solution used by MICHELLE is to combine finite element analysis with particle-in-cell (PIC) methods. The basic physics model is based on the equilibrium steady-state application of the electrostatic particle-in-cell (PIC) approximation employing a conformal computational mesh. The foundation stems from the same basic model introduced in codes such as EGUN. Here, Poisson's equation is used to self-consistently include the effects of space charge on the fields, and the relativistic Lorentz equation is used to integrate the particle trajectories through those fields. The presentation will consider the complexity of modeling ion thrusters.

  13. Electric Propellant Solid Rocket Motor Thruster Results Enabling Small Satellites

    OpenAIRE

    Koehler, Frederick; Langhenry, Mark; Summers, Matt; Villarreal, James; Villarreal, Thomas

    2017-01-01

    Raytheon Missile Systems has developed and tested true on/off/restart solid propellant thrusters which are controlled only by electrical current. This new patented class of energetic rocket propellant is safe, controllable and simple. The range of applications for this game changing technology includes attitude control systems and a safe alternative to higher impulse space satellite thrusters. Described herein are descriptions and performance data for several small electric propellant solid r...

  14. Contamination Study of Micro Pulsed Plasma Thruster

    National Research Council Canada - National Science Library

    Kesenek, Ceylan

    2008-01-01

    .... Micro-Pulsed Plasma Thrusters (PPTs) are highly reliable and simple micro propulsion systems that will offer attitude control, station keeping, constellation flying, and drag compensation for such satellites...

  15. Chaotic waves in Hall thruster plasma

    International Nuclear Information System (INIS)

    Peradzynski, Zbigniew; Barral, S.; Kurzyna, J.; Makowski, K.; Dudeck, M.

    2006-01-01

    The set of hyperbolic equations of the fluid model describing the acceleration of plasma in a Hall thruster is analyzed. The characteristic feature of the flow is the existence of a trapped characteristic; i.e. there exists a characteristic line, which never intersects the boundary of the flow region in the thruster. To study the propagation of short wave perturbations, the approach of geometrical optics (like WKB) can be applied. This can be done in a linear as well as in a nonlinear version. The nonlinear version describes the waves of small but finite amplitude. As a result of such an approach one obtains so called transport equation, which are governing the wave amplitude. Due to the existence of trapped characteristics this transport equation appears to have chaotic (turbulent) solutions in both, linear and nonlinear versions

  16. The Green Propellant Infusion Mission Thruster Performance Testing for Plume Diagnostics

    Science.gov (United States)

    Deans, Matthew C.; Reed, Brian D.; Arrington, Lynn A.; Williams, George J.; Kojima, Jun J.; Kinzbach, McKenzie I.; McLean, Christopher H.

    2014-01-01

    The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters are currently being tested in a small rocket, altitude facility at NASA GRC. A suite of diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, and Schlieren imaging are being used to acquire plume measurements of AF-M315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.

  17. Micro-cathode Arc Thruster PhoneSat Experiment

    Data.gov (United States)

    National Aeronautics and Space Administration — The Micro-cathode Arc Thruster Phonesat Experiment  was a joint project between George Washington University and NASA Ames Research Center that successfully...

  18. Hot-Fire Testing of a 1N AF-M315E Thruster

    Science.gov (United States)

    Burnside, Christopher G.; Pedersen, Kevin; Pierce, Charles W.

    2015-01-01

    This hot-fire test continues NASA investigation of green propellant technologies for future missions. To show the potential for green propellants to replace some hydrazine systems in future spacecraft, NASA Marshall Space Flight Center (MSFC) is continuing to embark on hot-fire test campaigns with various green propellant blends. NASA completed a hot-fire test of a 1N AF-M315E monopropellant thruster at the Marshall Space Flight Center in the small altitude test stand located in building 4205. The thruster is a ground test article used for basic performance determination and catalyst studies. The purpose of the hot-fire testing was for performance determination of a 1N size thruster and form a baseline from which to study catalyst performance and life with follow-on testing to be conducted at a later date. The thruster performed as expected. The result of the hot-fire testing are presented in this paper and presentation.

  19. Fabrication of phosphor micro-grids using proton beam lithography

    International Nuclear Information System (INIS)

    Rossi, Paolo; Antolak, Arlyn J.; Provencio, Paula Polyak; Doyle, Barney Lee; Malmqvist, Klas; Hearne, Sean Joseph; Nilsson, Christer; Kristiansson, Per; Wegden, Marie; Elfman, Mikael; Pallon, Jan; Auzelyte, Vaida

    2005-01-01

    A new nuclear microscopy technique called ion photon emission microscopy or IPEM was recently invented. IPEM allows analysis involving single ions, such as ion beam induced charge (IBIC) or single event upset (SEU) imaging using a slightly modified optical microscope. The spatial resolution of IPEM is currently limited to more than 10 (micro)m by the scattering and reflection of ion-induced photons, i.e. light blooming or spreading, in the ionoluminescent phosphor layer. We are developing a 'Microscopic Gridded Phosphor' (also called Black Matrix) where the phosphor nanocrystals are confined within the gaps of a micrometer scale opaque grid, which limits the amount of detrimental light blooming. MeV-energy proton beam lithography is ideally suited to lithographically form masks for the grid because of high aspect ratio, pattern density and sub-micron resolution of this technique. In brief, the fabrication of the grids was made in the following manner: (1) a MeV proton beam focused to 1.5-2 (micro)m directly fabricated a matrix of pillars in a 15 (micro)m thick SU-8 lithographic resist; (2) 7:1 aspect ratio pillars were then formed by developing the proton exposed area; (3) Ni (Au) was electrochemically deposited onto Cu-coated Si from a sulfamate bath (or buffered CN bath); (4) the SU-8 pillars were removed by chemical etching; finally (5) the metal micro-grid was freed from its substrate by etching the underlying Cu layer. Our proposed metal micro-grids promise an order-of-magnitude improvement in the resolution of IPEM.

  20. Plasma simulation in space propulsion : the helicon plasma thruster

    OpenAIRE

    Navarro Cavallé, Jaume

    2017-01-01

    The Helicon Plasma Thruster (HPT) is an electrodynamic rocket proposed in the early 2000s. It matches an Helicon Plasma Source (HPS), which ionizes the neutral gas and heats up the plasma, with aMagneticNozzle (MN),where the plasma is supersonically accelerated resulting in thrust. Although the core of this thruster inherits the knowledge on Helicon Plasma sources, dated from the seventies, the HPT technology is still not developed and remains below TRL 4. A deep review of the HPT State-of-ar...

  1. Two-dimensional particle simulation of negative ion extraction from a volume source

    International Nuclear Information System (INIS)

    Naitou, H.; Fukumasa, O.; Sakachou, K.; Mutou, K.

    1995-01-01

    Two-dimensional electrostatic particle simulation was done to study the extraction of negative ions from a volume plasma source. The simulation model is a rectangular system which consists of an extraction grid, a plasma grid, and a grounded wall. Full dynamics of electrons, ions, and negative ions are followed. Negative ions are extracted from the plasma region to the extraction grid through a slit in the plasma grid. For the lower value of extraction grid potential, the simulation results agree with the Child-Langumuir law, where the extracted negative ion current is proportional to the three-halves power of the potential of the extraction grid. For the higher value of extraction grid potential, the space charge effect of negative ions, which enter into the beamline at the top of the concavity of the positive ion boundary, reduces the negative ion current from the prediction of the Child-Langumuir law. ((orig.))

  2. Polyatomic ions from a high current ion implanter driven by a liquid metal ion source

    Science.gov (United States)

    Pilz, W.; Laufer, P.; Tajmar, M.; Böttger, R.; Bischoff, L.

    2017-12-01

    High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi2+ ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.

  3. Mode transition of a Hall thruster discharge plasma

    International Nuclear Information System (INIS)

    Hara, Kentaro; Sekerak, Michael J.; Boyd, Iain D.; Gallimore, Alec D.

    2014-01-01

    A Hall thruster is a cross-field plasma device used for spacecraft propulsion. An important unresolved issue in the development of Hall thrusters concerns the effect of discharge oscillations in the range of 10–30 kHz on their performance. The use of a high speed Langmuir probe system and ultra-fast imaging of the discharge plasma of a Hall thruster suggests that the discharge oscillation mode, often called the breathing mode, is strongly correlated to an axial global ionization mode. Stabilization of the global oscillation mode is achieved as the magnetic field is increased and azimuthally rotating spokes are observed. A hybrid-direct kinetic simulation that takes into account the transport of electronically excited atoms is used to model the discharge plasma of a Hall thruster. The predicted mode transition agrees with experiments in terms of the mean discharge current, the amplitude of discharge current oscillation, and the breathing mode frequency. It is observed that the stabilization of the global oscillation mode is associated with reduced electron transport that suppresses the ionization process inside the channel. As the Joule heating balances the other loss terms including the effects of wall loss and inelastic collisions, the ionization oscillation is damped, and the discharge oscillation stabilizes. A wide range of the stable operation is supported by the formation of a space charge saturated sheath that stabilizes the electron axial drift and balances the Joule heating as the magnetic field increases. Finally, it is indicated from the numerical results that there is a strong correlation between the emitted light intensity and the discharge current.

  4. Improving optimal control of grid-connected lithium-ion batteries through more accurate battery and degradation modelling

    Science.gov (United States)

    Reniers, Jorn M.; Mulder, Grietus; Ober-Blöbaum, Sina; Howey, David A.

    2018-03-01

    The increased deployment of intermittent renewable energy generators opens up opportunities for grid-connected energy storage. Batteries offer significant flexibility but are relatively expensive at present. Battery lifetime is a key factor in the business case, and it depends on usage, but most techno-economic analyses do not account for this. For the first time, this paper quantifies the annual benefits of grid-connected batteries including realistic physical dynamics and nonlinear electrochemical degradation. Three lithium-ion battery models of increasing realism are formulated, and the predicted degradation of each is compared with a large-scale experimental degradation data set (Mat4Bat). A respective improvement in RMS capacity prediction error from 11% to 5% is found by increasing the model accuracy. The three models are then used within an optimal control algorithm to perform price arbitrage over one year, including degradation. Results show that the revenue can be increased substantially while degradation can be reduced by using more realistic models. The estimated best case profit using a sophisticated model is a 175% improvement compared with the simplest model. This illustrates that using a simplistic battery model in a techno-economic assessment of grid-connected batteries might substantially underestimate the business case and lead to erroneous conclusions.

  5. Predictive fault-tolerant control of an all-thruster satellite in 6-DOF motion via neural network model updating

    Science.gov (United States)

    Tavakoli, M. M.; Assadian, N.

    2018-03-01

    The problem of controlling an all-thruster spacecraft in the coupled translational-rotational motion in presence of actuators fault and/or failure is investigated in this paper. The nonlinear model predictive control approach is used because of its ability to predict the future behavior of the system. The fault/failure of the thrusters changes the mapping between the commanded forces to the thrusters and actual force/torque generated by the thruster system. Thus, the basic six degree-of-freedom kinetic equations are separated from this mapping and a set of neural networks are trained off-line to learn the kinetic equations. Then, two neural networks are attached to these trained networks in order to learn the thruster commands to force/torque mappings on-line. Different off-nominal conditions are modeled so that neural networks can detect any failure and fault, including scale factor and misalignment of thrusters. A simple model of the spacecraft relative motion is used in MPC to decrease the computational burden. However, a precise model by the means of orbit propagation including different types of perturbation is utilized to evaluate the usefulness of the proposed approach in actual conditions. The numerical simulation shows that this method can successfully control the all-thruster spacecraft with ON-OFF thrusters in different combinations of thruster fault and/or failure.

  6. Design and Testing of a Hall Effect Thruster with 3D Printed Channel and Propellant Distributor

    Science.gov (United States)

    Hopping, Ethan P.; Xu, Kunning G.

    2017-01-01

    The UAH-78AM is a low-power Hall effect thruster developed at the University of Alabama in Huntsville with channel walls and a propellant distributor manufactured using 3D printing. The goal of this project is to assess the feasibility of using unconventional materials to produce a low-cost functioning Hall effect thruster and consider how additive manufacturing can expand the design space and provide other benefits. A version of the thruster was tested at NASA Glenn Research Center to obtain performance metrics and to validate the ability of the thruster to produce thrust and sustain a discharge. An overview of the thruster design and transient performance measurements are presented here. Measured thrust ranged from 17.2 millinewtons to 30.4 millinewtons over a discharge power of 280 watts to 520 watts with an anode I (sub SP)(Specific Impulse) range of 870 seconds to 1450 seconds. Temperature limitations of materials used for the channel walls and propellant distributor limit the ability to run the thruster at thermal steady-state.

  7. Electrospray Thrusters for Attitude Control of a 1-U CubeSat

    Science.gov (United States)

    Timilsina, Navin

    With a rapid increase in the interest in use of nanosatellites in the past decade, finding a precise and low-power-consuming attitude control system for these satellites has been a real challenge. In this thesis, it is intended to design and test an electrospray thruster system that could perform the attitude control of a 1-unit CubeSat. Firstly, an experimental setup is built to calculate the conductivity of different liquids that could be used as propellants for the CubeSat. Secondly, a Time-Of-Flight experiment is performed to find out the thrust and specific impulse given by these liquids and hence selecting the optimum propellant. On the other hand, a colloidal thruster system for a 1-U CubeSat is designed in Solidworks and fabricated using Lathe and CNC Milling Machine. Afterwards, passive propellant feeding is tested in this thruster system. Finally, the electronic circuit and wireless control system necessary to remotely control the CubeSat is designed and the final testing is performed. Among the propellants studied, Ethyl ammonium nitrate (EAN) was selected as the best propellant for the CubeSat. Theoretical design and fabrication of the thruster system was performed successfully and so was the passive propellant feeding test. The satellite was assembled for the final experiment but unfortunately the microcontroller broke down during the first test and no promising results were found out. However, after proving that one thruster works with passive feeding, it could be said that the ACS testing would have worked if we had performed vacuum compatibility tests for other components beforehand.

  8. Micro Cathode Arc Thruster for PhoneSat: Development and Potential Applications

    Science.gov (United States)

    Gazulla, Oriol Tintore; Perez, Andres Dono; Agasid, Elwood; Uribe, Eddie; Trinh, Greenfield; Keidar, Michael; Teel, George; Haque, Samudra; Lukas, Joseph; Salas, Alberto Guillen; hide

    2014-01-01

    NASA Ames Research Center and the George Washington University are developing an electric propulsion subsystem that will be integrated into the PhoneSat bus. Experimental tests have shown a reliable performance by firing three different thrusters at various frequencies in vacuum conditions. The interface consists of a microcontroller that sends a trigger pulse to the Pulsed Plasma Unit that is responsible for the thruster operation. A Smartphone is utilized as the main user interface for the selection of commands that control the entire system. The propellant, which is the cathode itself, is a solid cylinder made of Titanium. This simplicity in the design avoids miniaturization and manufacturing problems. The characteristics of this thruster allow an array of µCATs to perform attitude control and orbital correction maneuvers that will open the door for the implementation of an extensive collection of new mission concepts and space applications for CubeSats. NASA Ames is currently working on the integration of the system to fit the thrusters and the PPU inside a 1.5U CubeSat together with the PhoneSat bus. This satellite is intended to be deployed from the ISS in 2015 and test the functionality of the thrusters by spinning the satellite around its long axis and measure the rotational speed with the phone gyros. This test flight will raise the TRL of the propulsion system from 5 to 7 and will be a first test for further CubeSats with propulsion systems, a key subsystem for long duration or interplanetary small satellite missions.

  9. Plasma Reactors and Plasma Thrusters Modeling by Ar Complete Global Models

    Directory of Open Access Journals (Sweden)

    Chloe Berenguer

    2012-01-01

    Full Text Available A complete global model for argon was developed and adapted to plasma reactor and plasma thruster modeling. It takes into consideration ground level and excited Ar and Ar+ species and the reactor and thruster form factors. The electronic temperature, the species densities, and the ionization percentage, depending mainly on the pressure and the absorbed power, have been obtained and commented for various physical conditions.

  10. The microwave thermal thruster and its application to the launch problem

    Science.gov (United States)

    Parkin, Kevin L. G.

    Nuclear thermal thrusters long ago bypassed the 50-year-old specific impulse (Isp) limitation of conventional thrusters, using nuclear powered heat exchangers in place of conventional combustion to heat a hydrogen propellant. These heat exchanger thrusters experimentally achieved an Isp of 825 seconds, but with a thrust-to-weight ratio (T/W) of less than ten they have thus far been too heavy to propel rockets into orbit. This thesis proposes a new idea to achieve both high Isp and high T/W The Microwave Thermal Thruster. This thruster covers the underside of a rocket aeroshell with a lightweight microwave absorbent heat exchange layer that may double as a re-entry heat shield. By illuminating the layer with microwaves directed from a ground-based phased array, an Isp of 700--900 seconds and T/W of 50--150 is possible using a hydrogen propellant. The single propellant simplifies vehicle design, and the high Isp increases payload fraction and structural margins. These factors combined could have a profound effect on the economics of building and reusing rockets. A laboratory-scale microwave thermal heat exchanger is constructed using a single channel in a cylindrical microwave resonant cavity, and new type of coupled electromagnetic-conduction-convection model is developed to simulate it. The resonant cavity approach to small-scale testing reveals several drawbacks, including an unexpected oscillatory behavior. Stable operation of the laboratory-scale thruster is nevertheless successful, and the simulations are consistent with the experimental results. In addition to proposing a new type of propulsion and demonstrating it, this thesis provides three other principal contributions: The first is a new perspective on the launch problem, placing it in a wider economic context. The second is a new type of ascent trajectory that significantly reduces the diameter, and hence cost, of the ground-based phased array. The third is an eclectic collection of data, techniques, and

  11. HiVHAc Thruster Wear and Structural Tests

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA GRC is developing a 4.5 kW-class Hall propulsion system. This system includes a long life high performance Hall Effect Thruster (HET), a highly efficient...

  12. Microwave Discharge Ion Engines onboard Hayabusa Asteroid Explorer

    International Nuclear Information System (INIS)

    Kuninaka, Hitoshi

    2008-01-01

    The Hayabusa spacecraft rendezvoused with the asteroid Itokawa in 2005 after the powered flight in the deep space by the μl0 cathode-less electron cyclotron resonance ion engines. Though the spacecraft was seriously damaged after the successful soft-landing and lift-off, the xenon cold gas jets from the ion engines rescued it. New attitude stabilization method using a single reaction wheel, the ion beam jets, and the photon pressure was established and enabled the homeward journey from April 2007 aiming the Earth return on 2010. The total accumulated operational time of the ion engines reaches 31,400 hours at the end of 2007. One of four thrusters achieved 13,400-hour space operation

  13. Ion plasma electron gun

    International Nuclear Information System (INIS)

    Wakalopulos, G.

    1976-01-01

    In the disclosed electron gun positive ions generated by a hollow cathode plasma discharge in a first chamber are accelerated through control and shield grids into a second chamber containing a high voltage cold cathode. These positive ions bombard a surface of the cathode causing the cathode to emit secondary electrons which form an electron beam having a distribution adjacent to the cathode emissive surface substantially the same as the distribution of the ion beam impinging upon the cathode. After passing through the grids and the plasma discharge chamber, the electron beam exits from the electron gun via a foil window. Control of the generated electron beam is achieved by applying a relatively low control voltage between the control grid and the electron gun housing (which resides at ground potential) to control the density of the positive ions bombarding the cathode

  14. High Fidelity Modeling of Field-Reversed Configuration (FRC) Thrusters (Briefing Charts)

    Science.gov (United States)

    2017-05-24

    THRUSTERS (Briefing Charts) Robert Martin , Eder Sousa, Jonathan Tran Air Force Research Laboratory (AFMC) AFRL/RQRS 1 Ara Drive Edwards AFB, CA 93524... Martin N/A HIGH FIDELITY MODELING OF FIELD-REVERSED CONFIGURATION (FRC) THRUSTERS Robert Martin1, Eder Sousa2, Jonathan Tran2 1AIR FORCE RESEARCH...Distribution is unlimited. PA Clearance No. 17314 MARTIN , SOUSA, TRAN (AFRL/RQRS) DISTRIBUTION A - APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA

  15. Optimized Magnetic Nozzles for MPD Thrusters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Magnetoplasmadynamic (MPD) thrusters can provide the high-specific impulse, high-power propulsion required to enable ambitious human and robotic exploration missions...

  16. Acoustic Resonance Reaction Control Thruster (ARCTIC), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate the innovative Acoustic Resonance Reaction Control Thruster (ARCTIC) to provide rapid and reliable in-space impulse...

  17. Determination of the Hall Thruster Operating Regimes

    International Nuclear Information System (INIS)

    L. Dorf; V. Semenov; Y. Raitses; N.J. Fisch

    2002-04-01

    A quasi one-dimensional (1-D) steady-state model of the Hall thruster is presented. For the same discharge voltage two operating regimes are possible -- with and without the anode sheath. For given mass flow rate, magnetic field profile and discharge voltage a unique solution can be constructed, assuming that the thruster operates in one of the regimes. However, we show that for a given temperature profile the applied discharge voltage uniquely determines the operating regime: for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. It is also shown that a good correlation between the quasi 1-D model and experimental results can be achieved by selecting an appropriate electron mobility and temperature profile

  18. Numerical investigation of two interacting parallel thruster-plumes and comparison to experiment

    Science.gov (United States)

    Grabe, Martin; Holz, André; Ziegenhagen, Stefan; Hannemann, Klaus

    2014-12-01

    Clusters of orbital thrusters are an attractive option to achieve graduated thrust levels and increased redundancy with available hardware, but the heavily under-expanded plumes of chemical attitude control thrusters placed in close proximity will interact, leading to a local amplification of downstream fluxes and of back-flow onto the spacecraft. The interaction of two similar, parallel, axi-symmetric cold-gas model thrusters has recently been studied in the DLR High-Vacuum Plume Test Facility STG under space-like vacuum conditions, employing a Patterson-type impact pressure probe with slot orifice. We reproduce a selection of these experiments numerically, and emphasise that a comparison of numerical results to the measured data is not straight-forward. The signal of the probe used in the experiments must be interpreted according to the degree of rarefaction and local flow Mach number, and both vary dramatically thoughout the flow-field. We present a procedure to reconstruct the probe signal by post-processing the numerically obtained flow-field data and show that agreement to the experimental results is then improved. Features of the investigated cold-gas thruster plume interaction are discussed on the basis of the numerical results.

  19. Field emission electric propulsion thruster modeling and simulation

    Science.gov (United States)

    Vanderwyst, Anton Sivaram

    Electric propulsion allows space rockets a much greater range of capabilities with mass efficiencies that are 1.3 to 30 times greater than chemical propulsion. Field emission electric propulsion (FEEP) thrusters provide a specific design that possesses extremely high efficiency and small impulse bits. Depending on mass flow rate, these thrusters can emit both ions and droplets. To date, fundamental experimental work has been limited in FEEP. In particular, detailed individual droplet mechanics have yet to be understood. In this thesis, theoretical and computational investigations are conducted to examine the physical characteristics associated with droplet dynamics relevant to FEEP applications. Both asymptotic analysis and numerical simulations, based on a new approach combining level set and boundary element methods, were used to simulate 2D-planar and 2D-axisymmetric probability density functions of the droplets produced for a given geometry and electrode potential. The combined algorithm allows the simulation of electrostatically-driven liquids up to and after detachment. Second order accuracy in space is achieved using a volume of fluid correction. The simulations indicate that in general, (i) lowering surface tension, viscosity, and potential, or (ii) enlarging electrode rings, and needle tips reduce operational mass efficiency. Among these factors, surface tension and electrostatic potential have the largest impact. A probability density function for the mass to charge ratio (MTCR) of detached droplets is computed, with a peak around 4,000 atoms per electron. High impedance surfaces, strong electric fields, and large liquid surface tension result in a lower MTCR ratio, which governs FEEP droplet evolution via the charge on detached droplets and their corresponding acceleration. Due to the slow mass flow along a FEEP needle, viscosity is of less importance in altering the droplet velocities. The width of the needle, the composition of the propellant, the

  20. Reaction Control System Thruster Cracking Consultation: NASA Engineering and Safety Center (NESC) Materials Super Problem Resolution Team (SPRT) Findings

    Science.gov (United States)

    MacKay, Rebecca A.; Smith, Stephen W.; Shah, Sandeep R.; Piascik, Robert S.

    2005-01-01

    The shuttle orbiter s reaction control system (RCS) primary thruster serial number 120 was found to contain cracks in the counter bores and relief radius after a chamber repair and rejuvenation was performed in April 2004. Relief radius cracking had been observed in the 1970s and 1980s in seven thrusters prior to flight; however, counter bore cracking had never been seen previously in RCS thrusters. Members of the Materials Super Problem Resolution Team (SPRT) of the NASA Engineering and Safety Center (NESC) conducted a detailed review of the relevant literature and of the documentation from the previous RCS thruster failure analyses. It was concluded that the previous failure analyses lacked sufficient documentation to support the conclusions that stress corrosion cracking or hot-salt cracking was the root cause of the thruster cracking and lacked reliable inspection controls to prevent cracked thrusters from entering the fleet. The NESC team identified and performed new materials characterization and mechanical tests. It was determined that the thruster intergranular cracking was due to hydrogen embrittlement and that the cracking was produced during manufacturing as a result of processing the thrusters with fluoride-containing acids. Testing and characterization demonstrated that appreciable environmental crack propagation does not occur after manufacturing.

  1. Analysis of retarding field energy analyzer transmission by simulation of ion trajectories

    Science.gov (United States)

    van de Ven, T. H. M.; de Meijere, C. A.; van der Horst, R. M.; van Kampen, M.; Banine, V. Y.; Beckers, J.

