WorldWideScience

Sample records for grid operations current

  1. Current Grid operation and future role of the Grid

    Science.gov (United States)

    Smirnova, O.

    2012-12-01

    Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place

  2. Current Grid operation and future role of the Grid

    International Nuclear Information System (INIS)

    Smirnova, O

    2012-01-01

    Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place

  3. Current Electric Distribution Network Operation and Grid Tariffs

    DEFF Research Database (Denmark)

    Wu, Qiuwei

    2012-01-01

    The aim of EcoGridEU task 1.4 is to extend the real‐time price approach with an integrated optimization of the distribution system operation. This will be achieved by extending the basic real‐time market concept with local location‐dependant prices that reflect the grid operation, especially...

  4. Low-cost wireless voltage & current grid monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hines, Jacqueline [SenSanna Inc., Arnold, MD (United States)

    2016-12-31

    This report describes the development and demonstration of a novel low-cost wireless power distribution line monitoring system. This system measures voltage, current, and relative phase on power lines of up to 35 kV-class. The line units operate without any batteries, and without harvesting energy from the power line. Thus, data on grid condition is provided even in outage conditions, when line current is zero. This enhances worker safety by detecting the presence of voltage and current that may appear from stray sources on nominally isolated lines. Availability of low-cost power line monitoring systems will enable widespread monitoring of the distribution grid. Real-time data on local grid operating conditions will enable grid operators to optimize grid operation, implement grid automation, and understand the impact of solar and other distributed sources on grid stability. The latter will enable utilities to implement eneygy storage and control systems to enable greater penetration of solar into the grid.

  5. A unified grid current control for grid-interactive DG inverters in microgrids

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Loh, Poh Chiang; Blaabjerg, Frede

    2015-01-01

    This paper proposes a unified grid current control for grid-interactive distributed generation inverters. In the approach, the grid-side current, instead of inverter-side current, is controlled as an inner loop, while the filter capacitor voltage is indirectly regulated through a virtual admittan...... locus analyses in the discrete z-domain are performed for elaborating the controller design. Simulations and experimental results demonstrate the performances of the proposed approach.......This paper proposes a unified grid current control for grid-interactive distributed generation inverters. In the approach, the grid-side current, instead of inverter-side current, is controlled as an inner loop, while the filter capacitor voltage is indirectly regulated through a virtual admittance...... in the outer loop. It, therefore, provides several superior features over traditional control schemes: 1) high-quality grid current in the grid-connected mode, 2) inherent derivative-less virtual output impedance control, and 3) the unified active damping for both grid-connected and islanded operations. Root...

  6. Current Harmonics from Single-Phase Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2016-01-01

    Environmental conditions and operational modes may significantly impact the distortion level of the injected current from single-phase grid-connected inverter systems, such as photovoltaic (PV) inverters, which may operate in cloudy days with a maximum power point tracking, in a non-unity power...... factor, or in the low voltage ride through mode with reactive current injection. In this paper, the mechanism of the harmonic current injection from grid-connected single-phase inverter systems is thus explored, and the analysis is conducted on single-phase PV systems. In particular, the analysis...... is focused on the impacts of the power factor and the feed-in grid current level on the quality of the feed-in grid current from single-phase inverters. As a consequence, an internal model principle based high performance current control solution is tailor-made and developed for single-phase grid-connected...

  7. Guest Editorial: Flexible Operation and Control for Medium Voltage Direct-Current (MVDC) Grid

    DEFF Research Database (Denmark)

    Li, Yong; Guerrero, Josep M.; Siano, Pierluigi

    2017-01-01

    We appreciate very much the support from the IET Power Electronics editorial board for this Special Issue on ‘Flexible Operation and Control for Medium Voltage Direct-Current (MVDC) Grid’. In this final version for publication, 15 papers have been selected for this Special Issue. Three papers...... relate to the topology of MVDC converter, four papers relate to the control of MVDC converter, four papers relate to the introduction of application fields of MVDC grid, and four papers relate to the semiconductor power device and drives towards the application in the medium- and high-voltage DC grid....

  8. Operating the worldwide LHC computing grid: current and future challenges

    International Nuclear Information System (INIS)

    Molina, J Flix; Forti, A; Girone, M; Sciaba, A

    2014-01-01

    The Wordwide LHC Computing Grid project (WLCG) provides the computing and storage resources required by the LHC collaborations to store, process and analyse their data. It includes almost 200,000 CPU cores, 200 PB of disk storage and 200 PB of tape storage distributed among more than 150 sites. The WLCG operations team is responsible for several essential tasks, such as the coordination of testing and deployment of Grid middleware and services, communication with the experiments and the sites, followup and resolution of operational issues and medium/long term planning. In 2012 WLCG critically reviewed all operational procedures and restructured the organisation of the operations team as a more coherent effort in order to improve its efficiency. In this paper we describe how the new organisation works, its recent successes and the changes to be implemented during the long LHC shutdown in preparation for the LHC Run 2.

  9. An Improved Current Controller to ensure the robust performance of grid-connected converters under weak grid conditions

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2016-01-01

    Voltage Source Converters (VSCs) operating in very weak grids with low Short Circuit Ratio (SCR) are known to meet stability challenges. This article investigates instability of a grid connected current-controlled converter under weak grid conditions, which is often attributed to the dynamic...

  10. A Review on Current Reference Calculation of Three-Phase Grid-Connected PV Converters under Grid Faults

    DEFF Research Database (Denmark)

    Afshari, Ehsan; Moradi, Gholam Reza; Yang, Yongheng

    2017-01-01

    Unbalanced grid voltage dips may lead to unbalanced non-sinusoidal current injections, dc-link voltage oscillations, and active and/or reactive power oscillations with twice the grid fundamental frequency in three-phase grid-connected Photovoltaic (PV) systems. Double grid frequency oscillations...... of the most important issues that should be coped with for a reliable operation of grid-connected converters under unbalanced grid faults. Accordingly, this paper reviews the existing CRC methods and presents a current reference generation method, which can have 16 unique modes. Issues are also investigated...... at the dc-link of the conventional two-stage PV inverters can further deteriorate the dc-link capacitor, which is one of the most life-limiting components in the system. Proper controls of these converters may efficiently address this problem. In those solutions, Current Reference Calculation (CRC) is one...

  11. Flexible Power Regulation and Current-limited Control of Grid-connected Inverter under Unbalanced Grid Voltage Faults

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Liu, Wenzhao; Lu, Zhigang

    2017-01-01

    The grid-connected inverters may experience excessive current stress in case of unbalanced grid voltage Fault Ride Through (FRT), which significantly affects the reliability of the power supply system. In order to solve the problem, the inherent mechanisms of the excessive current phenomenon...... with the conventional FRT solutions are discussed. The quantitative analysis of three phase current peak values are conducted and a novel current-limited control strategy is proposed to achieve the flexible active and reactive power regulation and successful FRT in a safe current operation area with the aim...

  12. Determining Maximum Photovoltaic Penetration in a Distribution Grid considering Grid Operation Limits

    DEFF Research Database (Denmark)

    Kordheili, Reza Ahmadi; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2014-01-01

    High penetration of photovoltaic panels in distribution grid can bring the grid to its operation limits. The main focus of the paper is to determine maximum photovoltaic penetration level in the grid. Three main criteria were investigated for determining maximum penetration level of PV panels...... for this grid: even distribution of PV panels, aggregation of panels at the beginning of each feeder, and aggregation of panels at the end of each feeder. Load modeling is done using Velander formula. Since PV generation is highest in the summer due to irradiation, a summer day was chosen to determine maximum......; maximum voltage deviation of customers, cables current limits, and transformer nominal value. Voltage deviation of different buses was investigated for different penetration levels. The proposed model was simulated on a Danish distribution grid. Three different PV location scenarios were investigated...

  13. A three-level support method for smooth switching of the micro-grid operation model

    Science.gov (United States)

    Zong, Yuanyang; Gong, Dongliang; Zhang, Jianzhou; Liu, Bin; Wang, Yun

    2018-01-01

    Smooth switching of micro-grid between the grid-connected operation mode and off-grid operation mode is one of the key technologies to ensure it runs flexible and efficiently. The basic control strategy and the switching principle of micro-grid are analyzed in this paper. The reasons for the fluctuations of the voltage and the frequency in the switching process are analyzed from views of power balance and control strategy, and the operation mode switching strategy has been improved targeted. From the three aspects of controller’s current inner loop reference signal, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level security strategy for smooth switching of micro-grid operation mode is proposed. From the three aspects of controller’s current inner loop reference signal tracking, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level strategy for smooth switching of micro-grid operation mode is proposed. At last, it is proved by simulation that the proposed control strategy can make the switching process smooth and stable, the fluctuation problem of the voltage and frequency has been effectively improved.

  14. Mitigation of grid-current distortion for LCL-filtered grid-connected voltage-source inverter with inverter-side current control

    DEFF Research Database (Denmark)

    Xin, Zhen; Mattavelli, Paolo; Yao, WenLi

    2017-01-01

    Due to the low inductance of an LCL-filter, the grid current generated by an LCL-filtered Voltage Source Inverter (VSI) is sensitive to low-order grid-voltage harmonics. This issue is especially tough for the control system with Inverter Current Feedback (ICF), because the grid-current harmonics...... can freely flow into the filter capacitor without control. To cope with this issue, this paper develops an approach for the ICF control system to suppress the grid-current harmonics without adding extra sensors. The proposed method applies harmonic controllers and feedforward scheme simultaneously...

  15. Safe current injection strategies for a STATCOM under asymmetrical grid faults

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Medeiros, Gustavo; Luna, Alvaro

    2010-01-01

    This paper explores different strategies to set the reference current of a STATCOM under unbalanced grid voltage conditions and determines the maximum deliverable reactive power in each case to guarantee the injected current is permanently within the STATCOM secure operation limits. The paper...... presents a comprehensive derivation of the proposed STATCOM control strategies to set the reactive current reference under unbalanced grid faults, together with an extensive evaluation using simulation and experimental results from a low-scale laboratory setup in order to verify and validate the dynamic...

  16. Control Strategy for Three-Phase Grid-Connected PV Inverters Enabling Current Limitation Under Unbalanced Faults

    DEFF Research Database (Denmark)

    Afshari, Ehsan; Moradi, Gholam Reza; Rahimi, Ramin

    2017-01-01

    Power quality and voltage control are among the most important aspects of the grid-connected power converter operation under faults. Non-sinusoidal current is injected during unbalanced voltage sag and active or/and reactive power includes double frequency content. This paper introduces a novel...... control strategy to mitigate the double grid frequency oscillations in the active power and dc-link voltage of the two-stage three-phase grid-connected Photovoltaic (PV) inverters during unbalanced faults. With the proposed control method, PV inverter injects sinusoidal currents under unbalanced grid...... faults. In addition, an efficient and easy-to-implement current limitation method is introduced, which can effectively limit the injected currents to the rated value during faults. In this case, the fault-ride-through operation is ensured and it will not trigger the overcurrent protection. A non...

  17. Resilient Grid Operational Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, Donatella [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-01

    Extreme weather-related disturbances, such as hurricanes, are a leading cause of grid outages historically. Although physical asset hardening is perhaps the most common way to mitigate the impacts of severe weather, operational strategies may be deployed to limit the extent of societal and economic losses associated with weather-related physical damage.1 The purpose of this study is to examine bulk power-system operational strategies that can be deployed to mitigate the impact of severe weather disruptions caused by hurricanes, thereby increasing grid resilience to maintain continuity of critical infrastructure during extreme weather. To estimate the impacts of resilient grid operational strategies, Los Alamos National Laboratory (LANL) developed a framework for hurricane probabilistic risk analysis (PRA). The probabilistic nature of this framework allows us to estimate the probability distribution of likely impacts, as opposed to the worst-case impacts. The project scope does not include strategies that are not operations related, such as transmission system hardening (e.g., undergrounding, transmission tower reinforcement and substation flood protection) and solutions in the distribution network.

  18. Hysteresis current control technique of VSI for compensation of grid-connected unbalanced loads

    DEFF Research Database (Denmark)

    Pouresmaeil, Edris; Akorede, Mudathir Funsho; Montesinos-Miracle, Daniel

    2014-01-01

    interconnection issues that usually arise as DG units connect to the electric grid. The proposed strategy, implemented in Matlab/Simulink environment in different operating scenarios, provides compensation for active, reactive, unbalanced, and harmonic current components of grid-connected nonlinear unbalanced...... resources as they connect to the exiting power grid could provoke many power quality problems on the grid side. For this reason, due considerations must be given to power generation and safe running before DG units is actually integrated into the power grid. The main aim of this paper is to address the grid...... loads. The simulation results obtained in this study demonstrate the level of accuracy of the proposed technique, which ensure a balance in the overall grid phase currents, injection of maximum available power from DG resources to the grid, improvement of the utility grid power factor, and a reduction...

  19. Grid-Forming-Mode Operation of Boost-Power-Stage Converter in PV-Generator-Interfacing Applications

    Directory of Open Access Journals (Sweden)

    Jukka Viinamäki

    2017-07-01

    Full Text Available The application of constant power control and inclusion of energy storage in grid-connected photovoltaic (PV energy systems may increase the use of two-stage system structures composed of DC–DC-converter-interfaced PV generator and grid-connected inverter connected in cascade. A typical PV-generator-interfacing DC–DC converter is a boost-power-stage converter. The renewable energy system may operate in three different operation modes—grid-forming, grid-feeding, and grid-supporting modes. In the last two operation modes, the outmost feedback loops are taken from the input terminal of the associated power electronic converters, which usually does not pose stability problems in terms of their input sources. In the grid-forming operation mode, the outmost feedback loops have to be connected to the output terminal of the associated power electronic converters, and hence the input terminal will behave as a negative incremental resistor at low frequencies. This property will limit the operation of the PV interfacing converter in either the constant voltage or constant current region of the PV generator for ensuring stable operation. The boost-power-stage converter can be applied as a voltage or current-fed converter limiting the stable operation region accordingly. The investigations of this paper show explicitly that only the voltage-fed mode would provide feasible dynamic and stability properties as a viable interfacing converter.

  20. Challenges to Grid Synchronization of Single-Phase Grid-Connected Inverters in Zero-Voltage Ride-Through Operation

    DEFF Research Database (Denmark)

    Zhang, Zhen; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    With the fast development in Photovoltaic (PV) technology, the relevant grid-connection requirements/standards are continuously being updated, and more challenges have been imposed on both single-phase and three-phase grid-connected PV systems. For instance, PV systems are currently required...... to remain connected under grid voltage sags (even zero voltage condition). In this case, much attention should be paid to the grid synchronization in such a way to properly ride-through grid faults. Thus, in this paper, the most commonly-used and recently-developed Phase Locked Loop (PLL) synchronization...... methods have been evaluated for single-phase grid-connected PV systems in the case of Zero-Voltage Ride-Through (ZVRT) operation. The performances of the prior-art PLL methods in response to zero voltage faults in terms of detection precision and dynamic response are assessed in this paper. Simulation...

  1. How should grid operators govern smart grid innovation projects? An embedded case study approach

    International Nuclear Information System (INIS)

    Reuver, Mark de; Lei, Telli van der; Lukszo, Zofia

    2016-01-01

    Grid operators increasingly have to collaborate with other actors in order to realize smart grid innovations. For routine maintenance, grid operators typically acquire technologies in one-off transactions, but the innovative nature of smart grid projects may require more collaborate relationships. This paper studies how a transactional versus relational approach to governing smart grid innovation projects affects incentives for other actors to collaborate. We analyse 34 cases of smart grid innovation projects based on extensive archival data as well as interviews. We find that projects relying on relational governance are more likely to provide incentives for collaboration. Especially non-financial incentives such as reputational benefits and shared intellectual property rights are more likely to be found in projects relying on relational governance. Policy makers that wish to stimulate smart grid innovation projects should consider stimulating long-term relationships between grid operators and third parties, because such relationships are more likely to produce incentives for collaboration. - Highlights: • Smart grids require collaboration between grid operators and other actors. • We contrast transactional and relational governance of smart grid projects. • Long-term relations produce more incentives for smart grid collaboration. • Non-financial incentives are more important in long-term relations. • Policy makers should stimulate long-term relations to stimulate smart grids.

  2. Operation Performance Evaluation of Power Grid Enterprise Using a Hybrid BWM-TOPSIS Method

    Directory of Open Access Journals (Sweden)

    Peipei You

    2017-12-01

    Full Text Available Electricity market reform is in progress in China, and the operational performance of power grid enterprises are vital for its healthy and sustainable development in the current electricity market environment. In this paper, a hybrid multi-criteria decision-making (MCDM framework for operational performance evaluation of a power grid enterprise is proposed from the perspective of sustainability. The latest MCDM method, namely the best-worst method (BWM was employed to determine the weights of all criteria, and the technique for order preference by similarity to an ideal solution (TOPSIS was applied to rank the operation performance of a power grid enterprise. The evaluation index system was built based on the concept of sustainability, which includes three criteria (namely economy, society, and environment and seven sub-criteria. Four power grid enterprises were selected to perform the empirical analysis, and the results indicate that power grid enterprise A1 has the best operation performance. The proposed hybrid BWM-TOPSIS-based framework for operation performance evaluation of a power grid enterprise is effective and practical.

  3. Method and apparatus for detecting cyber attacks on an alternating current power grid

    Science.gov (United States)

    McEachern, Alexander; Hofmann, Ronald

    2017-04-11

    A method and apparatus for detecting cyber attacks on remotely-operable elements of an alternating current distribution grid. Two state estimates of the distribution grid are prepared, one of which uses micro-synchrophasors. A difference between the two state estimates indicates a possible cyber attack.

  4. ATLAS computing operations within the GridKa Cloud

    International Nuclear Information System (INIS)

    Kennedy, J; Walker, R; Olszewski, A; Nderitu, S; Serfon, C; Duckeck, G

    2010-01-01

    The organisation and operations model of the ATLAS T1-T2 federation/Cloud associated to the GridKa T1 in Karlsruhe is described. Attention is paid to Cloud level services and the experience gained during the last years of operation. The ATLAS GridKa Cloud is large and divers spanning 5 countries, 2 ROC's and is currently comprised of 13 core sites. A well defined and tested operations model in such a Cloud is of the utmost importance. We have defined the core Cloud services required by the ATLAS experiment and ensured that they are performed in a managed and sustainable manner. Services such as Distributed Data Management involving data replication,deletion and consistency checks, Monte Carlo Production, software installation and data reprocessing are described in greater detail. In addition to providing these central services we have undertaken several Cloud level stress tests and developed monitoring tools to aid with Cloud diagnostics. Furthermore we have defined good channels of communication between ATLAS, the T1 and the T2's and have pro-active contributions from the T2 manpower. A brief introduction to the GridKa Cloud is provided followed by a more detailed discussion of the operations model and ATLAS services within the Cloud.

  5. Flexible operation of parallel grid-connecting converters under unbalanced grid voltage

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Guerrero, Josep M.

    2017-01-01

    -link voltage ripple, and overloading. Moreover, under grid voltage unbalance, the active power delivery ability is decreased due to the converter's current rating limitation. In this paper, a thorough study on the current limitation of the grid-connecting converter under grid voltage unbalance is conducted....... In addition, based on the principle that total output active power should be oscillation free, a coordinated control strategy is proposed for the parallel grid-connecting converters. The case study has been conducted to demonstrate the effectiveness of this proposed control strategy....

  6. Implementation of grid-connected to/from off-grid transference for micro-grid inverters

    OpenAIRE

    Heredero Peris, Daniel; Chillón Antón, Cristian; Pages Gimenez, Marc; Gross, Gabriel Igor; Montesinos Miracle, Daniel

    2013-01-01

    This paper presents the transfer of a microgrid converter from/to on-grid to/from off-grid when the converter is working in two different modes. In the first transfer presented method, the converter operates as a Current Source Inverter (CSI) when on-grid and as a Voltage Source Inverter (VSI) when off-grid. In the second transfer method, the converter is operated as a VSI both, when operated on-grid and off-grid. The two methods are implemented successfully in a real pla...

  7. Adaptive Micro-Grid Operation Based on IEC 61850

    Directory of Open Access Journals (Sweden)

    Wei Deng

    2015-05-01

    Full Text Available Automatically identifying the new equipment after its integration and adjusting operation strategy to realize “plug and play” functionality are becoming essential for micro-grid operations. In order to improve and perfect the micro-grid “plug and play” function with the increased amount of equipment with different information protocols and more diverse system applications, this paper presents a solution for adaptive micro-grid operation based on IEC 61850, and proposes the design and specific implementation methods of micro-grid “plug and play” function and system operation mode conversion in detail, by using the established IEC 61850 information model of a micro-grid. Actual operation tests based on the developed IED and micro-grid test platform are performed to verify the feasibility and validity of the proposed solution. The tests results show that the solution can automatically identify the IEC 61850 information model of equipment after its integration, intelligently adjust the operation strategies to adapt to new system states and achieves a reliable system operation mode conversion.

  8. New current control based MPPT technique for single stage grid connected PV systems

    International Nuclear Information System (INIS)

    Jain, Sachin; Agarwal, Vivek

    2007-01-01

    This paper presents a new maximum power point tracking algorithm based on current control for a single stage grid connected photovoltaic system. The main advantage of this algorithm comes from its ability to predict the approximate amplitude of the reference current waveform or power that can be derived from the PV array with the help of an intermediate variable β. A variable step size for the change in reference amplitude during initial tracking helps in fast tracking. It is observed that if the reference current amplitude is greater than the array capacity, the system gets unstable (i.e. moves into the positive slope region of the p-v characteristics of the array). The proposed algorithm prevents the PV system from entering the positive slope region of the p-v characteristics. It is also capable of restoring stability if the system goes unstable due to a sudden environmental change. The proposed algorithm has been tested on a new single stage grid connected PV configuration recently developed by the authors to feed sinusoidal current into the grid. The system is operated in a continuous conduction mode to realize advantages such as low device current stress, high efficiency and low EMI. A fast MPPT tracker with single stage inverter topology operating in CCM makes the overall system highly efficient. Specific cases of the system, operating in just discontinuous current mode and discontinuous current mode and their relative merits and demerits are also discussed

  9. Harmonic currents Compensator Grid-Connected Inverter at the Microgrid

    DEFF Research Database (Denmark)

    Asuhaimi Mohd Zin, A.; Naderipour, A.; Habibuddin, M.H.

    2016-01-01

    The main challenge associated with the grid-connected inverter in distributed generation (DG) systems is to maintain the harmonic contents in output current below the specified values and compensates for unbalanced loads even when the grid is subject to disturbances such as harmonic distortion...... and unbalanced loads. To overcome these challenges, a current control strategy for a three-phase grid-connected inverter under unbalanced and nonlinear load conditions is presented. It enables grid-connected inverter by the proposed control method to inject balanced clean currents to the grid even when the local...... loads are unbalanced and/or nonlinear and also compensate of the harmonic currents and control the active and reactive power. The main advantage and objective of this method is to effectively compensate for the harmonic currents content of the grid current and microgrid without using any compensation...

  10. Robust Grid-Current-Feedback Resonance Suppression Method for LCL-Type Grid-Connected Inverter Connected to Weak Grid

    DEFF Research Database (Denmark)

    Zhou, Xiaoping; Zhou, Leming; Chen, Yandong

    2018-01-01

    In this paper, a robust grid-current-feedback reso-nance suppression (GCFRS) method for LCL-type grid-connected inverter is proposed to enhance the system damping without introducing the switching noise and eliminate the impact of control delay on system robustness against grid-impedance variation....... It is composed of GCFRS method, the full duty-ratio and zero-beat-lag PWM method, and the lead-grid-current-feedback-resonance-suppression (LGCFRS) method. Firstly, the GCFRS is used to suppress the LCL-resonant peak well and avoid introducing the switching noise. Secondly, the proposed full duty-ratio and zero......-beat-lag PWM method is used to elimi-nate the one-beat-lag computation delay without introducing duty cycle limitations. Moreover, it can also realize the smooth switching from positive to negative half-wave of the grid current and improve the waveform quality. Thirdly, the proposed LGCFRS is used to further...

  11. Active current control in wind power plants during grid faults

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Phillip C.; Rodriguez, Pedro

    2010-01-01

    Modern wind power plants are required and designed to ride through faults in electrical networks, subject to fault clearing. Wind turbine fault current contribution is required from most countries with a high amount of wind power penetration. In order to comply with such grid code requirements......, wind turbines usually have solutions that enable the turbines to control the generation of reactive power during faults. This paper addresses the importance of using an optimal injection of active current during faults in order to fulfil these grid codes. This is of relevant importance for severe...... faults, causing low voltages at the point of common coupling. As a consequence, a new wind turbine current controller for operation during faults is proposed. It is shown that to achieve the maximum transfer of reactive current at the point of common coupling, a strategy for optimal setting of the active...

  12. CONCEPTS OF IMPROVING CURRENT PROTECTION OF POWER-GRID LINES

    Directory of Open Access Journals (Sweden)

    F. A. Romaniuk

    2015-01-01

    Full Text Available The  6–35  kV  power-grid  current  protection  serves  to  protect  the  transmission  lines against phase-to-phase short-circuits. The major disadvantage of it lies in the relatively large time delays of the last stages especially in the main sections of the grid owing to the stepped relay characteristics as well as a large number of the steps. A full-fledged protection of the 6–35 kV lines against inter-phase short circuits can be provided by the two-stage current protection: the first stage being the current cutoff without any time delay and the second stage – the maximum current protection where the time delay is linear contingent on the distance between the protection placement and the fault-point location. The article introduces the rating formulae for the time delays of the second-stage and their exemplary graphic presentation. The authors offer a variant for solving the problem with computation of the second-stage time delays in those instances where several feeders diverge from the bus bars of the substation located in the end of the protected line.Improving current protections for the 6–35 kV transmission lines with one-end power supply against interphase short-circuits can be based on the collective application of the following principles: accounting for the type and location of the short-circuit which provides for the high-performance cutoff zone instantaneous expansion and its independence on the mode of failure and the grid operation mode. It also allows increase of the last stage sensitiveness towards asymmetrical short-circuits; detection of the short-circuit location only on the results of fault currents measurement which simplifies the protection implementation; realization of the last (second protection stage with linear-dependent time delay which ensures potentiality of its operation speed increase.

  13. Inverter for Interchangeable Use as Current Source Inverter and Voltage Source Inverter for Interconnecting to Grid

    Science.gov (United States)

    Teruya, Daisuke; Masukawa, Shigeo; Iida, Shoji

    We propose a novel inverter that can be operated either as a Current Source Inverter (CSI) or as a Voltage Source Inverter (VSI) by changing only the control signals. It is proper to apply it to the interconnecting system with renewal energy, such as photovoltaic cells or wind generation systems, to a grid. This inverter is usually operated as the CSI connected to the grid. Even if the energy source has a lower voltage than the grid, the energy can be supplied to the grid through the proposed inverter. The power factor can be briefly maintained at almost unity. When power supply from the grid is interrupted, the proposed circuit should be operated as the VSI in the stand-alone operation mode. In this way, the circuit can maintain a constant output voltage to the loads. In this paper, the proposed circuit configuration and the control schemes for both the CSI and the VSI are described. Further, the circuit characteristics for both are discussed experimentally.

  14. Control scheme towards enhancing power quality and operational efficiency of single-phase two-stage grid-connected photovoltaic systems

    Directory of Open Access Journals (Sweden)

    Mahmoud Salem

    2015-12-01

    Full Text Available Achieving high reliable grid-connected photovoltaic (PV systems with high power quality and high operation efficiency is highly required for distributed generation units. A double grid-frequency voltage ripple is found on the dc-link voltage in single-phase photovoltaic grid-connected systems due to the unbalance of the instantaneous dc input and ac output powers. This voltage ripple has undesirable effects on the power quality and operational efficiency of the whole system. Harmonic distortion in the injected current to the grid is one of the problems caused by this double grid-frequency voltage ripple. The double grid frequency ripple propagates to the PV voltage and current which disturb the extracted maximum power from the PV array. This paper introduces intelligent solutions towards mitigate the side effects of the double grid-frequency voltage ripple on the transferred power quality and the operational efficiency of single-phase two-stage grid-connected PV system. The proposed system has three control loops: MPPT control loop, dc-link voltage control loop and inverter current control loop. Solutions are introduced for all the three control loops in the system. The current controller cancels the dc-link voltage effect on the total harmonic distortion of the output current. The dc-link voltage controller is designed to generate a ripple free reference current signal that leads to enhance the quality of the output power. Also a modified MPPT controller is proposed to optimize the extracted power from the PV array. Simulation results show that higher injected power quality is achieved and higher efficiency of the overall system is realized.

  15. Harmonics Suppression for Single-Phase Grid-Connected Photovoltaic Systems in Different Operation Modes

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2013-01-01

    -connected PV inverters may be severely affected in different operation modes. In this paper, a detailed analysis is conducted to reveal the relationship between the harmonics level with the power factor and the current level in the PV systems. A current control solution which employs an Internal Model...... Principle (IMP) is proposed to suppress the harmonic currents injected into the grid. Experiments are carried out to verify the analysis and the performance of the proposed control method. It is demonstrated that the proposed method presents an effective solution to harmonics suppression for single......-phase grid-connected PV systems in different operation modes. Especially, it can remove higher order harmonics effectively leading to a better power quality compared to the Proportional plus Multi-Resonant Controller, and it has less computational burden....

  16. Intelligent Operation and Maintenance of Micro-grid Technology and System Development

    Science.gov (United States)

    Fu, Ming; Song, Jinyan; Zhao, Jingtao; Du, Jian

    2018-01-01

    In order to achieve the micro-grid operation and management, Studying the micro-grid operation and maintenance knowledge base. Based on the advanced Petri net theory, the fault diagnosis model of micro-grid is established, and the intelligent diagnosis and analysis method of micro-grid fault is put forward. Based on the technology, the functional system and architecture of the intelligent operation and maintenance system of micro-grid are studied, and the microcomputer fault diagnosis function is introduced in detail. Finally, the system is deployed based on the micro-grid of a park, and the micro-grid fault diagnosis and analysis is carried out based on the micro-grid operation. The system operation and maintenance function interface is displayed, which verifies the correctness and reliability of the system.

  17. Mitigation of Grid Current Distortion for LCL-Filtered Voltage Source Inverter with Inverter Current Feedback Control

    DEFF Research Database (Denmark)

    Xin, Zhen; Mattavelli, Paolo; Yao, WenLi

    2018-01-01

    LCL filters feature low inductance; thus, the injected grid current from an LCL-filtered Voltage Source Inverter (VSI) can be easily distorted by grid voltage harmonics. This problem is especially tough for the control system with Inverter-side Current Feedback (ICF), since the grid current...... harmonics can freely flow into the filter capacitor. In this case, because of the loss of harmonic information, traditional harmonic controllers fail to mitigate the grid current distortion. Although this problem may be avoided using the grid voltage feedforward scheme, the required differentiators may...

  18. Autonomous economic operation of grid connected DC microgrid

    DEFF Research Database (Denmark)

    Nutkani, Inam Ullah; Wang, Peng; Loh, Poh Chiang

    2014-01-01

    This paper presents an autonomous power sharing scheme for economic operation of grid-connected DC microgrid. Autonomous economic operation approach has already been tested for standalone AC microgrids to reduce the overall generation cost and proven a simple and easier to realize compared...... with the centralized management approach. In this paper, the same concept has been extended to grid-connected DC microgrid. The proposed economic droop scheme takes into consideration the power generation cost of Distributed Generators (DGs) and utility grid tariff and adaptively tunes their respective droop curves...... secondary control. The performance of the proposed scheme has been verified for the example grid-connected DC microgrid....

  19. The Grid is operational – it’s official!

    CERN Multimedia

    2008-01-01

    On Friday, 3 October, CERN and its many partners around the world officially marked the end of seven years of development and deployment of the Worldwide LHC Computing Grid (WLCG) and the beginning of continuous operations with an all-day Grid Fest. Wolfgang von Rüden unveils the WLCG sculpture. Les Robertson speaking at the Grid Fest. At the LHC Grid Fest, Bob Jones highlights the far-reaching uses of grid computing. Over 250 grid-enthusiasts gathered in the Globe, including large delegations from the press and from industrial partners, as well as many of the people around the world who manage the distributed operations of the WLCG, which today comprises more than 140 computer centres in 33 countries. As befits a cutting-edge information technology, many participants joined virtually, by video, to mark the occasion. Unlike the start-up of the LHC, there was no single moment of high dram...

  20. Abc-frame complex-coefficient filter and controller based current harmonic elimination strategy for three-phase grid connected inverter

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Guerrero, Josep M.

    2016-01-01

    Current quality is one of the most important issues for operating three-phase grid-connected inverter in distributed generation systems. In practice, the grid current quality is degraded in case of non-ideal utility voltage. A new control strategy is proposed for the three-phase gridconnected...... inverter. Different from the traditional method, our proposal utilizes the unique abc-frame complex-coefficient filter and controller to achieve the balanced, sinusoidal grid current. The main feature of the proposed method is simple and easy to implement without any frame transformation. The theoretical...

  1. Using Micro-Synchrophasor Data for Advanced Distribution Grid Planning and Operations Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Emma [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kiliccote, Sila [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McParland, Charles [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Roberts, Ciaran [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-07-01

    This report reviews the potential for distribution-grid phase-angle data that will be available from new micro-synchrophasors (µPMUs) to be utilized in existing distribution-grid planning and operations analysis. This data could augment the current diagnostic capabilities of grid analysis software, used in both planning and operations for applications such as fault location, and provide data for more accurate modeling of the distribution system. µPMUs are new distribution-grid sensors that will advance measurement and diagnostic capabilities and provide improved visibility of the distribution grid, enabling analysis of the grid’s increasingly complex loads that include features such as large volumes of distributed generation. Large volumes of DG leads to concerns on continued reliable operation of the grid, due to changing power flow characteristics and active generation, with its own protection and control capabilities. Using µPMU data on change in voltage phase angle between two points in conjunction with new and existing distribution-grid planning and operational tools is expected to enable model validation, state estimation, fault location, and renewable resource/load characterization. Our findings include: data measurement is outstripping the processing capabilities of planning and operational tools; not every tool can visualize a voltage phase-angle measurement to the degree of accuracy measured by advanced sensors, and the degree of accuracy in measurement required for the distribution grid is not defined; solving methods cannot handle the high volumes of data generated by modern sensors, so new models and solving methods (such as graph trace analysis) are needed; standardization of sensor-data communications platforms in planning and applications tools would allow integration of different vendors’ sensors and advanced measurement devices. In addition, data from advanced sources such as µPMUs could be used to validate models to improve

  2. Grid-Current-Feedback Active Damping for LCL Resonance in Grid-Connected Voltage-Source Converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2016-01-01

    This paper investigates active damping of LCL-filter resonance in a grid-connected voltage-source converter with only grid-current feedback control. Basic analysis in the s-domain shows that the proposed damping technique with a negative high-pass filter along its damping path is equivalent...... of phase-lag, in turn, helps to shrink the region of nonminimum-phase behavior caused by negative virtual resistance inserted unintentionally by most digitally implemented active damping techniques. The presented high-pass-filtered active damping technique with a single grid-current feedback loop is thus...

  3. Improved Governing of Kaplan Turbine Hydropower Plants Operating Island Grids

    OpenAIRE

    Gustafsson, Martin

    2013-01-01

    To reduce the consequences of a major fault in the electric power grid, functioning parts of the grid can be divided into smaller grid islands. The grid islands are operated isolated from the power network, which places new demands on a faster frequency regulation. This thesis investigates a Kaplan turbine hydropower plant operating an island grid. The Kaplan turbine has two control signals, the wicket gate and the turbine blade positions, controlling the mechanical power. The inputs are comb...

  4. High voltage direct current transmission converters, systems and DC grids

    CERN Document Server

    Jovcic, Dragan

    2015-01-01

    This comprehensive reference guides the reader through all HVDC technologies, including LCC (Line Commutated Converter), 2-level VSC and VSC HVDC based on modular multilevel converters (MMC) for an in-depth understanding of converters, system level design, operating principles and modeling. Written in a tutorial style, the book also describes the key principles of design, control, protection and operation of DC transmission grids, which will be substantially different from the practice with AC transmission grids. The first dedicated reference to the latest HVDC technologies and DC grid developments; this is an essential resource for graduate students and researchers as well as engineers and professionals working on the design, modeling and operation of DC grids and HVDC.

  5. Human Factors for Situation Assessment in Grid Operations

    Energy Technology Data Exchange (ETDEWEB)

    Guttromson, Ross T.; Schur, Anne; Greitzer, Frank L.; Paget, Mia L.

    2007-08-08

    Executive Summary Despite advances in technology, power system operators must assimilate overwhelming amounts of data to keep the grid operating. Analyses of recent blackouts have clearly demonstrated the need to enhance the operator’s situation awareness (SA). The long-term objective of this research is to integrate valuable technologies into the grid operator environment that support decision making under normal and abnormal operating conditions and remove non-technical barriers to enable the optimum use of these technologies by individuals working alone and as a team. More specifically, the research aims to identify methods and principles to increase SA of grid operators in the context of system conditions that are representative or common across many operating entities and develop operationally relevant experimental methods for studying technologies and operational practices which contribute to SA. With increasing complexity and interconnectivity of the grid, the scope and complexity of situation awareness have grown. New paradigms are needed to guide research and tool development aimed to enhance and improve operations. In reviewing related research, operating practices, systems, and tools, the present study established a taxonomy that provides a perspective on research and development surrounding power grid situation awareness and clarifies the field of human factors/SA for grid operations. Information sources that we used to identify critical factors underlying SA included interviews with experienced operational personnel, available historical summaries and transcripts of abnormal conditions and outages (e.g., the August 14, 2003 blackout), scientific literature, and operational policies/procedures and other documentation. Our analysis of August 2003 blackout transcripts and interviews adopted a different perspective than previous analyses of this material, and we complemented this analysis with additional interviews. Based on our analysis and a broad

  6. Designing for Wide-Area Situation Awareness in Future Power Grid Operations

    Science.gov (United States)

    Tran, Fiona F.

    Power grid operation uncertainty and complexity continue to increase with the rise of electricity market deregulation, renewable generation, and interconnectedness between multiple jurisdictions. Human operators need appropriate wide-area visualizations to help them monitor system status to ensure reliable operation of the interconnected power grid. We observed transmission operations at a control centre, conducted critical incident interviews, and led focus group sessions with operators. The results informed a Work Domain Analysis of power grid operations, which in turn informed an Ecological Interface Design concept for wide-area monitoring. I validated design concepts through tabletop discussions and a usability evaluation with operators, earning a mean System Usability Scale score of 77 out of 90. The design concepts aim to support an operator's complete and accurate understanding of the power grid state, which operators increasingly require due to the critical nature of power grid infrastructure and growing sources of system uncertainty.

  7. Research on wind power grid-connected operation and dispatching strategies of Liaoning power grid

    Science.gov (United States)

    Han, Qiu; Qu, Zhi; Zhou, Zhi; He, Xiaoyang; Li, Tie; Jin, Xiaoming; Li, Jinze; Ling, Zhaowei

    2018-02-01

    As a kind of clean energy, wind power has gained rapid development in recent years. Liaoning Province has abundant wind resources and the total installed capacity of wind power is in the forefront. With the large-scale wind power grid-connected operation, the contradiction between wind power utilization and peak load regulation of power grid has been more prominent. To this point, starting with the power structure and power grid installation situation of Liaoning power grid, the distribution and the space-time output characteristics of wind farm, the prediction accuracy, the curtailment and the off-grid situation of wind power are analyzed. Based on the deep analysis of the seasonal characteristics of power network load, the composition and distribution of main load are presented. Aiming at the problem between the acceptance of wind power and power grid adjustment, the scheduling strategies are given, including unit maintenance scheduling, spinning reserve, energy storage equipment settings by the analysis of the operation characteristics and the response time of thermal power units and hydroelectric units, which can meet the demand of wind power acceptance and provide a solution to improve the level of power grid dispatching.

  8. Reduction of waveform distortion in grid-injection current from single-phase utility interactive PV-inverter

    International Nuclear Information System (INIS)

    Hamid, Muhammad Imran; Jusoh, Awang

    2014-01-01

    Highlights: • A reduction scheme for harmonics from utility interactive PV-inverter is proposed. • Single-phase conditioner with 3-phase expandability structure is used. • The single-phase conditioner in 3-phase structure work independently. • The scheme works effectively within overall operation range of the PV-inverter. • Conditioner in the scheme also improves the PV-inverter and plant’s utility factor. - Abstract: As the natural behavior of energy source and design characteristic, the current generated by a grid-interactive PV-inverter may contain harmonics. This distortion component will be carried on from the PV-inverter during injection power into the grid. Excessive harmonics in a grid will lead to a variety of power quality problems. This paper presents a distortion reduction scheme, utilizing a fed forward single-phase, generation-side power conditioner with a structure that can be expanded for use in a three-phase system and can work independently under imbalanced condition. Conditioner is placed in parallel with the photovoltaic plant and it functions to compensate the plant’s output current distortion, so that the total current flow to the grid is sinusoidal. This method also includes the implementation of a simpler control system for the conditioner, which consists of a combination of distortion current extraction, synchronization and a current control system, and realized through a TMS320F28335: a 150 MHz floating point DSP controller. Testing of the conditioner prototype, which was conducted on a real operation of a PV plant, showed that the scheme worked effectively within the overall operation range of the PV plant. This paper also discusses the potential of utility factor improvement of the PV-inverter and plant due to implementation of conditioner in the scheme

  9. Enhanced Control for Improving the Operation of Grid-Connected Power Converters under Faulty and Saturated Conditions

    Directory of Open Access Journals (Sweden)

    Mahdi Shahparasti

    2018-02-01

    Full Text Available In renewable energy based systems Grid-Connected Voltage Source Converters (GC-VSC are used in many applications as grid-feeding converters, which transfer the power coming from the renewable energy sources to the grid. In some cases, the operation of GC-VSC may become unstable or uncontrollable due to, among others: a grid fault or an inappropriate current-power reference, that give rise to fast electrical transients or a saturation of the controller. In this paper, an improved control scheme is proposed to enhance the controllability of GC-VSC in all these situations. This solution consists of two parts, on the one hand a new Proportional-Resonant (PR controller with anti-windup capability to be used as current controller, and secondly a new current/power reference modifier, which defines the suitable reactive current/power reference to keep the system stable. It is worth to mention that the proposed scheme does not need information about the grid parameters as it only uses the converter current, and the voltage at the capacitors of Inductor-Capacitor (LC output filter.

  10. Designing high-order power-source synchronous current converters for islanded and grid-connected microgrids

    DEFF Research Database (Denmark)

    Ashabani, Mahdi; Gooi, Hoay Beng; Guerrero, Josep M.

    2018-01-01

    This paper deals with development of a versatile and compact control strategy for voltage source converters in grid-connected and islanded microgrids using synchronous current converters technology. The key feature is its new integrated high-order controller/synchronizer with applicability to both...... and automated current-based grid synchronization. Moreover, the controller realizes a power-source current-controlled microgrid with minimum control loops, as compared to widely adopted voltage controlled microgrids in the literature, with advantages such as fault-ride-through and inherent droop-less power...... sharing capabilities. Adaptive current-based synchronization and smooth switching to islanding mode provides high flexibility, reliability and only-plug operation capability. Extensive simulation and experimental results are presented to demonstrate performance of the proposed control and management...

  11. Technical and operational organisation of the 'Swiss Marketplace': GridCode CH

    International Nuclear Information System (INIS)

    Imhof, K.; Baumann, R.

    2001-01-01

    This article describes the minimum requirements placed on the operators of electricity grids by the planned Swiss Electricity Market Law. These are compiled in the Swiss Grid Code - GridCode CH. The various players in an open electricity market such as generating companies, power brokers, those responsible for balance groups, grid operators, system co-ordinators, the operators of fine distribution networks and the final consumer and the roles they play are examined. The history of the development of the Grid Code, which contains technical and operational regulations for the successful co-operation of the market players, is reviewed. The contractual obligations of the partners involved and, in particular, regulations concerning metering, measured value designation and the provision of data are discussed

  12. Cutback for grid operators

    International Nuclear Information System (INIS)

    Meulmeester, P.; De Laat, J.

    2006-01-01

    The Netherlands Competition Authority (NMa), in which the Office of Energy Regulation (DTe) is included plan to decrease the capital cost compensation (or weighted average cost of capital or WACC) for grid operators. In this article it is explained how the compensation is calculated, why this measure will be taken and what the effects of this cutback are [nl

  13. Enhanced Operation of Electricity Distribution Grids Through Smart Metering PLC Network Monitoring, Analysis and Grid Conditioning

    Directory of Open Access Journals (Sweden)

    Iker Urrutia

    2013-01-01

    Full Text Available Low Voltage (LV electricity distribution grid operations can be improved through a combination of new smart metering systems’ capabilities based on real time Power Line Communications (PLC and LV grid topology mapping. This paper presents two novel contributions. The first one is a new methodology developed for smart metering PLC network monitoring and analysis. It can be used to obtain relevant information from the grid, thus adding value to existing smart metering deployments and facilitating utility operational activities. A second contribution describes grid conditioning used to obtain LV feeder and phase identification of all connected smart electric meters. Real time availability of such information may help utilities with grid planning, fault location and a more accurate point of supply management.

  14. A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.

    Science.gov (United States)

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X

    2012-11-09

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.

  15. Current Control of Grid Converters Connected with Series AC Capacitor

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    The series ac capacitor has recently been used with the transformerless grid-connected converters in the distribution power grids. The capacitive characteristic of the resulting series LC filter restricts the use of conventional synchronous integral or stationary resonant current controllers. Thus...... this paper proposes a fourth-order resonant controller in the stationary frame, which guarantees a zero steady-state current tracking error for the grid converters with series LC filter. This method is then implemented in a three-phase experimental system for verification, where the current harmonics below...... the LC filter resonance frequency are effectively eliminated. Experimental results confirm the validity of the proposed current control scheme....

  16. Power grid operation risk management: V2G deployment for sustainable development

    Science.gov (United States)

    Haddadian, Ghazale J.

    The production, transmission, and delivery of cost--efficient energy to supply ever-increasing peak loads along with a quest for developing a low-carbon economy require significant evolutions in the power grid operations. Lower prices of vast natural gas resources in the United States, Fukushima nuclear disaster, higher and more intense energy consumptions in China and India, issues related to energy security, and recent Middle East conflicts, have urged decisions makers throughout the world to look into other means of generating electricity locally. As the world look to combat climate changes, a shift from carbon-based fuels to non-carbon based fuels is inevitable. However, the variability of distributed generation assets in the electricity grid has introduced major reliability challenges for power grid operators. While spearheading sustainable and reliable power grid operations, this dissertation develops a multi-stakeholder approach to power grid operation design; aiming to address economic, security, and environmental challenges of the constrained electricity generation. It investigates the role of Electric Vehicle (EV) fleets integration, as distributed and mobile storage assets to support high penetrations of renewable energy sources, in the power grid. The vehicle-to-grid (V2G) concept is considered to demonstrate the bidirectional role of EV fleets both as a provider and consumer of energy in securing a sustainable power grid operation. The proposed optimization modeling is the application of Mixed-Integer Linear Programing (MILP) to large-scale systems to solve the hourly security-constrained unit commitment (SCUC) -- an optimal scheduling concept in the economic operation of electric power systems. The Monte Carlo scenario-based approach is utilized to evaluate different scenarios concerning the uncertainties in the operation of power grid system. Further, in order to expedite the real-time solution of the proposed approach for large-scale power systems

  17. Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid

    International Nuclear Information System (INIS)

    Jian, Linni; Zheng, Yanchong; Xiao, Xinping; Chan, C.C.

    2015-01-01

    Highlights: • A novel event-triggered scheduling scheme for vehicle-to-grid (V2G) operation is proposed. • New scheme can handle the uncertainty arising from stochastic connection of electric vehicles. • New scheme aims at minimizing the overall load variance of power grid by V2G operation. • Method to evaluate the performance of proposed scheme is elaborated and demonstrated. - Abstract: Vehicle-to-grid (V2G) operation of plug-in electric vehicles (PEVs) is attracting increasing attention since it can assist to improve the efficiency and reliability of power grid, as well as reduce the operating cost and greenhouse gas emission of electric vehicles. Within the scheme of V2G operation, PEVs are expected to serve as a novel distributed energy storage system (ESS) to help achieve the balance between supply and demand of power grid. One of the key difficulties concerning its practical implementation lies in that the availability of PEVs as ESS for grid remains highly uncertain due to their mobility as transportation tools. To address this issue, a novel event-triggered scheduling scheme for V2G operation based on the scenario of stochastic PEV connection to smart grid is proposed in this paper. Firstly, the mathematical model is formulated. Secondly, the preparation of input data for systematic evaluation is introduced and the case study is conducted. Finally, statistic analysis results demonstrate that our proposed V2G scheduling scheme can dramatically smooth out the fluctuation in power load profiles

  18. Current control loop of 3-phase grid-connected inverter

    International Nuclear Information System (INIS)

    Jabbar, A F; Mansor, M

    2013-01-01

    This paper presents a comparative study of current control loop in 3-phase inverter which is used to control the active and reactive output power. Generally, current control loop, power control loop and phase lock-loop are the conventional parameters that can be found in an inverter system controlled by the conventional linear control type, for instance proportional (P), integral (I) and derivative (D). If the grid remains stable throughout the day, PID control can be use. However variation of magnitude, frequency, voltage dips, transient, and other related power quality issues occur in a 3-phase grid often affects the control loop. This paper aims to provide an overall review on the available current control techniques used in grid connected system.

  19. Mitigation of Voltage and Current Harmonics in Grid-Connected Microgrids

    DEFF Research Database (Denmark)

    Savaghebi, Mehdi; Guerrero, Josep M.; Jalilian, Alireza

    2012-01-01

    In this paper, a control approach is proposed for selective compensation of main voltage and current harmonics in grid-connected microgrids. Two modes of compensation are considered, i.e. voltage and current compensation modes. In the case that sensitive loads are connected to the point of common...... coupling (PCC), voltage compensation mode is activated in order to provide a high voltage quality at PCC. Otherwise, grid current harmonics are mitigated (current compensation mode) in order to avoid excessive harmonic supply by the grid. In both modes, harmonic compensation is achieved through proper...... control of distributed generators (DGs) interface converters. The compensation effort of each harmonic is shared considering the corresponding current harmonic supplied by the DGs. The control system of each DG comprises harmonic compensator, power controllers, voltage and current controllers and virtual...

  20. Planning low-carbon electricity systems under uncertainty considering operational flexibility and smart grid technologies.

