WorldWideScience

Sample records for grid search algorithm

  1. Conditionally-uniform Feasible Grid Search Algorithm

    DEFF Research Database (Denmark)

    Dziubinski, Matt P.

    We present and evaluate a numerical optimization method (together with an algorithm for choosing the starting values) pertinent to the constrained optimization problem arising in the estimation of the GARCH models with inequality constraints, in particular the Simplied Component GARCH Model...... (SCGARCH), together with algorithms for the objective function and analytical gradient computation for SCGARCH....

  2. Multiobjective Variable Neighborhood Search algorithm for scheduling independent jobs on computational grid

    Directory of Open Access Journals (Sweden)

    S. Selvi

    2015-07-01

    Full Text Available Grid computing solves high performance and high-throughput computing problems through sharing resources ranging from personal computers to super computers distributed around the world. As the grid environments facilitate distributed computation, the scheduling of grid jobs has become an important issue. In this paper, an investigation on implementing Multiobjective Variable Neighborhood Search (MVNS algorithm for scheduling independent jobs on computational grid is carried out. The performance of the proposed algorithm has been evaluated with Min–Min algorithm, Simulated Annealing (SA and Greedy Randomized Adaptive Search Procedure (GRASP algorithm. Simulation results show that MVNS algorithm generally performs better than other metaheuristics methods.

  3. A Novel Quad Harmony Search Algorithm for Grid-Based Path Finding

    Directory of Open Access Journals (Sweden)

    Saso Koceski

    2014-09-01

    Full Text Available A novel approach to the problem of grid-based path finding has been introduced. The method is a block-based search algorithm, founded on the bases of two algorithms, namely the quad-tree algorithm, which offered a great opportunity for decreasing the time needed to compute the solution, and the harmony search (HS algorithm, a meta-heuristic algorithm used to obtain the optimal solution. This quad HS algorithm uses the quad-tree decomposition of free space in the grid to mark the free areas and treat them as a single node, which greatly improves the execution. The results of the quad HS algorithm have been compared to other meta-heuristic algorithms, i.e., ant colony, genetic algorithm, particle swarm optimization and simulated annealing, and it was proved to obtain the best results in terms of time and giving the optimal path.

  4. PMSVM: An Optimized Support Vector Machine Classification Algorithm Based on PCA and Multilevel Grid Search Methods

    Directory of Open Access Journals (Sweden)

    Yukai Yao

    2015-01-01

    Full Text Available We propose an optimized Support Vector Machine classifier, named PMSVM, in which System Normalization, PCA, and Multilevel Grid Search methods are comprehensively considered for data preprocessing and parameters optimization, respectively. The main goals of this study are to improve the classification efficiency and accuracy of SVM. Sensitivity, Specificity, Precision, and ROC curve, and so forth, are adopted to appraise the performances of PMSVM. Experimental results show that PMSVM has relatively better accuracy and remarkable higher efficiency compared with traditional SVM algorithms.

  5. Blackout risk prevention in a smart grid based flexible optimal strategy using Grey Wolf-pattern search algorithms

    International Nuclear Information System (INIS)

    Mahdad, Belkacem; Srairi, K.

    2015-01-01

    Highlights: • A generalized optimal security power system planning strategy for blackout risk prevention is proposed. • A Grey Wolf Optimizer dynamically coordinated with Pattern Search algorithm is proposed. • A useful optimized database dynamically generated considering margin loading stability under severe faults. • The robustness and feasibility of the proposed strategy is validated in the standard IEEE 30 Bus system. • The proposed planning strategy will be useful for power system protection coordination and control. - Abstract: Developing a flexible and reliable power system planning strategy under critical situations is of great importance to experts and industrials to minimize the probability of blackouts occurrence. This paper introduces the first stage of this practical strategy by the application of Grey Wolf Optimizer coordinated with pattern search algorithm for solving the security smart grid power system management under critical situations. The main objective of this proposed planning strategy is to prevent the practical power system against blackout due to the apparition of faults in generating units or important transmission lines. At the first stage the system is pushed to its margin stability limit, the critical loads shedding are selected using voltage stability index. In the second stage the generator control variables, the reactive power of shunt and dynamic compensators are adjusted in coordination with minimization the active and reactive power at critical loads to maintain the system at security state to ensure service continuity. The feasibility and efficiency of the proposed strategy is applied to IEEE 30-Bus test system. Results are promising and prove the practical efficiency of the proposed strategy to ensure system security under critical situations

  6. Composite Differential Search Algorithm

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2014-01-01

    Full Text Available Differential search algorithm (DS is a relatively new evolutionary algorithm inspired by the Brownian-like random-walk movement which is used by an organism to migrate. It has been verified to be more effective than ABC, JDE, JADE, SADE, EPSDE, GSA, PSO2011, and CMA-ES. In this paper, we propose four improved solution search algorithms, namely “DS/rand/1,” “DS/rand/2,” “DS/current to rand/1,” and “DS/current to rand/2” to search the new space and enhance the convergence rate for the global optimization problem. In order to verify the performance of different solution search methods, 23 benchmark functions are employed. Experimental results indicate that the proposed algorithm performs better than, or at least comparable to, the original algorithm when considering the quality of the solution obtained. However, these schemes cannot still achieve the best solution for all functions. In order to further enhance the convergence rate and the diversity of the algorithm, a composite differential search algorithm (CDS is proposed in this paper. This new algorithm combines three new proposed search schemes including “DS/rand/1,” “DS/rand/2,” and “DS/current to rand/1” with three control parameters using a random method to generate the offspring. Experiment results show that CDS has a faster convergence rate and better search ability based on the 23 benchmark functions.

  7. An overview of smart grid routing algorithms

    Science.gov (United States)

    Wang, Junsheng; OU, Qinghai; Shen, Haijuan

    2017-08-01

    This paper summarizes the typical routing algorithm in smart grid by analyzing the communication business and communication requirements of intelligent grid. Mainly from the two kinds of routing algorithm is analyzed, namely clustering routing algorithm and routing algorithm, analyzed the advantages and disadvantages of two kinds of typical routing algorithm in routing algorithm and applicability.

  8. Wavefront-ray grid FDTD algorithm

    OpenAIRE

    ÇİYDEM, MEHMET

    2016-01-01

    A finite difference time domain algorithm on a wavefront-ray grid (WRG-FDTD) is proposed in this study to reduce numerical dispersion of conventional FDTD methods. A FDTD algorithm conforming to a wavefront-ray grid can be useful to take into account anisotropy effects of numerical grids since it features directional energy flow along the rays. An explicit and second-order accurate WRG-FDTD algorithm is provided in generalized curvilinear coordinates for an inhomogeneous isotropic medium. Num...

  9. Comparison tomography relocation hypocenter grid search and guided grid search method in Java island

    International Nuclear Information System (INIS)

    Nurdian, S. W.; Adu, N.; Palupi, I. R.; Raharjo, W.

    2016-01-01

    The main data in this research is earthquake data recorded from 1952 to 2012 with 9162 P wave and 2426 events are recorded by 30 stations located around Java island. Relocation hypocenter processed using grid search and guidded grid search method. Then the result of relocation hypocenter become input for tomography pseudo bending inversion process. It can be used to identification the velocity distribution in subsurface. The result of relocation hypocenter by grid search and guided grid search method after tomography process shown in locally and globally. In locally area grid search method result is better than guided grid search according to geological reseach area. But in globally area the result of guided grid search method is better for a broad area because the velocity variation is more diverse than the other one and in accordance with local geological research conditions. (paper)

  10. ENHANCED HYBRID PSO – ACO ALGORITHM FOR GRID SCHEDULING

    Directory of Open Access Journals (Sweden)

    P. Mathiyalagan

    2010-07-01

    Full Text Available Grid computing is a high performance computing environment to solve larger scale computational demands. Grid computing contains resource management, task scheduling, security problems, information management and so on. Task scheduling is a fundamental issue in achieving high performance in grid computing systems. A computational GRID is typically heterogeneous in the sense that it combines clusters of varying sizes, and different clusters typically contains processing elements with different level of performance. In this, heuristic approaches based on particle swarm optimization and ant colony optimization algorithms are adopted for solving task scheduling problems in grid environment. Particle Swarm Optimization (PSO is one of the latest evolutionary optimization techniques by nature. It has the better ability of global searching and has been successfully applied to many areas such as, neural network training etc. Due to the linear decreasing of inertia weight in PSO the convergence rate becomes faster, which leads to the minimal makespan time when used for scheduling. To make the convergence rate faster, the PSO algorithm is improved by modifying the inertia parameter, such that it produces better performance and gives an optimized result. The ACO algorithm is improved by modifying the pheromone updating rule. ACO algorithm is hybridized with PSO algorithm for efficient result and better convergence in PSO algorithm.

  11. Optimal Fungal Space Searching Algorithms.

    Science.gov (United States)

    Asenova, Elitsa; Lin, Hsin-Yu; Fu, Eileen; Nicolau, Dan V; Nicolau, Dan V

    2016-10-01

    Previous experiments have shown that fungi use an efficient natural algorithm for searching the space available for their growth in micro-confined networks, e.g., mazes. This natural "master" algorithm, which comprises two "slave" sub-algorithms, i.e., collision-induced branching and directional memory, has been shown to be more efficient than alternatives, with one, or the other, or both sub-algorithms turned off. In contrast, the present contribution compares the performance of the fungal natural algorithm against several standard artificial homologues. It was found that the space-searching fungal algorithm consistently outperforms uninformed algorithms, such as Depth-First-Search (DFS). Furthermore, while the natural algorithm is inferior to informed ones, such as A*, this under-performance does not importantly increase with the increase of the size of the maze. These findings suggest that a systematic effort of harvesting the natural space searching algorithms used by microorganisms is warranted and possibly overdue. These natural algorithms, if efficient, can be reverse-engineered for graph and tree search strategies.

  12. Optimizing Event Selection with the Random Grid Search

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Pushpalatha C. [Fermilab; Prosper, Harrison B. [Florida State U.; Sekmen, Sezen [Kyungpook Natl. U.; Stewart, Chip [Broad Inst., Cambridge

    2017-06-29

    The random grid search (RGS) is a simple, but efficient, stochastic algorithm to find optimal cuts that was developed in the context of the search for the top quark at Fermilab in the mid-1990s. The algorithm, and associated code, have been enhanced recently with the introduction of two new cut types, one of which has been successfully used in searches for supersymmetry at the Large Hadron Collider. The RGS optimization algorithm is described along with the recent developments, which are illustrated with two examples from particle physics. One explores the optimization of the selection of vector boson fusion events in the four-lepton decay mode of the Higgs boson and the other optimizes SUSY searches using boosted objects and the razor variables.

  13. Quantum walks and search algorithms

    CERN Document Server

    Portugal, Renato

    2013-01-01

    This book addresses an interesting area of quantum computation called quantum walks, which play an important role in building quantum algorithms, in particular search algorithms. Quantum walks are the quantum analogue of classical random walks. It is known that quantum computers have great power for searching unsorted databases. This power extends to many kinds of searches, particularly to the problem of finding a specific location in a spatial layout, which can be modeled by a graph. The goal is to find a specific node knowing that the particle uses the edges to jump from one node to the next. This book is self-contained with main topics that include: Grover's algorithm, describing its geometrical interpretation and evolution by means of the spectral decomposition of the evolution operater Analytical solutions of quantum walks on important graphs like line, cycles, two-dimensional lattices, and hypercubes using Fourier transforms Quantum walks on generic graphs, describing methods to calculate the limiting d...

  14. A review on quantum search algorithms

    Science.gov (United States)

    Giri, Pulak Ranjan; Korepin, Vladimir E.

    2017-12-01

    The use of superposition of states in quantum computation, known as quantum parallelism, has significant advantage in terms of speed over the classical computation. It is evident from the early invented quantum algorithms such as Deutsch's algorithm, Deutsch-Jozsa algorithm and its variation as Bernstein-Vazirani algorithm, Simon algorithm, Shor's algorithms, etc. Quantum parallelism also significantly speeds up the database search algorithm, which is important in computer science because it comes as a subroutine in many important algorithms. Quantum database search of Grover achieves the task of finding the target element in an unsorted database in a time quadratically faster than the classical computer. We review Grover's quantum search algorithms for a singe and multiple target elements in a database. The partial search algorithm of Grover and Radhakrishnan and its optimization by Korepin called GRK algorithm are also discussed.

  15. Search Parameter Optimization for Discrete, Bayesian, and Continuous Search Algorithms

    Science.gov (United States)

    2017-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SEARCH PARAMETER OPTIMIZATION FOR DISCRETE , BAYESIAN, AND CONTINUOUS SEARCH ALGORITHMS by...to 09-22-2017 4. TITLE AND SUBTITLE SEARCH PARAMETER OPTIMIZATION FOR DISCRETE , BAYESIAN, AND CON- TINUOUS SEARCH ALGORITHMS 5. FUNDING NUMBERS 6...simple search and rescue acts to prosecuting aerial/surface/submersible targets on mission. This research looks at varying the known discrete and

  16. High performance GPU processing for inversion using uniform grid searches

    Science.gov (United States)

    Venetis, Ioannis E.; Saltogianni, Vasso; Stiros, Stathis; Gallopoulos, Efstratios

    2017-04-01

    Many geophysical problems are described by systems of redundant, highly non-linear systems of ordinary equations with constant terms deriving from measurements and hence representing stochastic variables. Solution (inversion) of such problems is based on numerical, optimization methods, based on Monte Carlo sampling or on exhaustive searches in cases of two or even three "free" unknown variables. Recently the TOPological INVersion (TOPINV) algorithm, a grid search-based technique in the Rn space, has been proposed. TOPINV is not based on the minimization of a certain cost function and involves only forward computations, hence avoiding computational errors. The basic concept is to transform observation equations into inequalities on the basis of an optimization parameter k and of their standard errors, and through repeated "scans" of n-dimensional search grids for decreasing values of k to identify the optimal clusters of gridpoints which satisfy observation inequalities and by definition contain the "true" solution. Stochastic optimal solutions and their variance-covariance matrices are then computed as first and second statistical moments. Such exhaustive uniform searches produce an excessive computational load and are extremely time consuming for common computers based on a CPU. An alternative is to use a computing platform based on a GPU, which nowadays is affordable to the research community, which provides a much higher computing performance. Using the CUDA programming language to implement TOPINV allows the investigation of the attained speedup in execution time on such a high performance platform. Based on synthetic data we compared the execution time required for two typical geophysical problems, modeling magma sources and seismic faults, described with up to 18 unknown variables, on both CPU/FORTRAN and GPU/CUDA platforms. The same problems for several different sizes of search grids (up to 1012 gridpoints) and numbers of unknown variables were solved on

  17. Performance Analyses of IDEAL Algorithm on Highly Skewed Grid System

    Directory of Open Access Journals (Sweden)

    Dongliang Sun

    2014-03-01

    Full Text Available IDEAL is an efficient segregated algorithm for the fluid flow and heat transfer problems. This algorithm has now been extended to the 3D nonorthogonal curvilinear coordinates. Highly skewed grids in the nonorthogonal curvilinear coordinates can decrease the convergence rate and deteriorate the calculating stability. In this study, the feasibility of the IDEAL algorithm on highly skewed grid system is analyzed by investigating the lid-driven flow in the inclined cavity. It can be concluded that the IDEAL algorithm is more robust and more efficient than the traditional SIMPLER algorithm, especially for the highly skewed and fine grid system. For example, at θ = 5° and grid number = 70 × 70 × 70, the convergence rate of the IDEAL algorithm is 6.3 times faster than that of the SIMPLER algorithm, and the IDEAL algorithm can converge almost at any time step multiple.

  18. Hybridizing Evolutionary Algorithms with Opportunistic Local Search

    DEFF Research Database (Denmark)

    Gießen, Christian

    2013-01-01

    There is empirical evidence that memetic algorithms (MAs) can outperform plain evolutionary algorithms (EAs). Recently the first runtime analyses have been presented proving the aforementioned conjecture rigorously by investigating Variable-Depth Search, VDS for short (Sudholt, 2008). Sudholt...

  19. High Performance Parallel Multigrid Algorithms for Unstructured Grids

    Science.gov (United States)

    Frederickson, Paul O.

    1996-01-01

    We describe a high performance parallel multigrid algorithm for a rather general class of unstructured grid problems in two and three dimensions. The algorithm PUMG, for parallel unstructured multigrid, is related in structure to the parallel multigrid algorithm PSMG introduced by McBryan and Frederickson, for they both obtain a higher convergence rate through the use of multiple coarse grids. Another reason for the high convergence rate of PUMG is its smoother, an approximate inverse developed by Baumgardner and Frederickson.

  20. Adiabatic quantum search algorithm for structured problems

    International Nuclear Information System (INIS)

    Roland, Jeremie; Cerf, Nicolas J.

    2003-01-01

    The study of quantum computation has been motivated by the hope of finding efficient quantum algorithms for solving classically hard problems. In this context, quantum algorithms by local adiabatic evolution have been shown to solve an unstructured search problem with a quadratic speedup over a classical search, just as Grover's algorithm. In this paper, we study how the structure of the search problem may be exploited to further improve the efficiency of these quantum adiabatic algorithms. We show that by nesting a partial search over a reduced set of variables into a global search, it is possible to devise quantum adiabatic algorithms with a complexity that, although still exponential, grows with a reduced order in the problem size

  1. Searching Algorithms Implemented on Probabilistic Systolic Arrays

    Czech Academy of Sciences Publication Activity Database

    Kramosil, Ivan

    1996-01-01

    Roč. 25, č. 1 (1996), s. 7-45 ISSN 0308-1079 R&D Projects: GA ČR GA201/93/0781 Keywords : searching algorithms * probabilistic algorithms * systolic arrays * parallel algorithms Impact factor: 0.214, year: 1996

  2. GLOA: A New Job Scheduling Algorithm for Grid Computing

    Directory of Open Access Journals (Sweden)

    Zahra Pooranian

    2013-03-01

    Full Text Available The purpose of grid computing is to produce a virtual supercomputer by using free resources available through widespread networks such as the Internet. This resource distribution, changes in resource availability, and an unreliable communication infrastructure pose a major challenge for efficient resource allocation. Because of the geographical spread of resources and their distributed management, grid scheduling is considered to be a NP-complete problem. It has been shown that evolutionary algorithms offer good performance for grid scheduling. This article uses a new evaluation (distributed algorithm inspired by the effect of leaders in social groups, the group leaders' optimization algorithm (GLOA, to solve the problem of scheduling independent tasks in a grid computing system. Simulation results comparing GLOA with several other evaluation algorithms show that GLOA produces shorter makespans.

  3. Developing a Grid-based search and categorization tool

    CERN Document Server

    Haya, Glenn; Vigen, Jens

    2003-01-01

    Grid technology has the potential to improve the accessibility of digital libraries. The participants in Project GRACE (Grid Search And Categorization Engine) are in the process of developing a search engine that will allow users to search through heterogeneous resources stored in geographically distributed digital collections. What differentiates this project from current search tools is that GRACE will be run on the European Data Grid, a large distributed network, and will not have a single centralized index as current web search engines do. In some cases, the distributed approach offers advantages over the centralized approach since it is more scalable, can be used on otherwise inaccessible material, and can provide advanced search options customized for each data source.

  4. Optimal Grid Scheduling Using Improved Artificial Bee Colony Algorithm

    OpenAIRE

    T. Vigneswari; M. A. Maluk Mohamed

    2015-01-01

    Job Scheduling plays an important role for efficient utilization of grid resources available across different domains and geographical zones. Scheduling of jobs is challenging and NPcomplete. Evolutionary / Swarm Intelligence algorithms have been extensively used to address the NP problem in grid scheduling. Artificial Bee Colony (ABC) has been proposed for optimization problems based on foraging behaviour of bees. This work proposes a modified ABC algorithm, Cluster Hete...

  5. Quantum random-walk search algorithm

    International Nuclear Information System (INIS)

    Shenvi, Neil; Whaley, K. Birgitta; Kempe, Julia

    2003-01-01

    Quantum random walks on graphs have been shown to display many interesting properties, including exponentially fast hitting times when compared with their classical counterparts. However, it is still unclear how to use these novel properties to gain an algorithmic speedup over classical algorithms. In this paper, we present a quantum search algorithm based on the quantum random-walk architecture that provides such a speedup. It will be shown that this algorithm performs an oracle search on a database of N items with O(√(N)) calls to the oracle, yielding a speedup similar to other quantum search algorithms. It appears that the quantum random-walk formulation has considerable flexibility, presenting interesting opportunities for development of other, possibly novel quantum algorithms

  6. Searching Algorithm Using Bayesian Updates

    Science.gov (United States)

    Caudle, Kyle

    2010-01-01

    In late October 1967, the USS Scorpion was lost at sea, somewhere between the Azores and Norfolk Virginia. Dr. Craven of the U.S. Navy's Special Projects Division is credited with using Bayesian Search Theory to locate the submarine. Bayesian Search Theory is a straightforward and interesting application of Bayes' theorem which involves searching…

  7. Parallel Sn Sweeps on Unstructured Grids: Algorithms for Prioritization, Grid Partitioning, and Cycle Detection

    International Nuclear Information System (INIS)

    Plimpton, Steven J.; Hendrickson, Bruce; Burns, Shawn P.; McLendon, William III; Rauchwerger, Lawrence

    2005-01-01

    The method of discrete ordinates is commonly used to solve the Boltzmann transport equation. The solution in each ordinate direction is most efficiently computed by sweeping the radiation flux across the computational grid. For unstructured grids this poses many challenges, particularly when implemented on distributed-memory parallel machines where the grid geometry is spread across processors. We present several algorithms relevant to this approach: (a) an asynchronous message-passing algorithm that performs sweeps simultaneously in multiple ordinate directions, (b) a simple geometric heuristic to prioritize the computational tasks that a processor works on, (c) a partitioning algorithm that creates columnar-style decompositions for unstructured grids, and (d) an algorithm for detecting and eliminating cycles that sometimes exist in unstructured grids and can prevent sweeps from successfully completing. Algorithms (a) and (d) are fully parallel; algorithms (b) and (c) can be used in conjunction with (a) to achieve higher parallel efficiencies. We describe our message-passing implementations of these algorithms within a radiation transport package. Performance and scalability results are given for unstructured grids with up to 3 million elements (500 million unknowns) running on thousands of processors of Sandia National Laboratories' Intel Tflops machine and DEC-Alpha CPlant cluster

  8. Application of epidemic algorithms for smart grids control

    International Nuclear Information System (INIS)

    Krkoleva, Aleksandra

    2012-01-01

    Smart Grids are a new concept for electricity networks development, aiming to provide economically efficient and sustainable power system by integrating effectively the actions and needs of the network users. The thesis addresses the Smart Grids concept, with emphasis on the control strategies developed on the basis of epidemic algorithms, more specifically, gossip algorithms. The thesis is developed around three Smart grid aspects: the changed role of consumers in terms of taking part in providing services within Smart Grids; the possibilities to implement decentralized control strategies based on distributed algorithms; and information exchange and benefits emerging from implementation of information and communication technologies. More specifically, the thesis presents a novel approach for providing ancillary services by implementing gossip algorithms. In a decentralized manner, by exchange of information between the consumers and by making decisions on local level, based on the received information and local parameters, the group achieves its global objective, i. e. providing ancillary services. The thesis presents an overview of the Smart Grids control strategies with emphasises on new strategies developed for the most promising Smart Grids concepts, as Micro grids and Virtual power plants. The thesis also presents the characteristics of epidemic algorithms and possibilities for their implementation in Smart Grids. Based on the research on epidemic algorithms, two applications have been developed. These applications are the main outcome of the research. The first application enables consumers, represented by their commercial aggregators, to participate in load reduction and consequently, to participate in balancing market or reduce the balancing costs of the group. In this context, the gossip algorithms are used for aggregator's message dissemination for load reduction and households and small commercial and industrial consumers to participate in maintaining

  9. Search algorithms, hidden labour and information control

    Directory of Open Access Journals (Sweden)

    Paško Bilić

    2016-06-01

    Full Text Available The paper examines some of the processes of the closely knit relationship between Google’s ideologies of neutrality and objectivity and global market dominance. Neutrality construction comprises an important element sustaining the company’s economic position and is reflected in constant updates, estimates and changes to utility and relevance of search results. Providing a purely technical solution to these issues proves to be increasingly difficult without a human hand in steering algorithmic solutions. Search relevance fluctuates and shifts through continuous tinkering and tweaking of the search algorithm. The company also uses third parties to hire human raters for performing quality assessments of algorithmic updates and adaptations in linguistically and culturally diverse global markets. The adaptation process contradicts the technical foundations of the company and calculations based on the initial Page Rank algorithm. Annual market reports, Google’s Search Quality Rating Guidelines, and reports from media specialising in search engine optimisation business are analysed. The Search Quality Rating Guidelines document provides a rare glimpse into the internal architecture of search algorithms and the notions of utility and relevance which are presented and structured as neutral and objective. Intertwined layers of ideology, hidden labour of human raters, advertising revenues, market dominance and control are discussed throughout the paper.

  10. 6. Algorithms for Sorting and Searching

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. Algorithms - Algorithms for Sorting and Searching. R K Shyamasundar. Series Article ... Author Affiliations. R K Shyamasundar1. Computer Science Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India ...

  11. Learning Search Algorithms: An Educational View

    Directory of Open Access Journals (Sweden)

    Ales Janota

    2014-12-01

    Full Text Available Artificial intelligence methods find their practical usage in many applications including maritime industry. The paper concentrates on the methods of uninformed and informed search, potentially usable in solving of complex problems based on the state space representation. The problem of introducing the search algorithms to newcomers has its technical and psychological dimensions. The authors show how it is possible to cope with both of them through design and use of specialized authoring systems. A typical example of searching a path through the maze is used to demonstrate how to test, observe and compare properties of various search strategies. Performance of search methods is evaluated based on the common criteria.

  12. Parallel grid generation algorithm for distributed memory computers

    Science.gov (United States)

    Moitra, Stuti; Moitra, Anutosh

    1994-01-01

    A parallel grid-generation algorithm and its implementation on the Intel iPSC/860 computer are described. The grid-generation scheme is based on an algebraic formulation of homotopic relations. Methods for utilizing the inherent parallelism of the grid-generation scheme are described, and implementation of multiple levELs of parallelism on multiple instruction multiple data machines are indicated. The algorithm is capable of providing near orthogonality and spacing control at solid boundaries while requiring minimal interprocessor communications. Results obtained on the Intel hypercube for a blended wing-body configuration are used to demonstrate the effectiveness of the algorithm. Fortran implementations bAsed on the native programming model of the iPSC/860 computer and the Express system of software tools are reported. Computational gains in execution time speed-up ratios are given.

  13. An overset algorithm for 3D unstructured grids

    International Nuclear Information System (INIS)

    Pishevar, A.R.; Shateri, A.R.

    2004-01-01

    In this paper a new methodology is introduced to simulate flows around complex geometries by using overset unstructured grids. The proposed algorithm can also be used for the unsteady flows about objects in relative motions. In such a case since the elements are not deformed during the computation the costly part of conventional methods, re-meshing, is prevented. This method relies on the inter-grid boundary definition to establish communications among independent grids in the overset system. At the end, the Euler set of equations are integrated on several overset systems to examine the capabilities of this methodology. (author)

  14. STEPS: a grid search methodology for optimized peptide identification filtering of MS/MS database search results.

    Science.gov (United States)

    Piehowski, Paul D; Petyuk, Vladislav A; Sandoval, John D; Burnum, Kristin E; Kiebel, Gary R; Monroe, Matthew E; Anderson, Gordon A; Camp, David G; Smith, Richard D

    2013-03-01

    For bottom-up proteomics, there are wide variety of database-searching algorithms in use for matching peptide sequences to tandem MS spectra. Likewise, there are numerous strategies being employed to produce a confident list of peptide identifications from the different search algorithm outputs. Here we introduce a grid-search approach for determining optimal database filtering criteria in shotgun proteomics data analyses that is easily adaptable to any search. Systematic Trial and Error Parameter Selection--referred to as STEPS--utilizes user-defined parameter ranges to test a wide array of parameter combinations to arrive at an optimal "parameter set" for data filtering, thus maximizing confident identifications. The benefits of this approach in terms of numbers of true-positive identifications are demonstrated using datasets derived from immunoaffinity-depleted blood serum and a bacterial cell lysate, two common proteomics sample types. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. An integral conservative gridding--algorithm using Hermitian curve interpolation.

    Science.gov (United States)

    Volken, Werner; Frei, Daniel; Manser, Peter; Mini, Roberto; Born, Ernst J; Fix, Michael K

    2008-11-07

    The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to

  16. An integral conservative gridding-algorithm using Hermitian curve interpolation

    International Nuclear Information System (INIS)

    Volken, Werner; Frei, Daniel; Manser, Peter; Mini, Roberto; Born, Ernst J; Fix, Michael K

    2008-01-01

    The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to

  17. Fast grid layout algorithm for biological networks with sweep calculation.

    Science.gov (United States)

    Kojima, Kaname; Nagasaki, Masao; Miyano, Satoru

    2008-06-15

    Properly drawn biological networks are of great help in the comprehension of their characteristics. The quality of the layouts for retrieved biological networks is critical for pathway databases. However, since it is unrealistic to manually draw biological networks for every retrieval, automatic drawing algorithms are essential. Grid layout algorithms handle various biological properties such as aligning vertices having the same attributes and complicated positional constraints according to their subcellular localizations; thus, they succeed in providing biologically comprehensible layouts. However, existing grid layout algorithms are not suitable for real-time drawing, which is one of requisites for applications to pathway databases, due to their high-computational cost. In addition, they do not consider edge directions and their resulting layouts lack traceability for biochemical reactions and gene regulations, which are the most important features in biological networks. We devise a new calculation method termed sweep calculation and reduce the time complexity of the current grid layout algorithms through its encoding and decoding processes. We conduct practical experiments by using 95 pathway models of various sizes from TRANSPATH and show that our new grid layout algorithm is much faster than existing grid layout algorithms. For the cost function, we introduce a new component that penalizes undesirable edge directions to avoid the lack of traceability in pathways due to the differences in direction between in-edges and out-edges of each vertex. Java implementations of our layout algorithms are available in Cell Illustrator. masao@ims.u-tokyo.ac.jp Supplementary data are available at Bioinformatics online.

  18. Nuclear expert web search and crawler algorithm

    International Nuclear Information System (INIS)

    Reis, Thiago; Barroso, Antonio C.O.; Baptista, Benedito Filho D.

    2013-01-01

    In this paper we present preliminary research on web search and crawling algorithm applied specifically to nuclear-related web information. We designed a web-based nuclear-oriented expert system guided by a web crawler algorithm and a neural network able to search and retrieve nuclear-related hyper textual web information in autonomous and massive fashion. Preliminary experimental results shows a retrieval precision of 80% for web pages related to any nuclear theme and a retrieval precision of 72% for web pages related only to nuclear power theme. (author)

  19. Nuclear expert web search and crawler algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Thiago; Barroso, Antonio C.O.; Baptista, Benedito Filho D., E-mail: thiagoreis@usp.br, E-mail: barroso@ipen.br, E-mail: bdbfilho@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    In this paper we present preliminary research on web search and crawling algorithm applied specifically to nuclear-related web information. We designed a web-based nuclear-oriented expert system guided by a web crawler algorithm and a neural network able to search and retrieve nuclear-related hyper textual web information in autonomous and massive fashion. Preliminary experimental results shows a retrieval precision of 80% for web pages related to any nuclear theme and a retrieval precision of 72% for web pages related only to nuclear power theme. (author)

  20. A Direct Search Algorithm for Global Optimization

    Directory of Open Access Journals (Sweden)

    Enrique Baeyens

    2016-06-01

    Full Text Available A direct search algorithm is proposed for minimizing an arbitrary real valued function. The algorithm uses a new function transformation and three simplex-based operations. The function transformation provides global exploration features, while the simplex-based operations guarantees the termination of the algorithm and provides global convergence to a stationary point if the cost function is differentiable and its gradient is Lipschitz continuous. The algorithm’s performance has been extensively tested using benchmark functions and compared to some well-known global optimization algorithms. The results of the computational study show that the algorithm combines both simplicity and efficiency and is competitive with the heuristics-based strategies presently used for global optimization.

  1. Cognitive Radio for Smart Grid: Theory, Algorithms, and Security

    Directory of Open Access Journals (Sweden)

    Raghuram Ranganathan

    2011-01-01

    Full Text Available Recently, cognitive radio and smart grid are two areas which have received considerable research impetus. Cognitive radios are intelligent software defined radios (SDRs that efficiently utilize the unused regions of the spectrum, to achieve higher data rates. The smart grid is an automated electric power system that monitors and controls grid activities. In this paper, the novel concept of incorporating a cognitive radio network as the communications infrastructure for the smart grid is presented. A brief overview of the cognitive radio, IEEE 802.22 standard and smart grid, is provided. Experimental results obtained by using dimensionality reduction techniques such as principal component analysis (PCA, kernel PCA, and landmark maximum variance unfolding (LMVU on Wi-Fi signal measurements are presented in a spectrum sensing context. Furthermore, compressed sensing algorithms such as Bayesian compressed sensing and the compressed sensing Kalman filter is employed for recovering the sparse smart meter transmissions. From the power system point of view, a supervised learning method called support vector machine (SVM is used for the automated classification of power system disturbances. The impending problem of securing the smart grid is also addressed, in addition to the possibility of applying FPGA-based fuzzy logic intrusion detection for the smart grid.

  2. Algorithms for Academic Search and Recommendation Systems

    DEFF Research Database (Denmark)

    Amolochitis, Emmanouil

    2014-01-01

    are part of a developed Movie Recommendation system, the first such system to be commercially deployed in Greece by a major Triple Play services provider. In the third part of the work we present the design of a quantitative association rule mining algorithm. The introduced mining algorithm processes......In this work we present novel algorithms for academic search, recommendation and association rules mining. In the first part of the work we introduce a novel hierarchical heuristic scheme for re-ranking academic publications. The scheme is based on the hierarchical combination of a custom...... implementation of the term frequency heuristic, a time-depreciated citation score and a graph-theoretic computed score that relates the paper’s index terms with each other. On the second part we describe the design of hybrid recommender ensemble (user, item and content based). The newly introduced algorithms...

  3. THE QUASIPERIODIC AUTOMATED TRANSIT SEARCH ALGORITHM

    International Nuclear Information System (INIS)

    Carter, Joshua A.; Agol, Eric

    2013-01-01

    We present a new algorithm for detecting transiting extrasolar planets in time-series photometry. The Quasiperiodic Automated Transit Search (QATS) algorithm relaxes the usual assumption of strictly periodic transits by permitting a variable, but bounded, interval between successive transits. We show that this method is capable of detecting transiting planets with significant transit timing variations without any loss of significance— s mearing — as would be incurred with traditional algorithms; however, this is at the cost of a slightly increased stochastic background. The approximate times of transit are standard products of the QATS search. Despite the increased flexibility, we show that QATS has a run-time complexity that is comparable to traditional search codes and is comparably easy to implement. QATS is applicable to data having a nearly uninterrupted, uniform cadence and is therefore well suited to the modern class of space-based transit searches (e.g., Kepler, CoRoT). Applications of QATS include transiting planets in dynamically active multi-planet systems and transiting planets in stellar binary systems.

  4. Efficient algorithm for binary search enhancement | Bennett | Journal ...

    African Journals Online (AJOL)

    Log in or Register to get access to full text downloads. ... This paper presents an Enhanced Binary Search algorithm that ensures that search is performed if ... search region of the list, therefore enabling search to be performed in reduced time.

  5. Modified Parameters of Harmony Search Algorithm for Better Searching

    Science.gov (United States)

    Farraliza Mansor, Nur; Abal Abas, Zuraida; Samad Shibghatullah, Abdul; Rahman, Ahmad Fadzli Nizam Abdul

    2017-08-01

    The scheduling and rostering problems are deliberated as integrated due to they depend on each other whereby the input of rostering problems is a scheduling problems. In this research, the integrated scheduling and rostering bus driver problems are defined as maximising the balance of the assignment of tasks in term of distribution of shifts and routes. It is essential to achieve is fairer among driver because this can bring to increase in driver levels of satisfaction. The latest approaches still unable to address the fairness problem that has emerged, thus this research proposes a strategy to adopt an amendment of a harmony search algorithm in order to address the fairness issue and thus the level of fairness will be escalate. The harmony search algorithm is classified as a meta-heuristics algorithm that is capable of solving hard and combinatorial or discrete optimisation problems. In this respect, the three main operators in HS, namely the Harmony Memory Consideration Rate (HMCR), Pitch Adjustment Rate (PAR) and Bandwidth (BW) play a vital role in balancing local exploitation and global exploration. These parameters influence the overall performance of the HS algorithm, and therefore it is crucial to fine-tune them. The contributions to this research are the HMCR parameter using step function while the fret spacing concept on guitars that is associated with mathematical formulae is also applied in the BW parameter. The model of constant step function is introduced in the alteration of HMCR parameter. The experimental results revealed that our proposed approach is superior than parameter adaptive harmony search algorithm. In conclusion, this proposed approach managed to generate a fairer roster and was thus capable of maximising the balancing distribution of shifts and routes among drivers, which contributed to the lowering of illness, incidents, absenteeism and accidents.

  6. Transitionless driving on adiabatic search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sangchul, E-mail: soh@qf.org.qa [Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar); Kais, Sabre, E-mail: kais@purdue.edu [Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar); Department of Chemistry, Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-12-14

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  7. Generalized Jaynes-Cummings model as a quantum search algorithm

    International Nuclear Information System (INIS)

    Romanelli, A.

    2009-01-01

    We propose a continuous time quantum search algorithm using a generalization of the Jaynes-Cummings model. In this model the states of the atom are the elements among which the algorithm realizes the search, exciting resonances between the initial and the searched states. This algorithm behaves like Grover's algorithm; the optimal search time is proportional to the square root of the size of the search set and the probability to find the searched state oscillates periodically in time. In this frame, it is possible to reinterpret the usual Jaynes-Cummings model as a trivial case of the quantum search algorithm.

  8. Searching Process with Raita Algorithm and its Application

    Science.gov (United States)

    Rahim, Robbi; Saleh Ahmar, Ansari; Abdullah, Dahlan; Hartama, Dedy; Napitupulu, Darmawan; Putera Utama Siahaan, Andysah; Hasan Siregar, Muhammad Noor; Nasution, Nurliana; Sundari, Siti; Sriadhi, S.

    2018-04-01

    Searching is a common process performed by many computer users, Raita algorithm is one algorithm that can be used to match and find information in accordance with the patterns entered. Raita algorithm applied to the file search application using java programming language and the results obtained from the testing process of the file search quickly and with accurate results and support many data types.

  9. Algorithm for Wireless Sensor Networks Based on Grid Management

    Directory of Open Access Journals (Sweden)

    Geng Zhang

    2014-05-01

    Full Text Available This paper analyzes the key issues for wireless sensor network trust model and describes a method to build a wireless sensor network, such as the definition of trust for wireless sensor networks, computing and credibility of trust model application. And for the problem that nodes are vulnerable to attack, this paper proposed a grid-based trust algorithm by deep exploration trust model within the framework of credit management. Algorithm for node reliability screening and rotation schedule to cover parallel manner based on the implementation of the nodes within the area covered by trust. And analyze the results of the size of trust threshold has great influence on the safety and quality of coverage throughout the coverage area. The simulation tests the validity and correctness of the algorithm.

  10. Disaster Monitoring using Grid Based Data Fusion Algorithms

    Directory of Open Access Journals (Sweden)

    Cătălin NAE

    2010-12-01

    Full Text Available This is a study of the application of Grid technology and high performance parallelcomputing to a candidate algorithm for jointly accomplishing data fusion from different sensors. Thisincludes applications for both image analysis and/or data processing for simultaneously trackingmultiple targets in real-time. The emphasis is on comparing the architectures of the serial andparallel algorithms, and characterizing the performance benefits achieved by the parallel algorithmwith both on-ground and in-space hardware implementations. The improved performance levelsachieved by the use of Grid technology (middleware for Parallel Data Fusion are presented for themain metrics of interest in near real-time applications, namely latency, total computation load, andtotal sustainable throughput. The objective of this analysis is, therefore, to demonstrate animplementation of multi-sensor data fusion and/or multi-target tracking functions within an integratedmulti-node portable HPC architecture based on emerging Grid technology. The key metrics to bedetermined in support of ongoing system analyses includes: required computational throughput inMFLOPS; latency between receipt of input data and resulting outputs; and scalability, processorutilization and memory requirements. Furthermore, the standard MPI functions are considered to beused for inter-node communications in order to promote code portability across multiple HPCcomputer platforms, both in space and on-ground.

  11. Adaptive switching gravitational search algorithm: an attempt to ...

    Indian Academy of Sciences (India)

    Nor Azlina Ab Aziz

    An adaptive gravitational search algorithm (GSA) that switches between synchronous and ... genetic algorithm (GA), bat-inspired algorithm (BA) and grey wolf optimizer (GWO). ...... heuristic with applications in applied electromagnetics. Prog.

  12. Sort-Mid tasks scheduling algorithm in grid computing

    Directory of Open Access Journals (Sweden)

    Naglaa M. Reda

    2015-11-01

    Full Text Available Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan.

  13. Sort-Mid tasks scheduling algorithm in grid computing.

    Science.gov (United States)

    Reda, Naglaa M; Tawfik, A; Marzok, Mohamed A; Khamis, Soheir M

    2015-11-01

    Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan.

  14. Quantum-circuit model of Hamiltonian search algorithms

    International Nuclear Information System (INIS)

    Roland, Jeremie; Cerf, Nicolas J.

    2003-01-01

    We analyze three different quantum search algorithms, namely, the traditional circuit-based Grover's algorithm, its continuous-time analog by Hamiltonian evolution, and the quantum search by local adiabatic evolution. We show that these algorithms are closely related in the sense that they all perform a rotation, at a constant angular velocity, from a uniform superposition of all states to the solution state. This makes it possible to implement the two Hamiltonian-evolution algorithms on a conventional quantum circuit, while keeping the quadratic speedup of Grover's original algorithm. It also clarifies the link between the adiabatic search algorithm and Grover's algorithm

  15. SHOP: scaffold hopping by GRID-based similarity searches

    DEFF Research Database (Denmark)

    Bergmann, Rikke; Linusson, Anna; Zamora, Ismael

    2007-01-01

    A new GRID-based method for scaffold hopping (SHOP) is presented. In a fully automatic manner, scaffolds were identified in a database based on three types of 3D-descriptors. SHOP's ability to recover scaffolds was assessed and validated by searching a database spiked with fragments of known...... scaffolds were in the 31 top-ranked scaffolds. SHOP also identified new scaffolds with substantially different chemotypes from the queries. Docking analysis indicated that the new scaffolds would have similar binding modes to those of the respective query scaffolds observed in X-ray structures...

  16. Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.

    Science.gov (United States)

    Mei, Gang; Xu, Nengxiong; Xu, Liangliang

    2016-01-01

    This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm.

  17. An efficient grid layout algorithm for biological networks utilizing various biological attributes

    Directory of Open Access Journals (Sweden)

    Kato Mitsuru

    2007-03-01

    Full Text Available Abstract Background Clearly visualized biopathways provide a great help in understanding biological systems. However, manual drawing of large-scale biopathways is time consuming. We proposed a grid layout algorithm that can handle gene-regulatory networks and signal transduction pathways by considering edge-edge crossing, node-edge crossing, distance measure between nodes, and subcellular localization information from Gene Ontology. Consequently, the layout algorithm succeeded in drastically reducing these crossings in the apoptosis model. However, for larger-scale networks, we encountered three problems: (i the initial layout is often very far from any local optimum because nodes are initially placed at random, (ii from a biological viewpoint, human layouts still exceed automatic layouts in understanding because except subcellular localization, it does not fully utilize biological information of pathways, and (iii it employs a local search strategy in which the neighborhood is obtained by moving one node at each step, and automatic layouts suggest that simultaneous movements of multiple nodes are necessary for better layouts, while such extension may face worsening the time complexity. Results We propose a new grid layout algorithm. To address problem (i, we devised a new force-directed algorithm whose output is suitable as the initial layout. For (ii, we considered that an appropriate alignment of nodes having the same biological attribute is one of the most important factors of the comprehension, and we defined a new score function that gives an advantage to such configurations. For solving problem (iii, we developed a search strategy that considers swapping nodes as well as moving a node, while keeping the order of the time complexity. Though a naïve implementation increases by one order, the time complexity, we solved this difficulty by devising a method that caches differences between scores of a layout and its possible updates

  18. Effects of a random noisy oracle on search algorithm complexity

    International Nuclear Information System (INIS)

    Shenvi, Neil; Brown, Kenneth R.; Whaley, K. Birgitta

    2003-01-01

    Grover's algorithm provides a quadratic speed-up over classical algorithms for unstructured database or library searches. This paper examines the robustness of Grover's search algorithm to a random phase error in the oracle and analyzes the complexity of the search process as a function of the scaling of the oracle error with database or library size. Both the discrete- and continuous-time implementations of the search algorithm are investigated. It is shown that unless the oracle phase error scales as O(N -1/4 ), neither the discrete- nor the continuous-time implementation of Grover's algorithm is scalably robust to this error in the absence of error correction

  19. A Non-static Data Layout Enhancing Parallelism and Vectorization in Sparse Grid Algorithms

    KAUST Repository

    Buse, Gerrit; Pfluger, Dirk; Murarasu, Alin; Jacob, Riko

    2012-01-01

    performance and facilitate the use of vector registers for our sparse grid benchmark problem hierarchization. Based on the compact data structure proposed for regular sparse grids in [2], we developed a new algorithm that outperforms existing implementations

  20. Wolf Search Algorithm for Solving Optimal Reactive Power Dispatch Problem

    Directory of Open Access Journals (Sweden)

    Kanagasabai Lenin

    2015-03-01

    Full Text Available This paper presents a new bio-inspired heuristic optimization algorithm called the Wolf Search Algorithm (WSA for solving the multi-objective reactive power dispatch problem. Wolf Search algorithm is a new bio – inspired heuristic algorithm which based on wolf preying behaviour. The way wolves search for food and survive by avoiding their enemies has been imitated to formulate the algorithm for solving the reactive power dispatches. And the speciality  of wolf is  possessing  both individual local searching ability and autonomous flocking movement and this special property has been utilized to formulate the search algorithm .The proposed (WSA algorithm has been tested on standard IEEE 30 bus test system and simulation results shows clearly about the good performance of the proposed algorithm .

  1. A hybrid search algorithm for swarm robots searching in an unknown environment.

    Science.gov (United States)

    Li, Shoutao; Li, Lina; Lee, Gordon; Zhang, Hao

    2014-01-01

    This paper proposes a novel method to improve the efficiency of a swarm of robots searching in an unknown environment. The approach focuses on the process of feeding and individual coordination characteristics inspired by the foraging behavior in nature. A predatory strategy was used for searching; hence, this hybrid approach integrated a random search technique with a dynamic particle swarm optimization (DPSO) search algorithm. If a search robot could not find any target information, it used a random search algorithm for a global search. If the robot found any target information in a region, the DPSO search algorithm was used for a local search. This particle swarm optimization search algorithm is dynamic as all the parameters in the algorithm are refreshed synchronously through a communication mechanism until the robots find the target position, after which, the robots fall back to a random searching mode. Thus, in this searching strategy, the robots alternated between two searching algorithms until the whole area was covered. During the searching process, the robots used a local communication mechanism to share map information and DPSO parameters to reduce the communication burden and overcome hardware limitations. If the search area is very large, search efficiency may be greatly reduced if only one robot searches an entire region given the limited resources available and time constraints. In this research we divided the entire search area into several subregions, selected a target utility function to determine which subregion should be initially searched and thereby reduced the residence time of the target to improve search efficiency.

  2. An efficient biological pathway layout algorithm combining grid-layout and spring embedder for complicated cellular location information.

    Science.gov (United States)

    Kojima, Kaname; Nagasaki, Masao; Miyano, Satoru

    2010-06-18

    Graph drawing is one of the important techniques for understanding biological regulations in a cell or among cells at the pathway level. Among many available layout algorithms, the spring embedder algorithm is widely used not only for pathway drawing but also for circuit placement and www visualization and so on because of the harmonized appearance of its results. For pathway drawing, location information is essential for its comprehension. However, complex shapes need to be taken into account when torus-shaped location information such as nuclear inner membrane, nuclear outer membrane, and plasma membrane is considered. Unfortunately, the spring embedder algorithm cannot easily handle such information. In addition, crossings between edges and nodes are usually not considered explicitly. We proposed a new grid-layout algorithm based on the spring embedder algorithm that can handle location information and provide layouts with harmonized appearance. In grid-layout algorithms, the mapping of nodes to grid points that minimizes a cost function is searched. By imposing positional constraints on grid points, location information including complex shapes can be easily considered. Our layout algorithm includes the spring embedder cost as a component of the cost function. We further extend the layout algorithm to enable dynamic update of the positions and sizes of compartments at each step. The new spring embedder-based grid-layout algorithm and a spring embedder algorithm are applied to three biological pathways; endothelial cell model, Fas-induced apoptosis model, and C. elegans cell fate simulation model. From the positional constraints, all the results of our algorithm satisfy location information, and hence, more comprehensible layouts are obtained as compared to the spring embedder algorithm. From the comparison of the number of crossings, the results of the grid-layout-based algorithm tend to contain more crossings than those of the spring embedder algorithm due to

  3. Filter Pattern Search Algorithms for Mixed Variable Constrained Optimization Problems

    National Research Council Canada - National Science Library

    Abramson, Mark A; Audet, Charles; Dennis, Jr, J. E

    2004-01-01

    .... This class combines and extends the Audet-Dennis Generalized Pattern Search (GPS) algorithms for bound constrained mixed variable optimization, and their GPS-filter algorithms for general nonlinear constraints...

  4. Progressive-Search Algorithms for Large-Vocabulary Speech Recognition

    National Research Council Canada - National Science Library

    Murveit, Hy; Butzberger, John; Digalakis, Vassilios; Weintraub, Mitch

    1993-01-01

    .... An algorithm, the "Forward-Backward Word-Life Algorithm," is described. It can generate a word lattice in a progressive search that would be used as a language model embedded in a succeeding recognition pass to reduce computation requirements...

  5. Algebraic Algorithm Design and Local Search

    National Research Council Canada - National Science Library

    Graham, Robert

    1996-01-01

    .... Algebraic techniques have been applied successfully to algorithm synthesis by the use of algorithm theories and design tactics, an approach pioneered in the Kestrel Interactive Development System (KIDS...

  6. Improved Degree Search Algorithms in Unstructured P2P Networks

    Directory of Open Access Journals (Sweden)

    Guole Liu

    2012-01-01

    Full Text Available Searching and retrieving the demanded correct information is one important problem in networks; especially, designing an efficient search algorithm is a key challenge in unstructured peer-to-peer (P2P networks. Breadth-first search (BFS and depth-first search (DFS are the current two typical search methods. BFS-based algorithms show the perfect performance in the aspect of search success rate of network resources, while bringing the huge search messages. On the contrary, DFS-based algorithms reduce the search message quantity and also cause the dropping of search success ratio. To address the problem that only one of performances is excellent, we propose two memory function degree search algorithms: memory function maximum degree algorithm (MD and memory function preference degree algorithm (PD. We study their performance including the search success rate and the search message quantity in different networks, which are scale-free networks, random graph networks, and small-world networks. Simulations show that the two performances are both excellent at the same time, and the performances are improved at least 10 times.

  7. Phase matching in quantum searching and the improved Grover algorithm

    International Nuclear Information System (INIS)

    Long Guilu; Li Yansong; Xiao Li; Tu Changcun; Sun Yang

    2004-01-01

    The authors briefly introduced some of our recent work related to the phase matching condition in quantum searching algorithms and the improved Grover algorithm. When one replaces the two phase inversions in the Grover algorithm with arbitrary phase rotations, the modified algorithm usually fails in searching the marked state unless a phase matching condition is satisfied between the two phases. the Grover algorithm is not 100% in success rate, an improved Grover algorithm with zero-failure rate is given by replacing the phase inversions with angles that depends on the size of the database. Other aspects of the Grover algorithm such as the SO(3) picture of quantum searching, the dominant gate imperfections in the Grover algorithm are also mentioned. (author)

  8. Optimal configuration of power grid sources based on optimal particle swarm algorithm

    Science.gov (United States)

    Wen, Yuanhua

    2018-04-01

    In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.

  9. 2nd International Conference on Harmony Search Algorithm

    CERN Document Server

    Geem, Zong

    2016-01-01

    The Harmony Search Algorithm (HSA) is one of the most well-known techniques in the field of soft computing, an important paradigm in the science and engineering community.  This volume, the proceedings of the 2nd International Conference on Harmony Search Algorithm 2015 (ICHSA 2015), brings together contributions describing the latest developments in the field of soft computing with a special focus on HSA techniques. It includes coverage of new methods that have potentially immense application in various fields. Contributed articles cover aspects of the following topics related to the Harmony Search Algorithm: analytical studies; improved, hybrid and multi-objective variants; parameter tuning; and large-scale applications.  The book also contains papers discussing recent advances on the following topics: genetic algorithms; evolutionary strategies; the firefly algorithm and cuckoo search; particle swarm optimization and ant colony optimization; simulated annealing; and local search techniques.   This book ...

  10. Developing Information Power Grid Based Algorithms and Software

    Science.gov (United States)

    Dongarra, Jack

    1998-01-01

    This was an exploratory study to enhance our understanding of problems involved in developing large scale applications in a heterogeneous distributed environment. It is likely that the large scale applications of the future will be built by coupling specialized computational modules together. For example, efforts now exist to couple ocean and atmospheric prediction codes to simulate a more complete climate system. These two applications differ in many respects. They have different grids, the data is in different unit systems and the algorithms for inte,-rating in time are different. In addition the code for each application is likely to have been developed on different architectures and tend to have poor performance when run on an architecture for which the code was not designed, if it runs at all. Architectural differences may also induce differences in data representation which effect precision and convergence criteria as well as data transfer issues. In order to couple such dissimilar codes some form of translation must be present. This translation should be able to handle interpolation from one grid to another as well as construction of the correct data field in the correct units from available data. Even if a code is to be developed from scratch, a modular approach will likely be followed in that standard scientific packages will be used to do the more mundane tasks such as linear algebra or Fourier transform operations. This approach allows the developers to concentrate on their science rather than becoming experts in linear algebra or signal processing. Problems associated with this development approach include difficulties associated with data extraction and translation from one module to another, module performance on different nodal architectures, and others. In addition to these data and software issues there exists operational issues such as platform stability and resource management.

  11. Application of Hybrid HS and Tabu Search Algorithm for Optimal Location of FACTS Devices to Reduce Power Losses in Power Systems

    Directory of Open Access Journals (Sweden)

    Z. Masomi Zohrabad

    2016-12-01

    Full Text Available Power networks continue to grow following the annual growth of energy demand. As constructing new energy generation facilities bears a high cost, minimizing power grid losses becomes essential to permit low cost energy transmission in larger distances and additional areas. This study aims to model an optimization problem for an IEEE 30-bus power grid using a Tabu search algorithm based on an improved hybrid Harmony Search (HS method to reduce overall grid losses. The proposed algorithm is applied to find the best location for the installation of a Unified Power Flow Controller (UPFC. The results obtained from installation of the UPFC in the grid are presented by displaying outputs.

  12. An improved harmony search algorithm for power economic load dispatch

    Energy Technology Data Exchange (ETDEWEB)

    Santos Coelho, Leandro dos [Pontifical Catholic University of Parana, PUCPR, Industrial and Systems Engineering Graduate Program, PPGEPS, Imaculada Conceicao, 1155, 80215-901 Curitiba, PR (Brazil)], E-mail: leandro.coelho@pucpr.br; Mariani, Viviana Cocco [Pontifical Catholic University of Parana, PUCPR, Department of Mechanical Engineering, PPGEM, Imaculada Conceicao, 1155, 80215-901 Curitiba, PR (Brazil)], E-mail: viviana.mariani@pucpr.br

    2009-10-15

    A meta-heuristic algorithm called harmony search (HS), mimicking the improvisation process of music players, has been recently developed. The HS algorithm has been successful in several optimization problems. The HS algorithm does not require derivative information and uses stochastic random search instead of a gradient search. In addition, the HS algorithm is simple in concept, few in parameters, and easy in implementation. This paper presents an improved harmony search (IHS) algorithm based on exponential distribution for solving economic dispatch problems. A 13-unit test system with incremental fuel cost function taking into account the valve-point loading effects is used to illustrate the effectiveness of the proposed IHS method. Numerical results show that the IHS method has good convergence property. Furthermore, the generation costs of the IHS method are lower than those of the classical HS and other optimization algorithms reported in recent literature.

  13. An improved harmony search algorithm for power economic load dispatch

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Leandro dos Santos [Pontifical Catholic Univ. of Parana, PUCPR, Industrial and Systems Engineering Graduate Program, PPGEPS, Imaculada Conceicao, 1155, 80215-901 Curitiba, PR (Brazil); Mariani, Viviana Cocco [Pontifical Catholic Univ. of Parana, PUCPR, Dept. of Mechanical Engineering, PPGEM, Imaculada Conceicao, 1155, 80215-901 Curitiba, PR (Brazil)

    2009-10-15

    A meta-heuristic algorithm called harmony search (HS), mimicking the improvisation process of music players, has been recently developed. The HS algorithm has been successful in several optimization problems. The HS algorithm does not require derivative information and uses stochastic random search instead of a gradient search. In addition, the HS algorithm is simple in concept, few in parameters, and easy in implementation. This paper presents an improved harmony search (IHS) algorithm based on exponential distribution for solving economic dispatch problems. A 13-unit test system with incremental fuel cost function taking into account the valve-point loading effects is used to illustrate the effectiveness of the proposed IHS method. Numerical results show that the IHS method has good convergence property. Furthermore, the generation costs of the IHS method are lower than those of the classical HS and other optimization algorithms reported in recent literature. (author)

  14. An improved harmony search algorithm for power economic load dispatch

    International Nuclear Information System (INIS)

    Santos Coelho, Leandro dos; Mariani, Viviana Cocco

    2009-01-01

    A meta-heuristic algorithm called harmony search (HS), mimicking the improvisation process of music players, has been recently developed. The HS algorithm has been successful in several optimization problems. The HS algorithm does not require derivative information and uses stochastic random search instead of a gradient search. In addition, the HS algorithm is simple in concept, few in parameters, and easy in implementation. This paper presents an improved harmony search (IHS) algorithm based on exponential distribution for solving economic dispatch problems. A 13-unit test system with incremental fuel cost function taking into account the valve-point loading effects is used to illustrate the effectiveness of the proposed IHS method. Numerical results show that the IHS method has good convergence property. Furthermore, the generation costs of the IHS method are lower than those of the classical HS and other optimization algorithms reported in recent literature.