    2018-04-01

    Retarding field energy analyzers (RFEAs) are used routinely for the measurement of ion energy distribution functions. By contrast, their ability to measure ion flux densities has been considered unreliable because of lack of knowledge about the effective transmission of the RFEA grids. In this work, we simulate the ion trajectories through a three-gridded RFEA using the simulation software SIMION. Using idealized test cases, it is shown that at high ion energy (i.e., >100 eV) the transmission is equal to the optical transmission rather than the product of the individual grid transparencies. Below 20 eV, ion trajectories are strongly influenced by the electric fields in between the grids. In this region, grid alignment and ion focusing effects contribute to fluctuations in transmission with ion energy. Subsequently the model has been used to simulate the transmission and energy resolution of an experimental RFEA probe. Grid misalignments reduce the transmission fluctuations at low energy. The model predicts the minimum energy resolution, which has been confirmed experimentally by irradiating the probe with a beam of ions with a small energy bandwidth.

  2. Thermo-mechanical design of the SINGAP accelerator grids for ITER NB injectors

    Energy Technology Data Exchange (ETDEWEB)

    Agostinetti, P. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I35127 Padova (Italy)], E-mail: piero.agostinetti@igi.cnr.it; Dal Bello, S.; Dalla Palma, M.; Zaccaria, P. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I35127 Padova (Italy)

    2007-10-15

    The SINGle Aperture-SINgle GAP (SINGAP) accelerator for ITER neutral beam injector foresees four grids for the extraction and acceleration of negative ions, instead of the seven grids of the Multi-Aperture Multi-Grid (MAMuG) reference configuration. The grids have to fulfil specific requirements coming from ion extraction, beam optics and thermo-mechanical issues. This paper focuses on the thermo-hydraulic and thermo-mechanical design of the grids carried out by Consorzio RFX for the design of the first ITER NB injector and the ITER NB Test Facility. The cooling circuit design (position and shape of the channels) and the cooling parameters (water coolant temperatures, pressure and velocity) were optimized with sensitivity analyses in order to satisfy the grid functional requirements (temperatures, stresses, in plane and out of plane deformations). The design required a complete modelling of the grids and their support frames by means of 3D FE and CAD models.

  3. Overview of Iodine Propellant Hall Thruster Development Activities at NASA Glenn Research Center

    Science.gov (United States)

    Kamhawi, Hani; Benavides, Gabriel; Haag, Thomas; Hickman, Tyler; Smith, Timothy; Williams, George; Myers, James; Polzin, Kurt; Dankanich, John; Byrne, Larry; hide

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek BHT-200-I, 200 W and the continued development of the BHT-600-I Hall thruster propulsion systems. This presentation presents an overview of these development activities and also reports on the results of short duration tests that were performed on the engineering model BHT-200-I and the development model BHT-600-I Hall thrusters.

  4. Performance and Facility Background Pressure Characterization Tests of NASAs 12.5-kW Hall Effect Rocket with Magnetic Shielding Thruster

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Thomas, Robert; Yim, John; Herman, Daniel; Williams, George; Myers, James; Hofer, Richard; hide

    2015-01-01

    NASA's Space Technology Mission Directorate (STMD) Solar Electric Propulsion Technology Demonstration Mission (SEP/TDM) project is funding the development of a 12.5-kW Hall thruster system to support future NASA missions. The thruster designated Hall Effect Rocket with Magnetic Shielding (HERMeS) is a 12.5-kW Hall thruster with magnetic shielding incorporating a centrally mounted cathode. HERMeS was designed and modeled by a NASA GRC and JPL team and was fabricated and tested in vacuum facility 5 (VF5) at NASA GRC. Tests at NASA GRC were performed with the Technology Development Unit 1 (TDU1) thruster. TDU1's magnetic shielding topology was confirmed by measurement of anode potential and low electron temperature along the discharge chamber walls. Thermal characterization tests indicated that during full power thruster operation at peak magnetic field strength, the various thruster component temperatures were below prescribed maximum allowable limits. Performance characterization tests demonstrated the thruster's wide throttling range and found that the thruster can achieve a peak thruster efficiency of 63% at 12.5 kW 500 V and can attain a specific impulse of 3,000 s at 12.5 kW and a discharge voltage of 800 V. Facility background pressure variation tests revealed that the performance, operational characteristics, and magnetic shielding effectiveness of the TDU1 design were mostly insensitive to increases in background pressure.

  5. Hollow Cathode Assembly Development for the HERMeS Hall Thruster

    Science.gov (United States)

    Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.

    2016-01-01

    To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and review of integration requirements. This presentation will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model Barium Oxide (BaO) hollow cathode is being performed as part of the development plan. Specifically this test is to identify potential impacts cathode emitter life during operation in the HERMeS thruster. The cathode was operated with a magnetic field-equipped anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 743 hours at the time of this report. Observed voltage changes are attributed to keeper surface condition changes during testing. Cathode behavior during characterization sweeps exhibited stable behavior, including cathode temperature. The details of the cathode assembly operation of the wear-test will be presented.

  6. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  7. Dual Mode Low Power Hall Thruster, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample and return missions desire and missions like Saturn Observer require a low power Hall thruster that can operate at high thrust to power as well as high...

  8. Hall Thruster Modeling with a Given Temperature Profile

    International Nuclear Information System (INIS)

    Dorf, L.; Semenov, V.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    A quasi one-dimensional steady-state model of the Hall thruster is presented. For given mass flow rate, magnetic field profile, and discharge voltage the unique solution can be constructed, assuming that the thruster operates in one of the two regimes: with or without the anode sheath. It is shown that for a given temperature profile, the applied discharge voltage uniquely determines the operating regime; for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. A good correlation between the quasi one-dimensional model and experimental results can be achieved by selecting an appropriate temperature profile. We also show how the presented model can be used to obtain a two-dimensional potential distribution

  9. ISS Contingency Attitude Control Recovery Method for Loss of Automatic Thruster Control

    Science.gov (United States)

    Bedrossian, Nazareth; Bhatt, Sagar; Alaniz, Abran; McCants, Edward; Nguyen, Louis; Chamitoff, Greg

    2008-01-01

    In this paper, the attitude control issues associated with International Space Station (ISS) loss of automatic thruster control capability are discussed and methods for attitude control recovery are presented. This scenario was experienced recently during Shuttle mission STS-117 and ISS Stage 13A in June 2007 when the Russian GN&C computers, which command the ISS thrusters, failed. Without automatic propulsive attitude control, the ISS would not be able to regain attitude control after the Orbiter undocked. The core issues associated with recovering long-term attitude control using CMGs are described as well as the systems engineering analysis to identify recovery options. It is shown that the recovery method can be separated into a procedure for rate damping to a safe harbor gravity gradient stable orientation and a capability to maneuver the vehicle to the necessary initial conditions for long term attitude hold. A manual control option using Soyuz and Progress vehicle thrusters is investigated for rate damping and maneuvers. The issues with implementing such an option are presented and the key issue of closed-loop stability is addressed. A new non-propulsive alternative to thruster control, Zero Propellant Maneuver (ZPM) attitude control method is introduced and its rate damping and maneuver performance evaluated. It is shown that ZPM can meet the tight attitude and rate error tolerances needed for long term attitude control. A combination of manual thruster rate damping to a safe harbor attitude followed by a ZPM to Stage long term attitude control orientation was selected by the Anomaly Resolution Team as the alternate attitude control method for such a contingency.

  10. Particle-in-cell numerical simulations of a cylindrical Hall thruster with permanent magnets

    Science.gov (United States)

    Miranda, Rodrigo A.; Martins, Alexandre A.; Ferreira, José L.

    2017-10-01

    The cylindrical Hall thruster (CHT) is a propulsion device that offers high propellant utilization and performance at smaller dimensions and lower power levels than traditional Hall thrusters. In this paper we present first results of a numerical model of a CHT. This model solves particle and field dynamics self-consistently using a particle-in-cell approach. We describe a number of techniques applied to reduce the execution time of the numerical simulations. The specific impulse and thrust computed from our simulations are in agreement with laboratory experiments. This simplified model will allow for a detailed analysis of different thruster operational parameters and obtain an optimal configuration to be implemented at the Plasma Physics Laboratory at the University of Brasília.

  11. Gridded ionization chamber

    International Nuclear Information System (INIS)

    Houston, J.M.

    1977-01-01

    An improved ionization chamber type x-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is disposed adjacent the anode and is maintained at a voltsge intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting toward the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  12. MEMS-Based Solid Propellant Rocket Array Thruster

    Science.gov (United States)

    Tanaka, Shuji; Hosokawa, Ryuichiro; Tokudome, Shin-Ichiro; Hori, Keiichi; Saito, Hirobumi; Watanabe, Masashi; Esashi, Masayoshi

    The prototype of a solid propellant rocket array thruster for simple attitude control of a 10 kg class micro-spacecraft was completed and tested. The prototype has 10×10 φ0.8 mm solid propellant micro-rockets arrayed at a pitch of 1.2 mm on a 20×22 mm substrate. To realize such a dense array of micro-rockets, each ignition heater is powered from the backside of the thruster through an electrical feedthrough which passes along a propellant cylinder wall. Boron/potassium nitrate propellant (NAB) is used with/without lead rhodanide/potassium chlorate/nitrocellulose ignition aid (RK). Impulse thrust was measured by a pendulum method in air. Ignition required electric power of at least 3 4 W with RK and 4 6 W without RK. Measured impulse thrusts were from 2×10-5 Ns to 3×10-4 Ns after the calculation of compensation for air dumping.

  13. Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source--Insights from a three dimensional particle-in-cell Monte Carlo collisions model

    Science.gov (United States)

    Fubiani, G.; Boeuf, J. P.

    2013-11-01

    Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%).

  14. Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source—Insights from a three dimensional particle-in-cell Monte Carlo collisions model

    International Nuclear Information System (INIS)

    Fubiani, G.; Boeuf, J. P.

    2013-01-01

    Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%)

  15. Experimental investigation of the catalytic decomposition and combustion characteristics of a non-toxic ammonium dinitramide (ADN)-based monopropellant thruster

    Science.gov (United States)

    Chen, Jun; Li, Guoxiu; Zhang, Tao; Wang, Meng; Yu, Yusong

    2016-12-01

    Low toxicity ammonium dinitramide (ADN)-based aerospace propulsion systems currently show promise with regard to applications such as controlling satellite attitude. In the present work, the decomposition and combustion processes of an ADN-based monopropellant thruster were systematically studied, using a thermally stable catalyst to promote the decomposition reaction. The performance of the ADN propulsion system was investigated using a ground test system under vacuum, and the physical properties of the ADN-based propellant were also examined. Using this system, the effects of the preheating temperature and feed pressure on the combustion characteristics and thruster performance during steady state operation were observed. The results indicate that the propellant and catalyst employed during this work, as well as the design and manufacture of the thruster, met performance requirements. Moreover, the 1 N ADN thruster generated a specific impulse of 223 s, demonstrating the efficacy of the new catalyst. The thruster operational parameters (specifically, the preheating temperature and feed pressure) were found to have a significant effect on the decomposition and combustion processes within the thruster, and the performance of the thruster was demonstrated to improve at higher feed pressures and elevated preheating temperatures. A lower temperature of 140 °C was determined to activate the catalytic decomposition and combustion processes more effectively compared with the results obtained using other conditions. The data obtained in this study should be beneficial to future systematic and in-depth investigations of the combustion mechanism and characteristics within an ADN thruster.

  16. STS-39: OMS Pod Thruster Removal/Replace

    Science.gov (United States)

    1991-01-01

    Shown is the removal and replacement of the Discovery's orbital maneuvering systems (OMS) pod thruster. The OMS engine will be used to propel Discovery north, off of its previous orbital groundtrack, without changing the spacecraft's altitude. A burn with this lateral effect is known as "out-of-plane."

  17. Modeling of negative ion extraction from a magnetized plasma source: Derivation of scaling laws and description of the origins of aberrations in the ion beam

    Science.gov (United States)

    Fubiani, G.; Garrigues, L.; Boeuf, J. P.

    2018-02-01

    We model the extraction of negative ions from a high brightness high power magnetized negative ion source. The model is a Particle-In-Cell (PIC) algorithm with Monte-Carlo Collisions. The negative ions are generated only on the plasma grid surface (which separates the plasma from the electrostatic accelerator downstream). The scope of this work is to derive scaling laws for the negative ion beam properties versus the extraction voltage (potential of the first grid of the accelerator) and plasma density and investigate the origins of aberrations on the ion beam. We show that a given value of the negative ion beam perveance correlates rather well with the beam profile on the extraction grid independent of the simulated plasma density. Furthermore, the extracted beam current may be scaled to any value of the plasma density. The scaling factor must be derived numerically but the overall gain of computational cost compared to performing a PIC simulation at the real plasma density is significant. Aberrations appear for a meniscus curvature radius of the order of the radius of the grid aperture. These aberrations cannot be cancelled out by switching to a chamfered grid aperture (as in the case of positive ions).

  18. Space Charge Saturated Sheath Regime and Electron Temperature Saturation in Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Smirnov, A.; Fisch, N.J.

    2005-01-01

    Secondary electron emission in Hall thrusters is predicted to lead to space charge saturated wall sheaths resulting in enhanced power losses in the thruster channel. Analysis of experimentally obtained electron-wall collision frequency suggests that the electron temperature saturation, which occurs at high discharge voltages, appears to be caused by a decrease of the Joule heating rather than by the enhancement of the electron energy loss at the walls due to a strong secondary electron emission

  19. Determination of the Hall Thruster Operating Regimes; TOPICAL

    International Nuclear Information System (INIS)

    L. Dorf; V. Semenov; Y. Raitses; N.J. Fisch

    2002-01-01

    A quasi one-dimensional (1-D) steady-state model of the Hall thruster is presented. For the same discharge voltage two operating regimes are possible - with and without the anode sheath. For given mass flow rate, magnetic field profile and discharge voltage a unique solution can be constructed, assuming that the thruster operates in one of the regimes. However, we show that for a given temperature profile the applied discharge voltage uniquely determines the operating regime: for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. It is also shown that a good correlation between the quasi 1-D model and experimental results can be achieved by selecting an appropriate electron mobility and temperature profile

  20. The Power Supply And Control Unit For The HEMP Thruster

    Science.gov (United States)

    Brag, Rafael; Lenz, Werner; Huther, Andreas; Herty, Frank

    2011-10-01

    In the recent years, Astrium GmbH started to develop electronics to control and supply Electric Propulsion systems or corresponding components. One of the developments is a Power Supply and Control Unit (PSCU) for the Thales Electron Devices development "High Efficiency Multistage Plasma Thruster" (HEMP- T). The PSCU is developed, manufactured and tested on the Astrium southern Germany site in Friedrichshafen. The first application is the SGEO Satellite (HISPASAT- 1), where the In-Orbit Demonstration (IOD) of the HEMP Thruster system will prove the success of the product. Astrium conducted several coupling tests during the PSCU development especially concentrated on *Thruster electrical I/F parameters *Neutralizer electrical I/F parameters *Flow Control I/F parameters Results of these tests were used to refine the specification and adapt the PSCU drivers and control algorithms. Furthermore, the tests results gave Thales and Astrium the possibility for a deep understanding of the interaction between the physics and the electronics. The paper presents an overview of the PSCU topology, key features, technical and development logic details as well as a view into the control capabilities of the PSCU.

  1. 2D Electrostatic Potential Solver for Hall Thruster Simulation

    National Research Council Canada - National Science Library

    Koo, Justin W

    2006-01-01

    ...) for Hall thruster simulation. It is based on a finite volume discretization of a current conservation equation where the electron current density is described by a Generalized Ohm's law description...

  2. Electromagnetic properties of a modular MHD thruster

    Science.gov (United States)

    Kom, C. H.; Brunet, Y.

    1999-04-01

    The magnetic field of an annular MHD thruster made of independent superconducting modules has been studied with analytical and numerical methods. This configuration allows to obtain large magnetized volumes and high induction levels with rapidly decreasing stray fields. When some inductors are out of order, the thruster remains still operational, but the stray fields increase in the vicinity of the failure. For given structural materials and superconductors, it is possible to determine the size of the conductor in order to reduce the electromagnetic forces and the peak field supported by the conductors. For an active field of 10 T in a 6 m ray annular active channel of a thruster with 24 modules, the peak field is exactly 15.6 T in the Nb3Sn conductors and the structure has to sustain 10^8 N/m forces. The necessity to place some magnetic or superconducting shield is discussed, particularly when the thruster is in a degraded regime. Nous présentons une étude analytique et numérique du champ magnétique d'un propulseur MHD naval annulaire, constitué de secteurs inducteurs supraconducteurs. Cette configuration nécessite des champs magnétiques élevés dans des volumes importants, et permet une décroissance rapide des champs de fuite. Lorsque quelques inducteurs sont en panne, le propulseur reste toujours opérationnel, mais les champs de fuite sont importants aux environs des modules hors service. Étant donné un matériau supraconducteur, il est possible de déterminer la forme des inducteurs dans le but de réduire à la fois les forces électromagnétiques et le surchamp supporté par le bobinage. Pour un propulseur annulaire constitué de 24 modules inducteurs, et un champ actif de 10 T au centre de la partie active du canal (r = 6 m) on obtient avec du Nb3Sn un champ maximun sur le conducteur de 15,5 T et la structure supporte une force de 10^8 N/m. De plus, la nécessité de placer des écrans magnétique ou supraconducteur en régime dégradé (mise

  3. Ion accelerators for space

    International Nuclear Information System (INIS)

    Slobodrian, R.J.; Potvin, L.

    1991-01-01

    The main purpose of the accelerators is to allow ion implantation in space stations and their neighborhoods. There are several applications of interest immediately useful in such environment: as ion engines and thrusters, as implanters for material science and for hardening of surfaces (relevant to improve resistance to micrometeorite bombardment of exposed external components), production of man made alloys, etc. The microgravity environment of space stations allows the production of substances (crystalline and amorphous) under conditions unknown on earth, leading to special materials. Ion implantation in situ of those materials would thus lead uninterruptedly to new substances. Accelerators for space require special design. On the one hand it is possible to forego vacuum systems simplifying the design and operation but, on the other hand, it is necessary to pay special attention to heat dissipation. Hence it is necessary to construct a simulator in vacuum to properly test prototypes under conditions prevailing in space

  4. Non-Maxwellian electron energy probability functions in the plume of a SPT-100 Hall thruster

    Science.gov (United States)

    Giono, G.; Gudmundsson, J. T.; Ivchenko, N.; Mazouffre, S.; Dannenmayer, K.; Loubère, D.; Popelier, L.; Merino, M.; Olentšenko, G.

    2018-01-01

    We present measurements of the electron density, the effective electron temperature, the plasma potential, and the electron energy probability function (EEPF) in the plume of a 1.5 kW-class SPT-100 Hall thruster, derived from cylindrical Langmuir probe measurements. The measurements were taken on the plume axis at distances between 550 and 1550 mm from the thruster exit plane, and at different angles from the plume axis at 550 mm for three operating points of the thruster, characterized by different discharge voltages and mass flow rates. The bulk of the electron population can be approximated as a Maxwellian distribution, but the measured distributions were seen to decline faster at higher energy. The measured EEPFs were best modelled with a general EEPF with an exponent α between 1.2 and 1.5, and their axial and angular characteristics were studied for the different operating points of the thruster. As a result, the exponent α from the fitted distribution was seen to be almost constant as a function of the axial distance along the plume, as well as across the angles. However, the exponent α was seen to be affected by the mass flow rate, suggesting a possible relationship with the collision rate, especially close to the thruster exit. The ratio of the specific heats, the γ factor, between the measured plasma parameters was found to be lower than the adiabatic value of 5/3 for each of the thruster settings, indicating the existence of non-trivial kinetic heat fluxes in the near collisionless plume. These results are intended to be used as input and/or testing properties for plume expansion models in further work.

  5. A concept of ferroelectric microparticle propulsion thruster

    International Nuclear Information System (INIS)

    Yarmolich, D.; Vekselman, V.; Krasik, Ya. E.

    2008-01-01

    A space propulsion concept using charged ferroelectric microparticles as a propellant is suggested. The measured ferroelectric plasma source thrust, produced mainly by microparticles emission, reaches ∼9x10 -4 N. The obtained trajectories of microparticles demonstrate that the majority of the microparticles are positively charged, which permits further improvement of the thruster

  6. Deposition of fluorocarbon films by Pulsed Plasma Thruster on the anode side

    International Nuclear Information System (INIS)

    Zhang, Rui; Zhang, Daixian; Zhang, Fan; He, Zhen; Wu, Jianjun

    2013-01-01

    Fluorocarbon thin films were deposited by Pulsed Plasma Thruster at different angles on the anode side of the thruster. Density and velocity of the plasma in the plume of the Pulsed Plasma Thruster were determined using double and triple Langmuir probe apparatus respectively. The deposited films were characterized by X-ray photoelectron spectroscopy (XPS), scanning probe microscope (SPM) and UV–vis spectrometer. Low F/C ratio (0.64–0.86) fluorocarbon films are deposited. The F/C ratio decreases with angle increasing from 0 degree to 30 degree; however it turns to increase with angle increasing from 45 degree to 90 degree. The films deposited at center angles appear rougher compared with that prepared at angles beyond 45 degree. These films basically show having strong absorption properties for wavelength below 600 nm and having enhanced reflective characteristics. Due to the influence of the chemical composition and the surface morphology of the films, the optical properties of these films also show significant angular dependence.

  7. Magnesium Hall Thruster for Solar System Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation being developed in this program is a Mg Hall Effect Thruster system that would open the door for In-Situ Resource Utilization based solar system...

  8. Discharge Oscillations in a Permanent Magnet Cylindrical Hall-Effect Thruster

    Science.gov (United States)

    Polzin, K. A.; Sooby, E. S.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    Measurements of the discharge current in a cylindrical Hall thruster are presented to quantify plasma oscillations and instabilities without introducing an intrusive probe into the plasma. The time-varying component of the discharge current is measured using a current monitor that possesses a wide frequency bandwidth and the signal is Fourier transformed to yield the frequency spectra present, allowing for the identification of plasma oscillations. The data show that the discharge current oscillations become generally greater in amplitude and complexity as the voltage is increased, and are reduced in severity with increasing flow rate. The breathing mode ionization instability is identified, with frequency as a function of discharge voltage not increasing with discharge voltage as has been observed in some traditional Hall thruster geometries, but instead following a scaling similar to a large-amplitude, nonlinear oscillation mode recently predicted in for annular Hall thrusters. A transition from lower amplitude oscillations to large relative fluctuations in the oscillating discharge current is observed at low flow rates and is suppressed as the mass flow rate is increased. A second set of peaks in the frequency spectra are observed at the highest propellant flow rate tested. Possible mechanisms that might give rise to these peaks include ionization instabilities and interactions between various oscillatory modes.

  9. Development of ion-acoustic double layers through ion-acoustic fluctuations

    International Nuclear Information System (INIS)

    Sekar, A.N.; Saxena, Y.C.

    1985-01-01

    Experimental results on the formation of ion acoustic double layers resembling asymmetric ion-holes are presented. In a double plasma device, modified suitably to inject electron beam into the target plasma, modulation of the beam through step potential leads to excitation of ion-acoustic fluctuation. The ion-acoustic fluctuation, growing away from the grids separating source and target plasmas, developed into weak asymmetric ion-acoustic double layer. The observations are in qualitative agreement with theoretical models and computer simulations. (author)

  10. Laser injection of ultra-short electron bursts for the diagnosis of Hall thruster plasma

    International Nuclear Information System (INIS)

    Albarede, L; Gibert, T; Lazurenko, A; Bouchoule, A

    2006-01-01

    The present developments of Hall thrusters for satellite control and space mission technologies represent a new step towards their routine use in place of conventional thermal thrusters. In spite of their long R and D history, the complex physics of the E x B discharge at work in these structures has prevented, up to now, the availability of predictive simulations. The electron transport in the accelerating layers of these thrusters is one of the remaining challenges in this direction. From the experimental point of view, any diagnostics of electron transport and electric field in this critical layer would be welcome for comparison with code predictions. Appropriate diagnostics are difficult, due to the very aggressive local plasma conditions. This paper presents the first step in the development of a new tool for characterization of the plasma electric field in the very near exhaust thruster plume and comparison with simulation code predictions. The main idea is to use very short bursts of electrons, probing local electron dynamics in this critical plume area. Such bursts can be obtained through photoelectric emission induced by a UV pulsed laser beam on a convenient target. A specific study, devoted to the characterization of the electron burst emission, is presented in the first section of the paper; the implementation and testing of the injection of electrons in the critical layer of Hall thruster plasma is described in the second section. The design and testing of a fast and sensitive system for characterizing the transport of injected bursts will be the next step of this program. It requires a preliminary evaluation of electron trajectories which was achieved by using simulation code. Simulation data are presented in the last section of the paper, with the full diagnostic design to be tested in the near future, when runs will be available in the renewed PIVOINE facility. The same electron burst injection could also be a valuable input in the present

  11. The effects of 1 kW class arcjet thruster plumes on spacecraft charging and spacecraft thermal control materials

    Science.gov (United States)

    Bogorad, A.; Lichtin, D. A.; Bowman, C.; Armenti, J.; Pencil, E.; Sarmiento, C.

    1992-01-01

    Arcjet thrusters are soon to be used for north/south stationkeeping on commercial communications satellites. A series of tests was performed to evaluate the possible effects of these thrusters on spacecraft charging and the degradation of thermal control material. During the tests the interaction between arcjet plumes and both charged and uncharged surfaces did not cause any significant material degradation. In addition, firing an arcjet thruster benignly reduced the potential of charged surfaces to near zero.

  12. Neutralization principles for the Extraction and Transport of Ion Beams

    CERN Document Server

    Riege, H

    2000-01-01

    The strict application of conventional extraction techniques of ion beams from a plasma source is characterized by a natural intensity limit determined by space charge.The extracted current may be enhanced far beyond this limit by neutralizing the space charge of the extracted ions in the first extraction gap of the source with electrons injected from the opposite side. The transverse and longitudinal emittances of a neutralized ion beam, hence its brightness, are preserved. Results of beam compensation experiments, which have been carried out with a laser ion source, are resumed for proposing a general scheme of neutralizing ion sources and their adjacent low-energy beam transport channels with electron beams. Many technical applications of high-mass ion beam neutralization technology may be identified: the enhancement of ion source output for injection into high-intensity, low-and high-energy accelerators, or ion thrusters in space technology, for the neutral beams needed for plasma heating of magnetic conf...