    Science.gov (United States)

    Moreno, Rodrigo; Street, Alexandre; Arroyo, José M; Mancarella, Pierluigi

    2017-08-13

    Electricity grid operators and planners need to deal with both the rapidly increasing integration of renewables and an unprecedented level of uncertainty that originates from unknown generation outputs, changing commercial and regulatory frameworks aimed to foster low-carbon technologies, the evolving availability of market information on feasibility and costs of various technologies, etc. In this context, there is a significant risk of locking-in to inefficient investment planning solutions determined by current deterministic engineering practices that neither capture uncertainty nor represent the actual operation of the planned infrastructure under high penetration of renewables. We therefore present an alternative optimization framework to plan electricity grids that deals with uncertain scenarios and represents increased operational details. The presented framework is able to model the effects of an array of flexible, smart grid technologies that can efficiently displace the need for conventional solutions. We then argue, and demonstrate via the proposed framework and an illustrative example, that proper modelling of uncertainty and operational constraints in planning is key to valuing operationally flexible solutions leading to optimal investment in a smart grid context. Finally, we review the most used practices in power system planning under uncertainty, highlight the challenges of incorporating operational aspects and advocate the need for new and computationally effective optimization tools to properly value the benefits of flexible, smart grid solutions in planning. Such tools are essential to accelerate the development of a low-carbon energy system and investment in the most appropriate portfolio of renewable energy sources and complementary enabling smart technologies.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  1. A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW

    Energy Technology Data Exchange (ETDEWEB)

    Greacen, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Engel, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Quetchenbach, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-04-01

    A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW is intended to help meet the widespread need for guidance, standards, and procedures for interconnecting mini-grids with the central electric grid as rural electrification advances in developing countries, bringing these once separate power systems together. The guidebook aims to help owners and operators of renewable energy mini-grids understand the technical options available, safety and reliability issues, and engineering and administrative costs of different choices for grid interconnection. The guidebook is intentionally brief but includes a number of appendices that point the reader to additional resources for indepth information. Not included in the scope of the guidebook are policy concerns about “who pays for what,” how tariffs should be set, or other financial issues that are also paramount when “the little grid connects to the big grid.”

  2. Robust Two Degrees-of-freedom Single-current Control Strategy for LCL-type Grid-Connected DG System under Grid-Frequency Fluctuation and Grid-impedance Variation

    DEFF Research Database (Denmark)

    Zhou, Leming; Chen, Yandong; Luo, An

    2016-01-01

    -of-freedom single-current control (RTDOF-SCC) strategy is proposed, which mainly includes the synchronous reference frame quasi-proportional-integral (SRFQPI) control and robust grid-current-feedback active damping (RGCFAD) control. The proposed SRFQPI control can compensate the local-loads reactive power......, and regulate the instantaneous grid current without steady-state error regardless of the fundamental frequency fluctuation. Simultaneously, the proposed RGCFAD control effectively damps the LCL-resonance peak regardless of the grid-impedance variation, and further improves both transient and steady...

  3. Operating strategies for biogas plants - conflict of objectives between advantageous grid and economically oriented operation

    International Nuclear Information System (INIS)

    Skau, Katharina; Bettinger, Carola; Schild, Vernea; Fuchs, Clemens; Beck, Hans-Peter

    2015-01-01

    In an intelligent energy system, ''smart grid'' and ''smart market'' must go hand in hand (Aichele et al., 2014). Changes to the legal framework, especially the German Renewable Energies Act (EEG), aim at bringing in line the requirement for increased generation of renewable energy with the market and system integration of renewable energies (see Schwarz, 2014). This determines whether the operation of a modern renewable energy plant has both the maximisation of profits (smart market) as well as the easing of the higher-order grid (smart grid) as its goal or whether it is only geared towards one aspect. The agricultural biogas producer is the focus of this interdisciplinary paper. He can either use the electrical energy generated by his plant himself in an economically orientated way or design the supply to the upstream grid in a way that is advantageous for the grid through the increased flexibility of generation and consumption. Through a two-stage simulation of the impact on the grid and the operational performance, the differences with regards to the strain on the grid and the financial losses to the farmer are quantified. If is clearly shown that none of the legislative and regulatory incentive schemes favour a mode of operation that is advantageous for the grid.

  4. Invocation of Grid operations in the ViroLab Virtual Laboratory

    NARCIS (Netherlands)

    Bartyński, T.; Malawski, M.; Bubak, M.; Bubak, M.; Turała, M.; Wiatr, K.

    2008-01-01

    This paper presents invocation of grid operations within the ViroLab Virtual Laboratory. Virtual laboratory enables users to develop and execute experiments that access computational resources on the Grid exposed via various middleware technologies. An abstraction over the Grid environment is

  5. Stability Analysis for Operation of DG Units in Smart Grids

    DEFF Research Database (Denmark)

    Pouresmaeil, Edris; Shaker, Hamid Reza; Mehrasa, Majid

    2015-01-01

    This paper presents a multifunction control strategy for the stable operation of Distributed Generation (DG) units during grid integration. The proposed control model is based on Direct Lyapunov Control (DLC) theory and provides a stable region for the appropriate operation of DG units during grid....... Application of this concept can guarantee to reduce the stress on the grid during the energy demand peak. Simulation results are presented to demonstrate the proficiency and performance of the proposed DLC technique in DG technology....

  6. The construction of power grid operation index system considering the risk of maintenance

    Science.gov (United States)

    Tang, Jihong; Wang, Canlin; Jiang, Xinfan; Ye, Jianhui; Pan, Feilai

    2018-02-01

    In recent years, large-scale blackout occurred at home and abroad caused widespread concern about the operation of the grid in the world, and the maintenance risk is an important indicator of grid safety. The barrier operation of the circuit breaker exists in the process of overhaul of the power grid. The operation of the different barrier is of great significance to the change of the power flow, thus affecting the safe operation of the system. Most of the grid operating status evaluation index system did not consider the risk of maintenance, to this end, this paper from the security, economy, quality and cleanliness of the four angles, build the power grid operation index system considering the risk of maintenance.

  7. Analysis of Three-Phase Rectifier Systems with Controlled DC-Link Current Under Unbalanced Grids

    DEFF Research Database (Denmark)

    Kumar, Dinesh; Davari, Pooya; Zare, Firuz

    2017-01-01

    Voltage unbalance is the most common disturbance in distribution networks, which give undesirable effects on many grid connected power electronics systems including Adjustable Speed Drive (ASD). Severe voltage unbalance can force three-phase rectifiers into almost single-phase operation, which...... degrades the grid power quality and also imposes a significant negative impact on the ASD system. This major power quality issue affecting the conventional rectifiers can be attenuated by controlling the DC-link current based on an Electronic Inductor (EI) technique. The purpose of this digest...... is to analyze and compare the performance of an EI with a conventional three-phase rectifier under unbalanced grid conditions. Experimental and simulation results validate the proposed mathematical modelling. Further analysis and benchmarking will be provided in the final paper....

  8. Simplified reactive power management strategy for complex power grids under stochastic operation and incomplete information

    International Nuclear Information System (INIS)

    Vlachogiannis, John G.

    2009-01-01

    In the current released energy market, the large-scale complex transmission networks and the distribution ones with dispersed energy sources and 'intelligent' components operate under uncertainties, stochastic and prior incomplete information. A safe and reliable operation of such complex power grids is a major issue for system operators. Under these circumstances an online reactive power management strategy with minimum risk concerning all uncertain and stochastic parameters is proposed. Therefore, new concepts such as reactive power-weighted node-to-node linking and reactive power control capability are introduced. A distributed and interconnected stochastic learning automata system is implemented to manage, in a unified and unique way, the reactive power in complex power grids with stochastic reactive power demand and detect the vulnerable part. The proposed simplified strategy can also consider more stochastic aspects such as variable grid's topology. Results of the proposed strategy obtained on the networks of IEEE 30-bus and IEEE 118-bus systems demonstrate the effectiveness of the proposed strategy.

  9. Implementing batteries in electrical grids. Possible operating modes for efficient business cases

    Energy Technology Data Exchange (ETDEWEB)

    Kittlaus, Barnabas; Schreider, Achim; Pour, Adel Hassan [Lahmeyer International GmbH, Bad Vilbel (Germany)

    2010-07-01

    promotion. As a result, today some countries have significant shares of RES power generation. Due to the intermittency of most RES, for example, wind power and photovoltaic (PV) power generation, there is a large demand for all types of balancing power in order to allow for a reliable operation of the electricity systems. However, the available thermal power plants with their respective power output ramping characteristics are not sufficient any more and the construction of new ones is expensive, takes a long time and is not supported by large portions of the population. Hence, new options are needed; electricity storage and stationary batteries in particular, is one possible solution. European Directive 2006/32/EC set incentives for the deployment of variable retail electricity tariffs depending on time of use (ToU) or by current grid load. For example, by linking the electricity tariff to the amount of current grid load - directly or indirectly - it is intended that consumers shift their load into off-peak periods. Once smart metering infrastructure is widely installed the electricity price can also reflect the amount of RES capacity currently fed into the grid and give a financial incentive to shift load into high-RES-injection periods. By these means, the price of electricity would become the central controlling instrument of the power system (smart grid). (orig.)

  10. Enhancing the Frequency Adaptability of Periodic Current Controllers for Grid-Connected Power Converters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2015-01-01

    It is mandatory for grid-connected power converters to synchronize the feed-in currents with the grid. Moreover, the power converters should produce feed-in currents with low total harmonic distortions according to the demands, by employing advanced current controllers, e.g., Proportional Resonant...... deviations. Experiments on a single-phase grid-connected inverter system are presented, which have verified the proposals and also the effectiveness of the frequency adaptive current controllers....... (PR) and Repetitive Controllers (RC). The synchronization is actually to detect the instantaneous grid information (e.g., frequency and phase of the grid voltage) for the current control, which is commonly performed by a Phase-Locked-Loop (PLL) system. As a consequence, harmonics and deviations...

  11. Direct-current vector control of three-phase grid-connected rectifier-inverter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuhui; Haskew, Timothy A.; Hong, Yang-Ki; Xu, Ling [Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL 35475 (United States)

    2011-02-15

    The three-phase grid-connected converter is widely used in renewable and electric power system applications. Traditionally, control of the three-phase grid-connected converter is based on the standard decoupled d-q vector control mechanism. Nevertheless, the study of this paper shows that there is a limitation in the conventional standard vector control method. Some of the limitations have also been found recently by other researchers. To overcome the shortage of the conventional vector control technique, this paper proposes a new direct-current d-q vector control mechanism in a nested-loop control structure, based on which an optimal control strategy is developed in a nonlinear programming formulation. The behaviors of both the conventional and proposed control methods are compared and evaluated in simulation and laboratory hardware experiment environments, both of which demonstrates that the proposed approach is effective for grid-connected power converter control in a wide system conditions while the conventional standard vector control approach may behave improperly especially when the converter operates beyond its PWM saturation limit. (author)

  12. Variable frequency operation of active stall wind farms using a dc connection to grid

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede; Sorensen, Poul

    2005-01-01

    Currently, there is an increasing trend to connect large MW wind farms to the transmISSIon system. Requirements that focus on the influence of the farms on the grid stability and power quality, and on the control capabilities of wind farms have already been established. The main trends of modern...... wind turbines/farms are clearly the variable speed operation and a grid connection through a power electronic interface, especially using doubly-fed induction generators. Using power electronics the control capabilities of these wind turbines/farms are extended and thus the grid requirements...... are fulfilled. However, the traditional squirrel-cage generators based wind turbines/wind farms directly connected to the grid have less control capabilities. These wind turbines/farms cannot regulate their production and contribute to power system stability. A DC transmission system for connection...

  13. Smart grid overview and current industry activities

    Energy Technology Data Exchange (ETDEWEB)

    Dignard-Bailey, L. [Natural Resources Canada, Ottawa, ON (Canada). Renewable Energy Integration Div.

    2009-07-01

    Electricity demand continues to increase among growing concerns about security, power quality, and grid reliability. This presentation discussed reviewed programs and strategies developed to merge grid applications with existing utility infrastructure in Canada. Smart grid applications include real-time simulation and contingency analysis; distributed generation and alternative energy sources; self-healing wide-area protection and islanding; asset management and on-line equipment monitoring; demand response and dynamic pricing; and participation in energy markets. Distributed automation and advanced metering programs are currently underway in various provinces throughout Canada, and many utilities are exploring methods of improving the integration of renewable energy sources. Canadian utilities are now involved in large data transfers to ensure that rural networks receive spectrum with good propagation. WiFi meshed installations have also been installed throughout the country, and various advanced distribution automation technologies are being implemented. A smart grid working group has been formed to identify technology gaps, and programs have been developed to educate industry leaders on smart grid drivers, technologies, and opportunities. Various pilot and research programs were outlined, legislation related to utility regulation was discussed. tabs., figs.

  14. Multi-terminal direct-current grids modeling, analysis, and control

    CERN Document Server

    Chaudhuri, Nilanjan; Majumder, Rajat; Yazdani, Amirnaser

    2014-01-01

    A comprehensive modeling, analysis, and control design framework for multi-terminal direct current (MTDC) grids is presented together with their interaction with the surrounding AC networks and the impact on overall stability. The first book of its kind on the topic of multi-terminal DC (MTDC) grids  Presents a comprehensive modeling framework for MTDC grids which is compatible with the standard AC system modeling for stability studies Includes modal analysis and study of the interactions between the MTDC grid and the surrounding AC systems Addresses the problems of autonomous power sharing an

  15. Development and Operation of the D-Grid Infrastructure

    Science.gov (United States)

    Fieseler, Thomas; Gűrich, Wolfgang

    D-Grid is the German national grid initiative, granted by the German Federal Ministry of Education and Research. In this paper we present the Core D-Grid which acts as a condensation nucleus to build a production grid and the latest developments of the infrastructure. The main difference compared to other international grid initiatives is the support of three middleware systems, namely LCG/gLite, Globus, and UNICORE for compute resources. Storage resources are connected via SRM/dCache and OGSA-DAI. In contrast to homogeneous communities, the partners in Core D-Grid have different missions and backgrounds (computing centres, universities, research centres), providing heterogeneous hardware from single processors to high performance supercomputing systems with different operating systems. We present methods to integrate these resources and services for the DGrid infrastructure like a point of information, centralized user and virtual organization management, resource registration, software provision, and policies for the implementation (firewalls, certificates, user mapping).

  16. Wind power plant in grid operation

    International Nuclear Information System (INIS)

    Heier, S.

    1993-01-01

    There are new prospects for electrical energy supply in coastal regions and on islands if one succeeds in integrating the available wind energy, dependent on the weather, into existing and to be developed supply structures. Apart from the supply of energy, effects on the grid and on the electrical consumer are gaining in importance. For wind power plants, the operating behaviour is appreciably determined by the electro-technical concept. The mechanical/electrical energy conversion with the corresponding grid connection and plant control play an important part here. Results of measurements and computer simulation make the differences in the behaviour of wind power plants clear. (orig.) [de

  17. Study of Security Attributes of Smart Grid Systems- Current Cyber Security Issues

    Energy Technology Data Exchange (ETDEWEB)

    Wayne F. Boyer; Scott A. McBride

    2009-04-01

    This document provides information for a report to congress on Smart Grid security as required by Section 1309 of Title XIII of the Energy Independence and Security Act of 2007. The security of any future Smart Grid is dependent on successfully addressing the cyber security issues associated with the nation’s current power grid. Smart Grid will utilize numerous legacy systems and technologies that are currently installed. Therefore, known vulnerabilities in these legacy systems must be remediated and associated risks mitigated in order to increase the security and success of the Smart Grid. The implementation of Smart Grid will include the deployment of many new technologies and multiple communication infrastructures. This report describes the main technologies that support Smart Grid and summarizes the status of implementation into the existing U.S. electrical infrastructure.

  18. Analysis and design of grid-current-feedback active damping for LCL resonance in grid-connected voltage source converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    This paper investigates the active damping of LCL-filter resonance within single-loop grid current control of grid-connected voltage source converters. First, the basic analysis in the continuous s-domain reveals that the grid-current-feedback active damping forms a virtual impedance across...... in a digital control system. The instability induced by the negative virtual resistance, which is commonly experienced in the feedback-type active damping, can thus be avoided. A systematic design method of the highpass filter is also proposed by the help of root locus analysis in the discrete z-domain. Lastly...

  19. A Unified Current Loop Tuning Approach for Grid-Connected Photovoltaic Inverters

    Directory of Open Access Journals (Sweden)

    Weiyi Zhang

    2016-09-01

    Full Text Available High level penetration of renewable energy sources has reshaped modern electrical grids. For the future grid, distributed renewable power generation plants can be integrated in a larger scale. Control of grid-connected converters is required to achieve fast power reference tracking and further to present grid-supporting and fault ride-through performance. Among all of the aspects for converter control, the inner current loop for grid-connected converters characterizes the system performance considerably. This paper proposes a unified current loop tuning approach for grid-connected converters that is generally applicable in different cases. A direct discrete-time domain tuning procedure is used, and particularly, the selection of the phase margin and crossover frequency is analyzed, which acts as the main difference compared with the existing studies. As a general method, the approximation in the modeling of the controller and grid filter is avoided. The effectiveness of the tuning approach is validated in both simulation and experimental results with respect to power reference tracking, frequency and voltage supporting.

  20. Heuristic Scheduling in Grid Environments: Reducing the Operational Energy Demand

    Science.gov (United States)

    Bodenstein, Christian

    In a world where more and more businesses seem to trade in an online market, the supply of online services to the ever-growing demand could quickly reach its capacity limits. Online service providers may find themselves maxed out at peak operation levels during high-traffic timeslots but too little demand during low-traffic timeslots, although the latter is becoming less frequent. At this point deciding which user is allocated what level of service becomes essential. The concept of Grid computing could offer a meaningful alternative to conventional super-computing centres. Not only can Grids reach the same computing speeds as some of the fastest supercomputers, but distributed computing harbors a great energy-saving potential. When scheduling projects in such a Grid environment however, simply assigning one process to a system becomes so complex in calculation that schedules are often too late to execute, rendering their optimizations useless. Current schedulers attempt to maximize the utility, given some sort of constraint, often reverting to heuristics. This optimization often comes at the cost of environmental impact, in this case CO 2 emissions. This work proposes an alternate model of energy efficient scheduling while keeping a respectable amount of economic incentives untouched. Using this model, it is possible to reduce the total energy consumed by a Grid environment using 'just-in-time' flowtime management, paired with ranking nodes by efficiency.

  1. A Grid Connected Transformerless Inverter and its Model Predictive Control Strategy with Leakage Current Elimination Capability

    Directory of Open Access Journals (Sweden)

    J. Fallah Ardashir

    2017-06-01

    Full Text Available This paper proposes a new single phase transformerless Photovoltaic (PV inverter for grid connected systems. It consists of six power switches, two diodes, one capacitor and filter at the output stage. The neutral of the grid is directly connected to the negative terminal of the source. This results in constant common mode voltage and zero leakage current. Model Predictive Controller (MPC technique is used to modulate the converter to reduce the output current ripple and filter requirements. The main advantages of this inverter are compact size, low cost, flexible grounding configuration. Due to brevity, the operating principle and analysis of the proposed circuit are presented in brief. Simulation and experimental results of 200W prototype are shown at the end to validate the proposed topology and concept. The results obtained clearly verifies the performance of the proposed inverter and its practical application for grid connected PV systems.

  2. Simplified reactive power management strategy for complex power grids under stochastic operation and incomplete information

    DEFF Research Database (Denmark)

    Vlachogiannis, Ioannis (John)

    2009-01-01

    grids is a major issue for system operators. Under these circumstances an online reactive power management strategy with minimum risk concerning all uncertain and stochastic parameters is proposed. Therefore, new concepts such as reactive power-weighted node-to-node linking and reactive power control......In the current released energy market, the large-scale complex transmission networks and the distribution ones with dispersed energy sources and "intelligent" components operate under uncertainties, stochastic and prior incomplete information. A safe and reliable operation of such complex power...... capability are introduced. A distributed and interconnected stochastic learning automata system is implemented to manage, in a unified and unique way, the reactive power in complex power grids with stochastic reactive power demand and detect the vulnerable part. The proposed simplified strategy can also...

  3. Calculation approaches for grid usage fees to influence the load curve in the distribution grid level

    International Nuclear Information System (INIS)

    Illing, Bjoern

    2014-01-01

    Dominated by the energy policy the decentralized German energy market is changing. One mature target of the government is to increase the contribution of renewable generation to the gross electricity consumption. In order to achieve this target disadvantages like an increased need for capacity management occurs. Load reduction and variable grid fees offer the grid operator solutions to realize capacity management by influencing the load profile. The evolution of the current grid fees towards more causality is required to adapt these approaches. Two calculation approaches are developed in this assignment. On the one hand multivariable grid fees keeping the current components demand and energy charge. Additional to the grid costs grid load dependent parameters like the amount of decentralized feed-ins, time and local circumstances as well as grid capacities are considered. On the other hand the grid fee flat-rate which represents a demand based model on a monthly level. Both approaches are designed to meet the criteria for future grid fees. By means of a case study the effects of the grid fees on the load profile at the low voltage grid is simulated. Thereby the consumption is represented by different behaviour models and the results are scaled at the benchmark grid area. The resulting load curve is analyzed concerning the effects of peak load reduction as well as the integration of renewable energy sources. Additionally the combined effect of grid fees and electricity tariffs is evaluated. Finally the work discusses the launching of grid fees in the tense atmosphere of politics, legislation and grid operation. Results of this work are two calculation approaches designed for grid operators to define the grid fees. Multivariable grid fees are based on the current calculation scheme. Hereby demand and energy charges are weighted by time, locational and load related dependencies. The grid fee flat-rate defines a limitation in demand extraction. Different demand levels

  4. SymPix: A Spherical Grid for Efficient Sampling of Rotationally Invariant Operators

    Science.gov (United States)

    Seljebotn, D. S.; Eriksen, H. K.

    2016-02-01

    We present SymPix, a special-purpose spherical grid optimized for efficiently sampling rotationally invariant linear operators. This grid is conceptually similar to the Gauss-Legendre (GL) grid, aligning sample points with iso-latitude rings located on Legendre polynomial zeros. Unlike the GL grid, however, the number of grid points per ring varies as a function of latitude, avoiding expensive oversampling near the poles and ensuring nearly equal sky area per grid point. The ratio between the number of grid points in two neighboring rings is required to be a low-order rational number (3, 2, 1, 4/3, 5/4, or 6/5) to maintain a high degree of symmetries. Our main motivation for this grid is to solve linear systems using multi-grid methods, and to construct efficient preconditioners through pixel-space sampling of the linear operator in question. As a benchmark and representative example, we compute a preconditioner for a linear system that involves the operator \\widehat{{\\boldsymbol{D}}}+{\\widehat{{\\boldsymbol{B}}}}T{{\\boldsymbol{N}}}-1\\widehat{{\\boldsymbol{B}}}, where \\widehat{{\\boldsymbol{B}}} and \\widehat{{\\boldsymbol{D}}} may be described as both local and rotationally invariant operators, and {\\boldsymbol{N}} is diagonal in the pixel domain. For a bandwidth limit of {{\\ell }}{max} = 3000, we find that our new SymPix implementation yields average speed-ups of 360 and 23 for {\\widehat{{\\boldsymbol{B}}}}T{{\\boldsymbol{N}}}-1\\widehat{{\\boldsymbol{B}}} and \\widehat{{\\boldsymbol{D}}}, respectively, compared with the previous state-of-the-art implementation.

  5. Application of a modified flux-coupling type superconducting fault current limiter to transient performance enhancement of micro-grid

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lei, E-mail: stclchen1982@163.com [School of Electrical Engineering, Wuhan University, Wuhan 430072 (China); Zheng, Feng; Deng, Changhong; Li, Shichun; Li, Miao; Liu, Hui [School of Electrical Engineering, Wuhan University, Wuhan 430072 (China); Zhu, Lin [Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville 37996 (United States); Guo, Fang [Department of Substation, Guang Dong Electric Power Design Institute, Guangzhou 510663 (China)

    2015-11-15

    Highlights: • A modified flux-coupling type SFCL is suggested to enhance the transient performance of a micro-grid. • The SFCL’s main contribution is to improve the micro-grid’s fault ride-through capability. • The SFCL also can make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. • The simulations show that the SFCL can availably strengthen the micro-grid’s voltage and frequency stability. - Abstract: Concerning the application and development of a micro-grid system which is designed to accommodate high penetration of intermittent renewable resources, one of the main issues is related to an increase in the fault-current level. It is crucial to ensure the micro-grid’s operational stability and service reliability when a fault occurs in the main network. In this paper, our research group suggests a modified flux-coupling type superconducting fault current limiter (SFCL) to enhance the transient performance of a typical micro-grid system. The SFCL is installed at the point of common coupling (PCC) between the main network and the micro-grid, and it is expected to actively improve the micro-grid’s fault ride-through capability. And for some specific faults, the micro-grid should disconnect from the main network, and the SFCL’s contribution is to make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. Related theory derivation, technical discussion and simulation analysis are performed. From the demonstrated results, applying the SFCL can effectively limit the fault current, maintain the power balance, and enhance the voltage and frequency stability of the micro-grid.

  6. Application of a modified flux-coupling type superconducting fault current limiter to transient performance enhancement of micro-grid

    International Nuclear Information System (INIS)

    Chen, Lei; Zheng, Feng; Deng, Changhong; Li, Shichun; Li, Miao; Liu, Hui; Zhu, Lin; Guo, Fang

    2015-01-01

    Highlights: • A modified flux-coupling type SFCL is suggested to enhance the transient performance of a micro-grid. • The SFCL’s main contribution is to improve the micro-grid’s fault ride-through capability. • The SFCL also can make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. • The simulations show that the SFCL can availably strengthen the micro-grid’s voltage and frequency stability. - Abstract: Concerning the application and development of a micro-grid system which is designed to accommodate high penetration of intermittent renewable resources, one of the main issues is related to an increase in the fault-current level. It is crucial to ensure the micro-grid’s operational stability and service reliability when a fault occurs in the main network. In this paper, our research group suggests a modified flux-coupling type superconducting fault current limiter (SFCL) to enhance the transient performance of a typical micro-grid system. The SFCL is installed at the point of common coupling (PCC) between the main network and the micro-grid, and it is expected to actively improve the micro-grid’s fault ride-through capability. And for some specific faults, the micro-grid should disconnect from the main network, and the SFCL’s contribution is to make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. Related theory derivation, technical discussion and simulation analysis are performed. From the demonstrated results, applying the SFCL can effectively limit the fault current, maintain the power balance, and enhance the voltage and frequency stability of the micro-grid.

  7. Disturbance estimator based predictive current control of grid-connected inverters

    OpenAIRE

    Al-Khafaji, Ahmed Samawi Ghthwan

    2013-01-01

    ABSTRACT: The work presented in my thesis considers one of the modern discrete-time control approaches based on digital signal processing methods, that have been developed to improve the performance control of grid-connected three-phase inverters. Disturbance estimator based predictive current control of grid-connected inverters is proposed. For inverter modeling with respect to the design of current controllers, we choose the d-q synchronous reference frame to make it easier to understand an...

  8. Current controller considering harmonics compensation for grid connected converter in DPGS applications

    DEFF Research Database (Denmark)

    Barote, L.; Marinescu, C.; Teodorescu, Remus

    2012-01-01

    This paper deals with the design and implementation of PR current control method in the αβ stationary reference frame for the grid side converter in Distributed Power Generation Systems (DPGS) applications. The goals of this paper are to implement a control technique for the grid side inverter...... including a LC filter, a compensation technique for low-order harmonics and to examine the grid current harmonic content with and without harmonic compensation. A comparative study in terms of current harmonic distortion between two different values of PR proportional gain running in steady state condition...

  9. MANGO – Modal Analysis for Grid Operation: A Method for Damping Improvement through Operating Point Adjustment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenyu; Zhou, Ning; Tuffner, Francis K.; Chen, Yousu; Trudnowski, Daniel J.; Diao, Ruisheng; Fuller, Jason C.; Mittelstadt, William A.; Hauer, John F.; Dagle, Jeffery E.

    2010-10-18

    Small signal stability problems are one of the major threats to grid stability and reliability in the U.S. power grid. An undamped mode can cause large-amplitude oscillations and may result in system breakups and large-scale blackouts. There have been several incidents of system-wide oscillations. Of those incidents, the most notable is the August 10, 1996 western system breakup, a result of undamped system-wide oscillations. Significant efforts have been devoted to monitoring system oscillatory behaviors from measurements in the past 20 years. The deployment of phasor measurement units (PMU) provides high-precision, time-synchronized data needed for detecting oscillation modes. Measurement-based modal analysis, also known as ModeMeter, uses real-time phasor measurements to identify system oscillation modes and their damping. Low damping indicates potential system stability issues. Modal analysis has been demonstrated with phasor measurements to have the capability of estimating system modes from both oscillation signals and ambient data. With more and more phasor measurements available and ModeMeter techniques maturing, there is yet a need for methods to bring modal analysis from monitoring to actions. The methods should be able to associate low damping with grid operating conditions, so operators or automated operation schemes can respond when low damping is observed. The work presented in this report aims to develop such a method and establish a Modal Analysis for Grid Operation (MANGO) procedure to aid grid operation decision making to increase inter-area modal damping. The procedure can provide operation suggestions (such as increasing generation or decreasing load) for mitigating inter-area oscillations.

  10. Decentral Smart Grid Control

    Science.gov (United States)

    Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.

  11. Decentral Smart Grid Control

    International Nuclear Information System (INIS)

    Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals. (paper)

  12. On-grid and Off-grid Operation of Multi-Input Single-Output DC/DC Converter based Fuel Cell Generation System

    Directory of Open Access Journals (Sweden)

    Noroozian

    2009-06-01

    Full Text Available This paper presents the modeling and simulation of a proton exchange membrane fuel cell (PEMFC generation system for off-grid and on-grid operation and configuration. A fuel cell DG system consists of a fuel cell power plant, a DC/DC converter and a DC/AC inverter. The dynamic model for fuel cell array and its power electronic interfacing are presented also a multi-input single output (MISO DC/DC converter and its control scheme is proposed and analyzed. This DC/DC converter is capable of interfacing fuel cell arrays to the DC/AC inverter. Also the mathematical model of the inverter is obtained by using average technique. Then the novel control strategy of DC/AC inverter for different operating conditions is demonstrated. The simulation results show the effectiveness of the suggested control systems under both on-grid and off-grid operation modes.

  13. Distribution Grid Integration of Photovoltaic Systems in Germany – Implications on Grid Planning and Grid Operation

    International Nuclear Information System (INIS)

    Stetz, Thomas

    2017-01-01

    Photovoltaic is the most dispersed renewable energy source in Germany, typically interconnected to low and medium voltage systems. In recent years, cost-intensive grid reinforcements had to be undertaken all across Germany’s distribution grids in order to increase their hosting capacity for these photovoltaic installations. This paper presents an overview on research results which show that photovoltaic itself can provide ancillary services to reduce its cost of interconnection. Especially the provision of reactive power turned out to be a technically effective and economically efficient method to increase a grid’s hosting capacity for photovoltaic capacity. Different reactive power control methods were investigated, revealing significant differences with regards to their grid operation implications. Business cases for residential-scale photovoltaic applications have shifted from feed-in-tariff based active power feed-in to self-consumption. However, increasing the photovoltaic self-consumption by additional battery-storage systems is still not economically reliable in Germany. (author)

  14. Online Optimization Method for Operation of Generators in a Micro Grid

    Science.gov (United States)

    Hayashi, Yasuhiro; Miyamoto, Hideki; Matsuki, Junya; Iizuka, Toshio; Azuma, Hitoshi

    Recently a lot of studies and developments about distributed generator such as photovoltaic generation system, wind turbine generation system and fuel cell have been performed under the background of the global environment issues and deregulation of the electricity market, and the technique of these distributed generators have progressed. Especially, micro grid which consists of several distributed generators, loads and storage battery is expected as one of the new operation system of distributed generator. However, since precipitous load fluctuation occurs in micro grid for the reason of its smaller capacity compared with conventional power system, high-accuracy load forecasting and control scheme to balance of supply and demand are needed. Namely, it is necessary to improve the precision of operation in micro grid by observing load fluctuation and correcting start-stop schedule and output of generators online. But it is not easy to determine the operation schedule of each generator in short time, because the problem to determine start-up, shut-down and output of each generator in micro grid is a mixed integer programming problem. In this paper, the authors propose an online optimization method for the optimal operation schedule of generators in micro grid. The proposed method is based on enumeration method and particle swarm optimization (PSO). In the proposed method, after picking up all unit commitment patterns of each generators satisfied with minimum up time and minimum down time constraint by using enumeration method, optimal schedule and output of generators are determined under the other operational constraints by using PSO. Numerical simulation is carried out for a micro grid model with five generators and photovoltaic generation system in order to examine the validity of the proposed method.

  15. Ion extraction capabilities of closely spaced grids

    Science.gov (United States)

    Rovang, D. C.; Wilbur, P. J.

    1982-01-01

    The ion extraction capabilities of accelerator systems with small screen hole diameters (less than 2.0 mm) are investigated at net-accelerating voltages of 100, 300, and 500 V. Results show that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 1.0 mm, but impingement-limited performance was found to be dependent on the grid separation distance, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained using small hole diameters and closely spaced grids indicate a new mode of grid operation where high current density operation can be achieved with a specified net acceleration voltage by operating the grids at a high rather than low net-to-total acceleration voltage. Beam current densities as high as 25 mA/sq cm were obtained using grids with 1.0 mm diameter holes operating at a net accelerating voltage of 500 V.

  16. Thyristor based short circuit current injection in isolated grids

    OpenAIRE

    Hoff, Bjarte; Sharma, Pawan; Østrem, Trond

    2017-01-01

    This paper proposes a thyristor based short circuit current injector for providing short circuit current in isolated and weak grids, where sufficient fault current to trigger circuit breakers may not be available. This will allow the use of conventional miniature circuit breakers, which requires high fault current for instantaneous tripping. The method has been validated through experiments.

  17. Method to predetermine current/power flow change in a dc grid

    DEFF Research Database (Denmark)

    2017-01-01

    occurs at one of the AC/DC converters; establishing a generalized droop feedback gain matrix G; controlling current/power flow within DC grid towards predefined setpoints, by use of control law. The invention presents an analytical approach to derive the generalized feedback gain allowing......The invention relates to a method for controlling current/power flow within a power transmission system, comprising two or more interconnected converter stations. The method comprises the steps of: providing a DC admittance matrix given from the DC grid; providing a current distribution matrix...... for a number of, such as for all possible AC/DC converter outages; providing a DC bus voltage vector for the DC grid; the DC bus voltage vector being a vector containing the values of the voltage change at the AC/DC converters, measured at the AC/DC converters, before, during and after a forced current change...

  18. Integrating Renewable Generation into Grid Operations: Four International Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mylrea, Michael E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Botterud, Audun [Argonne National Lab. (ANL), Argonne, IL (United States); O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-22

    International experiences with power sector restructuring and the resultant impacts on bulk power grid operations and planning may provide insight into policy questions for the evolving United States power grid as resource mixes are changing in response to fuel prices, an aging generation fleet and to meet climate goals. Australia, Germany, Japan and the UK were selected to represent a range in the level and attributes of electricity industry liberalization in order to draw comparisons across a variety of regions in the United States such as California, ERCOT, the Southwest Power Pool and the Southeast Reliability Region. The study draws conclusions through a literature review of the four case study countries with regards to the changing resource mix and the electricity industry sector structure and their impact on grid operations and planning. This paper derives lessons learned and synthesizes implications for the United States based on answers to the above questions and the challenges faced by the four selected countries. Each country was examined to determine the challenges to their bulk power sector based on their changing resource mix, market structure, policies driving the changing resource mix, and policies driving restructuring. Each countries’ approach to solving those changes was examined, as well as how each country’s market structure either exacerbated or mitigated the approaches to solving the challenges to their bulk power grid operations and planning. All countries’ policies encourage renewable energy generation. One significant finding included the low- to zero-marginal cost of intermittent renewables and its potential negative impact on long-term resource adequacy. No dominant solution has emerged although a capacity market was introduced in the UK and is being contemplated in Japan. Germany has proposed the Energy Market 2.0 to encourage flexible generation investment. The grid operator in Australia proposed several approaches to maintaining

  19. Mitigation of Grid-Current Distortion for LCL-Filtered Voltage-Source Inverter with Inverter-Current Feedback Control

    DEFF Research Database (Denmark)

    Xin, Zhen; Mattavelli, Paolo; Yao, WenLi

    2018-01-01

    harmonics can freely flow into the filter capacitor. In this case, because of the loss of harmonic information, traditional harmonic controllers fail to mitigate the grid current distortion. Although this problem may be avoided using the grid voltage feedforward scheme, the required differentiators may...

  20. Robust low frequency current ripple elimination algorithm for grid-connected fuel cell systems with power balancing technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Soo; Choe, Gyu-Yeong; Lee, Byoung-Kuk [School of Information and Communication Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Kang, Hyun-Soo [R and D Center, Advanced Drive Technology (ADT) Company, 689-26 Geumjeong-dong, Gunpo-si, Gyeonggi-do 435-862 (Korea, Republic of)

    2011-05-15

    The low frequency current ripple in grid-connected fuel cell systems is generated from dc-ac inverter operation, which generates 60 Hz fundamental component, and gives harmful effects on fuel cell stack itself, such as making cathode surface responses slower, causing an increase of more than 10% in the fuel consumption, creating oxygen starvation, causing a reduction in the operating lifetime, and incurring a nuisance tripping such as overload situation. With these reasons, low frequency current ripple makes fuel cell system unstable and lifetime of fuel cell stack itself short. This paper presents a fast and robust control algorithm to eliminate low frequency current ripple in grid-connected fuel cell systems. Compared with the conventional methods, in the proposed control algorithm, dc link voltage controller is shifted from dc-dc converter to dc-ac inverter, resulting that dc-ac inverter handles dc link voltage control and output current control simultaneously with help of power balancing technique. The results indicate that the proposed algorithm can not only completely eliminate current ripple but also significantly reduce the overshoot or undershoot during transient states without any extra hardware. The validity of the proposed algorithm is verified by computer simulations and also by experiments with a 1 kW laboratory prototype. (author)

  1. Market partner orientation in power grid operation; Marktpartnerorientierung im Netzbetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Claudia; Gebhardt, Andreas [Buelow und Consorten GmbH, Hamburg (Germany)

    2012-11-15

    Customer orientation is often neglected in power grid operation. Power grid owners have natural monopolies and defined territories and so far had little reason to consider their customers' needs. This is changing with changed boundary conditions. In the competition for concessions and customers for non-regulated services, those grid owners will prevail in the long run wo are aware of their market partners, their power and expectations, and wo are prepared to implement profit-oriented customer orientation measures. (orig.)

  2. A Harmonic Current Suppression Control Strategy for Droop-Controlled Inverter Connected to the Distorted Grid

    DEFF Research Database (Denmark)

    Wei, Feng; Sun, Kai; Guan, Yajuan

    2015-01-01

    currents. Therefore, the reason of generation of distorted grid-feeding current of GF-VCI under the distorted grid voltage is investigated firstly in this paper. Then, a harmonic grid-feeding current suppression control strategy for GF-VCI is proposed. Two different filters are compared and analysed before...... voltage component at the point of common coupling. As a result, the difference of harmonic voltage between PCC and GF-VCI is reduced and the THDi of grid feeding-currents is decreased. Finally, the proposed control strategy is verified through simulations and experimental results....

  3. Decision Optimization for Power Grid Operating Conditions with High- and Low-Voltage Parallel Loops

    Directory of Open Access Journals (Sweden)

    Dong Yang

    2017-05-01

    Full Text Available With the development of higher-voltage power grids, the high- and low-voltage parallel loops are emerging, which lead to energy losses and even threaten the security and stability of power systems. The multi-infeed high-voltage direct current (HVDC configurations widely appearing in AC/DC interconnected power systems make this situation even worse. Aimed at energy saving and system security, a decision optimization method for power grid operating conditions with high- and low-voltage parallel loops is proposed in this paper. Firstly, considering hub substation distribution and power grid structure, parallel loop opening schemes are generated with GN (Girvan-Newman algorithms. Then, candidate opening schemes are preliminarily selected from all these generated schemes based on a filtering index. Finally, with the influence on power system security, stability and operation economy in consideration, an evaluation model for candidate opening schemes is founded based on analytic hierarchy process (AHP. And a fuzzy evaluation algorithm is used to find the optimal scheme. Simulation results of a New England 39-bus system and an actual power system validate the effectiveness and superiority of this proposed method.

  4. Harmonic current control for LCL-filtered VSCs connected to ultra-weak grids

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Yang, Dongsheng; Blaabjerg, Frede

    2017-01-01

    This paper addresses the harmonic current control for LCL-filtered Voltage-Source Converters (VSCs) connected to ultra-weak (high-impedance) grids. It is shown that the harmonic current controllers tend to be unstable as the Short-Circuit Ratio (SCR) of the system reduces. An active stabilizing...... control scheme is thus proposed by feeding back the filter capacitor voltage and the converter-side current. The method not only stabilizes the harmonic current control with a wide range of SCR values, but also mitigates harmonic distortions in the grid-side current of the VSC. The stabilizing mechanism...

  5. Operation Optimization in a Smart Micro-Grid in the Presence of Distributed Generation and Demand Response

    Directory of Open Access Journals (Sweden)

    Yongli Wang

    2018-03-01

    Full Text Available With the application of distributed generation and the development of smart grid technology, micro-grid, an economic and stable power grid, tends to play an important role in the demand side management. Because micro-grid technology and demand response have been widely applied, what Demand Response actions can realize the economic operation of micro-grid has become an important issue for utilities. In this proposed work, operation optimization modeling for micro-grid is done considering distributed generation, environmental factors and demand response. The main contribution of this model is to optimize the cost in the context of considering demand response and system operation. The presented optimization model can reduce the operation cost of micro-grid without bringing discomfort to the users, thus increasing the consumption of clean energy effectively. Then, to solve this operational optimization problem, genetic algorithm is used to implement objective function and DR scheduling strategy. In addition, to validate the proposed model, it is employed on a smart micro-grid from Tianjin. The obtained numerical results clearly indicate the impact of demand response on economic operation of micro-grid and development of distributed generation. Besides, a sensitivity analysis on the natural gas price is implemented according to the situation of China, and the result shows that the natural gas price has a great influence on the operation cost of the micro-grid and effect of demand response.

  6. Grid-Current-Feedback Control for LCL-Filtered Grid Converters With Enhanced Stability

    DEFF Research Database (Denmark)

    Xin, Zhen; Wang, Xiongfei; Loh, Poh Chiang

    2017-01-01

    This paper proposes a Second-Order-Generalized- Integrator (SOGI)-based time delay compensation method for extending the stable region of dual-loop Grid-Current-Feedback (GCF) control system. According to the analysis, stable region of the dual-loop system should be designed below a certain...... critical frequency, before time delay compensation method can be applied. To always meet the requirement, relationship between single-loop converter-current-feedback and dual-loop GCF control is clarified, before a robust inner-loop gain for the dualloop GCF scheme is determined. Enforcing this gain allows...

  7. Design and operation of grid-interactive thin-film silicon PV systems

    Science.gov (United States)

    Marion, Bill; Atmaram, Gobind; Lashway, Clin; Strachan, John W.

    Results are described from the operation of 11 thin-film amorphous silicon photovoltaic systems at three test facilities: the Florida Solar Energy Center, the New Mexico Solar Energy Institute, and Sandia National Laboratories. Commercially available modules from four US manufacturers are used in these systems, with array sizes from 133 to 750 W peak. Measured array efficiencies are from 3.1 to 4.8 percent. Except for one manufacturer, array peak power is in agreement with the calculated design ratings. For certain grid-connected systems, nonoptimal operation exists because the array peak power voltage is below the lower voltage limit of the power conditioning system. Reliability problems are found in two manufacturers' modules when shorts to ground and terminal corrosion occur. Array leakage current data are presented.

  8. Analysis and Design of Improved Weighted Average Current Control Strategy for LCL-Type Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Han, Yang; Li, Zipeng; Yang, Ping

    2017-01-01

    The LCL grid-connected inverter has the ability to attenuate the high-frequency current harmonics. However, the inherent resonance of the LCL filter affects the system stability significantly. To damp the resonance effect, the dual-loop current control can be used to stabilize the system. The grid...... Control Strategy for LCL-Type Grid-Connected Inverters. Available from: https://www.researchgate.net/publication/313734269_Analysis_and_Design_of_Improved_Weighted_Average_Current_Control_Strategy_for_LCL-Type_Grid-Connected_Inverters [accessed Apr 20, 2017]....... current plus capacitor current feedback system is widely used for its better transient response and high robustness against the grid impedance variations. While the weighted average current (WAC) feedback scheme is capable to provide a wider bandwidth at higher frequencies but show poor stability...

  9. Optimal Control of Micro Grid Operation Mode Seamless Switching Based on Radau Allocation Method

    Science.gov (United States)

    Chen, Xiaomin; Wang, Gang

    2017-05-01

    The seamless switching process of micro grid operation mode directly affects the safety and stability of its operation. According to the switching process from island mode to grid-connected mode of micro grid, we establish a dynamic optimization model based on two grid-connected inverters. We use Radau allocation method to discretize the model, and use Newton iteration method to obtain the optimal solution. Finally, we implement the optimization mode in MATLAB and get the optimal control trajectory of the inverters.

  10. Inrush Transient Current Analysis and Suppression of Photovoltaic Grid-Connected Inverters During Voltage Sag

    DEFF Research Database (Denmark)

    Li, Zhongyu; Zhao, Rende; Xin, Zhen

    2016-01-01

    The Inrush Transient Current (ITC) in the output of the photovoltaic grid-connected inverters is usually generated when grid voltage sag occurs, which can trigger the protection of the grid-connected inverters, and even destroy the semiconductor switches. Then, the grid-connected inverters...

  11. Plug-and-Play Design of Current Controllers for Grid-feeding Converters in DC Microgrids

    DEFF Research Database (Denmark)

    Han, Renke; Tucci, Michele; Soloperto, Raffaele

    2017-01-01

    In this paper, we address the problem of synthesizing decentralized current controllers for grid-feeding converters of current-controlled distributed generation units (CDGUs) in dc microgrids (MGs). Notably, a plug-and-play (PnP) design procedure is proposed to achieve grid-feeding current tracking...

  12. Transmission Technologies and Operational Characteristic Analysis of Hybrid UHV AC/DC Power Grids in China

    Science.gov (United States)

    Tian, Zhang; Yanfeng, Gong

    2017-05-01

    In order to solve the contradiction between demand and distribution range of primary energy resource, Ultra High Voltage (UHV) power grids should be developed rapidly to meet development of energy bases and accessing of large-scale renewable energy. This paper reviewed the latest research processes of AC/DC transmission technologies, summarized the characteristics of AC/DC power grids, concluded that China’s power grids certainly enter a new period of large -scale hybrid UHV AC/DC power grids and characteristics of “strong DC and weak AC” becomes increasingly pro minent; possible problems in operation of AC/DC power grids was discussed, and interaction or effect between AC/DC power grids was made an intensive study of; according to above problems in operation of power grids, preliminary scheme is summarized as fo llows: strengthening backbone structures, enhancing AC/DC transmission technologies, promoting protection measures of clean energ y accessing grids, and taking actions to solve stability problems of voltage and frequency etc. It’s valuable for making hybrid UHV AC/DC power grids adapt to operating mode of large power grids, thus guaranteeing security and stability of power system.

  13. Balanced Current Control Strategy for Current Source Rectifier Stage of Indirect Matrix Converter under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Yeongsu Bak

    2016-12-01

    Full Text Available This paper proposes a balanced current control strategy for the current source rectifier (CSR stage of an indirect matrix converter (IMC under unbalanced grid voltage conditions. If the three-phase grid connected to the voltage source inverter (VSI of the IMC has unbalanced voltage conditions, it affects the currents of the CSR stage and VSI stage, and the currents are distorted. Above all, the distorted currents of the CSR stage cause instability in the overall system, which can affect the life span of the system. Therefore, in this paper, a control strategy for balanced currents in the CSR stage is proposed. To achieve balanced currents in the CSR stage, the VSI stage should receive DC power without ripple components from the CSR stage. This is implemented by controlling the currents in the VSI stage. Therefore, the proposed control strategy decouples the positive and negative phase-sequence components existing in the unbalanced voltages and currents of the VSI stage. Using the proposed control strategy under unbalanced grid voltage conditions, the stability and life span of the overall system can be improved. The effectiveness of the proposed control strategy is verified by simulation and experimental results.

  14. ATLAS operations in the GridKa T1/T2 Cloud

    International Nuclear Information System (INIS)

    Duckeck, G; Serfon, C; Walker, R; Harenberg, T; Kalinin, S; Schultes, J; Kawamura, G; Leffhalm, K; Meyer, J; Nderitu, S; Olszewski, A; Petzold, A; Sundermann, J E

    2011-01-01

    The ATLAS GridKa cloud consists of the GridKa Tier1 centre and 12 Tier2 sites from five countries associated to it. Over the last years a well defined and tested operation model evolved. Several core cloud services need to be operated and closely monitored: distributed data management, involving data replication, deletion and consistency checks; support for ATLAS production activities, which includes Monte Carlo simulation, reprocessing and pilot factory operation; continuous checks of data availability and performance for user analysis; software installation and database setup. Of crucial importance is good communication between sites, operations team and ATLAS as well as efficient cloud level monitoring tools. The paper gives an overview of the operations model and ATLAS services within the cloud.

  15. H∞ Robust Current Control for DFIG Based Wind Turbine subject to Grid Voltage Distortions

    DEFF Research Database (Denmark)

    Wang, Yun; Wu, Qiuwei; Gong, Wenming

    2016-01-01

    This paper proposes an H∞ robust current controller for doubly fed induction generator (DFIG) based wind turbines (WTs) subject to grid voltage distortions. The controller is to mitigate the impact of the grid voltage distortions on rotor currents with DFIG parameter perturbation. The grid voltage...... distortions considered include asymmetric voltage dips and grid background harmonics. An uncertain DFIG model is developed with uncertain factors originating from distorted stator voltage, and changed generator parameters due to the flux saturation effect, the skin effect, etc. Weighting functions...... are designed to efficiently track the unbalanced current components and the 5th and 7th background harmonics. The robust stability (RS) and robust performance (RP) of the proposed controller are verified by the structured singular value µ. The performance of the H∞ robust current controller was demonstrated...

  16. Improved control strategy for the three-phase grid-connected inverter

    DEFF Research Database (Denmark)

    Yao, Zhilei; Xiao, Lan; Guerrero, Josep M.

    2015-01-01

    An improved control strategy for the three-phase grid-connected inverter with space vector pulse width modulation (SVPWM) is proposed. When the grid current contains harmonics, the d- and q-axis grid currents will be interacted, and then the waveform quality of the grid current will be poorer....... As the reference output voltage cannot directly reflect the change of the reference grid current, the dynamic response of the grid-connected inverter is slow. In order to solve the aforementioned problems, the d- and q-axis grid currents in the decoupled components of the grid current controller can be substituted...... by the d- and q-axis reference grid currents, respectively. The operating principles of the traditional and proposed control methods are illustrated. Experimental results for a 15-kVA three-phase grid-connected inverter with SVPWM verify the theoretical analysis. Compared with the traditional control...

  17. New grid-planning and certification approaches for the large-scale offshore-wind farm grid-connection systems

    Energy Technology Data Exchange (ETDEWEB)

    Heising, C.; Bartelt, R. [Avasition GmbH, Dortmund (Germany); Zadeh, M. Koochack; Lebioda, T.J.; Jung, J. [TenneT Offshore GmbH, Bayreuth (Germany)

    2012-07-01

    Stable operation of the offshore-wind farms (OWF) and stable grid connection under stationary and dynamic conditions are essential to achieve a stable public power supply. To reach this aim, adequate grid-planning and certification approaches are a major advantage. Within this paper, the fundamental characteristics of the offshore-wind farms and their grid-connection systems are given. The main goal of this research project is to study the stability of the offshore grid especially in terms of subharmonic stability for the likely future extension stage of the offshore grids i.e. having parallel connection of two or more HVDC links and for certain operating scenarios e.g. overload scenario. The current requirements according to the grid code are not the focus of this research project. The goal is to study and define potential additional grid code requirements, simulations, tests and grid planning methods for the future. (orig.)