  15. Optimization of multi-objective micro-grid based on improved particle swarm optimization algorithm

    Science.gov (United States)

    Zhang, Jian; Gan, Yang

    2018-04-01

    The paper presents a multi-objective optimal configuration model for independent micro-grid with the aim of economy and environmental protection. The Pareto solution set can be obtained by solving the multi-objective optimization configuration model of micro-grid with the improved particle swarm algorithm. The feasibility of the improved particle swarm optimization algorithm for multi-objective model is verified, which provides an important reference for multi-objective optimization of independent micro-grid.

  16. An Improved Harmony Search Algorithm for Power Distribution Network Planning

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Distribution network planning because of involving many variables and constraints is a multiobjective, discrete, nonlinear, and large-scale optimization problem. Harmony search (HS algorithm is a metaheuristic algorithm inspired by the improvisation process of music players. HS algorithm has several impressive advantages, such as easy implementation, less adjustable parameters, and quick convergence. But HS algorithm still has some defects such as premature convergence and slow convergence speed. According to the defects of the standard algorithm and characteristics of distribution network planning, an improved harmony search (IHS algorithm is proposed in this paper. We set up a mathematical model of distribution network structure planning, whose optimal objective function is to get the minimum annual cost and constraint conditions are overload and radial network. IHS algorithm is applied to solve the complex optimization mathematical model. The empirical results strongly indicate that IHS algorithm can effectively provide better results for solving the distribution network planning problem compared to other optimization algorithms.

  17. Combined heat and power economic dispatch by harmony search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Vasebi, A.; Bathaee, S.M.T. [Power System Research Laboratory, Department of Electrical and Electronic Engineering, K.N.Toosi University of Technology, 322-Mirdamad Avenue West, 19697 Tehran (Iran); Fesanghary, M. [Department of Mechanical Engineering, Amirkabir University of Technology, 424-Hafez Avenue, Tehran (Iran)

    2007-12-15

    The optimal utilization of multiple combined heat and power (CHP) systems is a complicated problem that needs powerful methods to solve. This paper presents a harmony search (HS) algorithm to solve the combined heat and power economic dispatch (CHPED) problem. The HS algorithm is a recently developed meta-heuristic algorithm, and has been very successful in a wide variety of optimization problems. The method is illustrated using a test case taken from the literature as well as a new one proposed by authors. Numerical results reveal that the proposed algorithm can find better solutions when compared to conventional methods and is an efficient search algorithm for CHPED problem. (author)

  18. Cuckoo search and firefly algorithm theory and applications

    CERN Document Server

    2014-01-01

    Nature-inspired algorithms such as cuckoo search and firefly algorithm have become popular and widely used in recent years in many applications. These algorithms are flexible, efficient and easy to implement. New progress has been made in the last few years, and it is timely to summarize the latest developments of cuckoo search and firefly algorithm and their diverse applications. This book will review both theoretical studies and applications with detailed algorithm analysis, implementation and case studies so that readers can benefit most from this book.  Application topics are contributed by many leading experts in the field. Topics include cuckoo search, firefly algorithm, algorithm analysis, feature selection, image processing, travelling salesman problem, neural network, GPU optimization, scheduling, queuing, multi-objective manufacturing optimization, semantic web service, shape optimization, and others.   This book can serve as an ideal reference for both graduates and researchers in computer scienc...

  19. System modelling and online optimal management of MicroGrid using Mesh Adaptive Direct Search

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Faisal A. [Department of Electrical Engineering, Omar Al-Mukhtar University, P.O. Box 919, El-Bieda (Libya); Koivo, Heikki N. [Department of Automation and Systems Technology, Helsinki University of Technology, P.O. Box 5500, FIN-02015 HUT (Finland)

    2010-06-15

    This paper presents a generalized formulation to determine the optimal operating strategy and cost optimization scheme for a MicroGrid. Prior to the optimization of the MicroGrid itself, models for the system components are determined using real data. The proposed cost function takes into consideration the costs of the emissions, NO{sub x}, SO{sub 2}, and CO{sub 2}, start-up costs, as well as the operation and maintenance costs. A daily income and outgo from sold or purchased power is also added. The MicroGrid considered in this paper consists of a wind turbine, a micro turbine, a diesel generator, a photovoltaic array, a fuel cell, and a battery storage. In this work, the Mesh Adaptive Direct Search (MADS) algorithm is used to minimize the cost function of the system while constraining it to meet the customer demand and safety of the system. In comparison with previously proposed techniques, a significant reduction is obtained. (author)

  20. Combinatorial search from algorithms to systems

    CERN Document Server

    Hamadi, Youssef

    2013-01-01

    This book details key techniques in constraint networks, dealing in particular with constraint satisfaction, search, satisfiability, and applications in machine learning and constraint programming. Includes case studies.

  1. Smoothed Analysis of Local Search Algorithms

    NARCIS (Netherlands)

    Manthey, Bodo; Dehne, Frank; Sack, Jörg-Rüdiger; Stege, Ulrike

    2015-01-01

    Smoothed analysis is a method for analyzing the performance of algorithms for which classical worst-case analysis fails to explain the performance observed in practice. Smoothed analysis has been applied to explain the performance of a variety of algorithms in the last years. One particular class of

  2. Quantum algorithms for the ordered search problem via semidefinite programming

    International Nuclear Information System (INIS)

    Childs, Andrew M.; Landahl, Andrew J.; Parrilo, Pablo A.

    2007-01-01

    One of the most basic computational problems is the task of finding a desired item in an ordered list of N items. While the best classical algorithm for this problem uses log 2 N queries to the list, a quantum computer can solve the problem using a constant factor fewer queries. However, the precise value of this constant is unknown. By characterizing a class of quantum query algorithms for the ordered search problem in terms of a semidefinite program, we find quantum algorithms for small instances of the ordered search problem. Extending these algorithms to arbitrarily large instances using recursion, we show that there is an exact quantum ordered search algorithm using 4 log 605 N≅0.433 log 2 N queries, which improves upon the previously best known exact algorithm

  3. Decoherence in optimized quantum random-walk search algorithm

    International Nuclear Information System (INIS)

    Zhang Yu-Chao; Bao Wan-Su; Wang Xiang; Fu Xiang-Qun

    2015-01-01

    This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the optimized quantum random-walk search algorithm with decoherence is depicted through defining the shift operator which includes the possibility of broken links. For a given database size, we obtain the maximum success rate of the algorithm and the required number of iterations through numerical simulations and analysis when the algorithm is in the presence of decoherence. Then the computational complexity of the algorithm with decoherence is obtained. The results show that the ultimate effect of broken-link-type decoherence on the optimized quantum random-walk search algorithm is negative. (paper)

  4. A Fuzzy Gravitational Search Algorithm to Design Optimal IIR Filters

    Directory of Open Access Journals (Sweden)

    Danilo Pelusi

    2018-03-01

    Full Text Available The goodness of Infinite Impulse Response (IIR digital filters design depends on pass band ripple, stop band ripple and transition band values. The main problem is defining a suitable error fitness function that depends on these parameters. This fitness function can be optimized by search algorithms such as evolutionary algorithms. This paper proposes an intelligent algorithm for the design of optimal 8th order IIR filters. The main contribution is the design of Fuzzy Inference Systems able to tune key parameters of a revisited version of the Gravitational Search Algorithm (GSA. In this way, a Fuzzy Gravitational Search Algorithm (FGSA is designed. The optimization performances of FGSA are compared with those of Differential Evolution (DE and GSA. The results show that FGSA is the algorithm that gives the best compromise between goodness, robustness and convergence rate for the design of 8th order IIR filters. Moreover, FGSA assures a good stability of the designed filters.

  5. Merged Search Algorithms for Radio Frequency Identification Anticollision

    Directory of Open Access Journals (Sweden)

    Bih-Yaw Shih

    2012-01-01

    The arbitration algorithm for RFID system is used to arbitrate all the tags to avoid the collision problem with the existence of multiple tags in the interrogation field of a transponder. A splitting algorithm which is called Binary Search Tree (BST is well known for multitags arbitration. In the current study, a splitting-based schema called Merged Search Tree is proposed to capture identification codes correctly for anticollision. Performance of the proposed algorithm is compared with the original BST according to time and power consumed during the arbitration process. The results show that the proposed model can reduce searching time and power consumed to achieve a better performance arbitration.

  6. Evaluation of dynamically dimensioned search algorithm for optimizing SWAT by altering sampling distributions and searching range

    Science.gov (United States)

    The primary advantage of Dynamically Dimensioned Search algorithm (DDS) is that it outperforms many other optimization techniques in both convergence speed and the ability in searching for parameter sets that satisfy statistical guidelines while requiring only one algorithm parameter (perturbation f...

  7. Differential harmony search algorithm to optimize PWRs loading pattern

    Energy Technology Data Exchange (ETDEWEB)

    Poursalehi, N., E-mail: npsalehi@yahoo.com [Engineering Department, Shahid Beheshti University, G.C, P.O.Box: 1983963113, Tehran (Iran, Islamic Republic of); Zolfaghari, A.; Minuchehr, A. [Engineering Department, Shahid Beheshti University, G.C, P.O.Box: 1983963113, Tehran (Iran, Islamic Republic of)

    2013-04-15

    Highlights: ► Exploit of DHS algorithm in LP optimization reveals its flexibility, robustness and reliability. ► Upshot of our experiments with DHS shows that the search approach to optimal LP is quickly. ► On the average, the final band width of DHS fitness values is narrow relative to HS and GHS. -- Abstract: The objective of this work is to develop a core loading optimization technique using differential harmony search algorithm in the context of obtaining an optimal configuration of fuel assemblies in pressurized water reactors. To implement and evaluate the proposed technique, differential harmony search nodal expansion package for 2-D geometry, DHSNEP-2D, is developed. The package includes two modules; in the first modules differential harmony search (DHS) is implemented and nodal expansion code which solves two dimensional-multi group neutron diffusion equations using fourth degree flux expansion with one node per a fuel assembly is in the second module. For evaluation of DHS algorithm, classical harmony search (HS) and global-best harmony search (GHS) algorithms are also included in DHSNEP-2D in order to compare the outcome of techniques together. For this purpose, two PWR test cases have been investigated to demonstrate the DHS algorithm capability in obtaining near optimal loading pattern. Results show that the convergence rate of DHS and execution times are quite promising and also is reliable for the fuel management operation. Moreover, numerical results show the good performance of DHS relative to other competitive algorithms such as genetic algorithm (GA), classical harmony search (HS) and global-best harmony search (GHS) algorithms.

  8. Quantum signature scheme based on a quantum search algorithm

    International Nuclear Information System (INIS)

    Yoon, Chun Seok; Kang, Min Sung; Lim, Jong In; Yang, Hyung Jin

    2015-01-01

    We present a quantum signature scheme based on a two-qubit quantum search algorithm. For secure transmission of signatures, we use a quantum search algorithm that has not been used in previous quantum signature schemes. A two-step protocol secures the quantum channel, and a trusted center guarantees non-repudiation that is similar to other quantum signature schemes. We discuss the security of our protocol. (paper)

  9. Differential harmony search algorithm to optimize PWRs loading pattern

    International Nuclear Information System (INIS)

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.

    2013-01-01

    Highlights: ► Exploit of DHS algorithm in LP optimization reveals its flexibility, robustness and reliability. ► Upshot of our experiments with DHS shows that the search approach to optimal LP is quickly. ► On the average, the final band width of DHS fitness values is narrow relative to HS and GHS. -- Abstract: The objective of this work is to develop a core loading optimization technique using differential harmony search algorithm in the context of obtaining an optimal configuration of fuel assemblies in pressurized water reactors. To implement and evaluate the proposed technique, differential harmony search nodal expansion package for 2-D geometry, DHSNEP-2D, is developed. The package includes two modules; in the first modules differential harmony search (DHS) is implemented and nodal expansion code which solves two dimensional-multi group neutron diffusion equations using fourth degree flux expansion with one node per a fuel assembly is in the second module. For evaluation of DHS algorithm, classical harmony search (HS) and global-best harmony search (GHS) algorithms are also included in DHSNEP-2D in order to compare the outcome of techniques together. For this purpose, two PWR test cases have been investigated to demonstrate the DHS algorithm capability in obtaining near optimal loading pattern. Results show that the convergence rate of DHS and execution times are quite promising and also is reliable for the fuel management operation. Moreover, numerical results show the good performance of DHS relative to other competitive algorithms such as genetic algorithm (GA), classical harmony search (HS) and global-best harmony search (GHS) algorithms

  10. Intelligent energy allocation strategy for PHEV charging station using gravitational search algorithm

    Science.gov (United States)

    Rahman, Imran; Vasant, Pandian M.; Singh, Balbir Singh Mahinder; Abdullah-Al-Wadud, M.

    2014-10-01

    Recent researches towards the use of green technologies to reduce pollution and increase penetration of renewable energy sources in the transportation sector are gaining popularity. The development of the smart grid environment focusing on PHEVs may also heal some of the prevailing grid problems by enabling the implementation of Vehicle-to-Grid (V2G) concept. Intelligent energy management is an important issue which has already drawn much attention to researchers. Most of these works require formulation of mathematical models which extensively use computational intelligence-based optimization techniques to solve many technical problems. Higher penetration of PHEVs require adequate charging infrastructure as well as smart charging strategies. We used Gravitational Search Algorithm (GSA) to intelligently allocate energy to the PHEVs considering constraints such as energy price, remaining battery capacity, and remaining charging time.

  11. A Functional Programming Approach to AI Search Algorithms

    Science.gov (United States)

    Panovics, Janos

    2012-01-01

    The theory and practice of search algorithms related to state-space represented problems form the major part of the introductory course of Artificial Intelligence at most of the universities and colleges offering a degree in the area of computer science. Students usually meet these algorithms only in some imperative or object-oriented language…

  12. Reasoning about Grover's Quantum Search Algorithm using Probabilistic wp

    NARCIS (Netherlands)

    Butler, M.J.; Hartel, Pieter H.

    Grover's search algorithm is designed to be executed on a quantum mechanical computer. In this paper, the probabilistic wp-calculus is used to model and reason about Grover's algorithm. It is demonstrated that the calculus provides a rigorous programming notation for modelling this and other quantum

  13. Nature-inspired novel Cuckoo Search Algorithm for genome

    Indian Academy of Sciences (India)

    This study aims to produce a novel optimization algorithm, called the Cuckoo Search Algorithm (CS), for solving the genome sequence assembly problem. ... Department of Electronics and Communication Engineering, Coimbatore Institute of Technology, Coimbatore 641 014, India; Department of Information Technology, ...

  14. International Timetabling Competition 2011: An Adaptive Large Neighborhood Search algorithm

    DEFF Research Database (Denmark)

    Sørensen, Matias; Kristiansen, Simon; Stidsen, Thomas Riis

    2012-01-01

    An algorithm based on Adaptive Large Neighborhood Search (ALNS) for solving the generalized High School Timetabling problem in XHSTT-format (Post et al (2012a)) is presented. This algorithm was among the nalists of round 2 of the International Timetabling Competition 2011 (ITC2011). For problem...

  15. A Novel Self-Adaptive Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Kaiping Luo

    2013-01-01

    Full Text Available The harmony search algorithm is a music-inspired optimization technology and has been successfully applied to diverse scientific and engineering problems. However, like other metaheuristic algorithms, it still faces two difficulties: parameter setting and finding the optimal balance between diversity and intensity in searching. This paper proposes a novel, self-adaptive search mechanism for optimization problems with continuous variables. This new variant can automatically configure the evolutionary parameters in accordance with problem characteristics, such as the scale and the boundaries, and dynamically select evolutionary strategies in accordance with its search performance. The new variant simplifies the parameter setting and efficiently solves all types of optimization problems with continuous variables. Statistical test results show that this variant is considerably robust and outperforms the original harmony search (HS, improved harmony search (IHS, and other self-adaptive variants for large-scale optimization problems and constrained problems.

  16. Improved Harmony Search Algorithm with Chaos for Absolute Value Equation

    Directory of Open Access Journals (Sweden)

    Shouheng Tuo

    2013-11-01

    Full Text Available In this paper, an improved harmony search with chaos (HSCH is presented for solving NP-hard absolute value equation (AVE Ax - |x| = b, where A is an arbitrary square matrix whose singular values exceed one. The simulation results in solving some given AVE problems demonstrate that the HSCH algorithm is valid and outperforms the classical HS algorithm (CHS and HS algorithm with differential mutation operator (HSDE.

  17. An Adaptive Sparse Grid Algorithm for Elliptic PDEs with Lognormal Diffusion Coefficient

    KAUST Repository

    Nobile, Fabio; Tamellini, Lorenzo; Tesei, Francesco; Tempone, Raul

    2016-01-01

    In this work we build on the classical adaptive sparse grid algorithm (T. Gerstner and M. Griebel, Dimension-adaptive tensor-product quadrature), obtaining an enhanced version capable of using non-nested collocation points, and supporting quadrature

  18. A novel line segment detection algorithm based on graph search

    Science.gov (United States)

    Zhao, Hong-dan; Liu, Guo-ying; Song, Xu

    2018-02-01

    To overcome the problem of extracting line segment from an image, a method of line segment detection was proposed based on the graph search algorithm. After obtaining the edge detection result of the image, the candidate straight line segments are obtained in four directions. For the candidate straight line segments, their adjacency relationships are depicted by a graph model, based on which the depth-first search algorithm is employed to determine how many adjacent line segments need to be merged. Finally we use the least squares method to fit the detected straight lines. The comparative experimental results verify that the proposed algorithm has achieved better results than the line segment detector (LSD).

  19. A New Approximate Chimera Donor Cell Search Algorithm

    Science.gov (United States)

    Holst, Terry L.; Nixon, David (Technical Monitor)

    1998-01-01

    The objectives of this study were to develop chimera-based full potential methodology which is compatible with overflow (Euler/Navier-Stokes) chimera flow solver and to develop a fast donor cell search algorithm that is compatible with the chimera full potential approach. Results of this work included presenting a new donor cell search algorithm suitable for use with a chimera-based full potential solver. This algorithm was found to be extremely fast and simple producing donor cells as fast as 60,000 per second.

  20. Fault-tolerant search algorithms reliable computation with unreliable information

    CERN Document Server

    Cicalese, Ferdinando

    2013-01-01

    Why a book on fault-tolerant search algorithms? Searching is one of the fundamental problems in computer science. Time and again algorithmic and combinatorial issues originally studied in the context of search find application in the most diverse areas of computer science and discrete mathematics. On the other hand, fault-tolerance is a necessary ingredient of computing. Due to their inherent complexity, information systems are naturally prone to errors, which may appear at any level - as imprecisions in the data, bugs in the software, or transient or permanent hardware failures. This book pr

  1. Computer Algorithms in the Search for Unrelated Stem Cell Donors

    Directory of Open Access Journals (Sweden)

    David Steiner

    2012-01-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is a medical procedure in the field of hematology and oncology, most often performed for patients with certain cancers of the blood or bone marrow. A lot of patients have no suitable HLA-matched donor within their family, so physicians must activate a “donor search process” by interacting with national and international donor registries who will search their databases for adult unrelated donors or cord blood units (CBU. Information and communication technologies play a key role in the donor search process in donor registries both nationally and internationaly. One of the major challenges for donor registry computer systems is the development of a reliable search algorithm. This work discusses the top-down design of such algorithms and current practice. Based on our experience with systems used by several stem cell donor registries, we highlight typical pitfalls in the implementation of an algorithm and underlying data structure.

  2. Adaptive symbiotic organisms search (SOS algorithm for structural design optimization

    Directory of Open Access Journals (Sweden)

    Ghanshyam G. Tejani

    2016-07-01

    Full Text Available The symbiotic organisms search (SOS algorithm is an effective metaheuristic developed in 2014, which mimics the symbiotic relationship among the living beings, such as mutualism, commensalism, and parasitism, to survive in the ecosystem. In this study, three modified versions of the SOS algorithm are proposed by introducing adaptive benefit factors in the basic SOS algorithm to improve its efficiency. The basic SOS algorithm only considers benefit factors, whereas the proposed variants of the SOS algorithm, consider effective combinations of adaptive benefit factors and benefit factors to study their competence to lay down a good balance between exploration and exploitation of the search space. The proposed algorithms are tested to suit its applications to the engineering structures subjected to dynamic excitation, which may lead to undesirable vibrations. Structure optimization problems become more challenging if the shape and size variables are taken into account along with the frequency. To check the feasibility and effectiveness of the proposed algorithms, six different planar and space trusses are subjected to experimental analysis. The results obtained using the proposed methods are compared with those obtained using other optimization methods well established in the literature. The results reveal that the adaptive SOS algorithm is more reliable and efficient than the basic SOS algorithm and other state-of-the-art algorithms.

  3. Modified cuckoo search: A new gradient free optimisation algorithm

    International Nuclear Information System (INIS)

    Walton, S.; Hassan, O.; Morgan, K.; Brown, M.R.

    2011-01-01

    Highlights: → Modified cuckoo search (MCS) is a new gradient free optimisation algorithm. → MCS shows a high convergence rate, able to outperform other optimisers. → MCS is particularly strong at high dimension objective functions. → MCS performs well when applied to engineering problems. - Abstract: A new robust optimisation algorithm, which can be regarded as a modification of the recently developed cuckoo search, is presented. The modification involves the addition of information exchange between the top eggs, or the best solutions. Standard optimisation benchmarking functions are used to test the effects of these modifications and it is demonstrated that, in most cases, the modified cuckoo search performs as well as, or better than, the standard cuckoo search, a particle swarm optimiser, and a differential evolution strategy. In particular the modified cuckoo search shows a high convergence rate to the true global minimum even at high numbers of dimensions.

  4. Adiabatic quantum algorithm for search engine ranking.

    Science.gov (United States)

    Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A

    2012-06-08

    We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.

  5. Grover's quantum search algorithm for an arbitrary initial mixed state

    International Nuclear Information System (INIS)

    Biham, Eli; Kenigsberg, Dan

    2002-01-01

    The Grover quantum search algorithm is generalized to deal with an arbitrary mixed initial state. The probability to measure a marked state as a function of time is calculated, and found to depend strongly on the specific initial state. The form of the function, though, remains as it is in the case of initial pure state. We study the role of the von Neumann entropy of the initial state, and show that the entropy cannot be a measure for the usefulness of the algorithm. We give few examples and show that for some extremely mixed initial states (carrying high entropy), the generalized Grover algorithm is considerably faster than any classical algorithm

  6. A novel algorithm for incompressible flow using only a coarse grid projection

    KAUST Repository

    Lentine, Michael

    2010-07-26

    Large scale fluid simulation can be difficult using existing techniques due to the high computational cost of using large grids. We present a novel technique for simulating detailed fluids quickly. Our technique coarsens the Eulerian fluid grid during the pressure solve, allowing for a fast implicit update but still maintaining the resolution obtained with a large grid. This allows our simulations to run at a fraction of the cost of existing techniques while still providing the fine scale structure and details obtained with a full projection. Our algorithm scales well to very large grids and large numbers of processors, allowing for high fidelity simulations that would otherwise be intractable. © 2010 ACM.

  7. A Non-static Data Layout Enhancing Parallelism and Vectorization in Sparse Grid Algorithms

    KAUST Repository

    Buse, Gerrit

    2012-06-01

    The name sparse grids denotes a highly space-efficient, grid-based numerical technique to approximate high-dimensional functions. Although employed in a broad spectrum of applications from different fields, there have only been few tries to use it in real time visualization (e.g. [1]), due to complex data structures and long algorithm runtime. In this work we present a novel approach inspired by principles of I/0-efficient algorithms. Locally applied coefficient permutations lead to improved cache performance and facilitate the use of vector registers for our sparse grid benchmark problem hierarchization. Based on the compact data structure proposed for regular sparse grids in [2], we developed a new algorithm that outperforms existing implementations on modern multi-core systems by a factor of 37 for a grid size of 127 million points. For larger problems the speedup is even increasing, and with execution times below 1 s, sparse grids are well-suited for visualization applications. Furthermore, we point out how a broad class of sparse grid algorithms can benefit from our approach. © 2012 IEEE.

  8. PWR loading pattern optimization using Harmony Search algorithm

    International Nuclear Information System (INIS)

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.

    2013-01-01

    Highlights: ► Numerical results reveal that the HS method is reliable. ► The great advantage of HS is significant gain in computational cost. ► On the average, the final band width of search fitness values is narrow. ► Our experiments show that the search approaches the optimal value fast. - Abstract: In this paper a core reloading technique using Harmony Search, HS, is presented in the context of finding an optimal configuration of fuel assemblies, FA, in pressurized water reactors. To implement and evaluate the proposed technique a Harmony Search along Nodal Expansion Code for 2-D geometry, HSNEC2D, is developed to obtain nearly optimal arrangement of fuel assemblies in PWR cores. This code consists of two sections including Harmony Search algorithm and Nodal Expansion modules using fourth degree flux expansion which solves two dimensional-multi group diffusion equations with one node per fuel assembly. Two optimization test problems are investigated to demonstrate the HS algorithm capability in converging to near optimal loading pattern in the fuel management field and other subjects. Results, convergence rate and reliability of the method are quite promising and show the HS algorithm performs very well and is comparable to other competitive algorithms such as Genetic Algorithm and Particle Swarm Intelligence. Furthermore, implementation of nodal expansion technique along HS causes considerable reduction of computational time to process and analysis optimization in the core fuel management problems

  9. Searching for the majority: algorithms of voluntary control.

    Directory of Open Access Journals (Sweden)

    Jin Fan

    Full Text Available Voluntary control of information processing is crucial to allocate resources and prioritize the processes that are most important under a given situation; the algorithms underlying such control, however, are often not clear. We investigated possible algorithms of control for the performance of the majority function, in which participants searched for and identified one of two alternative categories (left or right pointing arrows as composing the majority in each stimulus set. We manipulated the amount (set size of 1, 3, and 5 and content (ratio of left and right pointing arrows within a set of the inputs to test competing hypotheses regarding mental operations for information processing. Using a novel measure based on computational load, we found that reaction time was best predicted by a grouping search algorithm as compared to alternative algorithms (i.e., exhaustive or self-terminating search. The grouping search algorithm involves sampling and resampling of the inputs before a decision is reached. These findings highlight the importance of investigating the implications of voluntary control via algorithms of mental operations.

  10. Dynamic Vehicle Routing Using an Improved Variable Neighborhood Search Algorithm

    Directory of Open Access Journals (Sweden)

    Yingcheng Xu

    2013-01-01

    Full Text Available In order to effectively solve the dynamic vehicle routing problem with time windows, the mathematical model is established and an improved variable neighborhood search algorithm is proposed. In the algorithm, allocation customers and planning routes for the initial solution are completed by the clustering method. Hybrid operators of insert and exchange are used to achieve the shaking process, the later optimization process is presented to improve the solution space, and the best-improvement strategy is adopted, which make the algorithm can achieve a better balance in the solution quality and running time. The idea of simulated annealing is introduced to take control of the acceptance of new solutions, and the influences of arrival time, distribution of geographical location, and time window range on route selection are analyzed. In the experiment, the proposed algorithm is applied to solve the different sizes' problems of DVRP. Comparing to other algorithms on the results shows that the algorithm is effective and feasible.

  11. Cellular Genetic Algorithm with Communicating Grids for Assembly Line Balancing Problems

    Directory of Open Access Journals (Sweden)

    BRUDARU, O.

    2010-05-01

    Full Text Available This paper presents a new approach with cellular multigrid genetic algorithms for the "I"-shaped and "U"-shaped assembly line balancing problems, including parallel workstations and compatibility constraints. First, a cellular hybrid genetic algorithm that uses a single grid is described. Appropriate operators for mutation, hypermutation, and crossover and two devoration techniques are proposed for creating and maintaining groups based on similarity. This monogrid algorithm is extended for handling many populations placed on different grids. In the multigrid version, the population of each grid is organized in clusters using the positional information of the chromosomes. A similarity preserving communication protocol between the clusters placed on different grids is introduced. The experimental evaluation shows that the multigrid cellular genetic algorithm with communicating grids is better than the hybrid genetic algorithm used for building it, whereas it dominates the monogrid version in all cases. Absolute performance is evaluated using classical benchmarks. The role of certain components of the cellular algorithm is explained and the effect of some parameters is evaluated.

  12. Study on improved Ip-iq APF control algorithm and its application in micro grid

    Science.gov (United States)

    Xie, Xifeng; Shi, Hua; Deng, Haiyingv

    2018-01-01

    In order to enhance the tracking velocity and accuracy of harmonic detection by ip-iq algorithm, a novel ip-iq control algorithm based on the Instantaneous reactive power theory is presented, the improved algorithm adds the lead correction link to adjust the zero point of the detection system, the Fuzzy Self-Tuning Adaptive PI control is introduced to dynamically adjust the DC-link Voltage, which meets the requirement of the harmonic compensation of the micro grid. Simulation and experimental results verify the proposed method is feasible and effective in micro grid.

  13. Construction Example for Algebra System Using Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    FangAn Deng

    2015-01-01

    Full Text Available The construction example of algebra system is to verify the existence of a complex algebra system, and it is a NP-hard problem. In this paper, to solve this kind of problems, firstly, a mathematical optimization model for construction example of algebra system is established. Secondly, an improved harmony search algorithm based on NGHS algorithm (INGHS is proposed to find as more solutions as possible for the optimization model; in the proposed INGHS algorithm, to achieve the balance between exploration power and exploitation power in the search process, a global best strategy and parameters dynamic adjustment method are present. Finally, nine construction examples of algebra system are used to evaluate the optimization model and performance of INGHS. The experimental results show that the proposed algorithm has strong performance for solving complex construction example problems of algebra system.

  14. A Hybrid Backtracking Search Optimization Algorithm with Differential Evolution

    Directory of Open Access Journals (Sweden)

    Lijin Wang

    2015-01-01

    Full Text Available The backtracking search optimization algorithm (BSA is a new nature-inspired method which possesses a memory to take advantage of experiences gained from previous generation to guide the population to the global optimum. BSA is capable of solving multimodal problems, but it slowly converges and poorly exploits solution. The differential evolution (DE algorithm is a robust evolutionary algorithm and has a fast convergence speed in the case of exploitive mutation strategies that utilize the information of the best solution found so far. In this paper, we propose a hybrid backtracking search optimization algorithm with differential evolution, called HBD. In HBD, DE with exploitive strategy is used to accelerate the convergence by optimizing one worse individual according to its probability at each iteration process. A suit of 28 benchmark functions are employed to verify the performance of HBD, and the results show the improvement in effectiveness and efficiency of hybridization of BSA and DE.

  15. Noise propagation in iterative reconstruction algorithms with line searches

    International Nuclear Information System (INIS)

    Qi, Jinyi

    2003-01-01

    In this paper we analyze the propagation of noise in iterative image reconstruction algorithms. We derive theoretical expressions for the general form of preconditioned gradient algorithms with line searches. The results are applicable to a wide range of iterative reconstruction problems, such as emission tomography, transmission tomography, and image restoration. A unique contribution of this paper comparing to our previous work [1] is that the line search is explicitly modeled and we do not use the approximation that the gradient of the objective function is zero. As a result, the error in the estimate of noise at early iterations is significantly reduced

  16. Efficient sequential and parallel algorithms for planted motif search.

    Science.gov (United States)

    Nicolae, Marius; Rajasekaran, Sanguthevar

    2014-01-31

    Motif searching is an important step in the detection of rare events occurring in a set of DNA or protein sequences. One formulation of the problem is known as (l,d)-motif search or Planted Motif Search (PMS). In PMS we are given two integers l and d and n biological sequences. We want to find all sequences of length l that appear in each of the input sequences with at most d mismatches. The PMS problem is NP-complete. PMS algorithms are typically evaluated on certain instances considered challenging. Despite ample research in the area, a considerable performance gap exists because many state of the art algorithms have large runtimes even for moderately challenging instances. This paper presents a fast exact parallel PMS algorithm called PMS8. PMS8 is the first algorithm to solve the challenging (l,d) instances (25,10) and (26,11). PMS8 is also efficient on instances with larger l and d such as (50,21). We include a comparison of PMS8 with several state of the art algorithms on multiple problem instances. This paper also presents necessary and sufficient conditions for 3 l-mers to have a common d-neighbor. The program is freely available at http://engr.uconn.edu/~man09004/PMS8/. We present PMS8, an efficient exact algorithm for Planted Motif Search. PMS8 introduces novel ideas for generating common neighborhoods. We have also implemented a parallel version for this algorithm. PMS8 can solve instances not solved by any previous algorithms.

  17. Consensus algorithm in smart grid and communication networks

    Science.gov (United States)

    Alfagee, Husain Abdulaziz

    On a daily basis, consensus theory attracts more and more researches from different areas of interest, to apply its techniques to solve technical problems in a way that is faster, more reliable, and even more precise than ever before. A power system network is one of those fields that consensus theory employs extensively. The use of the consensus algorithm to solve the Economic Dispatch and Load Restoration Problems is a good example. Instead of a conventional central controller, some researchers have explored an algorithm to solve the above mentioned problems, in a distribution manner, using the consensus algorithm, which is based on calculation methods, i.e., non estimation methods, for updating the information consensus matrix. Starting from this point of solving these types of problems mentioned, specifically, in a distribution fashion, using the consensus algorithm, we have implemented a new advanced consensus algorithm. It is based on the adaptive estimation techniques, such as the Gradient Algorithm and the Recursive Least Square Algorithm, to solve the same problems. This advanced work was tested on different case studies that had formerly been explored, as seen in references 5, 7, and 18. Three and five generators, or agents, with different topologies, correspond to the Economic Dispatch Problem and the IEEE 16-Bus power system corresponds to the Load Restoration Problem. In all the cases we have studied, the results met our expectations with extreme accuracy, and completely matched the results of the previous researchers. There is little question that this research proves the capability and dependability of using the consensus algorithm, based on the estimation methods as the Gradient Algorithm and the Recursive Least Square Algorithm to solve such power problems.

  18. Stochastic search in structural optimization - Genetic algorithms and simulated annealing

    Science.gov (United States)

    Hajela, Prabhat

    1993-01-01

    An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.

  19. The quantum walk search algorithm: Factors affecting efficiency

    OpenAIRE

    Lovett, Neil B.; Everitt, Matthew; Heath, Robert M.; Kendon, Viv

    2011-01-01

    We numerically study the quantum walk search algorithm of Shenvi, Kempe and Whaley [PRA \\textbf{67} 052307] and the factors which affect its efficiency in finding an individual state from an unsorted set. Previous work has focused purely on the effects of the dimensionality of the dataset to be searched. Here, we consider the effects of interpolating between dimensions, connectivity of the dataset, and the possibility of disorder in the underlying substrate: all these factors affect the effic...

  20. Connectivity algorithm with depth first search (DFS) on simple graphs

    Science.gov (United States)

    Riansanti, O.; Ihsan, M.; Suhaimi, D.

    2018-01-01

    This paper discusses an algorithm to detect connectivity of a simple graph using Depth First Search (DFS). The DFS implementation in this paper differs than other research, that is, on counting the number of visited vertices. The algorithm obtains s from the number of vertices and visits source vertex, following by its adjacent vertices until the last vertex adjacent to the previous source vertex. Any simple graph is connected if s equals 0 and disconnected if s is greater than 0. The complexity of the algorithm is O(n2).

  1. Day-ahead distributed energy resource scheduling using differential search algorithm

    DEFF Research Database (Denmark)

    Soares, J.; Lobo, C.; Silva, M.

    2015-01-01

    The number of dispersed energy resources is growing every day, such as the use of more distributed generators. This paper deals with energy resource scheduling model in future smart grids. The methodology can be used by virtual power players (VPPs) considering day-ahead time horizon. This method...... considers that energy resources are managed by a VPP which establishes contracts with their owners. The full AC power flow calculation included in the model takes into account network constraints. This paper presents an application of differential search algorithm (DSA) for solving the day-ahead scheduling...

  2. An Off-Grid Turbo Channel Estimation Algorithm for Millimeter Wave Communications

    Directory of Open Access Journals (Sweden)

    Lingyi Han

    2016-09-01

    Full Text Available The bandwidth shortage has motivated the exploration of the millimeter wave (mmWave frequency spectrum for future communication networks. To compensate for the severe propagation attenuation in the mmWave band, massive antenna arrays can be adopted at both the transmitter and receiver to provide large array gains via directional beamforming. To achieve such array gains, channel estimation (CE with high resolution and low latency is of great importance for mmWave communications. However, classic super-resolution subspace CE methods such as multiple signal classification (MUSIC and estimation of signal parameters via rotation invariant technique (ESPRIT cannot be applied here due to RF chain constraints. In this paper, an enhanced CE algorithm is developed for the off-grid problem when quantizing the angles of mmWave channel in the spatial domain where off-grid problem refers to the scenario that angles do not lie on the quantization grids with high probability, and it results in power leakage and severe reduction of the CE performance. A new model is first proposed to formulate the off-grid problem. The new model divides the continuously-distributed angle into a quantized discrete grid part, referred to as the integral grid angle, and an offset part, termed fractional off-grid angle. Accordingly, an iterative off-grid turbo CE (IOTCE algorithm is proposed to renew and upgrade the CE between the integral grid part and the fractional off-grid part under the Turbo principle. By fully exploiting the sparse structure of mmWave channels, the integral grid part is estimated by a soft-decoding based compressed sensing (CS method called improved turbo compressed channel sensing (ITCCS. It iteratively updates the soft information between the linear minimum mean square error (LMMSE estimator and the sparsity combiner. Monte Carlo simulations are presented to evaluate the performance of the proposed method, and the results show that it enhances the angle

  3. A Cooperative Harmony Search Algorithm for Function Optimization

    Directory of Open Access Journals (Sweden)

    Gang Li

    2014-01-01

    Full Text Available Harmony search algorithm (HS is a new metaheuristic algorithm which is inspired by a process involving musical improvisation. HS is a stochastic optimization technique that is similar to genetic algorithms (GAs and particle swarm optimizers (PSOs. It has been widely applied in order to solve many complex optimization problems, including continuous and discrete problems, such as structure design, and function optimization. A cooperative harmony search algorithm (CHS is developed in this paper, with cooperative behavior being employed as a significant improvement to the performance of the original algorithm. Standard HS just uses one harmony memory and all the variables of the object function are improvised within the harmony memory, while the proposed algorithm CHS uses multiple harmony memories, so that each harmony memory can optimize different components of the solution vector. The CHS was then applied to function optimization problems. The results of the experiment show that CHS is capable of finding better solutions when compared to HS and a number of other algorithms, especially in high-dimensional problems.

  4. Training Feedforward Neural Networks Using Symbiotic Organisms Search Algorithm

    Directory of Open Access Journals (Sweden)

    Haizhou Wu

    2016-01-01

    Full Text Available Symbiotic organisms search (SOS is a new robust and powerful metaheuristic algorithm, which stimulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. In the supervised learning area, it is a challenging task to present a satisfactory and efficient training algorithm for feedforward neural networks (FNNs. In this paper, SOS is employed as a new method for training FNNs. To investigate the performance of the aforementioned method, eight different datasets selected from the UCI machine learning repository are employed for experiment and the results are compared among seven metaheuristic algorithms. The results show that SOS performs better than other algorithms for training FNNs in terms of converging speed. It is also proven that an FNN trained by the method of SOS has better accuracy than most algorithms compared.

  5. Multi-agent coordination algorithms for control of distributed energy resources in smart grids

    Science.gov (United States)

    Cortes, Andres

    Sustainable energy is a top-priority for researchers these days, since electricity and transportation are pillars of modern society. Integration of clean energy technologies such as wind, solar, and plug-in electric vehicles (PEVs), is a major engineering challenge in operation and management of power systems. This is due to the uncertain nature of renewable energy technologies and the large amount of extra load that PEVs would add to the power grid. Given the networked structure of a power system, multi-agent control and optimization strategies are natural approaches to address the various problems of interest for the safe and reliable operation of the power grid. The distributed computation in multi-agent algorithms addresses three problems at the same time: i) it allows for the handling of problems with millions of variables that a single processor cannot compute, ii) it allows certain independence and privacy to electricity customers by not requiring any usage information, and iii) it is robust to localized failures in the communication network, being able to solve problems by simply neglecting the failing section of the system. We propose various algorithms to coordinate storage, generation, and demand resources in a power grid using multi-agent computation and decentralized decision making. First, we introduce a hierarchical vehicle-one-grid (V1G) algorithm for coordination of PEVs under usage constraints, where energy only flows from the grid in to the batteries of PEVs. We then present a hierarchical vehicle-to-grid (V2G) algorithm for PEV coordination that takes into consideration line capacity constraints in the distribution grid, and where energy flows both ways, from the grid in to the batteries, and from the batteries to the grid. Next, we develop a greedy-like hierarchical algorithm for management of demand response events with on/off loads. Finally, we introduce distributed algorithms for the optimal control of distributed energy resources, i

  6. Performance of genetic algorithms in search for water splitting perovskites

    DEFF Research Database (Denmark)

    Jain, A.; Castelli, Ivano Eligio; Hautier, G.

    2013-01-01

    We examine the performance of genetic algorithms (GAs) in uncovering solar water light splitters over a space of almost 19,000 perovskite materials. The entire search space was previously calculated using density functional theory to determine solutions that fulfill constraints on stability, band...

  7. Nature-inspired novel Cuckoo Search Algorithm for genome ...

    Indian Academy of Sciences (India)

    compared their results with other methods such as the genetic algorithm. ... It is a population-based search procedure used as an optimization tool, in ... In this section, the problem formulation, fitness evaluation, flowchart and implementation of the ..... Machine Learning 21: 11–33 ... Numerical Optimization 1: 330–343.

  8. Dynamics Assessment of Grid-Synchronization Algorithms for Single-Phase Grid-Connected Converters

    DEFF Research Database (Denmark)

    Han, Yang; Luo, Mingyu; Guerrero, Josep M.

    2015-01-01

    Several advanced phase-lock-loop (PLL) algorithms have been proposed for single-phase power electronic systems. Among these algorithms, the orthogonal signal generators (OSGs) are widely utilized to generate a set of in-quadrature signals, owing to its benefit of simple digital implementation and...

  9. Computing gap free Pareto front approximations with stochastic search algorithms.

    Science.gov (United States)

    Schütze, Oliver; Laumanns, Marco; Tantar, Emilia; Coello, Carlos A Coello; Talbi, El-Ghazali

    2010-01-01

    Recently, a convergence proof of stochastic search algorithms toward finite size Pareto set approximations of continuous multi-objective optimization problems has been given. The focus was on obtaining a finite approximation that captures the entire solution set in some suitable sense, which was defined by the concept of epsilon-dominance. Though bounds on the quality of the limit approximation-which are entirely determined by the archiving strategy and the value of epsilon-have been obtained, the strategies do not guarantee to obtain a gap free approximation of the Pareto front. That is, such approximations A can reveal gaps in the sense that points f in the Pareto front can exist such that the distance of f to any image point F(a), a epsilon A, is "large." Since such gap free approximations are desirable in certain applications, and the related archiving strategies can be advantageous when memetic strategies are included in the search process, we are aiming in this work for such methods. We present two novel strategies that accomplish this task in the probabilistic sense and under mild assumptions on the stochastic search algorithm. In addition to the convergence proofs, we give some numerical results to visualize the behavior of the different archiving strategies. Finally, we demonstrate the potential for a possible hybridization of a given stochastic search algorithm with a particular local search strategy-multi-objective continuation methods-by showing that the concept of epsilon-dominance can be integrated into this approach in a suitable way.

  10. A Hybrid Genetic Wind Driven Heuristic Optimization Algorithm for Demand Side Management in Smart Grid

    Directory of Open Access Journals (Sweden)

    Nadeem Javaid

    2017-03-01

    Full Text Available In recent years, demand side management (DSM techniques have been designed for residential, industrial and commercial sectors. These techniques are very effective in flattening the load profile of customers in grid area networks. In this paper, a heuristic algorithms-based energy management controller is designed for a residential area in a smart grid. In essence, five heuristic algorithms (the genetic algorithm (GA, the binary particle swarm optimization (BPSO algorithm, the bacterial foraging optimization algorithm (BFOA, the wind-driven optimization (WDO algorithm and our proposed hybrid genetic wind-driven (GWD algorithm are evaluated. These algorithms are used for scheduling residential loads between peak hours (PHs and off-peak hours (OPHs in a real-time pricing (RTP environment while maximizing user comfort (UC and minimizing both electricity cost and the peak to average ratio (PAR. Moreover, these algorithms are tested in two scenarios: (i scheduling the load of a single home and (ii scheduling the load of multiple homes. Simulation results show that our proposed hybrid GWD algorithm performs better than the other heuristic algorithms in terms of the selected performance metrics.

  11. An Elite Decision Making Harmony Search Algorithm for Optimization Problem

    Directory of Open Access Journals (Sweden)

    Lipu Zhang

    2012-01-01

    Full Text Available This paper describes a new variant of harmony search algorithm which is inspired by a well-known item “elite decision making.” In the new algorithm, the good information captured in the current global best and the second best solutions can be well utilized to generate new solutions, following some probability rule. The generated new solution vector replaces the worst solution in the solution set, only if its fitness is better than that of the worst solution. The generating and updating steps and repeated until the near-optimal solution vector is obtained. Extensive computational comparisons are carried out by employing various standard benchmark optimization problems, including continuous design variables and integer variables minimization problems from the literature. The computational results show that the proposed new algorithm is competitive in finding solutions with the state-of-the-art harmony search variants.

  12. An Efficient Topology-Based Algorithm for Transient Analysis of Power Grid

    KAUST Repository

    Yang, Lan

    2015-08-10

    In the design flow of integrated circuits, chip-level verification is an important step that sanity checks the performance is as expected. Power grid verification is one of the most expensive and time-consuming steps of chip-level verification, due to its extremely large size. Efficient power grid analysis technology is highly demanded as it saves computing resources and enables faster iteration. In this paper, a topology-base power grid transient analysis algorithm is proposed. Nodal analysis is adopted to analyze the topology which is mathematically equivalent to iteratively solving a positive semi-definite linear equation. The convergence of the method is proved.

  13. A Hierarchical and Distributed Approach for Mapping Large Applications to Heterogeneous Grids using Genetic Algorithms

    Science.gov (United States)

    Sanyal, Soumya; Jain, Amit; Das, Sajal K.; Biswas, Rupak

    2003-01-01

    In this paper, we propose a distributed approach for mapping a single large application to a heterogeneous grid environment. To minimize the execution time of the parallel application, we distribute the mapping overhead to the available nodes of the grid. This approach not only provides a fast mapping of tasks to resources but is also scalable. We adopt a hierarchical grid model and accomplish the job of mapping tasks to this topology using a scheduler tree. Results show that our three-phase algorithm provides high quality mappings, and is fast and scalable.

  14. An Adaptive Sparse Grid Algorithm for Elliptic PDEs with Lognormal Diffusion Coefficient

    KAUST Repository

    Nobile, Fabio

    2016-03-18

    In this work we build on the classical adaptive sparse grid algorithm (T. Gerstner and M. Griebel, Dimension-adaptive tensor-product quadrature), obtaining an enhanced version capable of using non-nested collocation points, and supporting quadrature and interpolation on unbounded sets. We also consider several profit indicators that are suitable to drive the adaptation process. We then use such algorithm to solve an important test case in Uncertainty Quantification problem, namely the Darcy equation with lognormal permeability random field, and compare the results with those obtained with the quasi-optimal sparse grids based on profit estimates, which we have proposed in our previous works (cf. e.g. Convergence of quasi-optimal sparse grids approximation of Hilbert-valued functions: application to random elliptic PDEs). To treat the case of rough permeability fields, in which a sparse grid approach may not be suitable, we propose to use the adaptive sparse grid quadrature as a control variate in a Monte Carlo simulation. Numerical results show that the adaptive sparse grids have performances similar to those of the quasi-optimal sparse grids and are very effective in the case of smooth permeability fields. Moreover, their use as control variate in a Monte Carlo simulation allows to tackle efficiently also problems with rough coefficients, significantly improving the performances of a standard Monte Carlo scheme.

  15. Unrelated Hematopoietic Stem Cell Donor Matching Probability and Search Algorithm

    Directory of Open Access Journals (Sweden)

    J.-M. Tiercy

    2012-01-01

    Full Text Available In transplantation of hematopoietic stem cells (HSCs from unrelated donors a high HLA compatibility level decreases the risk of acute graft-versus-host disease and mortality. The diversity of the HLA system at the allelic and haplotypic level and the heterogeneity of HLA typing data of the registered donors render the search process a complex task. This paper summarizes our experience with a search algorithm that includes at the start of the search a probability estimate (high/intermediate/low to identify a HLA-A, B, C, DRB1, DQB1-compatible donor (a 10/10 match. Based on 2002–2011 searches about 30% of patients have a high, 30% an intermediate, and 40% a low probability search. Search success rate and duration are presented and discussed in light of the experience of other centers. Overall a 9-10/10 matched HSC donor can now be identified for 60–80% of patients of European descent. For high probability searches donors can be selected on the basis of DPB1-matching with an estimated success rate of >40%. For low probability searches there is no consensus on which HLA incompatibilities are more permissive, although HLA-DQB1 mismatches are generally considered as acceptable. Models for the discrimination of more detrimental mismatches based on specific amino acid residues rather than specific HLA alleles are presented.

  16. Optimization of Particle Search Algorithm for CFD-DEM Simulations

    Directory of Open Access Journals (Sweden)

    G. Baryshev

    2013-09-01

    Full Text Available Discrete element method has numerous applications in particle physics. However, simulating particles as discrete entities can become costly for large systems. In time-driven DEM simulation most computation time is taken by contact search stage. We propose an efficient collision detection method which is based on sorting particles by their coordinates. Using multiple sorting criteria allows minimizing number of potential neighbours and defines fitness of this approach for simulation of massive systems in 3D. This method is compared to a common approach that consists of placing particles onto a grid of cells. Advantage of the new approach is independence of simulation parameters upon particle radius and domain size.

  17. A Prefiltered Cuckoo Search Algorithm with Geometric Operators for Solving Sudoku Problems

    Directory of Open Access Journals (Sweden)

    Ricardo Soto

    2014-01-01

    Full Text Available The Sudoku is a famous logic-placement game, originally popularized in Japan and today widely employed as pastime and as testbed for search algorithms. The classic Sudoku consists in filling a 9×9 grid, divided into nine 3×3 regions, so that each column, row, and region contains different digits from 1 to 9. This game is known to be NP-complete, with existing various complete and incomplete search algorithms able to solve different instances of it. In this paper, we present a new cuckoo search algorithm for solving Sudoku puzzles combining prefiltering phases and geometric operations. The geometric operators allow one to correctly move toward promising regions of the combinatorial space, while the prefiltering phases are able to previously delete from domains the values that do not conduct to any feasible solution. This integration leads to a more efficient domain filtering and as a consequence to a faster solving process. We illustrate encouraging experimental results where our approach noticeably competes with the best approximate methods reported in the literature.

  18. Dynamic Programming Algorithm for Generation of Optimal Elimination Trees for Multi-frontal Direct Solver Over H-refined Grids

    KAUST Repository

    AbouEisha, Hassan M.; Moshkov, Mikhail; Calo, Victor M.; Paszynski, Maciej; Goik, Damian; Jopek, Konrad

    2014-01-01

    In this paper we present a dynamic programming algorithm for finding optimal elimination trees for computational grids refined towards point or edge singularities. The elimination tree is utilized to guide the multi-frontal direct solver algorithm

  19. Moon Search Algorithms for NASA's Dawn Mission to Asteroid Vesta

    Science.gov (United States)

    Memarsadeghi, Nargess; Mcfadden, Lucy A.; Skillman, David R.; McLean, Brian; Mutchler, Max; Carsenty, Uri; Palmer, Eric E.

    2012-01-01

    A moon or natural satellite is a celestial body that orbits a planetary body such as a planet, dwarf planet, or an asteroid. Scientists seek understanding the origin and evolution of our solar system by studying moons of these bodies. Additionally, searches for satellites of planetary bodies can be important to protect the safety of a spacecraft as it approaches or orbits a planetary body. If a satellite of a celestial body is found, the mass of that body can also be calculated once its orbit is determined. Ensuring the Dawn spacecraft's safety on its mission to the asteroid Vesta primarily motivated the work of Dawn's Satellite Working Group (SWG) in summer of 2011. Dawn mission scientists and engineers utilized various computational tools and techniques for Vesta's satellite search. The objectives of this paper are to 1) introduce the natural satellite search problem, 2) present the computational challenges, approaches, and tools used when addressing this problem, and 3) describe applications of various image processing and computational algorithms for performing satellite searches to the electronic imaging and computer science community. Furthermore, we hope that this communication would enable Dawn mission scientists to improve their satellite search algorithms and tools and be better prepared for performing the same investigation in 2015, when the spacecraft is scheduled to approach and orbit the dwarf planet Ceres.

  20. Implementation of the Grover search algorithm with Josephson charge qubits

    International Nuclear Information System (INIS)

    Zheng Xiaohu; Dong Ping; Xue Zhengyuan; Cao Zhuoliang

    2007-01-01

    A scheme of implementing the Grover search algorithm based on Josephson charge qubits has been proposed, which would be a key step to scale more complex quantum algorithms and very important for constructing a real quantum computer via Josephson charge qubits. The present scheme is simple but fairly efficient, and easily manipulated because any two-charge-qubit can be selectively and effectively coupled by a common inductance. More manipulations can be carried out before decoherence sets in. Our scheme can be realized within the current technology

  1. Reactive power planning with FACTS devices using gravitational search algorithm

    Directory of Open Access Journals (Sweden)

    Biplab Bhattacharyya

    2015-09-01

    Full Text Available In this paper, Gravitational Search Algorithm (GSA is used as optimization method in reactive power planning using FACTS (Flexible AC transmission system devices. The planning problem is formulated as a single objective optimization problem where the real power loss and bus voltage deviations are minimized under different loading conditions. GSA based optimization algorithm and particle swarm optimization techniques (PSO are applied on IEEE 30 bus system. Results show that GSA can also be a very effective tool for reactive power planning.

  2. Oscillating feature subset search algorithm for text categorization

    Czech Academy of Sciences Publication Activity Database

    Novovičová, Jana; Somol, Petr; Pudil, Pavel

    2006-01-01

    Roč. 44, č. 4225 (2006), s. 578-587 ISSN 0302-9743 R&D Projects: GA AV ČR IAA2075302; GA MŠk 2C06019 EU Projects: European Commission(XE) 507752 - MUSCLE Institutional research plan: CEZ:AV0Z10750506 Keywords : text classification * feature selection * oscillating search algorithm * Bhattacharyya distance Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.402, year: 2005

  3. Performance Analysis of Binary Search Algorithm in RFID

    Directory of Open Access Journals (Sweden)

    Xiangmei SONG

    2014-12-01

    Full Text Available Binary search algorithm (BS is a kind of important anti-collision algorithm in the Radio Frequency Identification (RFID, is also one of the key technologies which determine whether the information in the tag is identified by the reader-writer fast and reliably. The performance of BS directly affects the quality of service in Internet of Things. This paper adopts an automated formal technology: probabilistic model checking to analyze the performance of BS algorithm formally. Firstly, according to the working principle of BS algorithm, its dynamic behavior is abstracted into a Discrete Time Markov Chains which can describe deterministic, discrete time and the probability selection. And then on the model we calculate the probability of the data sent successfully and the expected time of tags completing the data transmission. Compared to the another typical anti-collision protocol S-ALOHA in RFID, experimental results show that with an increase in the number of tags the BS algorithm has a less space and time consumption, the average number of conflicts increases slower than the S-ALOHA protocol standard, BS algorithm needs fewer expected time to complete the data transmission, and the average speed of the data transmission in BS is as 1.6 times as the S-ALOHA protocol.

  4. A novel gridding algorithm to create regional trace gas maps from satellite observations

    Science.gov (United States)

    Kuhlmann, G.; Hartl, A.; Cheung, H. M.; Lam, Y. F.; Wenig, M. O.

    2014-02-01

    The recent increase in spatial resolution for satellite instruments has made it feasible to study distributions of trace gas column densities on a regional scale. For this application a new gridding algorithm was developed to map measurements from the instrument's frame of reference (level 2) onto a longitude-latitude grid (level 3). The algorithm is designed for the Ozone Monitoring Instrument (OMI) and can easily be employed for similar instruments - for example, the upcoming TROPOspheric Monitoring Instrument (TROPOMI). Trace gas distributions are reconstructed by a continuous parabolic spline surface. The algorithm explicitly considers the spatially varying sensitivity of the sensor resulting from the instrument function. At the swath edge, the inverse problem of computing the spline coefficients is very sensitive to measurement errors and is regularised by a second-order difference matrix. Since this regularisation corresponds to the penalty term for smoothing splines, it similarly attenuates the effect of measurement noise over the entire swath width. Monte Carlo simulations are conducted to study the performance of the algorithm for different distributions of trace gas column densities. The optimal weight of the penalty term is found to be proportional to the measurement uncertainty and the width of the instrument function. A comparison with an established gridding algorithm shows improved performance for small to moderate measurement errors due to better parametrisation of the distribution. The resulting maps are smoother and extreme values are more accurately reconstructed. The performance improvement is further illustrated with high-resolution distributions obtained from a regional chemistry model. The new algorithm is applied to tropospheric NO2 column densities measured by OMI. Examples of regional NO2 maps are shown for densely populated areas in China, Europe and the United States of America. This work demonstrates that the newly developed gridding

  5. A novel gridding algorithm to create regional trace gas maps from satellite observations

    Directory of Open Access Journals (Sweden)

    G. Kuhlmann

    2014-02-01

    Full Text Available The recent increase in spatial resolution for satellite instruments has made it feasible to study distributions of trace gas column densities on a regional scale. For this application a new gridding algorithm was developed to map measurements from the instrument's frame of reference (level 2 onto a longitude–latitude grid (level 3. The algorithm is designed for the Ozone Monitoring Instrument (OMI and can easily be employed for similar instruments – for example, the upcoming TROPOspheric Monitoring Instrument (TROPOMI. Trace gas distributions are reconstructed by a continuous parabolic spline surface. The algorithm explicitly considers the spatially varying sensitivity of the sensor resulting from the instrument function. At the swath edge, the inverse problem of computing the spline coefficients is very sensitive to measurement errors and is regularised by a second-order difference matrix. Since this regularisation corresponds to the penalty term for smoothing splines, it similarly attenuates the effect of measurement noise over the entire swath width. Monte Carlo simulations are conducted to study the performance of the algorithm for different distributions of trace gas column densities. The optimal weight of the penalty term is found to be proportional to the measurement uncertainty and the width of the instrument function. A comparison with an established gridding algorithm shows improved performance for small to moderate measurement errors due to better parametrisation of the distribution. The resulting maps are smoother and extreme values are more accurately reconstructed. The performance improvement is further illustrated with high-resolution distributions obtained from a regional chemistry model. The new algorithm is applied to tropospheric NO2 column densities measured by OMI. Examples of regional NO2 maps are shown for densely populated areas in China, Europe and the United States of America. This work demonstrates that the newly

  6. 3rd International Conference on Harmony Search Algorithm

    CERN Document Server

    2017-01-01

    This book presents state-of-the-art technical contributions based around one of the most successful evolutionary optimization algorithms published to date: Harmony Search. Contributions span from novel technical derivations of this algorithm to applications in the broad fields of civil engineering, energy, transportation & mobility and health, among many others and focus not only on its cross-domain applicability, but also on its core evolutionary operators, including elements inspired from other meta-heuristics. The global scientific community is witnessing an upsurge in groundbreaking, new advances in all areas of computational intelligence, with a particular flurry of research focusing on evolutionary computation and bio-inspired optimization. Observed processes in nature and sociology have provided the basis for innovative algorithmic developments aimed at leveraging the inherent capability to adapt characterized by various animals, including ants, fireflies, wolves and humans. However, it is the beha...