  13. High Input Voltage Hall Thruster Discharge Converter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall scope of this Phase I/II effort is the development of a high efficiency 15kW (nominal) Hall thruster discharge converter. In Phase I, Busek Co. Inc. will...

  14. Experimental Investigations of a Krypton Stationary Plasma Thruster

    Directory of Open Access Journals (Sweden)

    A. I. Bugrova

    2013-01-01

    Full Text Available Stationary plasma thrusters are attractive electric propulsion systems for spacecrafts. The usual propellant is xenon. Among the other suggested propellants, krypton could be one of the best candidates. Most studies have been carried out with a Hall effect thruster previously designed for xenon. The ATON A-3 developed by MSTU MIREA (Moscow initially defined for xenon has been optimized for krypton. The stable high-performance ATON A-3 operation in Kr has been achieved after optimization of its magnetic field configuration and its optimization in different parameters: length and width of the channel, buffer volume dimensions, mode of the cathode operation, and input parameters. For a voltage of 400 V and the anode mass flow rate of 2.5 mg/s the anode efficiency reaches 60% and the specific impulse reaches 2900 s under A-3 operating with Kr. The achieved performances under operation A-3 with Kr are presented and compared with performances obtained with Xe.

  15. Beam test of a grid-less multi-harmonic buncher

    International Nuclear Information System (INIS)

    Ostroumov, P.N.; Aseev, V.N.; Barcikowski, A.; Clifft, B.; Pardo, R.; Sharamentov, S.I.; Sengupta, M.

    2008-01-01

    The Argonne Tandem Linear Accelerator System (ATLAS) is the first superconducting heavy-ion linac in the world. Currently ATLAS is being upgraded with the Californium Rare Ion Breeder Upgrade (CARIBU). The latter is a funded project to expand the range of shortlived, neutron-rich rare isotope beams available for nuclear physics research at ATLAS. To avoid beam losses associated with the existing gridded multi-harmonic buncher (MHB), we have developed and built a grid-less four-harmonic buncher with fundamental frequency of 12.125 MHz. In this paper, we report the results of the MHB commissioning and ATLAS beam performance with the new buncher.

  16. Numerical simulation of ammonium dinitramide (ADN)-based non-toxic aerospace propellant decomposition and combustion in a monopropellant thruster

    International Nuclear Information System (INIS)

    Zhang, Tao; Li, Guoxiu; Yu, Yusong; Sun, Zuoyu; Wang, Meng; Chen, Jun

    2014-01-01

    Highlights: • Decomposition and combustion process of ADN-based thruster are studied. • Distribution of droplets is obtained during the process of spray hit on wire mesh. • Two temperature models are adopted to describe the heat transfer in porous media. • The influences brought by different mass flux and porosity are studied. - Abstract: Ammonium dinitramide (ADN) monopropellant is currently the most promising among all ‘green propellants’. In this paper, the decomposition and combustion process of liquid ADN-based ternary mixtures for propulsion are numerically studied. The R–R distribution model is used to study the initial boundary conditions of droplet distribution resulting from spray hit on a wire mesh based on PDA experiment. To simulate the heat-transfer characteristics between the gas–solid phases, a two-temperature porous medium model in a catalytic bed is used. An 11-species and 7-reactions chemistry model is used to study the catalytic and combustion processes. The final distribution of temperature, pressure, and other kinds of material component concentrations are obtained using the ADN thruster. The results of simulation conducted in the present study are well agree with previous experimental data, and the demonstration of the ADN thruster confirms that a good steady-state operation is achieved. The effects of spray inlet mass flux and porosity on monopropellant thruster performance are analyzed. The numerical results further show that a larger inlet mass flux results in better thruster performance and a catalytic bed porosity value of 0.5 can exhibit the best thruster performance. These findings can serve as a key reference for designing and testing non-toxic aerospace monopropellant thrusters

  17. Negative ion source improvement by introduction of a shutter mask

    International Nuclear Information System (INIS)

    Belchenko, Yu.I.; Oka, Y.; Kaneko, O.; Takeiri, Y.; Tsumori, K.; Osakabe, M.; Ikeda, K.; Asano, E.; Kawamoto, T.

    2004-01-01

    Studies of a multicusp source were recently done at the National Institute for Fusion Science by plasma grid masking. The maximal H - ion yield is ∼1.4 times greater for the shutter mask case than that for the standard source. Negative ion current evolution during the cesium feed to the masked plasma grid evidenced that about 60% of negative ions are produced on the shutter mask surface, while about 30% are formed on the plasma grid emission hole edges, exposed by cesium with the mask open

  18. Microfluidic Array of Externally Fed Electrospray Thrusters for Micro-Propulsion

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this proposal is to design an electrospray micropropulsion thruster that utilizes a novel propellant transport mechanism. This project is a collaboration...

  19. Iodine Hall Thruster Propellant Feed System for a CubeSat

    Science.gov (United States)

    Polzin, Kurt A.; Peeples, Steven

    2014-01-01

    The components required for an in-space iodine vapor-fed Hall effect thruster propellant management system are described. A laboratory apparatus was assembled and used to produce iodine vapor and control the flow through the application of heating to the propellant reservoir and through the adjustment of the opening in a proportional flow control valve. Changing of the reservoir temperature altered the flowrate on the timescale of minutes while adjustment of the proportional flow control valve changed the flowrate immediately without an overshoot or undershoot in flowrate with the requisite recovery time associated with thermal control systems. The flowrates tested spanned a range from 0-1.5 mg/s of iodine, which is sufficient to feed a 200-W Hall effect thruster.

  20. Numerical Analysis of Neutral Entrainment Effect on Field-Reversed Configuration Thruster Efficiency

    Science.gov (United States)

    2014-12-01

    Δx < ζλe in order to avoid the finite grid instability. Here, ωpe is the electron plasma frequency, and λe is the electron Debye length . In an...Celeste3D results in highly efficient simulations based on ion length and timescales (and not electron scales as explicit methods do) while retaining

  1. Hybrid-PIC Computer Simulation of the Plasma and Erosion Processes in Hall Thrusters

    Science.gov (United States)

    Hofer, Richard R.; Katz, Ira; Mikellides, Ioannis G.; Gamero-Castano, Manuel

    2010-01-01

    HPHall software simulates and tracks the time-dependent evolution of the plasma and erosion processes in the discharge chamber and near-field plume of Hall thrusters. HPHall is an axisymmetric solver that employs a hybrid fluid/particle-in-cell (Hybrid-PIC) numerical approach. HPHall, originally developed by MIT in 1998, was upgraded to HPHall-2 by the Polytechnic University of Madrid in 2006. The Jet Propulsion Laboratory has continued the development of HPHall-2 through upgrades to the physical models employed in the code, and the addition of entirely new ones. Primary among these are the inclusion of a three-region electron mobility model that more accurately depicts the cross-field electron transport, and the development of an erosion sub-model that allows for the tracking of the erosion of the discharge chamber wall. The code is being developed to provide NASA science missions with a predictive tool of Hall thruster performance and lifetime that can be used to validate Hall thrusters for missions.

  2. High-Power Krypton Hall Thruster Technology Being Developed for Nuclear-Powered Applications

    Science.gov (United States)

    Jacobson, David T.; Manzella, David H.

    2004-01-01

    The NASA Glenn Research Center has been performing research and development of moderate specific impulse, xenon-fueled, high-power Hall thrusters for potential solar electric propulsion applications. These applications include Mars missions, reusable tugs for low-Earth-orbit to geosynchronous-Earth-orbit transportation, and missions that require transportation to libration points. This research and development effort resulted in the design and fabrication of the NASA-457M Hall thruster that has been tested at input powers up to 95 kW. During project year 2003, NASA established Project Prometheus to develop technology in the areas of nuclear power and propulsion, which are enabling for deep-space science missions. One of the Project-Prometheus-sponsored Nuclear Propulsion Research tasks is to investigate alternate propellants for high-power Hall thruster electric propulsion. The motivation for alternate propellants includes the disadvantageous cost and availability of xenon propellant for extremely large scale, xenon-fueled propulsion systems and the potential system performance benefits of using alternate propellants. The alternate propellant krypton was investigated because of its low cost relative to xenon. Krypton propellant also has potential performance benefits for deep-space missions because the theoretical specific impulse for a given voltage is 20 percent higher than for xenon because of krypton's lower molecular weight. During project year 2003, the performance of the high-power NASA-457M Hall thruster was measured using krypton as the propellant at power levels ranging from 6.4 to 72.5 kW. The thrust produced ranged from 0.3 to 2.5 N at a discharge specific impulse up to 4500 sec.

  3. Ion extraction from positively biased laser-ablation plasma

    International Nuclear Information System (INIS)

    Isono, Fumika; Nakajima, Mitsuo; Hasegawa, Jun; Horioka, Kazuhiko

    2016-01-01

    Ions were extracted through a grounded grid from a positively biased laser-ablation plasma and the behaviors were investigated. Since the plasma was positively biased against the grounded wall, we could extract the ions without insulated gap. We confirmed formation of a virtual anode when we increased the distance between the grid and the ion collector. Results also indicated that when the ion flux from the ablation plasma exceeded a critical value, the current was strongly suppressed to the space charge limited level due to the formation of virtual anode.

  4. Laser-Induced Fluorescence Measurements within a Laboratory Hall Thruster (Postprint)

    National Research Council Canada - National Science Library

    Hargus, Jr., W. A; Cappelli, M. A

    1999-01-01

    In this paper, we describe the results of a study of laser induced fluorescence velocimetry of ionic xenon in the plume and interior acceleration channel of a laboratory Hall type thruster operating...

  5. Ion source design for industrial applications

    Science.gov (United States)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    The more frequently used design techniques for the components of broad-beam electron bombardment ion sources are discussed. The approach used emphasizes refractory metal cathodes and permanent-magnet multipole discharge chambers. Design procedures and sample calculations are given for the discharge chamber, ion optics, the cathodes, and the magnetic circuit. Hardware designs are included for the isolator, cathode supports, anode supports, pole-piece assembly, and ion-optics supports. A comparison is made between two-grid and three-grid optics. The designs presented are representative of current technology and are adaptable to a wide range of configurations.

  6. Cassini Spacecraft In-Flight Swap to Backup Attitude Control Thrusters

    Science.gov (United States)

    Bates, David M.

    2010-01-01

    NASA's Cassini Spacecraft, launched on October 15th, 1997 and arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. In order to meet the challenging attitude control and navigation requirements of the orbit profile at Saturn, Cassini is equipped with a monopropellant thruster based Reaction Control System (RCS), a bipropellant Main Engine Assembly (MEA) and a Reaction Wheel Assembly (RWA). In 2008, after 11 years of reliable service, several RCS thrusters began to show signs of end of life degradation, which led the operations team to successfully perform the swap to the backup RCS system, the details and challenges of which are described in this paper. With some modifications, it is hoped that similar techniques and design strategies could be used to benefit other spacecraft.

  7. Long Life Miniature Hall Thruster Enabling Low Cost Human Precursor Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — Key and Central Objectives: This investigation aims to demonstrate that the application of magnetic shielding technology on miniature Hall thrusters will...

  8. Plasma-surface interaction in negative hydrogen ion sources

    Science.gov (United States)

    Wada, Motoi

    2018-05-01

    A negative hydrogen ion source delivers more beam current when Cs is introduced to the discharge, but a continuous operation of the source reduces the beam current until more Cs is added to the source. This behavior can be explained by adsorption and ion induced desorption of Cs atoms on the plasma grid surface of the ion source. The interaction between the ion source plasma and the plasma grid surface of a negative hydrogen ion source is discussed in correlation to the Cs consumption of the ion source. The results show that operation with deuterium instead of hydrogen should require more Cs consumption and the presence of medium mass impurities as well as ions of the source wall materials in the arc discharge enlarges the Cs removal rate during an ion source discharge.

  9. Integration of an ion engine on the Communications Technology Satellite.

    Science.gov (United States)

    Payne, W. F.; Finke, R. C.

    1972-01-01

    An ion engine subsystem intended for satellite stationkeeping tasks is described. Ion thrusters are chosen to perform the task because the specific impulse is at least an order of magnitude higher than the commonly used reaction control jets. The higher the value of specific impulse, the greater the total impulse that can be attained for a given weight of propellant, hence cost benefits result. The integration, subsystem testing, and the operating plans for the ion engine experiment to be flown in 1975 on the Canadian Communications Technology Satellite (CTS) are described. The subsystem is designed to demonstrate north-south stationkeeping, attitude control by means of thrust vectoring, long-term space storage and restart capability, and compatibility with a high powered communications transponder.

  10. Hot-Fire Testing of 5N and 22N HPGP Thrusters

    Science.gov (United States)

    Burnside, Christopher G.; Pedersen, Kevin W.; Pierce, Charles W.

    2015-01-01

    This hot-fire test continues NASA investigation of green propellant technologies for future missions. To show the potential for green propellants to replace some hydrazine systems in future spacecraft, NASA Marshall Space Flight Center (MSFC) is continuing to embark on hot-fire test campaigns with various green propellant blends.NASA completed hot-fire testing of 5N and 22N HPGP thrusters at the Marshall Space Flight Center’s Component Development Area altitude test stand in April 2015. Both thrusters are ground test articles and not flight ready units, but are representative of potential flight hardware with a known path towards flight application. The purpose of the 5N testing was to perform facility check-outs and generate a small set of data for comparison to ECAPS and Orbital ATK data sets. The 5N thruster performed as expected with thrust and propellant flow-rate data generated that are similar to previous testing at Orbital ATK. Immediately following the 5N testing, and using the same facility, the 22N testing was conducted on the same test stand with the purpose of demonstrating the 22N performance. The results of 22N testing indicate it performed as expected.The results of the hot-fire testing are presented in this paper and presentation.

  11. Planet-Scale grid A particle collier leads data grid developers to unprecedented dimensions

    CERN Multimedia

    Thibodeau, Patrick

    2005-01-01

    In 2007, scientists will begin smashing protons and ions together in a massive, multinational experiment to understand what the universe looked like tiny fractions of a second after the Big Bang. The particle accelerator used in this test will release a vast flood of data on a scale unlike anything seen before, and for that scientists will need a computing grid of equally great capability

  12. Numerical Modeling of Ion Dynamics in a Carbon Nanotube Field-Ionized Thruster

    Science.gov (United States)

    2011-12-01

    30  Figure 13.  Equipotential plot, Ez as a function of z and r, Jreq=300 kA/m2, space charge off... Equipotential plots, Ez as a function of z and r, Jreq=300 kA/m2, space charge on. Plots are taken at time intervals of 0.05 ns...on the accelerating grids; under-perveance results in crossover, overlap of neighboring beamlets, and impingement on downstream surfaces . Optimum

  13. NASA Brief: Q-Thruster Physics

    Science.gov (United States)

    White, Harold

    2013-01-01

    Q-thrusters are a low-TRL form of electric propulsion that operates on the principle of pushing off of the quantum vacuum. A terrestrial analog to this is to consider how a submarine uses its propeller to push a column of water in one direction, while the sub recoils in the other to conserve momentum -the submarine does not carry a "tank" of sea water to be used as propellant. In our case, we use the tools of Magnetohydrodynamics (MHD) to show how the thruster pushes off of the quantum vacuum which can be thought of as a sea of virtual particles -principally electrons and positrons that pop into and out of existence, and where fields are stronger, there are more virtual particles. The idea of pushing off the quantum vacuum has been in the technical literature for a few decades, but to date, the obstacle has been the magnitude of the predicted thrust which has been derived analytically to be very small, and therefore not likely to be useful for human spaceflight. Our recent theoretical model development and test data suggests that we can greatly increase the magnitude of the negative pressure of the quantum vacuum and generate a specific force such that technology based on this approach can be competitive for in-space propulsion approx. 0.1N/kW), and possibly for terrestrial applications (approx. 10N/kW). As an additional validation of the approach, the theory allows calculation of physics constants from first principles: Gravitational constant, Planck constant, Bohr radius, dark energy fraction, electron mass.

  14. Real-Tme Boron Nitride Erosion Measurements of the HiVHAc Thruster via Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Lee, Brian C.; Yalin, Azer P.; Gallimore, Alec; Huang, Wensheng; Kamhawi, Hani

    2013-01-01

    Cavity ring-down spectroscopy was used to make real-time erosion measurements from the NASA High Voltage Hall Accelerator thruster. The optical sensor uses 250 nm light to measure absorption of atomic boron in the plume of an operating Hall thruster. Theerosion rate of the High Voltage Hall Accelerator thruster was measured for discharge voltages ranging from 330 to 600 V and discharge powers ranging from 1 to 3 kW. Boron densities as high as 6.5 x 10(exp 15) per cubic meter were found within the channel. Using a very simple boronvelocity model, approximate volumetric erosion rates between 5.0 x 10(exp -12) and 8.2 x 10(exp -12) cubic meter per second were found.

  15. Optimization of the cooling circuit and thermo-mechanical analysis for the extraction grid of ELISE

    International Nuclear Information System (INIS)

    Nocentini, R.; Gutser, R.; Heinemann, B.; Froeschle, M.; Riedl, R.

    2011-01-01

    The NNBI test facility ELISE ('Extraction from a Large Ion Source Experiment'), presently under construction at IPP, will have an extraction area with the same width and half the height of the ITER source, acceleration up to 60 kV, for 10 s, every 180 s, and plasma generation up to 1 h. Electrons are co-extracted from the ion source. Suppression magnets in the extraction grid deflect the electrons onto the extraction grid surface. For 30 mA/cm 2 extracted electron current density and 10 kV extraction voltage, localized power density is in the order of 39 MW/m 2 near the grid apertures and a total heat load of 150 kW is deposited onto each extraction grid segment. Heat removal is provided by a water circuit inside the grid. For ELISE, a new cooling circuit has been developed to provide a more reliable operation. The optimization of the cooling circuit and the thermo-mechanical analysis of the extraction grid of ELISE, considering maximum grid temperature, mechanical stresses and grid deformation, has been performed using the codes KOBRA3, TrajAn, the ANSYS finite element package and the fluid dynamics code CFX.

  16. Simulations of a Plasma Thruster Utilizing the FRC Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Rognlien, T. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cohen, B. I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-10

    This report describes work performed by LLNL to model the behavior and performance of a reverse-field configuration (FRC) type of plasma device as a plasma thruster as summarized by Razin et al. [1], which also describes the MNX device at PPPL used to study this concept.

  17. Geometrical characterization and performance optimization of monopropellant thruster injector

    Directory of Open Access Journals (Sweden)

    T.R. Nada

    2012-12-01

    Full Text Available The function of the injector in a monopropellant thruster is to atomize the liquid hydrazine and to distribute it over the catalyst bed as uniformly as possible. A second objective is to place the maximum amount of catalyst in contact with the propellant in as short time as possible to minimize the starting transient time. Coverage by the spray is controlled mainly by cone angle and diameter of the catalyst bed, while atomization quality is measured by the Sauter Mean Diameter, SMD. These parameters are evaluated using empirical formulae. In this paper, two main types of injectors are investigated; plain orifice and full cone pressure swirl injectors. The performance of these two types is examined for use with blow down monopropellant propulsion system. A comprehensive characterization is given and design charts are introduced to facilitate optimizing the performance of the injector. Full-cone injector is a more suitable choice for monopropellant thruster and it might be available commercially.

  18. Integration Tests of the 4 kW-class High Voltage Hall Accelerator Power Processing Unit with the HiVHAc and the SPT-140 Hall Effect Thrusters

    Science.gov (United States)

    Kamhawi, Hani; Pinero, Luis; Haag, Thomas; Huang, Wensheng; Ahern, Drew; Liang, Ray; Shilo, Vlad

    2016-01-01

    NASAs Science Mission Directorate is sponsoring the development of a 4 kW-class Hall propulsion system for implementation in NASA science and exploration missions. The main components of the system include the High Voltage Hall Accelerator (HiVHAc), an engineering model power processing unit (PPU) developed by Colorado Power Electronics, and a xenon flow control module (XFCM) developed by VACCO Industries. NASA Glenn Research Center is performing integrated tests of the Hall thruster propulsion system. This presentation presents results from integrated tests of the PPU and XFCM with the HiVHAc engineering development thruster and a SPT-140 thruster provided by Space System Loral. The results presented in this paper demonstrate thruster discharge initiation, open-loop and closed-loop control of the discharge current with anode flow for both the HiVHAc and the SPT-140 thrusters. Integrated tests with the SPT-140 thruster indicated that the PPU was able to repeatedly initiate the thrusters discharge, achieve steady state operation, and successfully throttle the thruster between 1.5 and 4.5 kW. The measured SPT-140 performance was identical to levels reported by Space Systems Loral.

  19. Thermo-mechanical design of the SINGAP accelerator grids for ITER NB Injectors

    International Nuclear Information System (INIS)

    Agostinetti, P.; Dal Bello, S.; Palma, M.D.; Zaccaria, P.

    2006-01-01

    The SINGle Aperture - SINgle GAP (SINGAP) accelerator for ITER neutral beam injector foresees four grids for the extraction and acceleration of negative ions, instead of the seven grids of the Multi Aperture Multi Grid (MAMuG) reference configuration. Optimized geometry of the SINGAP grids (plasma, extraction, pre-acceleration, and grounded grid) was identified by CEA Association considering specific requirements for ions extraction and beam generation referring to experimental data and code simulations. This paper focuses on the thermo-hydraulic and thermo-mechanical design of the grids carried out by Consorzio RFX for the design of the first ITER NB Injector and the ITER NB Test Facility. The cooling circuit design (position and shape of the channels) and the cooling parameters (water coolant temperatures, pressure and velocity) were optimized with thermo-hydraulic and thermo-mechanical sensitivity analyses in order to satisfy the grid functional requirements (temperatures, in plane and out of plane deformations). A complete and detailed thermo-structural design assessment of the SINGAP grids was accomplished applying the structural design rules for ITER in-vessel components and considering both the reference load conditions and the maximum load provided by the power supplies. The design required a complete modelling of the grids and their support frames by means of 3D FE and CAD models. The grids were finally integrated with the support and cooling systems inside the beam source vessel. The main results of the thermo-hydraulic and thermo-mechanical analyses are presented. The open issues are then reported, mainly regarding the material properties characterization (static and fatigue tests) and the qualification of technologies for OFHC copper electro-deposition, brazing, and welding of heterogeneous materials. (author)

  20. Development of the Multiple Use Plug Hybrid for Nanosats (MUPHyN) miniature thruster

    Science.gov (United States)

    Eilers, Shannon

    The Multiple Use Plug Hybrid for Nanosats (MUPHyN) prototype thruster incorporates solutions to several major challenges that have traditionally limited the deployment of chemical propulsion systems on small spacecraft. The MUPHyN thruster offers several features that are uniquely suited for small satellite applications. These features include 1) a non-explosive ignition system, 2) non-mechanical thrust vectoring using secondary fluid injection on an aerospike nozzle cooled with the oxidizer flow, 3) a non-toxic, chemically-stable combination of liquid and inert solid propellants, 4) a compact form factor enabled by the direct digital manufacture of the inert solid fuel grain. Hybrid rocket motors provide significant safety and reliability advantages over both solid composite and liquid propulsion systems; however, hybrid motors have found only limited use on operational vehicles due to 1) difficulty in modeling the fuel flow rate 2) poor volumetric efficiency and/or form factor 3) significantly lower fuel flow rates than solid rocket motors 4) difficulty in obtaining high combustion efficiencies. The features of the MUPHyN thruster are designed to offset and/or overcome these shortcomings. The MUPHyN motor design represents a convergence of technologies, including hybrid rocket regression rate modeling, aerospike secondary injection thrust vectoring, multiphase injector modeling, non-pyrotechnic ignition, and nitrous oxide regenerative cooling that address the traditional challenges that limit the use of hybrid rocket motors and aerospike nozzles. This synthesis of technologies is unique to the MUPHyN thruster design and no comparable work has been published in the open literature.

  1. Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Field emission electric propulsion (FEEP) thrusters have gained considerable attention for spacecrafts disturbance compensation because of excellent characteristics....

  2. Development of high current low energy H+ ion source

    International Nuclear Information System (INIS)

    Forrester, A.T.; Crow, J.T.; Goebel, D.M.

    1978-01-01

    The ultimate goal of this work is the development of an ion source suitable for double charge exchange of D + ions to D - ions in cesium or other vapor. Since the fraction of the D + which changes to D - may be as high as 0.35 in the energy below one keV, the process appears very favorable. What is desired is a source of several hundred cm 2 area, with a D + current density greater than, say 0.2A/cm 2 . Small angular spread is essential with up to about 0.1 radian being acceptable. A simple approach to this problem appears to be through fine mesh extraction electrodes. In this system a single grid facing the ion source plasma constitutes the entire extraction electrode system. If the potential difference between the grid and the source plasma is large compared to the ion energy at the plasma boundary, then the distance s 0 is just the Child-Langmuir distance corresponding to the ion current density J and the potential difference V 0 between the plasma and the grid

  3. Optimisation of a quantum pair space thruster

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2012-06-01

    Full Text Available The paper addresses the problem of propulsion for long term space missions. Traditionally a space propulsion unit has a propellant mass which is ejected trough a nozzle to generate thrust; this is also the case with inert gases energized by an on-board power unit. Unconventional methods for propulsion include high energy LASERs that rely on the momentum of photons to generate thrust. Anti-matter has also been proposed for energy storage. Although the momentum of ejected gas is significantly higher, the LASER propulsion offers the perspective of unlimited operational time – provided there is a power source. The paper will propose the use of the quantum pair formation for generating a working mass, this is different than conventional anti-matter thrusters since the material particles generated are used as propellant not as energy storage.Two methods will be compared: LASER and positron-electron, quantum pair formation. The latter will be shown to offer better momentum above certain energy levels.For the demonstrations an analytical solution is obtained and provided in the form of various coefficients. The implications are, for now, theoretical however the practicality of an optimized thruster using such particles is not to be neglected for long term space missions.