  18. A Systematic Multi-Time Scale Solution for Regional Power Grid Operation

    Science.gov (United States)

    Zhu, W. J.; Liu, Z. G.; Cheng, T.; Hu, B. Q.; Liu, X. Z.; Zhou, Y. F.

    2017-10-01

    Many aspects need to be taken into consideration in a regional grid while making schedule plans. In this paper, a systematic multi-time scale solution for regional power grid operation considering large scale renewable energy integration and Ultra High Voltage (UHV) power transmission is proposed. In the time scale aspect, we discuss the problem from month, week, day-ahead, within-day to day-behind, and the system also contains multiple generator types including thermal units, hydro-plants, wind turbines and pumped storage stations. The 9 subsystems of the scheduling system are described, and their functions and relationships are elaborated. The proposed system has been constructed in a provincial power grid in Central China, and the operation results further verified the effectiveness of the system.

  19. Distributed Energy Systems Integration and Demand Optimization for Autonomous Operations and Electric Grid Transactions

    Energy Technology Data Exchange (ETDEWEB)

    Ghatikar, Girish [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Greenlots, San Francisco, CA (United States); Mashayekh, Salman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stadler, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Center for Energy and Innovation Technologies (Austria); Yin, Rongxin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Liu, Zhenhua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-11-29

    Distributed power systems in the U.S. and globally are evolving to provide reliable and clean energy to consumers. In California, existing regulations require significant increases in renewable generation, as well as identification of customer-side distributed energy resources (DER) controls, communication technologies, and standards for interconnection with the electric grid systems. As DER deployment expands, customer-side DER control and optimization will be critical for system flexibility and demand response (DR) participation, which improves the economic viability of DER systems. Current DER systems integration and communication challenges include leveraging the existing DER and DR technology and systems infrastructure, and enabling optimized cost, energy and carbon choices for customers to deploy interoperable grid transactions and renewable energy systems at scale. Our paper presents a cost-effective solution to these challenges by exploring communication technologies and information models for DER system integration and interoperability. This system uses open standards and optimization models for resource planning based on dynamic-pricing notifications and autonomous operations within various domains of the smart grid energy system. It identifies architectures and customer engagement strategies in dynamic DR pricing transactions to generate feedback information models for load flexibility, load profiles, and participation schedules. The models are tested at a real site in California—Fort Hunter Liggett (FHL). Furthermore, our results for FHL show that the model fits within the existing and new DR business models and networked systems for transactive energy concepts. Integrated energy systems, communication networks, and modeling tools that coordinate supply-side networks and DER will enable electric grid system operators to use DER for grid transactions in an integrated system.

  20. Investment, firm value, and risk for a system operator balancing energy grids

    International Nuclear Information System (INIS)

    Dockner, Engelbert J.; Kucsera, Dénes; Rammerstorfer, Margarethe

    2013-01-01

    With the liberalization of energy markets integrated energy companies have separated into entities that specialize in production and/or transmission of energy. Transmission of energy requires balancing the grid to guarantee system security, which is performed by the (independent) system operator (SO). When the SO faces stochastic demand, grid balancing has sizeable consequences on current and future profits, and hence, on firm value and firm risk. We explore these value and risk consequences with and without an investment option to expand transmission capacity. We show that firm value consists of the value of the transmission capacity in place plus the value of a short put and a short call option that are the result of the SO's balancing actions. Firm risk without investment option is non-linear and determined by the short option positions. It is decreasing with increasing energy demand. The existence of an option to expand transmission capacity increases firm value and firm risk. - Highlights: ► Grid balancing under stochastic demand affect current and future revenues, and firm value and firm risk. ► Balancing firm value consists of the value of the transmission capacity plus the value of a short strangle. ► Firm risk without investment option is determined by the short strangle and decreasing with increasing energy demand. ► The existence of an expansion option implies that transmission capacity increases firm value and firm risk

  1. Battery impedance spectroscopy using bidirectional grid connected

    Indian Academy of Sciences (India)

    Keywords. Impedance spectroscopy; grid connection; battery converter; state of charge; health monitoring ... The converter is grid connected and controlled to operate at unity power factor. Additional ... Sadhana. Current Issue : Vol. 43, Issue 6.

  2. Quantifiably secure power grid operation, management, and evolution :

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Genetha Anne.; Watson, Jean-Paul; Silva Monroy, Cesar Augusto; Gramacy, Robert B.

    2013-09-01

    This report summarizes findings and results of the Quantifiably Secure Power Grid Operation, Management, and Evolution LDRD. The focus of the LDRD was to develop decisionsupport technologies to enable rational and quantifiable risk management for two key grid operational timescales: scheduling (day-ahead) and planning (month-to-year-ahead). Risk or resiliency metrics are foundational in this effort. The 2003 Northeast Blackout investigative report stressed the criticality of enforceable metrics for system resiliency the grids ability to satisfy demands subject to perturbation. However, we neither have well-defined risk metrics for addressing the pervasive uncertainties in a renewable energy era, nor decision-support tools for their enforcement, which severely impacts efforts to rationally improve grid security. For day-ahead unit commitment, decision-support tools must account for topological security constraints, loss-of-load (economic) costs, and supply and demand variability especially given high renewables penetration. For long-term planning, transmission and generation expansion must ensure realized demand is satisfied for various projected technological, climate, and growth scenarios. The decision-support tools investigated in this project paid particular attention to tailoriented risk metrics for explicitly addressing high-consequence events. Historically, decisionsupport tools for the grid consider expected cost minimization, largely ignoring risk and instead penalizing loss-of-load through artificial parameters. The technical focus of this work was the development of scalable solvers for enforcing risk metrics. Advanced stochastic programming solvers were developed to address generation and transmission expansion and unit commitment, minimizing cost subject to pre-specified risk thresholds. Particular attention was paid to renewables where security critically depends on production and demand prediction accuracy. To address this

  3. A single phase photovoltaic inverter control for grid connected system

    Indian Academy of Sciences (India)

    This paper presents a control scheme for single phase grid connected photovoltaic (PV) system operating under both grid connected and isolated grid mode. The control techniques include voltage and current control of grid-tie PV inverter. During grid connected mode, grid controls the amplitude and frequency of the PV ...

  4. Power grid current harmonics mitigation drawn on low voltage rated switching devices with effortless control

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Hugo S.; Anunciada, Victor; Borges, Beatriz V. [Power Electronics Group, Instituto de Telecomunicacoes, Lisbon (Portugal); Instituto Superior Tecnico - Universidade Tecnica de Lisboa, Lisbon (Portugal)

    2010-01-15

    The great majority of the existing hybrid active power filter solutions is normally focused in 3{phi} systems and, in general, concentrates its domain of application in specific loads with deterministic behavior. Because common use grids do not exhibit these characteristics, it is mandatory to develop solutions for more generic scenarios, encouraging the use of less classical hybrid solutions. In fact, due to the widely use of switch mode converters in a great variety of consumer electronics, the problematic of mains current harmonic mitigation is no longer an exclusive matter of 3{phi} systems. The contribution of this paper is to present a shunt hybrid active power filter topology, initially conceived to work in 1{phi} domestic grids, able to operate the inverter at a voltage rate that can be lower than 10% of the mains voltage magnitude, even under nonspecific working conditions. In addition, the results shown in this paper demonstrate that this topology can, without lack of generality, be suitable to medium voltage (1{phi} or 3{phi}) systems. A new control approach for the proposed topology is discussed in this paper. The control method exhibits an extremely simple architecture requiring single point current sensing only, with no need for any kind of reference. Its practical implementation can be fulfilled by using very few, common use, operational amplifiers. The principle of operation, design criteria, simulation predictions and experimental results are presented and discussed. (author)

  5. Harmonic current prediction by impedance modeling of grid-tied inverters

    DEFF Research Database (Denmark)

    Pereira, Heverton A.; Freijedo, Francisco D.; Silva, M. M.

    2017-01-01

    and harmonic voltage profiles. Results reinforce that impedance models can represent with relatively accuracy the harmonic current emitted by the PV plants at the point of common coupling (PCC). Lastly, a stress test is performed to show how a variation in the harmonic voltage phase angle impacts the PV plant...... impedance models when used in harmonic integration studies. It is aimed to estimate the harmonic current contribution as a function of the background harmonic voltages components. Time domain simulations based on detailed and average models are compared with the impedance model developed in frequency domain....... In grids with harmonic voltages, impedance models can predict the current distortion for all active power injection scenarios. Furthermore, measurements in a 1.4 MW PV plant connected in a distributed grid are used to validate the simulation based on impedance models during different power injections...

  6. Operating conditions of batteries in off-grid renewable energy systems

    DEFF Research Database (Denmark)

    Svoboda, V.; Wenzl, H.; Kaiser, R.

    2007-01-01

    for batteries. Categories are defined in such a way that batteries belonging to the same category are subjected to similar operating conditions and a similar combination of stress factors. The results provide a comprehensive overview of battery operating conditions in existing off-grid renewable energy systems...

  7. Low-Voltage Ride-Through Operation of Power Converters in Grid-Interactive Microgrids by Using Negative-Sequence Droop Control

    DEFF Research Database (Denmark)

    Zhao, Xin; Guerrero, Josep M.; Savaghebi, Mehdi

    2017-01-01

    of the utility grid during grid faults. In this paper, a LVRT control strategy based on positive/negative sequence droop control is proposed for grid-interactive MGs to ride-through voltage sags with not only inductive/resistive, but also complex line impedance. By using the proposed control strategy, MGs can......Due to the increasing penetration level of microgrids (MGs), it becomes a critical issue for MGs to help sustaining power system stability. Therefore, ancillary services, such as the low-voltage ride-through (LVRT) capability should be incorporated in MGs in order to guarantee stable operation...... support the grid voltage, make profits, and also ride-through the voltage dip during the whole fault period. A two layer hierarchical control strategy is proposed in this paper. The primary controller consists of voltage and current inner loops, a conventional droop control and a virtual impedance loop...

  8. Distributed hierarchical control architecture for integrating smart grid assets during normal and disrupted operations

    Science.gov (United States)

    Kalsi, Karan; Fuller, Jason C.; Somani, Abhishek; Pratt, Robert G.; Chassin, David P.; Hammerstrom, Donald J.

    2017-09-12

    Disclosed herein are representative embodiments of methods, apparatus, and systems for facilitating operation and control of a resource distribution system (such as a power grid). Among the disclosed embodiments is a distributed hierarchical control architecture (DHCA) that enables smart grid assets to effectively contribute to grid operations in a controllable manner, while helping to ensure system stability and equitably rewarding their contribution. Embodiments of the disclosed architecture can help unify the dispatch of these resources to provide both market-based and balancing services.

  9. Enhanced Decoupled Double Synchronous Reference Frame Current Controller for Unbalanced Grid-Voltage Conditions

    DEFF Research Database (Denmark)

    Reyes, M.; Rodriguez, Pedro; Vazquez, S.

    2012-01-01

    . In these codes, the injection of positive- and negative-sequence current components becomes necessary for fulfilling, among others, the low-voltage ride-through requirements during balanced and unbalanced grid faults. However, the performance of classical dq current controllers, applied to power converters......, under unbalanced grid-voltage conditions is highly deficient, due to the unavoidable appearance of current oscillations. This paper analyzes the performance of the double synchronous reference frame controller and improves its structure by adding a decoupling network for estimating and compensating...

  10. Impact of wind power plant reactive current injection during asymmetrical grid faults

    DEFF Research Database (Denmark)

    Göksu, Ömer; Teodorescu, Remus; Bak, Claus Leth

    2013-01-01

    As more renewable energy sources, especially more wind turbines (WTs) are installed in the power system; grid codes for wind power integration are being generated to sustain stable power system operation with non-synchronous generation. Common to most of the grid codes, wind power plants (WPPs...... faults, is investigated, which was not considered in the wind power impact studies before....

  11. Knowledge Management for Wireless Grid Operation Centers

    OpenAIRE

    Bordetsky, Alex; Dolk, Daniel

    2002-01-01

    Proceedings of the 35th Hawaii International Conference on System Sciences - 2002 Our objective is to develop generalized principles for grid operations centers that can be applied to specific domains. We focus on the domain of wireless telecommunications NOCs (WNOCs) as a starting point in this process. To address this problem, we focus specifically on the knowledge requirements for service-based decision support within wireless telecommunications. We use a Mission...

  12. Optimal economic and environment operation of micro-grid power systems

    International Nuclear Information System (INIS)

    Elsied, Moataz; Oukaour, Amrane; Gualous, Hamid; Lo Brutto, Ottavio A.

    2016-01-01

    Highlights: • Real-time energy management system for Micro-Grid power systems is introduced. • The management system considered cost objective function and emission constraints. • The optimization problem is solved using Binary Particle Swarm Algorithm. • Advanced real-time interface libraries are used to run the optimization code. - Abstract: In this paper, an advanced real-time energy management system is proposed in order to optimize micro-grid performance in a real-time operation. The proposed strategy of the management system capitalizes on the power of binary particle swarm optimization algorithm to minimize the energy cost and carbon dioxide and pollutant emissions while maximizing the power of the available renewable energy resources. Advanced real-time interface libraries are used to run the optimization code. The simulation results are considered for three different scenarios considering the complexity of the proposed problem. The proposed management system along with its control system is experimentally tested to validate the simulation results obtained from the optimization algorithm. The experimental results highlight the effectiveness of the proposed management system for micro-grids operation.

  13. A Highly Robust Single-Loop Current Control Scheme for Grid-Connected Inverter with an Improved LCCL Filter Configuration

    DEFF Research Database (Denmark)

    Pan, Donghua; Ruan, Xinbo; Wang, Xiongfei

    2018-01-01

    Single-loop current control is an attractive scheme for the LCL-type grid-connected inverter due to its simplicity and low cost. However, conventional single-loop control schemes, which command either the inverter current or the grid current, are subject to the specific resonance frequency regions....... The weighted average current control, which splits the filter capacitor into two parts (in form of an LCCL filter) and commands the current flowing between these two parts, is independent of the resonance frequency, but on the other hand, it is limited by the poor sensitivity to the grid impedance variation...... and weak stability in the grid current. These limitations are comprehensively explained in this paper and then addressed by identifying that the single-loop weighted average current control is equivalent to the dual-loop grid current control with an inherent capacitor current active damping. By tuning...

  14. Ion extraction capabilities of two-grid accelerator systems

    International Nuclear Information System (INIS)

    Rovang, D.C.; Wilbur, P.J.

    1984-02-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems

  15. Grid Converters for Photovoltaic and Wind Power Systems

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Liserre, Marco; Rodriguez, Pedro

    power, operation within a wide range of voltage and frequency, voltage ride-through capability, reactive current injection during faults, grid services support. This book explains the topologies, modulation and control of grid converters for both photovoltaic and wind power applications. In addition...... to power electronics, this book focuses on the specific applications in photovoltaic wind power systems where grid condition is an essential factor. With a review of the most recent grid requirements for photovoltaic and wind power systems, the book discusses these other relevant issues: Modern grid...... inverter topologies for photovoltaic and wind turbines Islanding detection methods for photovoltaic systems Synchronization techniques based on second order generalized integrators (SOGI) Advanced synchronization techniques with robust operation under grid unbalance condition grid filter design and active...

  16. Distributed Optimization of Sustainable Power Dispatch and Flexible Consumer Loads for Resilient Power Grid Operations

    Science.gov (United States)

    Srikantha, Pirathayini

    Today's electric grid is rapidly evolving to provision for heterogeneous system components (e.g. intermittent generation, electric vehicles, storage devices, etc.) while catering to diverse consumer power demand patterns. In order to accommodate this changing landscape, the widespread integration of cyber communication with physical components can be witnessed in all tenets of the modern power grid. This ubiquitous connectivity provides an elevated level of awareness and decision-making ability to system operators. Moreover, devices that were typically passive in the traditional grid are now `smarter' as these can respond to remote signals, learn about local conditions and even make their own actuation decisions if necessary. These advantages can be leveraged to reap unprecedented long-term benefits that include sustainable, efficient and economical power grid operations. Furthermore, challenges introduced by emerging trends in the grid such as high penetration of distributed energy sources, rising power demands, deregulations and cyber-security concerns due to vulnerabilities in standard communication protocols can be overcome by tapping onto the active nature of modern power grid components. In this thesis, distributed constructs in optimization and game theory are utilized to design the seamless real-time integration of a large number of heterogeneous power components such as distributed energy sources with highly fluctuating generation capacities and flexible power consumers with varying demand patterns to achieve optimal operations across multiple levels of hierarchy in the power grid. Specifically, advanced data acquisition, cloud analytics (such as prediction), control and storage systems are leveraged to promote sustainable and economical grid operations while ensuring that physical network, generation and consumer comfort requirements are met. Moreover, privacy and security considerations are incorporated into the core of the proposed designs and these

  17. Control strategies for gas turbine generators for grid connected and islanding operations

    DEFF Research Database (Denmark)

    Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    fine while a DG is connected to a grid, might not work as desired while it is islanded and vise versa. This paper presents a strategy to operate distribution systems with a small gas turbine generator (GTG), which is capable of supplying local loads, in both islanding and grid connected conditions...

  18. Improvement of the grid-connect current quality using novel proportional-integral controller for photovoltaic inverters.

    Science.gov (United States)

    Cheng, Yuhua; Chen, Kai; Bai, Libing; Yang, Jing

    2014-02-01

    Precise control of the grid-connected current is a challenge in photovoltaic inverter research. Traditional Proportional-Integral (PI) control technology cannot eliminate steady-state error when tracking the sinusoidal signal from the grid, which results in a very high total harmonic distortion in the grid-connected current. A novel PI controller has been developed in this paper, in which the sinusoidal wave is discretized into an N-step input signal that is decided by the control frequency to eliminate the steady state error of the system. The effect of periodical error caused by the dead zone of the power switch and conduction voltage drop can be avoided; the current tracking accuracy and current harmonic content can also be improved. Based on the proposed PI controller, a 700 W photovoltaic grid-connected inverter is developed and validated. The improvement has been demonstrated through experimental results.

  19. Flexible Control of Small Wind Turbines With Grid Failure Detection Operating in Stand-Alone and Grid-Connected Mode

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Blaabjerg, Frede

    2004-01-01

    nonlinear load and excess or deficit of generated power. Grid-connection mode with current control is also enabled for the case of isolated local grid involving other dispersed power generators such as other wind turbines or diesel generators. A novel automatic mode switch method based on a phase......-to-back power conversion configuration is chosen where the generator converter uses a built-in standard flux vector control to control the speed of the turbine shaft while the grid-side converter uses a standard pulse-width modulation active rectifier control strategy implemented in a DSP controller. The design...

  20. Particle simulation of grid system for krypton ion thrusters

    Directory of Open Access Journals (Sweden)

    Maolin CHEN

    2018-04-01

    Full Text Available The transport processes of plasmas in grid systems of krypton (Kr ion thrusters at different acceleration voltages were simulated with a 3D-PIC model, and the result was compared with xenon (Xe ion thrusters. The variation of the screen grid transparency, the accelerator grid current ratio and the divergence loss were explored. It is found that the screen grid transparency increases with the acceleration voltage and decreases with the beam current, while the accelerator grid current ratio and divergence loss decrease first and then increase with the beam current. This result is the same with Xe ion thrusters. Simulation results also show that Kr ion thrusters have more advantages than Xe ion thrusters, such as higher screen grid transparency, smaller accelerator grid current ratio, larger cut-off current threshold, and better divergence loss characteristic. These advantages mean that Kr ion thrusters have the ability of operating in a wide range of current. Through comprehensive analyses, it can be concluded that using Kr as propellant is very suitable for a multi-mode ion thruster design. Keywords: Grid system, Ion thrusters, Krypton, Particle in cell method, Plasma

  1. Requirements to be met by superconducting storage systems to satisfy the demands of grid operation

    International Nuclear Information System (INIS)

    Handschin, E.; Stoeber, P.

    1989-01-01

    Superconducting magnetic energy storage systems (SMES) permit functions and quality enhancements not achievable by conventional measures. A simulation of operating conditions using an SMES connected to the grid, SMES control being done by the control system of the grid, indicates considerable enhancements in the static and dynamic behaviour of the grid. Dimensioning of such an SMES will depend on the grid and the purpose of its application. A study investigating an SMES application for improvement of the dynamic behaviour, and back-up of the primary control, of a large power plant unit shows that the system can be designed and realized in the required dimensions. The operating interactions of the SMES and the grid are discussed in the conference paper. (orig.) [de

  2. Comprehensive Solutions for Integration of Solar Resources into Grid Operations

    Energy Technology Data Exchange (ETDEWEB)

    Pennock, Kenneth [AWS Truepower, LLC, Albany, NY (United States); Makarov, Yuri V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rajagopal, Sankaran [Siemens Energy, Erlangen (Germany); Loutan, Clyde [California Independent System Operator; Etingov, Pavel V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Laurie E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lu, Bo [Siemens Energy, Erlangen (Germany); Mansingh, Ashmin [Siemens Energy, Erlangen (Germany); Zack, John [MESO, Inc., Raleigh, NC (United States); Sherick, Robert [Southern California Edison, Rosemead, CA (United States); Romo, Abraham [Southern California Edison; Habibi-Ashrafi, Farrokh [Southern California Edison; Johnson, Raymond [Southern California Edison

    2016-01-14

    The need for proactive closed-loop integration of uncertainty information into system operations and probability-based controls is widely recognized, but rarely implemented in system operations. Proactive integration for this project means that the information concerning expected uncertainty ranges for net load and balancing requirements, including required balancing capacity, ramping and ramp duration characteristics, will be fed back into the generation commitment and dispatch algorithms to modify their performance so that potential shortages of these characteristics can be prevented. This basic, yet important, premise is the motivating factor for this project. The achieved project goal is to demonstrate the benefit of such a system. The project quantifies future uncertainties, predicts additional system balancing needs including the prediction intervals for capacity and ramping requirements of future dispatch intervals, evaluates the impacts of uncertainties on transmission including the risk of overloads and voltage problems, and explores opportunities for intra-hour generation adjustments helping to provide more flexibility for system operators. The resulting benefits culminate in more reliable grid operation in the face of increased system uncertainty and variability caused by solar power. The project identifies that solar power does not require special separate penetration level restrictions or penalization for its intermittency. Ultimately, the collective consideration of all sources of intermittency distributed over a wide area unified with the comprehensive evaluation of various elements of balancing process, i.e. capacity, ramping, and energy requirements, help system operators more robustly and effectively balance generation against load and interchange. This project showed that doing so can facilitate more solar and other renewable resources on the grid without compromising reliability and control performance. Efforts during the project included

  3. Current Control and Performance Evaluation of Converter Interfaced Distribution Resources in Grid Connected Mode

    Directory of Open Access Journals (Sweden)

    SINGH Alka

    2012-10-01

    Full Text Available Use of distributed resources is growing in developing countries like India and in developed nations too. The increased acceptance of suchresources is mainly due to their modularity, increased reliability, good power quality and environment friendly operation. These are currently being interfaced to the existing systems using voltage source inverters (VSC’s. The control of such distributed resources is significantly different than the conventional power systems mainly because the VSC’s have no inertia unlike the synchronous generators.This paper deals with the Matlab modeling and design of control aspects of one such distributed source feeding a common load. A grid connected supply is also available. The control algorithm is developed for real and reactive power sharing of the load between thedistributed source and the grid. The developed control scheme is tested for linear (R-L load as well as nonlinear loads. With suitable modifications, the control algorithm can be extended for several distributed resources connected in parallel.

  4. Stationary Frame Current Control Evaluations for Three-Phase Grid-Connected Inverters with PVR-based Active Damped LCL Filters

    DEFF Research Database (Denmark)

    Han, Yang; Shen, Pan; Guerrero, Josep M.

    2016-01-01

    Grid-connected inverters (GCIs) with LCL output filter have the ability of attenuating high-frequency (HF) switching ripples. However, by using only grid-current control, the system is prone to resonances if it is not properly damped, and the current distortion would be amplified significantly...... method is adopted. Furthermore, the grid voltage feed-forward and multiple PR controllers are integrated in the current loop to mitigate the current distortion introduced by the grid background distortion. Besides, the parameters design guidelines are presented to show the feasibility and effectiveness...

  5. On- and off-grid operation of hybrid renewable power plants: When are the economics favorable?

    Science.gov (United States)

    Petrakopoulou, F.; Santana, D.

    2016-12-01

    Hybrid renewable energy conversion systems offer a good alternative to conventional systems in locations where the extension of the electrical grid is difficult or not economical or where the cost of electricity is high. However, stand-alone operation implies net energy output restrictions (limited to exclusively serve the energy demand of a region), capacity oversizing and large storage facilities. In interconnected areas, on the other hand, the operational restrictions of the power stations change significantly and the efficiencies and costs of renewable technologies become more favorable. In this paper, the operation of three main renewable technologies (CSP, PV and wind) is studied assuming both hybrid and individual operation for both autonomous and inter-connected operation. The case study used is a Mediterranean island of ca. 3,000 inhabitants. Each system is optimized to fully cover the energy demand of the community. In addition, in the on-grid operation cases, it is required that the annual energy generated from the renewable sources is net positive (i.e., the island generates at least as much energy as it uses). It is found that when connected to the grid, hybridization of more than one technology is not required to satisfy the energy demand, as expected. Each of the renewable technologies investigated can satisfy the annual energy demand individually, without significant complications. In addition, the cost of electricity generated with the three studied technologies drops significantly for on-grid applications, when compared to off-grid operation. However, when compared to business-as-usual scenarios in both the on- and off-grid cases, both investigated hybrid and single-technology renewable scenarios are found to be economically viable. A sensitivity analysis reveals the limits of the acceptable costs that make the technologies favorable when compared to conventional alternatives.

  6. Calculation approaches for grid usage fees to influence the load curve in the distribution grid level; Berechnungsansaetze fuer Netznutzungsentgelte zur Beeinflussung des Lastverlaufs in der Verteilernetzebene

    Energy Technology Data Exchange (ETDEWEB)

    Illing, Bjoern

    2014-09-08

    Dominated by the energy policy the decentralized German energy market is changing. One mature target of the government is to increase the contribution of renewable generation to the gross electricity consumption. In order to achieve this target disadvantages like an increased need for capacity management occurs. Load reduction and variable grid fees offer the grid operator solutions to realize capacity management by influencing the load profile. The evolution of the current grid fees towards more causality is required to adapt these approaches. Two calculation approaches are developed in this assignment. On the one hand multivariable grid fees keeping the current components demand and energy charge. Additional to the grid costs grid load dependent parameters like the amount of decentralized feed-ins, time and local circumstances as well as grid capacities are considered. On the other hand the grid fee flat-rate which represents a demand based model on a monthly level. Both approaches are designed to meet the criteria for future grid fees. By means of a case study the effects of the grid fees on the load profile at the low voltage grid is simulated. Thereby the consumption is represented by different behaviour models and the results are scaled at the benchmark grid area. The resulting load curve is analyzed concerning the effects of peak load reduction as well as the integration of renewable energy sources. Additionally the combined effect of grid fees and electricity tariffs is evaluated. Finally the work discusses the launching of grid fees in the tense atmosphere of politics, legislation and grid operation. Results of this work are two calculation approaches designed for grid operators to define the grid fees. Multivariable grid fees are based on the current calculation scheme. Hereby demand and energy charges are weighted by time, locational and load related dependencies. The grid fee flat-rate defines a limitation in demand extraction. Different demand levels

  7. Enhancing the Frequency Adaptability of Periodic Current Controllers with a Fixed Sampling Rate for Grid-Connected Power Converters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2016-01-01

    Grid-connected power converters should employ advanced current controllers, e.g., Proportional Resonant (PR) and Repetitive Controllers (RC), in order to produce high-quality feed-in currents that are required to be synchronized with the grid. The synchronization is actually to detect...... of the resonant controllers and by approximating the fractional delay using a Lagrange interpolating polynomial for the RC, respectively, the frequency-variation-immunity of these periodic current controllers with a fixed sampling rate is improved. Experiments on a single-phase grid-connected system are presented...... the instantaneous grid information (e.g., frequency and phase of the grid voltage) for the current control, which is commonly performed by a Phase-Locked-Loop (PLL) system. Hence, harmonics and deviations in the estimated frequency by the PLL could lead to current tracking performance degradation, especially...

  8. Control of Wind Turbines during Symmetrical and Asymmetrical Grid Faults

    DEFF Research Database (Denmark)

    Göksu, Ömer

    As installed capacity of the wind power plants (WPPs) in power system of certain countries increases, stability of the power system becomes more critical. In order to sustain stable power system operation with high share of wind power, system operators of some countries are enforcing more stringent...... grid code requirements, which are targeting to make the WPPs operate in a closer manner to the conventional power plants. Common to most of the grid codes, WPPs are required to stay connected during short-circuit grid faults, and also inject reactive current in order to support the grid voltage...... type wind turbines (WTs), in an AC connected WPP, is investigated and control algorithms are designed for minimum disrupted operation and improved grid support, for both symmetrical and asymmetrical grid faults. WTs’ response with conventional control algorithms is studied regarding the impact...

  9. Application of Fuzzy Control in a Photovoltaic Grid-Connected Inverter

    Directory of Open Access Journals (Sweden)

    Zhaohong Zheng

    2018-01-01

    Full Text Available To realize the maximum power output of a grid-connected inverter, the MPPT (maximum power point tracking control method is needed. The perturbation and observation (P&O method can cause the inverter operating point to oscillate near the maximum power. In this paper, the fuzzy control P&O method is proposed, and the fuzzy control algorithm is applied to the disturbance observation method. The simulation results of the P&O method with fuzzy control and the traditional P&O method prove that not only can the new method reduce the power loss caused by inverter oscillation during maximum power point tracking, but also it has the advantage of speed. Inductive loads in the post-grid-connected stage cause grid-connected current distortion. A fuzzy control algorithm is added to the traditional deadbeat grid-connected control method to improve the quality of the system’s grid-connected operation. The fuzzy deadbeat control method is verified by experiments, and the harmonic current of the grid-connected current is less than 3%.

  10. A methodology toward manufacturing grid-based virtual enterprise operation platform

    Science.gov (United States)

    Tan, Wenan; Xu, Yicheng; Xu, Wei; Xu, Lida; Zhao, Xianhua; Wang, Li; Fu, Liuliu

    2010-08-01

    Virtual enterprises (VEs) have become one of main types of organisations in the manufacturing sector through which the consortium companies organise their manufacturing activities. To be competitive, a VE relies on the complementary core competences among members through resource sharing and agile manufacturing capacity. Manufacturing grid (M-Grid) is a platform in which the production resources can be shared. In this article, an M-Grid-based VE operation platform (MGVEOP) is presented as it enables the sharing of production resources among geographically distributed enterprises. The performance management system of the MGVEOP is based on the balanced scorecard and has the capacity of self-learning. The study shows that a MGVEOP can make a semi-automated process possible for a VE, and the proposed MGVEOP is efficient and agile.

  11. Global Harmonic Current Rejection of Nonlinear Backstepping Control with Multivariable Adaptive Internal Model Principle for Grid-Connected Inverter under Distorted Grid Voltage

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2013-01-01

    Full Text Available Based on a brief review on current harmonics generation mechanism for grid-connected inverter under distorted grid voltage, the harmonic disturbances and uncertain items are immersed into the original state-space differential equation of grid-connected inverter. A new algorithm of global current harmonic rejection based on nonlinear backstepping control with multivariable internal model principle is proposed for grid-connected inverter with exogenous disturbances and uncertainties. A type of multivariable internal model for a class of nonlinear harmonic disturbances is constructed. Based on application of backstepping control law of the nominal system, a multivariable adaptive state feedback controller combined with multivariable internal model and adaptive control law is designed to guarantee the closed-loop system globally uniformly bounded, which is proved by a constructed Lyapunov function. The presented algorithm extends rejection of nonlinear single-input systems to multivariable globally defined normal form, the correctness and effectiveness of which are verified by the simulation results.

  12. Design of Current-Controller with PR-regulator for LCL-Filter Based Grid-Connected Converter

    DEFF Research Database (Denmark)

    Zeng, Guohong; Rasmussen, Tonny Wederberg

    2010-01-01

    In the application of LCL-filter based converters, the structure and parameters of current-controller is very important for the system stability and output current quality. This paper presents a filter-capacitor current feedback control scheme for grid-connected converter. The controller...... is consisted of a proportional-resonance regulator and a proportional regulator. Unlike the existing control strategy with unit capacitor current feedback, the proposed method applies the proportional regulator to the feedback path, which can decouple these two regulators, and simplify the tuning process...... of the control strategy and the proposed current controller design method are verified by the simulation results of a 50kVA grid-connected inverter....

  13. Optimal Operation of Micro-grids Considering the Uncertainties of Demand and Renewable Energy Resources Generation

    Directory of Open Access Journals (Sweden)

    Malek Jasemi

    2016-11-01

    Full Text Available Nowadays, due to technical and economic reasons, the distributed generation (DG units are widely connected to the low and medium voltage network and created a new structure called micro-grid. Renewable energies (especially wind and solar based DGs are one of the most important generations units among DG units. Because of stochastic behavior of these resources, the optimum and safe management and operation of micro-grids has become one of the research priorities for researchers. So, in this study, the optimal operation of a typical micro-grid is investigated in order to maximize the penetration of renewable energy sources with the lowest operation cost with respect to the limitations for the load supply and the distributed generation resources. The understudy micro-grid consists of diesel generator, battery, wind turbines and photovoltaic panels. The objective function comprises of fuel cost, start-up cost, spinning reserve cost, power purchasing cost from the upstream grid and the sales revenue of the power to the upstream grid. In this paper, the uncertainties of demand, wind speed and solar radiation are considered and the optimization will be made by using the GAMS software and mixed integer planning method (MIP. Article History: Received May 21, 2016; Received in revised form July 11, 2016; Accepted October 15, 2016; Available online How to Cite This Article: Jasemi, M.,  Adabi, F., Mozafari, B., and Salahi, S. (2016 Optimal Operation of Micro-grids Considering the Uncertainties of Demand and Renewable Energy Resources Generation, Int. Journal of Renewable Energy Development, 5(3,233-248. http://dx.doi.org/10.14710/ijred.5.3.233-248

  14. Computer Simulation of the UMER Gridded Gun

    CERN Document Server

    Haber, Irving; Friedman, Alex; Grote, D P; Kishek, Rami A; Reiser, Martin; Vay, Jean-Luc; Zou, Yun

    2005-01-01

    The electron source in the University of Maryland Electron Ring (UMER) injector employs a grid 0.15 mm from the cathode to control the current waveform. Under nominal operating conditions, the grid voltage during the current pulse is sufficiently positive relative to the cathode potential to form a virtual cathode downstream of the grid. Three-dimensional computer simulations have been performed that use the mesh refinement capability of the WARP particle-in-cell code to examine a small region near the beam center in order to illustrate some of the complexity that can result from such a gridded structure. These simulations have been found to reproduce the hollowed velocity space that is observed experimentally. The simulations also predict a complicated time-dependent response to the waveform applied to the grid during the current turn-on. This complex temporal behavior appears to result directly from the dynamics of the virtual cathode formation and may therefore be representative of the expected behavior in...

  15. Operation of an InGrid based X-ray detector at the CAST experiment

    Directory of Open Access Journals (Sweden)

    Krieger Christoph

    2018-01-01

    During operation at the experiment, background rates in the order of 10−5 keV−1 cm−2 s−1 have been achieved by application of a likelihood based method discriminating the non-photon background originating mostly from cosmic rays. For continued operation in 2016, an upgraded InGrid based detector is to be installed among other improvements including decoupling and sampling of the signal induced on the grid as well as a veto scintillator to further lower the observed background rates and improving sensitivity.

  16. Evaluation of ink-jet printed current collecting grids and bushbars for ITO-free organic solar cells

    NARCIS (Netherlands)

    Galagan, Y.O.; Coenen, E,W.C.; Sabik, S.; Gorter, H.H.; Barink, M.; Veenstra, S.C.; Kroon, J.M.; Andriessen, H.A.J.M.; Blom, P.W.M.

    2012-01-01

    ITO-free organic solar cells with ink-jet printed current collecting grids and high conducting PEDOT:PSS as composite anode are demonstrated. Inkjet printed current collecting grids with different cross-sectional are as have been investigated. The effect of the width and height of the gridlines and

  17. Operating the LCG and EGEE Production Grids for HEP

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    In September 2003 the first LCG-1 service was put into production at most of the large Tier 1 sites and was quickly expanded up to 30 Tier 1 and Tier 2 sites by the end of the year. Several software upgrades were made and the LCG-2 service was put into production in time for the experiment data challenges that began in February 2004 and continued for several months. In particular LCG-2 introduced transparent access to mass storage and managed disk-only storage elements, and a first release of the Grid File Access library. Much valuable experience was gained during the data challenges in all aspects from the functionality and use of the middleware, to the deployment, maintenance, and operation of the services at many sites. Based on this experience a program of work to address the functional and operational issues is being implemented. The goal is to focus on essential areas such as data management and to build by the end of 2004 a basic grid system capable of handling the basic needs of LHC c...

  18. Energy Storage Management for Grid Operation Purposes

    OpenAIRE

    Ricardo Santos; Ricardo André; Ricardo Bessa; Clara Gouveia; António Araújo; Filipe Guerra; José Damásio; Guillermo Bravo; Jean Sumaili

    2016-01-01

    The Horizon 2020 Storage ENabled SustaInable energy for BuiLdings and communitiEs (SENSIBLE) project is currently looking at the integration of small-scale storage technologies in buildings and distribution networks. In the demonstration site of the SENSIBLE project, EDP has already installed an experimental storage system supplying a university campus in MV. It was mainly designed to increase service quality to the university by providing backup power in the event of MV grid failure, but it ...

  19. A Back-to-Back 2L-3L Grid Integration of a Marine Current Energy Converter

    Directory of Open Access Journals (Sweden)

    Senad Apelfröjd

    2015-01-01

    Full Text Available The paper proposes a back-to-back 2L-3L grid connection topology for a marine current energy converter. A prototype marine current energy converter has been deployed by a research group at Uppsala University. The concept behind the prototype revolves around a fixed pitch vertical axis turbine directly connected to a permanent magnet synchronous generator (PMSG. The proposed grid connection system utilizes a well known and proven two level voltage source converter generator-side combined with a three-level cascaded H-bridge (CHB multilevel converter grid-side. The multilevel converter brings benefits in terms of efficiency, power quality and DC-link utilization. The system is here presented for a single marine current energy converter but can easily be scaled up for clusters of marine current energy converters. Control schemes for both grid-side and generator-side voltage source converters are presented. The start-up, steady state and dynamic performance of the marine current energy converter are investigated and simulation results are presented in this paper.

  20. Smart grids in the colombian electric system: Current situation and potential opportunities

    Directory of Open Access Journals (Sweden)

    William Mauricio Giral Ramírez

    2017-07-01

    Full Text Available Context: This paper focuses on providing a functional analysis of smart grids, with the purpose of establishing a framework to identify the main characteristics of the current electric interconnection system in Colombia. It also names the positive incentives proposed by the Colombian government to support both research and development projects that implement non-conventional energy sources and promoting energy management based on efficiency. Method: An architecture model that describes the components interoperability of a smart grid is presented using a descriptive methodology. Results: The results include a list of the objectives established by the Colombian public and private entities related to energy development, specially focusing on the opportunities to provide some kind of artificial intelligence to the current electrical system. Conclusions: It is necessary for the Colombian energy system to supply the energy demand considering electrical safety, social equity, and the minimum environmental impact. These restrictions impose new challenges for the energy system itself: From a technical point of view, the traditional electrical grid must be outfitted with the characteristics of a smart grid, and from a legal perspective, it is essential to generate a clear regulatory framework that promotes the development of this type of technology.

  1. Integration operators for generating RDF/OWL-based user defined mediator views in a grid environment

    OpenAIRE

    Tawil, Abdel-Rahman H.; Taweel, Adel; Naeem, Usman; Montebello, Matthew; Bashroush, Rabih; Al-Nemrat, Ameer

    2014-01-01

    Research and development activities relating to the grid have generally focused on applications where data is stored in files. However, many scientific and commercial applications are highly dependent on Information Servers (ISs) for storage and organization of their data. A data-information system that supports operations on multiple information servers in a grid environment is referred to as an interoperable grid system. Different perceptions by end-users of interoperable systems in a grid ...

  2. Hierarchical Controlled Grid-Connected Microgrid based on a Novel Autonomous Current Sharing Controller

    DEFF Research Database (Denmark)

    Guan, Yajuan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2015-01-01

    In this paper, a hierarchical control system based on a novel autonomous current sharing controller for grid-connected microgrids (MGs) is presented. A three-level hierarchical control system is implemented to guarantee the power sharing performance among voltage controlled parallel inverters......, while providing the required active and reactive power to the utility grid. A communication link is used to transmit the control signal from the tertiary and secondary control levels to the primary control. Simulation results from a MG based on two grid-connected parallel inverters are shown in order...

  3. Operation of an InGrid based X-ray detector at the CAST experiment

    Science.gov (United States)

    Krieger, Christoph; Desch, Klaus; Kaminski, Jochen; Lupberger, Michael

    2018-02-01

    The CERN Axion Solar Telescope (CAST) is searching for axions and other particles which could be candidates for DarkMatter and even Dark Energy. These particles could be produced in the Sun and detected by a conversion into soft X-ray photons inside a strong magnetic field. In order to increase the sensitivity for physics beyond the Standard Model, detectors with a threshold below 1 keV as well as efficient background rejection methods are required to compensate for low energies and weak couplings resulting in very low detection rates. Those criteria are fulfilled by a detector utilizing the combination of a pixelized readout chip with an integrated Micromegas stage. These InGrid (Integrated Grid) devices can be build by photolithographic postprocessing techniques, resulting in a close to perfect match of grid and pixels facilitating the detection of single electrons on the chip surface. The high spatial resolution allows for energy determination by simple electron counting as well as for an event-shape based analysis as background rejection method. Tests at an X-ray generator revealed the energy threshold of an InGrid based X-ray detector to be well below the carbon Kα line at 277 eV. After the successful demonstration of the detectors key features, the detector was mounted at one of CAST's four detector stations behind an X-ray telescope in 2014. After several months of successful operation without any detector related interruptions, the InGrid based X-ray detector continues data taking at CAST in 2015. During operation at the experiment, background rates in the order of 10-5 keV-1 cm-2 s-1 have been achieved by application of a likelihood based method discriminating the non-photon background originating mostly from cosmic rays. For continued operation in 2016, an upgraded InGrid based detector is to be installed among other improvements including decoupling and sampling of the signal induced on the grid as well as a veto scintillator to further lower the

  4. Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub

    International Nuclear Information System (INIS)

    Ma, Tengfei; Wu, Junyong; Hao, Liangliang

    2017-01-01

    Highlights: • Design a novel architecture for energy hub integrating power hub, cooling hub and heating hub. • The micro energy grid based on energy hub is introduced and its advantages are discussed. • Propose a generic modeling method for the energy flow of micro energy grid. • Propose an optimal operation model for micro energy grid with considering demand response. • The roles of renewable energy, energy storage devices and demand response are discussed separately. - Abstract: The energy security and environmental problems impel people to explore a more efficient, environment friendly and economical energy utilization pattern. In this paper, the coordinated operation and optimal dispatch strategies for multiple energy system are studied at the whole Micro Energy Grid level. To augment the operation flexibility of energy hub, the innovation sub-energy hub structure including power hub, heating hub and cooling hub is put forward. Basing on it, a generic energy hub architecture integrating renewable energy, combined cooling heating and power, and energy storage devices is developed. Moreover, a generic modeling method for the energy flow of micro energy grid is proposed. To minimize the daily operation cost, a day-ahead dynamic optimal operation model is formulated as a mixed integer linear programming optimization problem with considering the demand response. Case studies are undertaken on a community Micro Energy Grid in four different scenarios on a typical summer day and the roles of renewable energy, energy storage devices and demand response are discussed separately. Numerical simulation results indicate that the proposed energy flow modeling and optimal operation method are universal and effective over the entire energy dispatching horizon.

  5. Zero-Axis Virtual Synchronous Coordinate Based Current Control Strategy for Grid-Connected Inverter

    Directory of Open Access Journals (Sweden)

    Longyue Yang

    2018-05-01

    Full Text Available Unbalanced power has a great influence on the safe and stable operation of the distribution network system. The static power compensator, which is essentially a grid-connected inverter, is an effective solution to the three-phase power imbalance problem. In order to solve the tracking error problem of zero-sequence AC current signals, a novel control strategy based on zero-axis virtual synchronous coordinates is proposed in this paper. By configuring the operation of filter transmission matrices, a specific orthogonal signal is obtained for zero-axis reconstruction. In addition, a controller design scheme based on this method is proposed. Compared with the traditional zero-axis direct control, this control strategy is equivalent to adding a frequency tuning module by the orthogonal signal generator. The control gain of an open loop system can be equivalently promoted through linear transformation. With its clear mathematical meaning, zero- sequence current control can be controlled with only a first-order linear controller. Through reasonable parameter design, zero steady-state error, fast response and strong stability can be achieved. Finally, the performance of the proposed control strategy is verified by both simulations and experiments.

  6. Smart electric grids in the United Kingdom energy strategy

    International Nuclear Information System (INIS)

    Gloaguen, Olivier; Dreyfus, Charles-Antoine

    2011-09-01

    This study first gives an overview of the current status and limitations of the British power grid. It indicates the British energy mix, describes the network structure and its economic operation (gross and retail market with the bid and offer system, role of the System Operator, ways to increase the electricity production). It presents the energy policy and its regulation framework, outlines the current limitations and challenges (ageing grid, power crunch, de-carbonation challenges). It presents the development of a smart grid as a solution to economy de-carbonation challenges: definition of the 'smart grid concept', smart grid development planning (from 2010 to 2050), technological transition associated with smart electric grid development (a cleaner but more intermittent and random electricity production, better use of fossil fuels, electric energy storage, consequences for the grid, introduction and effects of smart meters). It describes the new associated economic model: evolution of the value chain, financial challenges (required investments, expected benefits, subsidies), new regulation system. It addresses the strategic challenges and the various uncertainties (notably in terms of consumption, privacy issue in relation with the use of smart meters, and project implementation).

  7. Intelligent grid management with variable grid fees as indirect control system for Distribution System Operators; Intelligentes Netzlastmanagement mit variablen Netzentgelten als indirektes Steuerungsinstrument fuer Verteilnetzbetreiber

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Stephan; Nestle, David; Selzam, Patrick; Strauss, Philipp [Fraunhofer Institut fuer Windenergie und Energiesystemtechnik, Kassel (Germany)

    2011-07-01

    Variable grid fees are an incentive system to motivate the grid customers to adjust their energy consumption to the requirements of the distribution grid. Therefore, the Distribution System Operator can reduce grid peak load, improve the integration of fluctuating renewable power producers and optimize the grid load prediction. Compared to variable grid fees which are just in the research stage, peak power demand prices are an existing incentive system. The comparison between these two incentive systems demonstrates which system can support more efficiently the requirements of a sustainable energy system. In E-Energy-Project ''Modellstadt Mannheim'', a proposal for a transparent calculation of variable grid fees will be developed and a technical solution deployed. (orig.)

  8. An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions

    DEFF Research Database (Denmark)

    Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz

    2017-01-01

    In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions....... It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method...... is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed...

  9. Mitigation of Harmonics in Grid-Connected and Islanded Microgrids via Virtual Admittances and Impedances

    DEFF Research Database (Denmark)

    Micallef, Alexander; Apap, Maurice; Spiteri-Staines, Cyril

    2017-01-01

    Optimization of the islanded and grid-connected operation of microgrids is important to achieve a high degree of reliability. In this paper, the authors consider the effect of current harmonics in single phase microgrids during both modes of operation. A detailed analysis of the effect of the out......Optimization of the islanded and grid-connected operation of microgrids is important to achieve a high degree of reliability. In this paper, the authors consider the effect of current harmonics in single phase microgrids during both modes of operation. A detailed analysis of the effect...... of the output impedance of the considered primary control loops on the harmonic output of the considered voltage source inverters is initially carried out. A virtual admittance loop is proposed to attenuate the current harmonic output in grid-connected operation that is generated due to the grid voltage...... distortion present at the point of common coupling (PCC) and due to local non-linear loads. This paper also considers the harmonic current sharing and resulting voltage harmonics at the PCC during islanded operation of the microgrid. A capacitive virtual impedance loop was implemented to improve the harmonic...

  10. Enhanced short-term wind power forecasting and value to grid operations. The wind forecasting improvement project

    Energy Technology Data Exchange (ETDEWEB)

    Orwig, Kirsten D. [National Renewable Energy Laboratory (NREL), Golden, CO (United States). Transmission Grid Integration; Benjamin, Stan; Wilczak, James; Marquis, Melinda [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Earth System Research Lab.; Stern, Andrew [National Oceanic and Atmospheric Administration, Silver Spring, MD (United States); Clark, Charlton; Cline, Joel [U.S. Department of Energy, Washington, DC (United States). Wind and Water Power Program; Finley, Catherine [WindLogics, Grand Rapids, MN (United States); Freedman, Jeffrey [AWS Truepower, Albany, NY (United States)

    2012-07-01

    The current state-of-the-art wind power forecasting in the 0- to 6-h timeframe has levels of uncertainty that are adding increased costs and risks to the U.S. electrical grid. It is widely recognized within the electrical grid community that improvements to these forecasts could greatly reduce the costs and risks associated with integrating higher penetrations of wind energy. The U.S. Department of Energy has sponsored a research campaign in partnership with the National Oceanic and Atmospheric Administration (NOAA) and private industry to foster improvements in wind power forecasting. The research campaign involves a three-pronged approach: (1) a one-year field measurement campaign within two regions; (2) enhancement of NOAA's experimental 3-km High-Resolution Rapid Refresh (HRRR) model by assimilating the data from the field campaign; and (3) evaluation of the economic and reliability benefits of improved forecasts to grid operators. This paper and presentation provide an overview of the regions selected, instrumentation deployed, data quality and control, assimilation of data into HRRR, and preliminary results of HRRR performance analysis. (orig.)

  11. Adaptive Hysteresis Band Current Control (AHB) with PLL of Grid Side Converter-Based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Li, Lijuan

    2011-01-01

    Adaptive hysteresis band current control(AHB CC) is used to control the three-phase grid currents by means of grid side converter in wind power generation system in this paper. AHB has reached the good purpose with PLL (Lock phase loop). First the mathematical models of each part are given......, transformer and grid, and control parts, etc. The simulation results have verified that the control strategy is feasible to fit for control of gird currents, active power, reactive power and DC-link voltage in wind power generation system....

  12. Decoupled Double Synchronous Reference Frame Current Controller for Unbalanced Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Reyes, M.; Rodriguez, Pedro; Vazquez, S.

    2012-01-01

    -sequence current components is becoming necessary for achieving new capabilities like the reactive power injection during a grid fault. This paper deals with a fundamental issue in this topic, i.e., the performance of the current controller. Classical dq controllers, which are extensively used in industrial...