  7. A Harmony Search Algorithm approach for optimizing traffic signal timings

    Directory of Open Access Journals (Sweden)

    Mauro Dell'Orco

    2013-07-01

    Full Text Available In this study, a bi-level formulation is presented for solving the Equilibrium Network Design Problem (ENDP. The optimisation of the signal timing has been carried out at the upper-level using the Harmony Search Algorithm (HSA, whilst the traffic assignment has been carried out through the Path Flow Estimator (PFE at the lower level. The results of HSA have been first compared with those obtained using the Genetic Algorithm, and the Hill Climbing on a two-junction network for a fixed set of link flows. Secondly, the HSA with PFE has been applied to the medium-sized network to show the applicability of the proposed algorithm in solving the ENDP. Additionally, in order to test the sensitivity of perceived travel time error, we have used the HSA with PFE with various level of perceived travel time. The results showed that the proposed method is quite simple and efficient in solving the ENDP.

  8. Ant colony search algorithm for optimal reactive power optimization

    Directory of Open Access Journals (Sweden)

    Lenin K.

    2006-01-01

    Full Text Available The paper presents an (ACSA Ant colony search Algorithm for Optimal Reactive Power Optimization and voltage control of power systems. ACSA is a new co-operative agents’ approach, which is inspired by the observation of the behavior of real ant colonies on the topic of ant trial formation and foraging methods. Hence, in the ACSA a set of co-operative agents called "Ants" co-operates to find good solution for Reactive Power Optimization problem. The ACSA is applied for optimal reactive power optimization is evaluated on standard IEEE, 30, 57, 191 (practical test bus system. The proposed approach is tested and compared to genetic algorithm (GA, Adaptive Genetic Algorithm (AGA.

  9. Concise quantum associative memories with nonlinear search algorithm

    International Nuclear Information System (INIS)

    Tchapet Njafa, J.P.; Nana Engo, S.G.

    2016-01-01

    The model of Quantum Associative Memories (QAM) we propose here consists in simplifying and generalizing that of Rigui Zhou et al. [1] which uses the quantum matrix with the binary decision diagram put forth by David Rosenbaum [2] and the Abrams and Lloyd's nonlinear search algorithm [3]. Our model gives the possibility to retrieve one of the sought states in multi-values retrieving scheme when a measurement is done on the first register in O(c-r) time complexity. It is better than Grover's algorithm and its modified form which need O(√((2 n )/(m))) steps when they are used as the retrieval algorithm. n is the number of qubits of the first register and m the number of x values for which f(x) = 1. As the nonlinearity makes the system highly susceptible to the noise, an analysis of the influence of the single qubit noise channels on the Nonlinear Search Algorithm of our model of QAM shows a fidelity of about 0.7 whatever the number of qubits existing in the first register, thus demonstrating the robustness of our model. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. An Improved Crow Search Algorithm Applied to Energy Problems

    Directory of Open Access Journals (Sweden)

    Primitivo Díaz

    2018-03-01

    Full Text Available The efficient use of energy in electrical systems has become a relevant topic due to its environmental impact. Parameter identification in induction motors and capacitor allocation in distribution networks are two representative problems that have strong implications in the massive use of energy. From an optimization perspective, both problems are considered extremely complex due to their non-linearity, discontinuity, and high multi-modality. These characteristics make difficult to solve them by using standard optimization techniques. On the other hand, metaheuristic methods have been widely used as alternative optimization algorithms to solve complex engineering problems. The Crow Search Algorithm (CSA is a recent metaheuristic method based on the intelligent group behavior of crows. Although CSA presents interesting characteristics, its search strategy presents great difficulties when it faces high multi-modal formulations. In this paper, an improved version of the CSA method is presented to solve complex optimization problems of energy. In the new algorithm, two features of the original CSA are modified: (I the awareness probability (AP and (II the random perturbation. With such adaptations, the new approach preserves solution diversity and improves the convergence to difficult high multi-modal optima. In order to evaluate its performance, the proposed algorithm has been tested in a set of four optimization problems which involve induction motors and distribution networks. The results demonstrate the high performance of the proposed method when it is compared with other popular approaches.

  11. A Dynamic Neighborhood Learning-Based Gravitational Search Algorithm.

    Science.gov (United States)

    Zhang, Aizhu; Sun, Genyun; Ren, Jinchang; Li, Xiaodong; Wang, Zhenjie; Jia, Xiuping

    2018-01-01

    Balancing exploration and exploitation according to evolutionary states is crucial to meta-heuristic search (M-HS) algorithms. Owing to its simplicity in theory and effectiveness in global optimization, gravitational search algorithm (GSA) has attracted increasing attention in recent years. However, the tradeoff between exploration and exploitation in GSA is achieved mainly by adjusting the size of an archive, named , which stores those superior agents after fitness sorting in each iteration. Since the global property of remains unchanged in the whole evolutionary process, GSA emphasizes exploitation over exploration and suffers from rapid loss of diversity and premature convergence. To address these problems, in this paper, we propose a dynamic neighborhood learning (DNL) strategy to replace the model and thereby present a DNL-based GSA (DNLGSA). The method incorporates the local and global neighborhood topologies for enhancing the exploration and obtaining adaptive balance between exploration and exploitation. The local neighborhoods are dynamically formed based on evolutionary states. To delineate the evolutionary states, two convergence criteria named limit value and population diversity, are introduced. Moreover, a mutation operator is designed for escaping from the local optima on the basis of evolutionary states. The proposed algorithm was evaluated on 27 benchmark problems with different characteristic and various difficulties. The results reveal that DNLGSA exhibits competitive performances when compared with a variety of state-of-the-art M-HS algorithms. Moreover, the incorporation of local neighborhood topology reduces the numbers of calculations of gravitational force and thus alleviates the high computational cost of GSA.

  12. Cooperative mobile agents search using beehive partitioned structure and Tabu Random search algorithm

    Science.gov (United States)

    Ramazani, Saba; Jackson, Delvin L.; Selmic, Rastko R.

    2013-05-01

    In search and surveillance operations, deploying a team of mobile agents provides a robust solution that has multiple advantages over using a single agent in efficiency and minimizing exploration time. This paper addresses the challenge of identifying a target in a given environment when using a team of mobile agents by proposing a novel method of mapping and movement of agent teams in a cooperative manner. The approach consists of two parts. First, the region is partitioned into a hexagonal beehive structure in order to provide equidistant movements in every direction and to allow for more natural and flexible environment mapping. Additionally, in search environments that are partitioned into hexagons, mobile agents have an efficient travel path while performing searches due to this partitioning approach. Second, we use a team of mobile agents that move in a cooperative manner and utilize the Tabu Random algorithm to search for the target. Due to the ever-increasing use of robotics and Unmanned Aerial Vehicle (UAV) platforms, the field of cooperative multi-agent search has developed many applications recently that would benefit from the use of the approach presented in this work, including: search and rescue operations, surveillance, data collection, and border patrol. In this paper, the increased efficiency of the Tabu Random Search algorithm method in combination with hexagonal partitioning is simulated, analyzed, and advantages of this approach are presented and discussed.

  13. An Experimental Evaluation of the DQ-DHT Algorithm in a Grid Information Service

    Science.gov (United States)

    Papadakis, Harris; Trunfio, Paolo; Talia, Domenico; Fragopoulou, Paraskevi

    DQ-DHT is a resource discovery algorithm that combines the Dynamic Querying (DQ) technique used in unstructured peer-to-peer networks with an algorithm for efficient broadcast over a Distributed Hash Table (DHT). Similarly to DQ, DQ-DHT dynamically controls the query propagation on the basis of the desired number of results and the popularity of the resource to be located. Differently from DQ, DQ-DHT exploits the structural properties of a DHT to avoid message duplications, thus reducing the amount of network traffic generated by each query. The goal of this paper is to evaluate experimentally the amount of traffic generated by DQ-DHT compared to the DQ algorithm in a Grid infrastructure. A prototype of a Grid information service, which can use both DQ and DQ-DHT as resource discovery algorithm, has been implemented and deployed on the Grid'5000 infrastructure for evaluation. The experimental results presented in this paper show that DQ-DHT significantly reduces the amount of network traffic generated during the discovery process compared to the original DQ algorithm.

  14. Arc-Search Infeasible Interior-Point Algorithm for Linear Programming

    OpenAIRE

    Yang, Yaguang

    2014-01-01

    Mehrotra's algorithm has been the most successful infeasible interior-point algorithm for linear programming since 1990. Most popular interior-point software packages for linear programming are based on Mehrotra's algorithm. This paper proposes an alternative algorithm, arc-search infeasible interior-point algorithm. We will demonstrate, by testing Netlib problems and comparing the test results obtained by arc-search infeasible interior-point algorithm and Mehrotra's algorithm, that the propo...

  15. Medical image registration algorithms assesment Bronze Standard application enactment on grids using the MOTEUR workflow engine

    CERN Document Server

    Glatard, T; Pennec, X

    2006-01-01

    Medical image registration is pre-processing needed for many medical image analysis procedures. A very large number of registration algorithms are available today, but their performance is often not known and very difficult to assess due to the lack of gold standard. The Bronze Standard algorithm is a very data and compute intensive statistical approach for quantifying registration algorithms accuracy. In this paper, we describe the Bronze Standard application and we discuss the need for grids to tackle such computations on medical image databases. We demonstrate MOTEUR, a service-based workflow engine optimized for dealing with data intensive applications. MOTEUR eases the enactment of the Bronze Standard and similar applications on the EGEE production grid infrastructure. It is a generic workflow engine, based on current standards and freely available, that can be used to instrument legacy application code at low cost.

  16. Hybrid Projected Gradient-Evolutionary Search Algorithm for Mixed Integer Nonlinear Optimization Problems

    National Research Council Canada - National Science Library

    Homaifar, Abdollah; Esterline, Albert; Kimiaghalam, Bahram

    2005-01-01

    The Hybrid Projected Gradient-Evolutionary Search Algorithm (HPGES) algorithm uses a specially designed evolutionary-based global search strategy to efficiently create candidate solutions in the solution space...

  17. Project GRACE A grid based search tool for the global digital library

    CERN Document Server

    Scholze, Frank; Vigen, Jens; Prazak, Petra; The Seventh International Conference on Electronic Theses and Dissertations

    2004-01-01

    The paper will report on the progress of an ongoing EU project called GRACE - Grid Search and Categorization Engine (http://www.grace-ist.org). The project participants are CERN, Sheffield Hallam University, Stockholm University, Stuttgart University, GL 2006 and Telecom Italia. The project started in 2002 and will finish in 2005, resulting in a Grid based search engine that will search across a variety of content sources including a number of electronic thesis and dissertation repositories. The Open Archives Initiative (OAI) is expanding and is clearly an interesting movement for a community advocating open access to ETD. However, the OAI approach alone may not be sufficiently scalable to achieve a truly global ETD Digital Library. Many universities simply offer their collections to the world via their local web services without being part of any federated system for archiving and even those dissertations that are provided with OAI compliant metadata will not necessarily be picked up by a centralized OAI Ser...

  18. Electric vehicle charging algorithms for coordination of the grid and distribution transformer levels

    International Nuclear Information System (INIS)

    Ramos Muñoz, Edgar; Razeghi, Ghazal; Zhang, Li; Jabbari, Faryar

    2016-01-01

    The need to reduce greenhouse gas emissions and fossil fuel consumption has increased the popularity of plug-in electric vehicles. However, a large penetration of plug-in electric vehicles can pose challenges at the grid and local distribution levels. Various charging strategies have been proposed to address such challenges, often separately. In this paper, it is shown that, with uncoordinated charging, distribution transformers and the grid can operate under highly undesirable conditions. Next, several strategies that require modest communication efforts are proposed to mitigate the burden created by high concentrations of plug-in electric vehicles, at the grid and local levels. Existing transformer and battery electric vehicle characteristics are used along with the National Household Travel Survey to simulate various charging strategies. It is shown through the analysis of hot spot temperature and equivalent aging factor that the coordinated strategies proposed here reduce the chances of transformer failure with the addition of plug-in electric vehicle loads, even for an under-designed transformer while uncontrolled and uncoordinated plug-in electric vehicle charging results in increased risk of transformer failure. - Highlights: • Charging algorithm for battery electric vehicles, for high penetration levels. • Algorithm reduces transformer overloading, for grid level valley filling. • Computation and communication requirements are minimal. • The distributed algorithm is implemented without large scale iterations. • Hot spot temperature and loss of life for transformers are evaluated.

  19. Application of Tabu Search Algorithm in Job Shop Scheduling

    Directory of Open Access Journals (Sweden)

    Betrianis Betrianis

    2010-10-01

    Full Text Available Tabu Search is one of local search methods which is used to solve the combinatorial optimization problem. This method aimed is to make the searching process of the best solution in a complex combinatorial optimization problem(np hard, ex : job shop scheduling problem, became more effective, in a less computational time but with no guarantee to optimum solution.In this paper, tabu search is used to solve the job shop scheduling problem consists of 3 (three cases, which is ordering package of September, October and November with objective of minimizing makespan (Cmax. For each ordering package, there is a combination for initial solution and tabu list length. These result then  compared with 4 (four other methods using basic dispatching rules such as Shortest Processing Time (SPT, Earliest Due Date (EDD, Most Work Remaining (MWKR dan First Come First Served (FCFS. Scheduling used Tabu Search Algorithm is sensitive for variables changes and gives makespan shorter than scheduling used by other four methods.

  20. Car painting process scheduling with harmony search algorithm

    Science.gov (United States)

    Syahputra, M. F.; Maiyasya, A.; Purnamawati, S.; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.

    2018-02-01

    Automotive painting program in the process of painting the car body by using robot power, making efficiency in the production system. Production system will be more efficient if pay attention to scheduling of car order which will be done by considering painting body shape of car. Flow shop scheduling is a scheduling model in which the job-job to be processed entirely flows in the same product direction / path. Scheduling problems often arise if there are n jobs to be processed on the machine, which must be specified which must be done first and how to allocate jobs on the machine to obtain a scheduled production process. Harmony Search Algorithm is a metaheuristic optimization algorithm based on music. The algorithm is inspired by observations that lead to music in search of perfect harmony. This musical harmony is in line to find optimal in the optimization process. Based on the tests that have been done, obtained the optimal car sequence with minimum makespan value.

  1. An improved ant colony optimization algorithm with fault tolerance for job scheduling in grid computing systems.

    Directory of Open Access Journals (Sweden)

    Hajara Idris

    Full Text Available The Grid scheduler, schedules user jobs on the best available resource in terms of resource characteristics by optimizing job execution time. Resource failure in Grid is no longer an exception but a regular occurring event as resources are increasingly being used by the scientific community to solve computationally intensive problems which typically run for days or even months. It is therefore absolutely essential that these long-running applications are able to tolerate failures and avoid re-computations from scratch after resource failure has occurred, to satisfy the user's Quality of Service (QoS requirement. Job Scheduling with Fault Tolerance in Grid Computing using Ant Colony Optimization is proposed to ensure that jobs are executed successfully even when resource failure has occurred. The technique employed in this paper, is the use of resource failure rate, as well as checkpoint-based roll back recovery strategy. Check-pointing aims at reducing the amount of work that is lost upon failure of the system by immediately saving the state of the system. A comparison of the proposed approach with an existing Ant Colony Optimization (ACO algorithm is discussed. The experimental results of the implemented Fault Tolerance scheduling algorithm show that there is an improvement in the user's QoS requirement over the existing ACO algorithm, which has no fault tolerance integrated in it. The performance evaluation of the two algorithms was measured in terms of the three main scheduling performance metrics: makespan, throughput and average turnaround time.

  2. A Novel Multiobjective Optimization Algorithm for Home Energy Management System in Smart Grid

    Directory of Open Access Journals (Sweden)

    Yanyu Zhang

    2015-01-01

    Full Text Available Demand response (DR is an effective method to lower peak-to-average ratio of demand, facilitate the integration of renewable resources (e.g., wind and solar and plug-in hybrid electric vehicles, and strengthen the reliability of power system. In smart grid, implementing DR through home energy management system (HEMS in residential sector has a great significance. However, an algorithm that only optimally controls parts of HEMS rather than the overall system cannot obtain the best results. In addition, single objective optimization algorithm that minimizes electricity cost cannot quantify user’s comfort level and cannot take a tradeoff between electricity cost and comfort level conveniently. To tackle these problems, this paper proposes a framework of HEMS that consists of grid, load, renewable resource (i.e., solar resource, and battery. In this framework, a user has the ability to sell electricity to utility grid for revenue. Different comfort level indicators are proposed for different home appliances according to their characteristics and user preferences. Based on these comfort level indicators, this paper proposes a multiobjective optimization algorithm for HEMS that minimizes electricity cost and maximizes user’s comfort level simultaneously. Simulation results indicate that the algorithm can reduce user’s electricity cost significantly, ensure user’s comfort level, and take a tradeoff between the cost and comfort level conveniently.

  3. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Zheng, E-mail: 19994035@sina.com [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101 (China); Wang, Jun; Zhou, Bihua [National Defense Key Laboratory on Lightning Protection and Electromagnetic Camouflage, PLA University of Science and Technology, Nanjing 210007 (China); Zhou, Shudao [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101 (China); Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044 (China)

    2014-03-15

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.

  4. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm

    International Nuclear Information System (INIS)

    Sheng, Zheng; Wang, Jun; Zhou, Bihua; Zhou, Shudao

    2014-01-01

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm

  5. Memoryless cooperative graph search based on the simulated annealing algorithm

    International Nuclear Information System (INIS)

    Hou Jian; Yan Gang-Feng; Fan Zhen

    2011-01-01

    We have studied the problem of reaching a globally optimal segment for a graph-like environment with a single or a group of autonomous mobile agents. Firstly, two efficient simulated-annealing-like algorithms are given for a single agent to solve the problem in a partially known environment and an unknown environment, respectively. It shows that under both proposed control strategies, the agent will eventually converge to a globally optimal segment with probability 1. Secondly, we use multi-agent searching to simultaneously reduce the computation complexity and accelerate convergence based on the algorithms we have given for a single agent. By exploiting graph partition, a gossip-consensus method based scheme is presented to update the key parameter—radius of the graph, ensuring that the agents spend much less time finding a globally optimal segment. (interdisciplinary physics and related areas of science and technology)

  6. A Hybrid Harmony Search Algorithm Approach for Optimal Power Flow

    Directory of Open Access Journals (Sweden)

    Mimoun YOUNES

    2012-08-01

    Full Text Available Optimal Power Flow (OPF is one of the main functions of Power system operation. It determines the optimal settings of generating units, bus voltage, transformer tap and shunt elements in Power System with the objective of minimizing total production costs or losses while the system is operating within its security limits. The aim of this paper is to propose a novel methodology (BCGAs-HSA that solves OPF including both active and reactive power dispatch It is based on combining the binary-coded genetic algorithm (BCGAs and the harmony search algorithm (HSA to determine the optimal global solution. This method was tested on the modified IEEE 30 bus test system. The results obtained by this method are compared with those obtained with BCGAs or HSA separately. The results show that the BCGAs-HSA approach can converge to the optimum solution with accuracy compared to those reported recently in the literature.

  7. Column generation algorithms for virtual network embedding in flexi-grid optical networks.

    Science.gov (United States)

    Lin, Rongping; Luo, Shan; Zhou, Jingwei; Wang, Sheng; Chen, Bin; Zhang, Xiaoning; Cai, Anliang; Zhong, Wen-De; Zukerman, Moshe

    2018-04-16

    Network virtualization provides means for efficient management of network resources by embedding multiple virtual networks (VNs) to share efficiently the same substrate network. Such virtual network embedding (VNE) gives rise to a challenging problem of how to optimize resource allocation to VNs and to guarantee their performance requirements. In this paper, we provide VNE algorithms for efficient management of flexi-grid optical networks. We provide an exact algorithm aiming to minimize the total embedding cost in terms of spectrum cost and computation cost for a single VN request. Then, to achieve scalability, we also develop a heuristic algorithm for the same problem. We apply these two algorithms for a dynamic traffic scenario where many VN requests arrive one-by-one. We first demonstrate by simulations for the case of a six-node network that the heuristic algorithm obtains very close blocking probabilities to exact algorithm (about 0.2% higher). Then, for a network of realistic size (namely, USnet) we demonstrate that the blocking probability of our new heuristic algorithm is about one magnitude lower than a simpler heuristic algorithm, which was a component of an earlier published algorithm.

  8. Tractable Algorithms for Proximity Search on Large Graphs

    Science.gov (United States)

    2010-07-01

    Education never ends, Watson. It is a series of lessons with the greatest for the last. — Sir Arthur Conan Doyle’s Sherlock Holmes . 2.1 Introduction A...Doyle’s Sherlock Holmes . 5.1 Introduction In this thesis, our main goal is to design fast algorithms for proximity search in large graphs. In chapter 3...Conan Doyle’s Sherlock Holmes . In this thesis our main focus is on investigating some useful random walk based prox- imity measures. We have started

  9. Path searching in switching networks using cellular algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Koczy, L T; Langer, J; Legendi, T

    1981-01-01

    After a survey of the important statements in the paper A Mathematical Model of Path Searching in General Type Switching Networks (see IBID., vol.25, no.1, p.31-43, 1981) the authors consider the possible implementation for cellular automata of the algorithm introduced there. The cellular field used consists of 5 neighbour 8 state cells. Running times required by a traditional serial processor and by the cellular field, respectively, are compared. By parallel processing this running time can be reduced. 5 references.

  10. Research of Smart Payment System of Power Grid Using Strongly Sub-feasible SQP Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Fang

    2017-01-01

    Full Text Available With the continuous development and perfection of “Internet + Electricity”, the regional grid operation has gradually realized the Internet-based automation. In order to improve the smart level of regional grid operation, this paper analyzes the status quo of power grid terminal in Fujian local power (group company, and introduces the strongly sub-feasible sequence quadratic programming (SQP. The smart payment system based on strongly sub-feasible SQP algorithm is described by its structure, function and implementation process. Through the information technology to improve the efficiency of the service, so that payment staff and smart terminal of self-service payment system has been information between the interactive mode, the actual operation effect is good.

  11. Induction Motor Parameter Identification Using a Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Omar Avalos

    2016-04-01

    Full Text Available The efficient use of electrical energy is a topic that has attracted attention for its environmental consequences. On the other hand, induction motors represent the main component in most industries. They consume the highest energy percentages in industrial facilities. This energy consumption depends on the operation conditions of the induction motor imposed by its internal parameters. Since the internal parameters of an induction motor are not directly measurable, an identification process must be conducted to obtain them. In the identification process, the parameter estimation is transformed into a multidimensional optimization problem where the internal parameters of the induction motor are considered as decision variables. Under this approach, the complexity of the optimization problem tends to produce multimodal error surfaces for which their cost functions are significantly difficult to minimize. Several algorithms based on evolutionary computation principles have been successfully applied to identify the optimal parameters of induction motors. However, most of them maintain an important limitation: They frequently obtain sub-optimal solutions as a result of an improper equilibrium between exploitation and exploration in their search strategies. This paper presents an algorithm for the optimal parameter identification of induction motors. To determine the parameters, the proposed method uses a recent evolutionary method called the gravitational search algorithm (GSA. Different from most of the existent evolutionary algorithms, the GSA presents a better performance in multimodal problems, avoiding critical flaws such as the premature convergence to sub-optimal solutions. Numerical simulations have been conducted on several models to show the effectiveness of the proposed scheme.

  12. A CR Spectrum Allocation Algorithm in Smart Grid Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Wei He

    2014-10-01

    Full Text Available Cognitive radio (CR method was introduced in smart grid communication systems to resolve potential maladies such as the coexistence of heterogeneous networks, overloaded data flow, diversity in data structures, and unstable quality of service (QOS. In this paper, a cognitive spectrum allocation algorithm based on non-cooperative game theory is proposed. The CR spectrum allocation model was developed by modifying the traditional game model via the insertion of a time variable and a critical function. The computing simulation result shows that the improved spectrum allocation algorithm can achieve stable spectrum allocation strategies and avoid the appearance of multi-Nash equilibrium at the expense of certain sacrifices in the system utility. It is suitable for application in distributed cognitive networks in power grids, thus contributing to the improvement of the isomerism and data capacity of power communication systems.

  13. Performance evaluation of grid-enabled registration algorithms using bronze-standards

    CERN Document Server

    Glatard, T; Montagnat, J

    2006-01-01

    Evaluating registration algorithms is difficult due to the lack of gold standard in most clinical procedures. The bronze standard is a real-data based statistical method providing an alternative registration reference through a computationally intensive image database registration procedure. We propose in this paper an efficient implementation of this method through a grid-interfaced workflow enactor enabling the concurrent processing of hundreds of image registrations in a couple of hours only. The performances of two different grid infrastructures were compared. We computed the accuracy of 4 different rigid registration algorithms on longitudinal MRI images of brain tumors. Results showed an average subvoxel accuracy of 0.4 mm and 0.15 degrees in rotation.

  14. Distributed Optimisation Algorithm for Demand Side Management in a Grid-Connected Smart Microgrid

    Directory of Open Access Journals (Sweden)

    Omowunmi Mary Longe

    2017-06-01

    Full Text Available The contributions of Distributed Energy Generation (DEG and Distributed Energy Storage (DES for Demand Side Management (DSM purposes in a smart macrogrid or microgrid cannot be over-emphasised. However, standalone DEG and DES can lead to under-utilisation of energy generation by consumers and financial investments; in grid-connection mode, though, DEG and DES can offer arbitrage opportunities for consumers and utility provider(s. A grid-connected smart microgrid comprising heterogeneous (active and passive smart consumers, electric vehicles and a large-scale centralised energy storage is considered in this paper. Efficient energy management by each smart entity is carried out by the proposed Microgrid Energy Management Distributed Optimisation Algorithm (MEM-DOA installed distributively within the network according to consumer type. Each smart consumer optimises its energy consumption and trading for comfort (demand satisfaction and profit. The proposed model was observed to yield better consumer satisfaction, higher financial savings, and reduced Peak-to-Average-Ratio (PAR demand on the utility grid. Other associated benefits of the model include reduced investment on peaker plants, grid reliability and environmental benefits. The MEM-DOA also offered participating smart consumers energy and tariff incentives so that passive smart consumers do not benefit more than active smart consumers, as was the case with some previous energy management algorithms.

  15. Hard Ware Implementation of Diamond Search Algorithm for Motion Estimation and Object Tracking

    International Nuclear Information System (INIS)

    Hashimaa, S.M.; Mahmoud, I.I.; Elazm, A.A.

    2009-01-01

    Object tracking is very important task in computer vision. Fast search algorithms emerged as important search technique to achieve real time tracking results. To enhance the performance of these algorithms, we advocate the hardware implementation of such algorithms. Diamond search block matching motion estimation has been proposed recently to reduce the complexity of motion estimation. In this paper we selected the diamond search algorithm (DS) for implementation using FPGA. This is due to its fundamental role in all fast search patterns. The proposed architecture is simulated and synthesized using Xilinix and modelsim soft wares. The results agree with the algorithm implementation in Matlab environment.

  16. Archiving, ordering and searching: search engines, algorithms, databases and deep mediatization

    DEFF Research Database (Denmark)

    Andersen, Jack

    2018-01-01

    This article argues that search engines, algorithms, and databases can be considered as a way of understanding deep mediatization (Couldry & Hepp, 2016). They are embedded in a variety of social and cultural practices and as such they change our communicative actions to be shaped by their logic o...... reviewed recent trends in mediatization research, the argument is discussed and unfolded in-between the material and social constructivist-phenomenological interpretations of mediatization. In conclusion, it is discussed how deep this form of mediatization can be taken to be.......This article argues that search engines, algorithms, and databases can be considered as a way of understanding deep mediatization (Couldry & Hepp, 2016). They are embedded in a variety of social and cultural practices and as such they change our communicative actions to be shaped by their logic...

  17. Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a grid platform.

    Science.gov (United States)

    Arteaga-Sierra, F R; Milián, C; Torres-Gómez, I; Torres-Cisneros, M; Moltó, G; Ferrando, A

    2014-09-22

    We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during supercontinuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed.

  18. New 2D adaptive mesh refinement algorithm based on conservative finite-differences with staggered grid

    Science.gov (United States)

    Gerya, T.; Duretz, T.; May, D. A.

    2012-04-01

    We present new 2D adaptive mesh refinement (AMR) algorithm based on stress-conservative finite-differences formulated for non-uniform rectangular staggered grid. The refinement approach is based on a repetitive cell splitting organized via a quad-tree construction (every parent cell is split into 4 daughter cells of equal size). Irrespective of the level of resolution every cell has 5 staggered nodes (2 horizontal velocities, 2 vertical velocities and 1 pressure) for which respective governing equations, boundary conditions and interpolation equations are formulated. The connectivity of the grid is achieved via cross-indexing of grid cells and basic nodal points located in their corners: four corner nodes are indexed for every cell and up to 4 surrounding cells are indexed for every node. The accuracy of the approach depends critically on the formulation of the stencil used at the "hanging" velocity nodes located at the boundaries between different levels of resolution. Most accurate results are obtained for the scheme based on the volume flux balance across the resolution boundary combined with stress-based interpolation of velocity orthogonal to the boundary. We tested this new approach with a number of 2D variable viscosity analytical solutions. Our tests demonstrate that the adaptive staggered grid formulation has convergence properties similar to those obtained in case of a standard, non-adaptive staggered grid formulation. This convergence is also achieved when resolution boundary crosses sharp viscosity contrast interfaces. The convergence rates measured are found to be insensitive to scenarios when the transition in grid resolution crosses sharp viscosity contrast interfaces. We compared various grid refinement strategies based on distribution of different field variables such as viscosity, density and velocity. According to these tests the refinement allows for significant (0.5-1 order of magnitude) increase in the computational accuracy at the same

  19. An ILP based Algorithm for Optimal Customer Selection for Demand Response in SmartGrids

    Energy Technology Data Exchange (ETDEWEB)

    Kuppannagari, Sanmukh R. [Univ. of Southern California, Los Angeles, CA (United States); Kannan, Rajgopal [Louisiana State Univ., Baton Rouge, LA (United States); Prasanna, Viktor K. [Univ. of Southern California, Los Angeles, CA (United States)

    2015-12-07

    Demand Response (DR) events are initiated by utilities during peak demand periods to curtail consumption. They ensure system reliability and minimize the utility’s expenditure. Selection of the right customers and strategies is critical for a DR event. An effective DR scheduling algorithm minimizes the curtailment error which is the absolute difference between the achieved curtailment value and the target. State-of-the-art heuristics exist for customer selection, however their curtailment errors are unbounded and can be as high as 70%. In this work, we develop an Integer Linear Programming (ILP) formulation for optimally selecting customers and curtailment strategies that minimize the curtailment error during DR events in SmartGrids. We perform experiments on real world data obtained from the University of Southern California’s SmartGrid and show that our algorithm achieves near exact curtailment values with errors in the range of 10-7 to 10-5, which are within the range of numerical errors. We compare our results against the state-of-the-art heuristic being deployed in practice in the USC SmartGrid. We show that for the same set of available customer strategy pairs our algorithm performs 103 to 107 times better in terms of the curtailment errors incurred.

  20. Gravitation search algorithm: Application to the optimal IIR filter design

    Directory of Open Access Journals (Sweden)

    Suman Kumar Saha

    2014-01-01

    Full Text Available This paper presents a global heuristic search optimization technique known as Gravitation Search Algorithm (GSA for the design of 8th order Infinite Impulse Response (IIR, low pass (LP, high pass (HP, band pass (BP and band stop (BS filters considering various non-linear characteristics of the filter design problems. This paper also adopts a novel fitness function in order to improve the stop band attenuation to a great extent. In GSA, law of gravity and mass interactions among different particles are adopted for handling the non-linear IIR filter design optimization problem. In this optimization technique, searcher agents are the collection of masses and interactions among them are governed by the Newtonian gravity and the laws of motion. The performances of the GSA based IIR filter designs have proven to be superior as compared to those obtained by real coded genetic algorithm (RGA and standard Particle Swarm Optimization (PSO. Extensive simulation results affirm that the proposed approach using GSA outperforms over its counterparts not only in terms of quality output, i.e., sharpness at cut-off, smaller pass band ripple, higher stop band attenuation, but also the fastest convergence speed with assured stability.

  1. A brief comparison between grid based real space algorithms and spectrum algorithms for electronic structure calculations

    International Nuclear Information System (INIS)

    Wang, Lin-Wang

    2006-01-01

    Quantum mechanical ab initio calculation constitutes the biggest portion of the computer time in material science and chemical science simulations. As a computer center like NERSC, to better serve these communities, it will be very useful to have a prediction for the future trends of ab initio calculations in these areas. Such prediction can help us to decide what future computer architecture can be most useful for these communities, and what should be emphasized on in future supercomputer procurement. As the size of the computer and the size of the simulated physical systems increase, there is a renewed interest in using the real space grid method in electronic structure calculations. This is fueled by two factors. First, it is generally assumed that the real space grid method is more suitable for parallel computation for its limited communication requirement, compared with spectrum method where a global FFT is required. Second, as the size N of the calculated system increases together with the computer power, O(N) scaling approaches become more favorable than the traditional direct O(N 3 ) scaling methods. These O(N) methods are usually based on localized orbital in real space, which can be described more naturally by the real space basis. In this report, the author compares the real space methods versus the traditional plane wave (PW) spectrum methods, for their technical pros and cons, and the possible of future trends. For the real space method, the author focuses on the regular grid finite different (FD) method and the finite element (FE) method. These are the methods used mostly in material science simulation. As for chemical science, the predominant methods are still Gaussian basis method, and sometime the atomic orbital basis method. These two basis sets are localized in real space, and there is no indication that their roles in quantum chemical simulation will change anytime soon. The author focuses on the density functional theory (DFT), which is the

  2. Categorization and Searching of Color Images Using Mean Shift Algorithm

    Directory of Open Access Journals (Sweden)

    Prakash PANDEY

    2009-07-01

    Full Text Available Now a day’s Image Searching is still a challenging problem in content based image retrieval (CBIR system. Most CBIR system operates on all images without pre-sorting the images. The image search result contains many unrelated image. The aim of this research is to propose a new object based indexing system Based on extracting salient region representative from the image, categorizing the image into different types and search images that are similar to given query images.In our approach, the color features are extracted using the mean shift algorithm, a robust clustering technique, Dominant objects are obtained by performing region grouping of segmented thumbnails. The category for an image is generated automatically by analyzing the image for the presence of a dominant object. The images in the database are clustered based on region feature similarity using Euclidian distance. Placing an image into a category can help the user to navigate retrieval results more effectively. Extensive experimental results illustrate excellent performance.

  3. A Hybrid alldifferent-Tabu Search Algorithm for Solving Sudoku Puzzles

    Directory of Open Access Journals (Sweden)

    Ricardo Soto

    2015-01-01

    Full Text Available The Sudoku problem is a well-known logic-based puzzle of combinatorial number-placement. It consists in filling a n2 × n2 grid, composed of n columns, n rows, and n subgrids, each one containing distinct integers from 1 to n2. Such a puzzle belongs to the NP-complete collection of problems, to which there exist diverse exact and approximate methods able to solve it. In this paper, we propose a new hybrid algorithm that smartly combines a classic tabu search procedure with the alldifferent global constraint from the constraint programming world. The alldifferent constraint is known to be efficient for domain filtering in the presence of constraints that must be pairwise different, which are exactly the kind of constraints that Sudokus own. This ability clearly alleviates the work of the tabu search, resulting in a faster and more robust approach for solving Sudokus. We illustrate interesting experimental results where our proposed algorithm outperforms the best results previously reported by hybrids and approximate methods.

  4. A Novel LTE Scheduling Algorithm for Green Technology in Smart Grid

    Science.gov (United States)

    Hindia, Mohammad Nour; Reza, Ahmed Wasif; Noordin, Kamarul Ariffin; Chayon, Muhammad Hasibur Rashid

    2015-01-01

    Smart grid (SG) application is being used nowadays to meet the demand of increasing power consumption. SG application is considered as a perfect solution for combining renewable energy resources and electrical grid by means of creating a bidirectional communication channel between the two systems. In this paper, three SG applications applicable to renewable energy system, namely, distribution automation (DA), distributed energy system-storage (DER) and electrical vehicle (EV), are investigated in order to study their suitability in Long Term Evolution (LTE) network. To compensate the weakness in the existing scheduling algorithms, a novel bandwidth estimation and allocation technique and a new scheduling algorithm are proposed. The technique allocates available network resources based on application’s priority, whereas the algorithm makes scheduling decision based on dynamic weighting factors of multi-criteria to satisfy the demands (delay, past average throughput and instantaneous transmission rate) of quality of service. Finally, the simulation results demonstrate that the proposed mechanism achieves higher throughput, lower delay and lower packet loss rate for DA and DER as well as provide a degree of service for EV. In terms of fairness, the proposed algorithm shows 3%, 7 % and 9% better performance compared to exponential rule (EXP-Rule), modified-largest weighted delay first (M-LWDF) and exponential/PF (EXP/PF), respectively. PMID:25830703

  5. A novel LTE scheduling algorithm for green technology in smart grid.

    Science.gov (United States)

    Hindia, Mohammad Nour; Reza, Ahmed Wasif; Noordin, Kamarul Ariffin; Chayon, Muhammad Hasibur Rashid

    2015-01-01

    Smart grid (SG) application is being used nowadays to meet the demand of increasing power consumption. SG application is considered as a perfect solution for combining renewable energy resources and electrical grid by means of creating a bidirectional communication channel between the two systems. In this paper, three SG applications applicable to renewable energy system, namely, distribution automation (DA), distributed energy system-storage (DER) and electrical vehicle (EV), are investigated in order to study their suitability in Long Term Evolution (LTE) network. To compensate the weakness in the existing scheduling algorithms, a novel bandwidth estimation and allocation technique and a new scheduling algorithm are proposed. The technique allocates available network resources based on application's priority, whereas the algorithm makes scheduling decision based on dynamic weighting factors of multi-criteria to satisfy the demands (delay, past average throughput and instantaneous transmission rate) of quality of service. Finally, the simulation results demonstrate that the proposed mechanism achieves higher throughput, lower delay and lower packet loss rate for DA and DER as well as provide a degree of service for EV. In terms of fairness, the proposed algorithm shows 3%, 7 % and 9% better performance compared to exponential rule (EXP-Rule), modified-largest weighted delay first (M-LWDF) and exponential/PF (EXP/PF), respectively.

  6. A novel LTE scheduling algorithm for green technology in smart grid.

    Directory of Open Access Journals (Sweden)

    Mohammad Nour Hindia

    Full Text Available Smart grid (SG application is being used nowadays to meet the demand of increasing power consumption. SG application is considered as a perfect solution for combining renewable energy resources and electrical grid by means of creating a bidirectional communication channel between the two systems. In this paper, three SG applications applicable to renewable energy system, namely, distribution automation (DA, distributed energy system-storage (DER and electrical vehicle (EV, are investigated in order to study their suitability in Long Term Evolution (LTE network. To compensate the weakness in the existing scheduling algorithms, a novel bandwidth estimation and allocation technique and a new scheduling algorithm are proposed. The technique allocates available network resources based on application's priority, whereas the algorithm makes scheduling decision based on dynamic weighting factors of multi-criteria to satisfy the demands (delay, past average throughput and instantaneous transmission rate of quality of service. Finally, the simulation results demonstrate that the proposed mechanism achieves higher throughput, lower delay and lower packet loss rate for DA and DER as well as provide a degree of service for EV. In terms of fairness, the proposed algorithm shows 3%, 7 % and 9% better performance compared to exponential rule (EXP-Rule, modified-largest weighted delay first (M-LWDF and exponential/PF (EXP/PF, respectively.

  7. Neural network algorithm for image reconstruction using the grid friendly projections

    International Nuclear Information System (INIS)

    Cierniak, R.

    2011-01-01

    Full text: The presented paper describes a development of original approach to the reconstruction problem using a recurrent neural network. Particularly, the 'grid-friendly' angles of performed projections are selected according to the discrete Radon transform (DRT) concept to decrease the number of projections required. The methodology of our approach is consistent with analytical reconstruction algorithms. Reconstruction problem is reformulated in our approach to optimization problem. This problem is solved in present concept using method based on the maximum likelihood methodology. The reconstruction algorithm proposed in this work is consequently adapted for more practical discrete fan beam projections. Computer simulation results show that the neural network reconstruction algorithm designed to work in this way improves obtained results and outperforms conventional methods in reconstructed image quality. (author)

  8. Double-layer evolutionary algorithm for distributed optimization of particle detection on the Grid

    International Nuclear Information System (INIS)

    Padée, Adam; Zaremba, Krzysztof; Kurek, Krzysztof

    2013-01-01

    Reconstruction of particle tracks from information collected by position-sensitive detectors is an important procedure in HEP experiments. It is usually controlled by a set of numerical parameters which have to be manually optimized. This paper proposes an automatic approach to this task by utilizing evolutionary algorithm (EA) operating on both real-valued and binary representations. Because of computational complexity of the task a special distributed architecture of the algorithm is proposed, designed to be run in grid environment. It is two-level hierarchical hybrid utilizing asynchronous master-slave EA on the level of clusters and island model EA on the level of the grid. The technical aspects of usage of production grid infrastructure are covered, including communication protocols on both levels. The paper deals also with the problem of heterogeneity of the resources, presenting efficiency tests on a benchmark function. These tests confirm that even relatively small islands (clusters) can be beneficial to the optimization process when connected to the larger ones. Finally a real-life usage example is presented, which is an optimization of track reconstruction in Large Angle Spectrometer of NA-58 COMPASS experiment held at CERN, using a sample of Monte Carlo simulated data. The overall reconstruction efficiency gain, achieved by the proposed method, is more than 4%, compared to the manually optimized parameters

  9. Optimization of search algorithms for a mass spectra library

    International Nuclear Information System (INIS)

    Domokos, L.; Henneberg, D.; Weimann, B.

    1983-01-01

    The SISCOM mass spectra library search is mainly an interpretative system producing a ''hit list'' of similar spectra based on six comparison factors. This paper deals with extension of the system; the aim is exact identification (retrieval) of those reference spectra in the SISCOM hit list that correspond to the unknown compounds or components of the mixture. Thus, instead of a similarity measure, a decision (retrieval) function is needed to establish the identity of reference and unknown compounds by comparison of their spectra. To facilitate estimation of the weightings of the different variables in the retrieval function, pattern recognition algorithms were applied. Numerous statistical evaluations of three different library collections were made to check the quality of data bases and to derive appropriate variables for the retrieval function. (Auth.)

  10. Compact data structure and scalable algorithms for the sparse grid technique

    KAUST Repository

    Murarasu, Alin

    2011-01-01

    The sparse grid discretization technique enables a compressed representation of higher-dimensional functions. In its original form, it relies heavily on recursion and complex data structures, thus being far from well-suited for GPUs. In this paper, we describe optimizations that enable us to implement compression and decompression, the crucial sparse grid algorithms for our application, on Nvidia GPUs. The main idea consists of a bijective mapping between the set of points in a multi-dimensional sparse grid and a set of consecutive natural numbers. The resulting data structure consumes a minimum amount of memory. For a 10-dimensional sparse grid with approximately 127 million points, it consumes up to 30 times less memory than trees or hash tables which are typically used. Compared to a sequential CPU implementation, the speedups achieved on GPU are up to 17 for compression and up to 70 for decompression, respectively. We show that the optimizations are also applicable to multicore CPUs. Copyright © 2011 ACM.

  11. Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm

    Science.gov (United States)

    Ulbrich, Norbert Manfred

    2013-01-01

    A new regression model search algorithm was developed in 2011 that may be used to analyze both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The new algorithm is a simplified version of a more complex search algorithm that was originally developed at the NASA Ames Balance Calibration Laboratory. The new algorithm has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression models. Therefore, the simplified search algorithm is not intended to replace the original search algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm either fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new regression model search algorithm.

  12. The quadratic speedup in Grover's search algorithm from the entanglement perspective

    International Nuclear Information System (INIS)

    Rungta, Pranaw

    2009-01-01

    We show that Grover's algorithm can be described as an iterative change of the bipartite entanglement, which leads to a necessary and sufficient condition for quadratic speedup. This allows us to reestablish, from the entanglement perspective, that Grover's search algorithm is the only optimal pure state search algorithm.

  13. Grid-search Moment Tensor Estimation: Implementation and CTBT-related Application

    Science.gov (United States)

    Stachnik, J. C.; Baker, B. I.; Rozhkov, M.; Friberg, P. A.; Leifer, J. M.

    2017-12-01

    This abstract presents a review work related to moment tensor estimation for Expert Technical Analysis at the Comprehensive Test Ban Treaty Organization. In this context of event characterization, estimation of key source parameters provide important insights into the nature of failure in the earth. For example, if the recovered source parameters are indicative of a shallow source with large isotropic component then one conclusion is that it is a human-triggered explosive event. However, an important follow-up question in this application is - does an alternative hypothesis like a deeper source with a large double couple component explain the data approximately as well as the best solution? Here we address the issue of both finding a most likely source and assessing its uncertainty. Using the uniform moment tensor discretization of Tape and Tape (2015) we exhaustively interrogate and tabulate the source eigenvalue distribution (i.e., the source characterization), tensor orientation, magnitude, and source depth. The benefit of the grid-search is that we can quantitatively assess the extent to which model parameters are resolved. This provides a valuable opportunity during the assessment phase to focus interpretation on source parameters that are well-resolved. Another benefit of the grid-search is that it proves to be a flexible framework where different pieces of information can be easily incorporated. To this end, this work is particularly interested in fitting teleseismic body waves and regional surface waves as well as incorporating teleseismic first motions when available. Being that the moment tensor search methodology is well-established we primarily focus on the implementation and application. We present a highly scalable strategy for systematically inspecting the entire model parameter space. We then focus on application to regional and teleseismic data recorded during a handful of natural and anthropogenic events, report on the grid-search optimum, and

  14. Error and symmetry analysis of Misner's algorithm for spherical harmonic decomposition on a cubic grid

    International Nuclear Information System (INIS)

    Fiske, David R

    2006-01-01

    Computing spherical harmonic decompositions is a ubiquitous technique that arises in a wide variety of disciplines and a large number of scientific codes. Because spherical harmonics are defined by integrals over spheres, however, one must perform some sort of interpolation in order to compute them when data are stored on a cubic lattice. Misner (2004 Class. Quantum Grav. 21 S243) presented a novel algorithm for computing the spherical harmonic components of data represented on a cubic grid, which has been found in real applications to be both efficient and robust to the presence of mesh refinement boundaries. At the same time, however, practical applications of the algorithm require knowledge of how the truncation errors of the algorithm depend on the various parameters in the algorithm. Based on analytic arguments and experience using the algorithm in real numerical simulations, I explore these dependences and provide a rule of thumb for choosing the parameters based on the truncation errors of the underlying data. I also demonstrate that symmetries in the spherical harmonics themselves allow for an even more efficient implementation of the algorithm than was suggested by Misner in his original paper

  15. Path Searching Based Fault Automated Recovery Scheme for Distribution Grid with DG

    Science.gov (United States)

    Xia, Lin; Qun, Wang; Hui, Xue; Simeng, Zhu

    2016-12-01

    Applying the method of path searching based on distribution network topology in setting software has a good effect, and the path searching method containing DG power source is also applicable to the automatic generation and division of planned islands after the fault. This paper applies path searching algorithm in the automatic division of planned islands after faults: starting from the switch of fault isolation, ending in each power source, and according to the line load that the searching path traverses and the load integrated by important optimized searching path, forming optimized division scheme of planned islands that uses each DG as power source and is balanced to local important load. Finally, COBASE software and distribution network automation software applied are used to illustrate the effectiveness of the realization of such automatic restoration program.

  16. Wind Power Grid Connected Capacity Prediction Using LSSVM Optimized by the Bat Algorithm

    Directory of Open Access Journals (Sweden)

    Qunli Wu

    2015-12-01

    Full Text Available Given the stochastic nature of wind, wind power grid-connected capacity prediction plays an essential role in coping with the challenge of balancing supply and demand. Accurate forecasting methods make enormous contribution to mapping wind power strategy, power dispatching and sustainable development of wind power industry. This study proposes a bat algorithm (BA–least squares support vector machine (LSSVM hybrid model to improve prediction performance. In order to select input of LSSVM effectively, Stationarity, Cointegration and Granger causality tests are conducted to examine the influence of installed capacity with different lags, and partial autocorrelation analysis is employed to investigate the inner relationship of grid-connected capacity. The parameters in LSSVM are optimized by BA to validate the learning ability and generalization of LSSVM. Multiple model sufficiency evaluation methods are utilized. The research results reveal that the accuracy improvement of the present approach can reach about 20% compared to other single or hybrid models.

  17. Time-domain analysis of planar microstrip devices using a generalized Yee-algorithm based on unstructured grids

    Science.gov (United States)

    Gedney, Stephen D.; Lansing, Faiza

    1993-01-01

    The generalized Yee-algorithm is presented for the temporal full-wave analysis of planar microstrip devices. This algorithm has the significant advantage over the traditional Yee-algorithm in that it is based on unstructured and irregular grids. The robustness of the generalized Yee-algorithm is that structures that contain curved conductors or complex three-dimensional geometries can be more accurately, and much more conveniently modeled using standard automatic grid generation techniques. This generalized Yee-algorithm is based on the the time-marching solution of the discrete form of Maxwell's equations in their integral form. To this end, the electric and magnetic fields are discretized over a dual, irregular, and unstructured grid. The primary grid is assumed to be composed of general fitted polyhedra distributed throughout the volume. The secondary grid (or dual grid) is built up of the closed polyhedra whose edges connect the centroid's of adjacent primary cells, penetrating shared faces. Faraday's law and Ampere's law are used to update the fields normal to the primary and secondary grid faces, respectively. Subsequently, a correction scheme is introduced to project the normal fields onto the grid edges. It is shown that this scheme is stable, maintains second-order accuracy, and preserves the divergenceless nature of the flux densities. Finally, for computational efficiency the algorithm is structured as a series of sparse matrix-vector multiplications. Based on this scheme, the generalized Yee-algorithm has been implemented on vector and parallel high performance computers in a highly efficient manner.

  18. Artificial Bee Colony Algorithm for Transient Performance Augmentation of Grid Connected Distributed Generation

    Science.gov (United States)

    Chatterjee, A.; Ghoshal, S. P.; Mukherjee, V.

    In this paper, a conventional thermal power system equipped with automatic voltage regulator, IEEE type dual input power system stabilizer (PSS) PSS3B and integral controlled automatic generation control loop is considered. A distributed generation (DG) system consisting of aqua electrolyzer, photovoltaic cells, diesel engine generator, and some other energy storage devices like flywheel energy storage system and battery energy storage system is modeled. This hybrid distributed system is connected to the grid. While integrating this DG with the onventional thermal power system, improved transient performance is noticed. Further improvement in the transient performance of this grid connected DG is observed with the usage of superconducting magnetic energy storage device. The different tunable parameters of the proposed hybrid power system model are optimized by artificial bee colony (ABC) algorithm. The optimal solutions offered by the ABC algorithm are compared with those offered by genetic algorithm (GA). It is also revealed that the optimizing performance of the ABC is better than the GA for this specific application.

  19. Multi-hop localization algorithm based on grid-scanning for wireless sensor networks.

    Science.gov (United States)

    Wan, Jiangwen; Guo, Xiaolei; Yu, Ning; Wu, Yinfeng; Feng, Renjian

    2011-01-01

    For large-scale wireless sensor networks (WSNs) with a minority of anchor nodes, multi-hop localization is a popular scheme for determining the geographical positions of the normal nodes. However, in practice existing multi-hop localization methods suffer from various kinds of problems, such as poor adaptability to irregular topology, high computational complexity, low positioning accuracy, etc. To address these issues in this paper, we propose a novel Multi-hop Localization algorithm based on Grid-Scanning (MLGS). First, the factors that influence the multi-hop distance estimation are studied and a more realistic multi-hop localization model is constructed. Then, the feasible regions of the normal nodes are determined according to the intersection of bounding square rings. Finally, a verifiably good approximation scheme based on grid-scanning is developed to estimate the coordinates of the normal nodes. Additionally, the positioning accuracy of the normal nodes can be improved through neighbors' collaboration. Extensive simulations are performed in isotropic and anisotropic networks. The comparisons with some typical algorithms of node localization confirm the effectiveness and efficiency of our algorithm.

  20. Analysis of the Multi Strategy Goal Programming for Micro-Grid Based on Dynamic ant Genetic Algorithm

    Science.gov (United States)

    Qiu, J. P.; Niu, D. X.

    Micro-grid is one of the key technologies of the future energy supplies. Take economic planning. reliability, and environmental protection of micro grid as a basis for the analysis of multi-strategy objective programming problems for micro grid which contains wind power, solar power, and battery and micro gas turbine. Establish the mathematical model of each power generation characteristics and energy dissipation. and change micro grid planning multi-objective function under different operating strategies to a single objective model based on AHP method. Example analysis shows that in combination with dynamic ant mixed genetic algorithm can get the optimal power output of this model.

  1. Algorithm for shortest path search in Geographic Information Systems by using reduced graphs.

    Science.gov (United States)

    Rodríguez-Puente, Rafael; Lazo-Cortés, Manuel S

    2013-01-01

    The use of Geographic Information Systems has increased considerably since the eighties and nineties. As one of their most demanding applications we can mention shortest paths search. Several studies about shortest path search show the feasibility of using graphs for this purpose. Dijkstra's algorithm is one of the classic shortest path search algorithms. This algorithm is not well suited for shortest path search in large graphs. This is the reason why various modifications to Dijkstra's algorithm have been proposed by several authors using heuristics to reduce the run time of shortest path search. One of the most used heuristic algorithms is the A* algorithm, the main goal is to reduce the run time by reducing the search space. This article proposes a modification of Dijkstra's shortest path search algorithm in reduced graphs. It shows that the cost of the path found in this work, is equal to the cost of the path found using Dijkstra's algorithm in the original graph. The results of finding the shortest path, applying the proposed algorithm, Dijkstra's algorithm and A* algorithm, are compared. This comparison shows that, by applying the approach proposed, it is possible to obtain the optimal path in a similar or even in less time than when using heuristic algorithms.

  2. Forecasting of Power Grid Investment in China Based on Support Vector Machine Optimized by Differential Evolution Algorithm and Grey Wolf Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Shuyu Dai

    2018-04-01

    Full Text Available In recent years, the construction of China’s power grid has experienced rapid development, and its scale has leaped into the first place in the world. Accurate and effective prediction of power grid investment can not only help pool funds and rationally arrange investment in power grid construction, but also reduce capital costs and economic risks, which plays a crucial role in promoting power grid investment planning and construction process. In order to forecast the power grid investment of China accurately, firstly on the basis of analyzing the influencing factors of power grid investment, the influencing factors system for China’s power grid investment forecasting is constructed in this article. The method of grey relational analysis is used for screening the main influencing factors as the prediction model input. Then, a novel power grid investment prediction model based on DE-GWO-SVM (support vector machine optimized by differential evolution and grey wolf optimization algorithm is proposed. Next, two cases are taken for empirical analysis to prove that the DE-GWO-SVM model has strong generalization capacity and has achieved a good prediction effect for power grid investment forecasting in China. Finally, the DE-GWO-SVM model is adopted to forecast power grid investment in China from 2018 to 2022.

  3. Error tolerance in an NMR implementation of Grover's fixed-point quantum search algorithm

    International Nuclear Information System (INIS)

    Xiao Li; Jones, Jonathan A.

    2005-01-01

    We describe an implementation of Grover's fixed-point quantum search algorithm on a nuclear magnetic resonance quantum computer, searching for either one or two matching items in an unsorted database of four items. In this algorithm the target state (an equally weighted superposition of the matching states) is a fixed point of the recursive search operator, so that the algorithm always moves towards the desired state. The effects of systematic errors in the implementation are briefly explored

  4. An aid to two-dimensional contouring using nonuniform orthogonal grids - A Fortran algorithm

    Digital Repository Service at National Institute of Oceanography (India)

    Gouveia, A.D.

    of grids in which Ax and Ay can differ with x and y respectively. Contours obtained in this manner should be used with care if slopes or trends are to be calculated. This algorithm has applications for data presentation in several specialized fields... showing the main features of the variable, care must be taken if the contours are to be used for quantitative estimations of slopes and trends. This procedure, however, avoids the possible errors of injudicious interpolation of the data onto a regular...

  5. A Taxonomy for Modeling Flexibility and a Computationally Efficient Algorithm for Dispatch in Smart Grids

    DEFF Research Database (Denmark)

    Petersen, Mette Højgaard; Edlund, Kristian; Hansen, Lars Henrik

    2013-01-01

    The word flexibility is central to Smart Grid literature, but still a formal definition of flexibility is pending. This paper present a taxonomy for flexibility modeling denoted Buckets, Batteries and Bakeries. We consider a direct control Virtual Power Plant (VPP), which is given the task...... of servicing a portfolio of flexible consumers by use of a fluctuating power supply. Based on the developed taxonomy we first prove that no causal optimal dispatch strategies exist for the considered problem. We then present two heuristic algorithms for solving the balancing task: Predictive Balancing...

  6. Q-learning-based adjustable fixed-phase quantum Grover search algorithm

    International Nuclear Information System (INIS)

    Guo Ying; Shi Wensha; Wang Yijun; Hu, Jiankun

    2017-01-01

    We demonstrate that the rotation phase can be suitably chosen to increase the efficiency of the phase-based quantum search algorithm, leading to a dynamic balance between iterations and success probabilities of the fixed-phase quantum Grover search algorithm with Q-learning for a given number of solutions. In this search algorithm, the proposed Q-learning algorithm, which is a model-free reinforcement learning strategy in essence, is used for performing a matching algorithm based on the fraction of marked items λ and the rotation phase α. After establishing the policy function α = π(λ), we complete the fixed-phase Grover algorithm, where the phase parameter is selected via the learned policy. Simulation results show that the Q-learning-based Grover search algorithm (QLGA) enables fewer iterations and gives birth to higher success probabilities. Compared with the conventional Grover algorithms, it avoids the optimal local situations, thereby enabling success probabilities to approach one. (author)

  7. An enhanced search algorithm for the charged fuel enrichment in equilibrium cycle analysis of REBUS-3

    International Nuclear Information System (INIS)

    Park, Tongkyu; Yang, Won Sik; Kim, Sang-Ji

    2017-01-01

    Highlights: • An enhanced search algorithm for charged fuel enrichment was developed for equilibrium cycle analysis with REBUS-3. • The new search algorithm is not sensitive to the user-specified initial guesses. • The new algorithm reduces the computational time by a factor of 2–3. - Abstract: This paper presents an enhanced search algorithm for the charged fuel enrichment in equilibrium cycle analysis of REBUS-3. The current enrichment search algorithm of REBUS-3 takes a large number of iterations to yield a converged solution or even terminates without a converged solution when the user-specified initial guesses are far from the solution. To resolve the convergence problem and to reduce the computational time, an enhanced search algorithm was developed. The enhanced algorithm is based on the idea of minimizing the number of enrichment estimates by allowing drastic enrichment changes and by optimizing the current search algorithm of REBUS-3. Three equilibrium cycle problems with recycling, without recycling and of high discharge burnup were defined and a series of sensitivity analyses were performed with a wide range of user-specified initial guesses. Test results showed that the enhanced search algorithm is able to produce a converged solution regardless of the initial guesses. In addition, it was able to reduce the number of flux calculations by a factor of 2.9, 1.8, and 1.7 for equilibrium cycle problems with recycling, without recycling, and of high discharge burnup, respectively, compared to the current search algorithm.