  4. Laser-Driven Mini-Thrusters

    International Nuclear Information System (INIS)

    Sterling, Enrique; Lin Jun; Sinko, John; Kodgis, Lisa; Porter, Simon; Pakhomov, Andrew V.; Larson, C. William; Mead, Franklin B. Jr.

    2006-01-01

    Laser-driven mini-thrusters were studied using Delrin registered and PVC (Delrin registered is a registered trademark of DuPont) as propellants. TEA CO2 laser (λ = 10.6 μm) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse

  5. Laser-Driven Mini-Thrusters

    Science.gov (United States)

    Sterling, Enrique; Lin, Jun; Sinko, John; Kodgis, Lisa; Porter, Simon; Pakhomov, Andrew V.; Larson, C. William; Mead, Franklin B.

    2006-05-01

    Laser-driven mini-thrusters were studied using Delrin® and PVC (Delrin® is a registered trademark of DuPont) as propellants. TEA CO2 laser (λ = 10.6 μm) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse.

  6. Effects of magnetic field strength in the discharge channel on the performance of a multi-cusped field thruster

    Directory of Open Access Journals (Sweden)

    Peng Hu

    2016-09-01

    Full Text Available The performance characteristics of a Multi-cusped Field Thruster depending on the magnetic field strength in the discharge channel were investigated. Four thrusters with different outer diameters of the magnet rings were designed to change the magnetic field strength in the discharge channel. It is found that increasing the magnetic field strength could restrain the radial cross-field electron current and decrease the radial width of main ionization region, which gives rise to the reduction of propellant utilization and thruster performance. The test results in different anode voltage conditions indicate that both the thrust and anode efficiency are higher for the weaker magnetic field in the discharge channel.

  7. Artificial Neural Network Test Support Development for the Space Shuttle PRCS Thrusters

    Science.gov (United States)

    Lehr, Mark E.

    2005-01-01

    A significant anomaly, Fuel Valve Pilot Seal Extrusion, is affecting the Shuttle Primary Reaction Control System (PRCS) Thrusters, and has caused 79 to fail. To help address this problem, a Shuttle PRCS Thruster Process Evaluation Team (TPET) was formed. The White Sands Test Facility (WSTF) and Boeing members of the TPET have identified many discrete valve current trace characteristics that are predictive of the problem. However, these are difficult and time consuming to identify and trend by manual analysis. Based on this exhaustive analysis over months, 22 thrusters previously delivered by the Depot were identified as high risk for flight failures. Although these had only recently been installed, they had to be removed from Shuttles OV103 and OV104 for reprocessing, by directive of the Shuttle Project Office. The resulting impact of the thruster removal, replacement, and valve replacement was significant (months of work and hundreds of thousands of dollars). Much of this could have been saved had the proposed Neural Network (NN) tool described in this paper been in place. In addition to the significant benefits to the Shuttle indicated above, the development and implementation of this type of testing will be the genesis for potential Quality improvements across many areas of WSTF test data analysis and will be shared with other NASA centers. Future tests can be designed to incorporate engineering experience via Artificial Neural Nets (ANN) into depot level acceptance of hardware. Additionally, results were shared with a NASA Engineering and Safety Center (NESC) Super Problem Response Team (SPRT). There was extensive interest voiced among many different personnel from several centers. There are potential spin-offs of this effort that can be directly applied to other data acquisition systems as well as vehicle health management for current and future flight vehicles.

  8. High-energy acceleration of an intense negative ion beam

    International Nuclear Information System (INIS)

    Takeiri, Y.; Ando, A.; Kaneko, O.

    1995-02-01

    A high-current H - ion beam has been accelerated with the two-stage acceleration. A large negative hydrogen ion source with an external magnetic filter produces more than 10 A of the H - ions from the grid area of 25cm x 50cm with the arc efficiency of 0.1 A/kW by seeding a small amount of cesium. The H - ion current increases according to the 3/2-power of the total beam energy. A 13.6 A of H - ion beam has been accelerated to 125 keV at the operational gas pressure of 3.4 mTorr. The optimum beam acceleration is achieved with nearly the same electric fields in the first and the second acceleration gaps on condition that the ratio of the first acceleration to the extraction electric fields is adjusted for an aspect ratio of the extraction gap. The ratio of the acceleration drain current to the H - ion current is more than 1.7. That is mainly due to the secondary electron generated by the incident H - ions on the extraction grid and the electron suppression grid. The neutralization efficiency was measured and agrees with the theoretical calculation result. (author)

  9. Spacecraft-plasma-debris interaction in an ion beam shepherd mission

    Science.gov (United States)

    Cichocki, Filippo; Merino, Mario; Ahedo, Eduardo

    2018-05-01

    This paper presents a study of the interaction between a spacecraft, a plasma thruster plume and a free floating object, in the context of an active space debris removal mission based on the ion beam shepherd concept. The analysis is performed with the EP2PLUS hybrid code and includes the evaluation of the transferred force and torque to the target debris, its surface sputtering due to the impinging hypersonic ions, and the equivalent electric circuit of the spacecraft-plasma-debris interaction. The electric potential difference that builds up between the spacecraft and the debris, the ion backscattering and the backsputtering contamination of the shepherd satellite are evaluated for a nominal scenario. A sensitivity analysis is carried out to evaluate quantitatively the effects of electron thermodynamics, ambient plasma, heavy species collisions, and debris position.

  10. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters

    Science.gov (United States)

    Reese, Bradley

    2015-01-01

    Arkansas Power Electronics International (APEI), Inc., is developing a high-efficiency, radiation-hardened 3.8-kW SiC power supply for the PPU of Hall effect thrusters. This project specifically targets the design of a PPU for the high-voltage Hall accelerator (HiVHAC) thruster, with target specifications of 80- to 160-V input, 200- to 700-V/5A output, efficiency greater than 96 percent, and peak power density in excess of 2.5 kW/kg. The PPU under development uses SiC junction field-effect transistor power switches, components that APEI, Inc., has irradiated under total ionizing dose conditions to greater than 3 MRad with little to no change in device performance.

  11. Studies of an inductively coupled negative hydrogen ion radio frequency source through simulations and experiments

    International Nuclear Information System (INIS)

    Bandyopadhyay, M.

    2004-01-01

    In the frame work of a development project for ITER neutral beam injection system a radio frequency (RF) driven negative hydrogen (H-/D-) ion source, (BATMAN ion source) is developed which is designed to produce several 10s of ampere of H-/D- beam current. This PhD work has been carried out to understand and optimize BATMAN ion source. The study has been done with the help of computer simulations, modeling and experiments. The complete three dimensional Monte-Carlo computer simulation codes have been developed under the scope of this PhD work. A comprehensive description about the volume production and the surface production of H- ions is presented in the thesis along with the study results obtained from the simulations, modeling and the experiments. One of the simulations is based on the volume production of H- ions, where it calculates the density profile of the vibrationally excited H2 molecules, the density profile of H- ions and the transport probability of those H- ions along the source axis towards the grid. The other simulation studies the transport of those H- ions which are produced on the surface of the plasma grid. It is expected that if there is a plasma flow in the source, the transport of plasma components (molecules and ions) would be influenced. Experimentally it is observed that there is a convective plasma flow exists in the ion source. A transverse magnetic filter field which is present near the grid inside the ion source reduces the flow velocity. Negative ions and electrons have the same sign of charge; therefore the electrons are co-extracted with the negative ions through the grid system, which is not desirable. It is observed that a magnetic field near the grid, magnetized the electrons and therefore reduce the co-extracted electron current. It is also observed experimentally that if the plasma grid is biased positively with respect to the source body, the electron density near the plasma grid is reduced and therefore the co

  12. Experimental Investigation of a Direct-drive Hall Thruster and Solar Array System at Power Levels up to 10 kW

    Science.gov (United States)

    Snyder, John S.; Brophy, John R.; Hofer, Richard R.; Goebel, Dan M.; Katz, Ira

    2012-01-01

    As NASA considers future exploration missions, high-power solar-electric propulsion (SEP) plays a prominent role in achieving many mission goals. Studies of high-power SEP systems (i.e. tens to hundreds of kilowatts) suggest that significant mass savings may be realized by implementing a direct-drive power system, so NASA recently established the National Direct-Drive Testbed to examine technical issues identified by previous investigations. The testbed includes a 12-kW solar array and power control station designed to power single and multiple Hall thrusters over a wide range of voltages and currents. In this paper, single Hall thruster operation directly from solar array output at discharge voltages of 200 to 450 V and discharge powers of 1 to 10 kW is reported. Hall thruster control and operation is shown to be simple and no different than for operation on conventional power supplies. Thruster and power system electrical oscillations were investigated over a large range of operating conditions and with different filter capacitances. Thruster oscillations were the same as for conventional power supplies, did not adversely affect solar array operation, and were independent of filter capacitance from 8 to 80 ?F. Solar array current and voltage oscillations were very small compared to their mean values and showed a modest dependence on capacitor size. No instabilities or anomalous behavior were observed in the thruster or power system at any operating condition investigated, including near and at the array peak power point. Thruster startup using the anode propellant flow as the power 'switch' was shown to be simple and reliable with system transients mitigated by the proper selection of filter capacitance size. Shutdown via cutoff of propellant flow was also demonstrated. A simple electrical circuit model was developed and is shown to have good agreement with the experimental data.

  13. Plume Characterization of a Laboratory Model 22 N GPIM Thruster via High-Frequency Raman Spectroscopy

    Science.gov (United States)

    Williams, George J.; Kojima, Jun J.; Arrington, Lynn A.; Deans, Matthew C.; Reed, Brian D.; Kinzbach, McKenzie I.; McLean, Christopher H.

    2015-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the capability of a green propulsion system, specifically, one using the monopropellant, AF-M315E. One of the risks identified for GPIM is potential contamination of sensitive areas of the spacecraft from the effluents in the plumes of AF-M315E thrusters. Plume characterization of a laboratory-model 22 N thruster via optical diagnostics was conducted at NASA GRC in a space-simulated environment. A high-frequency pulsed laser was coupled with an electron-multiplied ICCD camera to perform Raman spectroscopy in the near-field, low-pressure plume. The Raman data yielded plume constituents and temperatures over a range of thruster chamber pressures and as a function of thruster (catalyst) operating time. Schlieren images of the near-field plume enabled calculation of plume velocities and revealed general plume structure of the otherwise invisible plume. The measured velocities are compared to those predicted by a two-dimensional, kinetic model. Trends in data and numerical results are presented from catalyst mid-life to end-of-life. The results of this investigation were coupled with the Raman and Schlieren data to provide an anchor for plume impingement analysis presented in a companion paper. The results of both analyses will be used to improve understanding of the nature of AF-M315E plumes and their impacts to GPIM and other future missions.

  14. Investigation of a subsonic-arc-attachment thruster using segmented anodes

    Science.gov (United States)

    Berns, Darren H.; Sankovic, John M.; Sarmiento, Charles J.

    1993-01-01

    To investigate high frequency arc instabilities observed in subsonic-arc-attachment thrusters, a 3 kW, segmented-anode arcjet was designed and tested using hydrogen as the propellant. The thruster nozzle geometry was scaled from a 30 kW design previously tested in the 1960's. By observing the current to each segment and the arc voltage, it was determined that the 75-200 kHz instabilities were results of axial movements of the arc anode attachment point. The arc attachment point was fully contained in the subsonic portion of the nozzle for nearly all flow rates. The effects of isolating selected segments were investigated. In some cases, forcing the arc downstream caused the restrike to cease. Finally, decreasing the background pressure from 18 Pa to 0.05 Pa affected the pressure distribution in the nozzle, including the pressure in the subsonic arc chamber.

  15. Investigation of a subsonic-arc-attachment thruster using segmented anodes

    Science.gov (United States)

    Berns, Darren H.; Sankovic, John M.; Sarmiento, Charles J.

    1993-01-01

    To investigate high frequency arc instabilities observed in subsonic-arc-attachment thrusters, a 3 kW, segmented-anode arc jet was designed and tested using hydrogen as the propellant. The thruster nozzle geometry was scaled from a 30 kW design previously tested in the 1960's. By observing the current to each segment and the arc voltage, it was determined that the 75-200 kHz instabilities were results of axial movements of the arc anode attachment point. The arc attachment point was fully contained in the subsonic portion of the nozzle for nearly all flow rates. The effects of isolating selected segments were investigated. In some cases, forcing the arc downstream caused the restrike to cease. Finally, decreasing the background pressure from 18 to 0.05 Pa affected the pressure distribution in the nozzle including the pressure in the subsonic arc chamber.

  16. Anomalous electron transport in Hall-effect thrusters: Comparison between quasi-linear kinetic theory and particle-in-cell simulations

    Science.gov (United States)

    Lafleur, T.; Martorelli, R.; Chabert, P.; Bourdon, A.

    2018-06-01

    Kinetic drift instabilities have been implicated as a possible mechanism leading to anomalous electron cross-field transport in E × B discharges, such as Hall-effect thrusters. Such instabilities, which are driven by the large disparity in electron and ion drift velocities, present a significant challenge to modelling efforts without resorting to time-consuming particle-in-cell (PIC) simulations. Here, we test aspects of quasi-linear kinetic theory with 2D PIC simulations with the aim of developing a self-consistent treatment of these instabilities. The specific quantities of interest are the instability growth rate (which determines the spatial and temporal evolution of the instability amplitude), and the instability-enhanced electron-ion friction force (which leads to "anomalous" electron transport). By using the self-consistently obtained electron distribution functions from the PIC simulations (which are in general non-Maxwellian), we find that the predictions of the quasi-linear kinetic theory are in good agreement with the simulation results. By contrast, the use of Maxwellian distributions leads to a growth rate and electron-ion friction force that is around 2-4 times higher, and consequently significantly overestimates the electron transport. A possible method for self-consistently modelling the distribution functions without requiring PIC simulations is discussed.

  17. Trends in life science grid: from computing grid to knowledge grid

    Directory of Open Access Journals (Sweden)

    Konagaya Akihiko

    2006-12-01

    Full Text Available Abstract Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.

  18. Ion-Collision Emission Excitation Cross Sections for Xenon Electric Thruster Plasmas

    National Research Council Canada - National Science Library

    Sommerville, Jason D; King, Lyon B; Chiu, Yu-Hui; Dressler, Rainer A

    2008-01-01

    .... The cross sections are derived from ion beam luminescence spectra produced at single-collision conditions and at pressures for which radiation trapping effects were shown to be negligible. The Xe(exp...

  19. HIGH ENERGY REPLACEMENT FOR TEFLON PROPELLANT IN PULSED PLASMA THRUSTERS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This program will utilize a well-characterized Pulsed Plasma Thruster (PPT) to test experimental high-energy extinguishable solid propellants (HE), instead of...

  20. The MICHELLE 2D/3D ES PIC Code Advances and Applications

    CERN Document Server

    Petillo, John; De Ford, John F; Dionne, Norman J; Eppley, Kenneth; Held, Ben; Levush, Baruch; Nelson, Eric M; Panagos, Dimitrios; Zhai, Xiaoling

    2005-01-01

    MICHELLE is a new 2D/3D steady-state and time-domain particle-in-cell (PIC) code* that employs electrostatic and now magnetostatic finite-element field solvers. The code has been used to design and analyze a wide variety of devices that includes multistage depressed collectors, gridded guns, multibeam guns, annular-beam guns, sheet-beam guns, beam-transport sections, and ion thrusters. Latest additions to the MICHELLE/Voyager tool are as follows: 1) a prototype 3D self magnetic field solver using the curl-curl finite-element formulation for the magnetic vector potential, employing edge basis functions and accumulating current with MICHELLE's new unstructured grid particle tracker, 2) the electrostatic field solver now accommodates dielectric media, 3) periodic boundary conditions are now functional on all grids, not just structured grids, 4) the addition of a global optimization module to the user interface where both electrical parameters (such as electrode voltages)can be optimized, and 5) adaptive mesh ref...

  1. Hardware in the Loop Testing of an Iodine-Fed Hall Thruster

    Science.gov (United States)

    Polzin, Kurt A.; Peeples, Steven R.; Cecil, Jim; Lewis, Brandon L.; Molina Fraticelli, Jose C.; Clark, James P.

    2015-01-01

    CUBESATS are relatively new spacecraft platforms that are typically deployed from a launch vehicle as a secondary payload,1 providing low-cost access to space for a wide range of end-users. These satellites are comprised of building blocks having dimensions of 10x10x10 cm cu and a mass of 1.33 kg (a 1-U size). While providing low-cost access to space, a major operational limitation is the lack of a propulsion system that can fit within a CubeSat and is capable of executing high delta v maneuvers. This makes it difficult to use CubeSats on missions requiring certain types of maneuvers (i.e. formation flying, spacecraft rendezvous). Recently, work has been performed investigating the use of iodine as a propellant for Hall-effect thrusters (HETs) 2 that could subsequently be used to provide a high specific impulse path to CubeSat propulsion. Iodine stores as a dense solid at very low pressures, making it acceptable as a propellant on a secondary payload. It has exceptionally high ?Isp (density times specific impulse), making it an enabling technology for small satellite near-term applications and providing the potential for systems-level advantages over mid-term high power electric propulsion options. Iodine flow can also be thermally regulated, subliming at relatively low temperature ( less than100 C) to yield I2 vapor at or below 50 torr. At low power, the measured performance of an iodine-fed HET is very similar to that of a state-of-the-art xenon-fed thruster. Just as importantly, the current-voltage discharge characteristics of low power iodine-fed and xenon-fed thrusters are remarkably similar, potentially reducing development and qualifications costs by making it possible to use an already-qualified xenon-HET PPU in an iodine-fed system. Finally, a cold surface can be installed in a vacuum test chamber on which expended iodine propellant can deposit. In addition, the temperature doesn't have to be extremely cold to maintain a low vapor pressure in the vacuum

  2. Grid interoperability: joining grid information systems

    International Nuclear Information System (INIS)

    Flechl, M; Field, L

    2008-01-01

    A grid is defined as being 'coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations'. Over recent years a number of grid projects, many of which have a strong regional presence, have emerged to help coordinate institutions and enable grids. Today, we face a situation where a number of grid projects exist, most of which are using slightly different middleware. Grid interoperation is trying to bridge these differences and enable Virtual Organizations to access resources at the institutions independent of their grid project affiliation. Grid interoperation is usually a bilateral activity between two grid infrastructures. Recently within the Open Grid Forum, the Grid Interoperability Now (GIN) Community Group is trying to build upon these bilateral activities. The GIN group is a focal point where all the infrastructures can come together to share ideas and experiences on grid interoperation. It is hoped that each bilateral activity will bring us one step closer to the overall goal of a uniform grid landscape. A fundamental aspect of a grid is the information system, which is used to find available grid services. As different grids use different information systems, interoperation between these systems is crucial for grid interoperability. This paper describes the work carried out to overcome these differences between a number of grid projects and the experiences gained. It focuses on the different techniques used and highlights the important areas for future standardization

  3. A gridded air counter for measuring exoelectrons

    International Nuclear Information System (INIS)

    Nagase, Makoto; Chiba, Yoshiya; Kirihata, Humiaki.

    1980-01-01

    A gridded air counter with a quenching circuit is described, which serves to detect low-energy electrons such as thermionic electrons, photoelectrons and exoelectrons emitted into the atmospheric air. The air counter consists of a loop-shaped anode and two grids provided for quenching the gas discharge and for protecting the electron emitter from the positive ion bombardment. The quenching circuit with a high input sensitivity of 5 mV detects the initiation gas discharge caused by an incident electron and immediately supplies a rectangular wave pulse of 300 V in amplitude and of more than 3 msec in width to the quenching grid near the anode. Simultaneously, the voltage of the suppressor grid is brought down and kept at -30 V against the earthed sample for the same period of time. Performance of the gridded air counter was examined by use of photoelectrons emitted from an abraded aluminum plate. The quenching action was successfully accomplished in the anode voltage range from 3.65 to 3.95 kV. The photoelectrons emitted into the atmosphere could be counted stably by use of this counter. (author)

  4. Development of a green bipropellant hydrogen peroxide thruster for attitude control on satellites

    Science.gov (United States)

    Woschnak, A.; Krejci, D.; Schiebl, M.; Scharlemann, C.

    2013-03-01

    This document describes the selection assessment of propellants for a 1-newton green bipropellant thruster for attitude control on satellites. The development of this thruster was conducted as a part of the project GRASP (Green Advanced Space Propellants) within the European FP7 research program. The green propellant combinations hydrogen peroxide (highly concentrated with 87.5 %(wt.)) with kerosene or hydrogen peroxide (87.5 %(wt.)) with ethanol were identified as interesting candidates and were investigated in detail with the help of an experimental combustion chamber in the chemical propulsion laboratory at the Forschungsund Technologietransfer GmbH ― Fotec. Based on the test results, a final selection of propellants was performed.

  5. Vacuum Chamber Construction and Contamination Study of A Micro Pulsed Plasma Thruster

    National Research Council Canada - National Science Library

    Debevec, Jacob H

    2006-01-01

    .... This study examines the deposition profile and rate of particle emission from the thruster so that satellite designers understand any potential contamination issues with sensitive instruments and solar panels...

  6. A Mediated Definite Delegation Model allowing for Certified Grid Job Submission

    CERN Document Server

    Schreiner, Steffen; Grigoras, Costin; Litmaath, Maarten

    2012-01-01

    Grid computing infrastructures need to provide traceability and accounting of their users" activity and protection against misuse and privilege escalation. A central aspect of multi-user Grid job environments is the necessary delegation of privileges in the course of a job submission. With respect to these generic requirements this document describes an improved handling of multi-user Grid jobs in the ALICE ("A Large Ion Collider Experiment") Grid Services. A security analysis of the ALICE Grid job model is presented with derived security objectives, followed by a discussion of existing approaches of unrestricted delegation based on X.509 proxy certificates and the Grid middleware gLExec. Unrestricted delegation has severe security consequences and limitations, most importantly allowing for identity theft and forgery of delegated assignments. These limitations are discussed and formulated, both in general and with respect to an adoption in line with multi-user Grid jobs. Based on the architecture of the ALICE...

  7. Shuttle Primary Reaction Control Subsystem Thruster Fuel Valve Pilot Seal Extrusion: A Failure Correlation

    Science.gov (United States)

    Waller, Jess; Saulsberry, Regor L.

    2003-01-01

    Pilot operated valves (POVs) are used to control the flow of hypergolic propellants monomethylhydrazine (fuel) and nitrogen tetroxide (oxidizer) to the Shuttle orbiter Primary Reaction Control Subsystem (PRCS) thrusters. The POV incorporates a two-stage design: a solenoid-actuated pilot stage, which in turn controls a pressure-actuated main stage. Isolation of propellant supply from the thruster chamber is accomplished in part by a captive polytetrafluoroethylene (PTFE) pilot seal retained inside a Custom 455.1 stainless steel cavity. Extrusion of the pilot seal restricts the flow of fuel around the pilot poppet, thus impeding or preventing the main valve stage from opening. It can also prevent the main stage from staying open with adequate force margin, particularly if there is gas in the main stage actuation cavity. During thruster operation on-orbit, fuel valve pilot seal extrusion is commonly indicated by low or erratic chamber pressure or failure of the thruster to fire upon command (Fail-Off). During ground turnaround, pilot seal extrusion is commonly indicated by slow gaseous nitrogen (GN2) main valve opening times (greater than 38 ms) or slow water main valve opening response times (greater than 33 ms). Poppet lift tests and visual inspection can also detect pilot seal extrusion during ground servicing; however, direct metrology on the pilot seat assembly provides the most quantitative and accurate means of identifying extrusion. Minimizing PRCS fuel valve pilot seal extrusion has become an important issue in the effort to improve PRCS reliability and reduce associated life cycle costs.

  8. Fabrication of LTCC based Micro Thruster for Precision Controlled Spaceflight

    DEFF Research Database (Denmark)

    Larsen, Jack; Jørgensen, John Leif

    2011-01-01

    The paper at hand presents the initial investigations on the development and fabrication of a micro thruster based on LTCC technology, delivering a thrust in the micro Newton regime. Using smaller segments of an observation system distributed on two or more spacecrafts, one can realize an observa...

  9. Measurement of erosion rate by absorption spectroscopy in a Hall thruster

    International Nuclear Information System (INIS)

    Yamamoto, Naoji; Yokota, Shigeru; Matsui, Makoto; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2005-01-01

    The erosion rate of a Hall thruster was estimated with the objective of building a real-time erosion rate monitoring system using a 1 kW class anode layer type Hall thruster. This system aids the understanding of the tradeoff between lifetime and performance. To estimate the flux of the sputtered wall material, the number density of the sputtered iron was measured by laser absorption spectroscopy using an absorption line from ground atomic iron at 371.9935 nm. An ultravioletAl x In y Ga (1-x-y) N diode laser was used as the probe. The estimated number density of iron was 1.1x10 16 m -3 , which is reasonable when compared with that measured by duration erosion tests. The relation between estimated erosion rate and magnetic flux density also agreed with that measured by duration erosion tests

  10. A Langmuir probe system for high power RF-driven negative ion sources on high potential

    International Nuclear Information System (INIS)

    McNeely, P; Christ-Koch, S; Fantz, U; Dudin, S V

    2009-01-01

    A fully automated Langmuir probe system capable of operating simultaneously with beam extraction has been developed and commissioned for the negative hydrogen ion source testbeds at IPP Garching. It allows the measurement of temporal and spatial distributions of the plasma parameters within a single plasma pulse ( 10 18 m -3 ) and hot (T e > 10 eV) plasma with bi-Maxwellian electron energy distribution at low pressures. The plasma found near the plasma grid is very different being of low density (≤10 17 m -3 ) and very cold (T e < 2 eV). This plasma is also strongly influenced by the presence of caesium, the potential of the plasma grid, and if an ion beam is extracted from the source. Caesium strongly reduces the plasma potential of the source and enhances the negative ion density near the plasma grid. Extracting an ion beam is observed to reduce the electron density and increase the potential near the plasma grid. Applying a potential greater than the plasma potential to the plasma grid is found to significantly decrease the electron density near the plasma grid.

  11. Feasibility of a 5mN Laser-Driven Mini-Thruster, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed a next-generation thruster under a Phase II SBIR which we believe can meet NASA requirements after some modifications and improvements. It is the...