  13. Space charge calibration of the ALICE TPC operated with an open gating grid

    Energy Technology Data Exchange (ETDEWEB)

    Hellbaer, Ernst [Institut fuer Kernphysik, Goethe-Universitaet Frankfurt (Germany); Ivanov, Marian [GSI (Germany); Wiechula, Jens [Universitaet Tuebingen (Germany); Collaboration: ALICE-Collaboration

    2015-07-01

    The Time Projection Chamber (TPC) is the main particle identification detector of the ALICE experiment at the CERN LHC. High interaction rates of 50 kHz in Pb-Pb during the Run 3 period after 2020 require a major upgrade of the TPC readout. The currently used Multiwire Proportional Chambers (MWPCs) will be replaced by readout chambers (ROCs) based on Gas Electron Multiplier (GEM) technology which will be operated in a continuous mode. While the gating grid of the MWPCs prevents the positive ions of the amplification region from entering the drift volume, the GEM-based ROCs will introduce an ion backflow (IBF) of about 1%. In combination with the high-luminosity environment, this amount of back-drifting ions results in a considerable space charge density which distorts the drift path of the primary ionisation electrons significantly. In order to still provide a high tracking efficiency and cluster-to-track association, an efficient calibration scheme will be implemented. As a test ground for the new calibration scheme, pp collision data was taken during Run 1 with the gating grid operated in a transparent mode allowing the ions to enter the drift volume. The measured space point distortions due to the space charge are presented together with the corrected data and compared to simulations for Run 3.

  14. Short-circuit current improvement in thin cells with a gridded back contact

    Science.gov (United States)

    Giuliano, M.; Wohlgemuth, J.

    1980-01-01

    The use of gridded back contact on thin silicon solar cells 50 micrometers was investigated. An unexpected increase in short circuit current of almost 10 percent was experienced for 2 cm x 2 cm cells. Control cells with the standard continuous contact metallization were fabricated at the same time as the gridded back cells with all processes identical up to the formation of the back contact. The gridded back contact pattern was delineated by evaporation of Ti-Pd over a photo-resist mask applied to the back of the wafer; the Ti-Pd film on the controls was applied in the standard fashion in a continuous layer over the back of the cell. The Ti-Pd contacts were similarly applied to the front of the wafer, and the grid pattern on both sides of the cell was electroplated with 8-10 micrometers of silver.

  15. Norwegian electricity market liberalisation: questions of cost calculation and price definition by grid operators

    International Nuclear Information System (INIS)

    Wild, J.; Vaterlaus, S.

    2002-01-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study carried out on the Norwegian electricity market 10 years after its liberalisation. The similarity of the Norwegian market to the Swiss electricity market is discussed. Similarly to the proposed situation in Switzerland, the liberalisation in Norway foresaw no privatisation of public utilities and a model for the regulation of grid access was introduced. The report describes and comments on the various phases in which the liberalisation occurred and examines the various instruments used, e.g. to ensure that individual grid operators did not make undue profits from their monopoly. The methods used for the monitoring of grid operators' costs are described and the mechanisms involved in the definition of prices for grid services are examined, including measures taken when profits were too high or too low. The report is concluded with a discussion of the conclusions that can be drawn from the Norwegian model for Swiss market opening efforts

  16. GridCom, Grid Commander: graphical interface for Grid jobs and data management

    International Nuclear Information System (INIS)

    Galaktionov, V.V.

    2011-01-01

    GridCom - the software package for maintenance of automation of access to means of distributed system Grid (jobs and data). The client part, executed in the form of Java-applets, realises the Web-interface access to Grid through standard browsers. The executive part Lexor (LCG Executor) is started by the user in UI (User Interface) machine providing performance of Grid operations

  17. Co-ordinated voltage control of DFIG wind turbines in uninterrupted operation during grid faults

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Michalke, G.; Sørensen, Poul Ejnar

    2007-01-01

    Emphasis in this article is on the design of a co-ordinated voltage control strategy for doubly fed induction generator (DFIG) wind turbines that enhances their capability to provide grid support during grid faults. In contrast to its very good performance in normal operation, the DFIG wind turbine...... concept is quite sensitive to grid faults and requires special power converter protection. The fault ride-through and grid support capabilities of the DFIG address therefore primarily the design of DFIG wind turbine control with special focus on power converter protection and voltage control issues....... A voltage control strategy is designed and implemented in this article, based on the idea that both converters of the DFIG (i.e. rotor-side converter and grid-side converter) participate in the grid voltage control in a co-ordinated manner. By default the grid voltage is controlled by the rotor...

  18. DC-Voltage Fluctuation Elimination Through a DC-Capacitor Current Control for DFIG Converters Under Unbalanced Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Liu, Changjin; Xu, Dehong; Zhu, Nan

    2013-01-01

    Unbalanced grid voltage causes a large second-order harmonic current in the dc-link capacitors as well as dc-voltage fluctuation, which potentially will degrade the lifespan and reliability of the capacitors in voltage source converters. This paper proposes a novel dc-capacitor current control...... method for a grid-side converter (GSC) to eliminate the negative impact of unbalanced grid voltage on the dc-capacitors. In this method, a dc-capacitor current control loop, where a negative-sequence resonant controller is used to increase the loop gain, is added to the conventional GSC current control...... loop. The rejection capability to the unbalanced grid voltage and the stability of the proposed control system are discussed. The second-order harmonic current in the dc capacitor as well as dc-voltage fluctuation is very well eliminated. Hence, the dc capacitors will be more reliable under unbalanced...

  19. Fuel Cell Backup Power System for Grid Service and Micro-Grid in Telecommunication Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eichman, Joshua D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Jennifer M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-22

    This paper presents the feasibility and economics of using fuel cell backup power systems in telecommunication cell towers to provide grid services (e.g., ancillary services, demand response). The fuel cells are able to provide power for the cell tower during emergency conditions. This study evaluates the strategic integration of clean, efficient, and reliable fuel cell systems with the grid for improved economic benefits. The backup systems have potential as enhanced capability through information exchanges with the power grid to add value as grid services that depend on location and time. The economic analysis has been focused on the potential revenue for distributed telecommunications fuel cell backup units to provide value-added power supply. This paper shows case studies on current fuel cell backup power locations and regional grid service programs. The grid service benefits and system configurations for different operation modes provide opportunities for expanding backup fuel cell applications responsive to grid needs.

  20. Embedded Ag Grid Electrodes as Current Collector for Ultraflexible Transparent Solid-State Supercapacitor.

    Science.gov (United States)

    Xu, Jian-Long; Liu, Yan-Hua; Gao, Xu; Sun, Yilin; Shen, Su; Cai, Xinlei; Chen, Linsen; Wang, Sui-Dong

    2017-08-23

    Flexible transparent solid-state supercapacitors have attracted immerse attention for the power supply of next-generation flexible "see-through" or "invisible" electronics. For fabrication of such devices, high-performance flexible transparent current collectors are highly desired. In this paper, the utilization of embedded Ag grid transparent conductive electrodes (TCEs) fabricated by a facile soft ultraviolet imprinting lithography method combined with scrap techniques, as the current collector for flexible transparent solid-state supercapacitors, is demonstrated. The embedded Ag grid TCEs exhibit not only excellent optoelectronic properties (R S ∼ 2.0 Ω sq -1 and T ∼ 89.74%) but also robust mechanical properties, which could meet the conductivity, transparency, and flexibility needs of current collectors for flexible transparent supercapacitors. The obtained supercapacitor exhibits large specific capacitance, long cycling life, high optical transparency (T ∼ 80.58% at 550 nm), high flexibility, and high stability. Owing to the embedded Ag grid TCE structure, the device shows a slight capacitance loss of 2.6% even after 1000 cycles of repetitive bending for a bending radius of up to 2.0 mm. This paves the way for developing high-performance current collectors and thus flexible transparent energy storage devices, and their general applicability opens up opportunities for flexible transparent electronics.

  1. Power Quality Improvement Of Grid Integrated Type I Wind Turbine Generation System Operating as DSTATCOM by d-q Control Method

    Directory of Open Access Journals (Sweden)

    S V S Phani Kumar.Ch

    2016-06-01

    Full Text Available In recent years with the excessive consumption of electrical energy, the incongruity between generation and demand, the irrational structure of World’s energy as well as the environmental pollution have become progressively more evident. It has become crucial for ecological development to reduce the consumption of conventional energy and to enhance the development and utilization of renewable energy. Wind energy and Solar are unlimited supply of renewable energy and it has no pollution. But this concept suffer from the power quality issues from grid and generator side, this paper presents a control strategy for achieving maximum benefits from these grid-interfacing inverter when installed in 3-phase 4-wire distribution systems. The inverter can be controlled to perform as a multi-function device by incorporating active power filter functionality. The inverter can thus be utilized as: 1 power converter to inject power generated from RES to the grid and 2 shunt APF (Active Power Filter to compensate current unbalance, load current harmonics, load reactive power demand and load neutral current. All of these functions may be accomplished either individually or simultaneously. With such a control, the combination of grid-interfacing inverter and the 3-phase 4-wire linear/non-linear unbalanced load at point of common coupling appears as balanced linear load to the grid. The Paper propose design of 500kW Type I Wind Generation System 250kW each with Four Leg Inverter Controlled by d-q technique operated as DSTATCOM connected to 415V 4 wire Grid and also the results are compared with conventional Unit Vector Control. The proposed d-q method reduces the %THD of system to 1.97% from 24.12% where Unit Vector Control is of 3.94% which was on higher side , this is simulated in MATLAB/SIMULINK.

  2. Modelling security properties in a grid-based operating system with anti-goals

    OpenAIRE

    Arenas, A.; Aziz, Benjamin; Bicarregui, J.; Matthews, B.; Yang, E.

    2008-01-01

    In this paper, we discuss the use of formal requirements-engineering techniques in capturing security requirements for a Grid-based operating system. We use KAOS goal model to represent two security goals for Grid systems, namely authorisation and single-sign on authentication. We apply goal-refinement to derive security requirements for these two security goals and we develop a model of antigoals and show how system vulnerabilities and threats to the security goals can arise from such anti-m...

  3. Operating strategies for biogas plants - conflict of objectives between advantageous grid and economically oriented operation; Betriebsstrategien fuer Biogasanlagen - Zielkonflikt zwischen netzdienlichem und wirtschaftlich orientiertem Betrieb

    Energy Technology Data Exchange (ETDEWEB)

    Skau, Katharina [Hochschule Neubrandenburg (Germany). FB Agrarwirtschaft und Lebensmittelwissenschaft; Bettinger, Carola [Univ. Lueneburg (Germany). Inst. fuer Bank,- Finanz- und Rechnungswesen; Schild, Vernea [TU Clausthal (Germany). Inst. fuer Energietechnik und Energiesysteme; Fuchs, Clemens; Beck, Hans-Peter

    2015-07-01

    In an intelligent energy system, ''smart grid'' and ''smart market'' must go hand in hand (Aichele et al., 2014). Changes to the legal framework, especially the German Renewable Energies Act (EEG), aim at bringing in line the requirement for increased generation of renewable energy with the market and system integration of renewable energies (see Schwarz, 2014). This determines whether the operation of a modern renewable energy plant has both the maximisation of profits (smart market) as well as the easing of the higher-order grid (smart grid) as its goal or whether it is only geared towards one aspect. The agricultural biogas producer is the focus of this interdisciplinary paper. He can either use the electrical energy generated by his plant himself in an economically orientated way or design the supply to the upstream grid in a way that is advantageous for the grid through the increased flexibility of generation and consumption. Through a two-stage simulation of the impact on the grid and the operational performance, the differences with regards to the strain on the grid and the financial losses to the farmer are quantified. If is clearly shown that none of the legislative and regulatory incentive schemes favour a mode of operation that is advantageous for the grid.

  4. Synchronization in single-phase grid-connected photovoltaic systems under grid faults

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2012-01-01

    The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation and stabil......The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation...

  5. Operation strategy for a lab-scale grid-connected photovoltaic generation system integrated with battery energy storage

    International Nuclear Information System (INIS)

    Jou, Hurng-Liahng; Chang, Yi-Hao; Wu, Jinn-Chang; Wu, Kuen-Der

    2015-01-01

    Highlights: • The operation strategy for grid-connected PV generation system integrated with battery energy storage is proposed. • The PV system is composed of an inverter and two DC-DC converter. • The negative impact of grid-connected PV generation systems on the grid can be alleviated by integrating a battery. • The operation of the developed system can be divided into nine modes. - Abstract: The operation strategy for a lab-scale grid-connected photovoltaic generation system integrated with battery energy storage is proposed in this paper. The photovoltaic generation system is composed of a full-bridge inverter, a DC–DC boost converter, an isolated bidirectional DC–DC converter, a solar cell array and a battery set. Since the battery set acts as an energy buffer to adjust the power generation of the solar cell array, the negative impact on power quality caused by the intermittent and unstable output power from a solar cell array is alleviated, so the penetration rate of the grid-connected photovoltaic generation system is increased. A lab-scale prototype is developed to verify the performance of the system. The experimental results show that it achieves the expected performance

  6. Decision tree ensembles for online operation of large smart grids

    International Nuclear Information System (INIS)

    Steer, Kent C.B.; Wirth, Andrew; Halgamuge, Saman K.

    2012-01-01

    Highlights: ► We present a new technique for the online control of large smart grids. ► We use a Decision Tree Ensemble in a Receding Horizon Controller. ► Decision Trees can approximate online optimisation approaches. ► Decision Trees can make adjustments to their output in real time. ► The new technique outperforms heuristic online optimisation approaches. - Abstract: Smart grids utilise omnidirectional data transfer to operate a network of energy resources. Associated technologies present operators with greater control over system elements and more detailed information on the system state. While these features may improve the theoretical optimal operating performance, determining the optimal operating strategy becomes more difficult. In this paper, we show how a decision tree ensemble or ‘forest’ can produce a near-optimal control strategy in real time. The approach substitutes the decision forest for the simulation–optimisation sub-routine commonly employed in receding horizon controllers. The method is demonstrated on a small and a large network, and compared to controllers employing particle swarm optimisation and evolutionary strategies. For the smaller network the proposed method performs comparably in terms of total energy usage, but delivers a greater demand deficit. On the larger network the proposed method is superior with respect to all measures. We conclude that the method is useful when the time required to evaluate possible strategies via simulation is high.

  7. An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions

    Science.gov (United States)

    Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M.

    2017-01-01

    In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method. PMID:28192436

  8. An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions.

    Science.gov (United States)

    Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M

    2017-01-01

    In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method.

  9. Plug-and-Play Voltage/Current Stabilization DC Microgrid Clusters with Grid-Forming/Feeding Converters

    DEFF Research Database (Denmark)

    Han, Renke; Tucci, Michele; Martinelli, Andrea

    2018-01-01

    In this paper, we propose a new decentralized control scheme for Microgrid (MG) clusters, given by the interconnection of atomic dc MGs, each composed by grid-forming and grid-feeding converters. In particular, we develop a new Plug-and-Play (PnP) voltage/current controller for each MG in order...... to achieve simultaneous voltage support and current feeding function with local references. The coefficients of each stabilizing controller are characterized by explicit inequalities, which are related only to local electrical parameters of the MG. With the proposed controller, each MG can plug...

  10. Application of over-current relay in offshore wind power plant grid with VSC-HVDC connection

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Sanjay K.; Teodorescu, Remus [Aalborg Univ. (Denmark). Dept. of Energy Technology; Rodriguez, Pedro [Technical Univ. of Catalonia, Terrassa (Spain). Dept. of Electrical Engineering; Kjaer, Philip C. [Vestas Technology R and D, Aarhus (Denmark)

    2011-07-01

    This paper presents the setting and coordination of over-current relays in an offshore wind power plant (WPP) grid connected only to the power electronic converters with limited fault current capability. The limited fault current injection capability of the converters has been considered as a hindrance for the relay setting. This characteristic can be utilized to develop a deterministic picture of the radial grid network and then the relays settings could be applied. The relay coordination has been demonstrated through an implementation in the Real Time Digital Simulation (RTDS) platform. The setting of relay parameters based upon maximum nominal currents is explained and the consequences are investigated. (orig.)

  11. Study on profits and the financial position of regional grid operators 2006-2009

    International Nuclear Information System (INIS)

    2010-11-01

    Grid operators have a distribution duty and a legal task to take care of a reliable energy network. To carry out the legal tasks it is important that grid operators have sufficient financial means. On the other hand, it is also important that users of energy networks do not pay too much. Chapter 1 addresses the research approach. The results of the first research question on regulated profits are discussed in chapter 2. The findings on the impact of the economic profit on the financial position are described in chapter 3. And finally, the findings on the financial position are described in chapter 4. [nl

  12. Design optimization of grid-connected PV inverters

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2011-01-01

    The DC/AC inverters are the key elements in grid-connected PV energy production systems. In this paper, new design optimization techniques focused on transformerless (very high efficiency) PV inverters are proposed. They have been developed based on an analysis of the deficiencies of the current......, state-of-the-art PV inverters design technology, which limits the amount of PV energy supplied into the electric grid. The influences of the electric grid regulations and standards and the PV array operational characteristics on the design of grid-connected PV inverters have also been considered....... The simulation results verify that the proposed optimization techniques enable the maximization of the PV energy injected into the electric grid by the optimized PV installation....

  13. Optimal Wind Energy Integration in Large-Scale Electric Grids

    Science.gov (United States)

    Albaijat, Mohammad H.

    The major concern in electric grid operation is operating under the most economical and reliable fashion to ensure affordability and continuity of electricity supply. This dissertation investigates the effects of such challenges, which affect electric grid reliability and economic operations. These challenges are: 1. Congestion of transmission lines, 2. Transmission lines expansion, 3. Large-scale wind energy integration, and 4. Phaser Measurement Units (PMUs) optimal placement for highest electric grid observability. Performing congestion analysis aids in evaluating the required increase of transmission line capacity in electric grids. However, it is necessary to evaluate expansion of transmission line capacity on methods to ensure optimal electric grid operation. Therefore, the expansion of transmission line capacity must enable grid operators to provide low-cost electricity while maintaining reliable operation of the electric grid. Because congestion affects the reliability of delivering power and increases its cost, the congestion analysis in electric grid networks is an important subject. Consequently, next-generation electric grids require novel methodologies for studying and managing congestion in electric grids. We suggest a novel method of long-term congestion management in large-scale electric grids. Owing to the complication and size of transmission line systems and the competitive nature of current grid operation, it is important for electric grid operators to determine how many transmission lines capacity to add. Traditional questions requiring answers are "Where" to add, "How much of transmission line capacity" to add, and "Which voltage level". Because of electric grid deregulation, transmission lines expansion is more complicated as it is now open to investors, whose main interest is to generate revenue, to build new transmission lines. Adding a new transmission capacity will help the system to relieve the transmission system congestion, create

  14. Study on model current predictive control method of PV grid- connected inverters systems with voltage sag

    Science.gov (United States)

    Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.

    2016-08-01

    According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.

  15. Grid requirements applicable to future NPPs in the new European Electricity Framework

    International Nuclear Information System (INIS)

    Beato Castro, D.; Padill, C. M.

    2000-01-01

    With a view to keeping nuclear energy as an option for future power generation in a competitive market and taking advantage of the current operating experience, a group of European electric utilities have come together to define common requirements for the design and supply of future Light Water Reactor (LWR) plants connected to the electrical system. These requirements, defined with the aim of standardizing and adapting design to the conditions of the new electricity framework, are being included in the European Utility Requirements (EUR) document. Although there are different types of power plants operating appropriately in large electrical systems, the idea is to find the minimum requirements that will allow growth of this type of energy in the European electricity industry without reducing quality, safety and reliability of interconnected electrical systems. It is therefore necessary to take into account the features of the existing power systems and the operating characteristics and design of nuclear power plants so as to harmonize their respective technical peculiarities in the framework of the deregulated electricity sector. The definition of these grid requirements is based primarily on the operating conditions of the Union pour la Coordination de la Production et le Transport de L'Electricite (UCPTE) grid and takes into account the current Grid Code of the main European countries, for the forthcoming Issue C. This paper sets outs the most relevant aspects of the grid requirements, included in Chapter 2.3 of the EUR document Grid Requirements, Issue B, for the connection of future nuclear power plants in the European electricity system, and others that are being considered in the preparation of the new issue of the document that will take into account the deregulated electricity market situation and deal with the following aspects: General characteristics. Operation of a plant under normal grid conditions. Operation of a plant under disturbed grid

  16. GridCom, Grid Commander: graphical interface for Grid jobs and data management; GridCom, Grid Commander: graficheskij interfejs dlya raboty s zadachami i dannymi v gride

    Energy Technology Data Exchange (ETDEWEB)

    Galaktionov, V V

    2011-07-01

    GridCom - the software package for maintenance of automation of access to means of distributed system Grid (jobs and data). The client part, executed in the form of Java-applets, realises the Web-interface access to Grid through standard browsers. The executive part Lexor (LCG Executor) is started by the user in UI (User Interface) machine providing performance of Grid operations

  17. Single-Phase LLCL-Filter-based Grid-Tied Inverter with Low-Pass Filter Based Capacitor Current Feedback Active damper

    DEFF Research Database (Denmark)

    Liu, Yuan; Wu, Weimin; Li, Yun

    2016-01-01

    The capacitor-current-feedback active damping method is attractive for high-order-filter-based high power grid-tied inverter when the grid impedance varies within a wide range. In order to improve the system control bandwidth and attenuate the high order grid background harmonics by using the quasi....... In this paper, a low pass filter is proposed to be inserted in the capacitor current feedback loop op LLCL-filter based grid-tied inverter together with a digital proportional and differential compensator. The detailed theoretical analysis is given. For verification, simulations on a 2kW/220V/10kHz LLCL...

  18. Balance control of grid currents for UPQC under unbalanced loads based on matching-ratio compensation algorithm

    DEFF Research Database (Denmark)

    Zhao, Xiaojun; Zhang, Chunjiang; Chai, Xiuhui

    2018-01-01

    In three-phase four-wire systems, unbalanced loads can cause grid currents to be unbalanced, and this may cause the neutral point potential on the grid side to shift. The neutral point potential shift will worsen the control precision as well as the performance of the threephase four-wire unified...... fluctuations, and elaborates the interaction between unbalanced grid currents and DC bus voltage fluctuations; two control strategies of UPQC under three-phase stationary coordinate based on the MCA are given, and finally, the feasibility and effectiveness of the proposed control strategy are verified...... power quality conditioner (UPQC), and it also leads to unbalanced three-phase output voltage, even causing damage to electric equipment. To deal with unbalanced loads, this paper proposes a matching-ratio compensation algorithm (MCA) for the fundamental active component of load currents...

  19. Instability of Wind Turbine Converters during Current Injection to Low Voltage Grid Faults and PLL Frequency Based Stability Solution

    DEFF Research Database (Denmark)

    Göksu, Ömer; Teodorescu, Remus; Bak, Claus Leth

    2014-01-01

    In recent grid codes for wind power integration, wind turbines are required to stay connected during grid faults even when the grid voltage drops down to zero; and also to inject reactive current in proportion to the voltage drop. However, a physical fact, instability of grid-connected converters...... during current injection to very low (close to zero) voltage faults, has been omitted, i.e., failed to be noticed in the previous wind power studies and grid code revisions. In this paper, the instability of grid side converters of wind turbines defined as loss of synchronism (LOS), where the wind...... turbines lose synchronism with the grid fundamental frequency (e.g., 50 Hz) during very deep voltage sags, is explored with its theory, analyzed and a novel stability solution based on PLL frequency is proposed; and both are verified with power system simulations and by experiments on a grid...

  20. Grid-Connected Photovoltaic System with Active Power Filtering Functionality

    Directory of Open Access Journals (Sweden)

    Joaquín Vaquero

    2018-01-01

    Full Text Available Solar panels are an attractive and growing source of renewable energy in commercial and residential applications. Its use connected to the grid by means of a power converter results in a grid-connected photovoltaic system. In order to optimize this system, it is interesting to integrate several functionalities into the power converter, such as active power filtering and power factor correction. Nonlinear loads connected to the grid generate current harmonics, which deteriorates the mains power quality. Active power filters can compensate these current harmonics. A photovoltaic system with added harmonic compensation and power factor correction capabilities is proposed in this paper. A sliding mode controller is employed to control the power converter, implemented on the CompactRIO digital platform from National Instruments Corporation, allowing user friendly operation and easy tuning. The power system consists of two stages, a DC/DC boost converter and a single-phase inverter, and it is able to inject active power into the grid while compensating the current harmonics generated by nonlinear loads at the point of common coupling. The operation, design, simulation, and experimental results for the proposed system are discussed.

  1. Control Strategy for Microgrid Inverter under Unbalanced Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Liu, Wenzhao; Zhang, X.

    2014-01-01

    This paper presents the theoretical analysis of the inherent reason of current harmonic and power oscillation phenomena in case of operating the microgrid inverter under unbalanced grid voltage conditions. In order to flexibly control the current harmonic and power oscillation, a new stationary...... inverter. Finally, the performance evaluation tests are carried out under unbalanced grid voltage conditions. Results verify the effectiveness of the propose method....

  2. The Impact of the Topology on Cascading Failures in a Power Grid Model

    NARCIS (Netherlands)

    Koç, Y.; Warnier, M.; Mieghem, P. van; Kooij, R.E.; Brazier, F.M.T.

    2014-01-01

    Cascading failures are one of the main reasons for large scale blackouts in power transmission grids. Secure electrical power supply requires, together with careful operation, a robust design of the electrical power grid topology. Currently, the impact of the topology on grid robustness is mainly

  3. Generalized stability regions of current control for LCL-filtered grid-connected converters without passive or active damping

    DEFF Research Database (Denmark)

    Tang, Yi; Yoon, Changwoo; Zhu, Rongwu

    2015-01-01

    This paper investigates the stability regions of current control for LCL-filtered grid-connected converters, where no active or passive damping is required to stabilize the closed-loop control system. It is already identified in the literature that if the LCL resonance frequency is placed within 1....../6 to 1/2 of the system sampling frequency, the grid current control can be directly used without damping. If the resonance frequency is smaller than 1/6 of the sampling frequency, the converter current control should then be adopted. This paper further extends the analysis to the cases where...... the resonance frequency could be larger than 1/2 of the sampling frequency, and derives the complete stability regions for both grid and converter current control. Interestingly, it is found that for any given LCL-filter design, there will always be one stable current control design without any damping, which...

  4. Water-cooled U-tube grids for continuously operated neutral-beam injectors

    International Nuclear Information System (INIS)

    Hoffman, M.A.; Duffy, T.J.

    1979-01-01

    A design for water-cooled extractor grids for long-pulse and continuously operated ion sources for neutral-beam injectors is described. The most serious design problem encountered is that of minimizing the thermal deformation (bowing) of these slender grid rails, which have typical overall spans of 150 mm and diameters on the order of 1 mm. A unique U-tube design is proposed that offers the possibility of keeping the thermal bowing down to about 0.05 mm (about 2.0 mils). However, the design requires high-velocity cooling water at a Reynolds number of about 3 x 10 4 and an inlet pressure on the order of 4.67 x 10 6 Pa (677 psia) in order to keep the axial and circumferential temperature differences small enough to achieve the desired small thermal bowing. It appears possible to fabricate and assemble these U-tube grids out of molybdenum with high precision and with a reasonably small number of brazes

  5. A Low-Voltage Ride-Through Technique for Grid-Connected Converters with Reduced Power Transistors Stress

    DEFF Research Database (Denmark)

    Chen, Hsin-Chih; Lee, Chia-Tse; Cheng, Po-Tai

    2016-01-01

    With more and more distributed energy resources being installed in the utility grid, grid operators start imposing the low-voltage ride-through requirement on such systems to remain grid-connected and inject reactive and/or active current to support grid voltage during fault conditions. This pape...

  6. CRISP. Dependable ICT Support of Power Grid Operations

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, R.; Mellstrand, P.; Tornqvist, B. [Blekinge Institute of Technology BTH, Karlskrona (Sweden); Akkermans, H. [EnerSearch, Malmoe (Sweden)

    2005-03-15

    This deliverable D2.4 Dependable ICT support 0f Power Grid Operations is a link between deliverable D1.6 Information security models and their economics and planned activities in WP III, that is, Implementation, Experiments and Tests. Background CRISP material includes deliverables of D2.2 Design document and multi-agent simulation tool for distributed demand-supply matching and D2.3 Design document and simulation tool for diagnostics of high-DG power networks. Furthermore there are links between this document and the deliverable D1.7 Report on distributed network architectures and D1.8 Reports on case study simulations and results. In short, this document specifies and extends the general background on security models and dependability models of deliverable D1.6 with CRISP specific material of D2.2 and D2.4 towards the experiments and tests of WP III. The focus of this deliverable is on dependable ICT support of power grid operation. By recasting the three CRISP experiments into three Scenarios in Chapter 2 we claim that we have a good description of benefits and challenges related to future virtual utilities. Among the challenges are securing trustworthy operation from a technical operation side (avoid disturbances such as blackouts) as wee as from a user-centric business point of view (value added power related services). Our investigation on proper means to safeguard operations of future virtual utilities begins with an assessment of lessons learned from recent (2003) big blackouts worldwide in Chapter 3. We propose an accident diagnosis and repair model (STAMP in Section 3.2) suitable for the complex socio-technical system we envisage for future cell-based virtual utilities. From this analysis and the background material from deliverable D1.6 Information security models and their economics, we then reassess the dependability concerns related to the CRISP related scenarios of Chapter 2. The deliverable provides some novel ideas and models that we claim are

  7. CRISP. Dependable ICT Support of Power Grid Operations

    International Nuclear Information System (INIS)

    Gustavsson, R.; Mellstrand, P.; Tornqvist, B.; Akkermans, H.

    2005-03-01

    This deliverable D2.4 Dependable ICT support 0f Power Grid Operations is a link between deliverable D1.6 Information security models and their economics and planned activities in WP III, that is, Implementation, Experiments and Tests. Background CRISP material includes deliverables of D2.2 Design document and multi-agent simulation tool for distributed demand-supply matching and D2.3 Design document and simulation tool for diagnostics of high-DG power networks. Furthermore there are links between this document and the deliverable D1.7 Report on distributed network architectures and D1.8 Reports on case study simulations and results. In short, this document specifies and extends the general background on security models and dependability models of deliverable D1.6 with CRISP specific material of D2.2 and D2.4 towards the experiments and tests of WP III. The focus of this deliverable is on dependable ICT support of power grid operation. By recasting the three CRISP experiments into three Scenarios in Chapter 2 we claim that we have a good description of benefits and challenges related to future virtual utilities. Among the challenges are securing trustworthy operation from a technical operation side (avoid disturbances such as blackouts) as wee as from a user-centric business point of view (value added power related services). Our investigation on proper means to safeguard operations of future virtual utilities begins with an assessment of lessons learned from recent (2003) big blackouts worldwide in Chapter 3. We propose an accident diagnosis and repair model (STAMP in Section 3.2) suitable for the complex socio-technical system we envisage for future cell-based virtual utilities. From this analysis and the background material from deliverable D1.6 Information security models and their economics, we then reassess the dependability concerns related to the CRISP related scenarios of Chapter 2. The deliverable provides some novel ideas and models that we claim are

  8. Electric arc discharge damage to ion thruster grids

    Science.gov (United States)

    Beebe, D. D.; Nakanishi, S.; Finke, R. C.

    1974-01-01

    Arcs representative of those occurring between the grids of a mercury ion thruster were simulated. Parameters affecting an arc and the resulting damage were studied. The parameters investigated were arc energy, arc duration, and grid geometry. Arc attenuation techniques were also investigated. Potentially serious damage occurred at all energy levels representative of actual thruster operating conditions. Of the grids tested, the lowest open-area configuration sustained the least damage for given conditions. At a fixed energy level a long duration discharge caused greater damage than a short discharge. Attenuation of arc current using various impedances proved to be effective in reducing arc damage. Faults were also deliberately caused using chips of sputtered materials formed during the operation of an actual thruster. These faults were cleared with no serious grid damage resulting using the principles and methods developed in this study.

  9. Optimization and analysis of the current control loop of VSCs connected to uncertain grids through LCL filters

    OpenAIRE

    Cóbreces Álvarez, Santiago

    2009-01-01

    Premio Extraordinario de Doctorado 2011 This thesis focuses on the design and analysis of the control of voltage source converters connected to the grid through LCL filters. Particularly it is centered on grids presenting uncertainty in their intrinsic dynamic parameters and their influence over the inner control loop of a grid converter: the current control. To that end, the thesis follows a three-fold discussion. Firstly, the thesis studies the grid model, its uncertain parameters and pr...

  10. Micro grids toward the smart grid

    International Nuclear Information System (INIS)

    Guerrero, J.

    2011-01-01

    Worldwide electrical grids are expecting to become smarter in the near future, with interest in Microgrids likely to grow. A microgrid can be defined as a part of the grid with elements of prime energy movers, power electronics converters, distributed energy storage systems and local loads, that can operate autonomously but also interacting with main grid. Thus, the ability of intelligent Microgrids to operate in island mode or connected to the grid will be a keypoint to cope with new functionalities and the integration of renewable energy resources. The functionalities expected for these small grids are: black start operation, frequency and voltage stability, active and reactive power flow control, active power filter capabilities, and storage energy management. In this presentation, a review of the main concepts related to flexible Microgrids will be introduced, with examples of real Microgrids. AC and DC Microgrids to integrate renewable and distributed energy resources will also be presented, as well as distributed energy storage systems, and standardization issues of these Microgrids. Finally, Microgrid hierarchical control will be analyzed looking at three different levels: i) a primary control based on the droop method, including an output impedance virtual loop; ii) a secondary control, which enables restoring any deviations produced by the primary control; and iii) a tertiary control to manage the power flow between the microgrid and the external electrical distribution system.

  11. Local DER Driven Grid Support by Coordinated Operation of Devices

    International Nuclear Information System (INIS)

    Warmer, C.J.; Kamphuis, I.G.

    2009-01-01

    In the traditional operation of electricity networks the system operator has a number of ancillary services available for preservation of system balance. These services are called upon near real-time, after the planning phase. Ancillary services consist of regulating power, reserve capacity and emergency capacity, each with their own characteristics. Regulating power is deployed via load frequency control. Reserve capacity is used to release regulating power and can be called upon to maintain a balance or to counterbalance or resolve transmission restrictions. Both are traded at the Dutch energy market under an auction model with a single buyer (TenneT). Emergency capacity is rewarded on the basis of accessibility/availability within 15 minutes. In local electricity networks neither planning nor ancillary services exist. Planning is done by aggregation into large customer groups. For ancillary services one relies on the system operation as sketched above. In local electricity networks with a large share of distributed generation the costs of keeping the electricity system reliable and stable will increase further and technical problems may arise. The European SmartGrids initiative responds to these challenges in their strategic research agenda. One of the issues addressed in this agenda is the changing role of the distribution grid in which users get a more active role. One opportunity is the introduction of ancillary-type services at the distribution level, utilizing different types of producing and consuming devices in the local network, in order to make the total system more dependable. Distributed generation has a number of characteristics that are similar to characteristics of consumption. Part of it is intermittent / variable, although to a large extent predictable (PV, wind versus lighting, electronic devices). Another part is task-driven (micro-CHP versus electrical heating). Yet another part is controllable or shiftable in time. And storage can behave both

  12. Smart grids - French Expertise

    International Nuclear Information System (INIS)

    2015-11-01

    particular by working to develop storage solutions at all levels within the grid, and by preparing to introduce electric vehicles. Developing solutions for tomorrow: strong willingness of public authorities in France to develop Smart Grids has notably led to the creation of support mechanisms for innovation and for demonstration projects, and to a strategic business sector plan dedicated to Smart Grids. Related competencies have also emerged, in the development of market design, and cyber security. The French Smart Grid vision focuses on mastering complexity, on large scale deployments, and on the development of systems showing a high degree of dependability and reliable functioning. World leaders, mid-cap companies and small businesses specialized in the full range of Smart Grid technologies: operators of electrical and telecommunications networks, equipment and component manufacturers, software engineering companies, data centre managers etc. Over 100 Smart Grid projects are currently underway in France. Strong R and D and innovation capacity: some 20 demonstration projects have started up under the Smart Grids segment of the Investments for the Future programme. France ranks first in Europe for Smart Grid investments

  13. Smart-grid investments, regulation and organization

    International Nuclear Information System (INIS)

    Agrell, Per J.; Bogetoft, Peter; Mikkers, Misja

    2013-01-01

    Grid infrastructure managers worldwide are facing demands for reinvestments in new assets with higher on-grid and off-grid functionality in order to meet new environmental targets. The roles of the current actors will change as the vertical interfaces between regulated and unregulated tasks become blurred. In this paper, we characterize some of the effects of new asset investments policy on the network tasks, assets and costs and contrast this with the assumptions of the current economic network regulation. To provide structure, we present a model of investment provision under regulation between a distribution system operator and a potential investor–generator. The results from the model confirm the hypothesis that network regulation should find a focal point, should integrate externalities in the performance assessment and should avoid wide delegation of contracting-billing for smart-grid investments. - Highlights: ► We review regulatory solutions for smart-grid and DER investments. ► What matters more than upfront incentives is organization and delegation. ► We model regulated investment under private information by a generator or a DSO. ► Highest welfare for high-powered incentives and centralized information. ► Market approaches likely to give poor outcomes for this case.

  14. Enabling Technologies for Smart Grid Integration and Interoperability of Electric Vehicles

    DEFF Research Database (Denmark)

    Martinenas, Sergejus

    Conventional, centralized power plants are being replaced by intermittent, distributed renewable energy sources, thus raising the concern about the stability of the power grid in its current state. All the while, electrification of all forms of transportation is increasing the load...... for successful EV integration into the smart grid, as a smart, mobile distributed energy resource. The work is split into three key topics: enabling technologies, grid service applications and interoperability issues. The current state of e-mobility technologies is surveyed. Technologies and protocols...... EVs to not only mitigate their own effects on the grid, but also provide value to grid operators, locally as well as system wide. Finally, it is shown that active integration of EVs into the smart grid, is not only achievable, but is well on its way to becoming a reality....

  15. Modeling and Economic Analysis of Power Grid Operations in a Water Constrained System

    Science.gov (United States)

    Zhou, Z.; Xia, Y.; Veselka, T.; Yan, E.; Betrie, G.; Qiu, F.

    2016-12-01

    The power sector is the largest water user in the United States. Depending on the cooling technology employed at a facility, steam-electric power stations withdrawal and consume large amounts of water for each megawatt hour of electricity generated. The amounts are dependent on many factors, including ambient air and water temperatures, cooling technology, etc. Water demands from most economic sectors are typically highest during summertime. For most systems, this coincides with peak electricity demand and consequently a high demand for thermal power plant cooling water. Supplies however are sometimes limited due to seasonal precipitation fluctuations including sporadic droughts that lead to water scarcity. When this occurs there is an impact on both unit commitments and the real-time dispatch. In this work, we model the cooling efficiency of several different types of thermal power generation technologies as a function of power output level and daily temperature profiles. Unit specific relationships are then integrated in a power grid operational model that minimizes total grid production cost while reliably meeting hourly loads. Grid operation is subject to power plant physical constraints, transmission limitations, water availability and environmental constraints such as power plant water exit temperature limits. The model is applied to a standard IEEE-118 bus system under various water availability scenarios. Results show that water availability has a significant impact on power grid economics.

  16. Smart Grid Communications System Blueprint

    Science.gov (United States)

    Clark, Adrian; Pavlovski, Chris

    2010-10-01

    Telecommunications operators are well versed in deploying 2G and 3G wireless networks. These networks presently support the mobile business user and/or retail consumer wishing to place conventional voice calls and data connections. The electrical power industry has recently commenced transformation of its distribution networks by deploying smart monitoring and control devices throughout their networks. This evolution of the network into a `smart grid' has also motivated the need to deploy wireless technologies that bridge the communication gap between the smart devices and information technology systems. The requirements of these networks differ from traditional wireless networks that communications operators have deployed, which have thus far forced energy companies to consider deploying their own wireless networks. We present our experience in deploying wireless networks to support the smart grid and highlight the key properties of these networks. These characteristics include application awareness, support for large numbers of simultaneous cell connections, high service coverage and prioritized routing of data. We also outline our target blueprint architecture that may be useful to the industry in building wireless and fixed networks to support the smart grid. By observing our experiences, telecommunications operators and equipment manufacturers will be able to augment their current networks and products in a way that accommodates the needs of the emerging industry of smart grids and intelligent electrical networks.

  17. Profitability of smart grid solutions applied in power grid

    Directory of Open Access Journals (Sweden)

    Katić Nenad A.

    2016-01-01

    Full Text Available The idea of a Smart Grid solution has been developing for years, as complete solution for a power utility, consisting of different advanced technologies aimed at improving of the efficiency of operation. The trend of implementing various smart systems continues, e.g. Energy Management Systems, Grid Automation Systems, Advanced Metering Infrastructure, Smart power equipment, Distributed Energy Resources, Demand Response systems, etc. Futhermore, emerging technologies, such as energy storages, electrical vehicles or distributed generators, become integrated in distribution networks and systems. Nowadays, the idea of a Smart Grid solution becomes more realistic by full integration of all advanced operation technologies (OT within IT environment, providing the complete digitalization of an Utility (IT/OT integration. The overview of smart grid solutions, estimation of investments, operation costs and possible benefits are presented in this article, with discusison about profitability of such systems.

  18. Multi-pole permanent magnet synchronous generator wind turbines' grid support capability in uninterrupted operation during grid faults

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Michalke, G.

    2009-01-01

    Emphasis in this paper is on the fault ride-through and grid support capabilities of multi-pole permanent magnet synchronous generator (PMSG) wind turbines with a full-scale frequency converter. These wind turbines are announced to be very attractive, especially for large offshore wind farms...... and discussed by means of simulations with the use of a transmission power system generic model developed and delivered by the Danish Transmission System Operator Energinet.dk. The simulation results show how a PMSG wind farm equipped with an additional voltage control can help a nearby active stall wind farm....... A control strategy is presented, which enhances the fault ride-through and voltage support capability of such wind turbines during grid faults. Its design has special focus on power converters' protection and voltage control aspects. The performance of the presented control strategy is assessed...

  19. Operational flash flood forecasting platform based on grid technology

    Science.gov (United States)

    Thierion, V.; Ayral, P.-A.; Angelini, V.; Sauvagnargues-Lesage, S.; Nativi, S.; Payrastre, O.

    2009-04-01

    effort in term of grid technology development. This paper presents an operational flash flood forecasting platform which have been developed in the framework of CYCLOPS European project providing one of virtual organizations of EGEE project. This platform has been designed to enable multi-simulations processes to ease forecasting operations of several supervised watersheds on Grand Delta (SPC-GD) territory. Grid technology infrastructure, in providing multiple remote computing elements enables the processing of multiple rainfall scenarios, derived to the original meteorological forecasting transmitted by Meteo-France, and their respective hydrological simulations. First results show that from one forecasting scenario, this new presented approach can permit simulations of more than 200 different scenarios to support forecasters in their aforesaid mission and appears as an efficient hydrological decision-making tool. Although, this system seems operational, model validity has to be confirmed. So, further researches are necessary to improve models core to be more efficient in term of hydrological aspects. Finally, this platform could be an efficient tool for developing others modelling aspects as calibration or data assimilation in real time processing.

  20. Operation and control of a DC-grid offshore wind farm under DC transmission system faults

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2013-01-01

    . Consequently, the protection and control strategies of dc systems need to be established. This paper studies a dc-grid offshore wind farm, where the wind power collection system and power transmission system adopt dc technology. In this paper, the redundancy of the HVDC transmission system under faults...... is studied, and a fault ridethrough strategy for the dc-grid offshore wind farm is proposed. The proposed strategy can effectively minimize the impacts of the power transmission system disturbance on the offshore wind farm, and on the ac grid. A dc-grid offshore wind farm example is simulated with PSCAD....../EMTDC, and the results validate the feasibility of the presented redundancy configuration and operation approach, and the fault ridethrough control strategy....

  1. Hardware-in-the-loop grid simulator system and method

    Science.gov (United States)

    Fox, John Curtiss; Collins, Edward Randolph; Rigas, Nikolaos

    2017-05-16

    A hardware-in-the-loop (HIL) electrical grid simulation system and method that combines a reactive divider with a variable frequency converter to better mimic and control expected and unexpected parameters in an electrical grid. The invention provides grid simulation in a manner to allow improved testing of variable power generators, such as wind turbines, and their operation once interconnected with an electrical grid in multiple countries. The system further comprises an improved variable fault reactance (reactive divider) capable of providing a variable fault reactance power output to control a voltage profile, therein creating an arbitrary recovery voltage. The system further comprises an improved isolation transformer designed to isolate zero-sequence current from either a primary or secondary winding in a transformer or pass the zero-sequence current from a primary to a secondary winding.

  2. Review of the development of multi-terminal HVDC and DC power grid

    Science.gov (United States)

    Chen, Y. X.

    2017-11-01

    Traditional power equipment, power-grid structures, and operation technology are becoming increasingly powerless with the large-scale renewable energy access to the grid. Thus, we must adopt new technologies, new equipment, and new grid structure to satisfy future requirements in energy patterns. Accordingly, the multiterminal direct current (MTDC) transmission system is receiving increasing attention. This paper starts with a brief description of current developments in MTDC worldwide. The MTDC project, which has been placed into practical operation, is introduced by the Italian-Corsica-Sardinian three-terminal high-voltage DC (HVDC) project. We then describe the basic characteristics and regulations of multiterminal DC transmission. The current mainstream of several control methods are described. In the third chapter, the key to the development of MTDC system or hardware and software technology that restricts the development of multiterminal DC transmission is discussed. This chapter focuses on the comparison of double-ended HVDC and multiterminal HVDC in most aspects and subsequently elaborates the key and difficult point of MTDC development. Finally, this paper summarizes the prospect of a DC power grid. In a few decades, China can build a strong cross-strait AC-DC hybrid power grid.

  3. Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies (Spanish Version)

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    This is the Spanish version of 'Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies'. Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid.

  4. Expected Range of Cooperation Between Transmission System Operators and Distribution System Operators After Implementation of ENTSO-E Grid Codes

    Directory of Open Access Journals (Sweden)

    Tomasz Pakulski

    2015-06-01

    Full Text Available The authors present the prospects of cooperation between transmission system operators (TSO and distribution system operators (DSO after entry into force ENTSO-E (European Network of Transmission System Operators for Electricity grid codes. New areas of DSO activities, associated with offering TSO aggregated services for national power system regulation based on the regulation resources connected to the distribution grid, and services on the distribution system level as part of the creation of local balancing areas (LBA are presented. The paper also presents the possibilities of providing ancillary services by different types of distributed generation sources in the distribution network. The LBA concept, which involves integrated management of local regulation resources including generation, demand, and energy storage is described. The options of the renewable energy sources (RES using for voltage and reactive power control in the distribution network with the use of wind farms (WF connected to the distribution system are characterized.

  5. Grid3: An Application Grid Laboratory for Science

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    level services required by the participating experiments. The deployed infrastructure has been operating since November 2003 with 27 sites, a peak of 2800 processors, work loads from 10 different applications exceeding 1300 simultaneous jobs, and data transfers among sites of greater than 2 TB/day. The Grid3 infrastructure was deployed from grid level services provided by groups and applications within the collaboration. The services were organized into four distinct "grid level services" including: Grid3 Packaging, Monitoring and Information systems, User Authentication and the iGOC Grid Operatio...

  6. A Thermal grid coordinated by a Multi Agent Energy Management System

    NARCIS (Netherlands)

    Pruissen, O.P. van; Kamphuis, V.; Togt, A. van der; Werkman, E.

    2013-01-01

    In the near future an increase of both thermal grids and sustainable suppliers of heat with intermittency behavior, connected to these heat grids, is expected. For smart operation this challenges the current centralized management systems. To deal with this and to optimize cost and energy efficiency

  7. Inverter-Current-Feedback Resonance-Suppression Method for LCL-Type DG System to Reduce Resonance-Frequency Offset and Grid-Inductance Effect

    DEFF Research Database (Denmark)

    Zhou, Leming; Zhou, Xiaoping; Chen, Yandong

    2018-01-01

    For the LCL-type grid-connected distributed generation system, the grid-current-feedback active damping (GCFAD) methods have a conflict between the resonance-suppression ability and harmonic-currents amplification. For this, an inverter-current-feedback reso-nance-suppression (ICFRS) method without...... additional sensors is proposed to reduce resonance-frequency offset and grid-inductance effect due to its unattenuated damping characteristic under high-frequency bandwidth. By analyzing two types of equivalent impedance models of ICFRS and GCFAD with a high-pass filter (HPF), GCFAD can suppress...

  8. 5G and Cellular Networks in the Smart Grid

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen; Jorguseski, Ljupco; Zhang, Haibin

    2018-01-01

    grid. In the present chapter, we present the main features of both the non-3GPP technologies, IEEE 802.11ah, SigFox and LoRa, and the main features of past, current and future 3GPP technologies, namely releases High rate), 12-14 (IoT extensions) and 15-16 (5G). Additionally, we present......Wireless cellular networks will help Distribution System Operators (DSOs) to achieve observability below the substation level, which is needed to ensure stable operation in the smart grid. Both existing and upcoming cellular technologies are considered as candidates for helping to enable the smart...... the challenges and possible solutions for ensuring end-to-end security in smart grid systems....

  9. Balancing Area Coordination: Efficiently Integrating Renewable Energy Into the Grid, Greening the Grid

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Jessica; Denholm, Paul; Cochran, Jaquelin

    2015-06-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. Coordinating balancing area operation can promote more cost and resource efficient integration of variable renewable energy, such as wind and solar, into power systems. This efficiency is achieved by sharing or coordinating balancing resources and operating reserves across larger geographic boundaries.

  10. Hierarchical Load Tracking Control of a Grid-Connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    2015-03-01

    Full Text Available Based on the benchmark solid oxide fuel cell (SOFC dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject to the constraints of fuel utilization factor, stack temperature and output active power. The optimal operating conditions of the grid-connected SOFC were obtained by solving the NLP problem considering the power consumed by the air compressor. With the optimal operating conditions of the SOFC for the maximum efficiency operation obtained at different active power output levels, a hierarchical load tracking control scheme for the grid-connected SOFC was proposed to realize the maximum electrical efficiency operation with the stack temperature bounded. The hierarchical control scheme consists of a fast active power control and a slower stack temperature control. The active power control was developed by using a decentralized control method. The efficiency of the proposed hierarchical control scheme was demonstrated by case studies using the benchmark SOFC dynamic model.

  11. Investing in the electricity and natural gas grids. Movements in the regulation framework

    International Nuclear Information System (INIS)

    Van Eeuwen, M.

    2011-01-01

    In this article, an overview is given of the regulation framework for investing in the electricity and natural gas grids. The overview describes which options regulations and regulation practice offer to grid operators for recovering the cost of investing in grids. Attention is paid to possible discrepancies between the European and the Dutch regulation framework. The article illustrates that grid operators currently lack any clarity and hence certainty about the options for recovering their investment costs. At the same time the fact that investments are needed to secure quality and capacity is not under debate. [nl

  12. Vehicle-to-Grid for islanded power system operation in Bornholm

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2010-01-01

    Vehicle-to-Grid (V2G) systems are an emerging concept of utilizing the battery storage of electric vehicles (EVs) for providing power system regulation services. This technology could be used to balance the variable electricity generated from various renewable energy sources. This article considers...... a model of an aggregated electric vehicle based battery storage to support an isolated power system operating with a large wind power penetration in the Danish island of Bornholm. From the simulation results, the EV battery storages represented by the V2G systems are able to integrate more fluctuating...... wind power. The islanded Bornholm power system operates satisfactory for the case of replacing most of the conventional generator reserves with V2G systems, which may represent a future operation scenario....