  8. A Reputation-based Distributed District Scheduling Algorithm for Smart Grids

    Directory of Open Access Journals (Sweden)

    D. Borra

    2015-05-01

    Full Text Available In this paper we develop and test a distributed algorithm providing Energy Consumption Schedules (ECS in smart grids for a residential district. The goal is to achieve a given aggregate load prole. The NP-hard constrained optimization problem reduces to a distributed unconstrained formulation by means of Lagrangian Relaxation technique, and a meta-heuristic algorithm based on a Quantum inspired Particle Swarm with Levy flights. A centralized iterative reputation-reward mechanism is proposed for end-users to cooperate to avoid power peaks and reduce global overload, based on random distributions simulating human behaviors and penalties on the eective ECS diering from the suggested ECS. Numerical results show the protocols eectiveness.

  9. Pareto Optimization of a Half Car Passive Suspension Model Using a Novel Multiobjective Heat Transfer Search Algorithm

    OpenAIRE

    Savsani, Vimal; Patel, Vivek; Gadhvi, Bhargav; Tawhid, Mohamed

    2017-01-01

    Most of the modern multiobjective optimization algorithms are based on the search technique of genetic algorithms; however the search techniques of other recently developed metaheuristics are emerging topics among researchers. This paper proposes a novel multiobjective optimization algorithm named multiobjective heat transfer search (MOHTS) algorithm, which is based on the search technique of heat transfer search (HTS) algorithm. MOHTS employs the elitist nondominated sorting and crowding dis...

  10. Global search in photoelectron diffraction structure determination using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Viana, M L [Departamento de Fisica, Icex, UFMG, Belo Horizonte, Minas Gerais (Brazil); Muino, R Diez [Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Soares, E A [Departamento de Fisica, Icex, UFMG, Belo Horizonte, Minas Gerais (Brazil); Hove, M A Van [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); Carvalho, V E de [Departamento de Fisica, Icex, UFMG, Belo Horizonte, Minas Gerais (Brazil)

    2007-11-07

    Photoelectron diffraction (PED) is an experimental technique widely used to perform structural determinations of solid surfaces. Similarly to low-energy electron diffraction (LEED), structural determination by PED requires a fitting procedure between the experimental intensities and theoretical results obtained through simulations. Multiple scattering has been shown to be an effective approach for making such simulations. The quality of the fit can be quantified through the so-called R-factor. Therefore, the fitting procedure is, indeed, an R-factor minimization problem. However, the topography of the R-factor as a function of the structural and non-structural surface parameters to be determined is complex, and the task of finding the global minimum becomes tough, particularly for complex structures in which many parameters have to be adjusted. In this work we investigate the applicability of the genetic algorithm (GA) global optimization method to this problem. The GA is based on the evolution of species, and makes use of concepts such as crossover, elitism and mutation to perform the search. We show results of its application in the structural determination of three different systems: the Cu(111) surface through the use of energy-scanned experimental curves; the Ag(110)-c(2 x 2)-Sb system, in which a theory-theory fit was performed; and the Ag(111) surface for which angle-scanned experimental curves were used. We conclude that the GA is a highly efficient method to search for global minima in the optimization of the parameters that best fit the experimental photoelectron diffraction intensities to the theoretical ones.

  11. Interior point algorithm-based power flow optimisation of a combined AC and DC multi-terminal grid

    Directory of Open Access Journals (Sweden)

    Farhan Beg

    2015-01-01

    Full Text Available The high cost of power electronic equipment, lower reliability and poor power handling capacity of the semiconductor devices had stalled the deployment of systems based on DC (multi-terminal direct current system (MTDC networks. The introduction of voltage source converters (VSCs for transmission has renewed the interest in the development of large interconnected grids based on both alternate current (AC and DC transmission networks. Such a grid platform also realises the added advantage of integrating the renewable energy sources into the grid. Thus a grid based on DC MTDC network is a possible solution to improve energy security and check the increasing supply demand gap. An optimal power solution for combined AC and DC grids obtained by the solution of the interior point algorithm is proposed in this study. Multi-terminal HVDC grids lie at the heart of various suggested transmission capacity increases. A significant difference is observed when MTDC grids are solved for power flows in place of conventional AC grids. This study deals with the power flow problem of a combined MTDC and an AC grid. The AC side is modelled with the full power flow equations and the VSCs are modelled using a connecting line, two generators and an AC node. The VSC and the DC losses are also considered. The optimisation focuses on several different goals. Three different scenarios are presented in an arbitrary grid network with ten AC nodes and five converter stations.

  12. Partial Transmit Sequence Optimization Using Improved Harmony Search Algorithm for PAPR Reduction in OFDM

    Directory of Open Access Journals (Sweden)

    Mangal Singh

    2017-12-01

    Full Text Available This paper considers the use of the Partial Transmit Sequence (PTS technique to reduce the Peak‐to‐Average Power Ratio (PAPR of an Orthogonal Frequency Division Multiplexing signal in wireless communication systems. Search complexity is very high in the traditional PTS scheme because it involves an extensive random search over all combinations of allowed phase vectors, and it increases exponentially with the number of phase vectors. In this paper, a suboptimal metaheuristic algorithm for phase optimization based on an improved harmony search (IHS is applied to explore the optimal combination of phase vectors that provides improved performance compared with existing evolutionary algorithms such as the harmony search algorithm and firefly algorithm. IHS enhances the accuracy and convergence rate of the conventional algorithms with very few parameters to adjust. Simulation results show that an improved harmony search‐based PTS algorithm can achieve a significant reduction in PAPR using a simple network structure compared with conventional algorithms.

  13. Application of multiple tabu search algorithm to solve dynamic economic dispatch considering generator constraints

    International Nuclear Information System (INIS)

    Pothiya, Saravuth; Ngamroo, Issarachai; Kongprawechnon, Waree

    2008-01-01

    This paper presents a new optimization technique based on a multiple tabu search algorithm (MTS) to solve the dynamic economic dispatch (ED) problem with generator constraints. In the constrained dynamic ED problem, the load demand and spinning reserve capacity as well as some practical operation constraints of generators, such as ramp rate limits and prohibited operating zone are taken into consideration. The MTS algorithm introduces additional mechanisms such as initialization, adaptive searches, multiple searches, crossover and restarting process. To show its efficiency, the MTS algorithm is applied to solve constrained dynamic ED problems of power systems with 6 and 15 units. The results obtained from the MTS algorithm are compared to those achieved from the conventional approaches, such as simulated annealing (SA), genetic algorithm (GA), tabu search (TS) algorithm and particle swarm optimization (PSO). The experimental results show that the proposed MTS algorithm approaches is able to obtain higher quality solutions efficiently and with less computational time than the conventional approaches

  14. A Variable Neighborhood Search Algorithm for the Leather Nesting Problem

    Directory of Open Access Journals (Sweden)

    Cláudio Alves

    2012-01-01

    Full Text Available The leather nesting problem is a cutting and packing optimization problem that consists in finding the best layout for a set of irregular pieces within a natural leather hide with an irregular surface and contour. In this paper, we address a real application of this problem related to the production of car seats in the automotive industry. The high quality requirements imposed on these products combined with the heterogeneity of the leather hides make the problem very complex to solve in practice. Very few results are reported in the literature for the leather nesting problem. Furthermore, the majority of the approaches impose some additional constraints to the layouts related to the particular application that is considered. In this paper, we describe a variable neighborhood search algorithm for the general leather nesting problem. To evaluate the performance of our approaches, we conducted an extensive set of computational experiments on real instances. The results of these experiments are reported at the end of the paper.

  15. A hardware-oriented concurrent TZ search algorithm for High-Efficiency Video Coding

    Science.gov (United States)

    Doan, Nghia; Kim, Tae Sung; Rhee, Chae Eun; Lee, Hyuk-Jae

    2017-12-01

    High-Efficiency Video Coding (HEVC) is the latest video coding standard, in which the compression performance is double that of its predecessor, the H.264/AVC standard, while the video quality remains unchanged. In HEVC, the test zone (TZ) search algorithm is widely used for integer motion estimation because it effectively searches the good-quality motion vector with a relatively small amount of computation. However, the complex computation structure of the TZ search algorithm makes it difficult to implement it in the hardware. This paper proposes a new integer motion estimation algorithm which is designed for hardware execution by modifying the conventional TZ search to allow parallel motion estimations of all prediction unit (PU) partitions. The algorithm consists of the three phases of zonal, raster, and refinement searches. At the beginning of each phase, the algorithm obtains the search points required by the original TZ search for all PU partitions in a coding unit (CU). Then, all redundant search points are removed prior to the estimation of the motion costs, and the best search points are then selected for all PUs. Compared to the conventional TZ search algorithm, experimental results show that the proposed algorithm significantly decreases the Bjøntegaard Delta bitrate (BD-BR) by 0.84%, and it also reduces the computational complexity by 54.54%.

  16. Finding people, papers, and posts: Vertical search algorithms and evaluation

    NARCIS (Netherlands)

    Berendsen, R.W.

    2015-01-01

    There is a growing diversity of information access applications. While general web search has been dominant in the past few decades, a wide variety of so-called vertical search tasks and applications have come to the fore. Vertical search is an often used term for search that targets specific

  17. A novel directional asymmetric sampling search algorithm for fast block-matching motion estimation

    Science.gov (United States)

    Li, Yue-e.; Wang, Qiang

    2011-11-01

    This paper proposes a novel directional asymmetric sampling search (DASS) algorithm for video compression. Making full use of the error information (block distortions) of the search patterns, eight different direction search patterns are designed for various situations. The strategy of local sampling search is employed for the search of big-motion vector. In order to further speed up the search, early termination strategy is adopted in procedure of DASS. Compared to conventional fast algorithms, the proposed method has the most satisfactory PSNR values for all test sequences.

  18. Motion Vector Estimation Using Line-Square Search Block Matching Algorithm for Video Sequences

    Directory of Open Access Journals (Sweden)

    Guo Bao-long

    2004-09-01

    Full Text Available Motion estimation and compensation techniques are widely used for video coding applications but the real-time motion estimation is not easily achieved due to its enormous computations. In this paper, a new fast motion estimation algorithm based on line search is presented, in which computation complexity is greatly reduced by using the line search strategy and a parallel search pattern. Moreover, the accurate search is achieved because the small square search pattern is used. It has a best-case scenario of only 9 search points, which is 4 search points less than the diamond search algorithm. Simulation results show that, compared with the previous techniques, the LSPS algorithm significantly reduces the computational requirements for finding motion vectors, and also produces close performance in terms of motion compensation errors.

  19. Teaching AI Search Algorithms in a Web-Based Educational System

    Science.gov (United States)

    Grivokostopoulou, Foteini; Hatzilygeroudis, Ioannis

    2013-01-01

    In this paper, we present a way of teaching AI search algorithms in a web-based adaptive educational system. Teaching is based on interactive examples and exercises. Interactive examples, which use visualized animations to present AI search algorithms in a step-by-step way with explanations, are used to make learning more attractive. Practice…

  20. Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search

    Directory of Open Access Journals (Sweden)

    Xingwang Huang

    2017-01-01

    Full Text Available Binary bat algorithm (BBA is a binary version of the bat algorithm (BA. It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO. Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima.

  1. Improved Multiobjective Harmony Search Algorithm with Application to Placement and Sizing of Distributed Generation

    Directory of Open Access Journals (Sweden)

    Wanxing Sheng

    2014-01-01

    Full Text Available To solve the comprehensive multiobjective optimization problem, this study proposes an improved metaheuristic searching algorithm with combination of harmony search and the fast nondominated sorting approach. This is a kind of the novel intelligent optimization algorithm for multiobjective harmony search (MOHS. The detailed description and the algorithm formulating are discussed. Taking the optimal placement and sizing issue of distributed generation (DG in distributed power system as one example, the solving procedure of the proposed method is given. Simulation result on modified IEEE 33-bus test system and comparison with NSGA-II algorithm has proved that the proposed MOHS can get promising results for engineering application.

  2. Dynamic Programming Algorithm for Generation of Optimal Elimination Trees for Multi-frontal Direct Solver Over H-refined Grids

    KAUST Repository

    AbouEisha, Hassan M.

    2014-06-06

    In this paper we present a dynamic programming algorithm for finding optimal elimination trees for computational grids refined towards point or edge singularities. The elimination tree is utilized to guide the multi-frontal direct solver algorithm. Thus, the criterion for the optimization of the elimination tree is the computational cost associated with the multi-frontal solver algorithm executed over such tree. We illustrate the paper with several examples of optimal trees found for grids with point, isotropic edge and anisotropic edge mixed with point singularity. We show the comparison of the execution time of the multi-frontal solver algorithm with results of MUMPS solver with METIS library, implementing the nested dissection algorithm.

  3. Optimized hyperspectral band selection using hybrid genetic algorithm and gravitational search algorithm

    Science.gov (United States)

    Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie

    2015-12-01

    The serious information redundancy in hyperspectral images (HIs) cannot contribute to the data analysis accuracy, instead it require expensive computational resources. Consequently, to identify the most useful and valuable information from the HIs, thereby improve the accuracy of data analysis, this paper proposed a novel hyperspectral band selection method using the hybrid genetic algorithm and gravitational search algorithm (GA-GSA). In the proposed method, the GA-GSA is mapped to the binary space at first. Then, the accuracy of the support vector machine (SVM) classifier and the number of selected spectral bands are utilized to measure the discriminative capability of the band subset. Finally, the band subset with the smallest number of spectral bands as well as covers the most useful and valuable information is obtained. To verify the effectiveness of the proposed method, studies conducted on an AVIRIS image against two recently proposed state-of-the-art GSA variants are presented. The experimental results revealed the superiority of the proposed method and indicated that the method can indeed considerably reduce data storage costs and efficiently identify the band subset with stable and high classification precision.

  4. Hybrid feature selection algorithm using symmetrical uncertainty and a harmony search algorithm

    Science.gov (United States)

    Salameh Shreem, Salam; Abdullah, Salwani; Nazri, Mohd Zakree Ahmad

    2016-04-01

    Microarray technology can be used as an efficient diagnostic system to recognise diseases such as tumours or to discriminate between different types of cancers in normal tissues. This technology has received increasing attention from the bioinformatics community because of its potential in designing powerful decision-making tools for cancer diagnosis. However, the presence of thousands or tens of thousands of genes affects the predictive accuracy of this technology from the perspective of classification. Thus, a key issue in microarray data is identifying or selecting the smallest possible set of genes from the input data that can achieve good predictive accuracy for classification. In this work, we propose a two-stage selection algorithm for gene selection problems in microarray data-sets called the symmetrical uncertainty filter and harmony search algorithm wrapper (SU-HSA). Experimental results show that the SU-HSA is better than HSA in isolation for all data-sets in terms of the accuracy and achieves a lower number of genes on 6 out of 10 instances. Furthermore, the comparison with state-of-the-art methods shows that our proposed approach is able to obtain 5 (out of 10) new best results in terms of the number of selected genes and competitive results in terms of the classification accuracy.

  5. Novel search algorithms for a mid-infrared spectral library of cotton contaminants.

    Science.gov (United States)

    Loudermilk, J Brian; Himmelsbach, David S; Barton, Franklin E; de Haseth, James A

    2008-06-01

    During harvest, a variety of plant based contaminants are collected along with cotton lint. The USDA previously created a mid-infrared, attenuated total reflection (ATR), Fourier transform infrared (FT-IR) spectral library of cotton contaminants for contaminant identification as the contaminants have negative impacts on yarn quality. This library has shown impressive identification rates for extremely similar cellulose based contaminants in cases where the library was representative of the samples searched. When spectra of contaminant samples from crops grown in different geographic locations, seasons, and conditions and measured with a different spectrometer and accessories were searched, identification rates for standard search algorithms decreased significantly. Six standard algorithms were examined: dot product, correlation, sum of absolute values of differences, sum of the square root of the absolute values of differences, sum of absolute values of differences of derivatives, and sum of squared differences of derivatives. Four categories of contaminants derived from cotton plants were considered: leaf, stem, seed coat, and hull. Experiments revealed that the performance of the standard search algorithms depended upon the category of sample being searched and that different algorithms provided complementary information about sample identity. These results indicated that choosing a single standard algorithm to search the library was not possible. Three voting scheme algorithms based on result frequency, result rank, category frequency, or a combination of these factors for the results returned by the standard algorithms were developed and tested for their capability to overcome the unpredictability of the standard algorithms' performances. The group voting scheme search was based on the number of spectra from each category of samples represented in the library returned in the top ten results of the standard algorithms. This group algorithm was able to identify

  6. Algorithm of search and track of static and moving large-scale objects

    Directory of Open Access Journals (Sweden)

    Kalyaev Anatoly

    2017-01-01

    Full Text Available We suggest an algorithm for processing of a sequence, which contains images of search and track of static and moving large-scale objects. The possible software implementation of the algorithm, based on multithread CUDA processing, is suggested. Experimental analysis of the suggested algorithm implementation is performed.

  7. An Educational System for Learning Search Algorithms and Automatically Assessing Student Performance

    Science.gov (United States)

    Grivokostopoulou, Foteini; Perikos, Isidoros; Hatzilygeroudis, Ioannis

    2017-01-01

    In this paper, first we present an educational system that assists students in learning and tutors in teaching search algorithms, an artificial intelligence topic. Learning is achieved through a wide range of learning activities. Algorithm visualizations demonstrate the operational functionality of algorithms according to the principles of active…

  8. MAPCUMBA: A fast iterative multi-grid map-making algorithm for CMB experiments

    Science.gov (United States)

    Doré, O.; Teyssier, R.; Bouchet, F. R.; Vibert, D.; Prunet, S.

    2001-07-01

    The data analysis of current Cosmic Microwave Background (CMB) experiments like BOOMERanG or MAXIMA poses severe challenges which already stretch the limits of current (super-) computer capabilities, if brute force methods are used. In this paper we present a practical solution for the optimal map making problem which can be used directly for next generation CMB experiments like ARCHEOPS and TopHat, and can probably be extended relatively easily to the full PLANCK case. This solution is based on an iterative multi-grid Jacobi algorithm which is both fast and memory sparing. Indeed, if there are Ntod data points along the one dimensional timeline to analyse, the number of operations is of O (Ntod \\ln Ntod) and the memory requirement is O (Ntod). Timing and accuracy issues have been analysed on simulated ARCHEOPS and TopHat data, and we discuss as well the issue of the joint evaluation of the signal and noise statistical properties.

  9. Accuracy of an unstructured-grid upwind-Euler algorithm for the ONERA M6 wing

    Science.gov (United States)

    Batina, John T.

    1991-01-01

    Improved algorithms for the solution of the three-dimensional, time-dependent Euler equations are presented for aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured-grid flow solvers. The spatial discretization involves a flux-split approach that is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves either an explicit time-integration scheme using a multistage Runge-Kutta procedure or an implicit time-integration scheme using a Gauss-Seidel relaxation procedure, which is computationally efficient for either steady or unsteady flow problems. With the implicit Gauss-Seidel procedure, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady flow results are presented for both the NACA 0012 airfoil and the Office National d'Etudes et de Recherches Aerospatiales M6 wing to demonstrate applications of the new Euler solvers. The paper presents a description of the Euler solvers along with results and comparisons that assess the capability.

  10. Penentuan Posisi Hiposenter Gempabumi dengan Menggunakan Metoda Guided Grid Search dan Model Struktur Kecepatan Tiga Dimensi

    Directory of Open Access Journals (Sweden)

    Hendro Nugroho

    2014-04-01

    Full Text Available Salah satu penelitian ilmu kebumian yang perlu dilakukan untuk membantu upaya mitigasi bencana gempabumi adalah menentukan pusat gempa dengan presisi tinggi. Dalam hal ini ketelitian sangat diperlukan oleh karena adanya heterogenitas materi bumi yang dilewati gelombang gempa dari hiposenter ke stasiun pencatat. Oleh karena itu dengan bantuan model geotomografi (model struktur 3D kecepatan rambat gelombang gempa diharapkan akan dapat diperoleh posisi sumber gempa yang lebih baik. Untuk studi ini daerah penelitian yang diambil adalah Jawa dan sekitarnya, yaitu : 7° LS - 11° LS dan 105° BT - 114° BT. Data yang digunakan adalah waktu tiba gelombang P dari seismogram yang direkam pada seismograf broadband di Indonesia. Penentuan hiposenter menggunakan metoda guided grid search dengan model kecepatan 3D untuk busur Sunda. Hasil penentuan hiposenter gempa dengan pendekatan ini memberikan tingkat kesalahan yang lebih kecil dibandingkan dengan jika digunakan model kecepatan 1D.

  11. Effects of systematic phase errors on optimized quantum random-walk search algorithm

    International Nuclear Information System (INIS)

    Zhang Yu-Chao; Bao Wan-Su; Wang Xiang; Fu Xiang-Qun

    2015-01-01

    This study investigates the effects of systematic errors in phase inversions on the success rate and number of iterations in the optimized quantum random-walk search algorithm. Using the geometric description of this algorithm, a model of the algorithm with phase errors is established, and the relationship between the success rate of the algorithm, the database size, the number of iterations, and the phase error is determined. For a given database size, we obtain both the maximum success rate of the algorithm and the required number of iterations when phase errors are present in the algorithm. Analyses and numerical simulations show that the optimized quantum random-walk search algorithm is more robust against phase errors than Grover’s algorithm. (paper)

  12. A Hybrid Symbiotic Organisms Search Algorithm with Variable Neighbourhood Search for Solving Symmetric and Asymmetric Traveling Salesman Problem

    Science.gov (United States)

    Umam, M. I. H.; Santosa, B.

    2018-04-01

    Combinatorial optimization has been frequently used to solve both problems in science, engineering, and commercial applications. One combinatorial problems in the field of transportation is to find a shortest travel route that can be taken from the initial point of departure to point of destination, as well as minimizing travel costs and travel time. When the distance from one (initial) node to another (destination) node is the same with the distance to travel back from destination to initial, this problems known to the Traveling Salesman Problem (TSP), otherwise it call as an Asymmetric Traveling Salesman Problem (ATSP). The most recent optimization techniques is Symbiotic Organisms Search (SOS). This paper discuss how to hybrid the SOS algorithm with variable neighborhoods search (SOS-VNS) that can be applied to solve the ATSP problem. The proposed mechanism to add the variable neighborhoods search as a local search is to generate the better initial solution and then we modify the phase of parasites with adapting mechanism of mutation. After modification, the performance of the algorithm SOS-VNS is evaluated with several data sets and then the results is compared with the best known solution and some algorithm such PSO algorithm and SOS original algorithm. The SOS-VNS algorithm shows better results based on convergence, divergence and computing time.

  13. Investigation on the improvement of genetic algorithm for PWR loading pattern search and its benchmark verification

    International Nuclear Information System (INIS)

    Li Qianqian; Jiang Xiaofeng; Zhang Shaohong

    2009-01-01

    In this study, the age technique, the concepts of relativeness degree and worth function are exploited to improve the performance of genetic algorithm (GA) for PWR loading pattern search. Among them, the age technique endows the algorithm be capable of learning from previous search 'experience' and guides it to do a better search in the vicinity ora local optimal; the introduction of the relativeness degree checks the relativeness of two loading patterns before performing crossover between them, which can significantly reduce the possibility of prematurity of the algorithm; while the application of the worth function makes the algorithm be capable of generating new loading patterns based on the statistics of common features of evaluated good loading patterns. Numerical verification against a loading pattern search benchmark problem ora two-loop reactor demonstrates that the adoption of these techniques is able to significantly enhance the efficiency of the genetic algorithm while improves the quality of the final solution as well. (authors)

  14. Success rate and entanglement measure in Grover's search algorithm for certain kinds of four qubit states

    International Nuclear Information System (INIS)

    Chamoli, Arti; Bhandari, C.M.

    2005-01-01

    Entanglement plays a crucial role in the efficacy of quantum algorithms. Whereas the role of entanglement is quite obvious and conspicuous in teleportation and superdense coding, it is not so distinct in other situations such as in search algorithm. The starting state in Grover's search algorithm is supposedly a uniform superposition state (not entangled) with a success probability around unity. An operational entanglement measure has been defined and investigated analytically for two qubit states [O. Biham, M.A. Neilsen, T. Osborne, Phys. Rev. A 65 (2002) 062312, Y. Shimoni, D. Shapira, O. Biham, Phys. Rev. A 69 (2004) 062303] seeking a relationship with the success rate of search algorithm. This Letter examines the success rate of search algorithm for various four-qubit states. Analytic expressions for the same have been worked out which can provide the success rate and entanglement measure for certain kinds of four qubit input states

  15. Search and optimization by metaheuristics techniques and algorithms inspired by nature

    CERN Document Server

    Du, Ke-Lin

    2016-01-01

    This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computin...

  16. Energy Link Optimization in a Wireless Power Transfer Grid under Energy Autonomy Based on the Improved Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zhihao Zhao

    2016-08-01

    Full Text Available In this paper, an optimization method is proposed for the energy link in a wireless power transfer grid, which is a regional smart microgrid comprised of distributed devices equipped with wireless power transfer technology in a certain area. The relevant optimization model of the energy link is established by considering the wireless power transfer characteristics and the grid characteristics brought in by the device repeaters. Then, a concentration adaptive genetic algorithm (CAGA is proposed to optimize the energy link. The algorithm avoided the unification trend by introducing the concentration mechanism and a new crossover method named forward order crossover, as well as the adaptive parameter mechanism, which are utilized together to keep the diversity of the optimization solution groups. The results show that CAGA is feasible and competitive for the energy link optimization in different situations. This proposed algorithm performs better than its counterparts in the global convergence ability and the algorithm robustness.

  17. Genetic local search algorithm for optimization design of diffractive optical elements.

    Science.gov (United States)

    Zhou, G; Chen, Y; Wang, Z; Song, H

    1999-07-10

    We propose a genetic local search algorithm (GLSA) for the optimization design of diffractive optical elements (DOE's). This hybrid algorithm incorporates advantages of both genetic algorithm (GA) and local search techniques. It appears better able to locate the global minimum compared with a canonical GA. Sample cases investigated here include the optimization design of binary-phase Dammann gratings, continuous surface-relief grating array generators, and a uniform top-hat focal plane intensity profile generator. Two GLSA's whose incorporated local search techniques are the hill-climbing method and the simulated annealing algorithm are investigated. Numerical experimental results demonstrate that the proposed algorithm is highly efficient and robust. DOE's that have high diffraction efficiency and excellent uniformity can be achieved by use of the algorithm we propose.

  18. Pattern Nulling of Linear Antenna Arrays Using Backtracking Search Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Kerim Guney

    2015-01-01

    Full Text Available An evolutionary method based on backtracking search optimization algorithm (BSA is proposed for linear antenna array pattern synthesis with prescribed nulls at interference directions. Pattern nulling is obtained by controlling only the amplitude, position, and phase of the antenna array elements. BSA is an innovative metaheuristic technique based on an iterative process. Various numerical examples of linear array patterns with the prescribed single, multiple, and wide nulls are given to illustrate the performance and flexibility of BSA. The results obtained by BSA are compared with the results of the following seventeen algorithms: particle swarm optimization (PSO, genetic algorithm (GA, modified touring ant colony algorithm (MTACO, quadratic programming method (QPM, bacterial foraging algorithm (BFA, bees algorithm (BA, clonal selection algorithm (CLONALG, plant growth simulation algorithm (PGSA, tabu search algorithm (TSA, memetic algorithm (MA, nondominated sorting GA-2 (NSGA-2, multiobjective differential evolution (MODE, decomposition with differential evolution (MOEA/D-DE, comprehensive learning PSO (CLPSO, harmony search algorithm (HSA, seeker optimization algorithm (SOA, and mean variance mapping optimization (MVMO. The simulation results show that the linear antenna array synthesis using BSA provides low side-lobe levels and deep null levels.

  19. Dynamic Harmony Search with Polynomial Mutation Algorithm for Valve-Point Economic Load Dispatch

    Directory of Open Access Journals (Sweden)

    M. Karthikeyan

    2015-01-01

    mutation (DHSPM algorithm to solve ORPD problem. In DHSPM algorithm the key parameters of HS algorithm like harmony memory considering rate (HMCR and pitch adjusting rate (PAR are changed dynamically and there is no need to predefine these parameters. Additionally polynomial mutation is inserted in the updating step of HS algorithm to favor exploration and exploitation of the search space. The DHSPM algorithm is tested with three power system cases consisting of 3, 13, and 40 thermal units. The computational results show that the DHSPM algorithm is more effective in finding better solutions than other computational intelligence based methods.

  20. Numerical Algorithms for Personalized Search in Self-organizing Information Networks

    CERN Document Server

    Kamvar, Sep

    2010-01-01

    This book lays out the theoretical groundwork for personalized search and reputation management, both on the Web and in peer-to-peer and social networks. Representing much of the foundational research in this field, the book develops scalable algorithms that exploit the graphlike properties underlying personalized search and reputation management, and delves into realistic scenarios regarding Web-scale data. Sep Kamvar focuses on eigenvector-based techniques in Web search, introducing a personalized variant of Google's PageRank algorithm, and he outlines algorithms--such as the now-famous quad

  1. Experimental implementation of a quantum random-walk search algorithm using strongly dipolar coupled spins

    International Nuclear Information System (INIS)

    Lu Dawei; Peng Xinhua; Du Jiangfeng; Zhu Jing; Zou Ping; Yu Yihua; Zhang Shanmin; Chen Qun

    2010-01-01

    An important quantum search algorithm based on the quantum random walk performs an oracle search on a database of N items with O(√(phN)) calls, yielding a speedup similar to the Grover quantum search algorithm. The algorithm was implemented on a quantum information processor of three-qubit liquid-crystal nuclear magnetic resonance (NMR) in the case of finding 1 out of 4, and the diagonal elements' tomography of all the final density matrices was completed with comprehensible one-dimensional NMR spectra. The experimental results agree well with the theoretical predictions.

  2. Recombination of the steering vector of the triangle grid array in quaternions and the reduction of the MUSIC algorithm

    Science.gov (United States)

    Bai, Chen; Han, Dongjuan

    2018-04-01

    MUSIC is widely used on DOA estimation. Triangle grid is a common kind of the arrangement of array, but it is more complicated than rectangular array in calculation of steering vector. In this paper, the quaternions algorithm can reduce dimension of vector and make the calculation easier.

  3. An Adaptive Large Neighborhood Search Algorithm for the Resource-constrained Project Scheduling Problem

    DEFF Research Database (Denmark)

    Muller, Laurent Flindt

    2009-01-01

    We present an application of an Adaptive Large Neighborhood Search (ALNS) algorithm to the Resource-constrained Project Scheduling Problem (RCPSP). The ALNS framework was first proposed by Pisinger and Røpke [19] and can be described as a large neighborhood search algorithm with an adaptive layer......, where a set of destroy/repair neighborhoods compete to modify the current solution in each iteration of the algorithm. Experiments are performed on the wellknown J30, J60 and J120 benchmark instances, which show that the proposed algorithm is competitive and confirms the strength of the ALNS framework...

  4. Development of Flexible Active Power Control Strategies for Grid-Connected Photovoltaic Inverters by Modifying MPPT Algorithms

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    As the penetration level of grid-connected PV systems increases, more advanced control functionality is demanded. In order to ensure smooth and friendly grid integration as well as enable more PV installations, the power generated by PV systems needs to be flexible and capable of: 1) limiting...... strategies for grid-connected PV inverters by modifying maximum power point tracking algorithms, where the PV power is regulated by changing the operating point of the PV system. In this way, no extra equipment is needed, being a cost-effective solution. Experiments on a 3-kW grid-connected PV system have...... the maximum feed-in power, 2) ensuring a smooth change rate, and 3) providing a power reserve. Besides, such flexible power control functionalities have to be achieved in a cost-effective way in order to ensure the competitiveness of solar energy. Therefore, this paper explores flexible active power control...

  5. Hybrid fuzzy charged system search algorithm based state estimation in distribution networks

    Directory of Open Access Journals (Sweden)

    Sachidananda Prasad

    2017-06-01

    Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.

  6. Intermediate view reconstruction using adaptive disparity search algorithm for real-time 3D processing

    Science.gov (United States)

    Bae, Kyung-hoon; Park, Changhan; Kim, Eun-soo

    2008-03-01

    In this paper, intermediate view reconstruction (IVR) using adaptive disparity search algorithm (ASDA) is for realtime 3-dimensional (3D) processing proposed. The proposed algorithm can reduce processing time of disparity estimation by selecting adaptive disparity search range. Also, the proposed algorithm can increase the quality of the 3D imaging. That is, by adaptively predicting the mutual correlation between stereo images pair using the proposed algorithm, the bandwidth of stereo input images pair can be compressed to the level of a conventional 2D image and a predicted image also can be effectively reconstructed using a reference image and disparity vectors. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm improves the PSNRs of a reconstructed image to about 4.8 dB by comparing with that of conventional algorithms, and reduces the Synthesizing time of a reconstructed image to about 7.02 sec by comparing with that of conventional algorithms.

  7. Hybrid Artificial Bee Colony Algorithm and Particle Swarm Search for Global Optimization

    Directory of Open Access Journals (Sweden)

    Wang Chun-Feng

    2014-01-01

    Full Text Available Artificial bee colony (ABC algorithm is one of the most recent swarm intelligence based algorithms, which has been shown to be competitive to other population-based algorithms. However, there is still an insufficiency in ABC regarding its solution search equation, which is good at exploration but poor at exploitation. To overcome this problem, we propose a novel artificial bee colony algorithm based on particle swarm search mechanism. In this algorithm, for improving the convergence speed, the initial population is generated by using good point set theory rather than random selection firstly. Secondly, in order to enhance the exploitation ability, the employed bee, onlookers, and scouts utilize the mechanism of PSO to search new candidate solutions. Finally, for further improving the searching ability, the chaotic search operator is adopted in the best solution of the current iteration. Our algorithm is tested on some well-known benchmark functions and compared with other algorithms. Results show that our algorithm has good performance.

  8. Search algorithms as a framework for the optimization of drug combinations.

    Directory of Open Access Journals (Sweden)

    Diego Calzolari

    2008-12-01

    Full Text Available Combination therapies are often needed for effective clinical outcomes in the management of complex diseases, but presently they are generally based on empirical clinical experience. Here we suggest a novel application of search algorithms -- originally developed for digital communication -- modified to optimize combinations of therapeutic interventions. In biological experiments measuring the restoration of the decline with age in heart function and exercise capacity in Drosophila melanogaster, we found that search algorithms correctly identified optimal combinations of four drugs using only one-third of the tests performed in a fully factorial search. In experiments identifying combinations of three doses of up to six drugs for selective killing of human cancer cells, search algorithms resulted in a highly significant enrichment of selective combinations compared with random searches. In simulations using a network model of cell death, we found that the search algorithms identified the optimal combinations of 6-9 interventions in 80-90% of tests, compared with 15-30% for an equivalent random search. These findings suggest that modified search algorithms from information theory have the potential to enhance the discovery of novel therapeutic drug combinations. This report also helps to frame a biomedical problem that will benefit from an interdisciplinary effort and suggests a general strategy for its solution.

  9. State-of-the-Art Review on Relevance of Genetic Algorithm to Internet Web Search

    Directory of Open Access Journals (Sweden)

    Kehinde Agbele

    2012-01-01

    Full Text Available People use search engines to find information they desire with the aim that their information needs will be met. Information retrieval (IR is a field that is concerned primarily with the searching and retrieving of information in the documents and also searching the search engine, online databases, and Internet. Genetic algorithms (GAs are robust, efficient, and optimizated methods in a wide area of search problems motivated by Darwin’s principles of natural selection and survival of the fittest. This paper describes information retrieval systems (IRS components. This paper looks at how GAs can be applied in the field of IR and specifically the relevance of genetic algorithms to internet web search. Finally, from the proposals surveyed it turns out that GA is applied to diverse problem fields of internet web search.

  10. Model Justified Search Algorithms for Scheduling Under Uncertainty

    National Research Council Canada - National Science Library

    Howe, Adele; Whitley, L. D

    2008-01-01

    .... We also identified plateaus as a significant barrier to superb performance of local search on scheduling and have studied several canonical discrete optimization problems to discover and model the nature of plateaus...

  11. Verification of Single-Peptide Protein Identifications by the Application of Complementary Database Search Algorithms

    National Research Council Canada - National Science Library

    Rohrbough, James G; Breci, Linda; Merchant, Nirav; Miller, Susan; Haynes, Paul A

    2005-01-01

    .... One such technique, known as the Multi-Dimensional Protein Identification Technique, or MudPIT, involves the use of computer search algorithms that automate the process of identifying proteins...

  12. An Efficient VQ Codebook Search Algorithm Applied to AMR-WB Speech Coding

    Directory of Open Access Journals (Sweden)

    Cheng-Yu Yeh

    2017-04-01

    Full Text Available The adaptive multi-rate wideband (AMR-WB speech codec is widely used in modern mobile communication systems for high speech quality in handheld devices. Nonetheless, a major disadvantage is that vector quantization (VQ of immittance spectral frequency (ISF coefficients takes a considerable computational load in the AMR-WB coding. Accordingly, a binary search space-structured VQ (BSS-VQ algorithm is adopted to efficiently reduce the complexity of ISF quantization in AMR-WB. This search algorithm is done through a fast locating technique combined with lookup tables, such that an input vector is efficiently assigned to a subspace where relatively few codeword searches are required to be executed. In terms of overall search performance, this work is experimentally validated as a superior search algorithm relative to a multiple triangular inequality elimination (MTIE, a TIE with dynamic and intersection mechanisms (DI-TIE, and an equal-average equal-variance equal-norm nearest neighbor search (EEENNS approach. With a full search algorithm as a benchmark for overall search load comparison, this work provides an 87% search load reduction at a threshold of quantization accuracy of 0.96, a figure far beyond 55% in the MTIE, 76% in the EEENNS approach, and 83% in the DI-TIE approach.

  13. A Hybrid Forecasting Model Based on Empirical Mode Decomposition and the Cuckoo Search Algorithm: A Case Study for Power Load

    Directory of Open Access Journals (Sweden)

    Jiani Heng

    2016-01-01

    Full Text Available Power load forecasting always plays a considerable role in the management of a power system, as accurate forecasting provides a guarantee for the daily operation of the power grid. It has been widely demonstrated in forecasting that hybrid forecasts can improve forecast performance compared with individual forecasts. In this paper, a hybrid forecasting approach, comprising Empirical Mode Decomposition, CSA (Cuckoo Search Algorithm, and WNN (Wavelet Neural Network, is proposed. This approach constructs a more valid forecasting structure and more stable results than traditional ANN (Artificial Neural Network models such as BPNN (Back Propagation Neural Network, GABPNN (Back Propagation Neural Network Optimized by Genetic Algorithm, and WNN. To evaluate the forecasting performance of the proposed model, a half-hourly power load in New South Wales of Australia is used as a case study in this paper. The experimental results demonstrate that the proposed hybrid model is not only simple but also able to satisfactorily approximate the actual power load and can be an effective tool in planning and dispatch for smart grids.

  14. Kernel Clustering with a Differential Harmony Search Algorithm for Scheme Classification

    Directory of Open Access Journals (Sweden)

    Yu Feng

    2017-01-01

    Full Text Available This paper presents a kernel fuzzy clustering with a novel differential harmony search algorithm to coordinate with the diversion scheduling scheme classification. First, we employed a self-adaptive solution generation strategy and differential evolution-based population update strategy to improve the classical harmony search. Second, we applied the differential harmony search algorithm to the kernel fuzzy clustering to help the clustering method obtain better solutions. Finally, the combination of the kernel fuzzy clustering and the differential harmony search is applied for water diversion scheduling in East Lake. A comparison of the proposed method with other methods has been carried out. The results show that the kernel clustering with the differential harmony search algorithm has good performance to cooperate with the water diversion scheduling problems.

  15. Object Detection and Tracking using Modified Diamond Search Block Matching Motion Estimation Algorithm

    Directory of Open Access Journals (Sweden)

    Apurva Samdurkar

    2018-06-01

    Full Text Available Object tracking is one of the main fields within computer vision. Amongst various methods/ approaches for object detection and tracking, the background subtraction approach makes the detection of object easier. To the detected object, apply the proposed block matching algorithm for generating the motion vectors. The existing diamond search (DS and cross diamond search algorithms (CDS are studied and experiments are carried out on various standard video data sets and user defined data sets. Based on the study and analysis of these two existing algorithms a modified diamond search pattern (MDS algorithm is proposed using small diamond shape search pattern in initial step and large diamond shape (LDS in further steps for motion estimation. The initial search pattern consists of five points in small diamond shape pattern and gradually grows into a large diamond shape pattern, based on the point with minimum cost function. The algorithm ends with the small shape pattern at last. The proposed MDS algorithm finds the smaller motion vectors and fewer searching points than the existing DS and CDS algorithms. Further, object detection is carried out by using background subtraction approach and finally, MDS motion estimation algorithm is used for tracking the object in color video sequences. The experiments are carried out by using different video data sets containing a single object. The results are evaluated and compared by using the evaluation parameters like average searching points per frame and average computational time per frame. The experimental results show that the MDS performs better than DS and CDS on average search point and average computation time.

  16. An algorithm for reduction of extracted power from photovoltaic strings in grid-tied photovoltaic power plants during voltage sags

    DEFF Research Database (Denmark)

    Tafti, Hossein Dehghani; Maswood, Ali Iftekhar; Pou, Josep

    2016-01-01

    strings should be reduced during voltage sags. In this paper, an algorithm is proposed for determining the reference voltage of the PV string which results in a reduction of the output power to a certain amount. The proposed algorithm calculates the reference voltage for the dc/dc converter controller......, based on the characteristics of the power-voltage curve of the PV string and therefore, no modification is required in the the controller of the dc/dc converter. Simulation results on a 50-kW PV string verified the effectiveness of the proposed algorithm in reducing the power from PV strings under......Due to the high penetration of the installed distributed generation units in the power system, the injection of reactive power is required for the medium-scale and large-scale grid-connected photovoltaic power plants (PVPPs). Because of the current limitation of the grid-connected inverter...

  17. A novel algorithm for incompressible flow using only a coarse grid projection

    KAUST Repository

    Lentine, Michael; Zheng, Wen; Fedkiw, Ronald

    2010-01-01

    Large scale fluid simulation can be difficult using existing techniques due to the high computational cost of using large grids. We present a novel technique for simulating detailed fluids quickly. Our technique coarsens the Eulerian fluid grid

  18. Parallel algorithms for unconstrained optimization by multisplitting with inexact subspace search - the abstract

    Energy Technology Data Exchange (ETDEWEB)

    Renaut, R.; He, Q. [Arizona State Univ., Tempe, AZ (United States)

    1994-12-31

    In a new parallel iterative algorithm for unconstrained optimization by multisplitting is proposed. In this algorithm the original problem is split into a set of small optimization subproblems which are solved using well known sequential algorithms. These algorithms are iterative in nature, e.g. DFP variable metric method. Here the authors use sequential algorithms based on an inexact subspace search, which is an extension to the usual idea of an inexact fine search. Essentially the idea of the inexact line search for nonlinear minimization is that at each iteration the authors only find an approximate minimum in the line search direction. Hence by inexact subspace search, they mean that, instead of finding the minimum of the subproblem at each interation, they do an incomplete down hill search to give an approximate minimum. Some convergence and numerical results for this algorithm will be presented. Further, the original theory will be generalized to the situation with a singular Hessian. Applications for nonlinear least squares problems will be presented. Experimental results will be presented for implementations on an Intel iPSC/860 Hypercube with 64 nodes as well as on the Intel Paragon.

  19. Search for 'Little Higgs' and reconstruction algorithms developments in Atlas

    International Nuclear Information System (INIS)

    Rousseau, D.

    2007-05-01

    This document summarizes developments of framework and reconstruction algorithms for the ATLAS detector at the LHC. A library of reconstruction algorithms has been developed in a more and more complex environment. The reconstruction software originally designed on an optimistic Monte-Carlo simulation, has been confronted with a more detailed 'as-built' simulation. The 'Little Higgs' is an effective theory which can be taken for granted, or as an opportunity to study heavy resonances. In several cases, these resonances can be detected in original channels like tZ, ZH or WH. (author)

  20. Calculation of earthquake rupture histories using a hybrid global search algorithm: Application to the 1992 Landers, California, earthquake

    Science.gov (United States)

    Hartzell, S.; Liu, P.

    1996-01-01

    A method is presented for the simultaneous calculation of slip amplitudes and rupture times for a finite fault using a hybrid global search algorithm. The method we use combines simulated annealing with the downhill simplex method to produce a more efficient search algorithm then either of the two constituent parts. This formulation has advantages over traditional iterative or linearized approaches to the problem because it is able to escape local minima in its search through model space for the global optimum. We apply this global search method to the calculation of the rupture history for the Landers, California, earthquake. The rupture is modeled using three separate finite-fault planes to represent the three main fault segments that failed during this earthquake. Both the slip amplitude and the time of slip are calculated for a grid work of subfaults. The data used consist of digital, teleseismic P and SH body waves. Long-period, broadband, and short-period records are utilized to obtain a wideband characterization of the source. The results of the global search inversion are compared with a more traditional linear-least-squares inversion for only slip amplitudes. We use a multi-time-window linear analysis to relax the constraints on rupture time and rise time in the least-squares inversion. Both inversions produce similar slip distributions, although the linear-least-squares solution has a 10% larger moment (7.3 ?? 1026 dyne-cm compared with 6.6 ?? 1026 dyne-cm). Both inversions fit the data equally well and point out the importance of (1) using a parameterization with sufficient spatial and temporal flexibility to encompass likely complexities in the rupture process, (2) including suitable physically based constraints on the inversion to reduce instabilities in the solution, and (3) focusing on those robust rupture characteristics that rise above the details of the parameterization and data set.

  1. Data classification using metaheuristic Cuckoo Search technique for Levenberg Marquardt back propagation (CSLM) algorithm

    Science.gov (United States)

    Nawi, Nazri Mohd.; Khan, Abdullah; Rehman, M. Z.

    2015-05-01

    A nature inspired behavior metaheuristic techniques which provide derivative-free solutions to solve complex problems. One of the latest additions to the group of nature inspired optimization procedure is Cuckoo Search (CS) algorithm. Artificial Neural Network (ANN) training is an optimization task since it is desired to find optimal weight set of a neural network in training process. Traditional training algorithms have some limitation such as getting trapped in local minima and slow convergence rate. This study proposed a new technique CSLM by combining the best features of two known algorithms back-propagation (BP) and Levenberg Marquardt algorithm (LM) for improving the convergence speed of ANN training and avoiding local minima problem by training this network. Some selected benchmark classification datasets are used for simulation. The experiment result show that the proposed cuckoo search with Levenberg Marquardt algorithm has better performance than other algorithm used in this study.

  2. An improved version of Inverse Distance Weighting metamodel assisted Harmony Search algorithm for truss design optimization

    Directory of Open Access Journals (Sweden)

    Y. Gholipour

    Full Text Available This paper focuses on a metamodel-based design optimization algorithm. The intention is to improve its computational cost and convergence rate. Metamodel-based optimization method introduced here, provides the necessary means to reduce the computational cost and convergence rate of the optimization through a surrogate. This algorithm is a combination of a high quality approximation technique called Inverse Distance Weighting and a meta-heuristic algorithm called Harmony Search. The outcome is then polished by a semi-tabu search algorithm. This algorithm adopts a filtering system and determines solution vectors where exact simulation should be applied. The performance of the algorithm is evaluated by standard truss design problems and there has been a significant decrease in the computational effort and improvement of convergence rate.

  3. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm

    Directory of Open Access Journals (Sweden)

    Zhihua Zhang

    2016-01-01

    Full Text Available Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO. Rechenberg’s 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter.

  4. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm.

    Science.gov (United States)

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter.

  5. On the use of harmony search algorithm in the training of wavelet neural networks

    Science.gov (United States)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2015-10-01

    Wavelet neural networks (WNNs) are a class of feedforward neural networks that have been used in a wide range of industrial and engineering applications to model the complex relationships between the given inputs and outputs. The training of WNNs involves the configuration of the weight values between neurons. The backpropagation training algorithm, which is a gradient-descent method, can be used for this training purpose. Nonetheless, the solutions found by this algorithm often get trapped at local minima. In this paper, a harmony search-based algorithm is proposed for the training of WNNs. The training of WNNs, thus can be formulated as a continuous optimization problem, where the objective is to maximize the overall classification accuracy. Each candidate solution proposed by the harmony search algorithm represents a specific WNN architecture. In order to speed up the training process, the solution space is divided into disjoint partitions during the random initialization step of harmony search algorithm. The proposed training algorithm is tested onthree benchmark problems from the UCI machine learning repository, as well as one real life application, namely, the classification of electroencephalography signals in the task of epileptic seizure detection. The results obtained show that the proposed algorithm outperforms the traditional harmony search algorithm in terms of overall classification accuracy.

  6. A Teaching Approach from the Exhaustive Search Method to the Needleman-Wunsch Algorithm

    Science.gov (United States)

    Xu, Zhongneng; Yang, Yayun; Huang, Beibei

    2017-01-01

    The Needleman-Wunsch algorithm has become one of the core algorithms in bioinformatics; however, this programming requires more suitable explanations for students with different major backgrounds. In supposing sample sequences and using a simple store system, the connection between the exhaustive search method and the Needleman-Wunsch algorithm…

  7. A solution to energy and environmental problems of electric power system using hybrid harmony search-random search optimization algorithm

    Directory of Open Access Journals (Sweden)

    Vikram Kumar Kamboj

    2016-04-01

    Full Text Available In recent years, global warming and carbon dioxide (CO2 emission reduction have become important issues in India, as CO2 emission levels are continuing to rise in accordance with the increased volume of Indian national energy consumption under the pressure of global warming, it is crucial for Indian government to impose the effective policy to promote CO2 emission reduction. Challenge of supplying the nation with high quality and reliable electrical energy at a reasonable cost, converted government policy into deregulation and restructuring environment. This research paper presents aims to presents an effective solution for energy and environmental problems of electric power using an efficient and powerful hybrid optimization algorithm: Hybrid Harmony search-random search algorithm. The proposed algorithm is tested for standard IEEE-14 bus, -30 bus and -56 bus system. The effectiveness of proposed hybrid algorithm is compared with others well known evolutionary, heuristics and meta-heuristics search algorithms. For multi-objective unit commitment, it is found that as there are conflicting relationship between cost and emission, if the performance in cost criterion is improved, performance in the emission is seen to deteriorate.

  8. Nearby Search Indekos Based Android Using A Star (A*) Algorithm

    Science.gov (United States)

    Siregar, B.; Nababan, EB; Rumahorbo, JA; Andayani, U.; Fahmi, F.

    2018-03-01

    Indekos or rented room is a temporary residence for months or years. Society of academicians who come from out of town need a temporary residence, such as Indekos or rented room during their education, teaching, or duties. They are often found difficulty in finding a Indekos because lack of information about the Indekos. Besides, new society of academicians don’t recognize the areas around the campus and desire the shortest path from Indekos to get to the campus. The problem can be solved by implementing A Star (A*) algorithm. This algorithm is one of the shortest path algorithm to a finding shortest path from campus to the Indekos application, where the faculties in the campus as the starting point of the finding. Determination of the starting point used in this study aims to allow students to determine the starting point in finding the Indekos. The mobile based application facilitates the finding anytime and anywhere. Based on the experimental results, A* algorithm can find the shortest path with 86,67% accuracy.

  9. New Search Space Reduction Algorithm for Vertical Reference Trajectory Optimization

    Directory of Open Access Journals (Sweden)

    Alejandro MURRIETA-MENDOZA

    2016-06-01

    Full Text Available Burning the fuel required to sustain a given flight releases pollution such as carbon dioxide and nitrogen oxides, and the amount of fuel consumed is also a significant expense for airlines. It is desirable to reduce fuel consumption to reduce both pollution and flight costs. To increase fuel savings in a given flight, one option is to compute the most economical vertical reference trajectory (or flight plan. A deterministic algorithm was developed using a numerical aircraft performance model to determine the most economical vertical flight profile considering take-off weight, flight distance, step climb and weather conditions. This algorithm is based on linear interpolations of the performance model using the Lagrange interpolation method. The algorithm downloads the latest available forecast from Environment Canada according to the departure date and flight coordinates, and calculates the optimal trajectory taking into account the effects of wind and temperature. Techniques to avoid unnecessary calculations are implemented to reduce the computation time. The costs of the reference trajectories proposed by the algorithm are compared with the costs of the reference trajectories proposed by a commercial flight management system using the fuel consumption estimated by the FlightSim® simulator made by Presagis®.

  10. Self-adaptive global best harmony search algorithm applied to reactor core fuel management optimization

    International Nuclear Information System (INIS)

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.; Valavi, K.

    2013-01-01

    Highlights: • SGHS enhanced the convergence rate of LPO using some improvements in comparison to basic HS and GHS. • SGHS optimization algorithm obtained averagely better fitness relative to basic HS and GHS algorithms. • Upshot of the SGHS implementation in the LPO reveals its flexibility, efficiency and reliability. - Abstract: The aim of this work is to apply the new developed optimization algorithm, Self-adaptive Global best Harmony Search (SGHS), for PWRs fuel management optimization. SGHS algorithm has some modifications in comparison with basic Harmony Search (HS) and Global-best Harmony Search (GHS) algorithms such as dynamically change of parameters. For the demonstration of SGHS ability to find an optimal configuration of fuel assemblies, basic Harmony Search (HS) and Global-best Harmony Search (GHS) algorithms also have been developed and investigated. For this purpose, Self-adaptive Global best Harmony Search Nodal Expansion package (SGHSNE) has been developed implementing HS, GHS and SGHS optimization algorithms for the fuel management operation of nuclear reactor cores. This package uses developed average current nodal expansion code which solves the multi group diffusion equation by employment of first and second orders of Nodal Expansion Method (NEM) for two dimensional, hexagonal and rectangular geometries, respectively, by one node per a FA. Loading pattern optimization was performed using SGHSNE package for some test cases to present the SGHS algorithm capability in converging to near optimal loading pattern. Results indicate that the convergence rate and reliability of the SGHS method are quite promising and practically, SGHS improves the quality of loading pattern optimization results relative to HS and GHS algorithms. As a result, it has the potential to be used in the other nuclear engineering optimization problems

  11. Modification of Brueschweiler quantum searching algorithm and realization by NMR experiment

    International Nuclear Information System (INIS)

    Yang Xiaodong; Wei Daxiu; Luo Jun; Miao Xijia

    2002-01-01

    In recent years, quantum computing research has made big progress, which exploit quantum mechanical laws, such as interference, superposition and parallelism, to perform computing tasks. The most inducing thing is that the quantum computing can provide large rise to the speedup in quantum algorithm. Quantum computing can solve some problems, which are impossible or difficult for the classical computing. The problem of searching for a specific item in an unsorted database can be solved with certain quantum algorithm, for example, Grover quantum algorithm and Brueschweiler quantum algorithm. The former gives a quadratic speedup, and the latter gives an exponential speedup comparing with the corresponding classical algorithm. In Brueschweiler quantum searching algorithm, the data qubit and the read-out qubit (the ancilla qubit) are different qubits. The authors have studied Brueschweiler algorithm and proposed a modified version, in which no ancilla qubit is needed to reach exponential speedup in the searching, the data and the read-out qubit are the same qubits. The modified Brueschweiler algorithm can be easier to design and realize. The authors also demonstrate the modified Brueschweiler algorithm in a 3-qubit molecular system by Nuclear Magnetic Resonance (NMR) experiment

  12. Using an InGrid Detector to Search for Solar Chameleons with CAST

    CERN Document Server

    Desch, Klaus; Krieger, Christoph; Lupberger, Michael

    2015-01-01

    We report on the construction, operation experience, and preliminary background measurements of an InGrid detector, i.e. a MicroMegas detector with CMOS pixel readout. The detector was mounted in the focal plane of the Abrixas X-Ray telescope at the CAST experiment at CERN. The detector is sensitive to soft X-Rays in a broad energy range (0.3--10 keV) and thus enables the search for solar chameleons. Smooth detector operation during CAST data taking in autumn 2014 has been achieved. Preliminary analysis of background data indicates a background rate of $1-5\\times 10^{-5}\\,\\mathrm{keV}^{-1}\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$ above 2 keV and $\\sim 3\\times 10^{-4}\\,\\mathrm{keV}^{-1}\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$ around 1 keV. An expected limit of $\\beta_\\gamma \\lesssim 5\\times 10^{10}$ on the chameleon photon coupling is estimated in case of absence of an excess in solar tracking data. We also discuss the prospects for future operation of the detector.

  13. Faster implementation of the hierarchical search algorithm for detection of gravitational waves from inspiraling compact binaries

    International Nuclear Information System (INIS)

    Sengupta, Anand S.; Dhurandhar, Sanjeev; Lazzarini, Albert

    2003-01-01

    The first scientific runs of kilometer scale laser interferometric detectors such as LIGO are under way. Data from these detectors will be used to look for signatures of gravitational waves from astrophysical objects such as inspiraling neutron-star-black-hole binaries using matched filtering. The computational resources required for online flat-search implementation of the matched filtering are large if searches are carried out for a small total mass. A flat search is implemented by constructing a single discrete grid of densely populated template waveforms spanning the dynamical parameters--masses, spins--which are correlated with the interferometer data. The correlations over the kinematical parameters can be maximized a priori without constructing a template bank over them. Mohanty and Dhurandhar showed that a significant reduction in computational resources can be accomplished by using a hierarchy of such template banks where candidate events triggered by a sparsely populated grid are followed up by the regular, dense flat-search grid. The estimated speedup in this method was a factor ∼25 over the flat search. In this paper we report an improved implementation of the hierarchical search, wherein we extend the domain of hierarchy to an extra dimension--namely, the time of arrival of the signal in the bandwidth of the interferometer. This is accomplished by lowering the Nyquist sampling rate of the signal in the trigger stage. We show that this leads to further improvement in the efficiency of data analysis and speeds up the online computation by a factor of ∼65-70 over the flat search. We also take into account and discuss issues related to template placement, trigger thresholds, and other peculiar problems that do not arise in earlier implementation schemes of the hierarchical search. We present simulation results for 2PN waveforms embedded in the noise expected for initial LIGO detectors

  14. Identification of Fuzzy Inference Systems by Means of a Multiobjective Opposition-Based Space Search Algorithm

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2013-01-01

    Full Text Available We introduce a new category of fuzzy inference systems with the aid of a multiobjective opposition-based space search algorithm (MOSSA. The proposed MOSSA is essentially a multiobjective space search algorithm improved by using an opposition-based learning that employs a so-called opposite numbers mechanism to speed up the convergence of the optimization algorithm. In the identification of fuzzy inference system, the MOSSA is exploited to carry out the parametric identification of the fuzzy model as well as to realize its structural identification. Experimental results demonstrate the effectiveness of the proposed fuzzy models.