  12. On the Application of Hall Thruster Working with Ambient Atmospheric Gas for Orbital Station-Keeping

    Directory of Open Access Journals (Sweden)

    D. V. Duhopel'nikov

    2016-01-01

    Full Text Available The paper considers the application of the Hall thruster using the ambient atmospheric air for orbital station keeping. This is a relevant direction at the up-to-date development stage of propulsion systems. Many teams of designers of electric rocket thrusters evaluate the application of different schemes of particle acceleration at the low-earth orbit. Such technical solution allows us to abandon the storage systems of the working agent on the spacecraft board. Thus, lifetime of such a system at the orbit wouldn`t be limited by fuel range. The paper suggests a scheme of the propulsion device with a parabolic confuser that provides a required compression ratio of the ambient air for correct operation. Formulates physical and structural restrictions on ambient air to be used as a working agent of the thruster. Pointes out that the altitudes from 200 to 300 km are the most promising for such propulsion devices. Shows that for operation at lower altitudes are required the higher capacities that are not provided by modern onboard power supply systems. For the orbit heightening the air intakes with significant compression rate are of necessity. The size of such air intakes would exceed nose fairing of exploited space launch systems. To perform further design calculations are shown dependencies that allow us to calculate an effective diameter of the thruster channel and a critical voltage to be desirable for thrust force excess over air resistance. The dependencies to calculate minimal and maximal fluxes of neutral particles of oxygen and nitrogen, that are necessary for normal thruster operation, are also shown. Calculation results of the propulsion system parameters for the spacecrafts with cross-sectional area within 1 - 3 m2 and inlet diameter of air intake within 1 - 3 m are demonstrated. The research results have practical significance in design of advanced propulsion devices for lowaltitude spacecrafts. The work has been supported by the RFFR

  13. Overview of the Development of the Solar Electric Propulsion Technology Demonstration Mission 12.5-kW Hall Thruster

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Chang, Li; Clayman, Lauren; Herman, Daniel; Shastry, Rohit; Thomas, Robert; Verhey, Timothy; hide

    2014-01-01

    NASA is developing mission concepts for a solar electric propulsion technology demonstration mission. A number of mission concepts are being evaluated including ambitious missions to near Earth objects. The demonstration of a high-power solar electric propulsion capability is one of the objectives of the candidate missions under consideration. In support of NASA's exploration goals, a number of projects are developing extensible technologies to support NASA's near and long term mission needs. Specifically, the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project is funding the development of a 12.5-kilowatt magnetically shielded Hall thruster system to support future NASA missions. This paper presents the design attributes of the thruster that was collaboratively developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory. The paper provides an overview of the magnetic, plasma, thermal, and structural modeling activities that were carried out in support of the thruster design. The paper also summarizes the results of the functional tests that have been carried out to date. The planned thruster performance, plasma diagnostics (internal and in the plume), thermal, wear, and mechanical tests are outlined.

  14. A New Method for Analyzing Near-Field Faraday Probe Data in Hall Thrusters

    Science.gov (United States)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2013-01-01

    This paper presents a new method for analyzing near-field Faraday probe data obtained from Hall thrusters. Traditional methods spawned from far-field Faraday probe analysis rely on assumptions that are not applicable to near-field Faraday probe data. In particular, arbitrary choices for the point of origin and limits of integration have made interpretation of the results difficult. The new method, called iterative pathfinding, uses the evolution of the near-field plume with distance to provide feedback for determining the location of the point of origin. Although still susceptible to the choice of integration limits, this method presents a systematic approach to determining the origin point for calculating the divergence angle. The iterative pathfinding method is applied to near-field Faraday probe data taken in a previous study from the NASA-300M and NASA-457Mv2 Hall thrusters. Since these two thrusters use centrally mounted cathodes the current density associated with the cathode plume is removed before applying iterative pathfinding. A procedure is presented for removing the cathode plume. The results of the analysis are compared to far-field probe analysis results. This paper ends with checks on the validity of the new method and discussions on the implications of the results.

  15. Ultra-Compact Center-Mounted Hollow Cathodes for Hall Effect Thrusters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a long lifetime, compact hollow cathode that can be mounted along the axis of a 600 W-class Hall effect thruster. Testing at kilowatt...

  16. Protections Against Grid Breakdowns in the ITER Neutral Beam Injector Power Supplies

    International Nuclear Information System (INIS)

    Bigi, M.; Toigo, V.; Zanotto, L.

    2006-01-01

    The ITER Neutral Beam Injector (NBI) is designed to deliver 16.5 MW of additional heating power to the plasma, accelerating negative ions up to -1 MV with a current up to 40 A. Two main power supplies are foreseen to feed the system: the Acceleration Grid Power Supply (AGPS), which provides power to the acceleration grids, and the Ion Source Power Supply (ISPS), devoted to supplying the ion source components. For the accelerator, two different concepts are under investigation: the MAMuG (Multiple Aperture, Multiple Gap) and the SINGAP (SINgle Aperture). During operation of the NBI, the breakdown of the acceleration grids will occur regularly; as a consequence the AGPS is expected to experience frequent load short-circuits during a pulse. For each grid breakdown, energy and current peaks are delivered from the power supply systems that could damage the grids, if not limited. In previous NBI, rated for a lower accelerating voltage, the protection system in case of grid breakdowns was based on dc circuit breakers able to quickly disconnect the power supply from the grids. In the ITER case, a similar solution is not feasible, as the voltage level is too high for present dc breaker technology. Therefore, the protection strategy has to rely on fast switch-off of the power supplies, on the optimisation of the filter elements and core snubbers placed downstream the AGPS and on the introduction of additional passive elements. However, achieving a satisfactory protection against grid breakdowns is a challenging task, as the optimisation of each single provision can result in drawbacks for other aspects of the design; for instance, the optimisation of the filter elements, obtained by reducing the filter capacitance, produces an increase of the output voltage ripple. Therefore, the design of the protections must be carried out considering all the relevant aspects of the specifications, also those that are not strictly related to the limitations of the current peaks and energy

  17. Technology for Transient Simulation of Vibration during Combustion Process in Rocket Thruster

    Science.gov (United States)

    Zubanov, V. M.; Stepanov, D. V.; Shabliy, L. S.

    2018-01-01

    The article describes the technology for simulation of transient combustion processes in the rocket thruster for determination of vibration frequency occurs during combustion. The engine operates on gaseous propellant: oxygen and hydrogen. Combustion simulation was performed using the ANSYS CFX software. Three reaction mechanisms for the stationary mode were considered and described in detail. The way for obtaining quick CFD-results with intermediate combustion components using an EDM model was found. The way to generate the Flamelet library with CFX-RIF was described. A technique for modeling transient combustion processes in the rocket thruster was proposed based on the Flamelet library. A cyclic irregularity of the temperature field like vortex core precession was detected in the chamber. Frequency of flame precession was obtained with the proposed simulation technique.

  18. Mechanical properties of ion-beam-textured surgical implant alloys

    Science.gov (United States)

    Weigand, A. J.

    1977-01-01

    An electron-bombardment Hg ion thruster was used as an ion source to texture surfaces of materials used to make orthopedic and/or dental prostheses or implants. The materials textured include 316 stainless steel, titanium-6% aluminum, 4% vanadium, and cobalt-20% chromium, 15% tungsten. To determine the effect of ion texturing on the ultimate strength and yield strength, stainless steel and Co-Cr-W alloy samples were tensile tested to failure. Three types of samples of both materials were tested. One type was ion-textured (the process also heats each sample to 300 C), another type was simply heated to 300 C in an oven, and the third type was untreated. Stress-strain diagrams, 0.2% offset yield strength data, total elongation data, and area reduction data are presented. Fatigue specimens of ion textured and untextured 316 stainless steel and Ti-6% Al-4% V were tested. Included as an ion textured sample is a Ti-6% Al-4% V sample which was ion machined by means of Ni screen mask so as to produce an array of 140 mu m x 140 mu m x 60 mu m deep pits. Scanning electron microscopy was used to characterize the ion textured surfaces.

  19. Fusion at counterstreaming ion beams - ion optic fusion (IOF)

    International Nuclear Information System (INIS)

    Gryzinski, M.

    1981-01-01

    The results of investigation are briefly reviewed in the field of ion optic fusion performed at the Institute of Nuclear Research in Swierk. The ion optic fusion concept is based on the possibility of obtaining fusion energy at highly ordered motion of ions in counterstreaming ion beams. For this purpose TW ion beams must be produced and focused. To produce dense and charge-neutralized ion beams the selective conductivity and ballistic focusing ideas were formulated and used in a series of RPI devices with low-pressure cylindrical discharge between grid-type electrodes. 100 kA, 30 keV deuteron beams were successfully produced and focused into the volume of 1 cm 3 , yielding 10 9 neutrons per 200 ns shot on a heavy ice target. Cylindrically convergent ion beams with magnetic anti-defocusing were proposed in order to reach a positive energy gain at reasonable energy level. (J.U.)

  20. Ion beam diagnosis

    International Nuclear Information System (INIS)

    Strehl, P.

    1994-04-01

    This report is an introduction to ion beam diagnosis. After a short description of the most important ion beam parameters measurements of the beam current by means of Faraday cups, calorimetry, and beam current transformers and measurements of the beam profile by means of viewing screens, profile grids and scanning devices, and residual gas ionization monitors are described. Finally measurements in the transverse and longitudinal phase space are considered. (HSI)

  1. A high current metal vapour vacuum arc ion source for ion implantation studies

    International Nuclear Information System (INIS)

    Evans, P.J.; Noorman, J.T.; Watt, G.C.; Cohen, D.D.; Bailey, G.M.

    1989-01-01

    The main features of the metal vapour vacuum arc(MEVA) as an ion source are presented. The technology utilizes the plasma production capabilities of a vacuum arc cathode. Some of the ions produced in this discharge flow through the anode and the 3 extraction grids to form an extracted ion beam. The high beam current and the potential for generating broad beams, make this technology suitable for implantation of large surface areas. The composition of the vacuum arc cathode determines the particular ions obtained from the MEVA source. 3 refs., 1 tab., 2 figs

  2. Resonant coupling between ion bounce in a potential well and the potential relaxation instability

    International Nuclear Information System (INIS)

    Popa, G.; Schrittwieser, R.

    1994-01-01

    When in a double plasma machine (DP-machine) plasma is produced solely in the source chamber, not only ions but also electrons can leak through the separating grid into the target chamber, so that a low-density plasma forms there. The electrons are trapped by the traveling ion space charge and can thereby overcome the strongly negative grid bias. The investigations presented here show that a positive space-charge forms behind the grid in the target chamber and a deep potential well is formed around the grid. When the anode of the target chamber is biased positively, under certain conditions a low-frequency instability is observed in the target chamber, the properties of which indicate a potential relaxation oscillation, somewhat similar to the potential relaxation instability in a quiescent plasma machine (Q machine). The frequency of the instability is determined by the ion transit time through a thin layer of the target chamber plasma. In addition, resonant coupling occurs between this frequency and the bounce frequency of ions in the potential well around the grid

  3. The use of an ion-beam source to alter the surface morphology of biological implant materials

    Science.gov (United States)

    Weigand, A. J.

    1978-01-01

    An electron-bombardment ion-thruster was used as a neutralized-ion-beam sputtering source to texture the surfaces of biological implant materials. The materials investigated included 316 stainless steel; titanium-6% aluminum, 4% vanadium; cobalt-20% chromium, 15% tungsten; cobalt-35% nickel, 20% chromium, 10% molybdenum; polytetrafluoroethylene; polyoxymethylene; silicone and polyurethane copolymer; 32%-carbon-impregnated polyolefin; segmented polyurethane; silicone rubber; and alumina. Scanning electron microscopy was used to determine surface morphology changes of all materials after ion-texturing. Electron spectroscopy for chemical analysis was used to determine the effects of ion-texturing on the surface chemical composition of some polymers. Liquid contact angle data were obtained for ion-textured and untextured polymer samples. Results of tensile and fatigue tests of ion-textured metal alloys are presented. Preliminary data of tissue response to ion-textured surfaces of some metals, polytetrafluoroethylene, alumina, and segmented polyurethane have been obtained.

  4. Orbital Dynamics of a Simple Solar Photon Thruster

    OpenAIRE

    Guerman, Anna D.; Smirnov, Georgi V.; Pereira, Maria Cecilia

    2009-01-01

    We study orbital dynamics of a compound solar sail, namely, a Simple Solar Photon Thruster and compare its behavior to that of a common version of sailcraft. To perform this analysis, development of a mathematical model for force created by light reflection on all sailcraft elements is essential. We deduce the equations of sailcraft's motion and compare performance of two schemes of solar propulsion for two test time-optimal control problems of trajectory transfer.

  5. Technique for measuring cooling patterns in ion source grids by infrared scanning

    International Nuclear Information System (INIS)

    Grisham, L.R.; Eubank, H.P.; Kugel, H.W.

    1980-02-01

    Many plasma sources designed for neutral beam injection heating of plasmas now employ copper beam acceleration grids which are water-cooled by small capillary tubes fed from one or more headers. To prevent thermally-induced warpage of these grids it is essential that one be able to detect inhomogeneities in the cooling. Due to the very strong thermal coupling between adjacent cooling lines and the concomitant rapid equilibration times, it is not practical to make such measurements in a direct manner with a contact thermometer. We have developed a technique whereby we send a burst of hot water through an initially cool grid, followed by a burst of cool water, and record the transient thermal behavior usng an infrared television camera. This technique, which would be useful for any system with cooling paths that are strongly coupled thermally, has been applied to a number of sources built for the PLT and PDX tokamaks, and has proven highly effective in locating cooling deficiencies and blocked capillary tubes

  6. Spatially-Resolved Ion Trajectory Measurements During Cl2 Reactive Ion Beam Etching and Ar Ion Beam Etching

    International Nuclear Information System (INIS)

    Vawter, G. Allen; Woodworth, Joseph R.; Zubrzycki, Walter J.

    1999-01-01

    The angle of ion incidence at the etched wafer location during RIBE and IBE using Cl 2 , Ar and O 2 ion beams has been characterized using an ion energy and angle analyzer. Effects of beam current and accelerator grid bias on beam divergence and the spatial uniformity of the spread of incident angles are measured. It is observed that increased total beam current can lead to reduced current density at the sample stage due to enhanced beam divergence at high currents. Results are related to preferred etch system design for uniform high-aspect-ratio etching across semiconductor wafers

  7. Determination of the meniscus shape of a negative ion beam from an experimentally obtained beam profile

    Science.gov (United States)

    Ichikawa, M.; Kojima, A.; Chitarin, G.; Agostinetti, P.; Aprile, D.; Baltador, C.; Barbisan, M.; Delogu, R.; Hiratsuka, J.; Marconato, N.; Nishikiori, R.; Pimazzoni, A.; Sartori, E.; Serianni, G.; Tobari, H.; Umeda, N.; Veltri, P.; Watanabe, K.; Yoshida, M.; Antoni, V.; Kashiwagi, M.

    2017-08-01

    In order to understand the physics mechanism of a negative ion extraction in negative ion sources, an emission surface of the negative ions around an aperture at a plasma grid, so-called a meniscus, has been analyzed by an inverse calculation of the negative ion trajectory in a two dimensional beam analysis code. In this method, the meniscus is defined as the final position of the negative ion trajectories which are inversely calculated from the measured beam profile to the plasma grid. In a case of the volume-produced negative ions, the calculated meniscus by the inverse calculation was similar to that obtained in conventional beam simulation codes for positive ion extractions such as BEAMORBT and SLACCAD. The negative ion current density was uniform along the meniscus. This indicates that the negative ions produced in the plasma are transported to the plasma grid uniformly as considered in the transportation of the positive ions. However, in a surface production case of negative ions, where the negative ions are generated near the plasma grid with lower work function by seeding cesium, the current density in the peripheral region of the meniscus close to the plasma grid surface was estimated to be 2 times larger than the center region, which suggested that the extraction process of the surface-produced negative ions was much different with that for the positive ions. Because this non-uniform profile of the current density made the meniscus shape strongly concave, the beam extracted from the peripheral region could have a large divergence angle, which might be one of origins of so-called beam halo. This is the first results of the determination of the meniscus based on the experiment, which is useful to improve the prediction of the meniscus shape and heat loads based on the beam trajectories including beam halo.

  8. Electrostatic/magnetic ion acceleration through a slowly diverging magnetic nozzle between a ring anode and an on-axis hollow cathode

    Directory of Open Access Journals (Sweden)

    A. Sasoh

    2017-06-01

    Full Text Available Ion acceleration through a slowly diverging magnetic nozzle between a ring anode and a hollow cathode set on the axis of symmetry has been realized. Xenon was supplied as the propellant gas from an annular slit along the inner surface of the ring anode so that it was ionized near the anode, and the applied electric potential was efficiently transformed to an ion kinetic energy. As an electrostatic thruster, within the examined operation conditions, the thrust, F, almost scaled with the propellant mass flow rate; the discharge current, Jd, increased with the discharge voltage, Vd. An important characteristic was that the thrust also exhibited electromagnetic acceleration performance, i.e., the so-called “swirl acceleration,” in which F≅JdBRa ∕2, where B and Ra were a magnetic field and an anode inner radius, respectively. Such a unique thruster performance combining both electrostatic and electromagnetic accelerations is expected to be useful as another option for in-space electric propulsion in its broad functional diversity.

  9. Near-Body Grid Adaption for Overset Grids

    Science.gov (United States)

    Buning, Pieter G.; Pulliam, Thomas H.

    2016-01-01

    A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.

  10. Fusion energy in an inertial electrostatic confinement device using a magnetically shielded grid

    Energy Technology Data Exchange (ETDEWEB)

    Hedditch, John, E-mail: john.hedditch@sydney.edu.au; Bowden-Reid, Richard, E-mail: rbow3948@physics.usyd.edu.au; Khachan, Joe, E-mail: joe.khachan@sydney.edu.au [School of Physics, The University of Sydney, Sydney, New South Whales 2006 (Australia)

    2015-10-15

    Theory for a gridded inertial electrostatic confinement (IEC) fusion system is presented, which shows a net energy gain is possible if the grid is magnetically shielded from ion impact. A simplified grid geometry is studied, consisting of two negatively biased coaxial current-carrying rings, oriented such that their opposing magnetic fields produce a spindle cusp. Our analysis indicates that better than break-even performance is possible even in a deuterium-deuterium system at bench-top scales. The proposed device has the unusual property that it can avoid both the cusp losses of traditional magnetic fusion systems and the grid losses of traditional IEC configurations.

  11. Effects of the Phoenix Lander descent thruster plume on the Martian surface

    Science.gov (United States)

    Plemmons, D. H.; Mehta, M.; Clark, B. C.; Kounaves, S. P.; Peach, L. L.; Renno, N. O.; Tamppari, L.; Young, S. M. M.

    2008-08-01

    The exhaust plume of Phoenix's hydrazine monopropellant pulsed descent thrusters will impact the surface of Mars during its descent and landing phase in the northern polar region. Experimental and computational studies have been performed to characterize the chemical compounds in the thruster exhausts. No undecomposed hydrazine is observed above the instrument detection limit of 0.2%. Forty-five percent ammonia is measured in the exhaust at steady state. Water vapor is observed at a level of 0.25%, consistent with fuel purity analysis results. Moreover, the dynamic interactions of the thruster plumes with the ground have been studied. Large pressure overshoots are produced at the ground during the ramp-up and ramp-down phases of the duty cycle of Phoenix's pulsed engines. These pressure overshoots are superimposed on the 10 Hz quasi-steady ground pressure perturbations with amplitude of about 5 kPa (at touchdown altitude) and have a maximum amplitude of about 20-40 kPa. A theoretical explanation for the physics that causes these pressure perturbations is briefly described in this article. The potential for soil erosion and uplifting at the landing site is also discussed. The objectives of the research described in this article are to provide empirical and theoretical data for the Phoenix Science Team to mitigate any potential problem. The data will also be used to ensure proper interpretation of the results from on-board scientific instrumentation when Martian soil samples are analyzed.

  12. East–West GEO Satellite Station-Keeping with Degraded Thruster Response

    Directory of Open Access Journals (Sweden)

    Stoian Borissov

    2015-09-01

    Full Text Available The higher harmonic terms of Earth’s gravitational potential slowly modify the nominal longitude of geostationary Earth orbit (GEO satellites, while the third-body presence (Moon and Sun mainly affects their latitude. For this reason, GEO satellites periodically need to perform station-keeping maneuvers, namely, east–west and north–south maneuvers to compensate for longitudinal and latitudinal variations, respectively. During the operational lifetime of GEO satellites, the thrusters’ response when commanded to perform these maneuvers slowly departs from the original nominal impulsive behavior. This paper addresses the practical problem of how to perform reliable east–west station-keeping maneuvers when thruster response is degraded. The need for contingency intervention from ground-based satellite operators is reduced by breaking apart the scheduled automatic station-keeping maneuvers into smaller maneuvers. Orbital alignment and attitude are tracked on-board during and in between sub-maneuvers, and any off nominal variations are corrected for with subsequent maneuvers. These corrections are particularly important near the end of the lifetime of GEO satellites, where thruster response is farthest from nominal performance.

  13. Comparison study of exhaust plume impingement effects of small mono- and bipropellant thrusters using parallelized DSMC method.

    Directory of Open Access Journals (Sweden)

    Kyun Ho Lee

    Full Text Available A space propulsion system is important for the normal mission operations of a spacecraft by adjusting its attitude and maneuver. Generally, a mono- and a bipropellant thruster have been mainly used for low thrust liquid rocket engines. But as the plume gas expelled from these small thrusters diffuses freely in a vacuum space along all directions, unwanted effects due to the plume collision onto the spacecraft surfaces can dramatically cause a deterioration of the function and performance of a spacecraft. Thus, aim of the present study is to investigate and compare the major differences of the plume gas impingement effects quantitatively between the small mono- and bipropellant thrusters using the computational fluid dynamics (CFD. For an efficiency of the numerical calculations, the whole calculation domain is divided into two different flow regimes depending on the flow characteristics, and then Navier-Stokes equations and parallelized Direct Simulation Monte Carlo (DSMC method are adopted for each flow regime. From the present analysis, thermal and mass influences of the plume gas impingements on the spacecraft were analyzed for the mono- and the bipropellant thrusters. As a result, it is concluded that a careful understanding on the plume impingement effects depending on the chemical characteristics of different propellants are necessary for the efficient design of the spacecraft.

  14. Human Outer Solar System Exploration via Q-Thruster Technology

    Science.gov (United States)

    Joosten, B. Kent; White, Harold G.

    2014-01-01

    Propulsion technology development efforts at the NASA Johnson Space Center continue to advance the understanding of the quantum vacuum plasma thruster (QThruster), a form of electric propulsion. Through the use of electric and magnetic fields, a Q-thruster pushes quantum particles (electrons/positrons) in one direction, while the Qthruster recoils to conserve momentum. This principle is similar to how a submarine uses its propeller to push water in one direction, while the submarine recoils to conserve momentum. Based on laboratory results, it appears that continuous specific thrust levels of 0.4 - 4.0 N/kWe are achievable with essentially no onboard propellant consumption. To evaluate the potential of this technology, a mission analysis tool was developed utilizing the Generalized Reduced Gradient non-linear parameter optimization engine contained in the Microsoft Excel® platform. This tool allowed very rapid assessments of "Q-Ship" minimum time transfers from earth to the outer planets and back utilizing parametric variations in thrust acceleration while enforcing constraints on planetary phase angles and minimum heliocentric distances. A conservative Q-Thruster specific thrust assumption (0.4 N/kWe) combined with "moderate" levels of space nuclear power (1 - 2 MWe) and vehicle specific mass (45 - 55 kg/kWe) results in continuous milli-g thrust acceleration, opening up realms of human spaceflight performance completely unattainable by any current systems or near-term proposed technologies. Minimum flight times to Mars are predicted to be as low as 75 days, but perhaps more importantly new "retro-phase" and "gravity-augmented" trajectory shaping techniques were revealed which overcome adverse planetary phasing and allow virtually unrestricted departure and return opportunities. Even more impressively, the Jovian and Saturnian systems would be opened up to human exploration with round-trip times of 21 and 32 months respectively including 6 to 12 months of

  15. Orbital Dynamics of a Simple Solar Photon Thruster

    Directory of Open Access Journals (Sweden)

    Anna D. Guerman

    2009-01-01

    Full Text Available We study orbital dynamics of a compound solar sail, namely, a Simple Solar Photon Thruster and compare its behavior to that of a common version of sailcraft. To perform this analysis, development of a mathematical model for force created by light reflection on all sailcraft elements is essential. We deduce the equations of sailcraft's motion and compare performance of two schemes of solar propulsion for two test time-optimal control problems of trajectory transfer.

  16. Experimental investigation of the effects of variable expanding channel on the performance of a low-power cusped field thruster

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2018-04-01

    Full Text Available Due to a special magnetic field structure, the multi-cusped field thruster shows advantages of low wall erosion, low noise and high thrust density over a wide range of thrust. In this paper, expanding discharge channels are employed to make up for deficiencies on the range of thrust and plume divergence, which often emerges in conventional straight cylindrical channels. Three thruster geometries are fabricated with different expanding-angle channels, and a group of experiments are carried out to find out their influence on the performance and discharge characteristics of the thruster. A retarding potential analyzer and a Faraday probe are employed to analyze the structures of the plume in these three models. The results show that when the thrusters operate at low mass flow rate, the gradually-expanding channels exhibit lower propellant utilization and lower overall performance by amounts not exceeding 44.8% in ionization rate and 19.5% in anode efficiency, respectively. But the weakening of magnetic field intensity near the exit of expanding channels leads to an extended thrust throttling ability, a smaller plume divergence angle, and a relatively larger stable operating space without mode converting and the consequent performance degradation.

  17. Plasma-Sheath Instability in Hall Thrusters Due to Periodic Modulation of the Energy of Secondary Electrons in Cyclotron Motion

    International Nuclear Information System (INIS)

    Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.