  13. Design of High-Fidelity Testing Framework for Secure Electric Grid Control

    Energy Technology Data Exchange (ETDEWEB)

    Yoginath, Srikanth B [ORNL; Perumalla, Kalyan S [ORNL

    2014-01-01

    A solution methodology and implementation components are presented that can uncover unwanted, unintentional or unanticipated effects on electric grids from changes to actual electric grid control software. A new design is presented to leapfrog over the limitations of current modeling and testing techniques for cyber technologies in electric grids. We design a fully virtualized approach in which actual, unmodified operational software under test is enabled to interact with simulated surrogates of electric grids. It enables the software to influence the (simulated) grid operation and vice versa in a controlled, high fidelity environment. Challenges in achieving such capability include achieving low-overhead time control mechanisms in hypervisor schedulers, network capture and time-stamping, translation of network packets emanating from grid software into discrete events of virtual grid models, translation back from virtual sensors/actuators into data packets to control software, and transplanting the entire system onto an accurately and efficiently maintained virtual-time plane.

  14. Cutback for grid operators; Netbeheerders energie gekort

    Energy Technology Data Exchange (ETDEWEB)

    Meulmeester, P. [GEN Nederland, Rotterdam (Netherlands); De Laat, J. [NRE Netwerk, Eindhoven (Netherlands)

    2006-02-24

    The Netherlands Competition Authority (NMa), in which the Office of Energy Regulation (DTe) is included plan to decrease the capital cost compensation (or weighted average cost of capital or WACC) for grid operators. In this article it is explained how the compensation is calculated, why this measure will be taken and what the effects of this cutback are. [Dutch] De NMa/DTe wil de vermogenskostenvergoeding voor netbeheerders naar beneden bijstellen. In dit stuk worden de effecten van deze verlaging besproken door eerst uitleg te geven over maatstafconcurrentie als reguleringssystematiek en de rol van de vermogenskostenvergoeding in deze systematiek. Hierna wordt verklaard hoe de vermogenskostenvergoeding wordt berekend en waarom deze wordt veranderd. Tot slot bekijken we het effect van deze verlaging.

  15. Autonomous Operation of Hybrid Microgrid with AC and DC Sub-Grids

    DEFF Research Database (Denmark)

    Loh, Poh Chiang; Blaabjerg, Frede

    2011-01-01

    the power flow among all the sources distributed throughout the two types of sub-grids, which certainly is tougher than previous efforts developed for only either ac or dc microgrid. This wider scope of control has not yet been investigated, and would certainly rely on the coordinated operation of dc...... sources, ac sources and interlinking converters. Suitable control and normalization schemes are therefore developed for controlling them with results presented for showing the overall performance of the hybrid microgrid.......This paper investigates on the active and reactive power sharing of an autonomous hybrid microgrid. Unlike existing microgrids which are purely ac, the hybrid microgrid studied here comprises dc and ac sub-grids, interconnected by power electronic interfaces. The main challenge here is to manage...

  16. Current Control Method for Distributed Generation Power Generation Plants under Grid Fault Conditions

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Luna, Alvaro; Hermoso, Juan Ramon

    2011-01-01

    The operation of distributed power generation systems under grid fault conditions is a key issue for the massive integration of renewable energy systems. Several studies have been conducted to improve the response of such distributed generation systems under voltage dips. In spite of being less s...

  17. Optimal Operation and Management of Smart Grid System with LPC and BESS in Fault Conditions

    Directory of Open Access Journals (Sweden)

    Ryuto Shigenobu

    2016-12-01

    Full Text Available Distributed generators (DG using renewable energy sources (RESs have been attracting special attention within distribution systems. However, a large amount of DG penetration causes voltage deviation and reverse power flow in the smart grid. Therefore, the smart grid needs a solution for voltage control, power flow control and power outage prevention. This paper proposes a decision technique of optimal reference scheduling for a battery energy storage system (BESS, inverters interfacing with a DG and voltage control devices for optimal operation. Moreover, the reconfiguration of the distribution system is made possible by the installation of a loop power flow controller (LPC. Two separate simulations are provided to maintain the reliability in the stable power supply and economical aspects. First, the effectiveness of the smart grid with installed BESS or LPC devices is demonstrated in fault situations. Second, the active smart grid using LCPs is proposed. Real-time techniques of the dual scheduling algorithm are applied to the system. The aforementioned control objective is formulated and solved using the particle swarm optimization (PSO algorithm with an adaptive inertia weight (AIW function. The effectiveness of the optimal operation in ordinal and fault situations is verified by numerical simulations.

  18. Operation and thermal loading of three-level Neutral-Point-Clamped wind power converter under various grid faults

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Liserre, Marco

    2012-01-01

    In order to fulfill the continuous growing grid-side demands, the full-scale power converters are becoming more and more popular in the wind power application. Nevertheless, the more severe loading of the power semiconductor devices in the full-scale power converters, especially during Low Voltage...... Ride Through (LVRT) operation under grid faults, may compromise the reliability of the system and consequently further increase its cost. In this paper, the impact of various grid faults on a three-level Neutral-Point-Clamped (3L-NPC) grid-converter in terms of thermal loading of power semiconductor...

  19. Grid-connected to/from off-grid transference for micro-grid inverters

    OpenAIRE

    Heredero Peris, Daniel; Chillón Antón, Cristian; Pages Gimenez, Marc; Gross, Gabriel Igor; Montesinos Miracle, Daniel

    2013-01-01

    This paper compares two methods for controlling the on-line transference from connected to stand-alone mode and vice versa in converters for micro-grids. The first proposes a method where the converter changes from CSI (Current Source Inverter) in grid-connected mode to VSI (Voltage Source Inverter) in off-grid. In the second method, the inverter always works as a non-ideal voltage source, acting as VSI, using AC droop control strategy.

  20. A flexible model for economic operational management of grid battery energy storage

    International Nuclear Information System (INIS)

    Fares, Robert L.; Webber, Michael E.

    2014-01-01

    To connect energy storage operational planning with real-time battery control, this paper integrates a dynamic battery model with an optimization program. First, we transform a behavioral circuit model designed to describe a variety of battery chemistries into a set of coupled nonlinear differential equations. Then, we discretize the differential equations to integrate the battery model with a GAMS (General Algebraic Modeling System) optimization program, which decides when the battery should charge and discharge to maximize its operating revenue. We demonstrate the capabilities of our model by applying it to lithium-ion (Li-ion) energy storage operating in Texas' restructured electricity market. By simulating 11 years of operation, we find that our model can robustly compute an optimal charge-discharge schedule that maximizes daily operating revenue without violating a battery's operating constraints. Furthermore, our results show there is significant variation in potential operating revenue from one day to the next. The revenue potential of Li-ion storage varies from approximately $0–1800/MWh of energy discharged, depending on the volatility of wholesale electricity prices during an operating day. Thus, it is important to consider the material degradation-related “cost” of performing a charge-discharge cycle in battery operational management, so that the battery only operates when revenue exceeds cost. - Highlights: • A flexible, dynamic battery model is integrated with an optimization program. • Electricity price data is used to simulate 11 years of Li-ion operation on the grid. • The optimization program robustly computes an optimal charge-discharge schedule. • Variation in daily Li-ion battery revenue potential from 2002 to 2012 is shown. • We find it is important to consider the cost of a grid duty cycle

  1. Electric Vehicle Requirements for Operation in Smart Grids

    DEFF Research Database (Denmark)

    Marra, Francesco; Sacchetti, Dario; Træholt, Chresten

    2011-01-01

    Several European projects on smart grids are considering Electric Vehicles (EVs) as active element in future power systems. Both battery-powered vehicles and plug-in hybrid vehicles are expected to interact with the grid, sharing their energy storage capacity. Different coordination concepts...... for EVs are being investigated, in which vehicles can be intelligently charged or discharged feeding power back to the grid in vehicle-to-grid mode (V2G). To respond to such needs, EVs are required to share their battery internal data as well as respond to external control signals. In this paper...

  2. Grid Voltage Modulated Control of Grid-Connected Voltage Source Inverters under Unbalanced Grid Conditions

    DEFF Research Database (Denmark)

    Li, Mingshen; Gui, Yonghao; Quintero, Juan Carlos Vasquez

    2017-01-01

    In this paper, an improved grid voltage modulated control (GVM) with power compensation is proposed for grid-connected voltage inverters when the grid voltage is unbalanced. The objective of the proposed control is to remove the power ripple and to improve current quality. Three power compensation...... objectives are selected to eliminate the negative sequence components of currents. The modified GVM method is designed to obtain two separate second-order systems for not only the fast convergence rate of the instantaneous active and reactive powers but also the robust performance. In addition, this method...

  3. Forecasting Wind and Solar Generation: Improving System Operations, Greening the Grid (Spanish Version)

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Tian; Chernyakhovskiy, Ilya; Brancucci Martinez-Anido, Carlo

    2016-04-01

    This document is the Spanish version of 'Greening the Grid- Forecasting Wind and Solar Generation Improving System Operations'. It discusses improving system operations with forecasting with and solar generation. By integrating variable renewable energy (VRE) forecasts into system operations, power system operators can anticipate up- and down-ramps in VRE generation in order to cost-effectively balance load and generation in intra-day and day-ahead scheduling. This leads to reduced fuel costs, improved system reliability, and maximum use of renewable resources.

  4. Multi-objective optimal operation of smart reconfigurable distribution grids

    Directory of Open Access Journals (Sweden)

    Abdollah Kavousi-Fard

    2016-02-01

    Full Text Available Reconfiguration is a valuable technique that can support the distribution grid from different aspects such as operation cost and loss reduction, reliability improvement, and voltage stability enhancement. An intelligent and efficient optimization framework, however, is required to reach the desired efficiency through the reconfiguration strategy. This paper proposes a new multi-objective optimization model to make use of the reconfiguration strategy for minimizing the power losses, improving the voltage profile, and enhancing the load balance in distribution grids. The proposed model employs the min-max fuzzy approach to find the most satisfying solution from a set of nondominated solutions in the problem space. Due to the high complexity and the discrete nature of the proposed model, a new optimization method based on harmony search (HS algorithm is further proposed. Moreover, a new modification method is suggested to increase the harmony memory diversity in the improvisation stage and increase the convergence ability of the algorithm. The feasibility and satisfying performance of the proposed model are examined on the IEEE 32-bus distribution system.

  5. Digital control of grid connected converters for distributed power generation

    Energy Technology Data Exchange (ETDEWEB)

    Skjellnes, Tore

    2008-07-01

    Pulse width modulated converters are becoming increasingly popular as their cost decreases and power rating increases. The new trend of small scale power producers, often using renewable energy sources, has created new demands for delivery of energy to the grid. A major advantage of the pulse width modulated converter is the ability to control the output voltage at any point in the voltage period. This enables rapid response to load changes and non-linear loads. In addition it can shape the voltage in response to the output current to create an outward appearance of a source impedance. This is called a virtual impedance. This thesis presents a controller for a voltage controlled three phase pulse width modulated converter. This controller enables operation in standalone mode, in parallel with other converters in a micro grid, and in parallel with a strong main grid. A time varying virtual impedance is presented which mainly attenuates reactive currents. A method of investigating the overall impedance including the virtual impedance is presented. New net standards have been introduced, requiring the converter to operate even during severe dips in the grid voltage. Experiments are presented verifying the operation of the controller during voltage dips. (Author). 37 refs., 65 figs., 10 tabs

  6. Considerations on smart grid developments and impacts on transmission operation and planning

    NARCIS (Netherlands)

    Ribeiro, P.F.; Nguyen, P.H.; Kling, W.L.

    2012-01-01

    This paper discusses some historical and technical events, particularly in USA and Europe, over the last few years, that are aimed at modernizing the electric power grid. The paper also looks at possible impacts on transmission operation and planning as the system moves from a centralized to a

  7. Analysis for the Effects of Grid Voltage Degradation on APR1400 Operation, Case Study for Egypt

    International Nuclear Information System (INIS)

    Hassan, Mostafa Ahmed Fouad; Koo, Chang Choong

    2015-01-01

    Egypt is one of the countries planning to introduce a NPP into its electrical power system. Although the Egyptian power system has sufficient capacity to integrate any commercially available nuclear unit as the total installed capacity of the power system is more than 32GWe, which is more than 10 times capacity of any nuclear unit in the range of 1000 to 1700MWe, the system is vulnerable to extreme voltage variations, especially voltage degradation during peak load conditions. These conditions can lead to voltage collapse if a counter measure, usually load shedding, is not taken in a proper time. Hence, it is necessary to analyze the effect of such conditions on the safe and economic operation of the NPP. In this paper we analyzed the effects of grid voltage degradation on the safe and economic operation of the Advanced Power Reactor (APR1400) to determine any adverse effects on the plant auxiliary loads while operating in the Egyptian power system. In this paper the effects of grid voltage degradation on the safe and economic operation of APR1400 were investigated taking into account, generator operating limits, plant safety requirements, operation modes and loading categories in order to determine any adverse effect on the plant auxiliary loads while operating in the Egyptian power system. The results of the load flow and motor starting analysis demonstrated that during normal operation the automatic voltage regulator and transformers OLTCs can mitigate the effect of grid voltage degradation without any detrimental effect on the plant auxiliary loads. During the highly unlikely LOCA condition if the grid voltage degraded below 95%, the degraded voltage relays at Class 1E 4.16 kV buses will trip the supply and load breakers and reconnect the required safety loads to the EDG after 4 minutes time delay. During this period the safety loads required for LOCA can be started and accelerated to their rated speed safely even in the worst case of expected degraded voltage

  8. PSG: Peer-to-Peer semantic grid framework architecture

    Directory of Open Access Journals (Sweden)

    Amira Soliman

    2011-07-01

    Full Text Available The grid vision, of sharing diverse resources in a flexible, coordinated and secure manner, strongly depends on metadata. Currently, grid metadata is generated and used in an ad-hoc fashion, much of it buried in the grid middleware code libraries and database schemas. This ad-hoc expression and use of metadata causes chronic dependency on human intervention during the operation of grid machinery. Therefore, the Semantic Grid is emerged as an extension of the grid in which rich resource metadata is exposed and handled explicitly, and shared and managed via grid protocols. The layering of an explicit semantic infrastructure over the grid infrastructure potentially leads to increase interoperability and flexibility. In this paper, we present PSG framework architecture that offers semantic-based grid services. PSG architecture allows the explicit use of semantics and defining the associated grid services. PSG architecture is originated from the integration of Peer-to-Peer (P2P computing with semantics and agents. Ontologies are used in annotating each grid component, developing users/nodes profiles and organizing framework agents. While, P2P is responsible for organizing and coordinating the grid nodes and resources.

  9. The GridSite Web/Grid security system

    International Nuclear Information System (INIS)

    McNab, Andrew; Li Yibiao

    2010-01-01

    We present an overview of the current status of the GridSite toolkit, describing the security model for interactive and programmatic uses introduced in the last year. We discuss our experiences of implementing these internal changes and how they and previous rounds of improvements have been prompted by requirements from users and wider security trends in Grids (such as CSRF). Finally, we explain how these have improved the user experience of GridSite-based websites, and wider implications for portals and similar web/grid sites.

  10. Threat Assessment for Multistage Cyber Attacks in Smart Grid Communication Networks

    OpenAIRE

    He, Xiaobing

    2017-01-01

    In smart grids, managing and controlling power operations are supported by information and communication technology (ICT) and supervisory control and data acquisition (SCADA) systems. The increasing adoption of new ICT assets in smart grids is making smart grids vulnerable to cyber threats, as well as raising numerous concerns about the adequacy of current security approaches. As a single act of penetration is often not sufficient for an attacker to achieve his/her goal, multistage cyb...

  11. Distributed generation incorporated with the thermal generation for optimum operation of a smart grid considering forecast error

    International Nuclear Information System (INIS)

    Howlader, Harun Or Rashid; Matayoshi, Hidehito; Senjyu, Tomonobu

    2015-01-01

    Highlights: • Optimal operation of the thermal generation for the smart grid system. • Different distributed generations are considered as the power generation sources. • Forecast error of the renewable energy systems is considered. • Controllable loads of the smart houses are considered to achieve the optimal operation. • Economical benefits can be achieved for the smart grid system. - Abstract: This paper concentrates on the optimal operation of the conventional thermal generators with distributed generations for a smart grid considering forecast error. The distributed generations are considered as wind generators, photovoltaic generators, battery energy storage systems in the supply side and a large number of smart houses in the demand side. A smart house consists of the electric vehicle, heat pump, photovoltaic generator and solar collector. The electric vehicle and heat pump are considered as the controllable loads which can compensate the power for the forecast error of renewable energy sources. As a result, power generation cost of the smart grid can reduce through coordinated with distributed generations and thermal units scheduling process. The electric vehicles of the smart house are considered as the spinning reserve in the scheduling process which lead to lessen the additional operation of thermal units. Finally, obtained results of the proposed system have been compared with the conventional method. The conventional method does not consider the electric vehicle in the smart houses. The acquired results demonstrate that total power generation cost of the smart grid has been reduced by the proposed method considering forecast error. Effectiveness of the proposed method has been verified by the extensive simulation results using MATLAB® software

  12. Current Collecting Grids for ITO-Free Solar Cells

    DEFF Research Database (Denmark)

    Galagan, Yulia; Zimmermann, Birger; Coenen, Erica W. C.

    2012-01-01

    Indium-tin-oxide (ITO) free polymer solar cells prepared by ink jet printing a composite front electrode comprising silver grid lines and a semitransparent PEDOT:PSS conductor are demonstrated. The effect of grid line density is explored for a large series of devices and a careful modeling study...

  13. caGrid 1.0: a Grid enterprise architecture for cancer research.

    Science.gov (United States)

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2007-10-11

    caGrid is the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG) program. The current release, caGrid version 1.0, is developed as the production Grid software infrastructure of caBIG. Based on feedback from adopters of the previous version (caGrid 0.5), it has been significantly enhanced with new features and improvements to existing components. This paper presents an overview of caGrid 1.0, its main components, and enhancements over caGrid 0.5.

  14. Design of current controller of grid-connected voltage source converter based internal model control in wind power

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xianping; Guo Jindong; Xu Honghua [Inst. of Electrical Engineering, Chinese Academy of Sciences, BJ (China)

    2008-07-01

    Grid-connected voltage source converter (VSC) is important for variable speed turbines with doubly fed induction generator (DFIG), and bad performance of current loop of VSC may cause VSC inject much low and high order harmonics into grid. Therefore, design of current controller of VSC is very important. PI regulator is often used to regulate current error in dq rotating coordinate to obtain zero steady error. However, it is complex to design PI parameters, and researchers need many trial-and-error steps. Therefore, a novel and simple design method of PI regulator for grid-connected VSC, which is based internal model control (IMC), has been presented in this paper. The parameters of PI regulator can be expressed directly with certain L-type line filter parameters and the desired closed-loop bandwidth. At last, The simulation has been done and result shows that the method in this paper is easy and useful to regulate PI parameters. (orig.)

  15. Dynamic Evaluation of LCL-type Grid-Connected Inverters with Different Current Feedback Control Schemes

    DEFF Research Database (Denmark)

    Han, Yang; Li, Zipeng; Guerrero, Josep M.

    2015-01-01

    typical current feedback control schemes in LCL grid-connected system are analyzed and compared systematically. Analysis in s-domain take the effect of the digital computation and modulation delay into account. The stability analysis is presented by root locus in the discrete domain, the optimal values......Proportional-resonant (PR) compensator and LCL filter becomes a better choice in grid-connected inverter system with high performance and low costs. However, the resonance phenomenon caused by LCL filter affect the system stability significantly. In this paper, the stability problem of three...

  16. Control of Grid Interactive PV Inverters for High Penetration in Low Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Demirok, Erhan

    Regarding of high density deployment of PV installations in electricity grids, new technical challenges such as voltage rise, thermal loading of network components, voltage unbalance, harmonic interaction and fault current contributions are being added to tasks list of distribution system operators...... of these inverters may depend on grid connection rules which are forced by DSOs. Minimum requirement expected from PV inverters is to transfer maximum power by taking direct current (DC) form from PV modules and release it into AC grid and also continuously keep the inverters synchronized to the grid even under...... for this problem but PV inverters connected to highly capacitive networks are able to employ extra current and voltage harmonics compensation to avoid triggering network resonances at low order frequencies. The barriers such as harmonics interaction, flicker, fault current contribution and dc current injections...

  17. Experimental Evaluation of Grid Support Enabled PV Inverter Response to Abnormal Grid Conditions: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Austin; Martin, Gregory; Hurtt, James

    2017-05-08

    As revised interconnection standards for grid-tied photovoltaic (PV) inverters address new advanced grid support functions (GSFs), there is increasing interest in inverter performance in the case of abnormal grid conditions. The growth of GSF-enabled inverters has outpaced the industry standards that define their operation, although recently published updates to UL1741 with Supplement SA define test conditions for GSFs such as volt-var control, frequency-watt control, and volt-age/frequency ride-through, among others. A comparative experimental evaluation has been completed on four commercially available, three-phase PV inverters in the 24.0-39.8 kVA power range on their GSF capability and the effect on abnormal grid condition response. This study examines the impact particular GSF implementations have on run-on times during islanding conditions, peak voltages in load rejection overvoltage scenarios, and peak currents during single-phase and three-phase fault events for individual inverters. This report reviews comparative test data, which shows that GSFs have little impact on the metrics of interest in most tests cases.

  18. Grid Integration Research | Wind | NREL

    Science.gov (United States)

    Grid Integration Research Grid Integration Research Researchers study grid integration of wind three wind turbines with transmission lines in the background. Capabilities NREL's grid integration electric power system operators to more efficiently manage wind grid system integration. A photo of

  19. Abusive behaviour of grid operators within concession procedures and grid acquisitions with respect to paragraph paragraph 30, 32 EnWG; Missbraeuchliches Verhalten von Netzbetreibern bei Konzessionierungsverfahren und Netzuebernahmen nach paragraph paragraph 30, 32 EnWG

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Peter [ZNER (Germany); Humboldt-Univ. zu Berlin (Germany). Energierecht; Becker Buettner Held, Berlin (Germany); Templin, Wolf [Kanzlei Boos Hummel und Wegerich, Berlin (Germany)

    2013-02-15

    The competition for the power distribution systems has inflamed all over in the Federal Republic of Germany due to the fact that concession contracts have a running time of only twenty years and end not later than 31st December, 1994. Those concession contracts will end currently. Thus the old affiliated companies have to fear for their market position. Under this aspect, the authors of the contribution under consideration report on the abusive behaviour of grid operators at licensing procedures and grid acquisitions with respect to paragraph paragraph 30, 32 Energy Economy Law. The authors report on the unilateral monopole consideration of the authorities and court as well as on the abusive behaviour of the old concessionaires from the standpoint of energy law and cartel law.

  20. Synchronization method for grid integrated battery storage systems during asymmetrical grid faults

    Directory of Open Access Journals (Sweden)

    Popadić Bane

    2017-01-01

    Full Text Available This paper aims at presenting a robust and reliable synchronization method for battery storage systems during asymmetrical grid faults. For this purpose, a Matlab/Simulink based model for testing of the power electronic interface between the grid and the battery storage systems has been developed. The synchronization method proposed in the paper is based on the proportional integral resonant controller with the delay signal cancellation. The validity of the synchronization method has been verified using the advanced laboratory station for the control of grid connected distributed energy sources. The proposed synchronization method has eliminated unfavourable components from the estimated grid angular frequency, leading to the more accurate and reliable tracking of the grid voltage vector positive sequence during both the normal operation and the operation during asymmetrical grid faults. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 042004: Integrated and Interdisciplinary Research entitled: Smart Electricity Distribution Grids Based on Distribution Management System and Distributed Generation

  1. Active Distribution Grid Management based on Robust AC Optimal Power Flow

    DEFF Research Database (Denmark)

    Soares, Tiago; Bessa, Richard J.; Pinson, Pierre

    2017-01-01

    Further integration of distributed renewable energy sources in distribution systems requires a paradigm change in grid management by the distribution system operators (DSO). DSOs are currently moving to an operational planning approach based on activating flexibility from distributed energy resou...

  2. Interrelation of structure and operational states in cascading failure of overloading lines in power grids

    Science.gov (United States)

    Xue, Fei; Bompard, Ettore; Huang, Tao; Jiang, Lin; Lu, Shaofeng; Zhu, Huaiying

    2017-09-01

    As the modern power system is expected to develop to a more intelligent and efficient version, i.e. the smart grid, or to be the central backbone of energy internet for free energy interactions, security concerns related to cascading failures have been raised with consideration of catastrophic results. The researches of topological analysis based on complex networks have made great contributions in revealing structural vulnerabilities of power grids including cascading failure analysis. However, existing literature with inappropriate assumptions in modeling still cannot distinguish the effects between the structure and operational state to give meaningful guidance for system operation. This paper is to reveal the interrelation between network structure and operational states in cascading failure and give quantitative evaluation by integrating both perspectives. For structure analysis, cascading paths will be identified by extended betweenness and quantitatively described by cascading drop and cascading gradient. Furthermore, the operational state for cascading paths will be described by loading level. Then, the risk of cascading failure along a specific cascading path can be quantitatively evaluated considering these two factors. The maximum cascading gradient of all possible cascading paths can be used as an overall metric to evaluate the entire power grid for its features related to cascading failure. The proposed method is tested and verified on IEEE30-bus system and IEEE118-bus system, simulation evidences presented in this paper suggests that the proposed model can identify the structural causes for cascading failure and is promising to give meaningful guidance for the protection of system operation in the future.

  3. Results from Evaluations of Gridded CrIS/ATMS Visualization for Operational Forecasting

    Science.gov (United States)

    Stevens, E.; Zavodsky, B.; Dostalek, J.; Berndt, E.; Hoese, D.; White, K.; Bowlan, M.; Gambacorta, A.; Wheeler, A.; Haisley, C.; Smith, N.

    2017-12-01

    For forecast challenges which require diagnosis of the three-dimensional atmosphere, current observations, such as radiosondes, may not offer enough information. Satellite data can help fill the spatial and temporal gaps between soundings. In particular, temperature and moisture retrievals from the NOAA-Unique Combined Atmospheric Processing System (NUCAPS), which combines infrared soundings from the Cross-track Infrared Sounder (CrIS) with the Advanced Technology Microwave Sounder (ATMS) to retrieve profiles of temperature and moisture. NUCAPS retrievals are available in a wide swath with approximately 45-km spatial resolution at nadir and a local Equator crossing time of 1:30 A.M./P.M. enabling three-dimensional observations at asynoptic times. This abstract focuses on evaluation of a new visualization for NUCAPS within the operational National Weather Service Advanced Weather Interactive Processing System (AWIPS) decision support system that allows these data to be viewed in gridded horizontal maps or vertical cross sections. Two testbed evaluations have occurred in 2017: a Cold Air Aloft (CAA) evaluation at the Alaska Center Weather Service Unit and a Convective Potential evaluation at the NOAA Hazardous Weather Testbed. For CAA, at high latitudes during the winter months, the air at altitudes used by passenger and cargo aircraft can reach temperatures cold enough (-65°C) to begin to freeze jet fuel, and Gridded NUCAPS visualization was shown to help fill in the spatial and temporal gaps in data-sparse areas across the Alaskan airspace by identifying the 3D spatial extent of cold air features. For convective potential, understanding the vertical distribution of temperature and moisture is also very important for forecasting the potential for convection related to severe weather such as lightning, large hail, and tornadoes. The Gridded NUCAPS visualization was shown to aid forecasters in understanding temperature and moisture characteristics at critical levels

  4. RMS Current of a Photovoltaic Generator in Grid-Connected PV Systems: Definition and Application

    Directory of Open Access Journals (Sweden)

    P. J. Pérez

    2008-01-01

    Full Text Available This paper includes a definition of a new and original concept in the photovoltaic field, RMS current of a photovoltaic generator for grid-connected systems. The RMS current is very useful for calculating energy losses in cables used in a PV generator. As well, a current factor has been defined in order to simplify RMS current calculation. This factor provides an immediate (quick and easy calculation method for the RMS current that does not depend on the case particular conditions (orientation, location, etc.. RMS current and current factor values have been calculated for different locations and modules.

  5. The Particle Physics Data Grid. Final Report

    International Nuclear Information System (INIS)

    Livny, Miron

    2002-01-01

    The main objective of the Particle Physics Data Grid (PPDG) project has been to implement and evaluate distributed (Grid-enabled) data access and management technology for current and future particle and nuclear physics experiments. The specific goals of PPDG have been to design, implement, and deploy a Grid-based software infrastructure capable of supporting the data generation, processing and analysis needs common to the physics experiments represented by the participants, and to adapt experiment-specific software to operate in the Grid environment and to exploit this infrastructure. To accomplish these goals, the PPDG focused on the implementation and deployment of several critical services: reliable and efficient file replication service, high-speed data transfer services, multisite file caching and staging service, and reliable and recoverable job management services. The focus of the activity was the job management services and the interplay between these services and distributed data access in a Grid environment. Software was developed to study the interaction between HENP applications and distributed data storage fabric. One key conclusion was the need for a reliable and recoverable tool for managing large collections of interdependent jobs. An attached document provides an overview of the current status of the Directed Acyclic Graph Manager (DAGMan) with its main features and capabilities

  6. Smart CCP. Integration of CCP data in the existing infrastructure of a grid operator; Smart KKS. Integration von KKS-Daten in die bestehende Infrastruktur eines Netzbetreibers

    Energy Technology Data Exchange (ETDEWEB)

    Deiss, Rainer [EnBW Regional AG, Stuttgart (Germany); Mueller, Matthias [RBS wave GmbH, Stuttgart (Germany)

    2012-07-01

    The ever growing importance of the cathodic corrosion protection (CCP) requires a much greater integration of the CCP data in the existing infrastructure of a grid operator. The necessary technical adjustments to CCP current protection devices and CCP remote monitoring systems easily can be done with the help of embedded systems.

  7. Smart grid and smart building inter-operation using agent-based particle swarm optimization

    NARCIS (Netherlands)

    Hurtado Munoz, L.A.; Nguyen, P.H.; Kling, W.L.

    2015-01-01

    Future power systems require a change from a "vertical" to a "horizontal" structure, in which the customer plays a central role. As buildings represent a substantial aggregation of energy consumption, the intertwined operation of the future power grid and the built environment is crucial to achieve

  8. Autonomous Energy Grids: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bernstein, Andrey [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    With much higher levels of distributed energy resources - variable generation, energy storage, and controllable loads just to mention a few - being deployed into power systems, the data deluge from pervasive metering of energy grids, and the shaping of multi-level ancillary-service markets, current frameworks to monitoring, controlling, and optimizing large-scale energy systems are becoming increasingly inadequate. This position paper outlines the concept of 'Autonomous Energy Grids' (AEGs) - systems that are supported by a scalable, reconfigurable, and self-organizing information and control infrastructure, can be extremely secure and resilient (self-healing), and self-optimize themselves in real-time for economic and reliable performance while systematically integrating energy in all forms. AEGs rely on scalable, self-configuring cellular building blocks that ensure that each 'cell' can self-optimize when isolated from a larger grid as well as partaking in the optimal operation of a larger grid when interconnected. To realize this vision, this paper describes the concepts and key research directions in the broad domains of optimization theory, control theory, big-data analytics, and complex system modeling that will be necessary to realize the AEG vision.

  9. A login shell interface for INFN-GRID

    Energy Technology Data Exchange (ETDEWEB)

    Pardi, S [INFN - Sezione di Napoli, Complesso di Monte S.Angelo - Via Cintia 80126 Napoli (Italy); Calloni, E; Rosa, R De; Garufi, F; Milano, L; Russo, G [Universita degli Studi di Napoli ' Federico M' , Dipartimento di Scienze Fisiche, Complesso di Monte S.Angelo - Via Cintia 80126 Napoli (Italy)], E-mail: silvio.pardi@na.infn.it

    2008-12-15

    The user interface is a crucial service to guarantee the Grid accessibility. The goal to achieve, is the implementation of an environment able to hide the grid complexity and offer a familiar interface to the final user. Currently many graphical interfaces have been proposed to simplify the grid access, but the GUI approach appears not very congenital to UNIX developers and users accustomed to work with command line interface. In 2004 the GridShell project proposed an extension of popular UNIX shells such as TCSH and BASH with features supporting Grid computing. Starting from the ideas included in GridShell, we propose IGSH (INFN-GRID SHELL) a new login shell for the INFN-GRID middleware, that interact with the Resource Broker services and integrates in a 'naturally way' the grid functionality with a familiar interface. The architecture of IGSH is very simple, it consist of a software layer on the top of the INFN-GRID middleware layer. When some operation is performed by the user, IGSH takes in charge to parse the syntax and translate it in the correspondents INFN-GRID commands according to some semantic rules specified in the next sections. The final user interacts with the underlying distributed infrastructure by using IGSH instead of his default login shell, with the sensation to work on a local machine.

  10. A login shell interface for INFN-GRID

    International Nuclear Information System (INIS)

    Pardi, S; Calloni, E; Rosa, R De; Garufi, F; Milano, L; Russo, G

    2008-01-01

    The user interface is a crucial service to guarantee the Grid accessibility. The goal to achieve, is the implementation of an environment able to hide the grid complexity and offer a familiar interface to the final user. Currently many graphical interfaces have been proposed to simplify the grid access, but the GUI approach appears not very congenital to UNIX developers and users accustomed to work with command line interface. In 2004 the GridShell project proposed an extension of popular UNIX shells such as TCSH and BASH with features supporting Grid computing. Starting from the ideas included in GridShell, we propose IGSH (INFN-GRID SHELL) a new login shell for the INFN-GRID middleware, that interact with the Resource Broker services and integrates in a 'naturally way' the grid functionality with a familiar interface. The architecture of IGSH is very simple, it consist of a software layer on the top of the INFN-GRID middleware layer. When some operation is performed by the user, IGSH takes in charge to parse the syntax and translate it in the correspondents INFN-GRID commands according to some semantic rules specified in the next sections. The final user interacts with the underlying distributed infrastructure by using IGSH instead of his default login shell, with the sensation to work on a local machine.

  11. Monitoring the EGEE/WLCG grid services

    International Nuclear Information System (INIS)

    Duarte, A; Nyczyk, P; Retico, A; Vicinanza, D

    2008-01-01

    Grids have the potential to revolutionise computing by providing ubiquitous, on demand access to computational services and resources. They promise to allow for on demand access and composition of computational services provided by multiple independent sources. Grids can also provide unprecedented levels of parallelism for high-performance applications. On the other hand, grid characteristics, such as high heterogeneity, complexity and distribution create many new technical challenges. Among these technical challenges, failure management is a key area that demands much progress. A recent survey revealed that fault diagnosis is still a major problem for grid users. When a failure appears at the user screen, it becomes very difficult for the user to identify whether the problem is in the application, somewhere in the grid middleware, or even lower in the fabric that comprises the grid. In this paper we present a tool able to check if a given grid service works as expected for a given set of users (Virtual Organisation) on the different resources available on a grid. Our solution deals with grid services as single components that should produce an expected output to a pre-defined input, what is quite similar to unit testing. The tool, called Service Availability Monitoring or SAM, is being currently used by several different Virtual Organizations to monitor more than 300 grid sites belonging to the largest grids available today. We also discuss how this tool is being used by some of those VOs and how it is helping in the operation of the EGEE/WLCG grid

  12. Study of the key factors affecting the triple grid lifetime of the LIPS-300 ion thruster

    Science.gov (United States)

    Mingming, SUN; Liang, WANG; Juntai, YANG; Xiaodong, WEN; Yongjie, HUANG; Meng, WANG

    2018-04-01

    In order to ascertain the key factors affecting the lifetime of the triple grids in the LIPS-300 ion thruster, the thermal deformation, upstream ion density and component lifetime of the grids are simulated with finite element analysis, fluid simulation and charged-particle tracing simulation methods on the basis of a 1500 h short lifetime test. The key factor affecting the lifetime of the triple grids in the LIPS-300 ion thruster is obtained and analyzed through the test results. The results show that ion sputtering erosion of the grids in 5 kW operation mode is greater than in the case of 3 kW. In 5 kW mode, the decelerator grid shows the most serious corrosion, the accelerator grid shows moderate corrosion, and the screen grid shows the least amount of corrosion. With the serious corrosion of the grids in 5 kW operation mode, the intercept current of the acceleration and deceleration grids increases substantially. Meanwhile, the cold gap between the accelerator grid and the screen grid decreases from 1 mm to 0.7 mm, while the cold gap between the accelerator grid and the decelerator grid increases from 1 mm to 1.25 mm after 1500 h of thruster operation. At equilibrium temperature with 5 kW power, the finite element method (FEM) simulation results show that the hot gap between the screen grid and the accelerator grid reduces to 0.2 mm. Accordingly, the hot gap between the accelerator grid and the decelerator grid increases to 1.5 mm. According to the fluid method, the plasma density simulated in most regions of the discharge chamber is 1 × 1018‑8 × 1018 m‑3. The upstream plasma density of the screen grid is in the range 6 × 1017‑6 × 1018 m‑3 and displays a parabolic characteristic. The charged particle tracing simulation method results show that the ion beam current without the thermal deformation of triple grids has optimal perveance status. The ion sputtering rates of the accelerator grid hole and the decelerator hole are 5.5 × 10‑14 kg s‑1 and

  13. Influence of Current Transformer Saturation on Operation of Current Protection

    Directory of Open Access Journals (Sweden)

    F. A. Romaniouk

    2010-01-01

    Full Text Available An analysis of the influence of instrument current transformer errors on operation of current protection of power supply diagram elements has been carried out in the paper. The paper shows the influence of an aperiodic component of transient current and secondary load on current  transformer errors.Peculiar operational features of measuring elements of electromechanical and microprocessor current protection with their joint operation with electromagnetic current transformers have been analyzed in the paper.

  14. Ten questions concerning integrating smart buildings into the smart grid

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Thomas M.; Boudreau, Marie-Claude; Helsen, Lieve; Henze, Gregor; Mohammadpour, Javad; Noonan, Doug; Patteeuw, Dieter; Pless, Shanti; Watson, Richard T.

    2016-11-01

    Recent advances in information and communications technology (ICT) have initiated development of a smart electrical grid and smart buildings. Buildings consume a large portion of the total electricity production worldwide, and to fully develop a smart grid they must be integrated with that grid. Buildings can now be 'prosumers' on the grid (both producers and consumers), and the continued growth of distributed renewable energy generation is raising new challenges in terms of grid stability over various time scales. Buildings can contribute to grid stability by managing their overall electrical demand in response to current conditions. Facility managers must balance demand response requests by grid operators with energy needed to maintain smooth building operations. For example, maintaining thermal comfort within an occupied building requires energy and, thus an optimized solution balancing energy use with indoor environmental quality (adequate thermal comfort, lighting, etc.) is needed. Successful integration of buildings and their systems with the grid also requires interoperable data exchange. However, the adoption and integration of newer control and communication technologies into buildings can be problematic with older legacy HVAC and building control systems. Public policy and economic structures have not kept up with the technical developments that have given rise to the budding smart grid, and further developments are needed in both technical and non-technical areas.

  15. Flexible Control Strategy for Grid-Connected Inverter under Unbalanced Grid Faults without PLL

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Liu, W.; Zhang, X.

    2015-01-01

    Power oscillation and current quality are the important performance targets for the grid-connected inverter under unbalanced grid faults. Firstly, the inherent reason for the current harmonic and power oscillation of the inverter is discussed with a quantitative analysis. Secondly, a new control...... strategy is proposed to achieve the coordinate control of power and current quality without the need for a phase-locked loop or voltage/current positive/negative sequence extraction calculation. Finally, the experimental tests are conducted under unbalanced grid faults, and the results verify...

  16. "DCC+G : Direct Current Components and Grid" : project poster presentation

    NARCIS (Netherlands)

    Rykov, K.

    2014-01-01

    380 V DC power grids are the most energy-efficient electricity distribution method in buildings. Furthermore, building-integrated solar power systems with DC grid connection are lower cost and have a faster return on investment (ROI) than classical 230V/400V AC power distribution grids. Thus DC

  17. Damping Methods for Resonances Caused by LCL-Filter-Based Current-Controlled Grid-Tied Power Inverters

    DEFF Research Database (Denmark)

    Wu, Weimin; Liu, Yuan; He, Yuanbin

    2017-01-01

    Grid-tied voltage source inverters using LCL filter have been widely adopted in distributed power generation systems (DPGSs). As high-order LCL filters contain multiple resonant frequencies, switching harmonics generated by the inverter and current harmonics generated by the active/passive loads...... innovative damping methods have been proposed. A comprehensive overview on those contributions and their classification on the inverter- and grid-side damping measures are presented. Based on the concept of the impedance-based stability analysis, all damping methods can ensure the system stability...

  18. Wind energy in offshore grids

    DEFF Research Database (Denmark)

    Schröder, Sascha Thorsten

    special characteristics of offshore grids. With an operational real options approach, it is furthermore illustrated how different support schemes and connections to additional countries affect the investment case of an offshore wind farm and the income of the transmission system operator. The investment...... and investment implications under different regulatory frameworks are a hitherto underrepresented research field. They are addressed by this thesis. Offshore grids between several countries combine the absorption of wind energy with international power trading. However, the inclusion into an offshore grid......This cumulative PhD thesis deals with wind integration in offshore grids from an economic point of view. It is composed of a generic part and eight papers. As the topic has mostly been analysed with a focus on topology and technical issues until now, market-operational questions in offshore grids...

  19. Coordinating plug-in electric vehicle charging with electric grid: Valley filling and target load following

    Science.gov (United States)

    Zhang, Li; Jabbari, Faryar; Brown, Tim; Samuelsen, Scott

    2014-12-01

    Plug-in electric vehicles (PEVs) shift energy consumption from petroleum to electricity for the personal transportation sector. This work proposes a decentralized charging protocol for PEVs with grid operators updating the cost signal. Each PEV calculates its own optimal charging profile only once based on the cost signal, after it is plugged in, and sends the result back to the grid operators. Grid operators only need to aggregate charging profiles and update the load and cost. The existing PEV characteristics, national household travel survey (NHTS), California Independent System Operator (CAISO) demand, and estimates for future renewable generation in California are used to simulate PEV operation, PEV charging profiles, grid demand, and grid net load (demand minus renewable). Results show the proposed protocol has good performance for overnight net load valley filling if the costs to be minimized are proportional to the net load. Annual results are shown in terms of overnight load variation and comparisons are made with grid level valley filling results. Further, a target load can be approached in the same manner by using the gap between current load and the target load as the cost. The communication effort involved is quite modest.

  20. Application of Network-Constrained Transactive Control to Electric Vehicle Charging for Secure Grid Operation

    DEFF Research Database (Denmark)

    Hu, Junjie; Yang, Guangya; Bindner, Henrik W.

    2016-01-01

    including power transformer congestion and voltage violations. In this method, a price coordinator is introduced to facilitate the interaction between the distribution system operator (DSO) and aggregators in the smart grid. Electric vehicles are used to illustrate the proposed network...

  1. Model Predictive Current Control for High-Power Grid-Connected Converters with Output LCL Filter

    DEFF Research Database (Denmark)

    Delpino, Hernan Anres Miranda; Teodorescu, Remus; Rodriguez, Pedro

    2009-01-01

    A model predictive control strategy for a highpower, grid connected 3-level neutral clamped point converter is presented. Power losses constraints set a limit on commutation losses so reduced switching frequency is required, thus producing low frequency current harmonics. To reduce these harmonics...

  2. Solar activity and economic fundamentals: Evidence from 12 geographically disparate power grids

    Science.gov (United States)

    Forbes, Kevin F.; St. Cyr, O. C.

    2008-10-01

    This study uses local (ground-based) magnetometer data as a proxy for geomagnetically induced currents (GICs) to address whether there is a space weather/electricity market relationship in 12 geographically disparate power grids: Eirgrid, the power grid that serves the Republic of Ireland; Scottish and Southern Electricity, the power grid that served northern Scotland until April 2005; Scottish Power, the power grid that served southern Scotland until April 2005; the power grid that serves the Czech Republic; E.ON Netz, the transmission system operator in central Germany; the power grid in England and Wales; the power grid in New Zealand; the power grid that serves the vast proportion of the population in Australia; ISO New England, the power grid that serves New England; PJM, a power grid that over the sample period served all or parts of Delaware, Maryland, New Jersey, Ohio, Pennsylvania, Virginia, West Virginia, and the District of Columbia; NYISO, the power grid that serves New York State; and the power grid in the Netherlands. This study tests the hypothesis that GIC levels (proxied by the time variation of local magnetic field measurements (dH/dt)) and electricity grid conditions are related using Pearson's chi-squared statistic. The metrics of power grid conditions include measures of electricity market imbalances, energy losses, congestion costs, and actions by system operators to restore grid stability. The results of the analysis indicate that real-time market conditions in these power grids are statistically related with the GIC proxy.

  3. Synergisms between smart metering and smart grid; Synergien zwischen Smart Metering und Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Peter [IDS GmbH, Ettlingen (Germany)

    2010-04-15

    With the implementation of a smart metering solution, it is not only possible to acquire consumption data for billing but also to acquire relevant data of the distribution grid for grid operation. There is still a wide gap between the actual condition and the target condition. Synergies result from the use of a common infrastructure which takes account both of the requirements of smart metering and of grid operation. An open architecture also enables the future integration of further applications of the fields of smart grid and smart home. (orig.)

  4. Expanding the grid in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Horner, M. [AltaLink Management Ltd., Calgary, AB (Canada)

    2010-07-01

    This PowerPoint presentation discussed some of the changes and strategies that are currently being adopted by AltaLink to expand Alberta's electricity grid in relation to wind power development. The company is Alberta's largest transmission facility operator. Wind power currently accounts for approximately 5 percent of the province's generation mix. Applications for new wind farms will increase Alberta's 629 MW of wind power generation capacity to 5530 MW. Alberta's transmission regulation requires that 100 percent of in-merit generation can occur when transmission facilities are in service, and that 95 percent of in-merit generation can occur under abnormal operating conditions. A new transmission line is being constructed in the Pincher Creek and Lethbridge region as part of a southern Alberta transmission reinforcement project. The Alberta Electric System Operator (AESO) and Canadian Wind Energy Association (CanWEA) are working together to ensure that adequate resources are available while system reliability is maintained. The Ardenville wind farm is the first wind power project to be energized under the new connection model launched by the AESO. The connection model was developed to identify, connect, and construct new energy projects. The project will also identify connection routes with the lowest overall impact on the province. Alberta will also continue to implement technologies that ensure the development of a smart grid. tabs., figs.

  5. Current control methods for grid-side three-phase PWM voltage-source inverter in distributed generation systems

    DEFF Research Database (Denmark)

    Lar, Ionut Andrei; Radulescu, Mircea; Ritchie, Ewen

    2012-01-01

    A comparison between two current control methods of grid side inverter, PI current control and Robust Forward control is made. PI control is implemented in d-q synchronous frame while Forward is implemented in abc stationary frames.The report contains both simulations and experimental test wich...

  6. An Optimal Current Controller Design for a Grid Connected Inverter to Improve Power Quality and Test Commercial PV Inverters.

    Science.gov (United States)

    Algaddafi, Ali; Altuwayjiri, Saud A; Ahmed, Oday A; Daho, Ibrahim

    2017-01-01

    Grid connected inverters play a crucial role in generating energy to be fed to the grid. A filter is commonly used to suppress the switching frequency harmonics produced by the inverter, this being passive, and either an L- or LCL-filter. The latter is smaller in size compared to the L-filter. But choosing the optimal values of the LCL-filter is challenging due to resonance, which can affect stability. This paper presents a simple inverter controller design with an L-filter. The control topology is simple and applied easily using traditional control theory. Fast Fourier Transform analysis is used to compare different grid connected inverter control topologies. The modelled grid connected inverter with the proposed controller complies with the IEEE-1547 standard, and total harmonic distortion of the output current of the modelled inverter has been just 0.25% with an improved output waveform. Experimental work on a commercial PV inverter is then presented, including the effect of strong and weak grid connection. Inverter effects on the resistive load connected at the point of common coupling are presented. Results show that the voltage and current of resistive load, when the grid is interrupted, are increased, which may cause failure or damage for connecting appliances.

  7. Hierarchical Load Tracking Control of a Grid-connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation

    DEFF Research Database (Denmark)

    Li, Yonghui; Wu, Qiuwei; Zhu, Haiyu

    2015-01-01

    efficiency operation obtained at different active power output levels, a hierarchical load tracking control scheme for the grid-connected SOFC was proposed to realize the maximum electrical efficiency operation with the stack temperature bounded. The hierarchical control scheme consists of a fast active...... power control and a slower stack temperature control. The active power control was developed by using a decentralized control method. The efficiency of the proposed hierarchical control scheme was demonstrated by case studies using the benchmark SOFC dynamic model......Based on the benchmark solid oxide fuel cell (SOFC) dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP) optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject...

  8. Campus Grids: Bringing Additional Computational Resources to HEP Researchers

    International Nuclear Information System (INIS)

    Weitzel, Derek; Fraser, Dan; Bockelman, Brian; Swanson, David

    2012-01-01

    It is common at research institutions to maintain multiple clusters that represent different owners or generations of hardware, or that fulfill different needs and policies. Many of these clusters are consistently under utilized while researchers on campus could greatly benefit from these unused capabilities. By leveraging principles from the Open Science Grid it is now possible to utilize these resources by forming a lightweight campus grid. The campus grids framework enables jobs that are submitted to one cluster to overflow, when necessary, to other clusters within the campus using whatever authentication mechanisms are available on campus. This framework is currently being used on several campuses to run HEP and other science jobs. Further, the framework has in some cases been expanded beyond the campus boundary by bridging campus grids into a regional grid, and can even be used to integrate resources from a national cyberinfrastructure such as the Open Science Grid. This paper will highlight 18 months of operational experiences creating campus grids in the US, and the different campus configurations that have successfully utilized the campus grid infrastructure.

  9. Strategic Energy Management (SEM) in a micro grid with modern grid interactive electric vehicle

    International Nuclear Information System (INIS)

    Panwar, Lokesh Kumar; Reddy, K. Srikanth; Kumar, Rajesh; Panigrahi, B.K.; Vyas, Shashank

    2015-01-01

    Highlights: • System: Modelling of energy and storage systems for micro grid. • Target: Co-ordination of unitized regenerative fuel cell (URFC) and electric vehicle (EV). • Energy management strategies: Only URFC, URFC–EV charging, URFC-V2G with enabled. • Multi-objective approach: loss, cost minimization, maximization of stored energy. • Proposed Solution: Intelligent co-ordination of URFC and EV with V2G with most effective strategy. - Abstract: In this paper, strategic energy management in a micro grid is proposed incorporating two types of storage elements viz. unitised regenerative fuel cell (URFC) and electric vehicle (EV). Rather than a simple approach of optimizing micro grid operation to minimize line loss in the micro grid, this paper deals with multi objective optimization to minimize line loss, operational cost and maximize the value of stored energy of URFC and EV simultaneously. Apart from URFC, two operation strategies are proposed for EV enabling V2G operation to reduce overall system cost of operation. To address the complexity, non-linearity and multi dimensionality of the objective function, particle swarm optimization-a heuristic approach based solution methodology along with forward and back sweep algorithm based load flow solution technique is developed. Combined with particle swarm optimization (PSO), forward and backward sweep algorithm resolves the complexity and multi dimensionality of the load flow analysis and optimizes the operational cost of micro grid. The simulation results are presented and discussed which are promising with regard to reduction in line loss as well as cost of operation. Scheduling strategy of the micro grid with both URFC and EV enabling V2G operation presents a promising approach to minimize line loss and cost of operation.