  15. Quantum Partial Searching Algorithm of a Database with Several Target Items

    International Nuclear Information System (INIS)

    Pu-Cha, Zhong; Wan-Su, Bao; Yun, Wei

    2009-01-01

    Choi and Korepin [Quantum Information Processing 6(2007)243] presented a quantum partial search algorithm of a database with several target items which can find a target block quickly when each target block contains the same number of target items. Actually, the number of target items in each target block is arbitrary. Aiming at this case, we give a condition to guarantee performance of the partial search algorithm to be performed and the number of queries to oracle of the algorithm to be minimized. In addition, by further numerical computing we come to the conclusion that the more uniform the distribution of target items, the smaller the number of queries

  16. Optimised operation of an off-grid hybrid wind-diesel-battery system using genetic algorithm

    International Nuclear Information System (INIS)

    Gan, Leong Kit; Shek, Jonathan K.H.; Mueller, Markus A.

    2016-01-01

    Highlights: • Diesel generator’s operation is optimised in a hybrid wind-diesel-battery system. • Optimisation is performed using wind speed and load demand forecasts. • The objective is to maximise wind energy utilisation with limited battery storage. • Physical modelling approach (Simscape) is used to verify mathematical model. • Sensitivity analyses are performed with synthesised wind and load forecast errors. - Abstract: In an off-grid hybrid wind-diesel-battery system, the diesel generator is often not utilised efficiently, therefore compromising its lifetime. In particular, the general rule of thumb of running the diesel generator at more than 40% of its rated capacity is often unmet. This is due to the variation in power demand and wind speed which needs to be supplied by the diesel generator. In addition, the frequent start-stop of the diesel generator leads to additional mechanical wear and fuel wastage. This research paper proposes a novel control algorithm which optimises the operation of a diesel generator, using genetic algorithm. With a given day-ahead forecast of local renewable energy resource and load demand, it is possible to optimise the operation of a diesel generator, subjected to other pre-defined constraints. Thus, the utilisation of the renewable energy sources to supply electricity can be maximised. Usually, the optimisation studies of a hybrid system are being conducted through simple analytical modelling, coupled with a selected optimisation algorithm to seek the optimised solution. The obtained solution is not verified using a more realistic system model, for instance the physical modelling approach. This often led to the question of the applicability of such optimised operation being used in reality. In order to take a step further, model-based design using Simulink is employed in this research to perform a comparison through a physical modelling approach. The Simulink model has the capability to incorporate the electrical

  17. Improved approach for electric vehicle rapid charging station placement and sizing using Google maps and binary lightning search algorithm

    Science.gov (United States)

    Shareef, Hussain; Mohamed, Azah

    2017-01-01

    The electric vehicle (EV) is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS) planning. A novel optimization technique, called binary lightning search algorithm (BLSA), is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method. PMID:29220396

  18. Improved approach for electric vehicle rapid charging station placement and sizing using Google maps and binary lightning search algorithm.

    Directory of Open Access Journals (Sweden)

    Md Mainul Islam

    Full Text Available The electric vehicle (EV is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS planning. A novel optimization technique, called binary lightning search algorithm (BLSA, is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method.

  19. Kmer-SSR: a fast and exhaustive SSR search algorithm.

    Science.gov (United States)

    Pickett, Brandon D; Miller, Justin B; Ridge, Perry G

    2017-12-15

    One of the main challenges with bioinformatics software is that the size and complexity of datasets necessitate trading speed for accuracy, or completeness. To combat this problem of computational complexity, a plethora of heuristic algorithms have arisen that report a 'good enough' solution to biological questions. However, in instances such as Simple Sequence Repeats (SSRs), a 'good enough' solution may not accurately portray results in population genetics, phylogenetics and forensics, which require accurate SSRs to calculate intra- and inter-species interactions. We present Kmer-SSR, which finds all SSRs faster than most heuristic SSR identification algorithms in a parallelized, easy-to-use manner. The exhaustive Kmer-SSR option has 100% precision and 100% recall and accurately identifies every SSR of any specified length. To identify more biologically pertinent SSRs, we also developed several filters that allow users to easily view a subset of SSRs based on user input. Kmer-SSR, coupled with the filter options, accurately and intuitively identifies SSRs quickly and in a more user-friendly manner than any other SSR identification algorithm. The source code is freely available on GitHub at https://github.com/ridgelab/Kmer-SSR. perry.ridge@byu.edu. © The Author(s) 2017. Published by Oxford University Press.

  20. Comparison of genetic algorithm and harmony search for generator maintenance scheduling

    International Nuclear Information System (INIS)

    Khan, L.; Mumtaz, S.; Khattak, A.

    2012-01-01

    GMS (Generator Maintenance Scheduling) ranks very high in decision making of power generation management. Generators maintenance schedule decides the time period of maintenance tasks and a reliable reserve margin is also maintained during this time period. In this paper, a comparison of GA (Genetic Algorithm) and US (Harmony Search) algorithm is presented to solve generators maintenance scheduling problem for WAPDA (Water And Power Development Authority) Pakistan. GA is a search procedure, which is used in search problems to compute exact and optimized solution. GA is considered as global search heuristic technique. HS algorithm is quite efficient, because the convergence rate of this algorithm is very fast. HS algorithm is based on the concept of music improvisation process of searching for a perfect state of harmony. The two algorithms generate feasible and optimal solutions and overcome the limitations of the conventional methods including extensive computational effort, which increases exponentially as the size of the problem increases. The proposed methods are tested, validated and compared on the WAPDA electric system. (author)

  1. A New Fuzzy Harmony Search Algorithm Using Fuzzy Logic for Dynamic Parameter Adaptation

    Directory of Open Access Journals (Sweden)

    Cinthia Peraza

    2016-10-01

    Full Text Available In this paper, a new fuzzy harmony search algorithm (FHS for solving optimization problems is presented. FHS is based on a recent method using fuzzy logic for dynamic adaptation of the harmony memory accepting (HMR and pitch adjustment (PArate parameters that improve the convergence rate of traditional harmony search algorithm (HS. The objective of the method is to dynamically adjust the parameters in the range from 0.7 to 1. The impact of using fixed parameters in the harmony search algorithm is discussed and a strategy for efficiently tuning these parameters using fuzzy logic is presented. The FHS algorithm was successfully applied to different benchmarking optimization problems. The results of simulation and comparison studies demonstrate the effectiveness and efficiency of the proposed approach.

  2. Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chaoshun Li; Jianzhong Zhou [College of Hydroelectric Digitization Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-01-15

    Parameter identification of hydraulic turbine governing system (HTGS) is crucial in precise modeling of hydropower plant and provides support for the analysis of stability of power system. In this paper, a newly developed optimization algorithm, called gravitational search algorithm (GSA), is introduced and applied in parameter identification of HTGS, and the GSA is improved by combination of the search strategy of particle swarm optimization. Furthermore, a new weighted objective function is proposed in the identification frame. The improved gravitational search algorithm (IGSA), together with genetic algorithm, particle swarm optimization and GSA, is employed in parameter identification experiments and the procedure is validated by comparing experimental and simulated results. Consequently, IGSA is shown to locate more precise parameter values than the compared methods with higher efficiency. (author)

  3. Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm

    International Nuclear Information System (INIS)

    Li Chaoshun; Zhou Jianzhong

    2011-01-01

    Parameter identification of hydraulic turbine governing system (HTGS) is crucial in precise modeling of hydropower plant and provides support for the analysis of stability of power system. In this paper, a newly developed optimization algorithm, called gravitational search algorithm (GSA), is introduced and applied in parameter identification of HTGS, and the GSA is improved by combination of the search strategy of particle swarm optimization. Furthermore, a new weighted objective function is proposed in the identification frame. The improved gravitational search algorithm (IGSA), together with genetic algorithm, particle swarm optimization and GSA, is employed in parameter identification experiments and the procedure is validated by comparing experimental and simulated results. Consequently, IGSA is shown to locate more precise parameter values than the compared methods with higher efficiency.

  4. Balance control of grid currents for UPQC under unbalanced loads based on matching-ratio compensation algorithm

    DEFF Research Database (Denmark)

    Zhao, Xiaojun; Zhang, Chunjiang; Chai, Xiuhui

    2018-01-01

    In three-phase four-wire systems, unbalanced loads can cause grid currents to be unbalanced, and this may cause the neutral point potential on the grid side to shift. The neutral point potential shift will worsen the control precision as well as the performance of the threephase four-wire unified...... fluctuations, and elaborates the interaction between unbalanced grid currents and DC bus voltage fluctuations; two control strategies of UPQC under three-phase stationary coordinate based on the MCA are given, and finally, the feasibility and effectiveness of the proposed control strategy are verified...... power quality conditioner (UPQC), and it also leads to unbalanced three-phase output voltage, even causing damage to electric equipment. To deal with unbalanced loads, this paper proposes a matching-ratio compensation algorithm (MCA) for the fundamental active component of load currents...

  5. Cost reduction improvement for power generation system integrating WECS using harmony search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Ngonkham, S. [Khonkaen Univ., Amphur Muang (Thailand). Dept. of Electrical Engineering; Buasri, P. [Khonkaen Univ., Amphur Muang (Thailand). Embed System Research Group

    2009-03-11

    A harmony search (HS) algorithm was used to optimize economic dispatch (ED) in a wind energy conversion system (WECS) for power system integration. The HS algorithm was based on a stochastic random search method. System costs for the WECS system were estimated in relation to average wind speeds. The HS algorithm was implemented to optimize the ED with a simple programming procedure. The study showed that the initial parameters must be carefully selected to ensure the accuracy of the HS algorithm. The algorithm demonstrated that total costs of the WECS system were higher than costs associated with energy efficiency procedures that reduced the same amount of greenhouse gas (GHG) emissions. 7 refs,. 10 tabs., 16 figs.

  6. Multiagency Urban Search Experiment Detector and Algorithm Test Bed

    Science.gov (United States)

    Nicholson, Andrew D.; Garishvili, Irakli; Peplow, Douglas E.; Archer, Daniel E.; Ray, William R.; Swinney, Mathew W.; Willis, Michael J.; Davidson, Gregory G.; Cleveland, Steven L.; Patton, Bruce W.; Hornback, Donald E.; Peltz, James J.; McLean, M. S. Lance; Plionis, Alexander A.; Quiter, Brian J.; Bandstra, Mark S.

    2017-07-01

    In order to provide benchmark data sets for radiation detector and algorithm development, a particle transport test bed has been created using experimental data as model input and validation. A detailed radiation measurement campaign at the Combined Arms Collective Training Facility in Fort Indiantown Gap, PA (FTIG), USA, provides sample background radiation levels for a variety of materials present at the site (including cinder block, gravel, asphalt, and soil) using long dwell high-purity germanium (HPGe) measurements. In addition, detailed light detection and ranging data and ground-truth measurements inform model geometry. This paper describes the collected data and the application of these data to create background and injected source synthetic data for an arbitrary gamma-ray detection system using particle transport model detector response calculations and statistical sampling. In the methodology presented here, HPGe measurements inform model source terms while detector response calculations are validated via long dwell measurements using 2"×4"×16" NaI(Tl) detectors at a variety of measurement points. A collection of responses, along with sampling methods and interpolation, can be used to create data sets to gauge radiation detector and algorithm (including detection, identification, and localization) performance under a variety of scenarios. Data collected at the FTIG site are available for query, filtering, visualization, and download at muse.lbl.gov.

  7. Structural optimization of a motorcycle chassis by pattern search algorithm

    Science.gov (United States)

    Scappaticci, Lorenzo; Bartolini, Nicola; Guglielmino, Eugenio; Risitano, Giacomo

    2017-08-01

    Changes to the technical regulations of the motorcycle racing world classes introduced the new Moto2 category. The vehicles are prototypes that use single-brand tyres and engines derived from series production, supplied by a single manufacturer. The stability and handling of the vehicle are highly dependent on the geometric properties of the chassis. The performance of a racing motorcycle chassis can be primarily evaluated in terms of weight and stiffness. The aim of this work is to maximize the performance of a tubular frame designed for a motorcycle racing in the Moto2 category. The goal is the implementation of an optimization algorithm that acts on the dimensions of the single pipes of the frame and involves the design of an objective function to minimize the weight of the frame by controlling its stiffnesses.

  8. Keyword-based Ciphertext Search Algorithm under Cloud Storage

    Directory of Open Access Journals (Sweden)

    Ren Xunyi

    2016-01-01

    Full Text Available With the development of network storage services, cloud storage have the advantage of high scalability , inexpensive, without access limit and easy to manage. These advantages make more and more small or medium enterprises choose to outsource large quantities of data to a third party. This way can make lots of small and medium enterprises get rid of costs of construction and maintenance, so it has broad market prospects. But now lots of cloud storage service providers can not protect data security.This result leakage of user data, so many users have to use traditional storage method.This has become one of the important factors that hinder the development of cloud storage. In this article, establishing keyword index by extracting keywords from ciphertext data. After that, encrypted data and the encrypted index upload cloud server together.User get related ciphertext by searching encrypted index, so it can response data leakage problem.

  9. Novel Back Propagation Optimization by Cuckoo Search Algorithm

    Directory of Open Access Journals (Sweden)

    Jiao-hong Yi

    2014-01-01

    Full Text Available The traditional Back Propagation (BP has some significant disadvantages, such as training too slowly, easiness to fall into local minima, and sensitivity of the initial weights and bias. In order to overcome these shortcomings, an improved BP network that is optimized by Cuckoo Search (CS, called CSBP, is proposed in this paper. In CSBP, CS is used to simultaneously optimize the initial weights and bias of BP network. Wine data is adopted to study the prediction performance of CSBP, and the proposed method is compared with the basic BP and the General Regression Neural Network (GRNN. Moreover, the parameter study of CSBP is conducted in order to make the CSBP implement in the best way.

  10. Nature-inspired Cuckoo Search Algorithm for Side Lobe Suppression in a Symmetric Linear Antenna Array

    Directory of Open Access Journals (Sweden)

    K. N. Abdul Rani

    2012-09-01

    Full Text Available In this paper, we proposed a newly modified cuckoo search (MCS algorithm integrated with the Roulette wheel selection operator and the inertia weight controlling the search ability towards synthesizing symmetric linear array geometry with minimum side lobe level (SLL and/or nulls control. The basic cuckoo search (CS algorithm is primarily based on the natural obligate brood parasitic behavior of some cuckoo species in combination with the Levy flight behavior of some birds and fruit flies. The CS metaheuristic approach is straightforward and capable of solving effectively general N-dimensional, linear and nonlinear optimization problems. The array geometry synthesis is first formulated as an optimization problem with the goal of SLL suppression and/or null prescribed placement in certain directions, and then solved by the newly MCS algorithm for the optimum element or isotropic radiator locations in the azimuth-plane or xy-plane. The study also focuses on the four internal parameters of MCS algorithm specifically on their implicit effects in the array synthesis. The optimal inter-element spacing solutions obtained by the MCS-optimizer are validated through comparisons with the standard CS-optimizer and the conventional array within the uniform and the Dolph-Chebyshev envelope patterns using MATLABTM. Finally, we also compared the fine-tuned MCS algorithm with two popular evolutionary algorithm (EA techniques include particle swarm optimization (PSO and genetic algorithms (GA.

  11. Comparison of multiobjective harmony search, cuckoo search and bat-inspired algorithms for renewable distributed generation placement

    Directory of Open Access Journals (Sweden)

    John E. Candelo-Becerra

    2015-07-01

    Full Text Available Electric power losses have a significant impact on the total costs of distribution networks. The use of renewable energy sources is a major alternative to improve power losses and costs, although other important issues are also enhanced such as voltage magnitudes and network congestion. However, determining the best location and size of renewable energy generators can be sometimes a challenging task due to a large number of possible combinations in the search space. Furthermore, the multiobjective functions increase the complexity of the problem and metaheuristics are preferred to find solutions in a relatively short time. This paper evaluates the performance of the cuckoo search (CS, harmony search (HS, and bat-inspired (BA algorithms for the location and size of renewable distributed generation (RDG in radial distribution networks using a multiobjective function defined as minimizing the energy losses and the RDG costs. The metaheuristic algorithms were programmed in Matlab and tested using the 33-node radial distribution network. The three algorithms obtained similar results for the two objectives evaluated, finding points close to the best solutions in the Pareto front. Comparisons showed that the CS obtained the minimum results for most points evaluated, but the BA and the HS were close to the best solution.

  12. Hybrid Optimization Algorithm of Particle Swarm Optimization and Cuckoo Search for Preventive Maintenance Period Optimization

    Directory of Open Access Journals (Sweden)

    Jianwen Guo

    2016-01-01

    Full Text Available All equipment must be maintained during its lifetime to ensure normal operation. Maintenance is one of the critical roles in the success of manufacturing enterprises. This paper proposed a preventive maintenance period optimization model (PMPOM to find an optimal preventive maintenance period. By making use of the advantages of particle swarm optimization (PSO and cuckoo search (CS algorithm, a hybrid optimization algorithm of PSO and CS is proposed to solve the PMPOM problem. The test functions show that the proposed algorithm exhibits more outstanding performance than particle swarm optimization and cuckoo search. Experiment results show that the proposed algorithm has advantages of strong optimization ability and fast convergence speed to solve the PMPOM problem.

  13. Optimization of Charge/Discharge Coordination to Satisfy Network Requirements Using Heuristic Algorithms in Vehicle-to-Grid Concept

    Directory of Open Access Journals (Sweden)

    DOGAN, A.

    2018-02-01

    Full Text Available Image thresholding is the most crucial step in microscopic image analysis to distinguish bacilli objects causing of tuberculosis disease. Therefore, several bi-level thresholding algorithms are widely used to increase the bacilli segmentation accuracy. However, bi-level microscopic image thresholding problem has not been solved using optimization algorithms. This paper introduces a novel approach for the segmentation problem using heuristic algorithms and presents visual and quantitative comparisons of heuristic and state-of-art thresholding algorithms. In this study, well-known heuristic algorithms such as Firefly Algorithm, Particle Swarm Optimization, Cuckoo Search, Flower Pollination are used to solve bi-level microscopic image thresholding problem, and the results are compared with the state-of-art thresholding algorithms such as K-Means, Fuzzy C-Means, Fast Marching. Kapur's entropy is chosen as the entropy measure to be maximized. Experiments are performed to make comparisons in terms of evaluation metrics and execution time. The quantitative results are calculated based on ground truth segmentation. According to the visual results, heuristic algorithms have better performance and the quantitative results are in accord with the visual results. Furthermore, experimental time comparisons show the superiority and effectiveness of the heuristic algorithms over traditional thresholding algorithms.

  14. Robust low frequency current ripple elimination algorithm for grid-connected fuel cell systems with power balancing technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Soo; Choe, Gyu-Yeong; Lee, Byoung-Kuk [School of Information and Communication Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Kang, Hyun-Soo [R and D Center, Advanced Drive Technology (ADT) Company, 689-26 Geumjeong-dong, Gunpo-si, Gyeonggi-do 435-862 (Korea, Republic of)

    2011-05-15

    The low frequency current ripple in grid-connected fuel cell systems is generated from dc-ac inverter operation, which generates 60 Hz fundamental component, and gives harmful effects on fuel cell stack itself, such as making cathode surface responses slower, causing an increase of more than 10% in the fuel consumption, creating oxygen starvation, causing a reduction in the operating lifetime, and incurring a nuisance tripping such as overload situation. With these reasons, low frequency current ripple makes fuel cell system unstable and lifetime of fuel cell stack itself short. This paper presents a fast and robust control algorithm to eliminate low frequency current ripple in grid-connected fuel cell systems. Compared with the conventional methods, in the proposed control algorithm, dc link voltage controller is shifted from dc-dc converter to dc-ac inverter, resulting that dc-ac inverter handles dc link voltage control and output current control simultaneously with help of power balancing technique. The results indicate that the proposed algorithm can not only completely eliminate current ripple but also significantly reduce the overshoot or undershoot during transient states without any extra hardware. The validity of the proposed algorithm is verified by computer simulations and also by experiments with a 1 kW laboratory prototype. (author)

  15. Cost Forecasting of Substation Projects Based on Cuckoo Search Algorithm and Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Dongxiao Niu

    2018-01-01

    Full Text Available Accurate prediction of substation project cost is helpful to improve the investment management and sustainability. It is also directly related to the economy of substation project. Ensemble Empirical Mode Decomposition (EEMD can decompose variables with non-stationary sequence signals into significant regularity and periodicity, which is helpful in improving the accuracy of prediction model. Adding the Gauss perturbation to the traditional Cuckoo Search (CS algorithm can improve the searching vigor and precision of CS algorithm. Thus, the parameters and kernel functions of Support Vector Machines (SVM model are optimized. By comparing the prediction results with other models, this model has higher prediction accuracy.

  16. Theoretical and Empirical Analyses of an Improved Harmony Search Algorithm Based on Differential Mutation Operator

    Directory of Open Access Journals (Sweden)

    Longquan Yong

    2012-01-01

    Full Text Available Harmony search (HS method is an emerging metaheuristic optimization algorithm. In this paper, an improved harmony search method based on differential mutation operator (IHSDE is proposed to deal with the optimization problems. Since the population diversity plays an important role in the behavior of evolution algorithm, the aim of this paper is to calculate the expected population mean and variance of IHSDE from theoretical viewpoint. Numerical results, compared with the HSDE, NGHS, show that the IHSDE method has good convergence property over a test-suite of well-known benchmark functions.

  17. An Improved Harmony Search algorithm for optimal scheduling of the diesel generators in oil rig platforms

    International Nuclear Information System (INIS)

    Yadav, Parikshit; Kumar, Rajesh; Panda, S.K.; Chang, C.S.

    2011-01-01

    Harmony Search (HS) algorithm is music based meta-heuristic optimization method which is analogous with the music improvisation process where musician continue to polish the pitches in order to obtain better harmony. The paper focuses on the optimal scheduling of the generators to reduce the fuel consumption in the oil rig platform. The accurate modeling of the specific fuel consumption is significant in this optimization. The specific fuel consumption has been modeled using cubic spline interpolation. The SFC curve is non-linear and discrete in nature, hence conventional methods fail to give optimal solution. HS algorithm has been used for optimal scheduling of the generators of both equal and unequal rating. Furthermore an Improved Harmony Search (IHS) method for generating new solution vectors that enhances accuracy and convergence rate of HS has been employed. The paper also focuses on the impacts of constant parameters on Harmony Search algorithm. Numerical results show that the IHS method has good convergence property. Moreover, the fuel consumption for IHS algorithm is lower when compared to HS and other heuristic or deterministic methods and is a powerful search algorithm for various engineering optimization problems.

  18. An improved Harmony Search algorithm for optimal scheduling of the diesel generators in oil rig platforms

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Parikshit; Kumar, Rajesh; Panda, S.K.; Chang, C.S. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2011-02-15

    Harmony Search (HS) algorithm is music based meta-heuristic optimization method which is analogous with the music improvisation process where musician continue to polish the pitches in order to obtain better harmony. The paper focuses on the optimal scheduling of the generators to reduce the fuel consumption in the oil rig platform. The accurate modeling of the specific fuel consumption is significant in this optimization. The specific fuel consumption has been modeled using cubic spline interpolation. The SFC curve is non-linear and discrete in nature, hence conventional methods fail to give optimal solution. HS algorithm has been used for optimal scheduling of the generators of both equal and unequal rating. Furthermore an Improved Harmony Search (IHS) method for generating new solution vectors that enhances accuracy and convergence rate of HS has been employed. The paper also focuses on the impacts of constant parameters on Harmony Search algorithm. Numerical results show that the IHS method has good convergence property. Moreover, the fuel consumption for IHS algorithm is lower when compared to HS and other heuristic or deterministic methods and is a powerful search algorithm for various engineering optimization problems. (author)

  19. An improved harmony search algorithm for synchronization of discrete-time chaotic systems

    International Nuclear Information System (INIS)

    Santos Coelho, Leandro dos; Andrade Bernert, Diego Luis de

    2009-01-01

    The harmony search (HS) algorithm is a recently developed meta-heuristic algorithm, and has been very successful in a wide variety of optimization problems. HS was conceptualized using an analogy with music improvisation process where music players improvise the pitches of their instruments to obtain better harmony. The HS algorithm does not require initial values and uses a random search instead of a gradient search, so derivative information is unnecessary. Furthermore, the HS algorithm is simple in concept, few in parameters, easy in implementation, imposes fewer mathematical requirements, and does not require initial value settings of the decision variables. In recent years, the investigation of synchronization and control problem for discrete chaotic systems has attracted much attention, and many possible applications. The tuning of a proportional-integral-derivative (PID) controller based on an improved HS (IHS) algorithm for synchronization of two identical discrete chaotic systems subject the different initial conditions is investigated in this paper. Simulation results of the IHS to determine the PID parameters to synchronization of two Henon chaotic systems are compared with other HS approaches including classical HS and global-best HS. Numerical results reveal that the proposed IHS method is a powerful search and controller design optimization tool for synchronization of chaotic systems.

  20. Improved gravitational search algorithm for parameter identification of water turbine regulation system

    International Nuclear Information System (INIS)

    Chen, Zhihuan; Yuan, Xiaohui; Tian, Hao; Ji, Bin

    2014-01-01

    Highlights: • We propose an improved gravitational search algorithm (IGSA). • IGSA is applied to parameter identification of water turbine regulation system (WTRS). • WTRS is modeled by considering the impact of turbine speed on torque and water flow. • Weighted objective function strategy is applied to parameter identification of WTRS. - Abstract: Parameter identification of water turbine regulation system (WTRS) is crucial in precise modeling hydropower generating unit (HGU) and provides support for the adaptive control and stability analysis of power system. In this paper, an improved gravitational search algorithm (IGSA) is proposed and applied to solve the identification problem for WTRS system under load and no-load running conditions. This newly algorithm which is based on standard gravitational search algorithm (GSA) accelerates convergence speed with combination of the search strategy of particle swarm optimization and elastic-ball method. Chaotic mutation which is devised to stepping out the local optimal with a certain probability is also added into the algorithm to avoid premature. Furthermore, a new kind of model associated to the engineering practices is built and analyzed in the simulation tests. An illustrative example for parameter identification of WTRS is used to verify the feasibility and effectiveness of the proposed IGSA, as compared with standard GSA and particle swarm optimization in terms of parameter identification accuracy and convergence speed. The simulation results show that IGSA performs best for all identification indicators

  1. Grid Integration of PV Power based on PHIL testing using different Interface Algorithms

    DEFF Research Database (Denmark)

    Craciun, Bogdan-Ionut; Kerekes, Tamas; Sera, Dezso

    2013-01-01

    to be more active in grid support. Therefore, a better understanding and detailed analysis of the PV systems interaction with the grid is needed; hence power hardware in the loop (PHIL) testing involving PV power became an interesting subject to look into. To test PV systems for grid code (GC) compliance......Photovoltaic (PV) power among all renewable energies had the most accelerated growth rate in terms of installed capacity in recent years. Transmission System Operators (TSOs) changed their perspective about PV power and started to include it into their planning and operation, imposing PV systems...

  2. δ-Similar Elimination to Enhance Search Performance of Multiobjective Evolutionary Algorithms

    Science.gov (United States)

    Aguirre, Hernán; Sato, Masahiko; Tanaka, Kiyoshi

    In this paper, we propose δ-similar elimination to improve the search performance of multiobjective evolutionary algorithms in combinatorial optimization problems. This method eliminates similar individuals in objective space to fairly distribute selection among the different regions of the instantaneous Pareto front. We investigate four eliminating methods analyzing their effects using NSGA-II. In addition, we compare the search performance of NSGA-II enhanced by our method and NSGA-II enhanced by controlled elitism.

  3. A GENETIC ALGORITHM USING THE LOCAL SEARCH HEURISTIC IN FACILITIES LAYOUT PROBLEM: A MEMETİC ALGORİTHM APPROACH

    Directory of Open Access Journals (Sweden)

    Orhan TÜRKBEY

    2002-02-01

    Full Text Available Memetic algorithms, which use local search techniques, are hybrid structured algorithms like genetic algorithms among evolutionary algorithms. In this study, for Quadratic Assignment Problem (QAP, a memetic structured algorithm using a local search heuristic like 2-opt is developed. Developed in the algorithm, a crossover operator that has not been used before for QAP is applied whereas, Eshelman procedure is used in order to increase thesolution variability. The developed memetic algorithm is applied on test problems taken from QAP-LIB, the results are compared with the present techniques in the literature.

  4. A demand response modeling for residential consumers in smart grid environment using game theory based energy scheduling algorithm

    Directory of Open Access Journals (Sweden)

    S. Sofana Reka

    2016-06-01

    Full Text Available In this paper, demand response modeling scheme is proposed for residential consumers using game theory algorithm as Generalized Tit for Tat (GTFT Dominant Game based Energy Scheduler. The methodology is established as a work flow domain model between the utility and the user considering the smart grid framework. It exhibits an algorithm which schedules load usage by creating several possible tariffs for consumers such that demand is never raised. This can be done both individually and among multiple users of a community. The uniqueness behind the demand response proposed is that, the tariff is calculated for all hours and the load during the peak hours which can be rescheduled is shifted based on the Peak Average Ratio. To enable the vitality of the work simulation results of a general case of three domestic consumers are modeled extended to a comparative performance and evaluation with other algorithms and inference is analyzed.

  5. MPFA algorithm for solving stokes-brinkman equations on quadrilateral grids

    KAUST Repository

    Iliev, Oleg; Kirsch, Ralf; Lakdawala, Zahra; Printsypar, Galina

    2014-01-01

    This work is concerned with the development of a robust and accurate numerical method for solving the Stokes-Brinkman system of equations, which describes a free fluid flow coupled with a flow in porous media. Quadrilateral boundary fitted grid

  6. Compact data structure and scalable algorithms for the sparse grid technique

    KAUST Repository

    Murarasu, Alin; Weidendorfer, Josef; Buse, Gerrit; Butnaru, Daniel; Pflü ger, Dirk

    2011-01-01

    The sparse grid discretization technique enables a compressed representation of higher-dimensional functions. In its original form, it relies heavily on recursion and complex data structures, thus being far from well-suited for GPUs. In this paper

  7. Comparison of a constraint directed search to a genetic algorithm in a scheduling application

    International Nuclear Information System (INIS)

    Abbott, L.

    1993-01-01

    Scheduling plutonium containers for blending is a time-intensive operation. Several constraints must be taken into account; including the number of containers in a dissolver run, the size of each dissolver run, and the size and target purity of the blended mixture formed from these runs. Two types of algorithms have been used to solve this problem: a constraint directed search and a genetic algorithm. This paper discusses the implementation of these two different approaches to the problem and the strengths and weaknesses of each algorithm

  8. Harmony search algorithm for solving combined heat and power economic dispatch problems

    Energy Technology Data Exchange (ETDEWEB)

    Khorram, Esmaile, E-mail: eskhor@aut.ac.i [Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, No. 424, Hafez Ave., 15914 Tehran (Iran, Islamic Republic of); Jaberipour, Majid, E-mail: Majid.Jaberipour@gmail.co [Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, No. 424, Hafez Ave., 15914 Tehran (Iran, Islamic Republic of)

    2011-02-15

    Economic dispatch (ED) is one of the key optimization problems in electric power system operation. The problem grows complex if one or more units produce both power and heat. Combined heat and power economic dispatch (CHPED) problem is a complicated problem that needs powerful methods to solve. This paper presents a harmony search (EDHS) algorithm to solve CHPED. Some standard examples are presented to demonstrate the effectiveness of this algorithm in obtaining the optimal solution. In all cases, the solutions obtained using EDHS algorithm are better than those obtained by other methods.

  9. A Local Search Algorithm for the Flow Shop Scheduling Problem with Release Dates

    Directory of Open Access Journals (Sweden)

    Tao Ren

    2015-01-01

    Full Text Available This paper discusses the flow shop scheduling problem to minimize the makespan with release dates. By resequencing the jobs, a modified heuristic algorithm is obtained for handling large-sized problems. Moreover, based on some properties, a local search scheme is provided to improve the heuristic to gain high-quality solution for moderate-sized problems. A sequence-independent lower bound is presented to evaluate the performance of the algorithms. A series of simulation results demonstrate the effectiveness of the proposed algorithms.

  10. A Line Search Multilevel Truncated Newton Algorithm for Computing the Optical Flow

    Directory of Open Access Journals (Sweden)

    Lluís Garrido

    2015-06-01

    Full Text Available We describe the implementation details and give the experimental results of three optimization algorithms for dense optical flow computation. In particular, using a line search strategy, we evaluate the performance of the unilevel truncated Newton method (LSTN, a multiresolution truncated Newton (MR/LSTN and a full multigrid truncated Newton (FMG/LSTN. We use three image sequences and four models of optical flow for performance evaluation. The FMG/LSTN algorithm is shown to lead to better optical flow estimation with less computational work than both the LSTN and MR/LSTN algorithms.

  11. Symbiotic organisms search algorithm for dynamic economic dispatch with valve-point effects

    Science.gov (United States)

    Sonmez, Yusuf; Kahraman, H. Tolga; Dosoglu, M. Kenan; Guvenc, Ugur; Duman, Serhat

    2017-05-01

    In this study, symbiotic organisms search (SOS) algorithm is proposed to solve the dynamic economic dispatch with valve-point effects problem, which is one of the most important problems of the modern power system. Some practical constraints like valve-point effects, ramp rate limits and prohibited operating zones have been considered as solutions. Proposed algorithm was tested on five different test cases in 5 units, 10 units and 13 units systems. The obtained results have been compared with other well-known metaheuristic methods reported before. Results show that proposed algorithm has a good convergence and produces better results than other methods.

  12. Reduction rules-based search algorithm for opportunistic replacement strategy of multiple life-limited parts

    Directory of Open Access Journals (Sweden)

    Xuyun FU

    2018-01-01

    Full Text Available The opportunistic replacement of multiple Life-Limited Parts (LLPs is a problem widely existing in industry. The replacement strategy of LLPs has a great impact on the total maintenance cost to a lot of equipment. This article focuses on finding a quick and effective algorithm for this problem. To improve the algorithm efficiency, six reduction rules are suggested from the perspectives of solution feasibility, determination of the replacement of LLPs, determination of the maintenance occasion and solution optimality. Based on these six reduction rules, a search algorithm is proposed. This search algorithm can identify one or several optimal solutions. A numerical experiment shows that these six reduction rules are effective, and the time consumed by the algorithm is less than 38 s if the total life of equipment is shorter than 55000 and the number of LLPs is less than 11. A specific case shows that the algorithm can obtain optimal solutions which are much better than the result of the traditional method in 10 s, and it can provide support for determining to-be-replaced LLPs when determining the maintenance workscope of an aircraft engine. Therefore, the algorithm is applicable to engineering applications concerning opportunistic replacement of multiple LLPs in aircraft engines.

  13. MRS algorithm: a new method for searching myocardial region in SPECT myocardial perfusion images.

    Science.gov (United States)

    He, Yuan-Lie; Tian, Lian-Fang; Chen, Ping; Li, Bin; Mao, Zhong-Yuan

    2005-10-01

    First, the necessity of automatically segmenting myocardium from myocardial SPECT image is discussed in Section 1. To eliminate the influence of the background, the optimal threshold segmentation method modified for the MRS algorithm is explained in Section 2. Then, the image erosion structure is applied to identify the myocardium region and the liver region. The contour tracing method is introduced to extract the myocardial contour. To locate the centriod of the myocardium, the myocardial centriod searching method is developed. The protocol of the MRS algorithm is summarized in Section 6. The performance of the MRS algorithm is investigated and the conclusion is drawn in Section 7. Finally, the importance of the MRS algorithm and the improvement of the MRS algorithm are discussed.

  14. A comparative study of the A* heuristic search algorithm used to solve efficiently a puzzle game

    Science.gov (United States)

    Iordan, A. E.

    2018-01-01

    The puzzle game presented in this paper consists in polyhedra (prisms, pyramids or pyramidal frustums) which can be moved using the free available spaces. The problem requires to be found the minimum number of movements in order the game reaches to a goal configuration starting from an initial configuration. Because the problem is enough complex, the principal difficulty in solving it is given by dimension of search space, that leads to necessity of a heuristic search. The improving of the search method consists into determination of a strong estimation by the heuristic function which will guide the search process to the most promising side of the search tree. The comparative study is realized among Manhattan heuristic and the Hamming heuristic using A* search algorithm implemented in Java. This paper also presents the necessary stages in object oriented development of a software used to solve efficiently this puzzle game. The modelling of the software is achieved through specific UML diagrams representing the phases of analysis, design and implementation, the system thus being described in a clear and practical manner. With the purpose to confirm the theoretical results which demonstrates that Manhattan heuristic is more efficient was used space complexity criterion. The space complexity was measured by the number of generated nodes from the search tree, by the number of the expanded nodes and by the effective branching factor. From the experimental results obtained by using the Manhattan heuristic, improvements were observed regarding space complexity of A* algorithm versus Hamming heuristic.

  15. Hybridisations of Variable Neighbourhood Search and Modified Simplex Elements to Harmony Search and Shuffled Frog Leaping Algorithms for Process Optimisations

    Science.gov (United States)

    Aungkulanon, P.; Luangpaiboon, P.

    2010-10-01

    Nowadays, the engineering problem systems are large and complicated. An effective finite sequence of instructions for solving these problems can be categorised into optimisation and meta-heuristic algorithms. Though the best decision variable levels from some sets of available alternatives cannot be done, meta-heuristics is an alternative for experience-based techniques that rapidly help in problem solving, learning and discovery in the hope of obtaining a more efficient or more robust procedure. All meta-heuristics provide auxiliary procedures in terms of their own tooled box functions. It has been shown that the effectiveness of all meta-heuristics depends almost exclusively on these auxiliary functions. In fact, the auxiliary procedure from one can be implemented into other meta-heuristics. Well-known meta-heuristics of harmony search (HSA) and shuffled frog-leaping algorithms (SFLA) are compared with their hybridisations. HSA is used to produce a near optimal solution under a consideration of the perfect state of harmony of the improvisation process of musicians. A meta-heuristic of the SFLA, based on a population, is a cooperative search metaphor inspired by natural memetics. It includes elements of local search and global information exchange. This study presents solution procedures via constrained and unconstrained problems with different natures of single and multi peak surfaces including a curved ridge surface. Both meta-heuristics are modified via variable neighbourhood search method (VNSM) philosophy including a modified simplex method (MSM). The basic idea is the change of neighbourhoods during searching for a better solution. The hybridisations proceed by a descent method to a local minimum exploring then, systematically or at random, increasingly distant neighbourhoods of this local solution. The results show that the variant of HSA with VNSM and MSM seems to be better in terms of the mean and variance of design points and yields.

  16. A Sustainable City Planning Algorithm Based on TLBO and Local Search

    Science.gov (United States)

    Zhang, Ke; Lin, Li; Huang, Xuanxuan; Liu, Yiming; Zhang, Yonggang

    2017-09-01

    Nowadays, how to design a city with more sustainable features has become a center problem in the field of social development, meanwhile it has provided a broad stage for the application of artificial intelligence theories and methods. Because the design of sustainable city is essentially a constraint optimization problem, the swarm intelligence algorithm of extensive research has become a natural candidate for solving the problem. TLBO (Teaching-Learning-Based Optimization) algorithm is a new swarm intelligence algorithm. Its inspiration comes from the “teaching” and “learning” behavior of teaching class in the life. The evolution of the population is realized by simulating the “teaching” of the teacher and the student “learning” from each other, with features of less parameters, efficient, simple thinking, easy to achieve and so on. It has been successfully applied to scheduling, planning, configuration and other fields, which achieved a good effect and has been paid more and more attention by artificial intelligence researchers. Based on the classical TLBO algorithm, we propose a TLBO_LS algorithm combined with local search. We design and implement the random generation algorithm and evaluation model of urban planning problem. The experiments on the small and medium-sized random generation problem showed that our proposed algorithm has obvious advantages over DE algorithm and classical TLBO algorithm in terms of convergence speed and solution quality.

  17. The study on the control strategy of micro grid considering the economy of energy storage operation

    Science.gov (United States)

    Ma, Zhiwei; Liu, Yiqun; Wang, Xin; Li, Bei; Zeng, Ming

    2017-08-01

    To optimize the running of micro grid to guarantee the supply and demand balance of electricity, and to promote the utilization of renewable energy. The control strategy of micro grid energy storage system is studied. Firstly, the mixed integer linear programming model is established based on the receding horizon control. Secondly, the modified cuckoo search algorithm is proposed to calculate the model. Finally, a case study is carried out to study the signal characteristic of micro grid and batteries under the optimal control strategy, and the convergence of the modified cuckoo search algorithm is compared with others to verify the validity of the proposed model and method. The results show that, different micro grid running targets can affect the control strategy of energy storage system, which further affect the signal characteristics of the micro grid. Meanwhile, the convergent speed, computing time and the economy of the modified cuckoo search algorithm are improved compared with the traditional cuckoo search algorithm and differential evolution algorithm.

  18. RDEL: Restart Differential Evolution algorithm with Local Search Mutation for global numerical optimization

    Directory of Open Access Journals (Sweden)

    Ali Wagdy Mohamed

    2014-11-01

    Full Text Available In this paper, a novel version of Differential Evolution (DE algorithm based on a couple of local search mutation and a restart mechanism for solving global numerical optimization problems over continuous space is presented. The proposed algorithm is named as Restart Differential Evolution algorithm with Local Search Mutation (RDEL. In RDEL, inspired by Particle Swarm Optimization (PSO, a novel local mutation rule based on the position of the best and the worst individuals among the entire population of a particular generation is introduced. The novel local mutation scheme is joined with the basic mutation rule through a linear decreasing function. The proposed local mutation scheme is proven to enhance local search tendency of the basic DE and speed up the convergence. Furthermore, a restart mechanism based on random mutation scheme and a modified Breeder Genetic Algorithm (BGA mutation scheme is combined to avoid stagnation and/or premature convergence. Additionally, an exponent increased crossover probability rule and a uniform scaling factors of DE are introduced to promote the diversity of the population and to improve the search process, respectively. The performance of RDEL is investigated and compared with basic differential evolution, and state-of-the-art parameter adaptive differential evolution variants. It is discovered that the proposed modifications significantly improve the performance of DE in terms of quality of solution, efficiency and robustness.

  19. On the Runtime of Randomized Local Search and Simple Evolutionary Algorithms for Dynamic Makespan Scheduling

    DEFF Research Database (Denmark)

    Neumann, Frank; Witt, Carsten

    2015-01-01

    combinatorial optimization problem, namely makespan scheduling. We study the model of a strong adversary which is allowed to change one job at regular intervals. Furthermore, we investigate the setting of random changes. Our results show that randomized local search and a simple evolutionary algorithm are very...

  20. An Adaptive Large Neighborhood Search Algorithm for the Multi-mode RCPSP

    DEFF Research Database (Denmark)

    Muller, Laurent Flindt

    We present an Adaptive Large Neighborhood Search algorithm for the Multi-mode Resource-Constrained Project Scheduling Problem (MRCPSP). We incorporate techniques for deriving additional precedence relations and propose a new method, so-called mode-diminution, for removing modes during execution...

  1. From Schrцdinger's equation to the quantum search algorithm£

    Indian Academy of Sciences (India)

    Also the framework was simple and general and could be extended to ... It is unusual to write a paper listing the steps that led to a result after the result itself ... the quantum search algorithm – it is by no means a comprehensive review of quantum ..... D, as defined in the previous section, is no longer unitary for large ε.

  2. A variable-depth search algorithm for recursive bi-partitioning of signal flow graphs

    NARCIS (Netherlands)

    de Kock, E.A.; Aarts, E.H.L.; Essink, G.; Jansen, R.E.J.; Korst, J.H.M.

    1995-01-01

    We discuss the use of local search techniques for mapping video algorithms onto programmable high-performance video signal processors. The mapping problem is very complex due to many constraints that need to be satisfied in order to obtain a feasible solution. The complexity is reduced by

  3. Evaluation of a Distributed Photovoltaic System in Grid-Connected and Standalone Applications by Different MPPT Algorithms

    Directory of Open Access Journals (Sweden)

    Ru-Min Chao

    2018-06-01

    Full Text Available Due to the shortage of fossil fuel and the environmental pollution problem, solar energy applications have drawn a lot of attention worldwide. This paper reports the use of the latest patented distributed photovoltaic (PV power system design, including the two possible maximum power point tracking (MPPT algorithms, a power optimizer, and a PV power controller, in grid-connected and standalone applications. A distributed PV system with four amorphous silicon thin-film solar panels is used to evaluate both the quadratic maximization (QM and the Steepest descent (SD MPPT algorithms. The system’s design is different for the QM or the SD MPPT algorithm being used. The test result for the grid-connected silicon-based PV panels will also be reported. Considering the settling time for the power optimizer to be 20 ms, the test result shows that the tracking time for the QM method is close to 200 ms, which is faster when compared with the SD method whose tracking time is 500 ms. Besides this, the use of the QM method provides a more stable power output since the tracking is restricted by a local power optimizer rather than the global tracking the SD method uses. For a standalone PV application, a solar-powered boat design with 18 PV panels using a cascaded MPPT controller is introduced, and it provides flexibility in system design and the effective use of photovoltaic energy.

  4. Short-term economic environmental hydrothermal scheduling using improved multi-objective gravitational search algorithm

    International Nuclear Information System (INIS)

    Li, Chunlong; Zhou, Jianzhong; Lu, Peng; Wang, Chao

    2015-01-01

    Highlights: • Improved multi-objective gravitational search algorithm. • An elite archive set is proposed to guide evolutionary process. • Neighborhood searching mechanism to improve local search ability. • Adopt chaotic mutation for avoiding premature convergence. • Propose feasible space method to handle hydro plant constrains. - Abstract: With growing concerns about energy and environment, short-term economic environmental hydrothermal scheduling (SEEHS) plays a more and more important role in power system. Because of the two objectives and various constraints, SEEHS is a complex multi-objective optimization problem (MOOP). In order to solve the problem, we propose an improved multi-objective gravitational search algorithm (IMOGSA) in this paper. In IMOGSA, the mass of the agent is redefined by multiple objectives to make it suitable for MOOP. An elite archive set is proposed to keep Pareto optimal solutions and guide evolutionary process. For balancing exploration and exploitation, a neighborhood searching mechanism is presented to cooperate with chaotic mutation. Moreover, a novel method based on feasible space is proposed to handle hydro plant constraints during SEEHS, and a violation adjustment method is adopted to handle power balance constraint. For verifying its effectiveness, the proposed IMOGSA is applied to a hydrothermal system in two different case studies. The simulation results show that IMOGSA has a competitive performance in SEEHS when compared with other established algorithms

  5. A Local and Global Search Combined Particle Swarm Optimization Algorithm and Its Convergence Analysis

    Directory of Open Access Journals (Sweden)

    Weitian Lin

    2014-01-01

    Full Text Available Particle swarm optimization algorithm (PSOA is an advantage optimization tool. However, it has a tendency to get stuck in a near optimal solution especially for middle and large size problems and it is difficult to improve solution accuracy by fine-tuning parameters. According to the insufficiency, this paper researches the local and global search combine particle swarm algorithm (LGSCPSOA, and its convergence and obtains its convergence qualification. At the same time, it is tested with a set of 8 benchmark continuous functions and compared their optimization results with original particle swarm algorithm (OPSOA. Experimental results indicate that the LGSCPSOA improves the search performance especially on the middle and large size benchmark functions significantly.

  6. Solving k-Barrier Coverage Problem Using Modified Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Yanhua Zhang

    2017-01-01

    Full Text Available Coverage problem is a critical issue in wireless sensor networks for security applications. The k-barrier coverage is an effective measure to ensure robustness. In this paper, we formulate the k-barrier coverage problem as a constrained optimization problem and introduce the energy constraint of sensor node to prolong the lifetime of the k-barrier coverage. A novel hybrid particle swarm optimization and gravitational search algorithm (PGSA is proposed to solve this problem. The proposed PGSA adopts a k-barrier coverage generation strategy based on probability and integrates the exploitation ability in particle swarm optimization to update the velocity and enhance the global search capability and introduce the boundary mutation strategy of an agent to increase the population diversity and search accuracy. Extensive simulations are conducted to demonstrate the effectiveness of our proposed algorithm.

  7. A Data Transmission Algorithm Based on Dynamic Grid Division for Coal Goaf Temperature Monitoring

    Directory of Open Access Journals (Sweden)

    Qingsong Hu

    2014-01-01

    Full Text Available WSN (wireless sensor network is a perfect tool of temperature monitoring in coal goaf. Based on the three-zone theory of goaf, the GtmWSN model is proposed, and its dynamic features are analyzed. Accordingly, a data transmission scheme, named DTDGD, is worked out. Firstly, sink nodes conduct dynamic grid division on the GtmWSN according to virtual semicircle. Secondly, each node will confirm to which grid it belongs based on grid number. Finally, data will be delivered to sink nodes with greedy forward and hole avoidance. Simulation results and field data showed that the GtmWSN and DTDGD satisfied the lifetime need of goaf temperature monitoring.

  8. Identification of alternative splice variants in Aspergillus flavus through comparison of multiple tandem MS search algorithms

    Directory of Open Access Journals (Sweden)

    Chang Kung-Yen

    2011-07-01

    Full Text Available Abstract Background Database searching is the most frequently used approach for automated peptide assignment and protein inference of tandem mass spectra. The results, however, depend on the sequences in target databases and on search algorithms. Recently by using an alternative splicing database, we identified more proteins than with the annotated proteins in Aspergillus flavus. In this study, we aimed at finding a greater number of eligible splice variants based on newly available transcript sequences and the latest genome annotation. The improved database was then used to compare four search algorithms: Mascot, OMSSA, X! Tandem, and InsPecT. Results The updated alternative splicing database predicted 15833 putative protein variants, 61% more than the previous results. There was transcript evidence for 50% of the updated genes compared to the previous 35% coverage. Database searches were conducted using the same set of spectral data, search parameters, and protein database but with different algorithms. The false discovery rates of the peptide-spectrum matches were estimated Conclusions We were able to detect dozens of new peptides using the improved alternative splicing database with the recently updated annotation of the A. flavus genome. Unlike the identifications of the peptides and the RefSeq proteins, large variations existed between the putative splice variants identified by different algorithms. 12 candidates of putative isoforms were reported based on the consensus peptide-spectrum matches. This suggests that applications of multiple search engines effectively reduced the possible false positive results and validated the protein identifications from tandem mass spectra using an alternative splicing database.

  9. Simulating quantum search algorithm using vibronic states of I2 manipulated by optimally designed gate pulses

    International Nuclear Information System (INIS)

    Ohtsuki, Yukiyoshi

    2010-01-01

    In this paper, molecular quantum computation is numerically studied with the quantum search algorithm (Grover's algorithm) by means of optimal control simulation. Qubits are implemented in the vibronic states of I 2 , while gate operations are realized by optimally designed laser pulses. The methodological aspects of the simulation are discussed in detail. We show that the algorithm for solving a gate pulse-design problem has the same mathematical form as a state-to-state control problem in the density matrix formalism, which provides monotonically convergent algorithms as an alternative to the Krotov method. The sequential irradiation of separately designed gate pulses leads to the population distribution predicted by Grover's algorithm. The computational accuracy is reduced by the imperfect quality of the pulse design and by the electronic decoherence processes that are modeled by the non-Markovian master equation. However, as long as we focus on the population distribution of the vibronic qubits, we can search a target state with high probability without introducing error-correction processes during the computation. A generalized gate pulse-design scheme to explicitly include decoherence effects is outlined, in which we propose a new objective functional together with its solution algorithm that guarantees monotonic convergence.

  10. A novel optimization method, Gravitational Search Algorithm (GSA), for PWR core optimization

    International Nuclear Information System (INIS)

    Mahmoudi, S.M.; Aghaie, M.; Bahonar, M.; Poursalehi, N.

    2016-01-01

    Highlights: • The Gravitational Search Algorithm (GSA) is introduced. • The advantage of GSA is verified in Shekel’s Foxholes. • Reload optimizing in WWER-1000 and WWER-440 cases are performed. • Maximizing K eff , minimizing PPFs and flattening power density is considered. - Abstract: In-core fuel management optimization (ICFMO) is one of the most challenging concepts of nuclear engineering. In recent decades several meta-heuristic algorithms or computational intelligence methods have been expanded to optimize reactor core loading pattern. This paper presents a new method of using Gravitational Search Algorithm (GSA) for in-core fuel management optimization. The GSA is constructed based on the law of gravity and the notion of mass interactions. It uses the theory of Newtonian physics and searcher agents are the collection of masses. In this work, at the first step, GSA method is compared with other meta-heuristic algorithms on Shekel’s Foxholes problem. In the second step for finding the best core, the GSA algorithm has been performed for three PWR test cases including WWER-1000 and WWER-440 reactors. In these cases, Multi objective optimizations with the following goals are considered, increment of multiplication factor (K eff ), decrement of power peaking factor (PPF) and power density flattening. It is notable that for neutronic calculation, PARCS (Purdue Advanced Reactor Core Simulator) code is used. The results demonstrate that GSA algorithm have promising performance and could be proposed for other optimization problems of nuclear engineering field.

  11. Hybridization of Strength Pareto Multiobjective Optimization with Modified Cuckoo Search Algorithm for Rectangular Array.

    Science.gov (United States)

    Abdul Rani, Khairul Najmy; Abdulmalek, Mohamedfareq; A Rahim, Hasliza; Siew Chin, Neoh; Abd Wahab, Alawiyah

    2017-04-20

    This research proposes the various versions of modified cuckoo search (MCS) metaheuristic algorithm deploying the strength Pareto evolutionary algorithm (SPEA) multiobjective (MO) optimization technique in rectangular array geometry synthesis. Precisely, the MCS algorithm is proposed by incorporating the Roulette wheel selection operator to choose the initial host nests (individuals) that give better results, adaptive inertia weight to control the positions exploration of the potential best host nests (solutions), and dynamic discovery rate to manage the fraction probability of finding the best host nests in 3-dimensional search space. In addition, the MCS algorithm is hybridized with the particle swarm optimization (PSO) and hill climbing (HC) stochastic techniques along with the standard strength Pareto evolutionary algorithm (SPEA) forming the MCSPSOSPEA and MCSHCSPEA, respectively. All the proposed MCS-based algorithms are examined to perform MO optimization on Zitzler-Deb-Thiele's (ZDT's) test functions. Pareto optimum trade-offs are done to generate a set of three non-dominated solutions, which are locations, excitation amplitudes, and excitation phases of array elements, respectively. Overall, simulations demonstrates that the proposed MCSPSOSPEA outperforms other compatible competitors, in gaining a high antenna directivity, small half-power beamwidth (HPBW), low average side lobe level (SLL) suppression, and/or significant predefined nulls mitigation, simultaneously.

  12. Micro-seismic waveform matching inversion based on gravitational search algorithm and parallel computation

    Science.gov (United States)

    Jiang, Y.; Xing, H. L.

    2016-12-01

    Micro-seismic events induced by water injection, mining activity or oil/gas extraction are quite informative, the interpretation of which can be applied for the reconstruction of underground stress and monitoring of hydraulic fracturing progress in oil/gas reservoirs. The source characterises and locations are crucial parameters that required for these purposes, which can be obtained through the waveform matching inversion (WMI) method. Therefore it is imperative to develop a WMI algorithm with high accuracy and convergence speed. Heuristic algorithm, as a category of nonlinear method, possesses a very high convergence speed and good capacity to overcome local minimal values, and has been well applied for many areas (e.g. image processing, artificial intelligence). However, its effectiveness for micro-seismic WMI is still poorly investigated; very few literatures exits that addressing this subject. In this research an advanced heuristic algorithm, gravitational search algorithm (GSA) , is proposed to estimate the focal mechanism (angle of strike, dip and rake) and source locations in three dimension. Unlike traditional inversion methods, the heuristic algorithm inversion does not require the approximation of green function. The method directly interacts with a CPU parallelized finite difference forward modelling engine, and updating the model parameters under GSA criterions. The effectiveness of this method is tested with synthetic data form a multi-layered elastic model; the results indicate GSA can be well applied on WMI and has its unique advantages. Keywords: Micro-seismicity, Waveform matching inversion, gravitational search algorithm, parallel computation

  13. Grid Frequency Support by Single-Phase Electric Vehicles: Fast Primary Control Enhanced by a Stabilizer Algorithm

    DEFF Research Database (Denmark)

    Zecchino, Antonio; Rezkalla, Michel M.N.; Marinelli, Mattia

    2016-01-01

    Electric vehicles are growing in popularity as a zero emission and efficient mode of transport against traditional internal combustion engine-based vehicles. Considerable as flexible distributed energy storage systems, by adjusting the battery charging process they can potentially provide different...... ancillary services for supporting the power grid. This paper presents modeling and analysis of the benefits of primary frequency regulation by electric vehicles in a microgrid. An innovative control logic algorithm is introduced, with the purpose of curtailing the number of current set-point variations...

  14. Modification of double vector control algorithm to filter out grid harmonics

    DEFF Research Database (Denmark)

    Awad, Hilmy; Blaabjerg, Frede

    2005-01-01

    terminals in the case of distorted grid voltage. Furthermore, a selective harmonic compensation strategy is applied to filter out the grid harmonics. The operation of the SSC under distorted utility conditions and voltage dips is discussed. The validity of the proposed controller is verified by experiments......, which have been carried out on a 10-kV SSC laboratory setup. Experimental results have shown the ability of the SSC to mitigate voltage dips and harmonics. It is also shown that the proposed controller has improved the transient performance of the SSC even under distorted utility conditions....

  15. A novel symbiotic organisms search algorithm for congestion management in deregulated environment

    Science.gov (United States)

    Verma, Sumit; Saha, Subhodip; Mukherjee, V.

    2017-01-01

    In today's competitive electricity market, managing transmission congestion in deregulated power system has created challenges for independent system operators to operate the transmission lines reliably within the limits. This paper proposes a new meta-heuristic algorithm, called as symbiotic organisms search (SOS) algorithm, for congestion management (CM) problem in pool based electricity market by real power rescheduling of generators. Inspired by interactions among organisms in ecosystem, SOS algorithm is a recent population based algorithm which does not require any algorithm specific control parameters unlike other algorithms. Various security constraints such as load bus voltage and line loading are taken into account while dealing with the CM problem. In this paper, the proposed SOS algorithm is applied on modified IEEE 30- and 57-bus test power system for the solution of CM problem. The results, thus, obtained are compared to those reported in the recent state-of-the-art literature. The efficacy of the proposed SOS algorithm for obtaining the higher quality solution is also established.