    2008-01-01

    Particle-in-cell simulation of Hall thruster plasmas reveals a plasma-sheath instability manifesting itself as a rearrangement of the plasma sheath near the thruster channel walls accompanied by a sudden change of many discharge parameters. The instability develops when the sheath current as a function of the sheath voltage is in the negative conductivity regime. The major part of the sheath current is produced by beams of secondary electrons counter-streaming between the walls. The negative conductivity is the result of nonlinear dependence of beam-induced secondary electron emission on the plasma potential. The intensity of such emission is defined by the beam energy. The energy of the beam in crossed axial electric and radial magnetic fields is a quasi-periodical function of the phase of cyclotron rotation, which depends on the radial profile of the potential and the thruster channel width. There is a discrete set of stability intervals determined by the final phase of the cyclotron rotation of secondary electrons. As a result, a small variation of the thruster channel width may result in abrupt changes of plasma parameters if the plasma state jumps from one stability interval to another

  18. The effect of radio-frequency self bias on ion acceleration in expanding argon plasmas in helicon sources

    Science.gov (United States)

    Wiebold, Matthew D.

    Time-averaged plasma potential differences up to ˜ 165 V over several hundred Debye lengths are observed in low pressure (pn floating potential for argon (Vp ≈ 5kTe/e). In the capacitive mode, the ion acceleration is not well described by an ambipolar relation. The accelerated population decay is consistent with that predicted by charge-exchange collisions. Grounding the upstream endplate increases the self-bias voltage compared to a floating endplate. In the inductive and helicon modes, the ion acceleration more closely follows an ambipolar relation, a result of decreased capacitive coupling due to the decreased RF skin depth. The scaling of the potential gradient with the argon flow rate, magnetic field and RF power are investigated, with the highest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees well with that predicted for RF sheaths. Use of the self-bias effect in a plasma thruster is explored, possibly for a low thrust, high specific impulse mode in a multi-mode helicon thruster. This work could also explain similar potential gradients in expanding helicon plasmas that are ascribed to double layer formation in the literature.

  19. The MammoGrid Project Grids Architecture

    CERN Document Server

    McClatchey, Richard; Hauer, Tamas; Estrella, Florida; Saiz, Pablo; Rogulin, Dmitri; Buncic, Predrag; Clatchey, Richard Mc; Buncic, Predrag; Manset, David; Hauer, Tamas; Estrella, Florida; Saiz, Pablo; Rogulin, Dmitri

    2003-01-01

    The aim of the recently EU-funded MammoGrid project is, in the light of emerging Grid technology, to develop a European-wide database of mammograms that will be used to develop a set of important healthcare applications and investigate the potential of this Grid to support effective co-working between healthcare professionals throughout the EU. The MammoGrid consortium intends to use a Grid model to enable distributed computing that spans national borders. This Grid infrastructure will be used for deploying novel algorithms as software directly developed or enhanced within the project. Using the MammoGrid clinicians will be able to harness the use of massive amounts of medical image data to perform epidemiological studies, advanced image processing, radiographic education and ultimately, tele-diagnosis over communities of medical "virtual organisations". This is achieved through the use of Grid-compliant services [1] for managing (versions of) massively distributed files of mammograms, for handling the distri...

  20. Characteristics of a multidipole ion source

    International Nuclear Information System (INIS)

    Leung, K.N.; Collier, R.D.; Marshall, L.B.; Gallaher, T.N.; Ingham, W.H.; Kribel, R.E.; Taylor, G.R.

    1978-01-01

    The properties of a steady-state, dc discharge multidipole ion source have been investigated. The plasma density in the source depends on the magnet geometries, the discharge voltage, and the bias voltage on the first extraction grid. Different schemes to reduce the loss of ions to the chamber wall are described. Hydrogen ion species in the extracted beam are studied by a mass analyzer

  1. Current control for magnetized plasma in direct-current plasma-immersion ion implantation

    International Nuclear Information System (INIS)

    Tang Deli; Chu, Paul K.

    2003-01-01

    A method to control the ion current in direct-current plasma-immersion ion implantation (PIII) is reported for low-pressure magnetized inductively coupled plasma. The ion current can be conveniently adjusted by applying bias voltage to the conducting grid that separates plasma formation and implantation (ion acceleration) zones without the need to alter the rf input power, gas flux, or other operating conditions. The ion current that diminishes with an increase in grid bias in magnetized plasmas can be varied from 48 to 1 mA by increasing the grid voltage from 0 to 70 V at -50 kV sample bias and 0.5 mTorr hydrogen pressure. High implantation voltage and monoenergetic immersion implantation can now be achieved by controlling the ion current without varying the macroscopic plasma parameters. The experimental results and interpretation of the effects are presented in this letter. This technique is very attractive for PIII of planar samples that require on-the-fly adjustment of the implantation current at high implantation voltage but low substrate temperature. In some applications such as hydrogen PIII-ion cut, it may obviate the need for complicated sample cooling devices that must work at high voltage

  2. An axially propagating two-stream instability in the Hall thruster plasma

    Czech Academy of Sciences Publication Activity Database

    Tsikata, S.; Cavalier, Jordan; Héron, A.; Honore, C.; Lemoine, N.; Gresillon, D.; Coulette, D.

    2014-01-01

    Roč. 21, č. 7 (2014), 072116-072116 ISSN 1070-664X Institutional support: RVO:61389021 Keywords : Collective Thomson scattering * Hall thruster * kinetic theory * electrostatic modes Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.142, year: 2014 http://dx.doi.org/10.1063/1.4890025

  3. Hall Thruster Thermal Modeling and Test Data Correlation

    Science.gov (United States)

    Myers, James

    2016-01-01

    HERMeS - Hall Effect Rocket with Magnetic Shielding. Developed through a joint effort by NASA/GRC and the Jet Propulsion Laboratory (JPL). Design goals: High power (12.5 kW) high Isp (3000 sec), high efficiency (> 60%), high throughput (10,000 kg), reduced plasma erosion and increased life (5 yrs) to support Asteroid Redirect Robotic Mission (ARRM). Further details see "Performance, Facility Pressure Effects and Stability Characterization Tests of NASAs HERMeS Thruster" by H. Kamhawi and team. Hall Thrusters (HT) inherently operate at elevated temperatures approx. 600 C (or more). Due to electric magnetic (E x B) fields used to ionize and accelerate propellant gas particles (i.e., plasma). Cooling is largely limited to radiation in vacuum environment.Thus the hardware components must withstand large start-up delta-T's. HT's are constructed of multiple materials; assorted metals, non-metals and ceramics for their required electrical and magnetic properties. To mitigate thermal stresses HT design must accommodate the differential thermal growth from a wide range of material Coef. of Thermal Expansion (CTEs). Prohibiting the use of some bolted/torqued interfaces.Commonly use spring loaded interfaces, particularly at the metal-to-ceramic interfaces to allow for slippage.However most component interfaces must also effectively conduct heat to the external surfaces for dissipation by radiation.Thus contact pressure and area are important.

  4. Plasma Perturbations in High-Speed Probing of Hall Thruster Discharge Chambers: Quantification and Mitigation

    Science.gov (United States)

    Jorns, Benjamin A.; Goebel, Dan M.; Hofer, Richard R.

    2015-01-01

    An experimental investigation is presented to quantify the effect of high-speed probing on the plasma parameters inside the discharge chamber of a 6-kW Hall thruster. Understanding the nature of these perturbations is of significant interest given the importance of accurate plasma measurements for characterizing thruster operation. An array of diagnostics including a high-speed camera and embedded wall probes is employed to examine in real time the changes in electron temperature and plasma potential induced by inserting a high-speed reciprocating Langmuir probe into the discharge chamber. It is found that the perturbations onset when the scanning probe is downstream of the electron temperature peak, and that along channel centerline, the perturbations are best characterized as a downstream shift of plasma parameters by 15-20% the length of the discharge chamber. A parametric study is performed to investigate techniques to mitigate the observed probe perturbations including varying probe speed, probe location, and operating conditions. It is found that the perturbations largely disappear when the thruster is operated at low power and low discharge voltage. The results of this mitigation study are discussed in the context of recommended methods for generating unperturbed measurements of the discharge chamber plasma.

  5. The direct wave-drive thruster

    Science.gov (United States)

    Feldman, Matthew Solomon

    A propulsion concept relying on the direct, steady-state acceleration of a plasma by an inductive wave-launching antenna is presented. By operating inductively in steady state, a Direct Wave-Drive Thruster avoids drawbacks associated with electrode erosion and pulsed acceleration. The generalized relations for the scaling of thrust and efficiency with the antenna current are derived analytically; thrust is shown to scale with current squared, and efficiency is shown to increase with increasing current or power. Two specific configurations are modeled to determine nondimensional parameters governing the antenna-plasma coupling: an annular antenna pushing against a finite-conductivity plasma, and a linear antenna targeting the magnetosonic wave. Calculations from the model show that total thrust improves for increasing excitation frequencies, wavenumbers, plasma densities, and device sizes. To demonstrate the magnetosonic wave as an ideal candidate to drive a DWDT, it is shown to be capable of carrying substantial momentum and able to drive a variable specific impulse. The magnetosonic wave-driven mass flow is compared to mass transport due to thermal effects and cross-field diffusion in order to derive critical power requirements that ensure the thruster channel is dominated by wave dynamics. A proof-of-concept experiment is constructed that consists of a separate plasma source, a confining magnetic field, and a wave-launching antenna. The scaling of the increase of exhaust velocity is analytically modeled and is dependent on a nondimensional characteristic wavenumber that is proportional to the excitation frequency and plasma density and inversely proportional to the magnetic field strength. Experimental validation of the derived scaling behavior is carried out using a Mach probe to measure the flow velocity in the plume. Increases in exhaust velocity are measured as the antenna current increases for varying excitation frequencies and applied magnetic field

  6. Plasma grid design for optimized filter field configuration for the NBI test facility ELISE

    International Nuclear Information System (INIS)

    Nocentini, R.; Gutser, R.; Heinemann, B.; Froeschle, M.; Riedl, R.

    2009-01-01

    Maintenance-free RF sources for negative hydrogen ions with moderate extraction areas (100-200 cm 2 ) have been successfully developed in the last years at IPP Garching in the test facilities BATMAN and MANITU. A facility with larger extraction area (1000 cm 2 ), ELISE, is being designed with a 'half-size' ITER-like extraction system, pulsed ion acceleration up to 60 kV for 10 s and plasma generation up to 1 h. Due to the large size of the source, the magnetic filter field (FF) cannot be produced solely by permanent magnets. Therefore, an additional magnetic field produced by current flowing through the plasma grid (PG current) is required. The filter field homogeneity and the interaction with the electron suppression magnetic field have been studied in detail by finite element method (FEM) during the ELISE design phase. Significant improvements regarding the field homogeneity have been introduced compared to the ITER reference design. Also, for the same PG current a 50% higher field in front of the grid has been achieved by optimizing the plasma grid geometry. Hollow spaces have been introduced in the plasma grid for a more homogeneous PG current distribution. The introduction of hollow spaces also allows the insertion of permanent magnets in the plasma grid.

  7. Colloid Thruster for Attitude Control Systems (ACS) and Tip-off Control Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop and deliver a complete engineering model colloid thruster system, capable of thrust levels and lifetimes required for spacecraft...

  8. Angular dependence of EEDF in ion-beam plasma

    International Nuclear Information System (INIS)

    Dudin, S.V.

    1995-01-01

    In a previous paper the results of measurements of electron energy distribution function (EEDF) in ion-beam plasma created by low energy broad ion beam had been presented regardless of the angular dependence of the electron distribution. The present work is specifically aimed towards elucidating the spatial structure of the EEDF in the ion-beam plasma. To solve this problem combination of the techniques of cylindrical probe, large plate probe (5 x 5 mm) and two-grid enegoanalyzer was used. Directional operation of the probes makes possible measurement of angular dependence of electron distribution function which is anisotropic in high energy region. To optimize the construction of the probe-analyzer, experiments with grids were performed, which had different size, mesh, and transparency, under different potentials, and with different distances between grids. Numerical simulation of the analyzer was performed too. It is derived that optimal design for measurements in isotropic plasma is the most plate, thin two-grid probe with maximum angular covering. Investigation of angular dependence of EEDF has shown that the distribution of trapped electrons is completely isotropic, whereas in the energy range of var-epsilon > e var-phi pl (var-phi pl - plasma potential) a strong anisotropy of the EEDF is observed

  9. 3D magnetospheric parallel hybrid multi-grid method applied to planet–plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Leclercq, L., E-mail: ludivine.leclercq@latmos.ipsl.fr [LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt (France); Modolo, R., E-mail: ronan.modolo@latmos.ipsl.fr [LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt (France); Leblanc, F. [LATMOS/IPSL, UPMC Univ. Paris 06 Sorbonne Universités, UVSQ, CNRS, Paris (France); Hess, S. [ONERA, Toulouse (France); Mancini, M. [LUTH, Observatoire Paris-Meudon (France)

    2016-03-15

    We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet–plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order to conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.

  10. Study on anti-emission materials for non-emitting grid applications in microwave power tubes

    International Nuclear Information System (INIS)

    Jiang, J.; Jiang, B.Y.; Ren, C.X.; Zhang, F.M.; Feng, T.; Wang, X.; Liu, X.H.; Zou, S.C.

    2006-01-01

    Hafnium and platinum were deposited onto molybdenum grids by ion-beam assisted deposition method. Electron-emission characteristics from molybdenum grids with Hf and Pt films, which were contaminated by active electron-emission substances (Ba, BaO) of the cathode, were measured using analogous diode method. The surfaces of grids were analyzed by X-ray diffraction. The results revealed that the reaction between BaO and Hf formed BaHfO 3 compound, which greatly reduced the accumulation of BaO on the surface and accordingly decreased grid emission. In contrast, Ba were formed by the decomposition of BaO on the surface of Pt film under high temperature and re-evaporated from its surface, which reduced the active electron-emission substances on the surface of the grid and effectively restrained grid emission. Their mechanisms for grid-emission suppression are discussed and a good method to develop new grid-coating materials is suggested

  11. Low-Power Operation and Plasma Characterization of a Qualification Model SPT-140 Hall Thruster for NASA Science Missions

    Science.gov (United States)

    Garner, Charles E.; Jorns, Benjamin A.; van Derventer, Steven; Hofer, Richard R.; Rickard, Ryan; Liang, Raymond; Delgado, Jorge

    2015-01-01

    Hall thruster systems based on commercial product lines can potentially lead to lower cost electric propulsion (EP) systems for deep space science missions. A 4.5-kW SPT-140 Hall thruster presently under qualification testing by SSL leverages the substantial heritage of the SPT-100 being flown on Russian and US commercial satellites. The Jet Propulsion Laboratory is exploring the use of commercial EP systems, including the SPT-140, for deep space science missions, and initiated a program to evaluate the SPT-140 in the areas of low power operation and thruster operating life. A qualification model SPT-140 designated QM002 was evaluated for operation and plasma properties along channel centerline, from 4.5 kW to 0.8 kW. Additional testing was performed on a development model SPT-140 designated DM4 to evaluate operation with a Moog proportional flow control valve (PFCV). The PFCV was commanded by an SSL engineering model PPU-140 Power Processing Unit (PPU). Performance measurements on QM002 at 0.8 kW discharge power were 50 mN of thrust at a total specific impulse of 1250 s, a total thruster efficiency of 0.38, and discharge current oscillations of under 3% of the mean current. Steady-state operation at 0.8 kW was demonstrated during a 27 h firing. The SPT-140 DM4 was operated in closed-loop control of the discharge current with the PFCV and PPU over discharge power levels of 0.8-4.5 kW. QM002 and DM4 test data indicate that the SPT-140 design is a viable candidate for NASA missions requiring power throttling down to low thruster input power.

  12. The influence of grid positioning on the beam optics in the neutral beam injectors for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Veltri, Pierluigi, E-mail: pierluigi.veltri@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, Padova (Italy); INFN—Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Agostinetti, Piero; Marcuzzi, Diego; Sartori, Emanuele; Serianni, Gianluigi [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, Padova (Italy)

    2016-06-15

    Neutral beam injectors are routinely used to increase the ion temperature in magnetically confined plasmas. Typically, the beam is produced by neutralizing a bundle of hundreds of ion beamlets, energized in a multi-grid multi-stage accelerator. Precise aiming of each beamlet is required in order to focus the full beam to the plasma, avoiding any interception with beamline surfaces and with the beam duct. This paper describes the effects of grid in-plane and out-of-plane displacements (mispositioning, thermal expansion, grid tilting, etc…) in the case of the MITICA electrostatic accelerator, which is the full scale prototype of the ITER heating neutral beam injector. Various simulations have been carried out with the OPERA 3D code, by self-consistently simulating the beam charged particles travelling in an externally applied electric and magnetic field. The accelerator grids act like a series of electrostatic lenses, and produce a net deflection of the particles when one or more grids are offset. The numerical simulations were used to evaluate the “steering constant” of each grid and also showed that the linear superposition of effects was applicable, multiple causes of mispositioning are combined and used to quantify the overall effect in terms of beam misalignment.

  13. The influence of grid positioning on the beam optics in the neutral beam injectors for ITER

    International Nuclear Information System (INIS)

    Veltri, Pierluigi; Agostinetti, Piero; Marcuzzi, Diego; Sartori, Emanuele; Serianni, Gianluigi

    2016-01-01

    Neutral beam injectors are routinely used to increase the ion temperature in magnetically confined plasmas. Typically, the beam is produced by neutralizing a bundle of hundreds of ion beamlets, energized in a multi-grid multi-stage accelerator. Precise aiming of each beamlet is required in order to focus the full beam to the plasma, avoiding any interception with beamline surfaces and with the beam duct. This paper describes the effects of grid in-plane and out-of-plane displacements (mispositioning, thermal expansion, grid tilting, etc…) in the case of the MITICA electrostatic accelerator, which is the full scale prototype of the ITER heating neutral beam injector. Various simulations have been carried out with the OPERA 3D code, by self-consistently simulating the beam charged particles travelling in an externally applied electric and magnetic field. The accelerator grids act like a series of electrostatic lenses, and produce a net deflection of the particles when one or more grids are offset. The numerical simulations were used to evaluate the “steering constant” of each grid and also showed that the linear superposition of effects was applicable, multiple causes of mispositioning are combined and used to quantify the overall effect in terms of beam misalignment

  14. A Plasmoid Thruster for Space Propulsion

    Science.gov (United States)

    Koelfgen, Syri J.; Hawk, Clark W.; Eskridge, Richard; Smith, James W.; Martin, Adam K.

    2003-01-01

    There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are classified according to the relative strength of the poloidal and toroidal magnetic field (B(sub p), and B(sub t), respectively). An object with B(sub p), / B(sub t) much greater than 1 is classified as a Field Reversed Configuration (FRC); if B(sub p) approximately equal to B(sub t), it is called a Spheromak. The plasmoid thruster operates by producing FRC-like plasmoids and subsequently ejecting them from the device at a high velocity. The plasmoid is formed inside of a single-turn conical theta-pinch coil. As this process is inductive, there are no electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s, and calculations indicate that velocities in excess of 100 km/s should be possible. This concept should be capable of producing Isp's in the range of 5,000 - 15,000 s with thrust densities on the order of 10(exp 5) N per square meters. The current experiment is designed to produce jet powers in the range of 5 - 10 kW, although the concept should be scalable to several MW's. The plasmoid mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras and a laser interferometer. Also of key importance will be measurements of the efficiency and mass utilization. Simulations of the plasmoid thruster using MOQUI, a time-dependent MHD code, will be carried out concurrently with experimental testing.

  15. Improving the viability and versatility of the E × B probe with an active cooling system

    Science.gov (United States)

    Liu, Lihui; Cai, Guobiao; You, Fengyi; Ren, Xiang; Zheng, Hongru; He, Bijiao

    2018-04-01

    A thermostatic E × B probe is designed to protect the probe body from the thermal effect of the plasma plume that has a significant influence on the resolution of the probe for high-power electric thrusters. An active cooling system, which consists of a cooling panel and carbon fiber felts combined with a recycling system of liquid coolants or an open-type system of gas coolants, is employed to realize the protection of the probe. The threshold for the design parameters for the active cooling system is estimated by deriving the energy transfer of the plasma plume-probe body interaction and the energy taken away by the coolants, and the design details are explained. The diagnostics of the LIPS-300 ion thruster with a power of 3 kW and a screen-grid voltage of 1450 V was implemented by the designed thermostatic E × B probe. The measured spectra illustrate that the thermostatic E × B probe can distinguish the fractions of Xe+ ions and Xe2+ ions without areas of overlap. In addition, the temperature of the probe body was less than 306 K in the beam region of the plasma plume during the 200-min-long continuous test. A thermostatic E × B probe is useful for enhancing the viability and versatility of equipment and for reducing uneconomical and complex test procedures.

  16. Compact microwave ion source

    International Nuclear Information System (INIS)

    Leung, K.N.; Walther, S.; Owren, H.W.

    1985-05-01

    A small microwave ion source has been fabricated from a quartz tube with one end enclosed by a two grid accelerator. The source is also enclosed by a cavity operated at a frequency of 2.45 GHz. Microwave power as high as 500 W can be coupled to the source plasma. The source has been operated with and without multicusp fields for different gases. In the case of hydrogen, ion current density of 200 mA/cm -2 with atomic ion species concentration as high as 80% has been extracted from the source

  17. Magnetized retarding field energy analyzer measuring the particle flux and ion energy distribution of both positive and negative ions

    International Nuclear Information System (INIS)

    Rafalskyi, Dmytro; Aanesland, Ane; Dudin, Stanislav

    2015-01-01

    This paper presents the development of a magnetized retarding field energy analyzer (MRFEA) used for positive and negative ion analysis. The two-stage analyzer combines a magnetic electron barrier and an electrostatic ion energy barrier allowing both positive and negative ions to be analyzed without the influence of electrons (co-extracted or created downstream). An optimal design of the MRFEA for ion-ion beams has been achieved by a comparative study of three different MRFEA configurations, and from this, scaling laws of an optimal magnetic field strength and topology have been deduced. The optimal design consists of a uniform magnetic field barrier created in a rectangular channel and an electrostatic barrier consisting of a single grid and a collector placed behind the magnetic field. The magnetic barrier alone provides an electron suppression ratio inside the analyzer of up to 6000, while keeping the ion energy resolution below 5 eV. The effective ion transparency combining the magnetic and electrostatic sections of the MRFEA is measured as a function of the ion energy. It is found that the ion transparency of the magnetic barrier increases almost linearly with increasing ion energy in the low-energy range (below 200 eV) and saturates at high ion energies. The ion transparency of the electrostatic section is almost constant and close to the optical transparency of the entrance grid. We show here that the MRFEA can provide both accurate ion flux and ion energy distribution measurements in various experimental setups with ion beams or plasmas run at low pressure and with ion energies above 10 eV

  18. Implementation of grid-connected to/from off-grid transference for micro-grid inverters

    OpenAIRE

    Heredero Peris, Daniel; Chillón Antón, Cristian; Pages Gimenez, Marc; Gross, Gabriel Igor; Montesinos Miracle, Daniel

    2013-01-01

    This paper presents the transfer of a microgrid converter from/to on-grid to/from off-grid when the converter is working in two different modes. In the first transfer presented method, the converter operates as a Current Source Inverter (CSI) when on-grid and as a Voltage Source Inverter (VSI) when off-grid. In the second transfer method, the converter is operated as a VSI both, when operated on-grid and off-grid. The two methods are implemented successfully in a real pla...

  19. Development of a Methodology for Conducting Hall Thruster EMI Tests in Metal Vacuum Chambers of Arbitrary Shape and Size

    Science.gov (United States)

    Gallimore, Alec D.

    2000-01-01

    While the closed-drift Hall thruster (CDT) offers significant improvement in performance over conventional chemical rockets and other advanced propulsion systems such as the arcjet, its potential impact on spacecraft communication signals must be carefully assessed before widespread use of this device can take place. To this end, many of the potentially unique issues that are associated with these thrusters center on its plume plasma characteristics and the its interaction with electromagnetic waves. Although a great deal of experiments have been made in characterizing the electromagnetic interference (EMI) potential of these thrusters, the interpretation of the resulting data is difficult because most of these measurements have been made in vacuum chambers with metal walls which reflect radio waves emanating from the thruster. This project developed a means of assessing the impact of metal vacuum chambers of arbitrary size or shape on EMI experiments, thereby allowing for test results to be interpreted properly. Chamber calibration techniques were developed and initially tested at RIAME using their vacuum chamber. Calibration experiments were to have been made at Tank 5 of NASA GRC and the 6 m by 9 m vacuum chamber at the University of Michigan to test the new procedure, however the subcontract to RIAME was cancelled by NASA memorandum on Feb. 26. 1999.

  20. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    Science.gov (United States)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2016-01-01

    Basic principles for the design and stability of a spacecraft on-orbit attitude control system employing on-off Reaction Control System (RCS) thrusters are presented. Both vehicle dynamics and the control system actuators are inherently nonlinear, hence traditional linear control system design approaches are not directly applicable. This paper has two main aspects: It summarizes key RCS design principles from earlier NASA vehicles, notably the Space Shuttle and Space Station programs, and introduces advances in the linear modelling and analyses of a phase plane control system derived in the initial development of the NASA's next upper stage vehicle, the Exploration Upper Stage (EUS). Topics include thruster hardware specifications, phase plane design and stability, jet selection approaches, filter design metrics, and RCS rotational maneuver logic.

  1. Smart grid

    International Nuclear Information System (INIS)

    Choi, Dong Bae

    2001-11-01

    This book describes press smart grid from basics to recent trend. It is divided into ten chapters, which deals with smart grid as green revolution in energy with introduction, history, the fields, application and needed technique for smart grid, Trend of smart grid in foreign such as a model business of smart grid in foreign, policy for smart grid in U.S.A, Trend of smart grid in domestic with international standard of smart grid and strategy and rood map, smart power grid as infrastructure of smart business with EMS development, SAS, SCADA, DAS and PQMS, smart grid for smart consumer, smart renewable like Desertec project, convergence IT with network and PLC, application of an electric car, smart electro service for realtime of electrical pricing system, arrangement of smart grid.