  10. Smart Grid Innovation Management for SME Electricity Companies

    DEFF Research Database (Denmark)

    Tambo, Torben

    2011-01-01

    innovation process lies ahead for utility companies in screening, testing, maturing, implementing and operating smart grids. This process is expected to follow the political targets for CO2 reduction stretching forward until 2050. As no proven concepts exists, and as the process is expected to progress many...... years ahead, smart grid represents an excellent case of continuous innovation. The current study use a series of loosely related technological studies of smart grid related technologies in SME electricity companies to highlight critical issues in this innovation process. Major findings...... are that the companies have limited innovation capabilities, they are presented with plenty of technological offerings that eventually have to be rejected, and they suffer from absence of clear objectives....

  11. Switching overvoltages in offshore wind power grids

    DEFF Research Database (Denmark)

    Arana Aristi, Ivan

    and cables are presented. In Chapter 4 results from time domain measurements and simulations of switching operations in offshore wind power grids are described. Specifically, switching operations on a single wind turbine, the collection grid, the export system and the external grid measured in several real...... offshore wind farms are shown together with simulation results. Switching operations in offshore wind power grids can be simulated with different electromagnetic transient programs. Different programs were used in the project and compared results are included in Chapter 4. Also in Chapter 4 different......Switching transients in wind turbines, the collection grid, the export system and the external grid in offshore wind farms, during normal or abnormal operation, are the most important phenomena when conducting insulation coordination studies. However, the recommended models and methods from...

  12. Grid-connected photovoltaic power systems. Technical and potential problems. A review

    International Nuclear Information System (INIS)

    Eltawil, Mohamed A.; Zhao, Zhengming

    2010-01-01

    Traditional electric power systems are designed in large part to utilize large baseload power plants, with limited ability to rapidly ramp output or reduce output below a certain level. The increase in demand variability created by intermittent sources such as photovoltaic (PV) presents new challenges to increase system flexibility. This paper aims to investigate and emphasize the importance of the grid-connected PV system regarding the intermittent nature of renewable generation, and the characterization of PV generation with regard to grid code compliance. The investigation was conducted to critically review the literature on expected potential problems associated with high penetration levels and islanding prevention methods of grid tied PV. According to the survey, PV grid connection inverters have fairly good performance. They have high conversion efficiency and power factor exceeding 90% for wide operating range, while maintaining current harmonics THD less than 5%. Numerous large-scale projects are currently being commissioned, with more planned for the near future. Prices of both PV and balance of system components (BOS) are decreasing which will lead to further increase in use. The technical requirements from the utility power system side need to be satisfied to ensure the safety of the PV installer and the reliability of the utility grid. Identifying the technical requirements for grid interconnection and solving the interconnect problems such as islanding detection, harmonic distortion requirements and electromagnetic interference are therefore very important issues for widespread application of PV systems. The control circuit also provides sufficient control and protection functions like maximum power tracking, inverter current control and power factor control. Reliability, life span and maintenance needs should be certified through the long-term operation of PV system. Further reduction of cost, size and weight is required for more utilization of PV

  13. The smart kiosk substation for Smart Grids; Die intelligente Ortsnetzstation fuer das Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Thomas [Schneider Electric Energy GmbH, Frankfurt (Germany); Vaupel, Steffen [Schneider Electric Energy GmbH, Kassel (Germany)

    2012-07-01

    The changes in the energy supply towards current and future needs call for new technologies and solutions resulting in the ''Smart Grid''. The smart kiosk substation describes an essential component for the additionally required optimization of the energy distribution networks - a complete functional unit of an economic and efficient compact substation, which successfully operates within the framework of a pilot project since the beginning of this year. In addition to an adjustable 630-kVA-local distribution transformer, control and signalling functions, to manage fault situations are included, allowing for the optimization of outage times. Measurement of network quality and an economic network protection complete the range of services. As is customary during the development of new products, high availability and free of maintenance (through utilization of standard components) whilst complying with current standards and regulations are being taken into account. Along with the demand for regenerative feed-ins to feed reactive power into the network as required, the regulating device allows for a much improved use of the voltage limits - in the low voltage grid as well. It is to be expected that the network expansion of the low voltage grid thus can be significantly optimized through these possibilities of regulation. (orig.)

  14. Smart Grid Risk Management

    Science.gov (United States)

    Abad Lopez, Carlos Adrian

    Current electricity infrastructure is being stressed from several directions -- high demand, unreliable supply, extreme weather conditions, accidents, among others. Infrastructure planners have, traditionally, focused on only the cost of the system; today, resilience and sustainability are increasingly becoming more important. In this dissertation, we develop computational tools for efficiently managing electricity resources to help create a more reliable and sustainable electrical grid. The tools we present in this work will help electric utilities coordinate demand to allow the smooth and large scale integration of renewable sources of energy into traditional grids, as well as provide infrastructure planners and operators in developing countries a framework for making informed planning and control decisions in the presence of uncertainty. Demand-side management is considered as the most viable solution for maintaining grid stability as generation from intermittent renewable sources increases. Demand-side management, particularly demand response (DR) programs that attempt to alter the energy consumption of customers either by using price-based incentives or up-front power interruption contracts, is more cost-effective and sustainable in addressing short-term supply-demand imbalances when compared with the alternative that involves increasing fossil fuel-based fast spinning reserves. An essential step in compensating participating customers and benchmarking the effectiveness of DR programs is to be able to independently detect the load reduction from observed meter data. Electric utilities implementing automated DR programs through direct load control switches are also interested in detecting the reduction in demand to efficiently pinpoint non-functioning devices to reduce maintenance costs. We develop sparse optimization methods for detecting a small change in the demand for electricity of a customer in response to a price change or signal from the utility

  15. Mobile virtual synchronous machine for vehicle-to-grid applications

    Energy Technology Data Exchange (ETDEWEB)

    Pelczar, Christopher

    2012-03-20

    The Mobile Virtual Synchronous Machine (VISMA) is a power electronics device for Vehicle to Grid (V2G) applications which behaves like an electromechanical synchronous machine and offers the same beneficial properties to the power network, increasing the inertia in the system, stabilizing the grid voltage, and providing a short-circuit current in case of grid faults. The VISMA performs a real-time simulation of a synchronous machine and calculates the phase currents that an electromagnetic synchronous machine would produce under the same local grid conditions. An inverter with a current controller feeds the currents calculated by the VISMA into the grid. In this dissertation, the requirements for a machine model suitable for the Mobile VISMA are set, and a mathematical model suitable for use in the VISMA algorithm is found and tested in a custom-designed simulation environment prior to implementation on the Mobile VISMA hardware. A new hardware architecture for the Mobile VISMA based on microcontroller and FPGA technologies is presented, and experimental hardware is designed, implemented, and tested. The new architecture is designed in such a way that allows reducing the size and cost of the VISMA, making it suitable for installation in an electric vehicle. A simulation model of the inverter hardware and hysteresis current controller is created, and the simulations are verified with various experiments. The verified model is then used to design a new type of PWM-based current controller for the Mobile VISMA. The performance of the hysteresis- and PWM-based current controllers is evaluated and compared for different operational modes of the VISMA and configurations of the inverter hardware. Finally, the behavior of the VISMA during power network faults is examined. A desired behavior of the VISMA during network faults is defined, and experiments are performed which verify that the VISMA, inverter hardware, and current controllers are capable of supporting this

  16. Grids heat loading of an ion source in two-stage acceleration system

    International Nuclear Information System (INIS)

    Okumura, Yoshikazu; Ohara, Yoshihiro; Ohga, Tokumichi

    1978-05-01

    Heat loading of the extraction grids, which is one of the critical problems limiting the beam pulse duration at high power level, has been investigated experimentally, with an ion source in a two-stage acceleration system of four multi-aperture grids. The loading of each grid depends largely on extraction current and grid gap pressures; it decreases with improvement of the beam optics and with decrease of the pressures. In optimum operating modes, its level is typically less than -- 2% of the total beam power or -- 200 W/cm 2 at beam energies of 50 - 70 kV. (auth.)

  17. Quality Assurance Framework for Mini-Grids

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, Ian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burman, Kari [National Renewable Energy Lab. (NREL), Golden, CO (United States); Singh, Mohit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Esterly, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mutiso, Rose [US Department of Energy, Washington, DC (United States); McGregor, Caroline [US Department of Energy, Washington, DC (United States)

    2016-11-01

    Providing clean and affordable energy services to the more than 1 billion people globally who lack access to electricity is a critical driver for poverty reduction, economic development, improved health, and social outcomes. More than 84% of populations without electricity are located in rural areas where traditional grid extension may not be cost-effective; therefore, distributed energy solutions such as mini-grids are critical. To address some of the root challenges of providing safe, quality, and financially viable mini-grid power systems to remote customers, the U.S. Department of Energy (DOE) teamed with the National Renewable Energy Laboratory (NREL) to develop a Quality Assurance Framework (QAF) for isolated mini-grids. The QAF for mini-grids aims to address some root challenges of providing safe, quality, and affordable power to remote customers via financially viable mini-grids through two key components: (1) Levels of service: Defines a standard set of tiers of end-user service and links them to technical parameters of power quality, power availability, and power reliability. These levels of service span the entire energy ladder, from basic energy service to high-quality, high-reliability, and high-availability service (often considered 'grid parity'); (2) Accountability and performance reporting framework: Provides a clear process of validating power delivery by providing trusted information to customers, funders, and/or regulators. The performance reporting protocol can also serve as a robust monitoring and evaluation tool for mini-grid operators and funding organizations. The QAF will provide a flexible alternative to rigid top-down standards for mini-grids in energy access contexts, outlining tiers of end-user service and linking them to relevant technical parameters. In addition, data generated through implementation of the QAF will provide the foundation for comparisons across projects, assessment of impacts, and greater confidence that

  18. Smart grid technologies in local electric grids

    Science.gov (United States)

    Lezhniuk, Petro D.; Pijarski, Paweł; Buslavets, Olga A.

    2017-08-01

    The research is devoted to the creation of favorable conditions for the integration of renewable sources of energy into electric grids, which were designed to be supplied from centralized generation at large electric power stations. Development of distributed generation in electric grids influences the conditions of their operation - conflict of interests arises. The possibility of optimal functioning of electric grids and renewable sources of energy, when complex criterion of the optimality is balance reliability of electric energy in local electric system and minimum losses of electric energy in it. Multilevel automated system for power flows control in electric grids by means of change of distributed generation of power is developed. Optimization of power flows is performed by local systems of automatic control of small hydropower stations and, if possible, solar power plants.

  19. SMART FUEL CELL OPERATED RESIDENTIAL MICRO-GRID COMMUNITY

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohammad S. Alam (PI/PD)

    2005-04-13

    To build on the work of year one by expanding the smart control algorithm developed to a micro-grid of ten houses; to perform a cost analysis; to evaluate alternate energy sources; to study system reliability; to develop the energy management algorithm, and to perform micro-grid software and hardware simulations.

  20. Impact of network topology on synchrony of oscillatory power grids

    Energy Technology Data Exchange (ETDEWEB)

    Rohden, Martin; Sorge, Andreas; Witthaut, Dirk [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Timme, Marc [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Faculty of Physics, Georg August Universität Göttingen, Göttingen (Germany)

    2014-03-15

    Replacing conventional power sources by renewable sources in current power grids drastically alters their structure and functionality. In particular, power generation in the resulting grid will be far more decentralized, with a distinctly different topology. Here, we analyze the impact of grid topologies on spontaneous synchronization, considering regular, random, and small-world topologies and focusing on the influence of decentralization. We model the consumers and sources of the power grid as second order oscillators. First, we analyze the global dynamics of the simplest non-trivial (two-node) network that exhibit a synchronous (normal operation) state, a limit cycle (power outage), and coexistence of both. Second, we estimate stability thresholds for the collective dynamics of small network motifs, in particular, star-like networks and regular grid motifs. For larger networks, we numerically investigate decentralization scenarios finding that decentralization itself may support power grids in exhibiting a stable state for lower transmission line capacities. Decentralization may thus be beneficial for power grids, regardless of the details of their resulting topology. Regular grids show a specific sharper transition not found for random or small-world grids.

  1. Grid connectivity issues and the importance of GCC. [GCC - Grid Code Compliance

    Energy Technology Data Exchange (ETDEWEB)

    Das, A.; Schwartz, M.-K. [GL Renewable Certification, Malleswaram, Bangalore (India)

    2012-07-01

    In India, the wind energy is concentrated in rural areas with a very high penetration. In these cases, the wind power has an increasing influence on the power quality on the grids. Another aspect is the influence of weak grids on the operation of wind turbines. Hence it becomes very much essential to introduce such a strong grid code which is particularly applicable to wind sector and suitable for Indian environmental grid conditions. This paper focuses on different international grid codes and their requirement with regard to the connection of wind farms to the electric power systems to mitigate the grid connectivity issues. The requirements include the ways to achieve voltage and frequency stability in the grid-tied wind power system. In this paper, comparative overview and analysis of the main grid connecting requirements will be conducted, comprising several national and regional codes from many countries where high wind penetration levels have been achieved or are expected in the future. The objective of these requirements is to provide wind farms with the control and regulation capabilities encountered in conventional power plants and are necessary for the safe, reliable and economic operation of the power system. This paper also provides a brief idea on the Grid Code Compliance (GCC) certification procedure implemented by the leading accredited certifying body like Germanischer Lloyd Renewables Certification (GL RC), who checks the conformity of the wind turbines as per region specific grid codes. (Author)

  2. Power grid operation in a market environment economic efficiency and risk mitigation

    CERN Document Server

    2017-01-01

    This book examines both system operation and market operation perspectives, focusing on the interaction between the two. It incorporates up-to-date field experiences, presents challenges, and summarizes the latest theoretic advancements to address those challenges. The book is divided into four parts. The first part deals with the fundamentals of integrated system and market operations, including market power mitigation, market efficiency evaluation, and the implications of operation practices in energy markets. The second part discusses developing technologies to strengthen the use of the grid in energy markets. System volatility and economic impact introduced by the intermittency of wind and solar generation are also addressed. The third part focuses on stochastic applications, exploring new approaches of handling uncerta nty in Security Constrained Unit Commitment (SCUC) as well as the reserves needed for power system operation. The fourth part provides ongoing efforts of utilizing transmission facilities ...

  3. Optimal Operation Method of Smart House by Controllable Loads based on Smart Grid Topology

    Science.gov (United States)

    Yoza, Akihiro; Uchida, Kosuke; Yona, Atsushi; Senju, Tomonobu

    2013-08-01

    From the perspective of global warming suppression and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all electrification apartment house or residence such as DC smart house have increased in recent years. However, due to fluctuating power from renewable energy sources and loads, supply-demand balancing fluctuations of power system become problematic. Therefore, "smart grid" has become very popular in the worldwide. This article presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuations. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuations, it is possible to reduce the maximum electric power consumption and the electric cost. This system consists of photovoltaics generator, heat pump, battery, solar collector, and load. In order to verify the effectiveness of the proposed system, MATLAB is used in simulations.

  4. Day-Ahead Coordination of Vehicle-to-Grid Operation and Wind Power in Security Constraints Unit Commitment (SCUC

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Abdollahi

    2015-08-01

    Full Text Available In this paper security constraints unit commitment (SCUC in the presence of wind power resources and electrical vehicles to grid is presented. SCUC operation prepare an optimal time table for generation unit commitment in order to maximize security, minimize operation cost and satisfy the constraints of networks and units in a period of time, as one of the most important research interest in power systems. Today, the relationship between power network and energy storage systems is interested for many researchers and network operators. Using Electrical Vehicles (PEVs and wind power for energy production is one of the newest proposed methods for replacing fossil fuels.One of the effective strategies for analyzing of the effects of Vehicle 2 Grid (V2G and wind power in optimal operation of generation is running of SCUC for power systems that are equipped with V2G and wind power resources. In this paper, game theory method is employed for deterministic solution of day-ahead unit commitment with considering security constraints in the simultaneous presence of V2G and wind power units. This problem for two scenarios of grid-controlled mode and consumer-controlled mode in three different days with light, medium and heavy load profiles is analyzed. Simulation results show the effectiveness of the presence of V2G and wind power for decreasing of generation cost and improving operation indices of power systems.

  5. Control and operation of wind turbine converters during faults in an offshore wind power plant grid with VSC-HVDC connection

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay; Teodorescu, Remus; Rodriguez, Pedro

    2011-01-01

    Voltage source converter (VSC) based high voltage dc (HVDC) transmission is an attractive technique for large offshore wind power plants, especially when long cable transmission is required for connection to the onshore grid. New multi-MW wind turbines are likely to be equipped with full scale...... converters to meet the stringent grid code requirements. In such a scenario, the offshore grid is terminated to the power electronic converters on all the ends. This paper presents a control scheme for the synchronization and control of the grid side converters (GSC) of the wind turbine generators (WTG......). Current limit control enables the GSC to sustain the fault currents during short circuits in the offshore wind collector system grid. However, power transmission is affected, and the fault has to be isolated. It can be resynchronized after the fault has been cleared and the breaker reclosed. Healthy WTG...

  6. Grid-Voltage-Feedforward Active Damping for Grid-Connected Inverter with LCL Filter

    DEFF Research Database (Denmark)

    Lu, Minghui; Wang, Xiongfei; Blaabjerg, Frede

    2016-01-01

    For the grid-connected voltage source inverters, the feedforward scheme of grid voltage is commonly adopted to mitigate the current distortion caused by grid background voltages harmonics. This paper investigates the grid-voltage-feedforward active damping for grid connected inverter with LCL...... filter. It reveals that proportional feedforward control can not only fulfill the mitigation of grid disturbance, but also offer damping effects on the LCL filter resonance. Digital delays are intrinsic to digital controlled inverters; with these delays, the feedforward control can be equivalent...

  7. Smart Solar Grid. Integration of high penetration of photovoltaic in municipal low voltage distribution grids; Smart Solar Grid. Integration hoher Anteile von Photovoltaik in kommunalen Niederspannungsverteilnetzen

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Holger; Heilscher, Gerd [Hochschule Ulm (Germany); Meier, Florian [SWU Netze GmbH, Ulm (Germany)

    2012-07-01

    The high rate of decentralized generation in low voltage grids especially photovoltaic (PV) put the distribution grid operators to new challenges. Grid operation and grid planning have to respect the volatility and dynamic of decentralized generation now and in the future and adapt their previous proceedings. In the frame of the project Smart Solar Grid was a test site defined in the grid area of the DSO Stadtwerke Ulm/Neu-Ulm GmbH (SWU) to analyze the impact of the PV rise and possible solutions for the grid planning in the future. The first analysis based upon secondly measurements of the first test site. From this were statistical evaluation of the load flows and power variations done. Furthermore were the roof potential analysis results of the test site validated. These data are the base for the development of a forecast system for grid condition parameter. (orig.)

  8. Security and VO management capabilities in a large-scale Grid operating system

    OpenAIRE

    Aziz, Benjamin; Sporea, Ioana

    2014-01-01

    This paper presents a number of security and VO management capabilities in a large-scale distributed Grid operating system. The capabilities formed the basis of the design and implementation of a number of security and VO management services in the system. The main aim of the paper is to provide some idea of the various functionality cases that need to be considered when designing similar large-scale systems in the future.

  9. Grid today, clouds on the horizon

    CERN Document Server

    Shiers, Jamie

    2009-01-01

    By the time of CCP 2008, the largest scientific machine in the world – the Large Hadron Collider – had been cooled down as scheduled to its operational temperature of below 2 degrees Kelvin and injection tests were starting. Collisions of proton beams at 5+5 TeV were expected within one to two months of the initial tests, with data taking at design energy (7+7 TeV) foreseen for 2009. In order to process the data from this world machine, we have put our “Higgs in one basket” – that of Grid computing [The Worldwide LHC Computing Grid (WLCG), in: Proceedings of the Conference on Computational Physics 2006 (CCP 2006), vol. 177, 2007, pp. 219–223]. After many years of preparation, 2008 saw a final “Common Computing Readiness Challenge” (CCRC'08) – aimed at demonstrating full readiness for 2008 data taking, processing and analysis. By definition, this relied on a world-wide production Grid infrastructure. But change – as always – is on the horizon. The current funding model for Grids – which...

  10. A Testbed Environment for Buildings-to-Grid Cyber Resilience Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Sridhar, Siddharth; Ashok, Aditya; Mylrea, Michael E.; Pal, Seemita; Rice, Mark J.; Gourisetti, Sri Nikhil Gup

    2017-09-19

    The Smart Grid is characterized by the proliferation of advanced digital controllers at all levels of its operational hierarchy from generation to end consumption. Such controllers within modern residential and commercial buildings enable grid operators to exercise fine-grained control over energy consumption through several emerging Buildings-to-Grid (B2G) applications. Though this capability promises significant benefits in terms of operational economics and improved reliability, cybersecurity weaknesses in the supporting infrastructure could be exploited to cause a detrimental effect and this necessitates focused research efforts on two fronts. First, the understanding of how cyber attacks in the B2G space could impact grid reliability and to what extent. Second, the development and validation of cyber-physical application-specific countermeasures that are complementary to traditional infrastructure cybersecurity mechanisms for enhanced cyber attack detection and mitigation. The PNNL B2G testbed is currently being developed to address these core research needs. Specifically, the B2G testbed combines high-fidelity buildings+grid simulators, industry-grade building automation and Supervisory Control and Data Acquisition (SCADA) systems in an integrated, realistic, and reconfigurable environment capable of supporting attack-impact-detection-mitigation experimentation. In this paper, we articulate the need for research testbeds to model various B2G applications broadly by looking at the end-to-end operational hierarchy of the Smart Grid. Finally, the paper not only describes the architecture of the B2G testbed in detail, but also addresses the broad spectrum of B2G resilience research it is capable of supporting based on the smart grid operational hierarchy identified earlier.

  11. Energy storage systems: power grid and energy market use cases

    Directory of Open Access Journals (Sweden)

    Komarnicki Przemysław

    2016-09-01

    Full Text Available Current power grid and market development, characterized by large growth of distributed energy sources in recent years, especially in Europa, are according energy storage systems an increasingly larger field of implementation. Existing storage technologies, e.g. pumped-storage power plants, have to be upgraded and extended by new but not yet commercially viable technologies (e.g. batteries or adiabatic compressed air energy storage that meet expected demands. Optimal sizing of storage systems and technically and economically optimal operating strategies are the major challenges to the integration of such systems in the future smart grid. This paper surveys firstly the literature on the latest niche applications. Then, potential new use case and operating scenarios for energy storage systems in smart grids, which have been field tested, are presented and discussed and subsequently assessed technically and economically.

  12. Optimal operation of stationary and mobile batteries in distribution grids

    International Nuclear Information System (INIS)

    Wang, Yubo; Shi, Wenbo; Wang, Bin; Chu, Chi-Cheng; Gadh, Rajit

    2017-01-01

    Highlights: • A DSM minimizes both nodal operational cost and network power losses is proposed. • Uncertainties in distribution grids are captured with stochastic programming. • An ADMM based distributed method is applied for scalability and privacy preserving. - Abstract: The trending integrations of Battery Energy Storage System (BESS, stationary battery) and Electric Vehicles (EV, mobile battery) to distribution grids call for advanced Demand Side Management (DSM) technique that addresses the scalability concerns of the system and stochastic availabilities of EVs. Towards this goal, a stochastic DSM is proposed to capture the uncertainties in EVs. Numerical approximation is then used to make the problem tractable. To accelerate the computational speed, the proposed DSM is tightly relaxed to a convex form using second-order cone programming. Furthermore, in light of the continuous increasing problem size, a distributed method with a guaranteed convergence is applied to shift the centralized computational burden to distributed controllers. To verify the proposed DSM, real-life EV data collected on UCLA campus is used to test the proposed DSM in an IEEE benchmark test system. Numerical results demonstrate the correctness and merits of the proposed approach.

  13. Software-Based Challenges of Developing the Future Distribution Grid

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Emma; Kiliccote, Sila; McParland, Charles

    2014-06-01

    The software that the utility industry currently uses may be insufficient to analyze the distribution grid as it rapidly modernizes to include active resources such as distributed generation, switch and voltage control, automation, and increasingly complex loads. Although planners and operators have traditionally viewed the distribution grid as a passive load, utilities and consultants increasingly need enhanced analysis that incorporates active distribution grid loads in order to ensure grid reliability. Numerous commercial and open-source tools are available for analyzing distribution grid systems. These tools vary in complexity from providing basic load-flow and capacity analysis under steady-state conditions to time-series analysis and even geographical representations of dynamic and transient events. The need for each type of analysis is not well understood in the industry, nor are the reasons that distribution analysis requires different techniques and tools both from those now available and from those used for transmission analysis. In addition, there is limited understanding of basic capability of the tools and how they should be practically applied to the evolving distribution system. The study reviews the features and state of the art capability of current tools, including usability and visualization, basic analysis functionality, advanced analysis including inverters, and renewable generation and load modeling. We also discuss the need for each type of distribution grid system analysis. In addition to reviewing basic functionality current models, we discuss dynamics and transient simulation in detail and draw conclusions about existing software?s ability to address the needs of the future distribution grid as well as the barriers to modernization of the distribution grid that are posed by the current state of software and model development. Among our conclusions are that accuracy, data transfer, and data processing abilities are key to future

  14. Analysis on the Operation Strategy of the 220kV External Transmission Channel for the Nujiang Power Grid after the Installation of Series Compensation

    Science.gov (United States)

    Liu, Xiaoxin; Feng, Peilei; Jan, Lisheng; Dai, Xiaozhong; Cai, Pengcheng

    2018-01-01

    In recent years, Nujiang Prefecture vigorously develop hydropower, the grid structure in the northwest of Yunnan Province is not perfect, which leads to the research and construction of the power grid lags behind the development of the hydropower. In 2015, the company in view of the nu river hydropower dilemma decided to change outside the nu river to send out a passage with series compensation device in order to improve the transmission capacity, the company to the main problems related to the system plan, but not too much in the region distribution network and detailed study. Nujiang power grid has unique structure and properties of the nujiang power grid after respectively, a whole rack respectively into two parts, namely power delivery channels, load power supply, the whole grid occurred fundamental changes, the original strategy of power network is not applicable, especially noteworthy is the main failure after network of independent operation problem, how to avoid the local series, emergency problem is more urgent, very tolerance test area power grid, this paper aims at the analysis of existing data, simulation, provide a reference for respectively after the operation for the stable operation of the power grid.

  15. Reactive Power Injection Strategies for Single-Phase Photovoltaic Systems Considering Grid Requirements

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    .g. Germany and Italy. Those advanced features can be provided by next generation PV systems, and will be enhanced in the future to ensure an even efficient and reliable utilization of PV systems. In light of this, Reactive Power Injection (RPI) strategies for single-phase PV systems are explored...... in this paper. The RPI possibilities are: a) constant average active power control, b) constant active current control, c) constant peak current control and d) thermal optimized control strategy. All those strategies comply with the currently active grid codes, but are with different objectives. The proposed...... RPI strategies are demonstrated firstly by simulations and also tested experimentally on a 1 kW singe-phase grid-connected system in LVRT operation mode. Those results show the effectiveness and feasibilities of the proposed strategies with reactive power control during LVRT operation. The design...

  16. Operation and Control of a Direct-Driven PMSG-Based Wind Turbine System with an Auxiliary Parallel Grid-Side Converter

    Directory of Open Access Journals (Sweden)

    Jiawei Chu

    2013-07-01

    Full Text Available In this paper, based on the similarity, in structure and principle, between a grid-connected converter for a direct-driven permanent magnet synchronous generator (D-PMSG and an active power filter (APF, a new D-PMSG-based wind turbine (WT system configuration that includes not only an auxiliary converter in parallel with the grid-side converter, but also a coordinated control strategy, is proposed to enhance the low voltage ride through (LVRT capability and improve power quality. During normal operation, the main grid-side converter maintains the DC-link voltage constant, whereas the auxiliary grid-side converter functions as an APF with harmonic suppression and reactive power compensation to improve the power quality. During grid faults, a hierarchical coordinated control scheme for the generator-side converter, main grid-side converter and auxiliary grid-side converter, depending on the grid voltage sags, is presented to enhance the LVRT capability of the direct-driven PMSG WT. The feasibility and the effectiveness of the proposed system’s topology and hierarchical coordinated control strategy were verified using MATLAB/Simulink simulations.

  17. dSPACE based adaptive neuro-fuzzy controller of grid interactive inverter

    International Nuclear Information System (INIS)

    Altin, Necmi; Sefa, İbrahim

    2012-01-01

    Highlights: ► We propose a dSPACE based neuro-fuzzy controlled grid interactive inverter. ► The membership functions and rule base of fuzzy logic controller by using ANFIS. ► A LCL output filter is designed. ► A high performance controller is designed. - Abstract: In this study, design, simulation and implementation of a dSPACE based grid interactive voltage source inverter are proposed. This inverter has adaptive neuro-fuzzy controller and capable of importing electrical energy, generated from renewable energy sources such as the wind, the solar and the fuel cells to the grid. A line frequency transformer and a LCL filter are used at the output of the grid interactive inverter which is designed as current controlled to decrease the susceptibility to phase errors. Membership functions and rule base of the fuzzy logic controller, which control the inverter output current, are determined by using artificial neural networks. Both simulation and experimental results show that, the grid interactive inverter operates synchronously with the grid. The inverter output current which is imported to the grid is in sinusoidal waveform and the harmonic level of it meets the international standards (4.3 < 5.0%). In addition, simulation and experimental results of the neuro-fuzzy and the PI controlled inverter are given together and compared in detail. Simulation and experimental results show that the proposed inverter has faster response to the reference variations and lower steady state error than PI controller.

  18. Optimal Load-Tracking Operation of Grid-Connected Solid Oxide Fuel Cells through Set Point Scheduling and Combined L1-MPC Control

    Directory of Open Access Journals (Sweden)

    Siwei Han

    2018-03-01

    Full Text Available An optimal load-tracking operation strategy for a grid-connected tubular solid oxide fuel cell (SOFC is studied based on the steady-state analysis of the system thermodynamics and electrochemistry. Control of the SOFC is achieved by a two-level hierarchical control system. In the upper level, optimal setpoints of output voltage and the current corresponding to unit load demand is obtained through a nonlinear optimization by minimizing the SOFC’s internal power waste. In the lower level, a combined L1-MPC control strategy is designed to achieve fast set point tracking under system nonlinearities, while maintaining a constant fuel utilization factor. To prevent fuel starvation during the transient state resulting from the output power surging, a fuel flow constraint is imposed on the MPC with direct electron balance calculation. The proposed control schemes are testified on the grid-connected SOFC model.

  19. Risk-Based Two-Stage Stochastic Optimization Problem of Micro-Grid Operation with Renewables and Incentive-Based Demand Response Programs

    Directory of Open Access Journals (Sweden)

    Pouria Sheikhahmadi

    2018-03-01

    Full Text Available The operation problem of a micro-grid (MG in grid-connected mode is an optimization one in which the main objective of the MG operator (MGO is to minimize the operation cost with optimal scheduling of resources and optimal trading energy with the main grid. The MGO can use incentive-based demand response programs (DRPs to pay an incentive to the consumers to change their demands in the peak hours. Moreover, the MGO forecasts the output power of renewable energy resources (RERs and models their uncertainties in its problem. In this paper, the operation problem of an MGO is modeled as a risk-based two-stage stochastic optimization problem. To model the uncertainties of RERs, two-stage stochastic programming is considered and conditional value at risk (CVaR index is used to manage the MGO’s risk-level. Moreover, the non-linear economic models of incentive-based DRPs are used by the MGO to change the peak load. The numerical studies are done to investigate the effect of incentive-based DRPs on the operation problem of the MGO. Moreover, to show the effect of the risk-averse parameter on MGO decisions, a sensitivity analysis is carried out.

  20. Harmonic Mitigation Using a Polarized Ramp-time Current-Controlled Inverter

    Directory of Open Access Journals (Sweden)

    Lawrence J. Borle

    2010-12-01

    Full Text Available This paper describes the implementation of a shunt active power filter for a three-phase four-wire system to compensate for power quality problems generated by mixed non-linear loads, which are a combination of harmonic, reactive and unbalanced components. The filter is a three-phase current-controlled voltage source inverter (CC-VSI with a filter inductor at the AC output and a DC-bus capacitor. The CC-VSI is operated to directly control the grid current to be sinusoidal and in phase with the grid voltage without sensing the load currents. The switching is controlled using polarized ramp-time current control, which is based on the concept of zero average current error (ZACE with a fixed switching frequency. The laboratory experiment results indicate that the filter is able to mitigate predominantly the harmonics, as well as the reactive power, so that the grid currents are sinusoidal, in phase with the grid voltages and symmetrical although the grid voltage contains harmonics.

  1. Operation of Grid-tied 5 kWDC solar array to develop Laboratory Experiments for Solar PV Energy System courses

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Jaime [Univ. of Texas Pan American, Edinburg, TX (United States)

    2012-12-14

    To unlock the potential of micro grids we plan to build, commission and operate a 5 kWDC PV array and integrate it to the UTPA Engineering building low voltage network, as a micro grid; and promote community awareness. Assisted by a solar radiation tracker providing on-line information of its measurements and performing analysis for the use by the scientific and engineering community, we will write, perform and operate a set of Laboratory experiments and computer simulations supporting Electrical Engineering (graduate and undergraduate) courses on Renewable Energy, as well as Senior Design projects.

  2. Wind and Solar on the Power Grid: Myths and Misperceptions, Greening the Grid (Spanish Version)

    Energy Technology Data Exchange (ETDEWEB)

    Authors: Denholm, Paul; Cochran, Jaquelin; Brancucci Martinez-Anido, Carlo

    2016-04-01

    This is the Spanish version of the 'Greening the Grid - Wind and Solar on the Power Grid: Myths and Misperceptions'. Wind and solar are inherently more variable and uncertain than the traditional dispatchable thermal and hydro generators that have historically provided a majority of grid-supplied electricity. The unique characteristics of variable renewable energy (VRE) resources have resulted in many misperceptions regarding their contribution to a low-cost and reliable power grid. Common areas of concern include: 1) The potential need for increased operating reserves, 2) The impact of variability and uncertainty on operating costs and pollutant emissions of thermal plants, and 3) The technical limits of VRE penetration rates to maintain grid stability and reliability. This fact sheet corrects misperceptions in these areas.

  3. Service Oriented Gridded Atmospheric Radiances (SOAR)

    Science.gov (United States)

    Halem, M.; Goldberg, M. D.; Tilmes, C.; Zhou, L.; Shen, S.; Yesha, Y.

    2005-12-01

    We are developing a scalable web service tool that can provide complex griding services on-demand for atmospheric radiance data sets from multiple temperature and moisture sounding sensors on the NASA and NOAA polar orbiting satellites collected over the past three decades. This server-to-server middle ware tool will provide the framework for transforming user requests for an arbitrary spatial/temporal/spectral gridded radiance data set from one or more instruments into an action to invoke a griding process from a set of scientifically validated application programs that have been developed to perform such functions. The invoked web service agents will access, subset, concatenate, convolve, perform statistical and physically based griding operations and present the data as specified level 3 gridded fields for analysis and visualization in multiple formats. Examples of the griding operations consist of spatial-temporal radiance averaging accounting for the field of view instrument response function, first footprint in grid bin, selecting min/max brightness temperatures within a grid element, ratios of channels, filtering, convolving high resolution spectral radiances to match broader band spectral radiances, limb adjustments, calculating variances of radiances falling in grid box and creating visual displays of these fields. The gridded web services tool will support both human input through a WWW GUI as well as a direct computer request through a W3C SOAP/XML web service interface. It will generate regional and global gridded data sets on demand. A second effort will demonstrate the ability to locate, access, subset and grid radiance data for any time period and resolution from remote archives of NOAA and NASA data. The system will queue the work flow requests, stage processing and delivery of arbitrary gridded data sets in a data base and notify the users when the request is completed. This tool will greatly expand satellite sounding data utilization by

  4. Operation Strategy for a Power Grid Supplied by 100% Renewable Energy at a Cold Region in Japan

    Directory of Open Access Journals (Sweden)

    Jorge Morel

    2014-09-01

    Full Text Available This paper presents an operation strategy for a power system supplied from 100% renewable energy generation in Kitami City, a cold region in Japan. The main goal of this work is the complete elimination of the CO2 emissions of the city while keeping the power frequency within prescribed limits. Currently, the main energy related issue in Japan is the reduction of CO2 emissions without depending on nuclear generation. Also, there is a need for the adoption of distributed generation architecture in order to permit local autonomous operation of the system by the local generation of power. As a solution, this paper proposes a strategy to eliminate CO2 emissions that considers digital simulations using past hourly meteorological data and demand for one year. Results shows that Kitami City can be supplied entirely by renewable generation, reducing its CO2 emission to zero while keeping the quality of its power grid frequency within permitted limits.

  5. Results from Operational Testing of the Siemens Smart Grid-Capable Electric Vehicle Supply Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Brion [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The Idaho National Laboratory conducted testing and analysis of the Siemens smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Siemens for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Siemens smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  6. Current control for magnetized plasma in direct-current plasma-immersion ion implantation

    International Nuclear Information System (INIS)

    Tang Deli; Chu, Paul K.

    2003-01-01

    A method to control the ion current in direct-current plasma-immersion ion implantation (PIII) is reported for low-pressure magnetized inductively coupled plasma. The ion current can be conveniently adjusted by applying bias voltage to the conducting grid that separates plasma formation and implantation (ion acceleration) zones without the need to alter the rf input power, gas flux, or other operating conditions. The ion current that diminishes with an increase in grid bias in magnetized plasmas can be varied from 48 to 1 mA by increasing the grid voltage from 0 to 70 V at -50 kV sample bias and 0.5 mTorr hydrogen pressure. High implantation voltage and monoenergetic immersion implantation can now be achieved by controlling the ion current without varying the macroscopic plasma parameters. The experimental results and interpretation of the effects are presented in this letter. This technique is very attractive for PIII of planar samples that require on-the-fly adjustment of the implantation current at high implantation voltage but low substrate temperature. In some applications such as hydrogen PIII-ion cut, it may obviate the need for complicated sample cooling devices that must work at high voltage

  7. Analysis of Electric Power Board of Chattanooga Smart Grid Investment

    Energy Technology Data Exchange (ETDEWEB)

    Starke, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ollis, Ben [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Glass, Jim [EPB Electric Power, Chattanooga, TN (United States); Melin, Alex [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Guodong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sharma, Isha [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    The deployment of a Smart Grid within the EPB electrical system has brought significant value to EPB customers and to EPB operations. The Smart Grid implementation has permitted the capability to automate many of the existing systems, increasing the overall efficiency and decreasing round trip time for many required operation functions. This has both reduced the cost of operations and increased the reliability of customer service. This boost in performance can be primarily linked to two main components: the communication network and the availability of data. The existence of a fiber communication backbone has opened numerous opportunities for EPB. Large data sets from remote devices can be continuously polled and used to compute numerous metrics. The speed of communication has provided a pathway to sophisticated distribution automation that would not otherwise be possible. The data have been shown to provide a much broader view of the actual electrical system that was not previously available, opening many new opportunities in data analytics. This report documents many of the existing systems and operational features of the EPB system. Many of these systems have seen significant improvement with the deployment of Smart Grid technologies. The research behind this report found that in some cases, the value was directly computable or estimable for these enhancements. Currently, several ongoing research topics are under investigation within EPB. Through a grant from TVA, EPB is currently installing a 1.3MW solar photovoltaic system, which will be the first-generation asset owned by EPB.

  8. The Grid2003 Production Grid Principles and Practice

    CERN Document Server

    Foster, I; Gose, S; Maltsev, N; May, E; Rodríguez, A; Sulakhe, D; Vaniachine, A; Shank, J; Youssef, S; Adams, D; Baker, R; Deng, W; Smith, J; Yu, D; Legrand, I; Singh, S; Steenberg, C; Xia, Y; Afaq, A; Berman, E; Annis, J; Bauerdick, L A T; Ernst, M; Fisk, I; Giacchetti, L; Graham, G; Heavey, A; Kaiser, J; Kuropatkin, N; Pordes, R; Sekhri, V; Weigand, J; Wu, Y; Baker, K; Sorrillo, L; Huth, J; Allen, M; Grundhoefer, L; Hicks, J; Luehring, F C; Peck, S; Quick, R; Simms, S; Fekete, G; Van den Berg, J; Cho, K; Kwon, K; Son, D; Park, H; Canon, S; Jackson, K; Konerding, D E; Lee, J; Olson, D; Sakrejda, I; Tierney, B; Green, M; Miller, R; Letts, J; Martin, T; Bury, D; Dumitrescu, C; Engh, D; Gardner, R; Mambelli, M; Smirnov, Y; Voeckler, J; Wilde, M; Zhao, Y; Zhao, X; Avery, P; Cavanaugh, R J; Kim, B; Prescott, C; Rodríguez, J; Zahn, A; McKee, S; Jordan, C; Prewett, J; Thomas, T; Severini, H; Clifford, B; Deelman, E; Flon, L; Kesselman, C; Mehta, G; Olomu, N; Vahi, K; De, K; McGuigan, P; Sosebee, M; Bradley, D; Couvares, P; De Smet, A; Kireyev, C; Paulson, E; Roy, A; Koranda, S; Moe, B; Brown, B; Sheldon, P

    2004-01-01

    The Grid2003 Project has deployed a multi-virtual organization, application-driven grid laboratory ("GridS") that has sustained for several months the production-level services required by physics experiments of the Large Hadron Collider at CERN (ATLAS and CMS), the Sloan Digital Sky Survey project, the gravitational wave search experiment LIGO, the BTeV experiment at Fermilab, as well as applications in molecular structure analysis and genome analysis, and computer science research projects in such areas as job and data scheduling. The deployed infrastructure has been operating since November 2003 with 27 sites, a peak of 2800 processors, work loads from 10 different applications exceeding 1300 simultaneous jobs, and data transfers among sites of greater than 2 TB/day. We describe the principles that have guided the development of this unique infrastructure and the practical experiences that have resulted from its creation and use. We discuss application requirements for grid services deployment and configur...

  9. Grid Computing at GSI for ALICE and FAIR - present and future

    International Nuclear Information System (INIS)

    Schwarz, Kilian; Uhlig, Florian; Karabowicz, Radoslaw; Montiel-Gonzalez, Almudena; Zynovyev, Mykhaylo; Preuss, Carsten

    2012-01-01

    The future FAIR experiments CBM and PANDA have computing requirements that fall in a category that could currently not be satisfied by one single computing centre. One needs a larger, distributed computing infrastructure to cope with the amount of data to be simulated and analysed. Since 2002, GSI operates a tier2 center for ALICE-CERN. The central component of the GSI computing facility and hence the core of the ALICE tier2 centre is a LSF/SGE batch farm, currently split into three subclusters with a total of 15000 CPU cores shared by the participating experiments, and accessible both locally and soon also completely via Grid. In terms of data storage, a 5.5 PB Lustre file system, directly accessible from all worker nodes is maintained, as well as a 300 TB xrootd-based Grid storage element. Based on this existing expertise, and utilising ALICE's middleware ‘AliEn’, the Grid infrastructure for PANDA and CBM is being built. Besides a tier0 centre at GSI, the computing Grids of the two FAIR collaborations encompass now more than 17 sites in 11 countries and are constantly expanding. The operation of the distributed FAIR computing infrastructure benefits significantly from the experience gained with the ALICE tier2 centre. A close collaboration between ALICE Offline and FAIR provides mutual advantages. The employment of a common Grid middleware as well as compatible simulation and analysis software frameworks ensure significant synergy effects.

  10. Integrating Variable Renewable Energy into the Grid: Key Issues, Greening the Grid (Spanish Version)

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    This is the Spanish version of 'Greening the Grid - Integrating Variable Renewable Energy into the Grid: Key Issues'. To foster sustainable, low-emission development, many countries are establishing ambitious renewable energy targets for their electricity supply. Because solar and wind tend to be more variable and uncertain than conventional sources, meeting these targets will involve changes to power system planning and operations. Grid integration is the practice of developing efficient ways to deliver variable renewable energy (VRE) to the grid. Good integration methods maximize the cost-effectiveness of incorporating VRE into the power system while maintaining or increasing system stability and reliability. When considering grid integration, policy makers, regulators, and system operators consider a variety of issues, which can be organized into four broad topics: New Renewable Energy Generation, New Transmission, Increased System Flexibility, and Planning for a High RE Future.

  11. NEMO. A novel techno-economic tool suite for simulating and optimizing solutions for grid integration of electric vehicles and charging stations

    Energy Technology Data Exchange (ETDEWEB)

    Erge, Thomas; Stillahn, Thies; Dallmer-Zerbe, Kilian; Wille-Haussmann, Bernhard [Frauenhofer Institut for Solar Energy Systems ISE, Freiburg (Germany)

    2013-07-01

    With an increasing use of electric vehicles (EV) grid operators need to predict energy flows depending on electromobility use profiles to accordingly adjust grid infrastructure and operation control accordingly. Tools and methodologies are required to characterize grid problems resulting from the interconnection of EV with the grid. The simulation and optimization tool suite NEMO (Novel E-MObility grid model) was developed within a European research project and is currently being tested using realistic showcases. It is a combination of three professional tools. One of the tools aims at a combined techno-economic design and operation, primarily modeling plants on contracts or the spot market, at the same time participating in balancing markets. The second tool is designed for planning grid extension or reinforcement while the third tool is mainly used to quickly discover potential conflicts of grid operation approaches through load flow analysis. The tool suite is used to investigate real showcases in Denmark, Germany and the Netherlands. First studies show that significant alleviation of stress on distribution grid lines could be achieved by few but intelligent restrictions to EV charging procedures.

  12. NEMO. A novel techno-economic tool suite for simulating and optimizing solutions for grid integration of electric vehicles and charging stations

    International Nuclear Information System (INIS)

    Erge, Thomas; Stillahn, Thies; Dallmer-Zerbe, Kilian; Wille-Haussmann, Bernhard

    2013-01-01

    With an increasing use of electric vehicles (EV) grid operators need to predict energy flows depending on electromobility use profiles to accordingly adjust grid infrastructure and operation control accordingly. Tools and methodologies are required to characterize grid problems resulting from the interconnection of EV with the grid. The simulation and optimization tool suite NEMO (Novel E-MObility grid model) was developed within a European research project and is currently being tested using realistic showcases. It is a combination of three professional tools. One of the tools aims at a combined techno-economic design and operation, primarily modeling plants on contracts or the spot market, at the same time participating in balancing markets. The second tool is designed for planning grid extension or reinforcement while the third tool is mainly used to quickly discover potential conflicts of grid operation approaches through load flow analysis. The tool suite is used to investigate real showcases in Denmark, Germany and the Netherlands. First studies show that significant alleviation of stress on distribution grid lines could be achieved by few but intelligent restrictions to EV charging procedures.

  13. Real-Time Market Concept Architecture for EcoGrid EU—A Prototype for European Smart Grids

    DEFF Research Database (Denmark)

    Ding, Yi; Pineda Morente, Salvador; Nyeng, Preben

    2014-01-01

    Industrialized countries are increasingly committed to move towards a low carbon generating mix by increasing the penetration of renewable generation. Additionally, the Development in communication technologies will allow small end-consumers and small-scale distributed energy resources (DER......) to participate in electricity markets. Current electricity markets need to be tailored to incorporate these changes regarding how electricity will be generated and consumed in the future. The EcoGrid EU is a large-scale EU-funded project, which establishes the first prototype of the future European intelligent...... grids. In this project, small-scale DERs and small end-consumers can actively participate in a new real-time electricity market by responding to 5-min real time electricity prices. In this way, the market operator will also obtain additional balancing power to cancel out the production variation...

  14. Evaluation of Current Controllers for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian; Liserre, Marco; Teodorescu, Remus

    2009-01-01

    This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional-integral, proportio......This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional......-integral, proportional-resonant, and deadbeat (DB) controllers. Additionally, an improved DB controller robust against grid impedance variation is also presented. Since the paper discusses the implementation of these controllers for grid-connected applications, their evaluation is made in three operating conditions....... First, in steady-state conditions, the contribution of controllers to the total harmonic distortion of the grid current is pursued. Further on, the behavior of controllers in the case of transient conditions like input power variations and grid voltage faults is also examined. Experimental results...

  15. Scaling Up Renewable Energy Generation: Aligning Targets and Incentives with Grid Integration Considerations, Greening The Grid

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Jessica; Cochran, Jaquelin

    2015-05-27

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document, part of a Greening the Grid toolkit, provides power system planners with tips to help secure and sustain investment in new renewable energy generation by aligning renewable energy policy targets and incentives with grid integration considerations.

  16. Physics-based distributed snow models in the operational arena: Current and future challenges

    Science.gov (United States)

    Winstral, A. H.; Jonas, T.; Schirmer, M.; Helbig, N.

    2017-12-01

    The demand for modeling tools robust to climate change and weather extremes along with coincident increases in computational capabilities have led to an increase in the use of physics-based snow models in operational applications. Current operational applications include the WSL-SLF's across Switzerland, ASO's in California, and USDA-ARS's in Idaho. While the physics-based approaches offer many advantages there remain limitations and modeling challenges. The most evident limitation remains computation times that often limit forecasters to a single, deterministic model run. Other limitations however remain less conspicuous amidst the assumptions that these models require little to no calibration based on their foundation on physical principles. Yet all energy balance snow models seemingly contain parameterizations or simplifications of processes where validation data are scarce or present understanding is limited. At the research-basin scale where many of these models were developed these modeling elements may prove adequate. However when applied over large areas, spatially invariable parameterizations of snow albedo, roughness lengths and atmospheric exchange coefficients - all vital to determining the snowcover energy balance - become problematic. Moreover as we apply models over larger grid cells, the representation of sub-grid variability such as the snow-covered fraction adds to the challenges. Here, we will demonstrate some of the major sensitivities of distributed energy balance snow models to particular model constructs, the need for advanced and spatially flexible methods and parameterizations, and prompt the community for open dialogue and future collaborations to further modeling capabilities.

  17. Observability of Low Voltage grids

    DEFF Research Database (Denmark)

    Martin-Loeches, Ruben Sánchez; Iov, Florin; Kemal, Mohammed Seifu

    2017-01-01

    Low Voltage (LV) distribution power grids are experiencing a transformation from a passive to a more active role due to the increasing penetration of distributed generation, heat pumps and electrical vehicles. The first step towards a smarter operation of LV electrical systems is to provide grid ...... an updated state of the art on DSSE-AMI based, adaptive data collection techniques and database management system types. Moreover, the ongoing Danish RemoteGRID project is presented as a realistic case study.......Low Voltage (LV) distribution power grids are experiencing a transformation from a passive to a more active role due to the increasing penetration of distributed generation, heat pumps and electrical vehicles. The first step towards a smarter operation of LV electrical systems is to provide grid....... It becomes unrealistic to provide near real time full observability of the LV grid by applying Distribution System State Estimation (DSSE) utilizing the classical data collection and storage/preprocessing techniques. This paper investigates up-todate the observability problem in LV grids by providing...

  18. Capacitor Current Feedback-Based Active Resonance Damping Strategies for Digitally-Controlled Inductive-Capacitive-Inductive-Filtered Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Lorzadeh, Iman; Askarian Abyaneh, Hossein; Savaghebi, Mehdi

    2016-01-01

    Inductive-capacitive-inductive (LCL)-type line filters are widely used in grid-connected voltage source inverters (VSIs), since they can provide substantially improved attenuation of switching harmonics in currents injected into the grid with lower cost, weight and power losses than their L......-type counterparts. However, the inclusion of third order LCL network complicates the current control design regarding the system stability issues because of an inherent resonance peak which appears in the open-loop transfer function of the inverter control system near the control stability boundary. To avoid...... passive (resistive) resonance damping solutions, due to their additional power losses, active damping (AD) techniques are often applied with proper control algorithms in order to damp the LCL filter resonance and stabilize the system. Among these techniques, the capacitor current feedback (CCF) AD has...