  16. Gravity Search Algorithm hybridized Recursive Least Square method for power system harmonic estimation

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Singh

    2017-06-01

    Full Text Available This paper presents a new hybrid method based on Gravity Search Algorithm (GSA and Recursive Least Square (RLS, known as GSA-RLS, to solve the harmonic estimation problems in the case of time varying power signals in presence of different noises. GSA is based on the Newton’s law of gravity and mass interactions. In the proposed method, the searcher agents are a collection of masses that interact with each other using Newton’s laws of gravity and motion. The basic GSA algorithm strategy is combined with RLS algorithm sequentially in an adaptive way to update the unknown parameters (weights of the harmonic signal. Simulation and practical validation are made with the experimentation of the proposed algorithm with real time data obtained from a heavy paper industry. A comparative performance of the proposed algorithm is evaluated with other recently reported algorithms like, Differential Evolution (DE, Particle Swarm Optimization (PSO, Bacteria Foraging Optimization (BFO, Fuzzy-BFO (F-BFO hybridized with Least Square (LS and BFO hybridized with RLS algorithm, which reveals that the proposed GSA-RLS algorithm is the best in terms of accuracy, convergence and computational time.

  17. A Novel Robust Communication Algorithm for Distributed Secondary Control of Islanded MicroGrids

    DEFF Research Database (Denmark)

    Shafiee, Qobad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2013-01-01

    Distributed secondary control (DSC) is a new approach for MicroGrids (MGs) such that frequency, voltage and power regulation is made in each unit locally to avoid using a central controller. Due to the constrained traffic pattern required by the secondary control, it is viable to implement...

  18. An Efficient Topology-Based Algorithm for Transient Analysis of Power Grid

    KAUST Repository

    Yang, Lan; Wang, Jingbin; Azevedo, Lorenzo; Wang, Jim Jing-Yan

    2015-01-01

    In the design flow of integrated circuits, chip-level verification is an important step that sanity checks the performance is as expected. Power grid verification is one of the most expensive and time-consuming steps of chip-level verification, due

  19. Upper-Lower Bounds Candidate Sets Searching Algorithm for Bayesian Network Structure Learning

    Directory of Open Access Journals (Sweden)

    Guangyi Liu

    2014-01-01

    Full Text Available Bayesian network is an important theoretical model in artificial intelligence field and also a powerful tool for processing uncertainty issues. Considering the slow convergence speed of current Bayesian network structure learning algorithms, a fast hybrid learning method is proposed in this paper. We start with further analysis of information provided by low-order conditional independence testing, and then two methods are given for constructing graph model of network, which is theoretically proved to be upper and lower bounds of the structure space of target network, so that candidate sets are given as a result; after that a search and scoring algorithm is operated based on the candidate sets to find the final structure of the network. Simulation results show that the algorithm proposed in this paper is more efficient than similar algorithms with the same learning precision.

  20. Voltage stability index based optimal placement of static VAR compensator and sizing using Cuckoo search algorithm

    Science.gov (United States)

    Venkateswara Rao, B.; Kumar, G. V. Nagesh; Chowdary, D. Deepak; Bharathi, M. Aruna; Patra, Stutee

    2017-07-01

    This paper furnish the new Metaheuristic algorithm called Cuckoo Search Algorithm (CSA) for solving optimal power flow (OPF) problem with minimization of real power generation cost. The CSA is found to be the most efficient algorithm for solving single objective optimal power flow problems. The CSA performance is tested on IEEE 57 bus test system with real power generation cost minimization as objective function. Static VAR Compensator (SVC) is one of the best shunt connected device in the Flexible Alternating Current Transmission System (FACTS) family. It has capable of controlling the voltage magnitudes of buses by injecting the reactive power to system. In this paper SVC is integrated in CSA based Optimal Power Flow to optimize the real power generation cost. SVC is used to improve the voltage profile of the system. CSA gives better results as compared to genetic algorithm (GA) in both without and with SVC conditions.

  1. Access Selection Algorithm of Heterogeneous Wireless Networks for Smart Distribution Grid Based on Entropy-Weight and Rough Set

    Science.gov (United States)

    Xiang, Min; Qu, Qinqin; Chen, Cheng; Tian, Li; Zeng, Lingkang

    2017-11-01

    To improve the reliability of communication service in smart distribution grid (SDG), an access selection algorithm based on dynamic network status and different service types for heterogeneous wireless networks was proposed. The network performance index values were obtained in real time by multimode terminal and the variation trend of index values was analyzed by the growth matrix. The index weights were calculated by entropy-weight and then modified by rough set to get the final weights. Combining the grey relational analysis to sort the candidate networks, and the optimum communication network is selected. Simulation results show that the proposed algorithm can implement dynamically access selection in heterogeneous wireless networks of SDG effectively and reduce the network blocking probability.

  2. Parameter Identification of the 2-Chlorophenol Oxidation Model Using Improved Differential Search Algorithm

    Directory of Open Access Journals (Sweden)

    Guang-zhou Chen

    2015-01-01

    Full Text Available Parameter identification plays a crucial role for simulating and using model. This paper firstly carried out the sensitivity analysis of the 2-chlorophenol oxidation model in supercritical water using the Monte Carlo method. Then, to address the nonlinearity of the model, two improved differential search (DS algorithms were proposed to carry out the parameter identification of the model. One strategy is to adopt the Latin hypercube sampling method to replace the uniform distribution of initial population; the other is to combine DS with simplex method. The results of sensitivity analysis reveal the sensitivity and the degree of difficulty identified for every model parameter. Furthermore, the posteriori probability distribution of parameters and the collaborative relationship between any two parameters can be obtained. To verify the effectiveness of the improved algorithms, the optimization performance of improved DS in kinetic parameter estimation is studied and compared with that of the basic DS algorithm, differential evolution, artificial bee colony optimization, and quantum-behaved particle swarm optimization. And the experimental results demonstrate that the DS with the Latin hypercube sampling method does not present better performance, while the hybrid methods have the advantages of strong global search ability and local search ability and are more effective than the other algorithms.

  3. A novel algorithm for validating peptide identification from a shotgun proteomics search engine.

    Science.gov (United States)

    Jian, Ling; Niu, Xinnan; Xia, Zhonghang; Samir, Parimal; Sumanasekera, Chiranthani; Mu, Zheng; Jennings, Jennifer L; Hoek, Kristen L; Allos, Tara; Howard, Leigh M; Edwards, Kathryn M; Weil, P Anthony; Link, Andrew J

    2013-03-01

    Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has revolutionized the proteomics analysis of complexes, cells, and tissues. In a typical proteomic analysis, the tandem mass spectra from a LC-MS/MS experiment are assigned to a peptide by a search engine that compares the experimental MS/MS peptide data to theoretical peptide sequences in a protein database. The peptide spectra matches are then used to infer a list of identified proteins in the original sample. However, the search engines often fail to distinguish between correct and incorrect peptides assignments. In this study, we designed and implemented a novel algorithm called De-Noise to reduce the number of incorrect peptide matches and maximize the number of correct peptides at a fixed false discovery rate using a minimal number of scoring outputs from the SEQUEST search engine. The novel algorithm uses a three-step process: data cleaning, data refining through a SVM-based decision function, and a final data refining step based on proteolytic peptide patterns. Using proteomics data generated on different types of mass spectrometers, we optimized the De-Noise algorithm on the basis of the resolution and mass accuracy of the mass spectrometer employed in the LC-MS/MS experiment. Our results demonstrate De-Noise improves peptide identification compared to other methods used to process the peptide sequence matches assigned by SEQUEST. Because De-Noise uses a limited number of scoring attributes, it can be easily implemented with other search engines.

  4. Combined heat and power economic dispatch by a fish school search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Leonardo Trigueiro dos; Costa e Silva, Marsil de Athayde [Undergraduate in Mechatronics Engineering, Pontifical Catholic University of Parana, Curitiba, PR (Brazil); Coelho, Leandro dos Santos [Industrial and Systems Engineering Graduate Program, PPGEPS, Pontifical Catholic University of Parana, Curitiba, PR (Brazil)], e-mail: leandro.coelho@pucpr.br

    2010-07-01

    The conversion of primary fossil fuels, such as coal and gas, to electricity is a a relatively inefficient process. Even the most modern combined cycle plants can only achieve efficiencies of between 50-60%. A great portion of the energy wasted in this conversion process is released to the environment as waste heat. The principle of combined heat and power, also known as cogeneration, is to recover and make beneficial use of this heat, significantly raising the overall efficiency of the conversion process. However, the optimal utilization of multiple combined heat and power systems is a complicated problem which needs powerful methods to solve. This paper presents a fish school search (FSS) algorithm to solve the combined heat and power economic dispatch problem. FSS is a novel approach recently proposed to perform search in complex optimization problems. Some simulations presented in the literature indicated that FSS can outperform many bio-inspired algorithms, mainly in multimodal functions. The search process in FSS is carried out by a population of limited-memory individuals - the fishes. Each fish represents a possible solution to the problem. Similarly to particle swarm optimization or genetic algorithm, search guidance in FSS is driven by the success of some individual members of the population. A four-unit system proposed recently which is a benchmark case in the power systems field has been validated as a case study in this paper. (author)

  5. Redundancy allocation of series-parallel systems using a variable neighborhood search algorithm

    International Nuclear Information System (INIS)

    Liang, Y.-C.; Chen, Y.-C.

    2007-01-01

    This paper presents a meta-heuristic algorithm, variable neighborhood search (VNS), to the redundancy allocation problem (RAP). The RAP, an NP-hard problem, has attracted the attention of much prior research, generally in a restricted form where each subsystem must consist of identical components. The newer meta-heuristic methods overcome this limitation and offer a practical way to solve large instances of the relaxed RAP where different components can be used in parallel. Authors' previously published work has shown promise for the variable neighborhood descent (VND) method, the simplest version among VNS variations, on RAP. The variable neighborhood search method itself has not been used in reliability design, yet it is a method that fits those combinatorial problems with potential neighborhood structures, as in the case of the RAP. Therefore, authors further extended their work to develop a VNS algorithm for the RAP and tested a set of well-known benchmark problems from the literature. Results on 33 test instances ranging from less to severely constrained conditions show that the variable neighborhood search method improves the performance of VND and provides a competitive solution quality at economically computational expense in comparison with the best-known heuristics including ant colony optimization, genetic algorithm, and tabu search

  6. Redundancy allocation of series-parallel systems using a variable neighborhood search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Y.-C. [Department of Industrial Engineering and Management, Yuan Ze University, No 135 Yuan-Tung Road, Chung-Li, Taoyuan County, Taiwan 320 (China)]. E-mail: ycliang@saturn.yzu.edu.tw; Chen, Y.-C. [Department of Industrial Engineering and Management, Yuan Ze University, No 135 Yuan-Tung Road, Chung-Li, Taoyuan County, Taiwan 320 (China)]. E-mail: s927523@mail.yzu.edu.tw

    2007-03-15

    This paper presents a meta-heuristic algorithm, variable neighborhood search (VNS), to the redundancy allocation problem (RAP). The RAP, an NP-hard problem, has attracted the attention of much prior research, generally in a restricted form where each subsystem must consist of identical components. The newer meta-heuristic methods overcome this limitation and offer a practical way to solve large instances of the relaxed RAP where different components can be used in parallel. Authors' previously published work has shown promise for the variable neighborhood descent (VND) method, the simplest version among VNS variations, on RAP. The variable neighborhood search method itself has not been used in reliability design, yet it is a method that fits those combinatorial problems with potential neighborhood structures, as in the case of the RAP. Therefore, authors further extended their work to develop a VNS algorithm for the RAP and tested a set of well-known benchmark problems from the literature. Results on 33 test instances ranging from less to severely constrained conditions show that the variable neighborhood search method improves the performance of VND and provides a competitive solution quality at economically computational expense in comparison with the best-known heuristics including ant colony optimization, genetic algorithm, and tabu search.

  7. A novel symbiotic organisms search algorithm for optimal power flow of power system with FACTS devices

    Directory of Open Access Journals (Sweden)

    Dharmbir Prasad

    2016-03-01

    Full Text Available In this paper, symbiotic organisms search (SOS algorithm is proposed for the solution of optimal power flow (OPF problem of power system equipped with flexible ac transmission systems (FACTS devices. Inspired by interaction between organisms in ecosystem, SOS algorithm is a recent population based algorithm which does not require any algorithm specific control parameters unlike other algorithms. The performance of the proposed SOS algorithm is tested on the modified IEEE-30 bus and IEEE-57 bus test systems incorporating two types of FACTS devices, namely, thyristor controlled series capacitor and thyristor controlled phase shifter at fixed locations. The OPF problem of the present work is formulated with four different objective functions viz. (a fuel cost minimization, (b transmission active power loss minimization, (c emission reduction and (d minimization of combined economic and environmental cost. The simulation results exhibit the potential of the proposed SOS algorithm and demonstrate its effectiveness for solving the OPF problem of power system incorporating FACTS devices over the other evolutionary optimization techniques that surfaced in the recent state-of-the-art literature.

  8. A HYBRID HOPFIELD NEURAL NETWORK AND TABU SEARCH ALGORITHM TO SOLVE ROUTING PROBLEM IN COMMUNICATION NETWORK

    Directory of Open Access Journals (Sweden)

    MANAR Y. KASHMOLA

    2012-06-01

    Full Text Available The development of hybrid algorithms for solving complex optimization problems focuses on enhancing the strengths and compensating for the weakness of two or more complementary approaches. The goal is to intelligently combine the key elements of these approaches to find superior solutions to solve optimization problems. Optimal routing in communication network is considering a complex optimization problem. In this paper we propose a hybrid Hopfield Neural Network (HNN and Tabu Search (TS algorithm, this algorithm called hybrid HNN-TS algorithm. The paradigm of this hybridization is embedded. We embed the short-term memory and tabu restriction features from TS algorithm in the HNN model. The short-term memory and tabu restriction control the neuron selection process in the HNN model in order to get around the local minima problem and find an optimal solution using the HNN model to solve complex optimization problem. The proposed algorithm is intended to find the optimal path for packet transmission in the network which is fills in the field of routing problem. The optimal path that will be selected is depending on 4-tuples (delay, cost, reliability and capacity. Test results show that the propose algorithm can find path with optimal cost and a reasonable number of iterations. It also shows that the complexity of the network model won’t be a problem since the neuron selection is done heuristically.

  9. An Effective Cuckoo Search Algorithm for Node Localization in Wireless Sensor Network.

    Science.gov (United States)

    Cheng, Jing; Xia, Linyuan

    2016-08-31

    Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm.

  10. New reference trajectory optimization algorithm for a flight management system inspired in beam search

    Directory of Open Access Journals (Sweden)

    Alejandro MURRIETA-MENDOZA

    2017-08-01

    Full Text Available With the objective of reducing the flight cost and the amount of polluting emissions released in the atmosphere, a new optimization algorithm considering the climb, cruise and descent phases is presented for the reference vertical flight trajectory. The selection of the reference vertical navigation speeds and altitudes was solved as a discrete combinatory problem by means of a graph-tree passing through nodes using the beam search optimization technique. To achieve a compromise between the execution time and the algorithm’s ability to find the global optimal solution, a heuristic methodology introducing a parameter called “optimism coefficient was used in order to estimate the trajectory’s flight cost at every node. The optimal trajectory cost obtained with the developed algorithm was compared with the cost of the optimal trajectory provided by a commercial flight management system(FMS. The global optimal solution was validated against an exhaustive search algorithm(ESA, other than the proposed algorithm. The developed algorithm takes into account weather effects, step climbs during cruise and air traffic management constraints such as constant altitude segments, constant cruise Mach, and a pre-defined reference lateral navigation route. The aircraft fuel burn was computed using a numerical performance model which was created and validated using flight test experimental data.

  11. Heat Transfer Search Algorithm for Non-convex Economic Dispatch Problems

    Science.gov (United States)

    Hazra, Abhik; Das, Saborni; Basu, Mousumi

    2018-03-01

    This paper presents Heat Transfer Search (HTS) algorithm for the non-linear economic dispatch problem. HTS algorithm is based on the law of thermodynamics and heat transfer. The proficiency of the suggested technique has been disclosed on three dissimilar complicated economic dispatch problems with valve point effect; prohibited operating zone; and multiple fuels with valve point effect. Test results acquired from the suggested technique for the economic dispatch problem have been fitted to that acquired from other stated evolutionary techniques. It has been observed that the suggested HTS carry out superior solutions.

  12. Algorithms for searching Fast radio bursts and pulsars in tight binary systems.

    Science.gov (United States)

    Zackay, Barak

    2017-01-01

    Fast radio bursts (FRB's) are an exciting, recently discovered, astrophysical transients which their origins are unknown.Currently, these bursts are believed to be coming from cosmological distances, allowing us to probe the electron content on cosmological length scales. Even though their precise localization is crucial for the determination of their origin, radio interferometers were not extensively employed in searching for them due to computational limitations.I will briefly present the Fast Dispersion Measure Transform (FDMT) algorithm,that allows to reduce the operation count in blind incoherent dedispersion by 2-3 orders of magnitude.In addition, FDMT enables to probe the unexplored domain of sub-microsecond astrophysical pulses.Pulsars in tight binary systems are among the most important astrophysical objects as they provide us our best tests of general relativity in the strong field regime.I will provide a preview to a novel algorithm that enables the detection of pulsars in short binary systems using observation times longer than an orbital period.Current pulsar search programs limit their searches for integration times shorter than a few percents of the orbital period.Until now, searching for pulsars in binary systems using observation times longer than an orbital period was considered impossible as one has to blindly enumerate all options for the Keplerian parameters, the pulsar rotation period, and the unknown DM.Using the current state of the art pulsar search techniques and all computers on the earth, such an enumeration would take longer than a Hubble time. I will demonstrate that using the new algorithm, it is possible to conduct such an enumeration on a laptop using real data of the double pulsar PSR J0737-3039.Among the other applications of this algorithm are:1) Searching for all pulsars on all sky positions in gamma ray observations of the Fermi LAT satellite.2) Blind searching for continuous gravitational wave sources emitted by pulsars with

  13. Certain integrable system on a space associated with a quantum search algorithm

    International Nuclear Information System (INIS)

    Uwano, Y.; Hino, H.; Ishiwatari, Y.

    2007-01-01

    On thinking up a Grover-type quantum search algorithm for an ordered tuple of multiqubit states, a gradient system associated with the negative von Neumann entropy is studied on the space of regular relative configurations of multiqubit states (SR 2 CMQ). The SR 2 CMQ emerges, through a geometric procedure, from the space of ordered tuples of multiqubit states for the quantum search. The aim of this paper is to give a brief report on the integrability of the gradient dynamical system together with quantum information geometry of the underlying space, SR 2 CMQ, of that system

  14. Hooke–Jeeves Method-used Local Search in a Hybrid Global Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    V. D. Sulimov

    2014-01-01

    Full Text Available Modern methods for optimization investigation of complex systems are based on development and updating the mathematical models of systems because of solving the appropriate inverse problems. Input data desirable for solution are obtained from the analysis of experimentally defined consecutive characteristics for a system or a process. Causal characteristics are the sought ones to which equation coefficients of mathematical models of object, limit conditions, etc. belong. The optimization approach is one of the main ones to solve the inverse problems. In the main case it is necessary to find a global extremum of not everywhere differentiable criterion function. Global optimization methods are widely used in problems of identification and computation diagnosis system as well as in optimal control, computing to-mography, image restoration, teaching the neuron networks, other intelligence technologies. Increasingly complicated systems of optimization observed during last decades lead to more complicated mathematical models, thereby making solution of appropriate extreme problems significantly more difficult. A great deal of practical applications may have the problem con-ditions, which can restrict modeling. As a consequence, in inverse problems the criterion functions can be not everywhere differentiable and noisy. Available noise means that calculat-ing the derivatives is difficult and unreliable. It results in using the optimization methods without calculating the derivatives.An efficiency of deterministic algorithms of global optimization is significantly restrict-ed by their dependence on the extreme problem dimension. When the number of variables is large they use the stochastic global optimization algorithms. As stochastic algorithms yield too expensive solutions, so this drawback restricts their applications. Developing hybrid algo-rithms that combine a stochastic algorithm for scanning the variable space with deterministic local search

  15. A threshold auto-adjustment algorithm of feature points extraction based on grid

    Science.gov (United States)

    Yao, Zili; Li, Jun; Dong, Gaojie

    2018-02-01

    When dealing with high-resolution digital images, detection of feature points is usually the very first important step. Valid feature points depend on the threshold. If the threshold is too low, plenty of feature points will be detected, and they may be aggregated in the rich texture regions, which consequently not only affects the speed of feature description, but also aggravates the burden of following processing; if the threshold is set high, the feature points in poor texture area will lack. To solve these problems, this paper proposes a threshold auto-adjustment method of feature extraction based on grid. By dividing the image into numbers of grid, threshold is set in every local grid for extracting the feature points. When the number of feature points does not meet the threshold requirement, the threshold will be adjusted automatically to change the final number of feature points The experimental results show that feature points produced by our method is more uniform and representative, which avoids the aggregation of feature points and greatly reduces the complexity of following work.

  16. Using Hadoop MapReduce for Parallel Genetic Algorithms: A Comparison of the Global, Grid and Island Models.

    Science.gov (United States)

    Ferrucci, Filomena; Salza, Pasquale; Sarro, Federica

    2017-06-29

    The need to improve the scalability of Genetic Algorithms (GAs) has motivated the research on Parallel Genetic Algorithms (PGAs), and different technologies and approaches have been used. Hadoop MapReduce represents one of the most mature technologies to develop parallel algorithms. Based on the fact that parallel algorithms introduce communication overhead, the aim of the present work is to understand if, and possibly when, the parallel GAs solutions using Hadoop MapReduce show better performance than sequential versions in terms of execution time. Moreover, we are interested in understanding which PGA model can be most effective among the global, grid, and island models. We empirically assessed the performance of these three parallel models with respect to a sequential GA on a software engineering problem, evaluating the execution time and the achieved speedup. We also analysed the behaviour of the parallel models in relation to the overhead produced by the use of Hadoop MapReduce and the GAs' computational effort, which gives a more machine-independent measure of these algorithms. We exploited three problem instances to differentiate the computation load and three cluster configurations based on 2, 4, and 8 parallel nodes. Moreover, we estimated the costs of the execution of the experimentation on a potential cloud infrastructure, based on the pricing of the major commercial cloud providers. The empirical study revealed that the use of PGA based on the island model outperforms the other parallel models and the sequential GA for all the considered instances and clusters. Using 2, 4, and 8 nodes, the island model achieves an average speedup over the three datasets of 1.8, 3.4, and 7.0 times, respectively. Hadoop MapReduce has a set of different constraints that need to be considered during the design and the implementation of parallel algorithms. The overhead of data store (i.e., HDFS) accesses, communication, and latency requires solutions that reduce data store

  17. Improved Harmony Search Algorithm for Truck Scheduling Problem in Multiple-Door Cross-Docking Systems

    Directory of Open Access Journals (Sweden)

    Zhanzhong Wang

    2018-01-01

    Full Text Available The key of realizing the cross docking is to design the joint of inbound trucks and outbound trucks, so a proper sequence of trucks will make the cross-docking system much more efficient and need less makespan. A cross-docking system is proposed with multiple receiving and shipping dock doors. The objective is to find the best door assignments and the sequences of trucks in the principle of products distribution to minimize the total makespan of cross docking. To solve the problem that is regarded as a mixed integer linear programming (MILP model, three metaheuristics, namely, harmony search (HS, improved harmony search (IHS, and genetic algorithm (GA, are proposed. Furthermore, the fixed parameters are optimized by Taguchi experiments to improve the accuracy of solutions further. Finally, several numerical examples are put forward to evaluate the performances of proposed algorithms.

  18. Transmission network expansion planning based on hybridization model of neural networks and harmony search algorithm

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ameli

    2012-01-01

    Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.

  19. A Novel adaptative Discrete Cuckoo Search Algorithm for parameter optimization in computer vision

    Directory of Open Access Journals (Sweden)

    loubna benchikhi

    2017-10-01

    Full Text Available Computer vision applications require choosing operators and their parameters, in order to provide the best outcomes. Often, the users quarry on expert knowledge and must experiment many combinations to find manually the best one. As performance, time and accuracy are important, it is necessary to automate parameter optimization at least for crucial operators. In this paper, a novel approach based on an adaptive discrete cuckoo search algorithm (ADCS is proposed. It automates the process of algorithms’ setting and provides optimal parameters for vision applications. This work reconsiders a discretization problem to adapt the cuckoo search algorithm and presents the procedure of parameter optimization. Some experiments on real examples and comparisons to other metaheuristic-based approaches: particle swarm optimization (PSO, reinforcement learning (RL and ant colony optimization (ACO show the efficiency of this novel method.

  20. Application of Static Var Compensator (SVC) With PI Controller for Grid Integration of Wind Farm Using Harmony Search

    Science.gov (United States)

    Keshta, H. E.; Ali, A. A.; Saied, E. M.; Bendary, F. M.

    2016-10-01

    Large-scale integration of wind turbine generators (WTGs) may have significant impacts on power system operation with respect to system frequency and bus voltages. This paper studies the effect of Static Var Compensator (SVC) connected to wind energy conversion system (WECS) on voltage profile and the power generated from the induction generator (IG) in wind farm. Also paper presents, a dynamic reactive power compensation using Static Var Compensator (SVC) at the a point of interconnection of wind farm while static compensation (Fixed Capacitor Bank) is unable to prevent voltage collapse. Moreover, this paper shows that using advanced optimization techniques based on artificial intelligence (AI) such as Harmony Search Algorithm (HS) and Self-Adaptive Global Harmony Search Algorithm (SGHS) instead of a Conventional Control Method to tune the parameters of PI controller for SVC and pitch angle. Also paper illustrates that the performance of the system with controllers based on AI is improved under different operating conditions. MATLAB/Simulink based simulation is utilized to demonstrate the application of SVC in wind farm integration. It is also carried out to investigate the enhancement in performance of the WECS achieved with a PI Controller tuned by Harmony Search Algorithm as compared to a Conventional Control Method.

  1. A splitting algorithm for the wavelet transform of cubic splines on a nonuniform grid

    Science.gov (United States)

    Sulaimanov, Z. M.; Shumilov, B. M.

    2017-10-01

    For cubic splines with nonuniform nodes, splitting with respect to the even and odd nodes is used to obtain a wavelet expansion algorithm in the form of the solution to a three-diagonal system of linear algebraic equations for the coefficients. Computations by hand are used to investigate the application of this algorithm for numerical differentiation. The results are illustrated by solving a prediction problem.

  2. Manual Engineering and Evolution of Emergent Algorithms for Agents on Two-dimensional Grids

    OpenAIRE

    Komann, Marcus

    2011-01-01

    In this thesis, the problem of detecting the attributes of multiple objects in binary images in realtime is solved. It is a common problem in industrial machine vision. For the solution, the usage of emergent algorithms on a smart camera with a fine-grained massively-parallel processor is proposed. Combining both is promising since such processors can exploit the abilities of emergent algorithms. Therefore, so-called Marching Pixels are introduced. These are local agents that traverse the pix...

  3. Optimal electricity dispatch on isolated mini-grids using a demand response strategy for thermal storage backup with genetic algorithms

    International Nuclear Information System (INIS)

    Neves, Diana; Silva, Carlos A.

    2015-01-01

    The present study uses the DHW (domestic hot water) electric backup from solar thermal systems to optimize the total electricity dispatch of an isolated mini-grid. The proposed approach estimates the hourly DHW load, and proposes and simulates different DR (demand response) strategies, from the supply side, to minimize the dispatch costs of an energy system. The case study consists on optimizing the electricity load, in a representative day with low solar radiation, in Corvo Island, Azores. The DHW backup is induced by three different demand patterns. The study compares different DR strategies: backup at demand (no strategy), pre-scheduled backup using two different imposed schedules, a strategy based on linear programming, and finally two strategies using genetic algorithms, with different formulations for DHW backup – one that assigns number of systems and another that assigns energy demand. It is concluded that pre-determined DR strategies may increase the generation costs, but DR strategies based on optimization algorithms are able to decrease generation costs. In particular, linear programming is the strategy that presents the lowest increase on dispatch costs, but the strategy based on genetic algorithms is the one that best minimizes both daily operation costs and total energy demand, of the system. - Highlights: • Integrated hourly model of DHW electric impact and electricity dispatch of isolated grid. • Proposal and comparison of different DR (demand response) strategies for DHW backup. • LP strategy presents 12% increase on total electric load, plus 5% on dispatch costs. • GA strategy presents 7% increase on total electric load, plus 8% on dispatch costs

  4. An Adaptive Image Enhancement Technique by Combining Cuckoo Search and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Zhiwei Ye

    2015-01-01

    Full Text Available Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  5. Improved Seam-Line Searching Algorithm for UAV Image Mosaic with Optical Flow.

    Science.gov (United States)

    Zhang, Weilong; Guo, Bingxuan; Li, Ming; Liao, Xuan; Li, Wenzhuo

    2018-04-16

    Ghosting and seams are two major challenges in creating unmanned aerial vehicle (UAV) image mosaic. In response to these problems, this paper proposes an improved method for UAV image seam-line searching. First, an image matching algorithm is used to extract and match the features of adjacent images, so that they can be transformed into the same coordinate system. Then, the gray scale difference, the gradient minimum, and the optical flow value of pixels in adjacent image overlapped area in a neighborhood are calculated, which can be applied to creating an energy function for seam-line searching. Based on that, an improved dynamic programming algorithm is proposed to search the optimal seam-lines to complete the UAV image mosaic. This algorithm adopts a more adaptive energy aggregation and traversal strategy, which can find a more ideal splicing path for adjacent UAV images and avoid the ground objects better. The experimental results show that the proposed method can effectively solve the problems of ghosting and seams in the panoramic UAV images.

  6. An improved algorithm for searching all minimal cuts in modified networks

    International Nuclear Information System (INIS)

    Yeh, W.-C.

    2008-01-01

    A modified network is an updated network after inserting a branch string (a special path) between two nodes in the original network. Modifications are common for network expansion or reinforcement evaluation and planning. The problem of searching all minimal cuts (MCs) in a modified network is discussed and solved in this study. The existing best-known methods for solving this problem either needed extensive comparison and verification or failed to solve some special but important cases. Therefore, a more efficient, intuitive and generalized method for searching all MCs without an extensive research procedure is proposed. In this study, we first develop an intuitive algorithm based upon the reformation of all MCs in the original network to search for all MCs in a modified network. Next, the correctness of the proposed algorithm will be analyzed and proven. The computational complexity of the proposed algorithm is analyzed and compared with the existing best-known methods. Finally, two examples illustrate how all MCs are generated in a modified network using the information of all of the MCs in the corresponding original network

  7. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    Science.gov (United States)

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  8. Solving the wind farm layout optimization problem using random search algorithm

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2015-01-01

    , in which better results than the genetic algorithm (GA) and the old version of the RS algorithm are obtained. Second it is applied to the Horns Rev 1 WF, and the optimized layouts obtain a higher power production than its original layout, both for the real scenario and for two constructed scenarios......Wind farm (WF) layout optimization is to find the optimal positions of wind turbines (WTs) inside a WF, so as to maximize and/or minimize a single objective or multiple objectives, while satisfying certain constraints. In this work, a random search (RS) algorithm based on continuous formulation....... In this application, it is also found that in order to get consistent and reliable optimization results, up to 360 or more sectors for wind direction have to be used. Finally, considering the inevitable inter-annual variations in the wind conditions, the robustness of the optimized layouts against wind condition...

  9. Optimal gravitational search algorithm for automatic generation control of interconnected power systems

    Directory of Open Access Journals (Sweden)

    Rabindra Kumar Sahu

    2014-09-01

    Full Text Available An attempt is made for the effective application of Gravitational Search Algorithm (GSA to optimize PI/PIDF controller parameters in Automatic Generation Control (AGC of interconnected power systems. Initially, comparison of several conventional objective functions reveals that ITAE yields better system performance. Then, the parameters of GSA technique are properly tuned and the GSA control parameters are proposed. The superiority of the proposed approach is demonstrated by comparing the results of some recently published techniques such as Differential Evolution (DE, Bacteria Foraging Optimization Algorithm (BFOA and Genetic Algorithm (GA. Additionally, sensitivity analysis is carried out that demonstrates the robustness of the optimized controller parameters to wide variations in operating loading condition and time constants of speed governor, turbine, tie-line power. Finally, the proposed approach is extended to a more realistic power system model by considering the physical constraints such as reheat turbine, Generation Rate Constraint (GRC and Governor Dead Band nonlinearity.

  10. An image segmentation method based on fuzzy C-means clustering and Cuckoo search algorithm

    Science.gov (United States)

    Wang, Mingwei; Wan, Youchuan; Gao, Xianjun; Ye, Zhiwei; Chen, Maolin

    2018-04-01

    Image segmentation is a significant step in image analysis and machine vision. Many approaches have been presented in this topic; among them, fuzzy C-means (FCM) clustering is one of the most widely used methods for its high efficiency and ambiguity of images. However, the success of FCM could not be guaranteed because it easily traps into local optimal solution. Cuckoo search (CS) is a novel evolutionary algorithm, which has been tested on some optimization problems and proved to be high-efficiency. Therefore, a new segmentation technique using FCM and blending of CS algorithm is put forward in the paper. Further, the proposed method has been measured on several images and compared with other existing FCM techniques such as genetic algorithm (GA) based FCM and particle swarm optimization (PSO) based FCM in terms of fitness value. Experimental results indicate that the proposed method is robust, adaptive and exhibits the better performance than other methods involved in the paper.

  11. THE ALGORITHM AND PROGRAM OF M-MATRICES SEARCH AND STUDY

    Directory of Open Access Journals (Sweden)

    Y. N. Balonin

    2013-05-01

    Full Text Available The algorithm and software for search and study of orthogonal bases matrices – minimax matrices (M-matrix are considered. The algorithm scheme is shown, comments on calculation blocks are given, and interface of the MMatrix software system developed with participation of the authors is explained. The results of the universal algorithm work are presented as Hadamard matrices, Belevitch matrices (C-matrices, conference matrices and matrices of even and odd orders complementary and closely related to those ones by their properties, in particular, the matrix of the 22-th order for which there is no C-matrix. Examples of portraits for alternative matrices of the 255-th and the 257-th orders are given corresponding to the sequences of Mersenne and Fermat numbers. A new way to get Hadamard matrices is explained, different from the previously known procedures based on iterative processes and calculations of Lagrange symbols, with theoretical and practical meaning.

  12. Recurrent neural network-based modeling of gene regulatory network using elephant swarm water search algorithm.

    Science.gov (United States)

    Mandal, Sudip; Saha, Goutam; Pal, Rajat Kumar

    2017-08-01

    Correct inference of genetic regulations inside a cell from the biological database like time series microarray data is one of the greatest challenges in post genomic era for biologists and researchers. Recurrent Neural Network (RNN) is one of the most popular and simple approach to model the dynamics as well as to infer correct dependencies among genes. Inspired by the behavior of social elephants, we propose a new metaheuristic namely Elephant Swarm Water Search Algorithm (ESWSA) to infer Gene Regulatory Network (GRN). This algorithm is mainly based on the water search strategy of intelligent and social elephants during drought, utilizing the different types of communication techniques. Initially, the algorithm is tested against benchmark small and medium scale artificial genetic networks without and with presence of different noise levels and the efficiency was observed in term of parametric error, minimum fitness value, execution time, accuracy of prediction of true regulation, etc. Next, the proposed algorithm is tested against the real time gene expression data of Escherichia Coli SOS Network and results were also compared with others state of the art optimization methods. The experimental results suggest that ESWSA is very efficient for GRN inference problem and performs better than other methods in many ways.

  13. An opposition-based harmony search algorithm for engineering optimization problems

    Directory of Open Access Journals (Sweden)

    Abhik Banerjee

    2014-03-01

    Full Text Available Harmony search (HS is a derivative-free real parameter optimization algorithm. It draws inspiration from the musical improvisation process of searching for a perfect state of harmony. The proposed opposition-based HS (OHS of the present work employs opposition-based learning for harmony memory initialization and also for generation jumping. The concept of opposite number is utilized in OHS to improve the convergence rate of the HS algorithm. The potential of the proposed algorithm is assessed by means of an extensive comparative study of the numerical results on sixteen benchmark test functions. Additionally, the effectiveness of the proposed algorithm is tested for reactive power compensation of an autonomous power system. For real-time reactive power compensation of the studied model, Takagi Sugeno fuzzy logic (TSFL is employed. Time-domain simulation reveals that the proposed OHS-TSFL yields on-line, off-nominal model parameters, resulting in real-time incremental change in terminal voltage response profile.

  14. Automatic boiling water reactor control rod pattern design using particle swarm optimization algorithm and local search

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng-Der, E-mail: jdwang@iner.gov.tw [Nuclear Engineering Division, Institute of Nuclear Energy Research, No. 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan, ROC (China); Lin, Chaung [National Tsing Hua University, Department of Engineering and System Science, 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan (China)

    2013-02-15

    Highlights: ► The PSO algorithm was adopted to automatically design a BWR CRP. ► The local search procedure was added to improve the result of PSO algorithm. ► The results show that the obtained CRP is the same good as that in the previous work. -- Abstract: This study developed a method for the automatic design of a boiling water reactor (BWR) control rod pattern (CRP) using the particle swarm optimization (PSO) algorithm. The PSO algorithm is more random compared to the rank-based ant system (RAS) that was used to solve the same BWR CRP design problem in the previous work. In addition, the local search procedure was used to make improvements after PSO, by adding the single control rod (CR) effect. The design goal was to obtain the CRP so that the thermal limits and shutdown margin would satisfy the design requirement and the cycle length, which is implicitly controlled by the axial power distribution, would be acceptable. The results showed that the same acceptable CRP found in the previous work could be obtained.

  15. A New Improved Quantum Evolution Algorithm with Local Search Procedure for Capacitated Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    Ligang Cui

    2013-01-01

    Full Text Available The capacitated vehicle routing problem (CVRP is the most classical vehicle routing problem (VRP; many solution techniques are proposed to find its better answer. In this paper, a new improved quantum evolution algorithm (IQEA with a mixed local search procedure is proposed for solving CVRPs. First, an IQEA with a double chain quantum chromosome, new quantum rotation schemes, and self-adaptive quantum Not gate is constructed to initialize and generate feasible solutions. Then, to further strengthen IQEA's searching ability, three local search procedures 1-1 exchange, 1-0 exchange, and 2-OPT, are adopted. Experiments on a small case have been conducted to analyze the sensitivity of main parameters and compare the performances of the IQEA with different local search strategies. Together with results from the testing of CVRP benchmarks, the superiorities of the proposed algorithm over the PSO, SR-1, and SR-2 have been demonstrated. At last, a profound analysis of the experimental results is presented and some suggestions on future researches are given.

  16. Iterated Local Search Algorithm with Strategic Oscillation for School Bus Routing Problem with Bus Stop Selection

    Directory of Open Access Journals (Sweden)

    Mohammad Saied Fallah Niasar

    2017-02-01

    Full Text Available he school bus routing problem (SBRP represents a variant of the well-known vehicle routing problem. The main goal of this study is to pick up students allocated to some bus stops and generate routes, including the selected stops, in order to carry students to school. In this paper, we have proposed a simple but effective metaheuristic approach that employs two features: first, it utilizes large neighborhood structures for a deeper exploration of the search space; second, the proposed heuristic executes an efficient transition between the feasible and infeasible portions of the search space. Exploration of the infeasible area is controlled by a dynamic penalty function to convert the unfeasible solution into a feasible one. Two metaheuristics, called N-ILS (a variant of the Nearest Neighbourhood with Iterated Local Search algorithm and I-ILS (a variant of Insertion with Iterated Local Search algorithm are proposed to solve SBRP. Our experimental procedure is based on the two data sets. The results show that N-ILS is able to obtain better solutions in shorter computing times. Additionally, N-ILS appears to be very competitive in comparison with the best existing metaheuristics suggested for SBRP

  17. Optimal IIR filter design using Gravitational Search Algorithm with Wavelet Mutation

    Directory of Open Access Journals (Sweden)

    S.K. Saha

    2015-01-01

    Full Text Available This paper presents a global heuristic search optimization technique, which is a hybridized version of the Gravitational Search Algorithm (GSA and Wavelet Mutation (WM strategy. Thus, the Gravitational Search Algorithm with Wavelet Mutation (GSAWM was adopted for the design of an 8th-order infinite impulse response (IIR filter. GSA is based on the interaction of masses situated in a small isolated world guided by the approximation of Newtonian’s laws of gravity and motion. Each mass is represented by four parameters, namely, position, active, passive and inertia mass. The position of the heaviest mass gives the near optimal solution. For better exploitation in multidimensional search spaces, the WM strategy is applied to randomly selected particles that enhance the capability of GSA for finding better near optimal solutions. An extensive simulation study of low-pass (LP, high-pass (HP, band-pass (BP and band-stop (BS IIR filters unleashes the potential of GSAWM in achieving better cut-off frequency sharpness, smaller pass band and stop band ripples, smaller transition width and higher stop band attenuation with assured stability.

  18. A bio-inspired swarm robot coordination algorithm for multiple target searching

    Science.gov (United States)

    Meng, Yan; Gan, Jing; Desai, Sachi

    2008-04-01

    The coordination of a multi-robot system searching for multi targets is challenging under dynamic environment since the multi-robot system demands group coherence (agents need to have the incentive to work together faithfully) and group competence (agents need to know how to work together well). In our previous proposed bio-inspired coordination method, Local Interaction through Virtual Stigmergy (LIVS), one problem is the considerable randomness of the robot movement during coordination, which may lead to more power consumption and longer searching time. To address these issues, an adaptive LIVS (ALIVS) method is proposed in this paper, which not only considers the travel cost and target weight, but also predicting the target/robot ratio and potential robot redundancy with respect to the detected targets. Furthermore, a dynamic weight adjustment is also applied to improve the searching performance. This new method a truly distributed method where each robot makes its own decision based on its local sensing information and the information from its neighbors. Basically, each robot only communicates with its neighbors through a virtual stigmergy mechanism and makes its local movement decision based on a Particle Swarm Optimization (PSO) algorithm. The proposed ALIVS algorithm has been implemented on the embodied robot simulator, Player/Stage, in a searching target. The simulation results demonstrate the efficiency and robustness in a power-efficient manner with the real-world constraints.

  19. A distributed algorithm for demand-side management: Selling back to the grid.

    Science.gov (United States)

    Latifi, Milad; Khalili, Azam; Rastegarnia, Amir; Zandi, Sajad; Bazzi, Wael M

    2017-11-01

    Demand side energy consumption scheduling is a well-known issue in the smart grid research area. However, there is lack of a comprehensive method to manage the demand side and consumer behavior in order to obtain an optimum solution. The method needs to address several aspects, including the scale-free requirement and distributed nature of the problem, consideration of renewable resources, allowing consumers to sell electricity back to the main grid, and adaptivity to a local change in the solution point. In addition, the model should allow compensation to consumers and ensurance of certain satisfaction levels. To tackle these issues, this paper proposes a novel autonomous demand side management technique which minimizes consumer utility costs and maximizes consumer comfort levels in a fully distributed manner. The technique uses a new logarithmic cost function and allows consumers to sell excess electricity (e.g. from renewable resources) back to the grid in order to reduce their electric utility bill. To develop the proposed scheme, we first formulate the problem as a constrained convex minimization problem. Then, it is converted to an unconstrained version using the segmentation-based penalty method. At each consumer location, we deploy an adaptive diffusion approach to obtain the solution in a distributed fashion. The use of adaptive diffusion makes it possible for consumers to find the optimum energy consumption schedule with a small number of information exchanges. Moreover, the proposed method is able to track drifts resulting from changes in the price parameters and consumer preferences. Simulations and numerical results show that our framework can reduce the total load demand peaks, lower the consumer utility bill, and improve the consumer comfort level.

  20. A distributed algorithm for demand-side management: Selling back to the grid

    Directory of Open Access Journals (Sweden)

    Milad Latifi

    2017-11-01

    Full Text Available Demand side energy consumption scheduling is a well-known issue in the smart grid research area. However, there is lack of a comprehensive method to manage the demand side and consumer behavior in order to obtain an optimum solution. The method needs to address several aspects, including the scale-free requirement and distributed nature of the problem, consideration of renewable resources, allowing consumers to sell electricity back to the main grid, and adaptivity to a local change in the solution point. In addition, the model should allow compensation to consumers and ensurance of certain satisfaction levels. To tackle these issues, this paper proposes a novel autonomous demand side management technique which minimizes consumer utility costs and maximizes consumer comfort levels in a fully distributed manner. The technique uses a new logarithmic cost function and allows consumers to sell excess electricity (e.g. from renewable resources back to the grid in order to reduce their electric utility bill. To develop the proposed scheme, we first formulate the problem as a constrained convex minimization problem. Then, it is converted to an unconstrained version using the segmentation-based penalty method. At each consumer location, we deploy an adaptive diffusion approach to obtain the solution in a distributed fashion. The use of adaptive diffusion makes it possible for consumers to find the optimum energy consumption schedule with a small number of information exchanges. Moreover, the proposed method is able to track drifts resulting from changes in the price parameters and consumer preferences. Simulations and numerical results show that our framework can reduce the total load demand peaks, lower the consumer utility bill, and improve the consumer comfort level. Keywords: Energy, Systems engineering, Electrical engineering

  1. Modified Cuckoo Search Algorithm for Solving Nonconvex Economic Load Dispatch Problems

    Directory of Open Access Journals (Sweden)

    Thang Trung Nguyen

    2016-01-01

    Full Text Available This paper presents the application of modified cuckoo search algorithm (MCSA for solving economic load dispatch (ELD problems. The MCSA method is developed to improve the search ability and solution quality of the conventional CSA method. In the MCSA, the evaluation of eggs has divided the initial eggs into two groups, the top egg group with good quality and the abandoned group with worse quality. Moreover, the value of the updated step size in MCSA is adapted as generating a new solution for the abandoned group and the top group via the Levy flights so that a large zone is searched at the beginning and a local zone is foraged as the maximum number of iterations is nearly reached. The MCSA method has been tested on different systems with different characteristics of thermal units and constraints. The result comparison with other methods in the literature has indicated that the MCSA method can be a powerful method for solving the ELD.

  2. A hybrid firefly algorithm and pattern search technique for SSSC based power oscillation damping controller design

    Directory of Open Access Journals (Sweden)

    Srikanta Mahapatra

    2014-12-01

    Full Text Available In this paper, a novel hybrid Firefly Algorithm and Pattern Search (h-FAPS technique is proposed for a Static Synchronous Series Compensator (SSSC-based power oscillation damping controller design. The proposed h-FAPS technique takes the advantage of global search capability of FA and local search facility of PS. In order to tackle the drawback of using the remote signal that may impact reliability of the controller, a modified signal equivalent to the remote speed deviation signal is constructed from the local measurements. The performances of the proposed controllers are evaluated in SMIB and multi-machine power system subjected to various transient disturbances. To show the effectiveness and robustness of the proposed design approach, simulation results are presented and compared with some recently published approaches such as Differential Evolution (DE and Particle Swarm Optimization (PSO. It is observed that the proposed approach yield superior damping performance compared to some recently reported approaches.

  3. Optimization of distribution piping network in district cooling system using genetic algorithm with local search

    International Nuclear Information System (INIS)

    Chan, Apple L.S.; Hanby, Vic I.; Chow, T.T.

    2007-01-01

    A district cooling system is a sustainable means of distribution of cooling energy through mass production. A cooling medium like chilled water is generated at a central refrigeration plant and supplied to serve a group of consumer buildings through a piping network. Because of the substantial capital investment involved, an optimal design of the distribution piping configuration is one of the crucial factors for successful implementation of the district cooling scheme. In the present study, genetic algorithm (GA) incorporated with local search techniques was developed to find the optimal/near optimal configuration of the piping network in a hypothetical site. The effect of local search, mutation rate and frequency of local search on the performance of the GA in terms of both solution quality and computation time were investigated and presented in this paper

  4. Location, Allocation and Routing of Temporary Health Centers in Rural Areas in Crisis, Solved by Improved Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Mahdi Alinaghian

    2017-01-01

    Full Text Available In this paper, an uncertain integrated model for simultaneously locating temporary health centers in the affected areas, allocating affected areas to these centers, and routing to transport their required good is considered. Health centers can be settled in one of the affected areas or in a place out of them; therefore, the proposed model offers the best relief operation policy when it is possible to supply the goods of affected areas (which are customers of goods directly or under coverage. Due to that the problem is NP-Hard, to solve the problem in large-scale, a meta-heuristic algorithm based on harmony search algorithm is presented and its performance has been compared with basic harmony search algorithm and neighborhood search algorithm in small and large scale test problems. The results show that the proposed harmony search algorithm has a suitable efficiency.

  5. MPFA algorithm for solving stokes-brinkman equations on quadrilateral grids

    KAUST Repository

    Iliev, Oleg

    2014-01-01

    This work is concerned with the development of a robust and accurate numerical method for solving the Stokes-Brinkman system of equations, which describes a free fluid flow coupled with a flow in porous media. Quadrilateral boundary fitted grid with a sophisticated finite volume method, namely MPFA O-method, is used to discretize the system of equations. Numerical results for two examples are presented, namely, channel flow and flow in a ring with a rolled porous medium. © Springer International Publishing Switzerland 2014.

  6. The Search for a Convergent Option to Deploy Smart Grids on IoT Scenario

    Directory of Open Access Journals (Sweden)

    Hamilton da Gama Schroder Filho

    2017-06-01

    Full Text Available Smart city projects are quickly evolving in several countries as a feasible solution to the urban organization to provide sustainable socioeconomic growth and solve problems that arise as the populations of these cities grow. In this sense, technology application plays an important role in enabling automation of processes, improving the citizen’s quality of life and reducing the costs of public services for municipalities and enterprises. However, automation initiatives of services such as electricity, water, and gas which materialize by the so-called smart grids, have emerged earlier than smart city projects, and are consolidating in several countries. Although smart grid initiatives have arisen earlier to projects of smart cities it represents a subset of the great scenario of IoT that is the vision in which the smart city projects are based. The time difference from developments between these two initiatives made the alternatives of communication technologies for infrastructures construction of communication followed different paths. However, in view of the great scenery of IoT is desirable to determine technologies that provide convergence of a single urban communication infrastructure capable of supporting all applications, whether they are typically IoT or traditional smart grid applications. This work is a review which presents and discusses the two main technologies which are currently best positioned to play this role of convergence that is RF Mesh and LoRaWAN. The strengths and weaknesses of each one of them are also presented and propose that in actuality LoRaWAN is a promising option to offer the required conditions to take on this convergent position.

  7. Design and economic investigation of shell and tube heat exchangers using Improved Intelligent Tuned Harmony Search algorithm

    Directory of Open Access Journals (Sweden)

    Oguz Emrah Turgut

    2014-12-01

    Full Text Available This study explores the thermal design of shell and tube heat exchangers by using Improved Intelligent Tuned Harmony Search (I-ITHS algorithm. Intelligent Tuned Harmony Search (ITHS is an upgraded version of harmony search algorithm which has an advantage of deciding intensification and diversification processes by applying proper pitch adjusting strategy. In this study, we aim to improve the search capacity of ITHS algorithm by utilizing chaotic sequences instead of uniformly distributed random numbers and applying alternative search strategies inspired by Artificial Bee Colony algorithm and Opposition Based Learning on promising areas (best solutions. Design variables including baffle spacing, shell diameter, tube outer diameter and number of tube passes are used to minimize total cost of heat exchanger that incorporates capital investment and the sum of discounted annual energy expenditures related to pumping and heat exchanger area. Results show that I-ITHS can be utilized in optimizing shell and tube heat exchangers.

  8. Axisymmetric charge-conservative electromagnetic particle simulation algorithm on unstructured grids: Application to microwave vacuum electronic devices

    Science.gov (United States)

    Na, Dong-Yeop; Omelchenko, Yuri A.; Moon, Haksu; Borges, Ben-Hur V.; Teixeira, Fernando L.

    2017-10-01

    We present a charge-conservative electromagnetic particle-in-cell (EM-PIC) algorithm optimized for the analysis of vacuum electronic devices (VEDs) with cylindrical symmetry (axisymmetry). We exploit the axisymmetry present in the device geometry, fields, and sources to reduce the dimensionality of the problem from 3D to 2D. Further, we employ 'transformation optics' principles to map the original problem in polar coordinates with metric tensor diag (1 ,ρ2 , 1) to an equivalent problem on a Cartesian metric tensor diag (1 , 1 , 1) with an effective (artificial) inhomogeneous medium introduced. The resulting problem in the meridian (ρz) plane is discretized using an unstructured 2D mesh considering TEϕ-polarized fields. Electromagnetic field and source (node-based charges and edge-based currents) variables are expressed as differential forms of various degrees, and discretized using Whitney forms. Using leapfrog time integration, we obtain a mixed E - B finite-element time-domain scheme for the full-discrete Maxwell's equations. We achieve a local and explicit time update for the field equations by employing the sparse approximate inverse (SPAI) algorithm. Interpolating field values to particles' positions for solving Newton-Lorentz equations of motion is also done via Whitney forms. Particles are advanced using the Boris algorithm with relativistic correction. A recently introduced charge-conserving scatter scheme tailored for 2D unstructured grids is used in the scatter step. The algorithm is validated considering cylindrical cavity and space-charge-limited cylindrical diode problems. We use the algorithm to investigate the physical performance of VEDs designed to harness particle bunching effects arising from the coherent (resonance) Cerenkov electron beam interactions within micro-machined slow wave structures.

  9. MIDAS: a database-searching algorithm for metabolite identification in metabolomics.

    Science.gov (United States)

    Wang, Yingfeng; Kora, Guruprasad; Bowen, Benjamin P; Pan, Chongle

    2014-10-07

    A database searching approach can be used for metabolite identification in metabolomics by matching measured tandem mass spectra (MS/MS) against the predicted fragments of metabolites in a database. Here, we present the open-source MIDAS algorithm (Metabolite Identification via Database Searching). To evaluate a metabolite-spectrum match (MSM), MIDAS first enumerates possible fragments from a metabolite by systematic bond dissociation, then calculates the plausibility of the fragments based on their fragmentation pathways, and finally scores the MSM to assess how well the experimental MS/MS spectrum from collision-induced dissociation (CID) is explained by the metabolite's predicted CID MS/MS spectrum. MIDAS was designed to search high-resolution tandem mass spectra acquired on time-of-flight or Orbitrap mass spectrometer against a metabolite database in an automated and high-throughput manner. The accuracy of metabolite identification by MIDAS was benchmarked using four sets of standard tandem mass spectra from MassBank. On average, for 77% of original spectra and 84% of composite spectra, MIDAS correctly ranked the true compounds as the first MSMs out of all MetaCyc metabolites as decoys. MIDAS correctly identified 46% more original spectra and 59% more composite spectra at the first MSMs than an existing database-searching algorithm, MetFrag. MIDAS was showcased by searching a published real-world measurement of a metabolome from Synechococcus sp. PCC 7002 against the MetaCyc metabolite database. MIDAS identified many metabolites missed in the previous study. MIDAS identifications should be considered only as candidate metabolites, which need to be confirmed using standard compounds. To facilitate manual validation, MIDAS provides annotated spectra for MSMs and labels observed mass spectral peaks with predicted fragments. The database searching and manual validation can be performed online at http://midas.omicsbio.org.

  10. Comparison of Different MPPT Algorithms with a Proposed One Using a Power Estimator for Grid Connected PV Systems

    Directory of Open Access Journals (Sweden)

    Manel Hlaili

    2016-01-01

    Full Text Available Photovoltaic (PV energy is one of the most important energy sources since it is clean and inexhaustible. It is important to operate PV energy conversion systems in the maximum power point (MPP to maximize the output energy of PV arrays. An MPPT control is necessary to extract maximum power from the PV arrays. In recent years, a large number of techniques have been proposed for tracking the maximum power point. This paper presents a comparison of different MPPT methods and proposes one which used a power estimator and also analyses their suitability for systems which experience a wide range of operating conditions. The classic analysed methods, the incremental conductance (IncCond, perturbation and observation (P&O, ripple correlation (RC algorithms, are suitable and practical. Simulation results of a single phase NPC grid connected PV system operating with the aforementioned methods are presented to confirm effectiveness of the scheme and algorithms. Simulation results verify the correct operation of the different MPPT and the proposed algorithm.

  11. I/O-Efficient Algorithms for Problems on Grid-Based Terrains

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Toma, Laura; Vitter, Jeffrey Scott

    2001-01-01

    The potential and use of Geographic Information Systems is rapidly increasing due to the increasing availability of massive amounts of geospatial data from projects like NASA's Mission to Planet Earth. However, the use of these massive datasets also exposes scalability problems with existing GIS...... hydrologic attributes of a terrain. We present the results of an extensive set of experiments on real-life terrain datasets of different sizes and characteristics. Our experiments show that while our new algorithm scales nicely with dataset size, the previously known algorithm "breaks down" once the size...

  12. Probabilistic energy management of a renewable microgrid with hydrogen storage using self-adaptive charge search algorithm

    International Nuclear Information System (INIS)

    Niknam, Taher; Golestaneh, Faranak; Shafiei, Mehdi

    2013-01-01

    Micro Grids (MGs) are clusters of the DER (Distributed Energy Resource) units and loads which can operate in both grid-connected and island modes. This paper addresses a probabilistic cost optimization scheme under uncertain environment for the MGs with several multiple Distributed Generation (DG) units. The purpose of the proposed approach is to make decisions regarding to optimizing the production of the DG units and power exchange with the upstream network for a Combined Heat and Power (CHP) system. A PEMFCPP (Proton Exchange Membrane Fuel cell power plant) is considered as a prime mover of the CHP system. An electrochemical model for representation and performance of the PEMFC is applied. In order to best use of the FCPP, hydrogen production and storage management are carried out. An economic model is organized to calculate the operation cost of the MG based on the electrochemical model of the PEMFC and hydrogen storage. The proposed optimization scheme comprises a self-adaptive Charged System Search (CSS) linked to the 2m + 1 point estimate method. The 2m + 1 point estimate method is employed to cover the uncertainty in the following data: the hourly market tariffs, electrical and thermal load demands, available output power of the PhotoVoltaic (PV) and Wind Turbines (WT) units, fuel prices, hydrogen selling price, operation temperature of the FC and pressure of the reactant gases of FC. The Self-adaptive CSS (SCSS) is organized based on the CSS algorithm and is upgraded by some modification approaches, mainly a self-adaptive reformation approach. In the proposed reformation method, two updating approaches are considered. Each particle based on the ability of those approaches to find optimal solutions in the past iterations, chooses one of them to improve its solution. The effectiveness of the proposed approach is verified on a multiple-DG MG in the grid-connected mode. -- Highlights: ► Consider the effect of Hydrogen produced by PEMFC on MGs. ► Combines

  13. A dual communicator and dual grid-resolution algorithm for petascale simulations of turbulent mixing at high Schmidt number

    Science.gov (United States)

    Clay, M. P.; Buaria, D.; Gotoh, T.; Yeung, P. K.