  2. Direct measurement of axial momentum imparted by an electrothermal radiofrequency plasma micro-thruster

    Science.gov (United States)

    Charles, Christine; Boswell, Roderick; Bish, Andrew; Khayms, Vadim; Scholz, Edwin

    2016-05-01

    Gas flow heating using radio frequency plasmas offers the possibility of depositing power in the centre of the flow rather than on the outside, as is the case with electro-thermal systems where thermal wall losses lower efficiency. Improved systems for space propulsion are one possible application and we have tested a prototype micro-thruster on a thrust balance in vacuum. For these initial tests, a fixed component radio frequency matching network weighing 90 grams was closely attached to the thruster in vacuum with the frequency agile radio frequency generator power being delivered via a 50 Ohm cable. Without accounting for system losses (estimated at around 50%), for a few 10s of Watts from the radio frequency generator the specific impulse was tripled to ˜48 seconds and the thrust tripled from 0.8 to 2.4 milli-Newtons.

  3. Direct measurement of axial momentum imparted by an electrothermal radiofrequency plasma micro-thruster

    Directory of Open Access Journals (Sweden)

    Christine eCharles

    2016-05-01

    Full Text Available Gas flow heating using radio frequency plasmas offers the possibility of depositing power in the centre of the flow rather than on the outside, as is the case with electro-thermal systems where thermal wall losses lower efficiency. Improved systems for space propulsion are one possible application and we have tested a prototype micro-thruster on a thrust balance in vacuum. For these initial tests, a fixed component radio frequency matching network weighing 90 grams was closely attached to the thruster in vacuum with the frequency agile radio frequency generator power being delivered via a 50 Ohm cable. Without accounting for system losses (estimated at around 50~$%$, for a few 10s of Watts from the radio frequency generator the specific impulse was tripled to $sim$48 seconds and the thrust tripled from 0.8 to 2.4 milli-Newtons.

  4. GridCom, Grid Commander: graphical interface for Grid jobs and data management

    International Nuclear Information System (INIS)

    Galaktionov, V.V.

    2011-01-01

    GridCom - the software package for maintenance of automation of access to means of distributed system Grid (jobs and data). The client part, executed in the form of Java-applets, realises the Web-interface access to Grid through standard browsers. The executive part Lexor (LCG Executor) is started by the user in UI (User Interface) machine providing performance of Grid operations

  5. Numerical investigation on liquid sheets interaction characteristics of liquid-liquid coaxial swirling jets in bipropellant thruster

    International Nuclear Information System (INIS)

    Ding, Jia-Wei; Li, Guo-Xiu; Yu, Yu-Song

    2016-01-01

    Highlights: • A LES-VOF model is conducted to simulate atomization of coaxial swirling jets. • Structure and flow field of coaxial swirling jets are investigated. • Merging process occurs at the nozzle exit and generates additional perturbation. • The Rayleigh mode instability dominates the breakup of ligaments. - Abstract: Spray atomization process of a liquid-liquid coaxial swirl injector in bipropellant thruster has been investigated using volume of fluid (VOF) method coupled with large eddy simulation methodology. With fine grid resolution, detailed flow field of interacted liquid sheet has been captured and analyzed. For coaxial swirling jet, static pressure drop in the region between the liquid sheets makes two liquid sheets to approach each other and merge. A strong pressure, velocity and turbulent fluctuations are calculated near the contact position of two coaxial jets. Simulation results indicate that additional perturbations are generated due to strong radial and axial shear effects between coaxial jets. Observation of droplet formation process reveals that the Rayleigh mode instability dominates the breakup of the ligament. Droplet diameter and distribution have been investigated quantitatively. The mean diameter of the coaxial jets is between that of the inner and the outer jets. Compared with the individual swirling jets, wider size distributions of droplets are produced in the coaxial jets.

  6. Ion optics of RHIC EBIS

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2011-09-10

    RHIC EBIS has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  7. Thermo-mechanical analysis of an acceleration grid for the international thermonuclear experimental reactor-neutral beam injection system

    International Nuclear Information System (INIS)

    Fujiwara, Yukio; Hanada, Masaya; Okumura, Yoshikazu; Suzuki, Satoshi; Watanabe, Kazuhiro

    2001-01-01

    In the engineering design of a negative-ion beam source for a high-power neutral beam injection (NBI) system, one of the most important issues is thermo-mechanical design of acceleration grids for producing several tens of MW ion beams. An acceleration grid for the international thermonuclear experimental reactor-neutral beam injection (ITER-NBI) system will be subjected to the heat loading as high as 1.5 MW. In the present paper, thermo-mechanical characteristics of the acceleration grid for the ITER-NBI system were analyzed. Numerical simulation indicated that maximum aperture-axis displacement of the acceleration grid due to thermal expansion would be about 0.7 mm for the heat loading of 1.5 MW. From the thin lens theory of beam optics, beamlet deflection angle by the aperture-axis displacement was estimated to be about 2 mrad, which is within the requirement of the engineering design of the ITER-NBI system. Numerical simulation also indicated that no melting on the acceleration grid would occur for a heat loading of 1.5 MW, while local plastic deformation would happen. To avoid the plastic deformation, it is necessary to reduce the heat loading onto the acceleration grid to less than 1 MW

  8. Numerical solution of plasma fluid equations using locally refined grids

    International Nuclear Information System (INIS)

    Colella, P.

    1997-01-01

    This paper describes a numerical method for the solution of plasma fluid equations on block-structured, locally refined grids. The plasma under consideration is typical of those used for the processing of semiconductors. The governing equations consist of a drift-diffusion model of the electrons and an isothermal model of the ions coupled by Poisson's equation. A discretization of the equations is given for a uniform spatial grid, and a time-split integration scheme is developed. The algorithm is then extended to accommodate locally refined grids. This extension involves the advancement of the discrete system on a hierarchy of levels, each of which represents a degree of refinement, together with synchronization steps to ensure consistency across levels. A brief discussion of a software implementation is followed by a presentation of numerical results

  9. Diagnostic Setup for Characterization of Near-Anode Processes in Hall Thrusters

    International Nuclear Information System (INIS)

    Dorf, L.; Raitses, Y.; Fisch, N.J.

    2003-01-01

    A diagnostic setup for characterization of near-anode processes in Hall-current plasma thrusters consisting of biased and emissive electrostatic probes, high-precision positioning system and low-noise electronic circuitry was developed and tested. Experimental results show that radial probe insertion does not cause perturbations to the discharge and therefore can be used for accurate near-anode measurements

  10. Vacuum arc plasma thrusters with inductive energy storage driver

    Science.gov (United States)

    Krishnan, Mahadevan (Inventor)

    2009-01-01

    A plasma thruster with a cylindrical inner and cylindrical outer electrode generates plasma particles from the application of energy stored in an inductor to a surface suitable for the formation of a plasma and expansion of plasma particles. The plasma production results in the generation of charged particles suitable for generating a reaction force, and the charged particles are guided by a magnetic field produced by the same inductor used to store the energy used to form the plasma.

  11. Satellite Integration of a PhoneSat-EDSN Bus with a Micro Cathode Arc Thruster

    Data.gov (United States)

    National Aeronautics and Space Administration —  NASA Ames Research Center and GWU are investigating applications of Micro-Cathode Arc Thrusters (μCAT) sub-systems for attitude and orbit correction of a PhoneSat...

  12. Enabling Campus Grids with Open Science Grid Technology

    International Nuclear Information System (INIS)

    Weitzel, Derek; Fraser, Dan; Pordes, Ruth; Bockelman, Brian; Swanson, David

    2011-01-01

    The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condor clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.

  13. Analysis of secondary electron emission for conducting materials using 4-grid LEED/AES optics

    International Nuclear Information System (INIS)

    Patino, M I; Wirz, R E; Raitses, Y; Koel, B E

    2015-01-01

    A facility utilizing 4-grid optics for LEED/AES (low energy electron diffraction/Auger electron spectroscopy) was developed to measure the total secondary electron yield and secondary electron energy distribution function for conducting materials. The facility and experimental procedure were validated with measurements of 50–500 eV primary electrons impacting graphite. The total yield was calculated from measurements of the secondary electron current (i) from the sample and (ii) from the collection assembly, by biasing each surface. Secondary electron yield results from both methods agreed well with each other and were within the spread of previous results for the total yield from graphite. Additionally, measurements of the energy distribution function of secondary electrons from graphite are provided for a wider range of incident electron energies. These results can be used in modeling plasma-wall interactions in plasmas bounded by graphite walls, such as are found in plasma thrusters, and divertors and limiters of magnetic fusion devices. (paper)

  14. Effect of Ambipolar Potential on the Propulsive Performance of the GDM Plasma Thruster, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Gasdynamic Mirror (GDM) thruster is an electric propulsion device, without electrodes, that will magnetically confine a plasma with such density and temperature...

  15. Assessment of grid optimisation measures for the German transmission grid using open source grid data

    Science.gov (United States)

    Böing, F.; Murmann, A.; Pellinger, C.; Bruckmeier, A.; Kern, T.; Mongin, T.

    2018-02-01

    The expansion of capacities in the German transmission grid is a necessity for further integration of renewable energy sources into the electricity sector. In this paper, the grid optimisation measures ‘Overhead Line Monitoring’, ‘Power-to-Heat’ and ‘Demand Response in the Industry’ are evaluated and compared against conventional grid expansion for the year 2030. Initially, the methodical approach of the simulation model is presented and detailed descriptions of the grid model and the used grid data, which partly originates from open-source platforms, are provided. Further, this paper explains how ‘Curtailment’ and ‘Redispatch’ can be reduced by implementing grid optimisation measures and how the depreciation of economic costs can be determined considering construction costs. The developed simulations show that the conventional grid expansion is more efficient and implies more grid relieving effects than the evaluated grid optimisation measures.

  16. Enabling campus grids with open science grid technology

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, Derek [Nebraska U.; Bockelman, Brian [Nebraska U.; Swanson, David [Nebraska U.; Fraser, Dan [Argonne; Pordes, Ruth [Fermilab

    2011-01-01

    The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condor clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.

  17. The NASA In-Space Propulsion Technology Project, Products, and Mission Applicability

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Liou, Larry; Dankanich, John; Munk, Michelle M.; Kremic, Tibor

    2009-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA s Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved: guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars, and Venus; and models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6 to 7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  18. Magnetic and thermo-structural design optimization of the Plasma Grid for the MITICA neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Marconato, N., E-mail: nicolo.marconato@igi.cnr.it [Consorzio RFX, (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Agostinetti, P. [Consorzio RFX, (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Chitarin, G. [Consorzio RFX, (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Department of Management and Engineering, University of Padova, Strad. S. Nicola 3, 36100 Vicenza (Italy)

    2015-10-15

    Highlights: • Latest status of the ITER NBI prototype (MITICA) design activity. • Finalization of the Plasma Grid design for optimal magnetic field intensity and uniformity. • Geometry optimization based on magnetic field calculation. • Assessment of the thermo-mechanical behavior of the grid by a 3D fully self-consistent fluid-thermal-structural model. - Abstract: MITICA is a prototype of the heating neutral beam (HNB) Injectors for ITER, built with the purpose of validating the injector design and optimizing its operation. Its goal is to produce a focused beam of neutral particles (H or D) with energy up to 1 MeV and power of 16 MW for 1 h. MITICA includes a Radio Frequency (RF) Plasma Source for the production of negative ions, a multi-stage electrostatic accelerator (up to 1 MV and 40 A), a neutralizer, a residual ion dump and a calorimeter. A transverse magnetic field in the Ion source and accelerator, including both a long-range component and a local component is crucial for obtaining the required Ion current and accelerator efficiency. The long-range component is produced by the current flowing through the plasma grid (PG) and related bus-bars. The PG current distribution and the uniformity of the resulting magnetic field have been optimized by detailed finite element (FEM) models. Hollow volumes in the thick copper part of the PG among beamlet groups allow a more uniform PG current distribution and a consequently uniform magnetic field in front of the grid. The paper describes in detail the PG geometry optimization procedure and the related magnetic and thermo-structural FEM analyses.

  19. Estimating the system price of redox flow batteries for grid storage

    Science.gov (United States)

    Ha, Seungbum; Gallagher, Kevin G.

    2015-11-01

    Low-cost energy storage systems are required to support extensive deployment of intermittent renewable energy on the electricity grid. Redox flow batteries have potential advantages to meet the stringent cost target for grid applications as compared to more traditional batteries based on an enclosed architecture. However, the manufacturing process and therefore potential high-volume production price of redox flow batteries is largely unquantified. We present a comprehensive assessment of a prospective production process for aqueous all vanadium flow battery and nonaqueous lithium polysulfide flow battery. The estimated investment and variable costs are translated to fixed expenses, profit, and warranty as a function of production volume. When compared to lithium-ion batteries, redox flow batteries are estimated to exhibit lower costs of manufacture, here calculated as the unit price less materials costs, owing to their simpler reactor (cell) design, lower required area, and thus simpler manufacturing process. Redox flow batteries are also projected to achieve the majority of manufacturing scale benefits at lower production volumes as compared to lithium-ion. However, this advantage is offset due to the dramatically lower present production volume of flow batteries compared to competitive technologies such as lithium-ion.

  20. Conceptual design of a calorimeter and residual ion dump for the ITER negative ion injectors

    International Nuclear Information System (INIS)

    Watson, M.

    1998-01-01

    A conceptual design for the ITER Negative Ion Injectors' Calorimeter and Residual Ion Dump systems has been carried out. The work was undertaken in support of detailed studies performed by the Russian Federation. Concepts for both systems incorporate actively water cooled hypervapotrons as the primary beam stopping elements. The Calorimeter drive has been based on the utilisation of a novel force translation system via magnetic coupling. The Residual Ion Dump necessitates the use of double sided hypervapotron elements in order to cater for the restricted space envelope defined by the Accelerator Grid hole pattern. (author)

  1. Effect of Ambipolar Potential on the Propulsive Performance of the GDM Plasma Thruster, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The gasdynamic mirror (GDM) plasma thruster has the ability to confine high-density plasma for the length of time required to heat it to the temperatures...

  2. High Input Voltage Discharge Supply for High Power Hall Thrusters Using Silicon Carbide Devices

    Science.gov (United States)

    Pinero, Luis R.; Scheidegger, Robert J.; Aulsio, Michael V.; Birchenough, Arthur G.

    2014-01-01

    A power processing unit for a 15 kW Hall thruster is under development at NASA Glenn Research Center. The unit produces up to 400 VDC with two parallel 7.5 kW discharge modules that operate from a 300 VDC nominal input voltage. Silicon carbide MOSFETs and diodes were used in this design because they were the best choice to handle the high voltage stress while delivering high efficiency and low specific mass. Efficiencies in excess of 97 percent were demonstrated during integration testing with the NASA-300M 20 kW Hall thruster. Electromagnet, cathode keeper, and heater supplies were also developed and will be integrated with the discharge supply into a vacuum-rated brassboard power processing unit with full flight functionality. This design could be evolved into a flight unit for future missions that requires high power electric propulsion.

  3. Experimental study of effect of magnetic field on anode temperature distribution in an ATON-type Hall thruster

    Science.gov (United States)

    Liu, Jinwen; Li, Hong; Mao, Wei; Ding, Yongjie; Wei, Liqiu; Li, Jianzhi; Yu, Daren; Wang, Xiaogang

    2018-05-01

    The energy deposition caused by the absorption of electrons by the anode is an important cause of power loss in a Hall thruster. The resulting anode heating is dangerous, as it can potentially reduce the thruster lifetime. In this study, by considering the ring shape of the anode of an ATON-type Hall thruster, the effects of the magnetic field strength and gradient on the anode ring temperature distribution are studied via experimental measurement. The results show that the temperature distribution is not affected by changes in the magnetic field strength and that the position of the peak temperature is essentially unchanged; however, the overall temperature does not change monotonically with the increase of the magnetic field strength and is positively correlated with the change in the discharge current. Moreover, as the magnetic field gradient increases, the position of the peak temperature gradually moves toward the channel exit and the temperature tends to decrease as a whole, regardless of the discharge current magnitude; in any case, the position of the peak temperature corresponds exactly to the intersection of the magnetic field cusp with the anode ring. Further theoretical analysis shows that the electrons, coming from the ionization region, travel along two characteristic paths to reach the anode under the guidance of the cusped magnetic field configuration. The change of the magnetic field strength or gradient changes the transfer of momentum and energy of the electrons in these two paths, which is the main reason for the changes in the temperature and distribution. This study is instructive for matching the design of the ring-shaped anode and the cusp magnetic field of an ATON-type Hall thruster.

  4. Analysis of the beam halo in negative ion sources by using 3D3V PIC code

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Nishioka, S.; Goto, I.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Hanada, M.; Kojima, A.; Hiratsuka, J. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka 319-0913 (Japan)

    2016-02-15

    The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result.

  5. Environmental Testing of the NEXT PM1 Ion Engine

    Science.gov (United States)

    Synder, John S.; Anderson, John R.; VanNoord, Jonathan L.; Soulas, George C.

    2008-01-01

    The NEXT propulsion system is an advanced ion propulsion system presently under development that is oriented towards robotic exploration of the solar system using solar electric power. The Prototype Model engine PM1 was subjected to qualification-level environmental testing to demonstrate compatibility with environments representative of anticipated mission requirements. Random vibration testing, conducted with the thruster mated to the breadboard gimbal, was executed at 10.0 Grms for 2 minutes in each of three axes. Thermal-vacuum testing included a deep cold soak of the engine to temperatures of -168 C and thermal cycling from -120 to 203 C. Although the testing was largely successful, several issues were identified including the fragmentation of potting cement on the discharge and neutralizer cathode heater terminations during vibration which led to abbreviated thermal testing, and generation of particulate contamination from manufacturing processes and engine materials. Thruster performance was nominal throughout the test program, with minor variations in some engine operating parameters likely caused by facility effects. In general, the NEXT PM1 engine and the breadboard gimbal were found to be well-designed against environmental requirements based on the results reported herein. After resolution of the findings from this test program the hardware environmental qualification program can proceed with confidence.

  6. GridCom, Grid Commander: graphical interface for Grid jobs and data management; GridCom, Grid Commander: graficheskij interfejs dlya raboty s zadachami i dannymi v gride

    Energy Technology Data Exchange (ETDEWEB)

    Galaktionov, V V

    2011-07-01

    GridCom - the software package for maintenance of automation of access to means of distributed system Grid (jobs and data). The client part, executed in the form of Java-applets, realises the Web-interface access to Grid through standard browsers. The executive part Lexor (LCG Executor) is started by the user in UI (User Interface) machine providing performance of Grid operations

  7. Development of Long-Lifetime Pulsed Gas Valves for Pulsed Electric Thrusters

    Science.gov (United States)

    Burkhardt, Wendel M.; Crapuchettes, John M.; Addona, Brad M.; Polzin, Kurt A.

    2015-01-01

    It is advantageous for gas-fed pulsed electric thrusters to employ pulsed valves so propellant is only flowing to the device during operation. The propellant utilization of the thruster will be maximized when all the gas injected into the thruster is acted upon by the fields produced by the electrical pulse. Gas that is injected too early will diffuse away from the thruster before the electrical pulse can act to accelerate the propellant. Gas that is injected too late will miss being accelerated by the already-completed electrical pulse. As a consequence, the valve must open quickly and close equally quickly, only remaining open for a short duration. In addition, the valve must have only a small amount of volume between the sealing body and the thruster so the front and back ends of the pulse are as coincident as possible with the valve cycling, with very little latent propellant remaining in the feed lines after the valve is closed. For a real mission of interest, a pulsed thruster can be expected to pulse at least 10(exp 10) - 10(exp 11) times, setting the range for the number of times a valve must open and close. The valves described in this paper have been fabricated and tested for operation in an inductive pulsed plasma thruster (IPPT) for in-space propulsion. In general, an IPPT is an electrodeless space propulsion device where a capacitor is charged to an initial voltage and then discharged, producing a high-current pulse through a coil. The field produced by this pulse ionizes propellant, inductively driving current in a plasma located near the face of the coil. Once the plasma is formed, it can be accelerated and expelled at a high exhaust velocity by the electromagnetic Lorentz body force arising from the interaction of the induced plasma current and the magnetic field produced by the current in the coil. The valve characteristics needed for the IPPT application require a fast-acting valve capable of a minimum of 10(exp 10) valve actuation cycles. Since

  8. Progress in Grid Generation: From Chimera to DRAGON Grids

    Science.gov (United States)

    Liou, Meng-Sing; Kao, Kai-Hsiung

    1994-01-01

    Hybrid grids, composed of structured and unstructured grids, combines the best features of both. The chimera method is a major stepstone toward a hybrid grid from which the present approach is evolved. The chimera grid composes a set of overlapped structured grids which are independently generated and body-fitted, yielding a high quality grid readily accessible for efficient solution schemes. The chimera method has been shown to be efficient to generate a grid about complex geometries and has been demonstrated to deliver accurate aerodynamic prediction of complex flows. While its geometrical flexibility is attractive, interpolation of data in the overlapped regions - which in today's practice in 3D is done in a nonconservative fashion, is not. In the present paper we propose a hybrid grid scheme that maximizes the advantages of the chimera scheme and adapts the strengths of the unstructured grid while at the same time keeps its weaknesses minimal. Like the chimera method, we first divide up the physical domain by a set of structured body-fitted grids which are separately generated and overlaid throughout a complex configuration. To eliminate any pure data manipulation which does not necessarily follow governing equations, we use non-structured grids only to directly replace the region of the arbitrarily overlapped grids. This new adaptation to the chimera thinking is coined the DRAGON grid. The nonstructured grid region sandwiched between the structured grids is limited in size, resulting in only a small increase in memory and computational effort. The DRAGON method has three important advantages: (1) preserving strengths of the chimera grid; (2) eliminating difficulties sometimes encountered in the chimera scheme, such as the orphan points and bad quality of interpolation stencils; and (3) making grid communication in a fully conservative and consistent manner insofar as the governing equations are concerned. To demonstrate its use, the governing equations are

  9. Large-acceptance-angle gridded analyzers in an axial magnetic field

    International Nuclear Information System (INIS)

    Molvik, A.W.

    1981-01-01

    Electrostatic retarding-potential gridded analyzers have been used to measure the current and the axial energy distributions of ions escaping along magnetic field lines in the 2XIIB magnetic mirror fusion experiment at Lawerence Livermore National Laboratory (LLNL). Three analyzers are discussed: a large scanning analyzer with a movable entrance aperture that can measure ion or electron losses from a different segment of the plasma diameter on each shot, a smaller analyzer that mounts in 5-cm-diam ports, and a multicollector analyzer that can continuously measure losses from the entire plasma diameter

  10. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    Science.gov (United States)

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  11. The effect of magnetic mirror on near wall conductivity in Hall thrusters

    International Nuclear Information System (INIS)

    Yu, D.; Liu, H.; Fu, H.; Cao, Y.

    2008-01-01

    The effect of magnetic mirror on near wall conductivity is studied in the acceleration region of Hall thrusters. The electron dynamics process in the plasma is described by test particle method, in which electrons are randomly emitted from the centerline towards the inner wall of the channel. It is found that the effective collision coefficient, i.e. the rate of electrons colliding with the wall, changes dramatically with the magnetic mirror effect being considered; and that it decreases further with the increase of magnetic mirror ratio to enhance the electron mobility accordingly. In particular, under anistropic electron velocity distribution conditions, the magnetic mirror effect becomes even more prominent. Furthermore, due to decrease in magnetic mirror ratio from the exhaust plane to the anode in Hall thrusters, the axial gradient of electron mobility with magnetic mirror effect is greater than without it. The magnetic mirror effects on electron mobility are derived analytically and the results are found in agreement with the simulation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. MICROARRAY IMAGE GRIDDING USING GRID LINE REFINEMENT TECHNIQUE

    Directory of Open Access Journals (Sweden)

    V.G. Biju

    2015-05-01

    Full Text Available An important stage in microarray image analysis is gridding. Microarray image gridding is done to locate sub arrays in a microarray image and find co-ordinates of spots within each sub array. For accurate identification of spots, most of the proposed gridding methods require human intervention. In this paper a fully automatic gridding method which enhances spot intensity in the preprocessing step as per a histogram based threshold method is used. The gridding step finds co-ordinates of spots from horizontal and vertical profile of the image. To correct errors due to the grid line placement, a grid line refinement technique is proposed. The algorithm is applied on different image databases and results are compared based on spot detection accuracy and time. An average spot detection accuracy of 95.06% depicts the proposed method’s flexibility and accuracy in finding the spot co-ordinates for different database images.

  13. Grid3: An Application Grid Laboratory for Science

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    level services required by the participating experiments. The deployed infrastructure has been operating since November 2003 with 27 sites, a peak of 2800 processors, work loads from 10 different applications exceeding 1300 simultaneous jobs, and data transfers among sites of greater than 2 TB/day. The Grid3 infrastructure was deployed from grid level services provided by groups and applications within the collaboration. The services were organized into four distinct "grid level services" including: Grid3 Packaging, Monitoring and Information systems, User Authentication and the iGOC Grid Operatio...