  19. A Wavelet-Based Unified Power Quality Conditioner to Eliminate Wind Turbine Non-Ideality Consequences on Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Bijan Rahmani

    2016-05-01

    Full Text Available The integration of renewable power sources with power grids presents many challenges, such as synchronization with the grid, power quality problems and so on. The shunt active power filter (SAPF can be a solution to address the issue while suppressing the grid-end current harmonics and distortions. Nonetheless, available SAPFs work somewhat unpredictably in practice. This is attributed to the dependency of the SAPF controller on nonlinear complicated equations and two distorted variables, such as load current and voltage, to produce the current reference. This condition will worsen when the plant includes wind turbines which inherently produce 3rd, 5th, 7th and 11th voltage harmonics. Moreover, the inability of the typical phase locked loop (PLL used to synchronize the SAPF reference with the power grid also disrupts SAPF operation. This paper proposes an improved synchronous reference frame (SRF which is equipped with a wavelet-based PLL to control the SAPF, using one variable such as load current. Firstly the fundamental positive sequence of the source voltage, obtained using a wavelet, is used as the input signal of the PLL through an orthogonal signal generator process. Then, the generated orthogonal signals are applied through the SRF-based compensation algorithm to synchronize the SAPF’s reference with power grid. To further force the remained uncompensated grid current harmonics to pass through the SAPF, an improved series filter (SF equipped with a current harmonic suppression loop is proposed. Concurrent operation of the improved SAPF and SF is coordinated through a unified power quality conditioner (UPQC. The DC-link capacitor of the proposed UPQC, used to interconnect a photovoltaic (PV system to the power grid, is regulated by an adaptive controller. Matlab/Simulink results confirm that the proposed wavelet-based UPQC results in purely sinusoidal grid-end currents with total harmonic distortion (THD = 1.29%, which leads to high

  20. TIGER: Turbomachinery interactive grid generation

    Science.gov (United States)

    Soni, Bharat K.; Shih, Ming-Hsin; Janus, J. Mark

    1992-01-01

    A three dimensional, interactive grid generation code, TIGER, is being developed for analysis of flows around ducted or unducted propellers. TIGER is a customized grid generator that combines new technology with methods from general grid generation codes. The code generates multiple block, structured grids around multiple blade rows with a hub and shroud for either C grid or H grid topologies. The code is intended for use with a Euler/Navier-Stokes solver also being developed, but is general enough for use with other flow solvers. TIGER features a silicon graphics interactive graphics environment that displays a pop-up window, graphics window, and text window. The geometry is read as a discrete set of points with options for several industrial standard formats and NASA standard formats. Various splines are available for defining the surface geometries. Grid generation is done either interactively or through a batch mode operation using history files from a previously generated grid. The batch mode operation can be done either with a graphical display of the interactive session or with no graphics so that the code can be run on another computer system. Run time can be significantly reduced by running on a Cray-YMP.

  1. RF generator interlock by plasma grid bias current - An alternate to Hα interlock

    Science.gov (United States)

    Bandyopadhyay, M.; Gahlaut, A.; Yadav, R. K.; Pandya, K.; Tyagi, H.; Vupugalla, M.; Bhuyan, M.; Bhagora, J.; Chakraborty, A.

    2017-08-01

    ROBIN is inductively coupled plasma (ICP) based negative hydrogen ion source, operated with a 100kW, 1MHz Tetrode based RF generator (RFG). Inductive plasma ignition by the RFG in ROBIN is associated with electron seeding by a hot filament and a gas puff. RFG is triggered by the control system to deliver power just at the peak pressure of the gas puff. Once plasma is ignited due to proper impedance matching, a bright light, dominated by Hα (˜656nm wavelength) radiation is available inside RF driver which is used as a feedback signal to the RFG to continue its operation. If impedance matching is not correct, plasma is not produced due to lack of power coupling and bright light is not available. During such condition, reflected RF power may damage the RFG. Therefore, to protect the RFG, it needs to be switched off automatically within 200ms by the control system in such cases. This plasma light based RFG interlock is adopted from BATMAN ion source. However, in case of vacuum immersed RF ion source in reactor grade NBI system, such plasma light based interlock may not be feasible due to lack of adequate optical fiber interfaces. In reactor grade NBI system, neutron and gamma radiations have impact on materials which may lead to frequent maintenance and machine down time. The present demonstration of RFG interlock by Bias Current (BC) in ROBIN testbed gives an alternate option in this regard. In ROBIN, a bias plate (BP) is placed in the plasma chamber near the plasma grid (PG). BP is electrically connected to the plasma chamber wall of the ion source and PG is isolated from the wall. A high current ˜85 A direct current (DC) power supply of voltage in the range of 0 - 33V is connected between the PG and the BP in such a way that PG can be biased positively with respect to the BP or plasma chamber. This arrangement is actually made to absorb electrons and correspondingly reduce co-extracted electron current during beam extraction. However, in case of normal plasma

  2. Adaptive Droop Control Applied to Voltage-Source Inverters Operating in Grid-Connected and Islanded Modes

    DEFF Research Database (Denmark)

    Vasquez, J. C.; Guerrero, J. M.; Luna, A.

    2009-01-01

    This paper proposes a novel control for voltagesource inverters with the capability to flexibly operate in gridconnected and islanded modes. The control scheme is based on the droop method, which uses some estimated grid parameters such as the voltage and frequency and the magnitude and angle of ...

  3. Use of thermoelectric generators for improve power dependability over grid power

    Energy Technology Data Exchange (ETDEWEB)

    Archer, Jack [Global Thermoelectric, Calgary (Canada)

    2005-07-01

    A natural gas transportation company was experiencing extensive pipeline corrosion on some sections of their pipeline protected by impressed current using grid power and rectifiers. After determining that grid power was being interrupted on the affected sections, the gas transporter began looking for a more dependable power supply and chose thermoelectric generators. Since installing thermoelectric generators in 2002, the pipeline potentials have stabilized and transporter was able to experience 100% operational time on affected sections. (author)

  4. Transactive-Market-Based Operation of Distributed Electrical Energy Storage with Grid Constraints

    Directory of Open Access Journals (Sweden)

    M. Nazif Faqiry

    2017-11-01

    Full Text Available In a transactive energy market, distributed energy resources (DERs such as dispatchable distributed generators (DGs, electrical energy storages (EESs, distribution-scale load aggregators (LAs, and renewable energy sources (RESs have to earn their share of supply or demand through a bidding process. In such a market, the distribution system operator (DSO may optimally schedule these resources, first in a forward market, i.e., day-ahead, and in a real-time market later on, while maintaining a reliable and economic distribution grid. In this paper, an efficient day-ahead scheduling of these resources, in the presence of interaction with wholesale market at the locational marginal price (LMP, is studied. Due to inclusion of EES units with integer constraints, a detailed mixed integer linear programming (MILP formulation that incorporates simplified DistFlow equations to account for grid constraints is proposed. Convex quadratic line and transformer apparent power flow constraints have been linearized using an outer approximation. The proposed model schedules DERs based on distribution locational marginal price (DLMP, which is obtained as the Lagrange multiplier of the real power balance constraint at each distribution bus while maintaining physical grid constraints such as line limits, transformer limits, and bus voltage magnitudes. Case studies are performed on a modified IEEE 13-bus system with high DER penetration. Simulation results show the validity and efficiency of the proposed model.

  5. Single-Phase Boost Inverter-Based Electric Vehicle Charger With Integrated Vehicle to Grid Reactive Power Compensation

    DEFF Research Database (Denmark)

    Wickramasinghe Abeywardana, Damith Buddika; Acuna, Pablo; Hredzak, Branislav

    2018-01-01

    Vehicle to grid (V2G) reactive power compensation using electric vehicle (EV) onboard chargers helps to ensure grid power quality by achieving unity power factor operation. However, the use of EVs for V2G reactive power compensation increases the second-order harmonic ripple current component...... from the grid, exposes the EV battery to these undesirable ripple current components for a longer period and discharges the battery due to power conversion losses. This paper presents a way to provide V2G reactive power compensation through a boost inverter-based single stage EV charger and a DC...

  6. Stability of Grid-Connected PV Inverters with Large Grid Impedance Variation

    DEFF Research Database (Denmark)

    Liserre, Marco; Teodorescu, Remus; Blaabjerg, Frede

    2004-01-01

    Photovoltaic (PV) inverters used in dispersed power generation of houses in the range of 1-5 kW are currently available from several manufactures. However, large grid impedance variation is challenging the control and the grid filter design in terms of stability. In fact the PV systems are well...... suited for loads connected in a great distance to the transformer (long wires) and the situation becomes even more difficult in low-developed remote areas characterized by low power transformers and long distribution wires with high grid impedance. Hence a theoretical analysis is needed because the grid...... impedance variation leads to dynamic and stability problems both in the low frequency range (around the current controller bandwidth frequency) as well as in the high frequency range (around the LCL-filter resonance frequency). In the low frequency range the possible variation of the impedance challenges...

  7. Establishment of key grid-connected performance index system for integrated PV-ES system

    Science.gov (United States)

    Li, Q.; Yuan, X. D.; Qi, Q.; Liu, H. M.

    2016-08-01

    In order to further promote integrated optimization operation of distributed new energy/ energy storage/ active load, this paper studies the integrated photovoltaic-energy storage (PV-ES) system which is connected with the distribution network, and analyzes typical structure and configuration selection for integrated PV-ES generation system. By combining practical grid- connected characteristics requirements and technology standard specification of photovoltaic generation system, this paper takes full account of energy storage system, and then proposes several new grid-connected performance indexes such as paralleled current sharing characteristic, parallel response consistency, adjusting characteristic, virtual moment of inertia characteristic, on- grid/off-grid switch characteristic, and so on. A comprehensive and feasible grid-connected performance index system is then established to support grid-connected performance testing on integrated PV-ES system.

  8. Voltage-current characteristics of multiterminal HVDC-VSC for offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Gomis-Bellmunt, Oriol [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2., 08028 Barcelona (Spain); IREC Catalonia Institute for Energy Research, Barcelona (Spain); Liang, Jun; Ekanayake, Janaka; Jenkins, Nicholas [School of Engineering, Cardiff University, Queen' s Buildings, The Parade, Cardiff CF24 3AA, Wales (United Kingdom)

    2011-02-15

    Voltage-current characteristics and equilibrium points for the DC voltages of multiterminal HVDC systems using voltage source converters are discussed. The wind farm rectifiers and grid connected inverters are analyzed through their operating modes, governing equations and graphical characteristics. Using the converter equations and the HVDC grid conductance matrix the equilibrium voltages and currents are found. Case studies are presented considering wind power generation, loss of a converter and voltage sags in the AC grid. (author)

  9. The eGo grid model: An open-source and open-data based synthetic medium-voltage grid model for distribution power supply systems

    Science.gov (United States)

    Amme, J.; Pleßmann, G.; Bühler, J.; Hülk, L.; Kötter, E.; Schwaegerl, P.

    2018-02-01

    The increasing integration of renewable energy into the electricity supply system creates new challenges for distribution grids. The planning and operation of distribution systems requires appropriate grid models that consider the heterogeneity of existing grids. In this paper, we describe a novel method to generate synthetic medium-voltage (MV) grids, which we applied in our DIstribution Network GeneratOr (DINGO). DINGO is open-source software and uses freely available data. Medium-voltage grid topologies are synthesized based on location and electricity demand in defined demand areas. For this purpose, we use GIS data containing demand areas with high-resolution spatial data on physical properties, land use, energy, and demography. The grid topology is treated as a capacitated vehicle routing problem (CVRP) combined with a local search metaheuristics. We also consider the current planning principles for MV distribution networks, paying special attention to line congestion and voltage limit violations. In the modelling process, we included power flow calculations for validation. The resulting grid model datasets contain 3608 synthetic MV grids in high resolution, covering all of Germany and taking local characteristics into account. We compared the modelled networks with real network data. In terms of number of transformers and total cable length, we conclude that the method presented in this paper generates realistic grids that could be used to implement a cost-optimised electrical energy system.

  10. Knowledge Discovery for Smart Grid Operation, Control, and Situation Awareness -- A Big Data Visualization Platform

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yi; Jiang, Huaiguang; Zhang, Yingchen; Zhang, Jun Jason; Gao, Tianlu; Muljadi, Eduard

    2016-11-21

    In this paper, a big data visualization platform is designed to discover the hidden useful knowledge for smart grid (SG) operation, control and situation awareness. The spawn of smart sensors at both grid side and customer side can provide large volume of heterogeneous data that collect information in all time spectrums. Extracting useful knowledge from this big-data poll is still challenging. In this paper, the Apache Spark, an open source cluster computing framework, is used to process the big-data to effectively discover the hidden knowledge. A high-speed communication architecture utilizing the Open System Interconnection (OSI) model is designed to transmit the data to a visualization platform. This visualization platform uses Google Earth, a global geographic information system (GIS) to link the geological information with the SG knowledge and visualize the information in user defined fashion. The University of Denver's campus grid is used as a SG test bench and several demonstrations are presented for the proposed platform.

  11. Integrating renewables in distribution grids. Storage, regulation and the interaction of different stakeholders in future grids

    Energy Technology Data Exchange (ETDEWEB)

    Nykamp, S.

    2013-10-18

    In recent years, the transition of the power supply chain towards a sustainable system based on 'green' electricity generation out of renewable energy sources (RES-E) has become a main challenge for grid operators and further stakeholders in the power system. To enable the evaluation of new concepts for the integration of RES-E, first the feed-in characteristics of photovoltaic, wind and biomass generators located in a distribution grid area and based on numerous measured feed-in data are studied in this thesis. The achieved insights from the feed-in profiles can be used for the dimensioning of grid assets. Furthermore, the results are useful for the evaluation of congestion management or for the dimensioning of storage assets in distribution grids. The latter aspect is analyzed in detail such that suitable storage characteristics for an introduction in the grid are determined. An economic approach is presented to derive break-even points for storage assets as a substitute to conventional reinforcements. For a case study from a real world low voltage grid with reinforcement needs, these break-even points are determined and the main influencing parameters are evaluated. A further important question in this context concerns the role DSOs (distribution system operators) may play with the operation of decentralized storage assets since several stakeholders may be interested in using the flexibility provided by these assets. This unclear responsibility also applies to the steering of adjustable consumption devices such as electric heat pumps or electric cars. For decentralized storage assets as well as heat pump appliances, optimal operation modes based on the optimization objectives for a DSO and a trader are derived. It is shown based on real world data that choosing a 'copperplate' scenario is not only technically insufficient for a global balance of the consumption and generation. It may even be harmful for the society from a welfare economic

  12. Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding.

    Science.gov (United States)

    Benkert, Thomas; Tian, Ye; Huang, Chenchan; DiBella, Edward V R; Chandarana, Hersh; Feng, Li

    2018-07-01

    Golden-angle radial sparse parallel (GRASP) MRI reconstruction requires gridding and regridding to transform data between radial and Cartesian k-space. These operations are repeatedly performed in each iteration, which makes the reconstruction computationally demanding. This work aimed to accelerate GRASP reconstruction using self-calibrating GRAPPA operator gridding (GROG) and to validate its performance in clinical imaging. GROG is an alternative gridding approach based on parallel imaging, in which k-space data acquired on a non-Cartesian grid are shifted onto a Cartesian k-space grid using information from multicoil arrays. For iterative non-Cartesian image reconstruction, GROG is performed only once as a preprocessing step. Therefore, the subsequent iterative reconstruction can be performed directly in Cartesian space, which significantly reduces computational burden. Here, a framework combining GROG with GRASP (GROG-GRASP) is first optimized and then compared with standard GRASP reconstruction in 22 prostate patients. GROG-GRASP achieved approximately 4.2-fold reduction in reconstruction time compared with GRASP (∼333 min versus ∼78 min) while maintaining image quality (structural similarity index ≈ 0.97 and root mean square error ≈ 0.007). Visual image quality assessment by two experienced radiologists did not show significant differences between the two reconstruction schemes. With a graphics processing unit implementation, image reconstruction time can be further reduced to approximately 14 min. The GRASP reconstruction can be substantially accelerated using GROG. This framework is promising toward broader clinical application of GRASP and other iterative non-Cartesian reconstruction methods. Magn Reson Med 80:286-293, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. S4 Grid-Connected Single-Phase Transformerless Inverter for PV Application

    DEFF Research Database (Denmark)

    Ardashir, Jaber Fallah; Siwakoti, Yam Prasad; Sabahi, Mehran

    2016-01-01

    This paper introduces a new single-phase transformerless inverter for grid-connected photovoltaic systems with low leakage current. It consists of four power switches, two diodes, two capacitors and a filter at the output stage. The neutral of the grid is directly connected to the negative terminal...... size, low cost, flexible grounding configuration and higher efficiency. The operating principle and analysis of the proposed circuit are presented in details. Experimental results of a 500 W prototype are demonstrated to validate the proposed topology and the overall concept. The results obtained...... clearly verify the performance of the proposed inverter and its practical application for grid-connected PV systems....

  14. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line

    Directory of Open Access Journals (Sweden)

    Ayako Kumagai

    2014-12-01

    Full Text Available Memantine is a non-competitive antagonist of the N-methyl-D-aspartate (NMDA receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds.

  15. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line

    Science.gov (United States)

    Kumagai, Ayako; Fujita, Akira; Yokoyama, Tomoki; Nonobe, Yuki; Hasaba, Yasuhiro; Sasaki, Tsutomu; Itoh, Yumi; Koura, Minako; Suzuki, Osamu; Adachi, Shigeki; Ryo, Haruko; Kohara, Arihiro; Tripathi, Lokesh P.; Sanosaka, Masato; Fukushima, Toshiki; Takahashi, Hiroyuki; Kitagawa, Kazuo; Nagaoka, Yasuo; Kawahara, Hidehisa; Mizuguchi, Kenji; Nomura, Taisei; Matsuda, Junichiro; Tabata, Toshihide; Takemori, Hiroshi

    2014-01-01

    Memantine is a non-competitive antagonist of the N-methyl-d-aspartate (NMDA) receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg) disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR) and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds. PMID:25513882

  16. The event notification and alarm system for the Open Science Grid operations center

    Science.gov (United States)

    Hayashi, S.; Teige and, S.; Quick, R.

    2012-12-01

    The Open Science Grid Operations (OSG) Team operates a distributed set of services and tools that enable the utilization of the OSG by several HEP projects. Without these services users of the OSG would not be able to run jobs, locate resources, obtain information about the status of systems or generally use the OSG. For this reason these services must be highly available. This paper describes the automated monitoring and notification systems used to diagnose and report problems. Described here are the means used by OSG Operations to monitor systems such as physical facilities, network operations, server health, service availability and software error events. Once detected, an error condition generates a message sent to, for example, Email, SMS, Twitter, an Instant Message Server, etc. The mechanism being developed to integrate these monitoring systems into a prioritized and configurable alarming system is emphasized.

  17. The event notification and alarm system for the Open Science Grid operations center

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, S; Teige and, S; Quick, R [Indiana University, University Information Technology Services (United States)

    2012-12-13

    The Open Science Grid Operations (OSG) Team operates a distributed set of services and tools that enable the utilization of the OSG by several HEP projects. Without these services users of the OSG would not be able to run jobs, locate resources, obtain information about the status of systems or generally use the OSG. For this reason these services must be highly available. This paper describes the automated monitoring and notification systems used to diagnose and report problems. Described here are the means used by OSG Operations to monitor systems such as physical facilities, network operations, server health, service availability and software error events. Once detected, an error condition generates a message sent to, for example, Email, SMS, Twitter, an Instant Message Server, etc. The mechanism being developed to integrate these monitoring systems into a prioritized and configurable alarming system is emphasized.

  18. The event notification and alarm system for the Open Science Grid operations center

    International Nuclear Information System (INIS)

    Hayashi, S; Teige and, S; Quick, R

    2012-01-01

    The Open Science Grid Operations (OSG) Team operates a distributed set of services and tools that enable the utilization of the OSG by several HEP projects. Without these services users of the OSG would not be able to run jobs, locate resources, obtain information about the status of systems or generally use the OSG. For this reason these services must be highly available. This paper describes the automated monitoring and notification systems used to diagnose and report problems. Described here are the means used by OSG Operations to monitor systems such as physical facilities, network operations, server health, service availability and software error events. Once detected, an error condition generates a message sent to, for example, Email, SMS, Twitter, an Instant Message Server, etc. The mechanism being developed to integrate these monitoring systems into a prioritized and configurable alarming system is emphasized.

  19. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence E. [Alstom Grid Inc., Washington, DC (United States)

    2011-11-01

    This report provides findings from the field regarding the best ways in which to guide operational strategies, business processes and control room tools to support the integration of renewable energy into electrical grids.

  20. Norwegian electricity market liberalisation: questions of cost calculation and price definition by grid operators; Norwegische Elektrizitaetsmarktoeffnung: Kostenrechnungs- und Preisbildungsfragen der Netzgesellschaften

    Energy Technology Data Exchange (ETDEWEB)

    Wild, J.; Vaterlaus, S.

    2002-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study carried out on the Norwegian electricity market 10 years after its liberalisation. The similarity of the Norwegian market to the Swiss electricity market is discussed. Similarly to the proposed situation in Switzerland, the liberalisation in Norway foresaw no privatisation of public utilities and a model for the regulation of grid access was introduced. The report describes and comments on the various phases in which the liberalisation occurred and examines the various instruments used, e.g. to ensure that individual grid operators did not make undue profits from their monopoly. The methods used for the monitoring of grid operators' costs are described and the mechanisms involved in the definition of prices for grid services are examined, including measures taken when profits were too high or too low. The report is concluded with a discussion of the conclusions that can be drawn from the Norwegian model for Swiss market opening efforts.

  1. Load kick-back effects due to activation of demand response in view of distribution grid operation

    DEFF Research Database (Denmark)

    Han, Xue; Sossan, Fabrizio; Bindner, Henrik W.

    2014-01-01

    . The paper has shown how aggregated consumption dynamics introduce new peaks in the system due to the synchronous behaviors of a portfolio of homogeneous DSRs, which is instructed by the flexibility management system. This dynamic effect is recognized as load kick-back effect. The impact of load kick......-back effects onto the distribution grid is analysed in this paper by establishing scenarios based on the estimation of DSR penetration levels from the system operator. The results indicate some risks that the activation of demand response may create critical peaks in the local grid due to kick-back effects....

  2. Capacitor Current Feedback-Based Active Resonance Damping Strategies for Digitally-Controlled Inductive-Capacitive-Inductive-Filtered Grid-Connected Inverters

    Directory of Open Access Journals (Sweden)

    Iman Lorzadeh

    2016-08-01

    Full Text Available Inductive-capacitive-inductive (LCL-type line filters are widely used in grid-connected voltage source inverters (VSIs, since they can provide substantially improved attenuation of switching harmonics in currents injected into the grid with lower cost, weight and power losses than their L-type counterparts. However, the inclusion of third order LCL network complicates the current control design regarding the system stability issues because of an inherent resonance peak which appears in the open-loop transfer function of the inverter control system near the control stability boundary. To avoid passive (resistive resonance damping solutions, due to their additional power losses, active damping (AD techniques are often applied with proper control algorithms in order to damp the LCL filter resonance and stabilize the system. Among these techniques, the capacitor current feedback (CCF AD has attracted considerable attention due to its effective damping performance and simple implementation. This paper thus presents a state-of-the-art review of resonance and stability characteristics of CCF-based AD approaches for a digitally-controlled LCL filter-based grid-connected inverter taking into account the effect of computation and pulse width modulation (PWM delays along with a detailed analysis on proper design and implementation.

  3. Challenges facing production grids

    Energy Technology Data Exchange (ETDEWEB)

    Pordes, Ruth; /Fermilab

    2007-06-01

    Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

  4. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    Science.gov (United States)

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.

  5. Technical Evaluation of Superconducting Fault Current Limiters Used in a Micro-Grid by Considering the Fault Characteristics of Distributed Generation, Energy Storage and Power Loads

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2016-09-01

    Full Text Available Concerning the development of a micro-grid integrated with multiple intermittent renewable energy resources, one of the main issues is related to the improvement of its robustness against short-circuit faults. In a sense, the superconducting fault current limiter (SFCL can be regarded as a feasible approach to enhance the transient performance of a micro-grid under fault conditions. In this paper, the fault transient analysis of a micro-grid, including distributed generation, energy storage and power loads, is conducted, and regarding the application of one or more flux-coupling-type SFCLs in the micro-grid, an integrated technical evaluation method considering current-limiting performance, bus voltage stability and device cost is proposed. In order to assess the performance of the SFCLs and verify the effectiveness of the evaluation method, different fault cases of a 10-kV micro-grid with photovoltaic (PV, wind generator and energy storage are simulated in the MATLAB software. The results show that, the efficient use of the SFCLs for the micro-grid can contribute to reducing the fault current, improving the voltage sags and suppressing the frequency fluctuations. Moreover, there will be a compromise design to fully take advantage of the SFCL parameters, and thus, the transient performance of the micro-grid can be guaranteed.

  6. Operational security in a grid environment

    CERN Document Server

    CERN. Geneva

    2008-01-01

    This talk presents the main goals of computer security in a grid environment, by using a FAQ approach. It details the evolution of the risks in the recent years, likely objectives for attackers and the progress made by the malware toolkits and frameworks. Finally, recommendations to deal with these threats are proposed.

  7. Securing the smart grid information exchange

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Steffen; Falk, Rainer [Siemens AG, Corporate Technology, Muenchen (Germany)

    2012-07-01

    The smart grid is based on information exchange between various stakeholders using open communication technologies, to control the physical electric grid through the information grid. Protection against cyber attacks is essential to ensure a reliable operation of the smart grid. This challenge is addressed by various regulatory, standardization, and research activities. After giving an overview of the security demand of a smart grid, existing and appearing standardization activities are described. (orig.)

  8. Smart electric grids in the United Kingdom energy strategy; Les reseaux electriques intelligents dans la strategie energetique du Royaume-Uni

    Energy Technology Data Exchange (ETDEWEB)

    Gloaguen, Olivier [Ambassade de France au Royaume-Uni, Service de presse, 58 Knightsbridge, London SW1X 7JT (United Kingdom); Dreyfus, Charles-Antoine [Ecole des Mines de Paris - MINES Paris Tech, 60, Boulevard Saint-Michel 75272 Paris cedex 06 (France)

    2011-09-15

    This study first gives an overview of the current status and limitations of the British power grid. It indicates the British energy mix, describes the network structure and its economic operation (gross and retail market with the bid and offer system, role of the System Operator, ways to increase the electricity production). It presents the energy policy and its regulation framework, outlines the current limitations and challenges (ageing grid, power crunch, de-carbonation challenges). It presents the development of a smart grid as a solution to economy de-carbonation challenges: definition of the 'smart grid concept', smart grid development planning (from 2010 to 2050), technological transition associated with smart electric grid development (a cleaner but more intermittent and random electricity production, better use of fossil fuels, electric energy storage, consequences for the grid, introduction and effects of smart meters). It describes the new associated economic model: evolution of the value chain, financial challenges (required investments, expected benefits, subsidies), new regulation system. It addresses the strategic challenges and the various uncertainties (notably in terms of consumption, privacy issue in relation with the use of smart meters, and project implementation).

  9. Distributed maximum power point tracking in wind micro-grids

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Ramos-Paja

    2012-06-01

    Full Text Available With the aim of reducing the hardware requirements in micro-grids based on wind generators, a distributed maximum power point tracking algorithm is proposed. Such a solution reduces the amount of current sensors and processing devices to maximize the power extracted from the micro-grid, reducing the application cost. The analysis of the optimal operating points of the wind generator was performed experimentally, which in addition provides realistic model parameters. Finally, the proposed solution was validated by means of detailed simulations performed in the power electronics software PSIM, contrasting the achieved performance with traditional solutions.

  10. Results from the Operational Testing of the Eaton Smart Grid Capable Electric Vehicle Supply Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Brion [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The Idaho National Laboratory conducted testing and analysis of the Eaton smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Eaton for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Eaton smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  11. ACCOUNTING AND AUDIT OPERATIONS ON CURRENT ACCOUNT

    Directory of Open Access Journals (Sweden)

    Koblyanska Olena

    2018-03-01

    Full Text Available Introduction. The article is devoted to theoretical, methodical and practical issues of accounting and auditing of operations on the current account. The purpose of the study is to deepen and consolidate the theoretical and practical knowledge of the issues of accounting and auditing of operations on the current account, identify practical problems with the implementation of the methodology and organization of accounting and auditing of operations on the current account and develop recommendations for the elimination of deficiencies and improve the accounting and auditing. Results. The issue of the relevance of proper accounting and audit of transactions on the current account in the bank is considered. The research of typical operations on the current account was carried out with using of the method of their reflection in the account on practical examples. Features of the audit of transactions on the current account are examined, the procedure for its implementation is presented, and types of abuses and violations that occur while performing operations on the current account are identified. The legal regulation of accounting, analysis and control of operations with cash on current accounts is considered. The problem issues related to the organization and conducting of the audit of funds in the accounts of the bank are analyzed, as well as the directions of their solution are determined. The proposals for determining the sequence of actions of the auditor during the check of cash flow on accounts in the bank are provided. Conclusions. The questions about theoretical, methodological and practical issues of accounting and auditing of operations on the current account in the bank. A study of typical operations with cash on the current account was carried out with the use of the method of their reflection in the accounts and the features of the auditing of cash on the account.

  12. Droop-Controlled Inverters with Seamless Transition between Islanding and Grid-Connected Operations

    DEFF Research Database (Denmark)

    Hu, Shang-Hung; Kuo, Chun-Yi; Lee, Tzung-Lin

    2011-01-01

    This paper presents a seamless transition method for droop-controlled inverters to operate in both islanding and grid-connected modes. A local PLL and a virtual inductance are designed to ride through transient when the inverter switches between two modes with no synchronization. The proposed...... method can cooperatively work with well-developed droop controls so that the inverters are able to share load among them as well as subsist under transient events of the utility. Theoretical analysis and experimental results validate effectiveness of the proposed method....

  13. DC-link voltage oscillations reduction during unbalanced grid faults for high power wind turbines

    DEFF Research Database (Denmark)

    Delpino, Hernan Anres Miranda; Teodorescu, Remus; Rodriguez, Pedro

    2011-01-01

    During unbalanced grid voltage faults the Power injected to the grid experiences 100Hz oscillations as a result of interactions between positive and negative sequence components of three-phase voltages and currents. These oscillations can become as high as %50 percent of the rated power....... In this article an improved controller is proposed which present different behavior during normal operation and faults to keep track of non-sinusoidal current reference signals. The reference signals are calculated to obtain zero power oscillations. Reconfigurable resonant controllers are used for this purpose...

  14. Grid-Connected Inverter for Distributed Generation in Microgrid

    DEFF Research Database (Denmark)

    Naderipour, Amirreza; Miveh, Mohammad Reza; Guerrero, Josep M.

    for power generation. DGS units can operate in parallel to the main grid or in a Microgrid (MG) mode. An MG is a discrete energy system consisting of DGSs and loads capable of operating in parallel with, or independently from, the main grid. Meanwhile, Grid-Connected Inverters (GCIs) are typically used...

  15. Protecting Intelligent Distributed Power Grids against Cyber Attacks

    Energy Technology Data Exchange (ETDEWEB)

    Dong Wei; Yan Lu; Mohsen Jafari; Paul Skare; Kenneth Rohde

    2010-12-31

    Like other industrial sectors, the electrical power industry is facing challenges involved with the increasing demand for interconnected operations and control. The electrical industry has largely been restructured due to deregulation of the electrical market and the trend of the Smart Grid. This moves new automation systems from being proprietary and closed to the current state of Information Technology (IT) being highly interconnected and open. However, while gaining all of the scale and performance benefits of IT, existing IT security challenges are acquired as well. The power grid automation network has inherent security risks due to the fact that the systems and applications for the power grid were not originally designed for the general IT environment. In this paper, we propose a conceptual layered framework for protecting power grid automation systems against cyber attacks. The following factors are taken into account: (1) integration with existing, legacy systems in a non-intrusive fashion; (2) desirable performance in terms of modularity, scalability, extendibility, and manageability; (3) alignment to the 'Roadmap to Secure Control Systems in the Energy Sector' and the future smart grid. The on-site system test of the developed prototype security system is briefly presented as well.

  16. A Grid Voltage Measurement Method for Wind Power Systems during Grid Fault Conditions

    OpenAIRE

    Yoo, Cheol-Hee; Chung, Il-Yop; Yoo, Hyun-Jae; Hong, Sung-Soo

    2014-01-01

    Grid codes in many countries require low-voltage ride-through (LVRT) capability to maintain power system stability and reliability during grid fault conditions. To meet the LVRT requirement, wind power systems must stay connected to the grid and also supply reactive currents to the grid to support the recovery from fault voltages. This paper presents a new fault detection method and inverter control scheme to improve the LVRT capability for full-scale permanent magnet synchronous generator (P...

  17. Distribution Grid Services and Flexibility Provision by Electric Vehicles: a Review of Options

    DEFF Research Database (Denmark)

    Knezovic, Katarina; Marinelli, Mattia; Codani, Paul

    2015-01-01

    Due to the increasing penetration of distributed generation and new high-power consumption loads – such as electric vehicles (EVs) – distribution system operators (DSO) are facing new grid security challenges. DSOs have historically dealt with such issues by making investments in grid reinforcement...... on current grid conditions. In return, flexibility provision should be remunerated accordingly. In this paper, the authors are interested in making an accurate description of the flexibility services at the distribution level which could be provided by EVs as well as their requirements, e.g. location......, activation time and duration. Market design recommendations for enhancing the provision of DSO grid services by EVs are derived from the conducted analysis....

  18. Analysis of turbine-grid interaction of grid-connected wind turbine using HHT

    Science.gov (United States)

    Chen, A.; Wu, W.; Miao, J.; Xie, D.

    2018-05-01

    This paper processes the output power of the grid-connected wind turbine with the denoising and extracting method based on Hilbert Huang transform (HHT) to discuss the turbine-grid interaction. At first, the detailed Empirical Mode Decomposition (EMD) and the Hilbert Transform (HT) are introduced. Then, on the premise of decomposing the output power of the grid-connected wind turbine into a series of Intrinsic Mode Functions (IMFs), energy ratio and power volatility are calculated to detect the unessential components. Meanwhile, combined with vibration function of turbine-grid interaction, data fitting of instantaneous amplitude and phase of each IMF is implemented to extract characteristic parameters of different interactions. Finally, utilizing measured data of actual parallel-operated wind turbines in China, this work accurately obtains the characteristic parameters of turbine-grid interaction of grid-connected wind turbine.

  19. A staggered-grid convolutional differentiator for elastic wave modelling

    Science.gov (United States)

    Sun, Weijia; Zhou, Binzhong; Fu, Li-Yun

    2015-11-01

    The computation of derivatives in governing partial differential equations is one of the most investigated subjects in the numerical simulation of physical wave propagation. An analytical staggered-grid convolutional differentiator (CD) for first-order velocity-stress elastic wave equations is derived in this paper by inverse Fourier transformation of the band-limited spectrum of a first derivative operator. A taper window function is used to truncate the infinite staggered-grid CD stencil. The truncated CD operator is almost as accurate as the analytical solution, and as efficient as the finite-difference (FD) method. The selection of window functions will influence the accuracy of the CD operator in wave simulation. We search for the optimal Gaussian windows for different order CDs by minimizing the spectral error of the derivative and comparing the windows with the normal Hanning window function for tapering the CD operators. It is found that the optimal Gaussian window appears to be similar to the Hanning window function for tapering the same CD operator. We investigate the accuracy of the windowed CD operator and the staggered-grid FD method with different orders. Compared to the conventional staggered-grid FD method, a short staggered-grid CD operator achieves an accuracy equivalent to that of a long FD operator, with lower computational costs. For example, an 8th order staggered-grid CD operator can achieve the same accuracy of a 16th order staggered-grid FD algorithm but with half of the computational resources and time required. Numerical examples from a homogeneous model and a crustal waveguide model are used to illustrate the superiority of the CD operators over the conventional staggered-grid FD operators for the simulation of wave propagations.

  20. Frequency Adaptive Repetitive Control of Grid-Tied Three-Phase PV Inverters

    DEFF Research Database (Denmark)

    Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    Repetitive control offers an accurate current control scheme for grid-tied converters to feed high quality sinusoidal current into the grid. However, with grid frequency being treated as a constant value, conventional repetitive controller fail to produce high quality feeding current in the prese......Repetitive control offers an accurate current control scheme for grid-tied converters to feed high quality sinusoidal current into the grid. However, with grid frequency being treated as a constant value, conventional repetitive controller fail to produce high quality feeding current...

  1. Improving Grid Resilience through Informed Decision-making (IGRID)

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, Laurie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Systems Research; Stamber, Kevin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Systems Research, Analysis and Applications; Jeffers, Robert Fredric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Resilience and Regulatory Effects; Stevens-Adams, Susan Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Human Factors; Verzi, Stephen Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Systems Research, Analysis and Applications; Galiardi, Meghan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Systems Research, Analysis and Applications; Haass, Michael Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Cognitive Systems; Cauthen, Katherine Regina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Systems Research, Analysis and Applications

    2016-09-01

    The transformation of the distribution grid from a centralized to decentralized architecture, with bi-directional power and data flows, is made possible by a surge in network intelligence and grid automation. While changes are largely beneficial, the interface between grid operator and automated technologies is not well understood, nor are the benefits and risks of automation. Quantifying and understanding the latter is an important facet of grid resilience that needs to be fully investigated. The work described in this document represents the first empirical study aimed at identifying and mitigating the vulnerabilities posed by automation for a grid that for the foreseeable future will remain a human-in-the-loop critical infrastructure. Our scenario-based methodology enabled us to conduct a series of experimental studies to identify causal relationships between grid-operator performance and automated technologies and to collect measurements of human performance as a function of automation. Our findings, though preliminary, suggest there are predictive patterns in the interplay between human operators and automation, patterns that can inform the rollout of distribution automation and the hiring and training of operators, and contribute in multiple and significant ways to the field of grid resilience.

  2. Analyzing Resiliency of the Smart Grid Communication Architectures

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-08-01

    Smart grids are susceptible to cyber-attack as a result of new communication, control and computation techniques employed in the grid. In this paper, we characterize and analyze the resiliency of smart grid communication architecture, specifically an RF mesh based architecture, under cyber attacks. We analyze the resiliency of the communication architecture by studying the performance of high-level smart grid functions such as metering, and demand response which depend on communication. Disrupting the operation of these functions impacts the operational resiliency of the smart grid. Our analysis shows that it takes an attacker only a small fraction of meters to compromise the communication resiliency of the smart grid. We discuss the implications of our result to critical smart grid functions and to the overall security of the smart grid.

  3. Initial results of local grid control using wind farms with grid support

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Poul; Hansen, Anca D.; Iov, F.; Blaabjerg, F.

    2005-09-01

    This report describes initial results with simulation of local grid control using wind farms with grid support. The focus is on simulation of the behaviour of the wind farms when they are isolated from the main grid and establish a local grid together with a few other grid components. The isolated subsystems used in the work presented in this report do not intend to simulate a specific subsystem, but they are extremely simplified single bus bar systems using only a few more components than the wind farm. This approach has been applied to make it easier to understand the dynamics of the subsystem. The main observation is that the fast dynamics of the wind turbines seem to be able to contribute significantly to the grid control, which can be useful where the wind farm is isolated with a subsystem from the main grid with surplus of generation. Thus, the fast down regulation of the wind farm using automatic frequency control can keep the subsystem in operation and thereby improve the reliability of the grid. (LN)

  4. Grid today, clouds on the horizon

    Science.gov (United States)

    Shiers, Jamie

    2009-04-01

    By the time of CCP 2008, the largest scientific machine in the world - the Large Hadron Collider - had been cooled down as scheduled to its operational temperature of below 2 degrees Kelvin and injection tests were starting. Collisions of proton beams at 5+5 TeV were expected within one to two months of the initial tests, with data taking at design energy ( 7+7 TeV) foreseen for 2009. In order to process the data from this world machine, we have put our "Higgs in one basket" - that of Grid computing [The Worldwide LHC Computing Grid (WLCG), in: Proceedings of the Conference on Computational Physics 2006 (CCP 2006), vol. 177, 2007, pp. 219-223]. After many years of preparation, 2008 saw a final "Common Computing Readiness Challenge" (CCRC'08) - aimed at demonstrating full readiness for 2008 data taking, processing and analysis. By definition, this relied on a world-wide production Grid infrastructure. But change - as always - is on the horizon. The current funding model for Grids - which in Europe has been through 3 generations of EGEE projects, together with related projects in other parts of the world, including South America - is evolving towards a long-term, sustainable e-infrastructure, like the European Grid Initiative (EGI) [The European Grid Initiative Design Study, website at http://web.eu-egi.eu/]. At the same time, potentially new paradigms, such as that of "Cloud Computing" are emerging. This paper summarizes the results of CCRC'08 and discusses the potential impact of future Grid funding on both regional and international application communities. It contrasts Grid and Cloud computing models from both technical and sociological points of view. Finally, it discusses the requirements from production application communities, in terms of stability and continuity in the medium to long term.

  5. Distributed Generation using Indirect Matrix Converter in Boost Operating Mode

    DEFF Research Database (Denmark)

    Liu, Xiong; Loh, Poh Chiang; Wang, Peng

    2011-01-01

    , reverse power flow operation of IMC can be implemented to meet voltage boost requirement, where the input ac source is connected to the converter's voltage source side and the output utility grid or load is connected to the current source side. This paper proposes control schemes of IMC under reverse...... power flow operation for both grid-connected and isolated modes with distributed generation suggested as a potential application. In grid-connected mode, the commanded power must be extracted from the input ac source to the grid, in addition to guarantee sinusoidal input/output waveforms, unity input...

  6. Desktop grid computing

    CERN Document Server

    Cerin, Christophe

    2012-01-01

    Desktop Grid Computing presents common techniques used in numerous models, algorithms, and tools developed during the last decade to implement desktop grid computing. These techniques enable the solution of many important sub-problems for middleware design, including scheduling, data management, security, load balancing, result certification, and fault tolerance. The book's first part covers the initial ideas and basic concepts of desktop grid computing. The second part explores challenging current and future problems. Each chapter presents the sub-problems, discusses theoretical and practical

  7. GRID Prototype for imagery processing in scientific applications

    International Nuclear Information System (INIS)

    Stan, Ionel; Zgura, Ion Sorin; Haiduc, Maria; Valeanu, Vlad; Giurgiu, Liviu

    2004-01-01

    The paper presents the results of our study which is part of the InGRID project. This project is supported by ROSA (ROmanian Space Agency). In this paper we will show the possibility to take images from the optical microscope through web camera. The images are then stored on the PC in Linux operating system and distributed to other clusters through GRID technology (using http, php, MySQL, Globus or AliEn systems). The images are provided from nuclear emulsions in the frame of Becquerel Collaboration. The main goal of the project InGRID is to actuate developing and deploying GRID technology for images technique taken from space, different application fields and telemedicine. Also it will create links with the same international projects which use advanced Grid technology and scalable storage solutions. The main topics proposed to be solved in the frame of InGRID project are: - Implementation of two GRID clusters, minimum level Tier 3; - Adapting and updating the common storage and processing computing facility; - Testing the middelware packages developed in the frame of this project; - Testbed production of the prototype; - Build-up and advertise the InGRID prototype in scientific community through current dissemination. InGRID Prototype developed in the frame of this project, will be used by partner institutes as deploying environment of the imaging applications the dynamical features of which will be defined by conditions of contract. Subsequent applications will be deployed by the partners of this project with governmental, nongovernmental and private institutions. (authors)

  8. Cooperative Control with Virtual Selective Harmonic Capacitance for Harmonic Voltage Compensation in Islanded MicroGrids

    DEFF Research Database (Denmark)

    Micallef, A.; Apap, M.; Spitero-Stanies, C.

    2012-01-01

    This paper focuses on the islanded operation of microgrids. In this mode of operation, the microsources are required to cooperate autonomously to regulate the local grid voltage and frequency. Droop control is typically used to achieve this autonomous voltage and frequency regulation. Inverters...... having LCL output filters would cause voltage distortion to be present at the PCC of the local load when non-linear current is supplied to the load due to the voltage drop across the grid side inductor. Techniques to reduce the output voltage distortion typically consist of installing either passive...

  9. The CrossGrid project

    International Nuclear Information System (INIS)

    Kunze, M.

    2003-01-01

    There are many large-scale problems that require new approaches to computing, such as earth observation, environmental management, biomedicine, industrial and scientific modeling. The CrossGrid project addresses realistic problems in medicine, environmental protection, flood prediction, and physics analysis and is oriented towards specific end-users: Medical doctors, who could obtain new tools to help them to obtain correct diagnoses and to guide them during operations; industries, that could be advised on the best timing for some critical operations involving risk of pollution; flood crisis teams, that could predict the risk of a flood on the basis of historical records and actual hydrological and meteorological data; physicists, who could optimize the analysis of massive volumes of data distributed across countries and continents. Corresponding applications will be based on Grid technology and could be complex and difficult to use: the CrossGrid project aims at developing several tools that will make the Grid more friendly for average users. Portals for specific applications will be designed, that should allow for easy connection to the Grid, create a customized work environment, and provide users with all necessary information to get their job done

  10. Opportunities for Joint Water–Energy Management: Sensitivity of the 2010 Western U.S. Electricity Grid Operations to Climate Oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, N. [Pacific Northwest National Laboratory, Richland, Washington; Kintner-Meyer, M. [Pacific Northwest National Laboratory, Richland, Washington; Wu, D. [Pacific Northwest National Laboratory, Richland, Washington; Skaggs, R. [Pacific Northwest National Laboratory, Richland, Washington; Fu, T. [Pacific Northwest National Laboratory, Richland, Washington; Zhou, T. [Pacific Northwest National Laboratory, Richland, Washington; Nguyen, T. [Pacific Northwest National Laboratory, Richland, Washington; Kraucunas, I. [Pacific Northwest National Laboratory, Richland, Washington

    2018-02-01

    The 2016 SECURE Water Act report’s natural water availability benchmark, combined with the 2010 level of water demand from an integrated assessment model, is used as input to drive a large-scale water management model. The regulated flow at hydropower plants and thermoelectric plants in the Western U.S. electricity grid (WECC) is translated into potential hydropower generation and generation capacity constraints. The impact on reliability (unserved energy, reserve margin) and cost (production cost, carbon emissions) of water constraints on 2010-level WECC power system operations is assessed using an electricity production cost model (PCM). Use of the PCM reveals the changes in generation dispatch that reflect the inter-regional interdependencies in water-constrained generation and the ability to use other generation resources to meet all electricity loads in the WECC. August grid operational benchmarks show a range of sensitivity in production cost (-8 to +11%) and carbon emissions (-7 to 11%). The reference reserve margin threshold of 15% above peak load is maintained in the scenarios analyzed, but in 5 out of 55 years unserved energy is observed when normal operations are maintained. There is 1 chance in 10 that a year will demonstrate unserved energy in August, which defines the system’s historical performance threshold to support impact, vulnerability, and adaptation analysis. For seasonal and longer term planning, i.e., multi-year drought, we demonstrate how the Water Scarcity Grid Impact Factor and climate oscillations (ENSO, PDO) can be used to plan for joint water-electricity management to maintain grid reliability.

  11. Usage statistics and usage patterns on the NorduGrid: Analyzing the logging information collected on one of the largest production Grids of the world

    OpenAIRE

    Kónya, B; Eerola, Paule Anna Mari; Ekelöf, T J C; Ellert, M; Hansen, J; Konstantinov, A; Nielsen, J; Ould-Saada, F; Smirnova, O; Wäänänen, A; Erkarslan, U; Pajchel, K

    2005-01-01

    The Nordic Grid facility (NorduGrid [1]) came into operation during summer 2002 when the Scandinavian ATLAS HEP group started to use the Grid for the ATLAS Data Challenges (DC) and was thus the first Grid ever contributing to an ATLAS production. Since then, the Grid facility has been in continuous 24/7 operation. NorduGrid is being used by a growing set of active users from various scientific areas including physics, chemistry, biology and informatics. It has given ma...

  12. Control of grid integrated voltage source converters under unbalanced conditions: development of an on-line frequency-adaptive virtual flux-based approach

    Energy Technology Data Exchange (ETDEWEB)

    Suul, Jon Are

    2012-03-15

    and reactive power flow, formulated as generalized equations for current reference calculation. A simple, but general, implementation is therefore achieved, where the control objective and the power flow characteristics can be selected according to the requirements of any particular application. Thus, the same control structure can be used to achieve for instance balanced sinusoidal currents or elimination of double frequency active power oscillations during unbalanced conditions. In case of voltage sags, current references corresponding to a specified active or reactive power flow might exceed the current capability of the converter. The limits for active and reactive power transfer during unbalanced conditions have therefore been analyzed, and generalized strategies for current reference calculation when operating under current limitations have been derived. The specified objectives for active and reactive power flow characteristics can therefore be maintained during unbalanced grid conditions, while the average active and reactive power flow is limited to keep the current references within safe values. All concepts and techniques proposed in this Thesis have been verified by simulations and laboratory experiments. The SOGI-based method for Virtual Flux estimation and the strategies for active and reactive power control with current limitation can also be easily adapted for a wide range of applications and can be combined with various types of inner loop control structures. Therefore, the proposed approach can potentially be used as a general basis for Virtual Flux-based voltage-sensor-less operation of VSCs under unbalanced grid voltage conditions.(Author)

  13. Online Variable Topology-Type Photovoltaic Grid-Connected Inverter

    DEFF Research Database (Denmark)

    Wu, Fengjiang; Sun, Bo; Duan, Jiandong

    2015-01-01

    In photovoltaic (PV) grid-connected generation system, the key focus is how to expand the generation range of the PV array and enhance the total efficiency of the system. This paper originally derived expressions of the total loss and grid current total harmonics distortions of cascaded inverter...... and H-bridge inverter under the conditions of variable output voltage and power of the PV array. It is proved that, compared with the H-bridge inverter, the operation range of the cascaded inverter is wider, whereas the total loss is larger. Furthermore, a novel online variable topology-type grid......-connected inverter is proposed. A bidirectional power switch is introduced into the conventional cascaded inverter to connect the negative terminals of the PV arrays. When the output voltages of the PV arrays are lower, the proposed inverter works under cascaded inverter mode to obtain wider generation range. When...

  14. JColorGrid: software for the visualization of biological measurements.

    Science.gov (United States)

    Joachimiak, Marcin P; Weisman, Jennifer L; May, Barnaby Ch

    2006-04-27

    Two-dimensional data colourings are an effective medium by which to represent three-dimensional data in two dimensions. Such "color-grid" representations have found increasing use in the biological sciences (e.g. microarray 'heat maps' and bioactivity data) as they are particularly suited to complex data sets and offer an alternative to the graphical representations included in traditional statistical software packages. The effectiveness of color-grids lies in their graphical design, which introduces a standard for customizable data representation. Currently, software applications capable of generating limited color-grid representations can be found only in advanced statistical packages or custom programs (e.g. micro-array analysis tools), often associated with steep learning curves and requiring expert knowledge. Here we describe JColorGrid, a Java library and platform independent application that renders color-grid graphics from data. The software can be used as a Java library, as a command-line application, and as a color-grid parameter interface and graphical viewer application. Data, titles, and data labels are input as tab-delimited text files or Microsoft Excel spreadsheets and the color-grid settings are specified through the graphical interface or a text configuration file. JColorGrid allows both user graphical data exploration as well as a means of automatically rendering color-grids from data as part of research pipelines. The program has been tested on Windows, Mac, and Linux operating systems, and the binary executables and source files are available for download at http://jcolorgrid.ucsf.edu.