    2017-10-01

    A new dual-communicator algorithm with very favorable performance characteristics has been developed for direct numerical simulation (DNS) of turbulent mixing of a passive scalar governed by an advection-diffusion equation. We focus on the regime of high Schmidt number (S c), where because of low molecular diffusivity the grid-resolution requirements for the scalar field are stricter than those for the velocity field by a factor √{ S c }. Computational throughput is improved by simulating the velocity field on a coarse grid of Nv3 points with a Fourier pseudo-spectral (FPS) method, while the passive scalar is simulated on a fine grid of Nθ3 points with a combined compact finite difference (CCD) scheme which computes first and second derivatives at eighth-order accuracy. A static three-dimensional domain decomposition and a parallel solution algorithm for the CCD scheme are used to avoid the heavy communication cost of memory transposes. A kernel is used to evaluate several approaches to optimize the performance of the CCD routines, which account for 60% of the overall simulation cost. On the petascale supercomputer Blue Waters at the University of Illinois, Urbana-Champaign, scalability is improved substantially with a hybrid MPI-OpenMP approach in which a dedicated thread per NUMA domain overlaps communication calls with computational tasks performed by a separate team of threads spawned using OpenMP nested parallelism. At a target production problem size of 81923 (0.5 trillion) grid points on 262,144 cores, CCD timings are reduced by 34% compared to a pure-MPI implementation. Timings for 163843 (4 trillion) grid points on 524,288 cores encouragingly maintain scalability greater than 90%, although the wall clock time is too high for production runs at this size. Performance monitoring with CrayPat for problem sizes up to 40963 shows that the CCD routines can achieve nearly 6% of the peak flop rate. The new DNS code is built upon two existing FPS and CCD codes

  14. Algorithm of axial fuel optimization based in progressive steps of turned search

    International Nuclear Information System (INIS)

    Martin del Campo, C.; Francois, J.L.

    2003-01-01

    The development of an algorithm for the axial optimization of fuel of boiling water reactors (BWR) is presented. The algorithm is based in a serial optimizations process in the one that the best solution in each stage is the starting point of the following stage. The objective function of each stage adapts to orient the search toward better values of one or two parameters leaving the rest like restrictions. Conform to it advances in those optimization stages, it is increased the fineness of the evaluation of the investigated designs. The algorithm is based on three stages, in the first one are used Genetic algorithms and in the two following Tabu Search. The objective function of the first stage it looks for to minimize the average enrichment of the one it assembles and to fulfill with the generation of specified energy for the operation cycle besides not violating none of the limits of the design base. In the following stages the objective function looks for to minimize the power factor peak (PPF) and to maximize the margin of shutdown (SDM), having as restrictions the one average enrichment obtained for the best design in the first stage and those other restrictions. The third stage, very similar to the previous one, it begins with the design of the previous stage but it carries out a search of the margin of shutdown to different exhibition steps with calculations in three dimensions (3D). An application to the case of the design of the fresh assemble for the fourth fuel reload of the Unit 1 reactor of the Laguna Verde power plant (U1-CLV) is presented. The obtained results show an advance in the handling of optimization methods and in the construction of the objective functions that should be used for the different design stages of the fuel assemblies. (Author)

  15. Optimal Refueling Pattern Search for a CANDU Reactor Using a Genetic Algorithm

    International Nuclear Information System (INIS)

    Quang Binh, DO; Gyuhong, ROH; Hangbok, CHOI

    2006-01-01

    This paper presents the results from the application of genetic algorithms to a refueling optimization of a Canada deuterium uranium (CANDU) reactor. This work aims at making a mathematical model of the refueling optimization problem including the objective function and constraints and developing a method based on genetic algorithms to solve the problem. The model of the optimization problem and the proposed method comply with the key features of the refueling strategy of the CANDU reactor which adopts an on-power refueling operation. In this study, a genetic algorithm combined with an elitism strategy was used to automatically search for the refueling patterns. The objective of the optimization was to maximize the discharge burn-up of the refueling bundles, minimize the maximum channel power, or minimize the maximum change in the zone controller unit (ZCU) water levels. A combination of these objectives was also investigated. The constraints include the discharge burn-up, maximum channel power, maximum bundle power, channel power peaking factor and the ZCU water level. A refueling pattern that represents the refueling rate and channels was coded by a one-dimensional binary chromosome, which is a string of binary numbers 0 and 1. A computer program was developed in FORTRAN 90 running on an HP 9000 workstation to conduct the search for the optimal refueling patterns for a CANDU reactor at the equilibrium state. The results showed that it was possible to apply genetic algorithms to automatically search for the refueling channels of the CANDU reactor. The optimal refueling patterns were compared with the solutions obtained from the AUTOREFUEL program and the results were consistent with each other. (authors)

  16. Robust total energy demand estimation with a hybrid Variable Neighborhood Search – Extreme Learning Machine algorithm

    International Nuclear Information System (INIS)

    Sánchez-Oro, J.; Duarte, A.; Salcedo-Sanz, S.

    2016-01-01

    Highlights: • The total energy demand in Spain is estimated with a Variable Neighborhood algorithm. • Socio-economic variables are used, and one year ahead prediction horizon is considered. • Improvement of the prediction with an Extreme Learning Machine network is considered. • Experiments are carried out in real data for the case of Spain. - Abstract: Energy demand prediction is an important problem whose solution is evaluated by policy makers in order to take key decisions affecting the economy of a country. A number of previous approaches to improve the quality of this estimation have been proposed in the last decade, the majority of them applying different machine learning techniques. In this paper, the performance of a robust hybrid approach, composed of a Variable Neighborhood Search algorithm and a new class of neural network called Extreme Learning Machine, is discussed. The Variable Neighborhood Search algorithm is focused on obtaining the most relevant features among the set of initial ones, by including an exponential prediction model. While previous approaches consider that the number of macroeconomic variables used for prediction is a parameter of the algorithm (i.e., it is fixed a priori), the proposed Variable Neighborhood Search method optimizes both: the number of variables and the best ones. After this first step of feature selection, an Extreme Learning Machine network is applied to obtain the final energy demand prediction. Experiments in a real case of energy demand estimation in Spain show the excellent performance of the proposed approach. In particular, the whole method obtains an estimation of the energy demand with an error lower than 2%, even when considering the crisis years, which are a real challenge.

  17. Improved gravitational search algorithm for unit commitment considering uncertainty of wind power

    International Nuclear Information System (INIS)

    Ji, Bin; Yuan, Xiaohui; Chen, Zhihuan; Tian, Hao

    2014-01-01

    With increasing wind farm integrations, unit commitment (UC) is more difficult to solve because of the intermittent and fluctuation nature of wind power. In this paper, scenario generation and reduction technique is applied to simulate the impacts of its uncertainty on system operation. And then a model of thermal UC problem with wind power integration (UCW) is established. Combination of quantum-inspired binary gravitational search algorithm (GSA) and scenario analysis method is proposed to solve UCW problem. Meanwhile, heuristic search strategies are used to handle the constraints of thermal unit for each scenario. In addition, a priority list of thermal units based on the weight between average full-load cost and maximal power output is utilized during the optimization process. Moreover, two UC test systems with and without wind power integration are used to verify the feasibility and effectiveness of the proposed method as well as the performance of the algorithm. The results are analyzed in detail, which demonstrate the model and the proposed method is practicable. The comparison with other methods clearly shows that the proposed method has higher efficiency for solving UC problems with and even without wind farm integration. - Highlights: • Impact of wind fluctuation on unit commitment problem (UCW) is investigated. • Quantum-inspired gravitational search algorithm (QBGSA) is used to optimize UC. • A new method combines QBGSA with scenario analysis is proposed to solve UCW. • Heuristic search strategies are applied to handle the constraints of the UCW. • The results verify the proposed method is feasible and efficient for handling UCW

  18. Modified Backtracking Search Optimization Algorithm Inspired by Simulated Annealing for Constrained Engineering Optimization Problems

    Directory of Open Access Journals (Sweden)

    Hailong Wang

    2018-01-01

    Full Text Available The backtracking search optimization algorithm (BSA is a population-based evolutionary algorithm for numerical optimization problems. BSA has a powerful global exploration capacity while its local exploitation capability is relatively poor. This affects the convergence speed of the algorithm. In this paper, we propose a modified BSA inspired by simulated annealing (BSAISA to overcome the deficiency of BSA. In the BSAISA, the amplitude control factor (F is modified based on the Metropolis criterion in simulated annealing. The redesigned F could be adaptively decreased as the number of iterations increases and it does not introduce extra parameters. A self-adaptive ε-constrained method is used to handle the strict constraints. We compared the performance of the proposed BSAISA with BSA and other well-known algorithms when solving thirteen constrained benchmarks and five engineering design problems. The simulation results demonstrated that BSAISA is more effective than BSA and more competitive with other well-known algorithms in terms of convergence speed.

  19. Efficient Algorithms for Searching the Minimum Information Partition in Integrated Information Theory

    Science.gov (United States)

    Kitazono, Jun; Kanai, Ryota; Oizumi, Masafumi

    2018-03-01

    The ability to integrate information in the brain is considered to be an essential property for cognition and consciousness. Integrated Information Theory (IIT) hypothesizes that the amount of integrated information ($\\Phi$) in the brain is related to the level of consciousness. IIT proposes that to quantify information integration in a system as a whole, integrated information should be measured across the partition of the system at which information loss caused by partitioning is minimized, called the Minimum Information Partition (MIP). The computational cost for exhaustively searching for the MIP grows exponentially with system size, making it difficult to apply IIT to real neural data. It has been previously shown that if a measure of $\\Phi$ satisfies a mathematical property, submodularity, the MIP can be found in a polynomial order by an optimization algorithm. However, although the first version of $\\Phi$ is submodular, the later versions are not. In this study, we empirically explore to what extent the algorithm can be applied to the non-submodular measures of $\\Phi$ by evaluating the accuracy of the algorithm in simulated data and real neural data. We find that the algorithm identifies the MIP in a nearly perfect manner even for the non-submodular measures. Our results show that the algorithm allows us to measure $\\Phi$ in large systems within a practical amount of time.

  20. Parametric optimization of ultrasonic machining process using gravitational search and fireworks algorithms

    Directory of Open Access Journals (Sweden)

    Debkalpa Goswami

    2015-03-01

    Full Text Available Ultrasonic machining (USM is a mechanical material removal process used to erode holes and cavities in hard or brittle workpieces by using shaped tools, high-frequency mechanical motion and an abrasive slurry. Unlike other non-traditional machining processes, such as laser beam and electrical discharge machining, USM process does not thermally damage the workpiece or introduce significant levels of residual stress, which is important for survival of materials in service. For having enhanced machining performance and better machined job characteristics, it is often required to determine the optimal control parameter settings of an USM process. The earlier mathematical approaches for parametric optimization of USM processes have mostly yielded near optimal or sub-optimal solutions. In this paper, two almost unexplored non-conventional optimization techniques, i.e. gravitational search algorithm (GSA and fireworks algorithm (FWA are applied for parametric optimization of USM processes. The optimization performance of these two algorithms is compared with that of other popular population-based algorithms, and the effects of their algorithm parameters on the derived optimal solutions and computational speed are also investigated. It is observed that FWA provides the best optimal results for the considered USM processes.

  1. Authentication and Encryption Using Modified Elliptic Curve Cryptography with Particle Swarm Optimization and Cuckoo Search Algorithm

    Science.gov (United States)

    Kota, Sujatha; Padmanabhuni, Venkata Nageswara Rao; Budda, Kishor; K, Sruthi

    2018-05-01

    Elliptic Curve Cryptography (ECC) uses two keys private key and public key and is considered as a public key cryptographic algorithm that is used for both authentication of a person and confidentiality of data. Either one of the keys is used in encryption and other in decryption depending on usage. Private key is used in encryption by the user and public key is used to identify user in the case of authentication. Similarly, the sender encrypts with the private key and the public key is used to decrypt the message in case of confidentiality. Choosing the private key is always an issue in all public key Cryptographic Algorithms such as RSA, ECC. If tiny values are chosen in random the security of the complete algorithm becomes an issue. Since the Public key is computed based on the Private Key, if they are not chosen optimally they generate infinity values. The proposed Modified Elliptic Curve Cryptography uses selection in either of the choices; the first option is by using Particle Swarm Optimization and the second option is by using Cuckoo Search Algorithm for randomly choosing the values. The proposed algorithms are developed and tested using sample database and both are found to be secured and reliable. The test results prove that the private key is chosen optimally not repetitive or tiny and the computations in public key will not reach infinity.

  2. Solving Flexible Job-Shop Scheduling Problem Using Gravitational Search Algorithm and Colored Petri Net

    Directory of Open Access Journals (Sweden)

    Behnam Barzegar

    2012-01-01

    Full Text Available Scheduled production system leads to avoiding stock accumulations, losses reduction, decreasing or even eliminating idol machines, and effort to better benefitting from machines for on time responding customer orders and supplying requested materials in suitable time. In flexible job-shop scheduling production systems, we could reduce time and costs by transferring and delivering operations on existing machines, that is, among NP-hard problems. The scheduling objective minimizes the maximal completion time of all the operations, which is denoted by Makespan. Different methods and algorithms have been presented for solving this problem. Having a reasonable scheduled production system has significant influence on improving effectiveness and attaining to organization goals. In this paper, new algorithm were proposed for flexible job-shop scheduling problem systems (FJSSP-GSPN that is based on gravitational search algorithm (GSA. In the proposed method, the flexible job-shop scheduling problem systems was modeled by color Petri net and CPN tool and then a scheduled job was programmed by GSA algorithm. The experimental results showed that the proposed method has reasonable performance in comparison with other algorithms.

  3. Decision making based on data analysis and optimization algorithm applied for cogeneration systems integration into a grid

    Science.gov (United States)

    Asmar, Joseph Al; Lahoud, Chawki; Brouche, Marwan

    2018-05-01

    Cogeneration and trigeneration systems can contribute to the reduction of primary energy consumption and greenhouse gas emissions in residential and tertiary sectors, by reducing fossil fuels demand and grid losses with respect to conventional systems. The cogeneration systems are characterized by a very high energy efficiency (80 to 90%) as well as a less polluting aspect compared to the conventional energy production. The integration of these systems into the energy network must simultaneously take into account their economic and environmental challenges. In this paper, a decision-making strategy will be introduced and is divided into two parts. The first one is a strategy based on a multi-objective optimization tool with data analysis and the second part is based on an optimization algorithm. The power dispatching of the Lebanese electricity grid is then simulated and considered as a case study in order to prove the compatibility of the cogeneration power calculated by our decision-making technique. In addition, the thermal energy produced by the cogeneration systems which capacity is selected by our technique shows compatibility with the thermal demand for district heating.

  4. Operating the GridPix detector in dark matter search experiments

    NARCIS (Netherlands)

    Schön, R.; Alfonsi, M.; Hemink, G.; Decowski, M.P.; van Bakel, N.; van der Graaf, H.

    2013-01-01

    The DARWIN (dark matter WIMP search with noble liquids) design study aims to use liquid argon and liquid xenon targets to look for nuclear recoils due to weakly interacting massive particles (WIMPs). To measure the recoil energy in dual-phase noble gas time projection chambers the combination of

  5. Volume-of-fluid algorithm on a non-orthogonal grid

    International Nuclear Information System (INIS)

    Jang, W.; Lien, F.S.; Ji, H.

    2005-01-01

    In the present study, a novel VOF method on a non-orthogonal grid is proposed and tested for several benchmark problems, including a simple translation test, a reversed single vortex flow and a shearing flow, with the objective to demonstrate the feasibility and accuracy of the present approach. Excellent agreement between the solutions obtained on both orthogonal and non-orthogonal meshes is achieved. The sensitivity of various methods to the L 1 error in evaluating the interface normal and volume flux at each face of a non-orthogonal cell is examined. Time integration methods based on the operator-splitting approach in curvilinear coordinates, including the explicit-implicit (EX-IM) and explicit-explicit (EX-EX) combinations, are tested. (author)

  6. System network planning expansion using mathematical programming, genetic algorithms and tabu search

    International Nuclear Information System (INIS)

    Sadegheih, A.; Drake, P.R.

    2008-01-01

    In this paper, system network planning expansion is formulated for mixed integer programming, a genetic algorithm (GA) and tabu search (TS). Compared with other optimization methods, GAs are suitable for traversing large search spaces, since they can do this relatively rapidly and because the use of mutation diverts the method away from local minima, which will tend to become more common as the search space increases in size. GA's give an excellent trade off between solution quality and computing time and flexibility for taking into account specific constraints in real situations. TS has emerged as a new, highly efficient, search paradigm for finding quality solutions to combinatorial problems. It is characterized by gathering knowledge during the search and subsequently profiting from this knowledge. The attractiveness of the technique comes from its ability to escape local optimality. The cost function of this problem consists of the capital investment cost in discrete form, the cost of transmission losses and the power generation costs. The DC load flow equations for the network are embedded in the constraints of the mathematical model to avoid sub-optimal solutions that can arise if the enforcement of such constraints is done in an indirect way. The solution of the model gives the best line additions and also provides information regarding the optimal generation at each generation point. This method of solution is demonstrated on the expansion of a 10 bus bar system to 18 bus bars. Finally, a steady-state genetic algorithm is employed rather than generational replacement, also uniform crossover is used

  7. An adaptive immune optimization algorithm with dynamic lattice searching operation for fast optimization of atomic clusters

    International Nuclear Information System (INIS)

    Wu, Xia; Wu, Genhua

    2014-01-01

    Highlights: • A high efficient method for optimization of atomic clusters is developed. • Its performance is studied by optimizing Lennard-Jones clusters and Ag clusters. • The method is proved to be quite efficient. • A new Ag 61 cluster with stacking-fault face-centered cubic motif is found. - Abstract: Geometrical optimization of atomic clusters is performed by a development of adaptive immune optimization algorithm (AIOA) with dynamic lattice searching (DLS) operation (AIOA-DLS method). By a cycle of construction and searching of the dynamic lattice (DL), DLS algorithm rapidly makes the clusters more regular and greatly reduces the potential energy. DLS can thus be used as an operation acting on the new individuals after mutation operation in AIOA to improve the performance of the AIOA. The AIOA-DLS method combines the merit of evolutionary algorithm and idea of dynamic lattice. The performance of the proposed method is investigated in the optimization of Lennard-Jones clusters within 250 atoms and silver clusters described by many-body Gupta potential within 150 atoms. Results reported in the literature are reproduced, and the motif of Ag 61 cluster is found to be stacking-fault face-centered cubic, whose energy is lower than that of previously obtained icosahedron

  8. Defining Algorithmic Ideology: Using Ideology Critique to Scrutinize Corporate Search Engines

    Directory of Open Access Journals (Sweden)

    Astrid Mager

    2014-02-01

    Full Text Available This article conceptualizes “algorithmic ideology” as a valuable tool to understand and critique corporate search engines in the context of wider socio-political developments. Drawing on critical theory it shows how capitalist value-systems manifest in search technology, how they spread through algorithmic logics and how they are stabilized in society. Following philosophers like Althusser, Marx and Gramsci it elaborates how content providers and users contribute to Google’s capital accumulation cycle and exploitation schemes that come along with it. In line with contemporary mass media and neoliberal politics they appear to be fostering capitalism and its “commodity fetishism” (Marx. It further reveals that the capitalist hegemony has to be constantly negotiated and renewed. This dynamic notion of ideology opens up the view for moments of struggle and counter-actions. “Organic intellectuals” (Gramsci can play a central role in challenging powerful actors like Google and their algorithmic ideology. To pave the way towards more democratic information technology, however, requires more than single organic intellectuals. Additional obstacles need to be conquered, as I finally discuss.

  9. Optimal Capacitor Placement in Wind Farms by Considering Harmonics Using Discrete Lightning Search Algorithm

    Directory of Open Access Journals (Sweden)

    Reza Sirjani

    2017-09-01

    Full Text Available Currently, many wind farms exist throughout the world and, in some cases, supply a significant portion of energy to networks. However, numerous uncertainties remain with respect to the amount of energy generated by wind turbines and other sophisticated operational aspects, such as voltage and reactive power management, which requires further development and consideration. To fix the problem of poor reactive power compensation in wind farms, optimal capacitor placement has been proposed in existing wind farms as a simple and relatively inexpensive method. However, the use of induction generators, transformers, and additional capacitors represent potential problems for the harmonics of a system and therefore must be taken into account at wind farms. The optimal location and size of capacitors at buses of an 80-MW wind farm were determined according to modelled wind speed, system equivalent circuits, and harmonics in order to minimize energy losses, optimize reactive power and reduce the management costs. The discrete version of the lightning search algorithm (DLSA is a powerful and flexible nature-inspired optimization technique that was developed and implemented herein for optimal capacitor placement in wind farms. The obtained results are compared with the results of the genetic algorithm (GA and the discrete harmony search algorithm (DHSA.

  10. Forecasting Energy CO2 Emissions Using a Quantum Harmony Search Algorithm-Based DMSFE Combination Model

    Directory of Open Access Journals (Sweden)

    Xingsheng Gu

    2013-03-01

    Full Text Available he accurate forecasting of carbon dioxide (CO2 emissions from fossil fuel energy consumption is a key requirement for making energy policy and environmental strategy. In this paper, a novel quantum harmony search (QHS algorithm-based discounted mean square forecast error (DMSFE combination model is proposed. In the DMSFE combination forecasting model, almost all investigations assign the discounting factor (β arbitrarily since β varies between 0 and 1 and adopt one value for all individual models and forecasting periods. The original method doesn’t consider the influences of the individual model and the forecasting period. This work contributes by changing β from one value to a matrix taking the different model and the forecasting period into consideration and presenting a way of searching for the optimal β values by using the QHS algorithm through optimizing the mean absolute percent error (MAPE objective function. The QHS algorithm-based optimization DMSFE combination forecasting model is established and tested by forecasting CO2 emission of the World top‒5 CO2 emitters. The evaluation indexes such as MAPE, root mean squared error (RMSE and mean absolute error (MAE are employed to test the performance of the presented approach. The empirical analyses confirm the validity of the presented method and the forecasting accuracy can be increased in a certain degree.

  11. Parameter Search Algorithms for Microwave Radar-Based Breast Imaging: Focal Quality Metrics as Fitness Functions.

    Science.gov (United States)

    O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin

    2017-12-06

    Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.

  12. ACTION OF UNIFORM SEARCH ALGORITHM WHEN SELECTING LANGUAGE UNITS IN THE PROCESS OF SPEECH

    Directory of Open Access Journals (Sweden)

    Ирина Михайловна Некипелова

    2013-05-01

    Full Text Available The article is devoted to research of action of uniform search algorithm when selecting by human of language units for speech produce. The process is connected with a speech optimization phenomenon. This makes it possible to shorten the time of cogitation something that human want to say, and to achieve the maximum precision in thoughts expression. The algorithm of uniform search works at consciousness  and subconsciousness levels. It favours the forming of automatism produce and perception of speech. Realization of human's cognitive potential in the process of communication starts up complicated mechanism of self-organization and self-regulation of language. In turn, it results in optimization of language system, servicing needs not only human's self-actualization but realization of communication in society. The method of problem-oriented search is used for researching of optimization mechanisms, which are distinctive to speech producing and stabilization of language.DOI: http://dx.doi.org/10.12731/2218-7405-2013-4-50

  13. The Research and Test of Fast Radio Burst Real-time Search Algorithm Based on GPU Acceleration

    Science.gov (United States)

    Wang, J.; Chen, M. Z.; Pei, X.; Wang, Z. Q.

    2017-03-01

    In order to satisfy the research needs of Nanshan 25 m radio telescope of Xinjiang Astronomical Observatory (XAO) and study the key technology of the planned QiTai radio Telescope (QTT), the receiver group of XAO studied the GPU (Graphics Processing Unit) based real-time FRB searching algorithm which developed from the original FRB searching algorithm based on CPU (Central Processing Unit), and built the FRB real-time searching system. The comparison of the GPU system and the CPU system shows that: on the basis of ensuring the accuracy of the search, the speed of the GPU accelerated algorithm is improved by 35-45 times compared with the CPU algorithm.

  14. Parameter Estimation for Traffic Noise Models Using a Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Deok-Soon An

    2013-01-01

    Full Text Available A technique has been developed for predicting road traffic noise for environmental assessment, taking into account traffic volume as well as road surface conditions. The ASJ model (ASJ Prediction Model for Road Traffic Noise, 1999, which is based on the sound power level of the noise emitted by the interaction between the road surface and tires, employs regression models for two road surface types: dense-graded asphalt (DGA and permeable asphalt (PA. However, these models are not applicable to other types of road surfaces. Accordingly, this paper introduces a parameter estimation procedure for ASJ-based noise prediction models, utilizing a harmony search (HS algorithm. Traffic noise measurement data for four different vehicle types were used in the algorithm to determine the regression parameters for several road surface types. The parameters of the traffic noise prediction models were evaluated using another measurement set, and good agreement was observed between the predicted and measured sound power levels.

  15. Searching for continuous gravitational wave signals. The hierarchical Hough transform algorithm

    International Nuclear Information System (INIS)

    Papa, M.; Schutz, B.F.; Sintes, A.M.

    2001-01-01

    It is well known that matched filtering techniques cannot be applied for searching extensive parameter space volumes for continuous gravitational wave signals. This is the reason why alternative strategies are being pursued. Hierarchical strategies are best at investigating a large parameter space when there exist computational power constraints. Algorithms of this kind are being implemented by all the groups that are developing software for analyzing the data of the gravitational wave detectors that will come online in the next years. In this talk I will report about the hierarchical Hough transform method that the GEO 600 data analysis team at the Albert Einstein Institute is developing. The three step hierarchical algorithm has been described elsewhere [8]. In this talk I will focus on some of the implementational aspects we are currently concerned with. (author)

  16. Searching for full power control rod patterns in a boiling water reactor using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Jose Luis [Departamento Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Ocoyoacac, Edo. de Mexico (Mexico)]. E-mail: jlmt@nuclear.inin.mx; Ortiz, Juan Jose [Departamento Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Ocoyoacac, Edo. de Mexico (Mexico)]. E-mail: jjortiz@nuclear.inin.mx; Requena, Ignacio [Departamento Ciencias Computacion e I.A. ETSII, Informatica, Universidad de Granada, C. Daniel Saucedo Aranda s/n. 18071 Granada (Spain)]. E-mail: requena@decsai.ugr.es; Perusquia, Raul [Departamento Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Ocoyoacac, Edo. de Mexico (Mexico)]. E-mail: rpc@nuclear.inin.mx

    2004-11-01

    One of the most important questions related to both safety and economic aspects in a nuclear power reactor operation, is without any doubt its reactivity control. During normal operation of a boiling water reactor, the reactivity control of its core is strongly determined by control rods patterns efficiency. In this paper, GACRP system is proposed based on the concepts of genetic algorithms for full power control rod patterns search. This system was carried out using LVNPP transition cycle characteristics, being applied too to an equilibrium cycle. Several operation scenarios, including core water flow variation throughout the cycle and different target axial power distributions, are considered. Genetic algorithm fitness function includes reactor security parameters, such as MLHGR, MCPR, reactor k{sub eff} and axial power density.

  17. MUSIC algorithm for location searching of dielectric anomalies from S-parameters using microwave imaging

    Science.gov (United States)

    Park, Won-Kwang; Kim, Hwa Pyung; Lee, Kwang-Jae; Son, Seong-Ho

    2017-11-01

    Motivated by the biomedical engineering used in early-stage breast cancer detection, we investigated the use of MUltiple SIgnal Classification (MUSIC) algorithm for location searching of small anomalies using S-parameters. We considered the application of MUSIC to functional imaging where a small number of dipole antennas are used. Our approach is based on the application of Born approximation or physical factorization. We analyzed cases in which the anomaly is respectively small and large in relation to the wavelength, and the structure of the left-singular vectors is linked to the nonzero singular values of a Multi-Static Response (MSR) matrix whose elements are the S-parameters. Using simulations, we demonstrated the strengths and weaknesses of the MUSIC algorithm in detecting both small and extended anomalies.

  18. An Algorithmic Game Approach for Demand Side Management in Smart Grid with Distributed Renewable Power Generation and Storage

    Directory of Open Access Journals (Sweden)

    Ren-Shiou Liu

    2016-08-01

    Full Text Available In this paper, the problem of minimizing electricity cost and the peak system load in smart grids with distributed renewable energy resources is studied. Unlike prior research works that either assume all of the jobs are interruptible or power-shiftable, this paper focuses on more challenging scenarios in which jobs are non-interruptible and non-power-shiftable. In addition, as more and more newly-built homes have rooftop solar arrays, it is assumed that all users are equipped with a solar-plus-battery system in this paper. Thus, power can be drawn from the battery as needed to reduce the cost of electricity or to lower the overall system load. With a quadratic load-dependent cost function, this paper first shows that the electricity cost minimization problem in such a setting is NP-hard and presents a distributed demand-side management algorithm, called DDSM, to solve this. Experimental results show that the proposed DDSM algorithm is effective, scalable and converges to a Nash equilibrium in finite rounds.

  19. Final Technical Report: Sparse Grid Scenario Generation and Interior Algorithms for Stochastic Optimization in a Parallel Computing Environment

    Energy Technology Data Exchange (ETDEWEB)

    Mehrotra, Sanjay [Northwestern Univ., Evanston, IL (United States)

    2016-09-07

    The support from this grant resulted in seven published papers and a technical report. Two papers are published in SIAM J. on Optimization [87, 88]; two papers are published in IEEE Transactions on Power Systems [77, 78]; one paper is published in Smart Grid [79]; one paper is published in Computational Optimization and Applications [44] and one in INFORMS J. on Computing [67]). The works in [44, 67, 87, 88] were funded primarily by this DOE grant. The applied papers in [77, 78, 79] were also supported through a subcontract from the Argonne National Lab. We start by presenting our main research results on the scenario generation problem in Sections 1–2. We present our algorithmic results on interior point methods for convex optimization problems in Section 3. We describe a new ‘central’ cutting surface algorithm developed for solving large scale convex programming problems (as is the case with our proposed research) with semi-infinite number of constraints in Section 4. In Sections 5–6 we present our work on two application problems of interest to DOE.

  20. Real Time Search Algorithm for Observation Outliers During Monitoring Engineering Constructions

    Science.gov (United States)

    Latos, Dorota; Kolanowski, Bogdan; Pachelski, Wojciech; Sołoducha, Ryszard

    2017-12-01

    Real time monitoring of engineering structures in case of an emergency of disaster requires collection of a large amount of data to be processed by specific analytical techniques. A quick and accurate assessment of the state of the object is crucial for a probable rescue action. One of the more significant evaluation methods of large sets of data, either collected during a specified interval of time or permanently, is the time series analysis. In this paper presented is a search algorithm for those time series elements which deviate from their values expected during monitoring. Quick and proper detection of observations indicating anomalous behavior of the structure allows to take a variety of preventive actions. In the algorithm, the mathematical formulae used provide maximal sensitivity to detect even minimal changes in the object's behavior. The sensitivity analyses were conducted for the algorithm of moving average as well as for the Douglas-Peucker algorithm used in generalization of linear objects in GIS. In addition to determining the size of deviations from the average it was used the so-called Hausdorff distance. The carried out simulation and verification of laboratory survey data showed that the approach provides sufficient sensitivity for automatic real time analysis of large amount of data obtained from different and various sensors (total stations, leveling, camera, radar).

  1. A meta-heuristic method for solving scheduling problem: crow search algorithm

    Science.gov (United States)

    Adhi, Antono; Santosa, Budi; Siswanto, Nurhadi

    2018-04-01

    Scheduling is one of the most important processes in an industry both in manufacturingand services. The scheduling process is the process of selecting resources to perform an operation on tasks. Resources can be machines, peoples, tasks, jobs or operations.. The selection of optimum sequence of jobs from a permutation is an essential issue in every research in scheduling problem. Optimum sequence becomes optimum solution to resolve scheduling problem. Scheduling problem becomes NP-hard problem since the number of job in the sequence is more than normal number can be processed by exact algorithm. In order to obtain optimum results, it needs a method with capability to solve complex scheduling problems in an acceptable time. Meta-heuristic is a method usually used to solve scheduling problem. The recently published method called Crow Search Algorithm (CSA) is adopted in this research to solve scheduling problem. CSA is an evolutionary meta-heuristic method which is based on the behavior in flocks of crow. The calculation result of CSA for solving scheduling problem is compared with other algorithms. From the comparison, it is found that CSA has better performance in term of optimum solution and time calculation than other algorithms.

  2. VES/TEM 1D joint inversion by using Controlled Random Search (CRS) algorithm

    Science.gov (United States)

    Bortolozo, Cassiano Antonio; Porsani, Jorge Luís; Santos, Fernando Acácio Monteiro dos; Almeida, Emerson Rodrigo

    2015-01-01

    Electrical (DC) and Transient Electromagnetic (TEM) soundings are used in a great number of environmental, hydrological, and mining exploration studies. Usually, data interpretation is accomplished by individual 1D models resulting often in ambiguous models. This fact can be explained by the way as the two different methodologies sample the medium beneath surface. Vertical Electrical Sounding (VES) is good in marking resistive structures, while Transient Electromagnetic sounding (TEM) is very sensitive to conductive structures. Another difference is VES is better to detect shallow structures, while TEM soundings can reach deeper layers. A Matlab program for 1D joint inversion of VES and TEM soundings was developed aiming at exploring the best of both methods. The program uses CRS - Controlled Random Search - algorithm for both single and 1D joint inversions. Usually inversion programs use Marquadt type algorithms but for electrical and electromagnetic methods, these algorithms may find a local minimum or not converge. Initially, the algorithm was tested with synthetic data, and then it was used to invert experimental data from two places in Paraná sedimentary basin (Bebedouro and Pirassununga cities), both located in São Paulo State, Brazil. Geoelectric model obtained from VES and TEM data 1D joint inversion is similar to the real geological condition, and ambiguities were minimized. Results with synthetic and real data show that 1D VES/TEM joint inversion better recovers simulated models and shows a great potential in geological studies, especially in hydrogeological studies.

  3. Parameter estimation by Differential Search Algorithm from horizontal loop electromagnetic (HLEM) data

    Science.gov (United States)

    Alkan, Hilal; Balkaya, Çağlayan

    2018-02-01

    We present an efficient inversion tool for parameter estimation from horizontal loop electromagnetic (HLEM) data using Differential Search Algorithm (DSA) which is a swarm-intelligence-based metaheuristic proposed recently. The depth, dip, and origin of a thin subsurface conductor causing the anomaly are the parameters estimated by the HLEM method commonly known as Slingram. The applicability of the developed scheme was firstly tested on two synthetically generated anomalies with and without noise content. Two control parameters affecting the convergence characteristic to the solution of the algorithm were tuned for the so-called anomalies including one and two conductive bodies, respectively. Tuned control parameters yielded more successful statistical results compared to widely used parameter couples in DSA applications. Two field anomalies measured over a dipping graphitic shale from Northern Australia were then considered, and the algorithm provided the depth estimations being in good agreement with those of previous studies and drilling information. Furthermore, the efficiency and reliability of the results obtained were investigated via probability density function. Considering the results obtained, we can conclude that DSA characterized by the simple algorithmic structure is an efficient and promising metaheuristic for the other relatively low-dimensional geophysical inverse problems. Finally, the researchers after being familiar with the content of developed scheme displaying an easy to use and flexible characteristic can easily modify and expand it for their scientific optimization problems.

  4. A “Tuned” Mask Learnt Approach Based on Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Youchuan Wan

    2016-01-01

    Full Text Available Texture image classification is an important topic in many applications in machine vision and image analysis. Texture feature extracted from the original texture image by using “Tuned” mask is one of the simplest and most effective methods. However, hill climbing based training methods could not acquire the satisfying mask at a time; on the other hand, some commonly used evolutionary algorithms like genetic algorithm (GA and particle swarm optimization (PSO easily fall into the local optimum. A novel approach for texture image classification exemplified with recognition of residential area is detailed in the paper. In the proposed approach, “Tuned” mask is viewed as a constrained optimization problem and the optimal “Tuned” mask is acquired by maximizing the texture energy via a newly proposed gravitational search algorithm (GSA. The optimal “Tuned” mask is achieved through the convergence of GSA. The proposed approach has been, respectively, tested on some public texture and remote sensing images. The results are then compared with that of GA, PSO, honey-bee mating optimization (HBMO, and artificial immune algorithm (AIA. Moreover, feature extracted by Gabor wavelet is also utilized to make a further comparison. Experimental results show that the proposed method is robust and adaptive and exhibits better performance than other methods involved in the paper in terms of fitness value and classification accuracy.

  5. Understanding Air Transportation Market Dynamics Using a Search Algorithm for Calibrating Travel Demand and Price

    Science.gov (United States)

    Kumar, Vivek; Horio, Brant M.; DeCicco, Anthony H.; Hasan, Shahab; Stouffer, Virginia L.; Smith, Jeremy C.; Guerreiro, Nelson M.

    2015-01-01

    This paper presents a search algorithm based framework to calibrate origin-destination (O-D) market specific airline ticket demands and prices for the Air Transportation System (ATS). This framework is used for calibrating an agent based model of the air ticket buy-sell process - Airline Evolutionary Simulation (Airline EVOS) -that has fidelity of detail that accounts for airline and consumer behaviors and the interdependencies they share between themselves and the NAS. More specificially, this algorithm simultaneous calibrates demand and airfares for each O-D market, to within specified threshold of a pre-specified target value. The proposed algorithm is illustrated with market data targets provided by the Transportation System Analysis Model (TSAM) and Airline Origin and Destination Survey (DB1B). Although we specify these models and datasources for this calibration exercise, the methods described in this paper are applicable to calibrating any low-level model of the ATS to some other demand forecast model-based data. We argue that using a calibration algorithm such as the one we present here to synchronize ATS models with specialized forecast demand models, is a powerful tool for establishing credible baseline conditions in experiments analyzing the effects of proposed policy changes to the ATS.

  6. Real Time Search Algorithm for Observation Outliers During Monitoring Engineering Constructions

    Directory of Open Access Journals (Sweden)

    Latos Dorota

    2017-12-01

    Full Text Available Real time monitoring of engineering structures in case of an emergency of disaster requires collection of a large amount of data to be processed by specific analytical techniques. A quick and accurate assessment of the state of the object is crucial for a probable rescue action. One of the more significant evaluation methods of large sets of data, either collected during a specified interval of time or permanently, is the time series analysis. In this paper presented is a search algorithm for those time series elements which deviate from their values expected during monitoring. Quick and proper detection of observations indicating anomalous behavior of the structure allows to take a variety of preventive actions. In the algorithm, the mathematical formulae used provide maximal sensitivity to detect even minimal changes in the object’s behavior. The sensitivity analyses were conducted for the algorithm of moving average as well as for the Douglas-Peucker algorithm used in generalization of linear objects in GIS. In addition to determining the size of deviations from the average it was used the so-called Hausdorff distance. The carried out simulation and verification of laboratory survey data showed that the approach provides sufficient sensitivity for automatic real time analysis of large amount of data obtained from different and various sensors (total stations, leveling, camera, radar.

  7. A novel consistent and well-balanced algorithm for simulations of multiphase flows on unstructured grids

    Science.gov (United States)

    Patel, Jitendra Kumar; Natarajan, Ganesh

    2017-12-01

    We discuss the development and assessment of a robust numerical algorithm for simulating multiphase flows with complex interfaces and high density ratios on arbitrary polygonal meshes. The algorithm combines the volume-of-fluid method with an incremental projection approach for incompressible multiphase flows in a novel hybrid staggered/non-staggered framework. The key principles that characterise the algorithm are the consistent treatment of discrete mass and momentum transport and the similar discretisation of force terms appearing in the momentum equation. The former is achieved by invoking identical schemes for convective transport of volume fraction and momentum in the respective discrete equations while the latter is realised by representing the gravity and surface tension terms as gradients of suitable scalars which are then discretised in identical fashion resulting in a balanced formulation. The hybrid staggered/non-staggered framework employed herein solves for the scalar normal momentum at the cell faces, while the volume fraction is computed at the cell centroids. This is shown to naturally lead to similar terms for pressure and its correction in the momentum and pressure correction equations respectively, which are again treated discretely in a similar manner. We show that spurious currents that corrupt the solution may arise both from an unbalanced formulation where forces (gravity and surface tension) are discretised in dissimilar manner and from an inconsistent approach where different schemes are used to convect the mass and momentum, with the latter prominent in flows which are convection-dominant with high density ratios. Interestingly, the inconsistent approach is shown to perform as well as the consistent approach even for high density ratio flows in some cases while it exhibits anomalous behaviour for other scenarios, even at low density ratios. Using a plethora of test problems of increasing complexity, we conclusively demonstrate that the

  8. A Rule-Based Local Search Algorithm for General Shift Design Problems in Airport Ground Handling

    DEFF Research Database (Denmark)

    Clausen, Tommy

    We consider a generalized version of the shift design problem where shifts are created to cover a multiskilled demand and fit the parameters of the workforce. We present a collection of constraints and objectives for the generalized shift design problem. A local search solution framework with mul......We consider a generalized version of the shift design problem where shifts are created to cover a multiskilled demand and fit the parameters of the workforce. We present a collection of constraints and objectives for the generalized shift design problem. A local search solution framework...... with multiple neighborhoods and a loosely coupled rule engine based on simulated annealing is presented. Computational experiments on real-life data from various airport ground handling organization show the performance and flexibility of the proposed algorithm....

  9. An inertia-free filter line-search algorithm for large-scale nonlinear programming

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Nai-Yuan; Zavala, Victor M.

    2016-02-15

    We present a filter line-search algorithm that does not require inertia information of the linear system. This feature enables the use of a wide range of linear algebra strategies and libraries, which is essential to tackle large-scale problems on modern computing architectures. The proposed approach performs curvature tests along the search step to detect negative curvature and to trigger convexification. We prove that the approach is globally convergent and we implement the approach within a parallel interior-point framework to solve large-scale and highly nonlinear problems. Our numerical tests demonstrate that the inertia-free approach is as efficient as inertia detection via symmetric indefinite factorizations. We also demonstrate that the inertia-free approach can lead to reductions in solution time because it reduces the amount of convexification needed.

  10. A Hybrid Differential Evolution and Tree Search Algorithm for the Job Shop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2011-01-01

    Full Text Available The job shop scheduling problem (JSSP is a notoriously difficult problem in combinatorial optimization. In terms of the objective function, most existing research has been focused on the makespan criterion. However, in contemporary manufacturing systems, due-date-related performances are more important because they are essential for maintaining a high service reputation. Therefore, in this study we aim at minimizing the total weighted tardiness in JSSP. Considering the high complexity, a hybrid differential evolution (DE algorithm is proposed for the problem. To enhance the overall search efficiency, a neighborhood property of the problem is discovered, and then a tree search procedure is designed and embedded into the DE framework. According to the extensive computational experiments, the proposed approach is efficient in solving the job shop scheduling problem with total weighted tardiness objective.

  11. An Effective Hybrid Firefly Algorithm with Harmony Search for Global Numerical Optimization

    Directory of Open Access Journals (Sweden)

    Lihong Guo

    2013-01-01

    Full Text Available A hybrid metaheuristic approach by hybridizing harmony search (HS and firefly algorithm (FA, namely, HS/FA, is proposed to solve function optimization. In HS/FA, the exploration of HS and the exploitation of FA are fully exerted, so HS/FA has a faster convergence speed than HS and FA. Also, top fireflies scheme is introduced to reduce running time, and HS is utilized to mutate between fireflies when updating fireflies. The HS/FA method is verified by various benchmarks. From the experiments, the implementation of HS/FA is better than the standard FA and other eight optimization methods.

  12. Hybridized Symbiotic Organism Search Algorithm for the Optimal Operation of Directional Overcurrent Relays

    Directory of Open Access Journals (Sweden)

    Muhammad Sulaiman

    2018-01-01

    Full Text Available This paper presents the solution of directional overcurrent relay (DOCR problems using Simulated Annealing based Symbiotic Organism Search (SASOS. The objective function of the problem is to minimize the sum of the operating times of all primary relays. The DOCR problem is nonlinear and highly constrained with two types of decision variables, namely, the time dial settings (TDS and plug setting (PS. In this paper, three models of the problem are considered, the IEEE 3-bus, 4-bus, and 6-bus, respectively. We have applied SASOS to solve the problem and the obtained results are compared with other algorithms available in the literature.

  13. A Nonmonotone Line Search Filter Algorithm for the System of Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    Zhong Jin

    2012-01-01

    Full Text Available We present a new iterative method based on the line search filter method with the nonmonotone strategy to solve the system of nonlinear equations. The equations are divided into two groups; some equations are treated as constraints and the others act as the objective function, and the two groups are just updated at the iterations where it is needed indeed. We employ the nonmonotone idea to the sufficient reduction conditions and filter technique which leads to a flexibility and acceptance behavior comparable to monotone methods. The new algorithm is shown to be globally convergent and numerical experiments demonstrate its effectiveness.

  14. How Do Severe Constraints Affect the Search Ability of Multiobjective Evolutionary Algorithms in Water Resources?

    Science.gov (United States)

    Clarkin, T. J.; Kasprzyk, J. R.; Raseman, W. J.; Herman, J. D.

    2015-12-01

    This study contributes a diagnostic assessment of multiobjective evolutionary algorithm (MOEA) search on a set of water resources problem formulations with different configurations of constraints. Unlike constraints in classical optimization modeling, constraints within MOEA simulation-optimization represent limits on acceptable performance that delineate whether solutions within the search problem are feasible. Constraints are relevant because of the emergent pressures on water resources systems: increasing public awareness of their sustainability, coupled with regulatory pressures on water management agencies. In this study, we test several state-of-the-art MOEAs that utilize restricted tournament selection for constraint handling on varying configurations of water resources planning problems. For example, a problem that has no constraints on performance levels will be compared with a problem with several severe constraints, and a problem with constraints that have less severe values on the constraint thresholds. One such problem, Lower Rio Grande Valley (LRGV) portfolio planning, has been solved with a suite of constraints that ensure high reliability, low cost variability, and acceptable performance in a single year severe drought. But to date, it is unclear whether or not the constraints are negatively affecting MOEAs' ability to solve the problem effectively. Two categories of results are explored. The first category uses control maps of algorithm performance to determine if the algorithm's performance is sensitive to user-defined parameters. The second category uses run-time performance metrics to determine the time required for the algorithm to reach sufficient levels of convergence and diversity on the solution sets. Our work exploring the effect of constraints will better enable practitioners to define MOEA problem formulations for real-world systems, especially when stakeholders are concerned with achieving fixed levels of performance according to one or

  15. Pareto Optimization of a Half Car Passive Suspension Model Using a Novel Multiobjective Heat Transfer Search Algorithm

    Directory of Open Access Journals (Sweden)

    Vimal Savsani

    2017-01-01

    Full Text Available Most of the modern multiobjective optimization algorithms are based on the search technique of genetic algorithms; however the search techniques of other recently developed metaheuristics are emerging topics among researchers. This paper proposes a novel multiobjective optimization algorithm named multiobjective heat transfer search (MOHTS algorithm, which is based on the search technique of heat transfer search (HTS algorithm. MOHTS employs the elitist nondominated sorting and crowding distance approach of an elitist based nondominated sorting genetic algorithm-II (NSGA-II for obtaining different nondomination levels and to preserve the diversity among the optimal set of solutions, respectively. The capability in yielding a Pareto front as close as possible to the true Pareto front of MOHTS has been tested on the multiobjective optimization problem of the vehicle suspension design, which has a set of five second-order linear ordinary differential equations. Half car passive ride model with two different sets of five objectives is employed for optimizing the suspension parameters using MOHTS and NSGA-II. The optimization studies demonstrate that MOHTS achieves the better nondominated Pareto front with the widespread (diveresed set of optimal solutions as compared to NSGA-II, and further the comparison of the extreme points of the obtained Pareto front reveals the dominance of MOHTS over NSGA-II, multiobjective uniform diversity genetic algorithm (MUGA, and combined PSO-GA based MOEA.

  16. Development of accurate standardized algorithms for conversion between SRP grid coordinates and latitude/longitude

    International Nuclear Information System (INIS)

    Looney, B.B.; Marsh, J.T. Jr.; Hayes, D.W.

    1987-01-01

    The Savannah Rive Plant (SRP) is a nuclear production facility operated by E.I. du Pont de Nemours and Co. for the United States Department of Energy. SRP is located along the Savannah River in South Carolina. Construction of SRP began in the early 1950's. At the time the plant was built, a local coordinate system was developed to assist in defining the locations of plant facilities. Over the years, large quantities of data have been developed using ''SRP Coordinates.'' These data include: building locations, plant boundaries, environmental sampling locations, waste disposal area locations, and a wide range of other geographical information. Currently, staff persons at SRP are organizing these data into automated information systems to allow more rapid, more robust and higher quality interpretation, interchange and presentation of spatial data. A key element in this process is the ability to incorporate outside data bases into the systems, as well as to share SRP data with interested organizations outside as SRP. Most geographical information outside of SRP is organized using latitude and longitude. Thus, straightforward, accurate and consistent algorithms to convert SRP Coordinates to/from latitude and longitude are needed. Appropriate algorithms are presented in this document

  17. Optimized smart grid energy procurement for LTE networks using evolutionary algorithms

    KAUST Repository

    Ghazzai, Hakim

    2014-11-01

    Energy efficiency aspects in cellular networks can contribute significantly to reducing worldwide greenhouse gas emissions. The base station (BS) sleeping strategy has become a well-known technique to achieve energy savings by switching off redundant BSs mainly for lightly loaded networks. Moreover, introducing renewable energy as an alternative power source has become a real challenge among network operators. In this paper, we formulate an optimization problem that aims to maximize the profit of Long-Term Evolution (LTE) cellular operators and to simultaneously minimize the CO2 emissions in green wireless cellular networks without affecting the desired quality of service (QoS). The BS sleeping strategy lends itself to an interesting implementation using several heuristic approaches, such as the genetic (GA) and particle swarm optimization (PSO) algorithms. In this paper, we propose GA-based and PSO-based methods that reduce the energy consumption of BSs by not only shutting down underutilized BSs but by optimizing the amounts of energy procured from different retailers (renewable energy and electricity retailers), as well. A comparison with another previously proposed algorithm is also carried out to evaluate the performance and the computational complexity of the employed methods.

  18. Hybrid Multistarting GA-Tabu Search Method for the Placement of BtB Converters for Korean Metropolitan Ring Grid

    Directory of Open Access Journals (Sweden)

    Remund J. Labios

    2016-01-01

    Full Text Available This paper presents a method to determine the optimal locations for installing back-to-back (BtB converters in a power grid as a countermeasure to reduce fault current levels. The installation of BtB converters can be regarded as network reconfiguration. For the purpose, a hybrid multistarting GA-tabu search method was used to determine the best locations from a preselected list of candidate locations. The constraints used in determining the best locations include circuit breaker fault current limits, proximity of proposed locations, and capability of the solution to reach power flow convergence. A simple power injection model after applying line-opening on selected branches was used as a means for power flows with BtB converters. Kron reduction was also applied as a method for network reduction for fast evaluation of fault currents with a given topology. Simulations of the search method were performed on the Korean power system, particularly the Seoul metropolitan area.

  19. Obstacle Avoidance for Redundant Manipulators Utilizing a Backward Quadratic Search Algorithm

    Directory of Open Access Journals (Sweden)

    Tianjian Hu

    2016-06-01

    Full Text Available Obstacle avoidance can be achieved as a secondary task by appropriate inverse kinematics (IK resolution of redundant manipulators. Most prior literature requires the time-consuming determination of the closest point to the obstacle for every calculation step. Aiming at the relief of computational burden, this paper develops what is termed a backward quadratic search algorithm (BQSA as another option for solving IK problems in obstacle avoidance. The BQSA detects possible collisions based on the root property of a category of quadratic functions, which are derived from ellipse-enveloped obstacles and the positions of each link's end-points. The algorithm executes a backward search for possible obstacle collisions, from the end-effector to the base, and avoids obstacles by utilizing a hybrid IK scheme, incorporating the damped least-squares method, the weighted least-norm method and the gradient projection method. Some details of the hybrid IK scheme, such as values of the damped factor, weights and the clamping velocity, are discussed, along with a comparison of computational load between previous methods and BQSA. Simulations of a planar seven-link manipulator and a PUMA 560 robot verify the effectiveness of BQSA.

  20. Optimization process planning using hybrid genetic algorithm and intelligent search for job shop machining.

    Science.gov (United States)

    Salehi, Mojtaba; Bahreininejad, Ardeshir

    2011-08-01

    Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously.

  1. Development of Future Rule Curves for Multipurpose Reservoir Operation Using Conditional Genetic and Tabu Search Algorithms

    Directory of Open Access Journals (Sweden)

    Anongrit Kangrang

    2018-01-01

    Full Text Available Optimal rule curves are necessary guidelines in the reservoir operation that have been used to assess performance of any reservoir to satisfy water supply, irrigation, industrial, hydropower, and environmental conservation requirements. This study applied the conditional genetic algorithm (CGA and the conditional tabu search algorithm (CTSA technique to connect with the reservoir simulation model in order to search optimal reservoir rule curves. The Ubolrat Reservoir located in the northeast region of Thailand was an illustrative application including historic monthly inflow, future inflow generated by the SWAT hydrological model using 50-year future climate data from the PRECIS regional climate model in case of B2 emission scenario by IPCC SRES, water demand, hydrologic data, and physical reservoir data. The future and synthetic inflow data of reservoirs were used to simulate reservoir system for evaluating water situation. The situations of water shortage and excess water were shown in terms of frequency magnitude and duration. The results have shown that the optimal rule curves from CGA and CTSA connected with the simulation model can mitigate drought and flood situations than the existing rule curves. The optimal future rule curves were more suitable for future situations than the other rule curves.

  2. Turn-Based War Chess Model and Its Search Algorithm per Turn

    Directory of Open Access Journals (Sweden)

    Hai Nan

    2016-01-01

    Full Text Available War chess gaming has so far received insufficient attention but is a significant component of turn-based strategy games (TBS and is studied in this paper. First, a common game model is proposed through various existing war chess types. Based on the model, we propose a theory frame involving combinational optimization on the one hand and game tree search on the other hand. We also discuss a key problem, namely, that the number of the branching factors of each turn in the game tree is huge. Then, we propose two algorithms for searching in one turn to solve the problem: (1 enumeration by order; (2 enumeration by recursion. The main difference between these two is the permutation method used: the former uses the dictionary sequence method, while the latter uses the recursive permutation method. Finally, we prove that both of these algorithms are optimal, and we analyze the difference between their efficiencies. An important factor is the total time taken for the unit to expand until it achieves its reachable position. The factor, which is the total number of expansions that each unit makes in its reachable position, is set. The conclusion proposed is in terms of this factor: Enumeration by recursion is better than enumeration by order in all situations.

  3. Hybrid Genetic Algorithm - Local Search Method for Ground-Water Management

    Science.gov (United States)

    Chiu, Y.; Nishikawa, T.; Martin, P.

    2008-12-01

    Ground-water management problems commonly are formulated as a mixed-integer, non-linear programming problem (MINLP). Relying only on conventional gradient-search methods to solve the management problem is computationally fast; however, the methods may become trapped in a local optimum. Global-optimization schemes can identify the global optimum, but the convergence is very slow when the optimal solution approaches the global optimum. In this study, we developed a hybrid optimization scheme, which includes a genetic algorithm and a gradient-search method, to solve the MINLP. The genetic algorithm identifies a near- optimal solution, and the gradient search uses the near optimum to identify the global optimum. Our methodology is applied to a conjunctive-use project in the Warren ground-water basin, California. Hi- Desert Water District (HDWD), the primary water-manager in the basin, plans to construct a wastewater treatment plant to reduce future septic-tank effluent from reaching the ground-water system. The treated wastewater instead will recharge the ground-water basin via percolation ponds as part of a larger conjunctive-use strategy, subject to State regulations (e.g. minimum distances and travel times). HDWD wishes to identify the least-cost conjunctive-use strategies that control ground-water levels, meet regulations, and identify new production-well locations. As formulated, the MINLP objective is to minimize water-delivery costs subject to constraints including pump capacities, available recharge water, water-supply demand, water-level constraints, and potential new-well locations. The methodology was demonstrated by an enumerative search of the entire feasible solution and comparing the optimum solution with results from the branch-and-bound algorithm. The results also indicate that the hybrid method identifies the global optimum within an affordable computation time. Sensitivity analyses, which include testing different recharge-rate scenarios, pond

  4. Forecasting solar radiation using an optimized hybrid model by Cuckoo Search algorithm

    International Nuclear Information System (INIS)

    Wang, Jianzhou; Jiang, He; Wu, Yujie; Dong, Yao

    2015-01-01

    Due to energy crisis and environmental problems, it is very urgent to find alternative energy sources nowadays. Solar energy, as one of the great potential clean energies, has widely attracted the attention of researchers. In this paper, an optimized hybrid method by CS (Cuckoo Search) on the basis of the OP-ELM (Optimally Pruned Extreme Learning Machine), called CS-OP-ELM, is developed to forecast clear sky and real sky global horizontal radiation. First, MRSR (Multiresponse Sparse Regression) and LOO-CV (leave-one-out cross-validation) can be applied to rank neurons and prune the possibly meaningless neurons of the FFNN (Feed Forward Neural Network), respectively. Then, Direct strategy and Direct-Recursive strategy based on OP-ELM are introduced to build a hybrid model. Furthermore, CS (Cuckoo Search) optimized algorithm is employed to determine the proper weight coefficients. In order to verify the effectiveness of the developed method, hourly solar radiation data from six sites of the United States has been collected, and methods like ARMA (Autoregression moving average), BP (Back Propagation) neural network and OP-ELM can be compared with CS-OP-ELM. Experimental results show the optimized hybrid method CS-OP-ELM has the best forecasting performance. - Highlights: • An optimized hybrid method called CS-OP-ELM is proposed to forecast solar radiation. • CS-OP-ELM adopts multiple variables dataset as input variables. • Direct and Direct-Recursive strategy are introduced to build a hybrid model. • CS (Cuckoo Search) algorithm is used to determine the optimal weight coefficients. • The proposed method has the best performance compared with other methods

  5. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem.

    Science.gov (United States)

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.

  6. Optimum Design of Gravity Retaining Walls Using Charged System Search Algorithm

    Directory of Open Access Journals (Sweden)

    S. Talatahari

    2012-01-01

    Full Text Available This study focuses on the optimum design retaining walls, as one of the familiar types of the retaining walls which may be constructed of stone masonry, unreinforced concrete, or reinforced concrete. The material cost is one of the major factors in the construction of gravity retaining walls therefore, minimizing the weight or volume of these systems can reduce the cost. To obtain an optimal seismic design of such structures, this paper proposes a method based on a novel meta-heuristic algorithm. The algorithm is inspired by the Coulomb's and Gauss’s laws of electrostatics in physics, and it is called charged system search (CSS. In order to evaluate the efficiency of this algorithm, an example is utilized. Comparing the results of the retaining wall designs obtained by the other methods illustrates a good performance of the CSS. In this paper, we used the Mononobe-Okabe method which is one of the pseudostatic approaches to determine the dynamic earth pressure.