  14. Analysis of state-of-the-art single-thruster attitude control techniques for spinning penetrator

    Science.gov (United States)

    Raus, Robin; Gao, Yang; Wu, Yunhua; Watt, Mark

    2012-07-01

    The attitude dynamics and manoeuvre survey in this paper is performed for a mission scenario involving a penetrator-type spacecraft: an axisymmetric prolate spacecraft spinning around its minor axis of inertia performing a 90° spin axis reorientation manoeuvre. In contrast to most existing spacecraft only one attitude control thruster is available, providing a control torque perpendicular to the spin axis. Having only one attitude thruster on a spinning spacecraft could be preferred for spacecraft simplicity (lower mass, lower power consumption etc.), or it could be imposed in the context of redundancy/contingency operations. This constraint does yield restrictions on the thruster timings, depending on the ratio of minor to major moments of inertia among other parameters. The Japanese Lunar-A penetrator spacecraft proposal is a good example of such a single-thruster spin-stabilised prolate spacecraft. The attitude dynamics of a spinning rigid body are first investigated analytically, then expanded for the specific case of a prolate and axisymmetric rigid body and finally a cursory exploration of non-rigid body dynamics is made. Next two well-known techniques for manoeuvring a spin-stabilised spacecraft, the Half-cone/Multiple Half-cone and the Rhumb line slew, are compared with two new techniques, the Sector-Arc Slew developed by Astrium Satellites and the Dual-cone developed at Surrey Space Centre. Each technique is introduced and characterised by means of simulation results and illustrations based on the penetrator mission scenario and a brief robustness analysis is performed against errors in moments of inertia and spin rate. Also, the relative benefits of each slew algorithm are discussed in terms of slew accuracy, energy (propellant) efficiency and time efficiency. For example, a sequence of half-cone manoeuvres (a Multi-half-cone manoeuvre) tends to be more energy-efficient than one half-cone for the same final slew angle, but more time-consuming. As another

  15. Grid-connected to/from off-grid transference for micro-grid inverters

    OpenAIRE

    Heredero Peris, Daniel; Chillón Antón, Cristian; Pages Gimenez, Marc; Gross, Gabriel Igor; Montesinos Miracle, Daniel

    2013-01-01

    This paper compares two methods for controlling the on-line transference from connected to stand-alone mode and vice versa in converters for micro-grids. The first proposes a method where the converter changes from CSI (Current Source Inverter) in grid-connected mode to VSI (Voltage Source Inverter) in off-grid. In the second method, the inverter always works as a non-ideal voltage source, acting as VSI, using AC droop control strategy.

  16. Experimental study of high current negative ion sources D- / H-. Analysis based on the simulation of the negative ion transport in the plasma source

    International Nuclear Information System (INIS)

    Riz, D.

    1996-01-01

    In the frame of the development of a neutral beam injection system able to work the ITER tokamak (International Thermonuclear Experimental Reactor), two negative ion sources, Dragon and Kamaboko, have been installed on the MANTIS test bed in Cadarache, and studies in order to extract 20 mA/cm 2 of D - . The two production modes of negative ions have been investigated: volume production; surface production after cesium injection in the discharge. Experiments have shown that cesium seeding is necessary in order to reach the requested performances for ITER. 20 mA/cm 2 have been extracted from the Kamaboko source for an arc power density of 2.5 kW/liter. Simultaneously, a code called NIETZSCHE has been developed to simulate the negative ions transport in the source plasma, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collisions H - /H + and of charge exchange H - /H 0 are handled at each time step by a Monte Carlo procedure. The code allows to obtain the extraction probability of a negative ion produced at a given location. The calculations performed with NIETZSCHE have allowed to explain several phenomena observed on negative ion sources, such as the isotopic effect H - /D - and the influence of the polarisation of the plasma grid and of the magnetic filter on the negative ions current. The code has also shown that, in the type of sources contemplated for ITER, working with large arc power densities (> 1 kW/liter), only negative ions produced in volume at a distance lower that 2 cm from the plasma grid and those produced at the grid surface have a chance of being extracted. (author)

  17. The GridSite Web/Grid security system

    International Nuclear Information System (INIS)

    McNab, Andrew; Li Yibiao

    2010-01-01

    We present an overview of the current status of the GridSite toolkit, describing the security model for interactive and programmatic uses introduced in the last year. We discuss our experiences of implementing these internal changes and how they and previous rounds of improvements have been prompted by requirements from users and wider security trends in Grids (such as CSRF). Finally, we explain how these have improved the user experience of GridSite-based websites, and wider implications for portals and similar web/grid sites.

  18. Current Grid operation and future role of the Grid

    Science.gov (United States)

    Smirnova, O.

    2012-12-01

    Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place

  19. Current Grid operation and future role of the Grid

    International Nuclear Information System (INIS)

    Smirnova, O

    2012-01-01

    Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place

  20. A Tool Measuring Remaining Thickness of Notched Acoustic Cavities in Primary Reaction Control Thruster NDI Standards

    Science.gov (United States)

    Sun, Yushi; Sun, Changhong; Zhu, Harry; Wincheski, Buzz

    2006-01-01

    Stress corrosion cracking in the relief radius area of a space shuttle primary reaction control thruster is an issue of concern. The current approach for monitoring of potential crack growth is nondestructive inspection (NDI) of remaining thickness (RT) to the acoustic cavities using an eddy current or remote field eddy current probe. EDM manufacturers have difficulty in providing accurate RT calibration standards. Significant error in the RT values of NDI calibration standards could lead to a mistaken judgment of cracking condition of a thruster under inspection. A tool based on eddy current principle has been developed to measure the RT at each acoustic cavity of a calibration standard in order to validate that the standard meets the sample design criteria.

  1. Development of the long pulse negative ion source for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Hemsworth, R.S.; Svensson, L.; Esch, H.P.L. de; Krylov, A.; Massmann, P. [Association EURATOM-CEA, CEA/DSM/DRFC, CEA-Cadarache, 13 - St Paul-lez-Durance (France); Boilson, D. [Association EURATOM -DCU, PRL/NCPST, Glasnevin, Dublin (Ireland); Fanz, U. [Association EURATOM-IPP, Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Zaniol, B. [CONSORZIO RFX Association EURATOM-ENEA, Padova (Italy)

    2005-07-01

    A model of the ion source designed for the neutral beam injectors of the International Thermonuclear Experimental Reactor (ITER), the KAMABOKO III ion source, is being tested on the MANTIS test stand at the DRFC Cadarache in collaboration with JAERI, Japan, who designed and supplied the ion source. The ion source is attached to a 3 grid 30 keV accelerator (also supplied by JAERI) and the accelerated negative ion current is determined from the energy deposited on a calorimeter located 1.6 m from the source. During experiments on MANTIS three adverse effects of long pulse operation were found. First the negative ion current to the calorimeter is {approx} 50% of that obtained from short pulse operation. Secondly increasing the plasma grid (PG) temperature results in {<=} 40% enhancement in negative ion yield, substantially below that reported for short pulse operation, {>=} 100%. And thirdly the caesium 'consumption' is up to 1500 times that expected. Results presented here indicate that each of these is, at least partially, explained by thermal effects. Additionally presented are the results of a detailed characterisation of the source, which enable the most efficient mode of operation to be identified. (authors)

  2. Test Results of a 200 W Class Hall Thruster

    Science.gov (United States)

    Jacobson, David; Jankovsky, Robert S.

    1999-01-01

    The performance of a 200 W class Hall thruster was evaluated. Performance measurements were taken at power levels between 90 W and 250 W. At the nominal 200 W design point, the measured thrust was 11.3 mN. and the specific impulse was 1170 s excluding cathode flow in the calculation. A laboratory model 3 mm diameter hollow cathode was used for all testing. The engine was operated on laboratory power supplies in addition to a breadboard power processing unit fabricated from commercially available DC to DC converters.

  3. Experimental study of high current negative ion sources D{sup -} / H{sup -}. Analysis based on the simulation of the negative ion transport in the plasma source; Etude experimentale de sources a fort courant d`ions negatifs D{sup -} / H{sup -}. Analyse fondee sur la simulation du transport des ions dans le plasma de la source

    Energy Technology Data Exchange (ETDEWEB)

    Riz, D.

    1996-10-30

    In the frame of the development of a neutral beam injection system able to work the ITER tokamak (International Thermonuclear Experimental Reactor), two negative ion sources, Dragon and Kamaboko, have been installed on the MANTIS test bed in Cadarache, and studies in order to extract 20 mA/cm{sup 2} of D{sup -}. The two production modes of negative ions have been investigated: volume production; surface production after cesium injection in the discharge. Experiments have shown that cesium seeding is necessary in order to reach the requested performances for ITER. 20 mA/cm{sup 2} have been extracted from the Kamaboko source for an arc power density of 2.5 kW/liter. Simultaneously, a code called NIETZSCHE has been developed to simulate the negative ions transport in the source plasma, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collisions H{sup -}/H{sup +} and of charge exchange H{sup -}/H{sup 0} are handled at each time step by a Monte Carlo procedure. The code allows to obtain the extraction probability of a negative ion produced at a given location. The calculations performed with NIETZSCHE have allowed to explain several phenomena observed on negative ion sources, such as the isotopic effect H{sup -}/D{sup -} and the influence of the polarisation of the plasma grid and of the magnetic filter on the negative ions current. The code has also shown that, in the type of sources contemplated for ITER, working with large arc power densities (> 1 kW/liter), only negative ions produced in volume at a distance lower that 2 cm from the plasma grid and those produced at the grid surface have a chance of being extracted. (author). 122 refs.

  4. OGC and Grid Interoperability in enviroGRIDS Project

    Science.gov (United States)

    Gorgan, Dorian; Rodila, Denisa; Bacu, Victor; Giuliani, Gregory; Ray, Nicolas

    2010-05-01

    EnviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is a 4-years FP7 Project aiming to address the subjects of ecologically unsustainable development and inadequate resource management. The project develops a Spatial Data Infrastructure of the Black Sea Catchment region. The geospatial technologies offer very specialized functionality for Earth Science oriented applications as well as the Grid oriented technology that is able to support distributed and parallel processing. One challenge of the enviroGRIDS project is the interoperability between geospatial and Grid infrastructures by providing the basic and the extended features of the both technologies. The geospatial interoperability technology has been promoted as a way of dealing with large volumes of geospatial data in distributed environments through the development of interoperable Web service specifications proposed by the Open Geospatial Consortium (OGC), with applications spread across multiple fields but especially in Earth observation research. Due to the huge volumes of data available in the geospatial domain and the additional introduced issues (data management, secure data transfer, data distribution and data computation), the need for an infrastructure capable to manage all those problems becomes an important aspect. The Grid promotes and facilitates the secure interoperations of geospatial heterogeneous distributed data within a distributed environment, the creation and management of large distributed computational jobs and assures a security level for communication and transfer of messages based on certificates. This presentation analysis and discusses the most significant use cases for enabling the OGC Web services interoperability with the Grid environment and focuses on the description and implementation of the most promising one. In these use cases we give a special attention to issues such as: the relations between computational grid and

  5. Attitude Motion of Cylindrical Space Debris during Its Removal by Ion Beam

    Directory of Open Access Journals (Sweden)

    Vladimir S. Aslanov

    2017-01-01

    Full Text Available The paper is devoted to the problem of space debris mitigation. Contactless method of the space debris deorbiting is considered. It is assumed that ion thrusters on the active spacecraft create the ion flow, which blows the debris and slows it down. The objectives of this work are the development of mathematical models and the research of space debris motion under the action of the ion flow. It is supposed that the space debris is a rigid body of a cylindrical shape. Calculation of ion beam force and torque was performed for a self-similar model of plasma plume expansion using the hypothesis of ion fully diffused reflection from a surface. A mathematical model describing plane motions of the cylindrical space debris under the influence of gravity gradient torque and the ion flux was constructed. It was shown that motion of the space debris around its center of mass has a significant effect on its removal time. Phase portraits, describing the motion of the space debris relative to its center of mass, were constructed. Comparison of the descent times in different motion modes was carried out. The results can be used to create new effective systems of large space debris removal.

  6. CASTOR: Cathode/Anode Satellite Thruster for Orbital Repositioning

    Science.gov (United States)

    Mruphy, Gloria A.

    2010-01-01

    The purpose of CASTOR (Cathode/Anode Satellite Thruster for Orbital Repositioning) satellite is to demonstrate in Low Earth Orbit (LEO) a nanosatellite that uses a Divergent Cusped Field Thruster (DCFT) to perform orbital maneuvers representative of an orbital transfer vehicle. Powered by semi-deployable solar arrays generating 165W of power, CASTOR will achieve nearly 1 km/s of velocity increment over one year. As a technology demonstration mission, success of CASTOR in LEO will pave the way for a low cost, high delta-V orbital transfer capability for small military and civilian payloads in support of Air Force and NASA missions. The educational objective is to engage graduate and undergraduate students in critical roles in the design, development, test, carrier integration and on-orbit operations of CASTOR as a supplement to their curricular activities. This program is laying the foundation for a long-term satellite construction program at MIT. The satellite is being designed as a part of AFRL's University Nanosatellite Program, which provides the funding and a framework in which student satellite teams compete for a launch to orbit. To this end, the satellite must fit within an envelope of 50cmx50cmx60cm, have a mass of less than 50kg, and meet stringent structural and other requirements. In this framework, the CASTOR team successfully completed PDR in August 2009 and CDR in April 2010 and will compete at FCR (Flight Competition Review) in January 2011. The complexity of the project requires implementation of many systems engineering techniques which allow for development of CASTOR from conception through FCR and encompass the full design, fabrication, and testing process.

  7. Beam optics study of a negative ion source for neutral beam injection application at ASIPP

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jiang-Long; Liang, Li-Zhen [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Jiang, Cai-Chao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China); Xie, Ya-Hong, E-mail: xieyh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Chun-Dong; Li, Jun; Gu, Yu-Ming; Chen, Yu-Qian [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Jing-Yong; Wu, Ming-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China)

    2017-04-15

    In order to study the generation and extraction of negative ions for neutral beam injection application, a negative ion source is being designed and constructed at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). Through a four electrode grids system inside the accelerator, a negative ion beam will be extracted and accelerated up to −60 kV on a reduced scale extraction area of 12 × 50 cm{sup 2} (the area of PG apertures is 185 cm{sup 2}). The beam optics is a key issue for the accelerator design, and greatly determine the source experimental performance in term of beam current, heat load on the grid, beam divergence, and so on. In this paper, the trajectories of electrons and negative ions were simulated in the electrode grids of the negative ion source. The filter capability of electron deflection magnet on the co-extracted electrons is evaluated and confirmed. The negative ion beam optics was designed according to the calculated results of beam divergence and beam radius along the beamlet in different acceleration voltages. The deflection effect of the electron deflection magnet on the negative ion beam was investigated in the single beamlet case and multi-beamlets case.

  8. Effect of the Thruster Configurations on a Laser Ignition Microthruster

    Science.gov (United States)

    Koizumi, Hiroyuki; Hamasaki, Kyoichi; Kondo, Ryo; Okada, Keisuke; Nakano, Masakatsu; Arakawa, Yoshihiro

    Research and development of small spacecraft have advanced extensively throughout the world and propulsion devices suitable for the small spacecraft, microthruster, is eagerly anticipated. The authors proposed a microthruster using 1—10-mm-size solid propellant. Small pellets of solid propellant are installed in small combustion chambers and ignited by the irradiation of diode laser beam. This thruster is referred as to a laser ignition microthruster. Solid propellant enables large thrust capability and compact propulsion system. To date theories of a solid-propellant rocket have been well established. However, those theories are for a large-size solid propellant and there are a few theories and experiments for a micro-solid rocket of 1—10mm class. This causes the difficulty of the optimum design of a micro-solid rocket. In this study, we have experimentally investigated the effect of thruster configurations on a laser ignition microthruster. The examined parameters are aperture ratio of the nozzle, length of the combustion chamber, area of the nozzle throat, and divergence angle of the nozzle. Specific impulse dependences on those parameters were evaluated. It was found that large fraction of the uncombusted propellant was the main cause of the degrading performance. Decreasing the orifice diameter in the nozzle with a constant open aperture ratio was an effective method to improve this degradation.

  9. caGrid 1.0: a Grid enterprise architecture for cancer research.

    Science.gov (United States)

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2007-10-11

    caGrid is the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG) program. The current release, caGrid version 1.0, is developed as the production Grid software infrastructure of caBIG. Based on feedback from adopters of the previous version (caGrid 0.5), it has been significantly enhanced with new features and improvements to existing components. This paper presents an overview of caGrid 1.0, its main components, and enhancements over caGrid 0.5.

  10. Formation of ECR Plasma in a Dielectric Plasma Guide under Self-Excitation of a Standing Ion-Acoustic Wave

    Science.gov (United States)

    Balmashnov, A. A.; Kalashnikov, A. V.; Kalashnikov, V. V.; Stepina, S. P.; Umnov, A. M.

    2018-01-01

    The formation of a spatially localized plasma with a high brightness has been experimentally observed in a dielectric plasma guide under the electron cyclotron resonance discharge at the excitation of a standing ion-acoustic wave. The results obtained show the possibility of designing compact high-intensity radiation sources with a spectrum determined by the working gas or gas mixture type, high-intensity chemically active particle flow sources, and plasma thrusters for correcting orbits of light spacecraft.

  11. Analysis of breakdown on thermal and electrical measurements for SPIDER accelerating grids

    Energy Technology Data Exchange (ETDEWEB)

    Pesce, Alberto, E-mail: alberto.pesce@igi.cnr.it [Consorzio RFX - Associazione EURATOM-ENEA per la fusione, Corso Stati Uniti 4, 35127 Padova (Italy); Pomaro, Nicola [Consorzio RFX - Associazione EURATOM-ENEA per la fusione, Corso Stati Uniti 4, 35127 Padova (Italy)

    2011-10-15

    The PRIMA test facility, under realization in Padova, includes a full size plasma source prototype for ITER, called SPIDER (Source for the Production of Ions of Deuterium Extracted from Radio Frequency plasma). The effects of breakdown in the electrical insulation inside the ion source are analyzed with particular care to the embedded diagnostic system, i.e. the thermal and electrical measurements installed on the grids and ion source case and transferred by multipolar cables to the acquisition system, located inside the 100 kV insulated deck and hosting the ion source power supply, the signal conditioning and the acquisition cubicles. The breakdown affects strongly the measurements, so it has to be mitigated in order to guarantee adequate reliability of the whole measurement set. A parametric study has been carried out on a detailed circuital model for fast transients, implemented using SimPowerSystems{sup TM} tool of Matlab Simulink code. The model includes all the relevant conductors of the subsystems downstream the insulating transformer of the Accelerating Grids Power Supply (AGPS), i.e. the AGPS rectifier, the multipolar transmission line, the 100 kV High Voltage Deck, the ion source power supply and the ion source itself. In particular all the magnetic and capacitive couplings have been computed by a proper 2D fem model. The optimization of the cabling layout, of the wire screening and of the protection devices, like surge arresters and resistors, has been carried out through the accurate modeling of the circuit. The energy dissipated on each ion source surge arrester is estimated and adequate TSD (transient suppression devices) are selected. A peculiar and difficult to satisfy requirement is the high number of surges that the TSD has to withstand. Breakdowns between components polarized at different voltages have been considered, in order to inspect the worst condition during a breakdown.

  12. An experimental investigation of the internal magnetic field topography of an operating Hall thruster

    International Nuclear Information System (INIS)

    Peterson, Peter Y.; Gallimore, Alec D.; Haas, James M.

    2002-01-01

    Magnetic field measurements were made in the discharge channel of the 5 kW-class P5 laboratory-model Hall thruster to investigate what effect the Hall current has on the static, applied magnetic field topography. The P5 was operated at 1.6 and 3.0 kW with a discharge voltage of 300 V. A miniature inductive loop probe (B-Dot probe) was employed to measure the radial magnetic field profile inside the discharge channel of the P5 with and without the plasma discharge. These measurements are accomplished with minimal disturbance to thruster operation with the High-speed Axial Reciprocating Probe system. The results of the B-Dot probe measurements indicate a change in the magnetic field topography from that of the vacuum field measurements. The measured magnetic field profiles are then examined to determine the possible nature and source of the difference between the vacuum and plasma magnetic field profiles

  13. Confidence Testing of Shell 405 and S-405 Catalysts in a Monopropellant Hydrazine Thruster

    Science.gov (United States)

    McRight, Patrick; Popp, Chris; Pierce, Charles; Turpin, Alicia; Urbanchock, Walter; Wilson, Mike

    2005-01-01

    As part of the transfer of catalyst manufacturing technology from Shell Chemical Company (Shell 405 catalyst manufactured in Houston, Texas) to Aerojet (S-405 manufactured in Redmond, Washington), Aerojet demonstrated the equivalence of S-405 and Shell 405 at beginning of life. Some US aerospace users expressed a desire to conduct a preliminary confidence test to assess end-of-life characteristics for S-405. NASA Marshall Space Flight Center (MSFC) and Aerojet entered a contractual agreement in 2004 to conduct a confidence test using a pair of 0.2-lbf MR-103G monopropellant hydrazine thrusters, comparing S-405 and Shell 405 side by side. This paper summarizes the formulation of this test program, explains the test matrix, describes the progress of the test, and analyzes the test results. This paper also includes a discussion of the limitations of this test and the ramifications of the test results for assessing the need for future qualification testing in particular hydrazine thruster applications.

  14. Asymmetrical Capacitors for Propulsion and the ISR Asymmetrical Capacitator Thruster, Experimental Results and Improved Designs

    Science.gov (United States)

    Canning, Francis; Winet, Ed; Ice, Bob; Melcher, Cory; Pesavento, Phil; Holmes, Alan; Butler, Carey; Cole, John; Campbell, Jonathan

    2004-01-01

    The outline of this viewgraph presentation on asymmetrical capacitor thruster development includes: 1) Test apparatus; 2) Devices tested; 3) Circuits used; 4) Data collected (Time averaged, Time resolved); 5) Patterns observed; 6) Force calculation; 7) Electrostatic modeling; 8) Understand it all.

  15. Smart grids and e-mobility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    integration of electric vehicles and plug-in-vehicles in the power system (H. Seljeseth); (21) Implications of vehicle-to-grid strategies on lithium-ion batteries and grids (M. Hackmann); (22) A methodology for evaluating the hosting capacity margins for PEVs on distribution grids (I.M. Gianinoni); (23) Integration of fast EV charging systems into the distribution grid (M. Zamalloa); (24) The need for innovative functionalities for on-board electrical vehicle chargers (J.A. Pecas Lopes); (25) Towards a system for accessing real-time, cross-provider electric mobility charging station information (T. Lutz); (26) Concept evaluation of an inductive charging system for electric vehicles (H. Barth); (27) System integrated testing of EV batteries (O. Gehrke); (28) Requirements analysis for a smart charging infrastructure enabling maximum use of renewable energy (R. Ponnette); (29) The hybrid power supply system for Truong Sa Islands using solar and wind energy (T.Q. Vinh); (30) Intelligent local network management for the integration of distributed generation and storage systems (W. Heckmann); (31) Network of value creation networks for e-mobility - An analysis of the collaboration competitive advantage (R. Colmom); (32) Project netquality (R. Witzmann); (33) The interdependences between electric vehicles and offshore wind energy - An investigation for the North-Western Region of Germany (M. Buchmann); (34) Testing platform for e-mobility (TPE) (J. Prior); (35) Experiences from integrating DG in rural MV networks (M.K. Istad); (36) MUGIELEC: A comprehensive approach to EV recharge infrastructure (A. Arzuaga); (37) Model region electric mobility Munich - Drive eCharged (W. vom Eyser).

  16. Developments in broad-beam, ion-source technology and applications

    International Nuclear Information System (INIS)

    Kaufman, H.R.; Harper, J.M.E.; Cuomo, J.J.

    1982-01-01

    Recent advances in broad-beam, ion-source technology are summarized, including low-energy ion optics, improved extraction grid fabrication, a compact ion-source design and a gridless ion-source design. Recent applications have emphasized concepts such as stress modification of vapor deposited films, very low energy ion beams to minimize the physical sputtering portion in reactive etching, and the use of multiple sources and targets to sputter deposit alloys and compounds. A comprehensive critical review by the same authors appears concurrently, describing in detail the developments in broad-beam, ion-source technology 1 and the applications of these sources. 2

  17. Gridded Species Distribution, Version 1: Global Amphibians Presence Grids

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Amphibians Presence Grids of the Gridded Species Distribution, Version 1 is a reclassified version of the original grids of amphibian species distribution...

  18. A study of energy resolution in a gridded ionization chamber filled with tetramethylsilane and tetramethylgermanium

    International Nuclear Information System (INIS)

    Hara, H.; Ohnuma, H.; Hoshi, Y.; Yuta, H.; Abe, K.; Suekane, F.; Neichi, M.; Nakajima, T.; Masuda, K.

    1998-01-01

    The energy resolutions of 976 keV conversion electrons from a 207 Bi source are measured in a gridded ionization chamber filled with tetramethylsilane (TMS) and tetramethylgermanium (TMG), and are found to be about 5.7 and 5.5% (rms) for TMS and TMG, respectively. We also deduce a simple method of estimating the electron lifetime using a gridded ionization chamber. The electron lifetime, free ion yield and thermalization length for these liquids are measured by this simple method

  19. Chimera Grid Tools

    Science.gov (United States)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  20. Characteristics of a non-volatile liquid propellant in liquid-fed ablative pulsed plasma thrusters

    Science.gov (United States)

    Ling, William Yeong Liang; Schönherr, Tony; Koizumi, Hiroyuki

    2017-02-01

    In the past several decades, the use of electric propulsion in spacecraft has experienced tremendous growth. With the increasing adoption of small satellites in the kilogram range, suitable propulsion systems will be necessary in the near future. Pulsed plasma thrusters (PPTs) were the first form of electric propulsion to be deployed in orbit, and are highly suitable for small satellites due to their inherent simplicity. However, their lifetime is limited by disadvantages such as carbon deposition leading to thruster failure, and complicated feeding systems required due to the conventional use of solid propellants (usually polytetrafluoroethylene (PTFE)). A promising alternative to solid propellants has recently emerged in the form of non-volatile liquids that are stable in vacuum. This study presents a broad comparison of the non-volatile liquid perfluoropolyether (PFPE) and solid PTFE as propellants on a PPT with a common design base. We show that liquid PFPE can be successfully used as a propellant, and exhibits similar plasma discharge properties to conventional solid PTFE, but with a mass bit that is an order of magnitude higher for an identical ablation area. We also demonstrate that the liquid PFPE propellant has exceptional resistance to carbon deposition, completely negating one of the major causes of thruster failure, while solid PTFE exhibited considerable carbon build-up. Energy dispersive X-ray spectroscopy was used to examine the elemental compositions of the surface deposition on the electrodes and the ablation area of the propellant (or PFPE encapsulator). The results show that based on its physical characteristics and behavior, non-volatile liquid PFPE is an extremely promising propellant for use in PPTs, with an extensive scope available for future research and development.