  7. A depth-first search algorithm to compute elementary flux modes by linear programming.

    Science.gov (United States)

    Quek, Lake-Ee; Nielsen, Lars K

    2014-07-30

    The decomposition of complex metabolic networks into elementary flux modes (EFMs) provides a useful framework for exploring reaction interactions systematically. Generating a complete set of EFMs for large-scale models, however, is near impossible. Even for moderately-sized models (linear programming (LP) to enumerate EFMs in an exhaustive fashion. Constraints can be introduced to directly generate a subset of EFMs satisfying the set of constraints. The depth-first search algorithm has a constant memory overhead. Using flux constraints, a large LP problem can be massively divided and parallelized into independent sub-jobs for deployment into computing clusters. Since the sub-jobs do not overlap, the approach scales to utilize all available computing nodes with minimal coordination overhead or memory limitations. The speed of the algorithm was comparable to efmtool, a mainstream Double Description method, when enumerating all EFMs; the attrition power gained from performing flux feasibility tests offsets the increased computational demand of running an LP solver. Unlike the Double Description method, the algorithm enables accelerated enumeration of all EFMs satisfying a set of constraints.

  8. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem

    Science.gov (United States)

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them. PMID:26819585

  9. Multiobjective pressurized water reactor reload core design by nondominated genetic algorithm search

    International Nuclear Information System (INIS)

    Parks, G.T.

    1996-01-01

    The design of pressurized water reactor reload cores is not only a formidable optimization problem but also, in many instances, a multiobjective problem. A genetic algorithm (GA) designed to perform true multiobjective optimization on such problems is described. Genetic algorithms simulate natural evolution. They differ from most optimization techniques by searching from one group of solutions to another, rather than from one solution to another. New solutions are generated by breeding from existing solutions. By selecting better (in a multiobjective sense) solutions as parents more often, the population can be evolved to reveal the trade-off surface between the competing objectives. An example illustrating the effectiveness of this novel method is presented and analyzed. It is found that in solving a reload design problem the algorithm evaluates a similar number of loading patterns to other state-of-the-art methods, but in the process reveals much more information about the nature of the problem being solved. The actual computational cost incurred depends on the core simulator used; the GA itself is code independent

  10. The Surface Extraction from TIN based Search-space Minimization (SETSM) algorithm

    Science.gov (United States)

    Noh, Myoung-Jong; Howat, Ian M.

    2017-07-01

    Digital Elevation Models (DEMs) provide critical information for a wide range of scientific, navigational and engineering activities. Submeter resolution, stereoscopic satellite imagery with high geometric and radiometric quality, and wide spatial coverage are becoming increasingly accessible for generating stereo-photogrammetric DEMs. However, low contrast and repeatedly-textured surfaces, such as snow and glacial ice at high latitudes, and mountainous terrains challenge existing stereo-photogrammetric DEM generation techniques, particularly without a-priori information such as existing seed DEMs or the manual setting of terrain-specific parameters. To utilize these data for fully-automatic DEM extraction at a large scale, we developed the Surface Extraction from TIN-based Search-space Minimization (SETSM) algorithm. SETSM is fully automatic (i.e. no search parameter settings are needed) and uses only the sensor model Rational Polynomial Coefficients (RPCs). SETSM adopts a hierarchical, combined image- and object-space matching strategy utilizing weighted normalized cross-correlation with both original distorted and geometrically corrected images for overcoming ambiguities caused by foreshortening and occlusions. In addition, SETSM optimally minimizes search-spaces to extract optimal matches over problematic terrains by iteratively updating object surfaces within a Triangulated Irregular Network, and utilizes a geometric-constrained blunder and outlier detection in object space. We prove the ability of SETSM to mitigate typical stereo-photogrammetric matching problems over a range of challenging terrains. SETSM is the primary DEM generation software for the US National Science Foundation's ArcticDEM project.

  11. A modified Symbiotic Organisms Search algorithm for large scale economic dispatch problem with valve-point effects

    International Nuclear Information System (INIS)

    Secui, Dinu Calin

    2016-01-01

    This paper proposes a new metaheuristic algorithm, called Modified Symbiotic Organisms Search (MSOS) algorithm, to solve the economic dispatch problem considering the valve-point effects, the prohibited operating zones (POZ), the transmission line losses, multi-fuel sources, as well as other operating constraints of the generating units and power system. The MSOS algorithm introduces, in all of its phases, new relations to update the solutions to improve its capacity of identifying stable and of high-quality solutions in a reasonable time. Furthermore, to increase the capacity of exploring the MSOS algorithm in finding the most promising zones, it is endowed with a chaotic component generated by the Logistic map. The performance of the modified algorithm and of the original algorithm Symbiotic Organisms Search (SOS) is tested on five systems of different characteristics, constraints and dimensions (13-unit, 40-unit, 80-unit, 160-unit and 320-unit). The results obtained by applying the proposed algorithm (MSOS) show that this has a better performance than other techniques of optimization recently used in solving the economic dispatch problem with valve-point effects. - Highlights: • A new modified SOS algorithm (MSOS) is proposed to solve the EcD problem. • Valve-point effects, ramp-rate limits, POZ, multi-fuel sources, transmission losses were considered. • The algorithm is tested on five systems having 13, 40, 80, 160 and 320 thermal units. • MSOS algorithm outperforms many other optimization techniques.

  12. GPU Based N-Gram String Matching Algorithm with Score Table Approach for String Searching in Many Documents

    Science.gov (United States)

    Srinivasa, K. G.; Shree Devi, B. N.

    2017-10-01

    String searching in documents has become a tedious task with the evolution of Big Data. Generation of large data sets demand for a high performance search algorithm in areas such as text mining, information retrieval and many others. The popularity of GPU's for general purpose computing has been increasing for various applications. Therefore it is of great interest to exploit the thread feature of a GPU to provide a high performance search algorithm. This paper proposes an optimized new approach to N-gram model for string search in a number of lengthy documents and its GPU implementation. The algorithm exploits GPGPUs for searching strings in many documents employing character level N-gram matching with parallel Score Table approach and search using CUDA API. The new approach of Score table used for frequency storage of N-grams in a document, makes the search independent of the document's length and allows faster access to the frequency values, thus decreasing the search complexity. The extensive thread feature in a GPU has been exploited to enable parallel pre-processing of trigrams in a document for Score Table creation and parallel search in huge number of documents, thus speeding up the whole search process even for a large pattern size. Experiments were carried out for many documents of varied length and search strings from the standard Lorem Ipsum text on NVIDIA's GeForce GT 540M GPU with 96 cores. Results prove that the parallel approach for Score Table creation and searching gives a good speed up than the same approach executed serially.

  13. Meta-heuristic cuckoo search algorithm for the correction of faulty array antenna

    International Nuclear Information System (INIS)

    Khan, S.U.; Qureshi, I.M.

    2015-01-01

    In this article, we introduce a CSA (Cuckoo Search Algorithm) for compensation of faulty array antenna. It is assumed that the faulty elemental location is also known. When the sensor fails, it disturbs the power pattern, owing to which its SLL (Sidelobe Level) raises and nulls are shifted from their required positions. In this approach, the CSA optimizes the weights of the active elements for the reduction of SLL and null position in the desired direction. The meta-heuristic CSA is used for the control of SLL and steering of nulls at their required positions. The CSA is based on the necessitated kids bloodsucking behavior of cuckoo sort in arrangement with the Levy flight manners. The fitness function is used to reduce the error between the preferred and probable pattern along with null constraints. Imitational consequences for various scenarios are given to exhibit the validity and presentation of the proposed method. (author)

  14. TCSC based automatic generation control of deregulated power system using quasi-oppositional harmony search algorithm

    Directory of Open Access Journals (Sweden)

    Mahendra Nandi

    2017-08-01

    Full Text Available In present aspect, automatic generation control (AGC of deregulated power system with thyristor controlled series compensator (TCSC device is investigated. The objective is to discuss bilateral power transaction issue with the TCSC effect. A deregulated two-area power system model having two thermal units in each control area is considered for this act. A quasi-oppositional harmony search (QOHS algorithm is being applied for the constrained optimization problem. Three cases, commonly studied in deregulation, are discussed for the effectiveness of the proposed technique. Further, sensitivity analysis is studied by varying the test system parameters up to ±25% from their rated values. The obtained simulation plots are analytically discussed with the calculation of oscillatory modes, transient details and the studied performance indices. Sugeno fuzzy logic control technique is also investigated to the studied test system. The simulation results show that the proposed QOHS based TCSC controller is quite effective in deregulated environment.

  15. An Optimization Model and Modified Harmony Search Algorithm for Microgrid Planning with ESS

    Directory of Open Access Journals (Sweden)

    Yang Jiao

    2017-01-01

    Full Text Available To solve problems such as the high cost of microgrids (MGs, balance between supply and demand, stability of system operation, and optimizing the MG planning model, the energy storage system (ESS and harmony search algorithm (HSA are proposed. First, the conventional MG planning optimization model is constructed and the constraint conditions are defined: the supply and demand balance and reserve requirements. Second, an ESS is integrated into the optimal model of MG planning. The model with an ESS can solve and identify parameters such as the optimal power, optimal capacity, and optimal installation year. Third, the convergence speed and robustness of the ESS are optimized and improved. A case study comprising three different cases concludes the paper. The results show that the modified HSA (MHSA can effectively improve the stability and economy of MG operation with an ESS.

  16. Low cost, scalable proteomics data analysis using Amazon's cloud computing services and open source search algorithms.

    Science.gov (United States)

    Halligan, Brian D; Geiger, Joey F; Vallejos, Andrew K; Greene, Andrew S; Twigger, Simon N

    2009-06-01

    One of the major difficulties for many laboratories setting up proteomics programs has been obtaining and maintaining the computational infrastructure required for the analysis of the large flow of proteomics data. We describe a system that combines distributed cloud computing and open source software to allow laboratories to set up scalable virtual proteomics analysis clusters without the investment in computational hardware or software licensing fees. Additionally, the pricing structure of distributed computing providers, such as Amazon Web Services, allows laboratories or even individuals to have large-scale computational resources at their disposal at a very low cost per run. We provide detailed step-by-step instructions on how to implement the virtual proteomics analysis clusters as well as a list of current available preconfigured Amazon machine images containing the OMSSA and X!Tandem search algorithms and sequence databases on the Medical College of Wisconsin Proteomics Center Web site ( http://proteomics.mcw.edu/vipdac ).

  17. Application of the ant colony search algorithm to reactive power pricing in an open electricity market

    International Nuclear Information System (INIS)

    Ketabi, Abbas; Alibabaee, Ahmad; Feuillet, R.

    2010-01-01

    Reactive power management is essential to transfer real energy and support power system security. Developing an accurate and feasible method for reactive power pricing is important in the electricity market. In conventional optimal power flow models the production cost of reactive power was ignored. In this paper, the production cost of reactive power and investment cost of capacitor banks were included into the objective function of the OPF problem. Then, using ant colony search algorithm, the optimal problem was solved. Marginal price theory was used for calculation of the cost of active and reactive power at each bus in competitive electric markets. Application of the proposed method on IEEE 14-bus system confirms its validity and effectiveness. Results from several case studies show clearly the effects of various factors on reactive power price. (author)

  18. Genetic algorithm with small population size for search feasible control parameters for parallel hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Yu-Huei Cheng

    2017-11-01

    Full Text Available The control strategy is a major unit in hybrid electric vehicles (HEVs. In order to provide suitable control parameters for reducing fuel consumptions and engine emissions while maintaining vehicle performance requirements, the genetic algorithm (GA with small population size is applied to search for feasible control parameters in parallel HEVs. The electric assist control strategy (EACS is used as the fundamental control strategy of parallel HEVs. The dynamic performance requirements stipulated in the Partnership for a New Generation of Vehicles (PNGV is considered to maintain the vehicle performance. The known ADvanced VehIcle SimulatOR (ADVISOR is used to simulate a specific parallel HEV with urban dynamometer driving schedule (UDDS. Five population sets with size 5, 10, 15, 20, and 25 are used in the GA. The experimental results show that the GA with population size of 25 is the best for selecting feasible control parameters in parallel HEVs.

  19. An extension of the directed search domain algorithm to bilevel optimization

    Science.gov (United States)

    Wang, Kaiqiang; Utyuzhnikov, Sergey V.

    2017-08-01

    A method is developed for generating a well-distributed Pareto set for the upper level in bilevel multiobjective optimization. The approach is based on the Directed Search Domain (DSD) algorithm, which is a classical approach for generation of a quasi-evenly distributed Pareto set in multiobjective optimization. The approach contains a double-layer optimizer designed in a specific way under the framework of the DSD method. The double-layer optimizer is based on bilevel single-objective optimization and aims to find a unique optimal Pareto solution rather than generate the whole Pareto frontier on the lower level in order to improve the optimization efficiency. The proposed bilevel DSD approach is verified on several test cases, and a relevant comparison against another classical approach is made. It is shown that the approach can generate a quasi-evenly distributed Pareto set for the upper level with relatively low time consumption.

  20. Searching of fuel recharges by means of genetic algorithms and neural networks in BWRs

    International Nuclear Information System (INIS)

    Ortiz S, J.J.; Montes T, J.L.; Castillo M, J.A.; Perusquia del C, R.

    2004-01-01

    In this work improvements to the systems RENOR and RECOPIA are presented, that were developed to optimize fuel recharges in boiling water reactors. The RENOR system is based on a Multi state recurrent neural network while RECOPIA is based on a Genetic Algorithm. In the new versions of these systems there is incorporate the execution of the Turned off Margin in Cold and the Excess of Reactivity in Hot. The new systems were applied to an operation cycle of the Unit 1 of the Nuclear Power station of Laguna Verde. The recharges of fuel obtained by both methods are compared among if being observed that RENOR has better performance that RECOPIA, due to the nature of its search process. RECOPIA requires of approximately 1.4 times more time that RENOR to find a satisfactory recharge of fuel. (Author)

  1. Optimized Aircraft Electric Control System Based on Adaptive Tabu Search Algorithm and Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    Saifullah Khalid

    2016-09-01

    Full Text Available Three conventional control constant instantaneous power control, sinusoidal current control, and synchronous reference frame techniques for extracting reference currents for shunt active power filters have been optimized using Fuzzy Logic control and Adaptive Tabu search Algorithm and their performances have been compared. Critical analysis of Comparison of the compensation ability of different control strategies based on THD and speed will be done, and suggestions will be given for the selection of technique to be used. The simulated results using MATLAB model are presented, and they will clearly prove the value of the proposed control method of aircraft shunt APF. The waveforms observed after the application of filter will be having the harmonics within the limits and the power quality will be improved.

  2. Performance Evaluations of Four MAF-Based PLL Algorithms for Grid-Synchronization of Three-Phase Grid-Connected PWM Inverters and DGs

    DEFF Research Database (Denmark)

    Han, Yang; Luo, Mingyu; Chen, Changqing

    2016-01-01

    The moving average filter (MAF) is widely utilized to improve the disturbance rejection capability of the phase-locked loops (PLLs), which is of vital significance for the grid-integration and stable operation of power electronic converters to the electric power systems. However, the open-loop ba...

  3. Optimization of Nano-Process Deposition Parameters Based on Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Norlina Mohd Sabri

    2016-06-01

    Full Text Available This research is focusing on the radio frequency (RF magnetron sputtering process, a physical vapor deposition technique which is widely used in thin film production. This process requires the optimized combination of deposition parameters in order to obtain the desirable thin film. The conventional method in the optimization of the deposition parameters had been reported to be costly and time consuming due to its trial and error nature. Thus, gravitational search algorithm (GSA technique had been proposed to solve this nano-process parameters optimization problem. In this research, the optimized parameter combination was expected to produce the desirable electrical and optical properties of the thin film. The performance of GSA in this research was compared with that of Particle Swarm Optimization (PSO, Genetic Algorithm (GA, Artificial Immune System (AIS and Ant Colony Optimization (ACO. Based on the overall results, the GSA optimized parameter combination had generated the best electrical and an acceptable optical properties of thin film compared to the others. This computational experiment is expected to overcome the problem of having to conduct repetitive laboratory experiments in obtaining the most optimized parameter combination. Based on this initial experiment, the adaptation of GSA into this problem could offer a more efficient and productive way of depositing quality thin film in the fabrication process.

  4. Kombinasi Firefly Algorithm-Tabu Search untuk Penyelesaian Traveling Salesman Problem

    Directory of Open Access Journals (Sweden)

    Riyan Naufal Hay's

    2017-07-01

    Full Text Available Traveling Salesman Problem (TSP adalah masalah optimasi kombinatorial klasik dan memiliki peran dalam perencanaan, penjadwalan, dan pencarian pada bidang rekayasa dan pengetahuan (Dong, 2012. TSP juga merupakan objek yang baik untuk menguji kinerja metode optimasi, beberapa metode seperti Cooperative Genetic Ant System (CGAS (Dong, 2012, Parallelized Genetic Ant Colony System (PGAS Particle Swarm Optimization and Ant Colony Optimization Algorithms (PSO–ACO (Elloumi, 2014, dan Ant Colony Hyper-Heuristics (ACO HH (Aziz, 2015 telah dikembangkan untuk memecahkan TSP. Sehingga, pada penelitian ini diimplementasikan kombinasi metode baru untuk meningkatkan akurasi penyelesaian TSP. Firefly Algorithm (FA merupakan salah satu algoritma yang dapat digunakan untuk memecahkan masalah optimasi kombinatorial (Layeb, 2014. FA merupakan algoritma yang berpotensi kuat dalam memecahkan kasus optimasi dibanding algoritma yang ada termasuk Particle Swarm Optimization (Yang, 2010. Namun, FA memiliki kekurangan dalam memecahkan masalah optimasi dengan skala besar (Baykasoğlu dan Ozsoy, 2014. Tabu Search (TS merupakan metode optimasi yang terbukti efektif untuk memecahkan masalah optimasi dengan skala besar (Pedro, 2013. Pada penelitian ini, TS akan diterapkan pada FA (FATS untuk memecahkan kasus TSP. Hasil FATS akan dibandingkan terhadap penelitian sebelumnya yaitu ACOHH. Perbandingan hasil menunjukan peningkatan akurasi sebesar 0.89% pada dataset Oliver30, 0.14% dataset Eil51, 3.81% dataset Eil76 dan 1.27% dataset KroA100.

  5. Process planning optimization on turning machine tool using a hybrid genetic algorithm with local search approach

    Directory of Open Access Journals (Sweden)

    Yuliang Su

    2015-04-01

    Full Text Available A turning machine tool is a kind of new type of machine tool that is equipped with more than one spindle and turret. The distinctive simultaneous and parallel processing abilities of turning machine tool increase the complexity of process planning. The operations would not only be sequenced and satisfy precedence constraints, but also should be scheduled with multiple objectives such as minimizing machining cost, maximizing utilization of turning machine tool, and so on. To solve this problem, a hybrid genetic algorithm was proposed to generate optimal process plans based on a mixed 0-1 integer programming model. An operation precedence graph is used to represent precedence constraints and help generate a feasible initial population of hybrid genetic algorithm. Encoding strategy based on data structure was developed to represent process plans digitally in order to form the solution space. In addition, a local search approach for optimizing the assignments of available turrets would be added to incorporate scheduling with process planning. A real-world case is used to prove that the proposed approach could avoid infeasible solutions and effectively generate a global optimal process plan.

  6. A Framing Link Based Tabu Search Algorithm for Large-Scale Multidepot Vehicle Routing Problems

    Directory of Open Access Journals (Sweden)

    Xuhao Zhang

    2014-01-01

    Full Text Available A framing link (FL based tabu search algorithm is proposed in this paper for a large-scale multidepot vehicle routing problem (LSMDVRP. Framing links are generated during continuous great optimization of current solutions and then taken as skeletons so as to improve optimal seeking ability, speed up the process of optimization, and obtain better results. Based on the comparison between pre- and postmutation routes in the current solution, different parts are extracted. In the current optimization period, links involved in the optimal solution are regarded as candidates to the FL base. Multiple optimization periods exist in the whole algorithm, and there are several potential FLs in each period. If the update condition is satisfied, the FL base is updated, new FLs are added into the current route, and the next period starts. Through adjusting the borderline of multidepot sharing area with dynamic parameters, the authors define candidate selection principles for three kinds of customer connections, respectively. Link split and the roulette approach are employed to choose FLs. 18 LSMDVRP instances in three groups are studied and new optimal solution values for nine of them are obtained, with higher computation speed and reliability.

  7. A trust-based sensor allocation algorithm in cooperative space search problems

    Science.gov (United States)

    Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik

    2011-06-01

    Sensor allocation is an important and challenging problem within the field of multi-agent systems. The sensor allocation problem involves deciding how to assign a number of targets or cells to a set of agents according to some allocation protocol. Generally, in order to make efficient allocations, we need to design mechanisms that consider both the task performers' costs for the service and the associated probability of success (POS). In our problem, the costs are the used sensor resource, and the POS is the target tracking performance. Usually, POS may be perceived differently by different agents because they typically have different standards or means of evaluating the performance of their counterparts (other sensors in the search and tracking problem). Given this, we turn to the notion of trust to capture such subjective perceptions. In our approach, we develop a trust model to construct a novel mechanism that motivates sensor agents to limit their greediness or selfishness. Then we model the sensor allocation optimization problem with trust-in-loop negotiation game and solve it using a sub-game perfect equilibrium. Numerical simulations are performed to demonstrate the trust-based sensor allocation algorithm in cooperative space situation awareness (SSA) search problems.

  8. Transport energy modeling with meta-heuristic harmony search algorithm, an application to Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ceylan, Huseyin; Ceylan, Halim; Haldenbilen, Soner; Baskan, Ozgur [Department of Civil Engineering, Engineering Faculty, Pamukkale University, Muh. Fak. Denizli 20017 (Turkey)

    2008-07-15

    This study proposes a new method for estimating transport energy demand using a harmony search (HS) approach. HArmony Search Transport Energy Demand Estimation (HASTEDE) models are developed taking population, gross domestic product and vehicle kilometers as an input. The HASTEDE models are in forms of linear, exponential and quadratic mathematical expressions and they are applied to Turkish Transportation sector energy consumption. Optimum or near-optimum values of the HS parameters are obtained with sensitivity analysis (SA). Performance of all models is compared with the Ministry of Energy and Natural Resources (MENR) projections. Results showed that HS algorithm may be used for energy modeling, but SA is required to obtain best values of the HS parameters. The quadratic form of HASTEDE will overestimate transport sector energy consumption by about 26% and linear and exponential forms underestimate by about 21% when they are compared with the MENR projections. This may happen due to the modeling procedure and selected parameters for models, but determining the upper and lower values of transportation sector energy consumption will provide a framework and flexibility for setting up energy policies. (author)

  9. An Effective Framework For Economic Dispatch Using Modified Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Advik Kumar

    2017-09-01

    Full Text Available The effects of ever-increasing wind power generation for solving the economic dispatch ED problem have led to high penetration of renewable energy source in new power systems. Continuing search for better utilizing of wind turbine associated with thermal sources to find the optimal allocation of output power is necessary in which pro-vide more reliability and efficiency. Dynamic nature of wind energy has imposed uncertainties characteristics in the poser systems. To deal with this problem an effective probabilistic method to investigate all unpredictability would be a good idea to make more realistic analysis. This paper presents a heuristics optimization method based on harmony search HS algorithm to solve non-convex ED problems while uncertainties effects caused by wind turbines are considered. To involve a realistic analysis as a more practical investigation the proposed probabilistic ED PED approach includes prohibited operating zone POZ system spinning reserve ramp rate limits variety of fuel is considered in this studies. Point Estimate Method PEM as a proposed PED model the uncertainties of wind speed for wind turbines to present better realization to the problem. Optimal solution are presented for vari-ous test system and these solutions demonstrate the benefits of our approach in terms of cost over existing ED techniques.

  10. Accelerating Smith-Waterman Algorithm for Biological Database Search on CUDA-Compatible GPUs

    Science.gov (United States)

    Munekawa, Yuma; Ino, Fumihiko; Hagihara, Kenichi

    This paper presents a fast method capable of accelerating the Smith-Waterman algorithm for biological database search on a cluster of graphics processing units (GPUs). Our method is implemented using compute unified device architecture (CUDA), which is available on the nVIDIA GPU. As compared with previous methods, our method has four major contributions. (1) The method efficiently uses on-chip shared memory to reduce the data amount being transferred between off-chip video memory and processing elements in the GPU. (2) It also reduces the number of data fetches by applying a data reuse technique to query and database sequences. (3) A pipelined method is also implemented to overlap GPU execution with database access. (4) Finally, a master/worker paradigm is employed to accelerate hundreds of database searches on a cluster system. In experiments, the peak performance on a GeForce GTX 280 card reaches 8.32 giga cell updates per second (GCUPS). We also find that our method reduces the amount of data fetches to 1/140, achieving approximately three times higher performance than a previous CUDA-based method. Our 32-node cluster version is approximately 28 times faster than a single GPU version. Furthermore, the effective performance reaches 75.6 giga instructions per second (GIPS) using 32 GeForce 8800 GTX cards.

  11. A Method for Estimating View Transformations from Image Correspondences Based on the Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Erik Cuevas

    2015-01-01

    Full Text Available In this paper, a new method for robustly estimating multiple view relations from point correspondences is presented. The approach combines the popular random sampling consensus (RANSAC algorithm and the evolutionary method harmony search (HS. With this combination, the proposed method adopts a different sampling strategy than RANSAC to generate putative solutions. Under the new mechanism, at each iteration, new candidate solutions are built taking into account the quality of the models generated by previous candidate solutions, rather than purely random as it is the case of RANSAC. The rules for the generation of candidate solutions (samples are motivated by the improvisation process that occurs when a musician searches for a better state of harmony. As a result, the proposed approach can substantially reduce the number of iterations still preserving the robust capabilities of RANSAC. The method is generic and its use is illustrated by the estimation of homographies, considering synthetic and real images. Additionally, in order to demonstrate the performance of the proposed approach within a real engineering application, it is employed to solve the problem of position estimation in a humanoid robot. Experimental results validate the efficiency of the proposed method in terms of accuracy, speed, and robustness.

  12. Discrete harmony search algorithm for scheduling and rescheduling the reprocessing problems in remanufacturing: a case study

    Science.gov (United States)

    Gao, Kaizhou; Wang, Ling; Luo, Jianping; Jiang, Hua; Sadollah, Ali; Pan, Quanke

    2018-06-01

    In this article, scheduling and rescheduling problems with increasing processing time and new job insertion are studied for reprocessing problems in the remanufacturing process. To handle the unpredictability of reprocessing time, an experience-based strategy is used. Rescheduling strategies are applied for considering the effect of increasing reprocessing time and the new subassembly insertion. To optimize the scheduling and rescheduling objective, a discrete harmony search (DHS) algorithm is proposed. To speed up the convergence rate, a local search method is designed. The DHS is applied to two real-life cases for minimizing the maximum completion time and the mean of earliness and tardiness (E/T). These two objectives are also considered together as a bi-objective problem. Computational optimization results and comparisons show that the proposed DHS is able to solve the scheduling and rescheduling problems effectively and productively. Using the proposed approach, satisfactory optimization results can be achieved for scheduling and rescheduling on a real-life shop floor.

  13. A Cooperative Search and Coverage Algorithm with Controllable Revisit and Connectivity Maintenance for Multiple Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Zhong Liu

    2018-05-01

    Full Text Available In this paper, we mainly study a cooperative search and coverage algorithm for a given bounded rectangle region, which contains several unknown stationary targets, by a team of unmanned aerial vehicles (UAVs with non-ideal sensors and limited communication ranges. Our goal is to minimize the search time, while gathering more information about the environment and finding more targets. For this purpose, a novel cooperative search and coverage algorithm with controllable revisit mechanism is presented. Firstly, as the representation of the environment, the cognitive maps that included the target probability map (TPM, the uncertain map (UM, and the digital pheromone map (DPM are constituted. We also design a distributed update and fusion scheme for the cognitive map. This update and fusion scheme can guarantee that each one of the cognitive maps converges to the same one, which reflects the targets’ true existence or absence in each cell of the search region. Secondly, we develop a controllable revisit mechanism based on the DPM. This mechanism can concentrate the UAVs to revisit sub-areas that have a large target probability or high uncertainty. Thirdly, in the frame of distributed receding horizon optimizing, a path planning algorithm for the multi-UAVs cooperative search and coverage is designed. In the path planning algorithm, the movement of the UAVs is restricted by the potential fields to meet the requirements of avoiding collision and maintaining connectivity constraints. Moreover, using the minimum spanning tree (MST topology optimization strategy, we can obtain a tradeoff between the search coverage enhancement and the connectivity maintenance. The feasibility of the proposed algorithm is demonstrated by comparison simulations by way of analyzing the effects of the controllable revisit mechanism and the connectivity maintenance scheme. The Monte Carlo method is employed to validate the influence of the number of UAVs, the sensing radius

  14. Electric Load Forecasting Based on a Least Squares Support Vector Machine with Fuzzy Time Series and Global Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Yan Hong Chen

    2016-01-01

    Full Text Available This paper proposes a new electric load forecasting model by hybridizing the fuzzy time series (FTS and global harmony search algorithm (GHSA with least squares support vector machines (LSSVM, namely GHSA-FTS-LSSVM model. Firstly, the fuzzy c-means clustering (FCS algorithm is used to calculate the clustering center of each cluster. Secondly, the LSSVM is applied to model the resultant series, which is optimized by GHSA. Finally, a real-world example is adopted to test the performance of the proposed model. In this investigation, the proposed model is verified using experimental datasets from the Guangdong Province Industrial Development Database, and results are compared against autoregressive integrated moving average (ARIMA model and other algorithms hybridized with LSSVM including genetic algorithm (GA, particle swarm optimization (PSO, harmony search, and so on. The forecasting results indicate that the proposed GHSA-FTS-LSSVM model effectively generates more accurate predictive results.

  15. Derivation and validation of the automated search algorithms to identify cognitive impairment and dementia in electronic health records.

    Science.gov (United States)

    Amra, Sakusic; O'Horo, John C; Singh, Tarun D; Wilson, Gregory A; Kashyap, Rahul; Petersen, Ronald; Roberts, Rosebud O; Fryer, John D; Rabinstein, Alejandro A; Gajic, Ognjen

    2017-02-01

    Long-term cognitive impairment is a common and important problem in survivors of critical illness. We developed electronic search algorithms to identify cognitive impairment and dementia from the electronic medical records (EMRs) that provide opportunity for big data analysis. Eligible patients met 2 criteria. First, they had a formal cognitive evaluation by The Mayo Clinic Study of Aging. Second, they were hospitalized in intensive care unit at our institution between 2006 and 2014. The "criterion standard" for diagnosis was formal cognitive evaluation supplemented by input from an expert neurologist. Using all available EMR data, we developed and improved our algorithms in the derivation cohort and validated them in the independent validation cohort. Of 993 participants who underwent formal cognitive testing and were hospitalized in intensive care unit, we selected 151 participants at random to form the derivation and validation cohorts. The automated electronic search algorithm for cognitive impairment was 94.3% sensitive and 93.0% specific. The search algorithms for dementia achieved respective sensitivity and specificity of 97% and 99%. EMR search algorithms significantly outperformed International Classification of Diseases codes. Automated EMR data extractions for cognitive impairment and dementia are reliable and accurate and can serve as acceptable and efficient alternatives to time-consuming manual data review. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. LiveWire interactive boundary extraction algorithm based on Haar wavelet transform and control point set direction search

    Science.gov (United States)

    Cheng, Jun; Zhang, Jun; Tian, Jinwen

    2015-12-01

    Based on deep analysis of the LiveWire interactive boundary extraction algorithm, a new algorithm focusing on improving the speed of LiveWire algorithm is proposed in this paper. Firstly, the Haar wavelet transform is carried on the input image, and the boundary is extracted on the low resolution image obtained by the wavelet transform of the input image. Secondly, calculating LiveWire shortest path is based on the control point set direction search by utilizing the spatial relationship between the two control points users provide in real time. Thirdly, the search order of the adjacent points of the starting node is set in advance. An ordinary queue instead of a priority queue is taken as the storage pool of the points when optimizing their shortest path value, thus reducing the complexity of the algorithm from O[n2] to O[n]. Finally, A region iterative backward projection method based on neighborhood pixel polling has been used to convert dual-pixel boundary of the reconstructed image to single-pixel boundary after Haar wavelet inverse transform. The algorithm proposed in this paper combines the advantage of the Haar wavelet transform and the advantage of the optimal path searching method based on control point set direction search. The former has fast speed of image decomposition and reconstruction and is more consistent with the texture features of the image and the latter can reduce the time complexity of the original algorithm. So that the algorithm can improve the speed in interactive boundary extraction as well as reflect the boundary information of the image more comprehensively. All methods mentioned above have a big role in improving the execution efficiency and the robustness of the algorithm.

  17. Breadth-First Search-Based Single-Phase Algorithms for Bridge Detection in Wireless Sensor Networks

    Science.gov (United States)

    Akram, Vahid Khalilpour; Dagdeviren, Orhan

    2013-01-01

    Wireless sensor networks (WSNs) are promising technologies for exploring harsh environments, such as oceans, wild forests, volcanic regions and outer space. Since sensor nodes may have limited transmission range, application packets may be transmitted by multi-hop communication. Thus, connectivity is a very important issue. A bridge is a critical edge whose removal breaks the connectivity of the network. Hence, it is crucial to detect bridges and take preventions. Since sensor nodes are battery-powered, services running on nodes should consume low energy. In this paper, we propose energy-efficient and distributed bridge detection algorithms for WSNs. Our algorithms run single phase and they are integrated with the Breadth-First Search (BFS) algorithm, which is a popular routing algorithm. Our first algorithm is an extended version of Milic's algorithm, which is designed to reduce the message length. Our second algorithm is novel and uses ancestral knowledge to detect bridges. We explain the operation of the algorithms, analyze their proof of correctness, message, time, space and computational complexities. To evaluate practical importance, we provide testbed experiments and extensive simulations. We show that our proposed algorithms provide less resource consumption, and the energy savings of our algorithms are up by 5.5-times. PMID:23845930

  18. GridOrbit public display

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Tabard, Aurélien; Bardram, Jakob

    2010-01-01

    We introduce GridOrbit, a public awareness display that visualizes the activity of a community grid used in a biology laboratory. This community grid executes bioin-formatics algorithms and relies on users to donate CPU cycles to the grid. The goal of GridOrbit is to create a shared awareness about...

  19. Algorithms

    Indian Academy of Sciences (India)

    polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.

  20. SU-F-T-628: An Evaluation of Grid Size in Eclipse AcurosXB Dose Calculation Algorithm for SBRT Lung

    Energy Technology Data Exchange (ETDEWEB)

    Pokharel, S [21st Century Oncology, Naples, FL (United States); Rana, S [McLaren Proton Therapy Center, Karmanos Cancer Institute at McLaren-Flint, Flint, MI (United States)

    2016-06-15

    Purpose: purpose of this study is to evaluate the effect of grid size in Eclipse AcurosXB dose calculation algorithm for SBRT lung. Methods: Five cases of SBRT lung previously treated have been chosen for present study. Four of the plans were 5 fields conventional IMRT and one was Rapid Arc plan. All five cases have been calculated with five grid sizes (1, 1.5, 2, 2.5 and 3mm) available for AXB algorithm with same plan normalization. Dosimetric indices relevant to SBRT along with MUs and time have been recorded for different grid sizes. The maximum difference was calculated as a percentage of mean of all five values. All the plans were IMRT QAed with portal dosimetry. Results: The maximum difference of MUs was within 2%. The time increased was as high as 7 times from highest 3mm to lowest 1mm grid size. The largest difference of PTV minimum, maximum and mean dose were 7.7%, 1.5% and 1.6% respectively. The highest D2-Max difference was 6.1%. The highest difference in ipsilateral lung mean, V5Gy, V10Gy and V20Gy were 2.6%, 2.4%, 1.9% and 3.8% respectively. The maximum difference of heart, cord and esophagus dose were 6.5%, 7.8% and 4.02% respectively. The IMRT Gamma passing rate at 2%/2mm remains within 1.5% with at least 98% points passing with all grid sizes. Conclusion: This work indicates the lowest grid size of 1mm available in AXB is not necessarily required for accurate dose calculation. The IMRT passing rate was insignificant or not observed with the reduction of grid size less than 2mm. Although the maximum percentage difference of some of the dosimetric indices appear large, most of them are clinically insignificant in absolute dose values. So we conclude that 2mm grid size calculation is best compromise in light of dose calculation accuracy and time it takes to calculate dose.

  1. Enhancing Artificial Bee Colony Algorithm with Self-Adaptive Searching Strategy and Artificial Immune Network Operators for Global Optimization

    Directory of Open Access Journals (Sweden)

    Tinggui Chen

    2014-01-01

    Full Text Available Artificial bee colony (ABC algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA, artificial colony optimization (ACO, and particle swarm optimization (PSO. However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments.

  2. Waste Load Allocation Based on Total Maximum Daily Load Approach Using the Charged System Search (CSS Algorithm

    Directory of Open Access Journals (Sweden)

    Elham Faraji

    2016-03-01

    Full Text Available In this research, the capability of a charged system search algorithm (CSS in handling water management optimization problems is investigated. First, two complex mathematical problems are solved by CSS and the results are compared with those obtained from other metaheuristic algorithms. In the last step, the optimization model developed by the CSS algorithm is applied to the waste load allocation in rivers based on the total maximum daily load (TMDL concept. The results are presented in Tables and Figures for easy comparison. The study indicates the superiority of the CSS algorithm in terms of its speed and performance over the other metaheuristic algorithms while its precision in water management optimization problems is verified.

  3. Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment.

    Science.gov (United States)

    Abdullahi, Mohammed; Ngadi, Md Asri

    2016-01-01

    Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.

  4. Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment.

    Directory of Open Access Journals (Sweden)

    Mohammed Abdullahi

    Full Text Available Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS has been shown to perform competitively with Particle Swarm Optimization (PSO. The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA based SOS (SASOS in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.

  5. Improvement of Frequency Fluctuations in Microgrids Using an Optimized Fuzzy P-PID Controller by Modified Multi Objective Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    H. Shayeghi

    2016-12-01

    Full Text Available Microgrids is an new opportunity to reduce the total costs of power generation and supply the energy demands through small-scale power plants such as wind sources, photo voltaic panels, battery banks, fuel cells, etc. Like any power system in micro grid (MG, an unexpected faults or load shifting leads to frequency oscillations. Hence, this paper employs an adaptive fuzzy P-PID controller for frequency control of microgrid and a modified multi objective Chaotic Gravitational Search Algorithm (CGSA in order to find out the optimal setting parameters of the proposed controller. To provide a robust controller design, two non-commensurable objective functions are formulated based on eigenvalues-domain and time-domain and multi objective CGSA algorithm is used to solve them. Moreover, a fuzzy decision method is applied to extract the best and optimal Pareto fronts. The proposed controller is carried out on a MG system under different loading conditions with wind turbine generators, photovoltaic system, flywheel energy, battery storages, diesel generator and electrolyzer. The simulation results revealed that the proposed controller is more stable in comparison with the classical and other types of fuzzy controller.

  6. Short-Term Wind Speed Forecasting Using the Data Processing Approach and the Support Vector Machine Model Optimized by the Improved Cuckoo Search Parameter Estimation Algorithm

    Directory of Open Access Journals (Sweden)

    Chen Wang

    2016-01-01

    Full Text Available Power systems could be at risk when the power-grid collapse accident occurs. As a clean and renewable resource, wind energy plays an increasingly vital role in reducing air pollution and wind power generation becomes an important way to produce electrical power. Therefore, accurate wind power and wind speed forecasting are in need. In this research, a novel short-term wind speed forecasting portfolio has been proposed using the following three procedures: (I data preprocessing: apart from the regular normalization preprocessing, the data are preprocessed through empirical model decomposition (EMD, which reduces the effect of noise on the wind speed data; (II artificially intelligent parameter optimization introduction: the unknown parameters in the support vector machine (SVM model are optimized by the cuckoo search (CS algorithm; (III parameter optimization approach modification: an improved parameter optimization approach, called the SDCS model, based on the CS algorithm and the steepest descent (SD method is proposed. The comparison results show that the simple and effective portfolio EMD-SDCS-SVM produces promising predictions and has better performance than the individual forecasting components, with very small root mean squared errors and mean absolute percentage errors.

  7. A Fast Exact k-Nearest Neighbors Algorithm for High Dimensional Search Using k-Means Clustering and Triangle Inequality.

    Science.gov (United States)

    Wang, Xueyi

    2012-02-08

    The k-nearest neighbors (k-NN) algorithm is a widely used machine learning method that finds nearest neighbors of a test object in a feature space. We present a new exact k-NN algorithm called kMkNN (k-Means for k-Nearest Neighbors) that uses the k-means clustering and the triangle inequality to accelerate the searching for nearest neighbors in a high dimensional space. The kMkNN algorithm has two stages. In the buildup stage, instead of using complex tree structures such as metric trees, kd-trees, or ball-tree, kMkNN uses a simple k-means clustering method to preprocess the training dataset. In the searching stage, given a query object, kMkNN finds nearest training objects starting from the nearest cluster to the query object and uses the triangle inequality to reduce the distance calculations. Experiments show that the performance of kMkNN is surprisingly good compared to the traditional k-NN algorithm and tree-based k-NN algorithms such as kd-trees and ball-trees. On a collection of 20 datasets with up to 10(6) records and 10(4) dimensions, kMkNN shows a 2-to 80-fold reduction of distance calculations and a 2- to 60-fold speedup over the traditional k-NN algorithm for 16 datasets. Furthermore, kMkNN performs significant better than a kd-tree based k-NN algorithm for all datasets and performs better than a ball-tree based k-NN algorithm for most datasets. The results show that kMkNN is effective for searching nearest neighbors in high dimensional spaces.

  8. A Hybrid Seasonal Mechanism with a Chaotic Cuckoo Search Algorithm with a Support Vector Regression Model for Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Yongquan Dong

    2018-04-01

    Full Text Available Providing accurate electric load forecasting results plays a crucial role in daily energy management of the power supply system. Due to superior forecasting performance, the hybridizing support vector regression (SVR model with evolutionary algorithms has received attention and deserves to continue being explored widely. The cuckoo search (CS algorithm has the potential to contribute more satisfactory electric load forecasting results. However, the original CS algorithm suffers from its inherent drawbacks, such as parameters that require accurate setting, loss of population diversity, and easy trapping in local optima (i.e., premature convergence. Therefore, proposing some critical improvement mechanisms and employing an improved CS algorithm to determine suitable parameter combinations for an SVR model is essential. This paper proposes the SVR with chaotic cuckoo search (SVRCCS model based on using a tent chaotic mapping function to enrich the cuckoo search space and diversify the population to avoid trapping in local optima. In addition, to deal with the cyclic nature of electric loads, a seasonal mechanism is combined with the SVRCCS model, namely giving a seasonal SVR with chaotic cuckoo search (SSVRCCS model, to produce more accurate forecasting performances. The numerical results, tested by using the datasets from the National Electricity Market (NEM, Queensland, Australia and the New York Independent System Operator (NYISO, NY, USA, show that the proposed SSVRCCS model outperforms other alternative models.

  9. Fast quantum search algorithm for databases of arbitrary size and its implementation in a cavity QED system

    International Nuclear Information System (INIS)

    Li, H.Y.; Wu, C.W.; Liu, W.T.; Chen, P.X.; Li, C.Z.

    2011-01-01

    We propose a method for implementing the Grover search algorithm directly in a database containing any number of items based on multi-level systems. Compared with the searching procedure in the database with qubits encoding, our modified algorithm needs fewer iteration steps to find the marked item and uses the carriers of the information more economically. Furthermore, we illustrate how to realize our idea in cavity QED using Zeeman's level structure of atoms. And the numerical simulation under the influence of the cavity and atom decays shows that the scheme could be achieved efficiently within current state-of-the-art technology. -- Highlights: ► A modified Grover algorithm is proposed for searching in an arbitrary dimensional Hilbert space. ► Our modified algorithm requires fewer iteration steps to find the marked item. ► The proposed method uses the carriers of the information more economically. ► A scheme for a six-item Grover search in cavity QED is proposed. ► Numerical simulation under decays shows that the scheme can be achieved with enough fidelity.

  10. An Improved Global Harmony Search Algorithm for the Identification of Nonlinear Discrete-Time Systems Based on Volterra Filter Modeling

    Directory of Open Access Journals (Sweden)

    Zongyan Li

    2016-01-01

    Full Text Available This paper describes an improved global harmony search (IGHS algorithm for identifying the nonlinear discrete-time systems based on second-order Volterra model. The IGHS is an improved version of the novel global harmony search (NGHS algorithm, and it makes two significant improvements on the NGHS. First, the genetic mutation operation is modified by combining normal distribution and Cauchy distribution, which enables the IGHS to fully explore and exploit the solution space. Second, an opposition-based learning (OBL is introduced and modified to improve the quality of harmony vectors. The IGHS algorithm is implemented on two numerical examples, and they are nonlinear discrete-time rational system and the real heat exchanger, respectively. The results of the IGHS are compared with those of the other three methods, and it has been verified to be more effective than the other three methods on solving the above two problems with different input signals and system memory sizes.

  11. Earthquake effect on volcano and the geological structure in central java using tomography travel time method and relocation hypocenter by grid search method

    International Nuclear Information System (INIS)

    Suharsono; Nurdian, S. W; Palupi, I. R.

    2016-01-01

    Relocating hypocenter is a way to improve the velocity model of the subsurface. One of the method is Grid Search. To perform the distribution of the velocity in subsurface by tomography method, it is used the result of relocating hypocenter to be a reference for subsurface analysis in volcanic and major structural patterns, such as in Central Java. The main data of this study is the earthquake data recorded from 1952 to 2012 with the P wave number is 9162, the number of events is 2426 were recorded by 30 stations located in the vicinity of Central Java. Grid search method has some advantages they are: it can relocate the hypocenter more accurate because this method is dividing space lattice model into blocks, and each grid block can only be occupied by one point hypocenter. Tomography technique is done by travel time data that has had relocated with inversion pseudo bending method. Grid search relocated method show that the hypocenter's depth is shallower than before and the direction is to the south, the hypocenter distribution is modeled into the subduction zone between the continent of Eurasia with the Indo-Australian with an average angle of 14 °. The tomography results show the low velocity value is contained under volcanoes with value of -8% to -10%, then the pattern of the main fault structure in Central Java can be description by the results of tomography at high velocity that is from 8% to 10% with the direction is northwest and northeast-southwest. (paper)

  12. The Scatter Search Based Algorithm to Revenue Management Problem in Broadcasting Companies

    Science.gov (United States)

    Pishdad, Arezoo; Sharifyazdi, Mehdi; Karimpour, Reza

    2009-09-01

    The problem under question in this paper which is faced by broadcasting companies is how to benefit from a limited advertising space. This problem is due to the stochastic behavior of customers (advertiser) in different fare classes. To address this issue we propose a mathematical constrained nonlinear multi period model which incorporates cancellation and overbooking. The objective function is to maximize the total expected revenue and our numerical method performs it by determining the sales limits for each class of customer to present the revenue management control policy. Scheduling the advertising spots in breaks is another area of concern and we consider it as a constraint in our model. In this paper an algorithm based on Scatter search is developed to acquire a good feasible solution. This method uses simulation over customer arrival and in a continuous finite time horizon [0, T]. Several sensitivity analyses are conducted in computational result for depicting the effectiveness of proposed method. It also provides insight into better results of considering revenue management (control policy) compared to "no sales limit" policy in which sooner demand will served first.

  13. The sloan digital sky Survey-II supernova survey: search algorithm and follow-up observations

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Bassett, Bruce [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701 (South Africa); Becker, Andrew; Hogan, Craig J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Cinabro, David [Department of Physics, Wayne State University, Detroit, MI 48202 (United States); DeJongh, Fritz; Frieman, Joshua A.; Marriner, John; Miknaitis, Gajus [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Depoy, D. L.; Prieto, Jose Luis [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210-1173 (United States); Dilday, Ben; Kessler, Richard [Kavli Institute for Cosmological Physics, The University of Chicago, 5640 South Ellis Avenue Chicago, IL 60637 (United States); Doi, Mamoru [Institute of Astronomy, Graduate School of Science, University of Tokyo 2-21-1, Osawa, Mitaka, Tokyo 181-0015 (Japan); Garnavich, Peter M. [University of Notre Dame, 225 Nieuwland Science, Notre Dame, IN 46556-5670 (United States); Holtzman, Jon [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Jha, Saurabh [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, P.O. Box 20450, MS29, Stanford, CA 94309 (United States); Konishi, Kohki [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8582 (Japan); Lampeitl, Hubert [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Nichol, Robert C. [Institute of Cosmology and Gravitation, Mercantile House, Hampshire Terrace, University of Portsmouth, Portsmouth PO1 2EG (United Kingdom); and others

    2008-01-01

    The Sloan Digital Sky Survey-II Supernova Survey has identified a large number of new transient sources in a 300 deg{sup 2} region along the celestial equator during its first two seasons of a three-season campaign. Multi-band (ugriz) light curves were measured for most of the sources, which include solar system objects, galactic variable stars, active galactic nuclei, supernovae (SNe), and other astronomical transients. The imaging survey is augmented by an extensive spectroscopic follow-up program to identify SNe, measure their redshifts, and study the physical conditions of the explosions and their environment through spectroscopic diagnostics. During the survey, light curves are rapidly evaluated to provide an initial photometric type of the SNe, and a selected sample of sources are targeted for spectroscopic observations. In the first two seasons, 476 sources were selected for spectroscopic observations, of which 403 were identified as SNe. For the type Ia SNe, the main driver for the survey, our photometric typing and targeting efficiency is 90%. Only 6% of the photometric SN Ia candidates were spectroscopically classified as non-SN Ia instead, and the remaining 4% resulted in low signal-to-noise, unclassified spectra. This paper describes the search algorithm and the software, and the real-time processing of the SDSS imaging data. We also present the details of the supernova candidate selection procedures and strategies for follow-up spectroscopic and imaging observations of the discovered sources.

  14. MULTI-OBJECTIVE OPTIMISATION OF LASER CUTTING USING CUCKOO SEARCH ALGORITHM

    Directory of Open Access Journals (Sweden)

    M. MADIĆ

    2015-03-01

    Full Text Available Determining of optimal laser cutting conditions for improving cut quality characteristics is of great importance in process planning. This paper presents multi-objective optimisation of the CO2 laser cutting process considering three cut quality characteristics such as surface roughness, heat affected zone (HAZ and kerf width. It combines an experimental design by using Taguchi’s method, modelling the relationships between the laser cutting factors (laser power, cutting speed, assist gas pressure and focus position and cut quality characteristics by artificial neural networks (ANNs, formulation of the multiobjective optimisation problem using weighting sum method, and solving it by the novel meta-heuristic cuckoo search algorithm (CSA. The objective is to obtain optimal cutting conditions dependent on the importance order of the cut quality characteristics for each of four different case studies presented in this paper. The case studies considered in this study are: minimisation of cut quality characteristics with equal priority, minimisation of cut quality characteristics with priority given to surface roughness, minimisation of cut quality characteristics with priority given to HAZ, and minimisation of cut quality characteristics with priority given to kerf width. The results indicate that the applied CSA for solving the multi-objective optimisation problem is effective, and that the proposed approach can be used for selecting the optimal laser cutting factors for specific production requirements.

  15. Detection of Spam Email by Combining Harmony Search Algorithm and Decision Tree

    Directory of Open Access Journals (Sweden)

    M. Z. Gashti

    2017-06-01

    Full Text Available Spam emails is probable the main problem faced by most e-mail users. There are many features in spam email detection and some of these features have little effect on detection and cause skew detection and classification of spam email. Thus, Feature Selection (FS is one of the key topics in spam email detection systems. With choosing the important and effective features in classification, its performance can be optimized. Selector features has the task of finding a subset of features to improve the accuracy of its predictions. In this paper, a hybrid of Harmony Search Algorithm (HSA and decision tree is used for selecting the best features and classification. The obtained results on Spam-base dataset show that the rate of recognition accuracy in the proposed model is 95.25% which is high in comparison with models such as SVM, NB, J48 and MLP. Also, the accuracy of the proposed model on the datasets of Ling-spam and PU1 is high in comparison with models such as NB, SVM and LR.

  16. A hybrid artificial bee colony algorithm and pattern search method for inversion of particle size distribution from spectral extinction data

    Science.gov (United States)

    Wang, Li; Li, Feng; Xing, Jian

    2017-10-01

    In this paper, a hybrid artificial bee colony (ABC) algorithm and pattern search (PS) method is proposed and applied for recovery of particle size distribution (PSD) from spectral extinction data. To be more useful and practical, size distribution function is modelled as the general Johnson's ? function that can overcome the difficulty of not knowing the exact type beforehand encountered in many real circumstances. The proposed hybrid algorithm is evaluated through simulated examples involving unimodal, bimodal and trimodal PSDs with different widths and mean particle diameters. For comparison, all examples are additionally validated by the single ABC algorithm. In addition, the performance of the proposed algorithm is further tested by actual extinction measurements with real standard polystyrene samples immersed in water. Simulation and experimental results illustrate that the hybrid algorithm can be used as an effective technique to retrieve the PSDs with high reliability and accuracy. Compared with the single ABC algorithm, our proposed algorithm can produce more accurate and robust inversion results while taking almost comparative CPU time over ABC algorithm alone. The superiority of ABC and PS hybridization strategy in terms of reaching a better balance of estimation accuracy and computation effort increases its potentials as an excellent inversion technique for reliable and efficient actual measurement of PSD.

  17. A tabu search evalutionary algorithm for multiobjective optimization: Application to a bi-criterion aircraft structural reliability problem

    Science.gov (United States)

    Long, Kim Chenming

    Real-world engineering optimization problems often require the consideration of multiple conflicting and noncommensurate objectives, subject to nonconvex constraint regions in a high-dimensional decision space. Further challenges occur for combinatorial multiobjective problems in which the decision variables are not continuous. Traditional multiobjective optimization methods of operations research, such as weighting and epsilon constraint methods, are ill-suited to solving these complex, multiobjective problems. This has given rise to the application of a wide range of metaheuristic optimization algorithms, such as evolutionary, particle swarm, simulated annealing, and ant colony methods, to multiobjective optimization. Several multiobjective evolutionary algorithms have been developed, including the strength Pareto evolutionary algorithm (SPEA) and the non-dominated sorting genetic algorithm (NSGA), for determining the Pareto-optimal set of non-dominated solutions. Although numerous researchers have developed a wide range of multiobjective optimization algorithms, there is a continuing need to construct computationally efficient algorithms with an improved ability to converge to globally non-dominated solutions along the Pareto-optimal front for complex, large-scale, multiobjective engineering optimization problems. This is particularly important when the multiple objective functions and constraints of the real-world system cannot be expressed in explicit mathematical representations. This research presents a novel metaheuristic evolutionary algorithm for complex multiobjective optimization problems, which combines the metaheuristic tabu search algorithm with the evolutionary algorithm (TSEA), as embodied in genetic algorithms. TSEA is successfully applied to bicriteria (i.e., structural reliability and retrofit cost) optimization of the aircraft tail structure fatigue life, which increases its reliability by prolonging fatigue life. A comparison for this

  18. The MammoGrid Project Grids Architecture

    CERN Document Server

    McClatchey, Richard; Hauer, Tamas; Estrella, Florida; Saiz, Pablo; Rogulin, Dmitri; Buncic, Predrag; Clatchey, Richard Mc; Buncic, Predrag; Manset, David; Hauer, Tamas; Estrella, Florida; Saiz, Pablo; Rogulin, Dmitri

    2003-01-01

    The aim of the recently EU-funded MammoGrid project is, in the light of emerging Grid technology, to develop a European-wide database of mammograms that will be used to develop a set of important healthcare applications and investigate the potential of this Grid to support effective co-working between healthcare professionals throughout the EU. The MammoGrid consortium intends to use a Grid model to enable distributed computing that spans national borders. This Grid infrastructure will be used for deploying novel algorithms as software directly developed or enhanced within the project. Using the MammoGrid clinicians will be able to harness the use of massive amounts of medical image data to perform epidemiological studies, advanced image processing, radiographic education and ultimately, tele-diagnosis over communities of medical "virtual organisations". This is achieved through the use of Grid-compliant services [1] for managing (versions of) massively distributed files of mammograms, for handling the distri...

  19. FHSA-SED: Two-Locus Model Detection for Genome-Wide Association Study with Harmony Search Algorithm.

    Directory of Open Access Journals (Sweden)

    Shouheng Tuo

    Full Text Available Two-locus model is a typical significant disease model to be identified in genome-wide association study (GWAS. Due to intensive computational burden and diversity of disease models, existing methods have drawbacks on low detection power, high computation cost, and preference for some types of disease models.In this study, two scoring functions (Bayesian network based K2-score and Gini-score are used for characterizing two SNP locus as a candidate model, the two criteria are adopted simultaneously for improving identification power and tackling the preference problem to disease models. Harmony search algorithm (HSA is improved for quickly finding the most likely candidate models among all two-locus models, in which a local search algorithm with two-dimensional tabu table is presented to avoid repeatedly evaluating some disease models that have strong marginal effect. Finally G-test statistic is used to further test the candidate models.We investigate our method named FHSA-SED on 82 simulated datasets and a real AMD dataset, and compare it with two typical methods (MACOED and CSE which have been developed recently based on swarm intelligent search algorithm. The results of simulation experiments indicate that our method outperforms the two compared algorithms in terms of detection power, computation time, evaluation times, sensitivity (TPR, specificity (SPC, positive predictive value (PPV and accuracy (ACC. Our method has identified two SNPs (rs3775652 and rs10511467 that may be also associated with disease in AMD dataset.

  20. Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization

    Science.gov (United States)

    Yang, Dixiong; Liu, Zhenjun; Zhou, Jilei

    2014-04-01

    Chaos optimization algorithms (COAs) usually utilize the chaotic map like Logistic map to generate the pseudo-random numbers mapped as the design variables for global optimization. Many existing researches indicated that COA can more easily escape from the local minima than classical stochastic optimization algorithms. This paper reveals the inherent mechanism of high efficiency and superior performance of COA, from a new perspective of both the probability distribution property and search speed of chaotic sequences generated by different chaotic maps. The statistical property and search speed of chaotic sequences are represented by the probability density function (PDF) and the Lyapunov exponent, respectively. Meanwhile, the computational performances of hybrid chaos-BFGS algorithms based on eight one-dimensional chaotic maps with different PDF and Lyapunov exponents are compared, in which BFGS is a quasi-Newton method for local optimization. Moreover, several multimodal benchmark examples illustrate that, the probability distribution property and search speed of chaotic sequences from different chaotic maps significantly affect the global searching capability and optimization efficiency of COA. To achieve the high efficiency of COA, it is recommended to adopt the appropriate chaotic map generating the desired chaotic sequences with uniform or nearly uniform probability distribution and large Lyapunov exponent.