  15. The Internet of things and Smart Grid

    Science.gov (United States)

    Li, Biao; Lv, Sen; Pan, Qing

    2018-02-01

    The Internet of things and smart grid are the frontier of information and Industry. The combination of Internet of things and smart grid will greatly enhance the ability of smart grid information and communication support. The key technologies of the Internet of things will be applied to the smart grid, and the grid operation and management information perception service centre will be built to support the commanding heights of the world’s smart grid.

  16. Fixed speed wind farm operation improvement using current-source converter based UPQC

    International Nuclear Information System (INIS)

    Ajami, Ali; Armaghan, Mehdi

    2012-01-01

    Highlights: ► Reactive power and voltage sag are compensated during grid side fault. ► Nonlinear model of UPQC is modified to a linear model. ► Using the CSI in proposed UPQC offers a number of distinct advantages. ► Pitch angle controller is used to obtain nominal power at high wind speeds. ► Optimal control method (LQR) is used to determine the optimal state feedback gains. - Abstract: In this paper, a current-source converter based unified power quality conditioner (UPQC) is used for the flexible integration of pitch controlled fixed speed wind generator (FSWG) to IEEE 13 node test feeder. During the normal operation, shunt compensator (SHUC) of the UPQC maintains a unity power factor condition at the Point of Common Coupling (PCC) and when a voltage sag occurs due to grid side fault the series compensator (SERC) of the UPQC injects appropriate deficit voltage to prevent disconnecting of the FSWG and the SHUC of the UPQC provides additional reactive power in fault during. The pitch angle is controlled in order to limit the generator output power to its nominal value for high wind speeds. The nonlinear model of the shunt compensator of the UPQC is modified to a linear model. The modeling technique is not based on the linearization of a set of nonlinear equations around an operating point. Instead, the power balance equation and a nonlinear input transformation are used to derive a linear model independent of the operating point. This model acts as the basis for the design of a decoupled state-feedback controller. The optimal control method linear quadratic regulator (LQR) is used to determine the optimal state-feedback gain matrix. The proposed control approach becomes a robust strategy that is able to keep regulation and stability even under extreme load power factor variations. The In-phase voltage injection method is used for the series compensator of the UPQC. The simulation results carried out by MATLAB/SIMULINK software show the performance of the

  17. Implementation of fuzzy-sliding mode based control of a grid connected photovoltaic system.

    Science.gov (United States)

    Menadi, Abdelkrim; Abdeddaim, Sabrina; Ghamri, Ahmed; Betka, Achour

    2015-09-01

    The present work describes an optimal operation of a small scale photovoltaic system connected to a micro-grid, based on both sliding mode and fuzzy logic control. Real time implementation is done through a dSPACE 1104 single board, controlling a boost chopper on the PV array side and a voltage source inverter (VSI) on the grid side. The sliding mode controller tracks permanently the maximum power of the PV array regardless of atmospheric condition variations, while The fuzzy logic controller (FLC) regulates the DC-link voltage, and ensures via current control of the VSI a quasi-total transit of the extracted PV power to the grid under a unity power factor operation. Simulation results, carried out via Matlab-Simulink package were approved through experiment, showing the effectiveness of the proposed control techniques. Copyright © 2015. Published by Elsevier Ltd.

  18. Flicker Mitigation of Grid Connected Wind Turbines Using STATCOM

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2004-01-01

    to the point of common coupling (PCC) to relieve the flicker produced by grid connected wind turbines and the corresponding control scheme is described in detail. Simulation results show that STATCOM is an effective measure to mitigate the flicker level during continuous operation of grid connected wind......Grid connected wind turbines may produce flicker during continuous operation. In this paper flicker emission of grid connected wind turbines with doubly fed induction generators is investigated during continuous operation. A STATCOM using PWM voltage source converter (VSC) is connected in shunt...

  19. Aggregation server for grid-integrated vehicles

    Science.gov (United States)

    Kempton, Willett

    2015-05-26

    Methods, systems, and apparatus for aggregating electric power flow between an electric grid and electric vehicles are disclosed. An apparatus for aggregating power flow may include a memory and a processor coupled to the memory to receive electric vehicle equipment (EVE) attributes from a plurality of EVEs, aggregate EVE attributes, predict total available capacity based on the EVE attributes, and dispatch at least a portion of the total available capacity to the grid. Power flow may be aggregated by receiving EVE operational parameters from each EVE, aggregating the received EVE operational parameters, predicting total available capacity based on the aggregated EVE operational parameters, and dispatching at least a portion of the total available capacity to the grid.

  20. A Micro-Grid Battery Storage Management

    DEFF Research Database (Denmark)

    Mahat, Pukar; Escribano Jiménez, Jorge; Moldes, Eloy Rodríguez

    2013-01-01

    An increase in number of distributed generation (DG) units in power system allows the possibility of setting-up and operating micro-grids. In addition to a number of technical advantages, micro-grid operation can also reduce running costs by optimally scheduling the generation and/or storage...... systems under its administration. This paper presents an optimized scheduling of a micro-grid battery storage system that takes into account the next-day forecasted load and generation profiles and spot electricity prices. Simulation results show that the battery system can be scheduled close to optimal...

  1. Proposition of innovative and safe design of grid plate for Tehran research reactor

    International Nuclear Information System (INIS)

    Jalali, H.R.; Fadaei, A.H.

    2017-01-01

    Highlights: • An innovative and safe design for grid plate in research reactors proposed. • New grid plate acts as an independent shutdown system. • Neutronic and transient calculation was done using MTR-PC package. • Calculations show that the performance and safety of new design are acceptable. - Abstract: The purpose of this paper is to propose an innovative and safe design of grid plate for Tehran research reactor (TRR) without any reduction in its performance in comparison with the current operation. The new grid plate consisted of two joined cubic with empty walls which are place of fuels and heavy water, respectively. The proposed design is such that the reactor core is divided into two distinct parts using the heavy water. The heavy water is inserted in the walls of the new grid plate. The new design of grid plate by keeping the characteristics of the previous version creates the possibility of shutting the reactor down in critical condition. In this paper, at initial step, a simulation of acceptable benchmark for Tehran research reactor is performed which could be considered reliable and comparable with SAR (Safety Analysis Report) data. In the next step, two different designs are proposed for grid plate and then are applied to reactor core using simulation tools. For the proposed design: core excess reactivity, shutdown margin, control rod worth, neutron flux and kinetic parameters are calculated. Furthermore, the transient analysis was performed for the new design to check the status of reactor safety. Obtained results show that all neutronic parameters for the first operating core and the new design are comparable, and there is no reduction in the efficiency of reference core. Moreover, in the current design, a diverse and independent shutdown system for TRR was included. Nuclear reactor analysis codes including MTR-PC package were employed to carry out these calculations.

  2. Non-Galerkin Coarse Grids for Algebraic Multigrid

    Energy Technology Data Exchange (ETDEWEB)

    Falgout, Robert D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schroder, Jacob B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-06-26

    Algebraic multigrid (AMG) is a popular and effective solver for systems of linear equations that arise from discretized partial differential equations. And while AMG has been effectively implemented on large scale parallel machines, challenges remain, especially when moving to exascale. Particularly, stencil sizes (the number of nonzeros in a row) tend to increase further down in the coarse grid hierarchy, and this growth leads to more communication. Therefore, as problem size increases and the number of levels in the hierarchy grows, the overall efficiency of the parallel AMG method decreases, sometimes dramatically. This growth in stencil size is due to the standard Galerkin coarse grid operator, $P^T A P$, where $P$ is the prolongation (i.e., interpolation) operator. For example, the coarse grid stencil size for a simple three-dimensional (3D) seven-point finite differencing approximation to diffusion can increase into the thousands on present day machines, causing an associated increase in communication costs. We therefore consider algebraically truncating coarse grid stencils to obtain a non-Galerkin coarse grid. First, the sparsity pattern of the non-Galerkin coarse grid is determined by employing a heuristic minimal “safe” pattern together with strength-of-connection ideas. Second, the nonzero entries are determined by collapsing the stencils in the Galerkin operator using traditional AMG techniques. The result is a reduction in coarse grid stencil size, overall operator complexity, and parallel AMG solve phase times.

  3. The impact of the year 2000 issue on electricity grid performance and nuclear power plant operation in Bulgaria, the Russian Federation and Slovakia

    International Nuclear Information System (INIS)

    1999-07-01

    The Y2K date conversion is a potential source of problems to the operation of nuclear power plants through external events and interfaces with electrical power systems, telecommunication systems, and other supporting infrastructures, even if diagnostic and corrective actions within the plant itself, both planned or implemented, are successful. At the end of 1998 there were 425 nuclear power plants in operation in 31 Member States. Most countries and regions are conducting intensive diagnostic and corrective activities to 'find and fix' Y2K software (including embedded software) and equipment problems in their nuclear power plants. These efforts are supplemented by contingency plans. Other countries and regions have not been making comparable efforts and are relying mainly on contingency planning and preparedness. Results of diagnostic and corrective activities can be of benefit to all Member States. Activities on 'find and fix' Y2K problems in electricity grid control systems and computer related technology in national and regional dispatch centers could be of considerable benefit due to the widespread use of the same components, equipment, and software. Consistent with the objectives of the International Atomic Energy Agency's Y2K program, an experts meeting was convened to collect information on Y2K activities related to grid operation in countries that operate nuclear power plants and also to identify specific actions to be taken and issues to be addressed in connection with expected grid disturbances. The countries of eastern Europe and the Russian Federation were considered to be a very important region due to delays in taking Y2K corrective actions but also due to the similarity of their electricity grid systems both in components and design but also in mode of operation. Most of these countries either operate their own nuclear power plants or are linked through their electricity grid interconnections to a neighboring country that operates nuclear power

  4. Space weather and power grids: findings and outlook

    Science.gov (United States)

    Krausmann, Elisabeth; Andersson, Emmelie; Murtagh, William; Mitchison, Neil

    2014-05-01

    The impact of space weather on the power grid is a tangible and recurring threat with potentially serious consequences on society. Of particular concern is the long-distance high-voltage power grid, which is vulnerable to the effects of geomagnetic storms that can damage or destroy equipment or lead to grid collapse. In order to launch a dialogue on the topic and encourage authorities, regulators and operators in European countries and North America to learn from each other, the European Commission's Joint Research Centre, the Swedish Civil Contingencies Agency, and NOAA's Space Weather Prediction Centre, with the contribution of the UK Civil Contingencies Secretariat, jointly organised a workshop on the impact of extreme space weather on the power grid on 29-30 October 2013. Being structured into 6 sessions, the topics addressed were space-weather phenomena and the dynamics of their impact on the grid, experiences with prediction and now-casting in the USA and in Europe, risk assessment and preparedness, as well as policy implications arising from increased awareness of the space-weather hazard. The main workshop conclusions are: • There is increasing awareness of the risk of space-weather impact among power-grid operators and regulators and some countries consider it a priority risk to be addressed. • The predictability of space-weather phenomena is still limited and relies, in part, on data from ageing satellites. NOAA is working with NASA to launch the DSCOVR solar wind spacecraft, the replacement for the ACE satellite, in early 2015. • In some countries, models and tools for GIC prediction and grid impact assessment have been developed in collaboration with national power grids but equipment vulnerability models are scarce. • Some countries have successfully hardened their transmission grids to space-weather impact and sustained relatively little or no damage due to currents induced by past moderate space-weather events. • While there is preparedness

  5. Operation of Power Grids with High Penetration of Wind Power

    Science.gov (United States)

    Al-Awami, Ali Taleb

    The integration of wind power into the power grid poses many challenges due to its highly uncertain nature. This dissertation involves two main components related to the operation of power grids with high penetration of wind energy: wind-thermal stochastic dispatch and wind-thermal coordinated bidding in short-term electricity markets. In the first part, a stochastic dispatch (SD) algorithm is proposed that takes into account the stochastic nature of the wind power output. The uncertainty associated with wind power output given the forecast is characterized using conditional probability density functions (CPDF). Several functions are examined to characterize wind uncertainty including Beta, Weibull, Extreme Value, Generalized Extreme Value, and Mixed Gaussian distributions. The unique characteristics of the Mixed Gaussian distribution are then utilized to facilitate the speed of convergence of the SD algorithm. A case study is carried out to evaluate the effectiveness of the proposed algorithm. Then, the SD algorithm is extended to simultaneously optimize the system operating costs and emissions. A modified multi-objective particle swarm optimization algorithm is suggested to identify the Pareto-optimal solutions defined by the two conflicting objectives. A sensitivity analysis is carried out to study the effect of changing load level and imbalance cost factors on the Pareto front. In the second part of this dissertation, coordinated trading of wind and thermal energy is proposed to mitigate risks due to those uncertainties. The problem of wind-thermal coordinated trading is formulated as a mixed-integer stochastic linear program. The objective is to obtain the optimal tradeoff bidding strategy that maximizes the total expected profits while controlling trading risks. For risk control, a weighted term of the conditional value at risk (CVaR) is included in the objective function. The CVaR aims to maximize the expected profits of the least profitable scenarios, thus

  6. Fuzzy logic, PSO based fuzzy logic algorithm and current controls comparative for grid-connected hybrid system

    Science.gov (United States)

    Borni, A.; Abdelkrim, T.; Zaghba, L.; Bouchakour, A.; Lakhdari, A.; Zarour, L.

    2017-02-01

    In this paper the model of a grid connected hybrid system is presented. The hybrid system includes a variable speed wind turbine controlled by aFuzzy MPPT control, and a photovoltaic generator controlled with PSO Fuzzy MPPT control to compensate the power fluctuations caused by the wind in a short and long term, the inverter currents injected to the grid is controlled by a decoupled PI current control. In the first phase, we start by modeling of the conversion system components; the wind system is consisted of a turbine coupled to a gearless permanent magnet generator (PMG), the AC/DC and DC-DC (Boost) converter are responsible to feed the electric energy produced by the PMG to the DC-link. The solar system consists of a photovoltaic generator (GPV) connected to a DC/DC boost converter controlled by a PSO fuzzy MPPT control to extract at any moment the maximum available power at the GPV terminals, the system is based on maximum utilization of both of sources because of their complementary. At the end. The active power reached to the DC-link is injected to the grid through a DC/AC inverter, this function is achieved by controlling the DC bus voltage to keep it constant and close to its reference value, The simulation studies have been performed using Matlab/Simulink. It can be concluded that a good control system performance can be achieved.

  7. Communication technologies in smart grid

    Directory of Open Access Journals (Sweden)

    Miladinović Nikola

    2013-01-01

    Full Text Available The role of communication technologies in Smart Grid lies in integration of large number of devices into one telecommunication system. This paper provides an overview of the technologies currently in use in electric power grid, that are not necessarily in compliance with the Smart Grid concept. Considering that the Smart Grid is open to the flow of information in all directions, it is necessary to provide reliability, protection and security of information.

  8. Grid generation methods

    CERN Document Server

    Liseikin, Vladimir D

    2017-01-01

    This new edition provides a description of current developments relating to grid methods, grid codes, and their applications to actual problems. Grid generation methods are indispensable for the numerical solution of differential equations. Adaptive grid-mapping techniques, in particular, are the main focus and represent a promising tool to deal with systems with singularities. This 3rd edition includes three new chapters on numerical implementations (10), control of grid properties (11), and applications to mechanical, fluid, and plasma related problems (13). Also the other chapters have been updated including new topics, such as curvatures of discrete surfaces (3). Concise descriptions of hybrid mesh generation, drag and sweeping methods, parallel algorithms for mesh generation have been included too. This new edition addresses a broad range of readers: students, researchers, and practitioners in applied mathematics, mechanics, engineering, physics and other areas of applications.

  9. Modified SOGI based shunt active power filter to tackle various grid voltage abnormalities

    Directory of Open Access Journals (Sweden)

    Kalpeshkumar Patil

    2017-10-01

    Full Text Available Shunt Active Power Filters (SAPF have been effectively used to compensate the harmonics generated by the non-linear loads. The SAPF’s performance depends on the accurate generation of reference current, which is dependent greatly on the template of supply voltage. When the grid voltage (or its template is characterized by different abnormalities like presence of harmonics, imbalance, dc-offset etc., some of the conventional techniques of frequency estimation may fail to correctly estimate the frequency. This ultimately affects the reference current generation and hence, the SAPF operation, ultimately leading to high distortion of the grid currents. The paper presents modified dual second-order generalized integrator (MDSOGI based SAPF to ensure effective compensation of harmonics, even when the grid voltage is characterized by all the abnormalities mentioned above. It is highlighted with one case that when the sensed voltage is having dc-offset, DSOGI-SAPF results into the source current with THD, dc-offset and harmonic with values 5.82%, 0.8% and 4.5%, respectively. For the same case, the proposed technique yields grid current which is free of dc-offset and 2nd harmonic and has THD = 3.57%. The dynamic performance of the MDSOGI-SAPF is validated and its superior performance over DSOGI-SAPF is illustrated even with experimental results.

  10. Normal return and efficient operation of the electric grid monopolies; Normalavkastning og effektiv drift for nettmonopolene

    Energy Technology Data Exchange (ETDEWEB)

    Skjeret, Frode Andre

    2001-07-01

    This report deals with the size of the risk premium for electric grid operation in Norway. The size of the companies' risk premium must reflect the market requirements on return compensation (for normal investment risk), adjusted for the return risk for this type of enterprise. The return risk of the grid companies is discussed using two approaches, one theoretical and one empirical. This implies an empirical analysis of comparable foreign companies and an examination of the Norwegian regulatory regime. It is concluded that the regulatory authority is using too small an estimate for the risk premium when determining the capital income of the Norwegian utilities. The report also discusses the principles for valuation of the capital base.

  11. GENIUS: a web portal for the grid

    International Nuclear Information System (INIS)

    Andronico, A.; Barbera, R.; Falzone, A.; Lo Re, G.; Pulvirenti, A.; Rodolico, A.

    2003-01-01

    The architecture and the current implementation of the grid portal GENIUS (Grid Enabled web environment for site Independent User job Submission), jointly developed by INFN and NICE within the context of the INFN Grid and DataGrid Project, is presented and discussed

  12. Mini-grid Policy Tool-kit. Policy and business frameworks for successful mini-grid roll-outs

    International Nuclear Information System (INIS)

    Franz, Michael; Hayek, Niklas; Peterschmidt, Nico; Rohrer, Michael; Kondev, Bozhil; Adib, Rana; Cader, Catherina; Carter, Andrew; George, Peter; Gichungi, Henry; Hankins, Mark; Kappiah, Mahama; Mangwengwende, Simbarashe E.

    2014-01-01

    The Mini-grid Policy Tool-kit is for policy makers to navigate the mini-grid policy design process. It contains information on mini-grid operator models, the economics of mini-grids, and necessary policy and regulation that must be considered for successful implementation. The publication specifically focuses on Africa. Progress on extending the electricity grid in many countries has remained slow because of high costs of gird-extension and limited utility/state budgets for electrification. Mini-grids provide an affordable and cost-effective option to extend needed electricity services. Putting in place the right policy for min-grid deployment requires considerable effort but can yield significant improvement in electricity access rates as examples from Kenya, Senegal and Tanzania illustrate. The tool-kit is available in English, French and Portuguese

  13. Protections Against Grid Breakdowns in the ITER Neutral Beam Injector Power Supplies

    International Nuclear Information System (INIS)

    Bigi, M.; Toigo, V.; Zanotto, L.

    2006-01-01

    The ITER Neutral Beam Injector (NBI) is designed to deliver 16.5 MW of additional heating power to the plasma, accelerating negative ions up to -1 MV with a current up to 40 A. Two main power supplies are foreseen to feed the system: the Acceleration Grid Power Supply (AGPS), which provides power to the acceleration grids, and the Ion Source Power Supply (ISPS), devoted to supplying the ion source components. For the accelerator, two different concepts are under investigation: the MAMuG (Multiple Aperture, Multiple Gap) and the SINGAP (SINgle Aperture). During operation of the NBI, the breakdown of the acceleration grids will occur regularly; as a consequence the AGPS is expected to experience frequent load short-circuits during a pulse. For each grid breakdown, energy and current peaks are delivered from the power supply systems that could damage the grids, if not limited. In previous NBI, rated for a lower accelerating voltage, the protection system in case of grid breakdowns was based on dc circuit breakers able to quickly disconnect the power supply from the grids. In the ITER case, a similar solution is not feasible, as the voltage level is too high for present dc breaker technology. Therefore, the protection strategy has to rely on fast switch-off of the power supplies, on the optimisation of the filter elements and core snubbers placed downstream the AGPS and on the introduction of additional passive elements. However, achieving a satisfactory protection against grid breakdowns is a challenging task, as the optimisation of each single provision can result in drawbacks for other aspects of the design; for instance, the optimisation of the filter elements, obtained by reducing the filter capacitance, produces an increase of the output voltage ripple. Therefore, the design of the protections must be carried out considering all the relevant aspects of the specifications, also those that are not strictly related to the limitations of the current peaks and energy

  14. The Impact of Grid on Health Care Digital Repositories

    CERN Document Server

    Donno, Flavia; CERN. Geneva. IT Department

    2008-01-01

    Grid computing has attracted worldwide attention in a variety of applications like Health Care. In this paper we identified the Grid services that could facilitate the integration and interoperation of Health Care data and frameworks world-wide. While many of the current Health Care Grid projects address issues such as data location and description on the Grid and the security aspects, the problems connected to data storage, integrity, preservation and distribution have been neglected. We describe the currently available Grid storage services and protocols that can come in handy when dealing with those problems. We further describe a Grid infrastructure to build a cooperative Health Care environment based on currently available Grid services and a service able to validate it.

  15. Tariff Considerations for Micro-Grids in Sub-Saharan Africa

    Energy Technology Data Exchange (ETDEWEB)

    Reber, Timothy J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booth, Samuel S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Li, Xiangkun [National Renewable Energy Lab. (NREL), Golden, CO (United States); Salasovich, James A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-02-16

    This report examines some of the key drivers and considerations policymakers and decision makers face when deciding if and how to regulate electricity tariffs for micro-grids. Presenting a range of tariff options, from mandating some variety of national (uniform) tariff to allowing micro-grid developers and operators to set fully cost-reflective tariffs, it examines various benefits and drawbacks of each. In addition, the report and explores various types of cross-subsidies and other transitional forms of regulation that may offer a regulatory middle ground that can help balance the often competing goals of providing price control on electricity service in the name of social good while still providing a means for investors to ensure high enough returns on their investment to attract the necessary capital financing to the market. Using the REopt tool developed by the U.S. Department of Energy's National Renewable Energy Laboratory to inform their study, the authors modeled a few representative micro-grid systems and the resultant levelized cost of electricity, lending context and scale to the consideration of these tariff questions. This simple analysis provides an estimate of the gap between current tariff regimes and the tariffs that would be necessary for developers to recover costs and attract investment, offering further insight into the potential scale of subsidies or other grants that may be required to enable micro-grid development under current regulatory structures. It explores potential options for addressing this gap while trying to balance This report examines some of the key drivers and considerations policymakers and decision makers face when deciding if and how to regulate electricity tariffs for micro-grids. Presenting a range of tariff options, from mandating some variety of national (uniform) tariff to allowing micro-grid developers and operators to set fully cost-reflective tariffs, it examines various benefits and drawbacks of each. In

  16. HF electronic tubes. Technologies, grid tubes and klystrons

    International Nuclear Information System (INIS)

    Lemoine, Th.

    2009-01-01

    This article gives an overview of the basic technologies of electronic tubes: cathodes, electronic optics, vacuum and high voltage. Then the grid tubes, klystrons and inductive output tubes (IOT) are introduced. Content: 1 - context and classification; 2 - electronic tube technologies: cathodes, electronic optics, magnetic confinement (linear tubes), periodic permanent magnet (PPM) focussing, collectors, depressed collectors; 3 - vacuum technologies: vacuum quality, surface effects and interaction with electrostatic and RF fields, secondary emission, multipactor effect, thermo-electronic emission; 4 - grid tubes: operation of a triode, tetrodes, dynamic operation and classes of use, 'common grid' and 'common cathode' operation, ranges of utilisation and limitations, operation of a tetrode on unadjusted load, lifetime of a tetrode, uses of grid tubes; 5 - klystrons: operation, impact of space charge, multi-cavity klystrons, interaction efficiency, extended interaction klystrons, relation between interaction efficiency, perveance and efficiency, ranges of utilization and power limitations, multi-beam klystrons and sheet beam klystrons, operation on unadjusted load, klystron band pass and lifetime, uses; 6 - IOT: principle of operation, ranges of utilisation and limitations, interaction efficiency and depressed collector IOT, IOT lifetime and uses. (J.S.)

  17. Managing operations of plug-in hybrid electric vehicle (PHEV) exchange stations for use with a smart grid

    International Nuclear Information System (INIS)

    Nurre, Sarah G.; Bent, Russell; Pan, Feng; Sharkey, Thomas C.

    2014-01-01

    We consider a deterministic integer programming model for determining the optimal operations of multiple plug-in hybrid electric vehicle (PHEV) battery exchange stations over time. The operations include the number of batteries to charge, discharge, and exchange at each point in time over a set time horizon. We allow discharging of batteries back to the power grid, through vehicle-to-grid technology. We incorporate the exchange station's dependence on the power network, transportation network, and other exchange stations. The charging and discharging at these exchange stations lead to a greater amount of variability which creates a less predictable and flat power generation curve. We introduce and test three policies to smooth the power generation curve by balancing its load. Further, tests are conducted evaluating these policies while factoring wind energy into the power generation curve. These computational tests use realistic data and analysis of the results suggest general operating procedures for exchange stations and evaluate the effectiveness of these power flattening policies. - Highlights: • Model the operations of plug-in hybrid electric vehicle battery exchange stations. • Determine the optimal and general charging, discharging, and exchange operations. • Conclude that forced customer service levels are unnecessary with proper pricing. • Examine policies to reduce variability in power generation from PHEVs and wind. • Observe that strict constraints on exchange stations best reduce variability

  18. Gridded ionization chamber

    International Nuclear Information System (INIS)

    Houston, J.M.

    1977-01-01

    An improved ionization chamber type x-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is disposed adjacent the anode and is maintained at a voltsge intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting toward the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  19. Reliability evaluation of smart distribution grids

    OpenAIRE

    Kazemi, Shahram

    2011-01-01

    The term "Smart Grid" generally refers to a power grid equipped with the advanced technologies dedicated for purposes such as reliability improvement, ease of control and management, integrating of distributed energy resources and electricity market operations. Improving the reliability of electric power delivered to the end users is one of the main targets of employing smart grid technologies. The smart grid investments targeted for reliability improvement can be directed toward the generati...

  20. Maximum power extraction under different vector-control schemes and grid-synchronization strategy of a wind-driven Brushless Doubly-Fed Reluctance Generator.

    Science.gov (United States)

    Mousa, Mohamed G; Allam, S M; Rashad, Essam M

    2018-01-01

    This paper proposes an advanced strategy to synchronize the wind-driven Brushless Doubly-Fed Reluctance Generator (BDFRG) to the grid-side terminals. The proposed strategy depends mainly upon determining the electrical angle of the grid voltage, θ v and using the same transformation matrix of both the power winding and grid sides to ensure that the generated power-winding voltage has the same phase-sequence of the grid-side voltage. On the other hand, the paper proposes a vector-control (power-winding flux orientation) technique for maximum wind-power extraction under two schemes summarized as; unity power-factor operation and minimum converter-current. Moreover, a soft-starting method is suggested to avoid the employed converter over-current. The first control scheme is achieved by adjusting the command power-winding reactive power at zero for a unity power-factor operation. However, the second scheme depends on setting the command d-axis control-winding current at zero to maximize the ratio of the generator electromagnetic-torque per the converter current. This enables the system to get a certain command torque under minimum converter current. A sample of the obtained simulation and experimental results is presented to check the effectiveness of the proposed control strategies. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Grid interoperability: the interoperations cookbook

    Energy Technology Data Exchange (ETDEWEB)

    Field, L; Schulz, M [CERN (Switzerland)], E-mail: Laurence.Field@cern.ch, E-mail: Markus.Schulz@cern.ch

    2008-07-01

    Over recent years a number of grid projects have emerged which have built grid infrastructures that are now the computing backbones for various user communities. A significant number of these communities are limited to one grid infrastructure due to the different middleware and procedures used in each grid. Grid interoperation is trying to bridge these differences and enable virtual organizations to access resources independent of the grid project affiliation. This paper gives an overview of grid interoperation and describes the current methods used to bridge the differences between grids. Actual use cases encountered during the last three years are discussed and the most important interfaces required for interoperability are highlighted. A summary of the standardisation efforts in these areas is given and we argue for moving more aggressively towards standards.

  2. Grid interoperability: the interoperations cookbook

    International Nuclear Information System (INIS)

    Field, L; Schulz, M

    2008-01-01

    Over recent years a number of grid projects have emerged which have built grid infrastructures that are now the computing backbones for various user communities. A significant number of these communities are limited to one grid infrastructure due to the different middleware and procedures used in each grid. Grid interoperation is trying to bridge these differences and enable virtual organizations to access resources independent of the grid project affiliation. This paper gives an overview of grid interoperation and describes the current methods used to bridge the differences between grids. Actual use cases encountered during the last three years are discussed and the most important interfaces required for interoperability are highlighted. A summary of the standardisation efforts in these areas is given and we argue for moving more aggressively towards standards

  3. Communication and Networking in Smart Grids

    CERN Document Server

    Xiao, Yang

    2012-01-01

    Appropriate for researchers, practitioners, and students alike, Communication and Networking in Smart Grids presents state-of-the-art approaches and novel technologies for communication networks in smart grids. It explains how contemporary grid networks are developed and deployed and presents a collection of cutting-edge advances to help improve current practice. Prominent researchers working on smart grids and in related fields around the world explain the fundamental aspects and applications of smart grids. Describing the role that communication and networking will play in future smart grids

  4. Integrating Multi-Domain Distributed Energy Systems with Electric Vehicle PQ Flexibility: Optimal Design and Operation Scheduling for Sustainable Low-Voltage Distribution Grids

    DEFF Research Database (Denmark)

    Morvaj, Boran; Knezovic, Katarina; Evins, Ralph

    2016-01-01

    on the grid operation, in addition to coordinated charging, is analysed. Results showed that when the system can be optimally designed, emissions decrease by 64% and additionally 32% with proactive EV integration, whereas EV reactive power control enables integration of larger EV amounts and provides...... in the stable operation. The model was applied to a real low-voltage Danish distribution grid where measurement data is available on hourly basis in order to determine EV flexibility impacts on carbon emissions, as well as the benefits of optimal DES design. The influence of EV reactive power control...

  5. Legal aspects of electric power supply. Grid operator obligations between entrepreneurial responsibility and state control; Das Recht der Elektrizitaetsversorgungsnetze. Netzbetreiberpflichten zwischen unternehmerischer Eigenverantwortung und staatlicher Steuerung

    Energy Technology Data Exchange (ETDEWEB)

    Maetzig, Karoline

    2012-07-01

    The publication provides a systematic outline of the legal boundary conditions governing the operation of electric power supply grids. It goes beyond mere regulatory aspects, covering also the projecting and construction of grids, the acquisition or leasing of land for power transmission line construction, operating licenses and utility certification, the organisational structure and purpose of electric utilities, as well as the operating, servicing and enhancement of electricity grids including calculation of electricity rates. In addition to this systematic outline of legal aspects, it is investigated how the balance between entrepreneurial responsibility and state control was defined in the EnWG 2011, and it is discussed if the law provides sufficient room for entrepreneurial decisions.

  6. A disruptive approach for a green field smart grid installation

    Energy Technology Data Exchange (ETDEWEB)

    Bishnoi, Peeush [Siemens Technology and Services Pvt. Ltd., Bangalore (India); Klein, Wolfram; Kuntschke, Richard; Speh, Rainer; Waszak, Michal-Wolfgang [Siemens AG, Muenchen (Germany)

    2012-07-01

    The current trend towards increasingly decentralized power generation including renewable generation such as photovoltaic or wind power calls for a new concept for future power supply systems. The future power grid has to incorporate numerous distributed and comparatively small-sized generation facilities in addition to the larger centralized power plants currently in operation. Consumers will turn into prosumers that consume as well as produce electrical power. Thus, power will no longer flow exclusively from power plants to consumers such as households and industrial plants, but also between consumers, requiring new solutions, e.g., for protection within the power grid. In this paper, we propose a disruptive approach for a green field smart grid installation solving the issues arising from the increasing use of decentralized power generation. The new power supply system proposed can handle up to 100 % of volatile renewable generation and allows dynamic growth of the power grid with little effort. It is therefore suitable for building up new power supply systems in previously non-electrified regions, e.g., in rural areas in developing countries. At the same time, the system also offers solutions for the issues arising from the advent of the new energy age in developed countries. (orig.)

  7. Low Voltage Ride-Through of Two-Stage Grid-Connected Photovoltaic Systems Through the Inherent Linear Power-Voltage Characteristic

    DEFF Research Database (Denmark)

    Yang, Yongheng; Sangwongwanich, Ariya; Liu, Hongpeng

    2017-01-01

    In this paper, a cost-effective control scheme for two-stage grid-connected PhotoVoltaic (PV) systems in Low Voltage Ride-Through (LVRT) operation is proposed. In the case of LVRT, the active power injection by PV panels should be limited to prevent from inverter over-current and also energy...... aggregation at the dc-link, which will challenge the dc-link capacitor lifetime if remains uncontrolled. At the same time, reactive currents should be injected upon any demand imposed by the system operators. In the proposed scheme, the two objectives can be feasibly achieved. The active power is regulated...... point tracking controller without significant hardware or software modifications. In this way, the PV system will not operate at the maximum power point, whereas the inverter will not face any over-current challenge but can provide reactive power support in response to the grid voltage fault...

  8. North America grid segmentation case studies : technical feasibility and economics of implementation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.L. [Bonneville Power Administration, Portland, OR (United States); Clark, H.K.; El-Gasseir, M.M.; Epp, H.D.K.; Woodford, D.A. [DC Interconnect Inc., Vancouver, BC (Canada); Barthold, L.O.; Reppen, N.D.

    2009-07-01

    There continues to be unprecedented demand on power grids. The primary requirement is for a highly resilient grid that includes large transmission capacity reserves. There is increased demand for total transfer capability (TTC) to meet renewables policy targets and improved accommodation of complex market transactions. Some potential components include storage, FACTS controllers, dynamic ACE and other technologies. This presentation proposed segmentation as a different solution in order to meet the same demands more economically and greatly enhance reliability. The presentation described how segmentation works and discussed the benefits of a simple controller. Segmentation benefits in system planning and operation were also outlined. Other topics that were presented included renewable generation; grid security; cascading; adjustments that an operator might make; line converter and high voltage direct current (HVDC) converter options; HVDC line and converter configurations; and segmentation studies in North America. Economic analyses were also discussed. The presentation concluded with a potential application in northern Europe. 3 figs.

  9. Grid-Optimization Program for Photovoltaic Cells

    Science.gov (United States)

    Daniel, R. E.; Lee, T. S.

    1986-01-01

    CELLOPT program developed to assist in designing grid pattern of current-conducting material on photovoltaic cell. Analyzes parasitic resistance losses and shadow loss associated with metallized grid pattern on both round and rectangular solar cells. Though performs sensitivity studies, used primarily to optimize grid design in terms of bus bar and grid lines by minimizing power loss. CELLOPT written in APL.

  10. JColorGrid: software for the visualization of biological measurements

    Directory of Open Access Journals (Sweden)

    May Barnaby CH

    2006-04-01

    Full Text Available Abstract Background Two-dimensional data colourings are an effective medium by which to represent three-dimensional data in two dimensions. Such "color-grid" representations have found increasing use in the biological sciences (e.g. microarray 'heat maps' and bioactivity data as they are particularly suited to complex data sets and offer an alternative to the graphical representations included in traditional statistical software packages. The effectiveness of color-grids lies in their graphical design, which introduces a standard for customizable data representation. Currently, software applications capable of generating limited color-grid representations can be found only in advanced statistical packages or custom programs (e.g. micro-array analysis tools, often associated with steep learning curves and requiring expert knowledge. Results Here we describe JColorGrid, a Java library and platform independent application that renders color-grid graphics from data. The software can be used as a Java library, as a command-line application, and as a color-grid parameter interface and graphical viewer application. Data, titles, and data labels are input as tab-delimited text files or Microsoft Excel spreadsheets and the color-grid settings are specified through the graphical interface or a text configuration file. JColorGrid allows both user graphical data exploration as well as a means of automatically rendering color-grids from data as part of research pipelines. Conclusion The program has been tested on Windows, Mac, and Linux operating systems, and the binary executables and source files are available for download at http://jcolorgrid.ucsf.edu.

  11. Obligations to transmission grid enlargement and cooperation of operators of transmission grids after the enactment of EnLAG and the Third regulation of single market for electricity 2009/72 EG from 13th July, 2009; Netzausbau- und Kooperationsverpflichtungen der Uebertragungsnetzbetreiber nach Inkrafttreten des EnLAG und der Dritten StromRL 2009/72 EG vom 13.7.2009

    Energy Technology Data Exchange (ETDEWEB)

    Saecker, Franz Juergen [Hogan und Hartson Raue LLP/LBD Beratungsgesellschaft mbH, Berlin (Germany)

    2009-10-15

    paragraph 11 EnWG (Energy Economy Law) in the version of the Electricity Grid Expansion Act (EnLAG) obliges the operators of transmission grids to an optimization of transmission grids. The obligation for optimization refers to the development of the existing grids and to an extended co-operation of the operators of transmission grids for the improvement of the transmission of the electricity. Under this aspect, the author of the contribution under consideration reports on: (a) Contents of the obligation for the optimization of transmission grids and the development of transmission grids; (b) Fulfilment of the obligation for co-operation in accordance with paragraph 12 sect. 1 and paragraph 22 sect. 2 sentence 4 EnWG by forming a virtual grid company for the transmission of electricity; (c) Model of a cooperation contract; (d) Formation of a 'Deutsches Netz AG' as an alternative concept.

  12. Grid simulator for power quality assessment of micro-grids

    DEFF Research Database (Denmark)

    Carrasco, Joaquin Eloy Garcia; Vasquez, Juan Carlos; Guerrero, Josep M.

    2013-01-01

    voltages, low-order harmonics and flicker. The aim of this equipment is to test the performance of a given system under such distorted voltages. A prototype of the simulator, consisting of two inverters connected back-to-back to a 380 V three-phase grid and feeding a micro-grid composed of two......-inverter interfaced distributed generators and a critical load was built and tested. A set of experimental results for linear purely resistive loads, non-linear loads and current-controlled inverters is presented to prove the capabilities of the simulator. Finally, a case study is presented by testing a micro-grid.......In this study, a grid simulator based on a back-to-back inverter topology with resonant controllers is presented. The simulator is able to generate three-phase voltages for a range of amplitudes and frequencies with different types of perturbations, such as voltage sags, steady-state unbalanced...

  13. CMOS Current-mode Operational Amplifier

    OpenAIRE

    Kaulberg, Thomas

    1992-01-01

    A fully differential-input differential-output current-mode operational amplifier (COA) is described. The amplifier utilizes three second generation current-conveyors (CCII) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain bandwidth product of 8 MHz, an offset current of 0.8 ¿A (signal-r...

  14. Surface electric fields and geomagnetically induced currents in the Scottish Power grid during the 30 October 2003 geomagnetic storm

    OpenAIRE

    Thomson, Alan W.P.; McKay, Allan J.; Clarke, Ellen; Reay, Sarah J.

    2005-01-01

    A surface electric field model is used to estimate the UK surface E field during the 30 October 2003 severe geomagnetic storm. This model is coupled with a power grid model to determine the flow of geomagnetically induced currents (GIC) through the Scottish part of the UK grid. Model data are compared with GIC measurements at four sites in the power network. During this storm, measured and modeled GIC levels exceeded 40 A, and the surface electric field reached 5 V/km at sites in ...

  15. Power conditioning system topology for grid integration of wind and fuell cell energy

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2006-12-01

    Full Text Available This paper shows the topology of the hybrid grid-connected power system and the performances of the front-end three-phase power inverter. The renewable sources of the hybrid power system consist of a solid oxide fuel cell and a wind-turbine. This type of combination is the most efficient one. The proposed topology benefits of the one common DC-AC inverter which injects the generated power into the grid. The architecture diminishes the cost of the power conditioning system. Moreover, due to the power balance control of the entire power conditioning system the bulk dc link electrolytic capacitor is replaced with a small plastic film one. The final power conditioning system has the following advantages: independent control of the reactive power, minimize harmonic current distortion offering a nearly unity power factor operation (0,998 operation capability, dc link voltage regulation (up to 5% ripple in the dc-link voltage in any operated conditions, fast disturbance compensation capability, high reliability, and low cost. The experimental test has been performed and the performances of the grid power inverter are shown.

  16. Control of Power and Voltage of Solar Grid Connected

    OpenAIRE

    Allah, Boucetta Abd; Djamel, Labed

    2016-01-01

    Renewable energy is high on International agendas. Currently, grid-connected photovoltaic systems are a popular technology to convert solar energy into electricity. Control of power injected into the grid, maximum power point, high efficiency, and low total harmonic distortion of the currents injected into the grid are the requirements for inverter connection into the grid. Consequently, the performance of the inverters connected to the grid depends largely on the control strategy applied. In...

  17. Comparative evaluation of passive damping topologies for parallel grid-connected converters with LCL filters

    DEFF Research Database (Denmark)

    Beres, Remus Narcis; Wang, Xiongfei; Blaabjerg, Frede

    2014-01-01

    that with grid-side current feedback the stability may be improved in parallel operation while for converter-side feedback, the stability of the current controller is always decreased compared with the single converter case. The proposed stability analysis and experimental tests demonstrates the theoretical......In this paper a comprehensive analysis of three passive damping methods is done under parallel operation of multiple current controlled voltage source converters. One could argue that a well damped LCL filter with no peaking in the output impedance and stable designed controllers will turn...

  18. Beyond grid security

    International Nuclear Information System (INIS)

    Hoeft, B; Epting, U; Koenig, T

    2008-01-01

    While many fields relevant to Grid security are already covered by existing working groups, their remit rarely goes beyond the scope of the Grid infrastructure itself. However, security issues pertaining to the internal set-up of compute centres have at least as much impact on Grid security. Thus, this talk will present briefly the EU ISSeG project (Integrated Site Security for Grids). In contrast to groups such as OSCT (Operational Security Coordination Team) and JSPG (Joint Security Policy Group), the purpose of ISSeG is to provide a holistic approach to security for Grid computer centres, from strategic considerations to an implementation plan and its deployment. The generalised methodology of Integrated Site Security (ISS) is based on the knowledge gained during its implementation at several sites as well as through security audits, and this will be briefly discussed. Several examples of ISS implementation tasks at the Forschungszentrum Karlsruhe will be presented, including segregation of the network for administration and maintenance and the implementation of Application Gateways. Furthermore, the web-based ISSeG training material will be introduced. This aims to offer ISS implementation guidance to other Grid installations in order to help avoid common pitfalls

  19. The nuclear force and the electromagnetic current operator

    International Nuclear Information System (INIS)

    Riska, D.O.

    1985-01-01

    The relation between the electromagnetic current operator and the nucleon-nucleon interaction is discussed. The assumptions needed for the construction of the two-body current operator directly from the isospin- and velocity dependent components of the interaction potential are described. The observable consequences of the exchange current operator that is constructed from the interaction are reviewed. (orig.)

  20. Analytical prediction of fuel assembly spacer grid loss coefficient

    International Nuclear Information System (INIS)

    Lim, J. S.; Nam, K. I.; Park, S. K.; Kwon, J. T.; Park, W. J.

    2002-01-01

    The analytical prediction model of the fuel assembly spacer grid pressure loss coefficient has been studied. The pressure loss of gap between the test section wall and spacer grid was separated from the current model and the different friction drag coefficient on spacer straps from high Reynolds number region were used to low Reynolds number region. The analytical model has been verified based on the hydraulic pressure drop test results for the spacer grids of three types for 5x5, 16x16(or 17x17) arrays. The analytical model predicts the pressure loss coefficients obtained from test results within the maximum errors of 12% and 7% for 5x5 test bundle and full size bundle, respectively, at Reynolds number 500,000 of the core operating condition. This result shows that the analytical model can be used for research and design change of the nuclear fuel assembly

  1. Recent trends in grid computing

    International Nuclear Information System (INIS)

    Miura, Kenichi

    2004-01-01

    Grid computing is a technology which allows uniform and transparent access to geographically dispersed computational resources, such as computers, databases, experimental and observational equipment etc. via high-speed, high-bandwidth networking. The commonly used analogy is that of electrical power grid, whereby the household electricity is made available from outlets on the wall, and little thought need to be given to where the electricity is generated and how it is transmitted. The usage of grid also includes distributed parallel computing, high through-put computing, data intensive computing (data grid) and collaborative computing. This paper reviews the historical background, software structure, current status and on-going grid projects, including applications of grid technology to nuclear fusion research. (author)

  2. Grids Today, Clouds on the Horizon

    CERN Document Server

    Shiers, J

    2008-01-01

    By the time of CCP 2008, the largest scientific machine in the world -– the Large Hadron Collider -– had been cooled down as scheduled to its operational temperature of below 2 degrees Kelvin and injection tests were starting. Collisions of proton beams at 5 + 5 TeV were expected within one to two months of the initial tests, with data taking at design energy (7 + 7 TeV) foreseen for 2009. In order to process the data from this world machine, we have put our "Higgs in one basket" -– that of Grid computing. After many years of preparation, 2008 saw a final "Common Computing Readiness Challenge" (CCRC’08) -– aimed at demonstrating full readiness for 2008 data taking, processing and analysis. By definition, this relied on a world-wide production Grid infrastructure. But change – as always – is on the horizon. The current funding model for Grids – which in Europe has been through 3 generations of EGEE projects, together with related projects in other parts of the world, inc...

  3. Current conserving theory at the operator level

    Science.gov (United States)

    Yuan, Jiangtao; Wang, Yin; Wang, Jian

    The basic assumption of quantum transport in mesoscopic systems is that the total charge inside the scattering region is zero. This means that the potential deep inside reservoirs is effectively screened and therefore the electric field at interface of scattering region is zero. Thus the current conservation condition can be satisfied automatically which is an important condition in mesoscopic transport. So far the current conserving ac theory is well developed by considering the displacement current which is due to Coulomb interaction if we just focus on the average current. However, the frequency dependent shot noise does not satisfy the conservation condition since we do not consider the current conservation at the operator level. In this work, we formulate a generalized current conserving theory at the operator level using non-equilibrium Green's function theory which could be applied to both average current and frequency dependent shot noise. A displacement operator is derived for the first time so that the frequency dependent correlation of displacement currents could be investigated. Moreover, the equilibrium shot noise is investigated and a generalized fluctuation-dissipation relationship is presented.

  4. Grid Data Management and Customer Demands at MeteoSwiss

    Science.gov (United States)

    Rigo, G.; Lukasczyk, Ch.

    2010-09-01

    Data grids constitute the required input form for a variety of applications. Therefore, customers increasingly expect climate services to not only provide measured data, but also grids of these with the required configurations on an operational basis. Currently, MeteoSwiss is establishing a production chain for delivering data grids by subscription directly from the data warehouse in order to meet the demand for precipitation data grids by governmental, business and science customers. The MeteoSwiss data warehouse runs on an Oracle database linked with an ArcGIS Standard edition geodatabase. The grids are produced by Unix-based software written in R called GRIDMCH which extracts the station data from the data warehouse and stores the files in the file system. By scripts, the netcdf-v4 files are imported via an FME interface into the database. Currently daily and monthly deliveries of daily precipitation grids are available from MeteoSwiss with a spatial resolution of 2.2km x 2.2km. These daily delivered grids are a preliminary based on 100 measuring sites whilst the grid of the monthly delivery of daily sums is calculated out of about 430 stations. Crucial for the absorption by the customers is the understanding of and the trust into the new grid product. Clearly stating needs which can be covered by grid products, the customers require a certain lead time to develop applications making use of the particular grid. Therefore, early contacts and a continuous attendance as well as flexibility in adjusting the production process to fulfill emerging customer needs are important during the introduction period. Gridding over complex terrain can lead to temporally elevated uncertainties in certain areas depending on the weather situation and coverage of measurements. Therefore, careful instructions on the quality and use and the possibility to communicate the uncertainties of gridded data proofed to be essential especially to the business and science customers who require

  5. Coordinating Flexibility under Uncertainty in Multi-Area AC and DC Grids

    DEFF Research Database (Denmark)

    Halilbasic, Lejla; Chatzivasileiadis, Spyros; Pinson, Pierre

    2017-01-01

    In the future, mixed AC and DC grids, spanning multiple areas operated by different transmission system operators (TSO), are expected to offer the necessary controllability for integrating large amounts of intermittent renewable generation. This is facilitated by high voltage direct current...... transmission based on voltage source converter technology that can offer recourse actions in the form of preventive and corrective control of both active and reactive power. Market-clearing procedures, based on optimal power flow algorithms, need to be revised to account for DC transmission, flexibility...... and privacy requirements. To this end, we propose a decentralized two-stage stochastic market-clearing algorithm that incorporates meshed DC grids and allows the sharing of flexibility resources between areas. The benefit of this approach lies in its pricing mechanism, used for coordinating the different area...

  6. Integrated Multi-Scale Data Analytics and Machine Learning for the Distribution Grid and Building-to-Grid Interface

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Emma M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hendrix, Val [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Deka, Deepjyoti [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    This white paper introduces the application of advanced data analytics to the modernized grid. In particular, we consider the field of machine learning and where it is both useful, and not useful, for the particular field of the distribution grid and buildings interface. While analytics, in general, is a growing field of interest, and often seen as the golden goose in the burgeoning distribution grid industry, its application is often limited by communications infrastructure, or lack of a focused technical application. Overall, the linkage of analytics to purposeful application in the grid space has been limited. In this paper we consider the field of machine learning as a subset of analytical techniques, and discuss its ability and limitations to enable the future distribution grid and the building-to-grid interface. To that end, we also consider the potential for mixing distributed and centralized analytics and the pros and cons of these approaches. Machine learning is a subfield of computer science that studies and constructs algorithms that can learn from data and make predictions and improve forecasts. Incorporation of machine learning in grid monitoring and analysis tools may have the potential to solve data and operational challenges that result from increasing penetration of distributed and behind-the-meter energy resources. There is an exponentially expanding volume of measured data being generated on the distribution grid, which, with appropriate application of analytics, may be transformed into intelligible, actionable information that can be provided to the right actors – such as grid and building operators, at the appropriate time to enhance grid or building resilience, efficiency, and operations against various metrics or goals – such as total carbon reduction or other economic benefit to customers. While some basic analysis into these data streams can provide a wealth of information, computational and human boundaries on performing the analysis

  7. DanGrid. Report from working group 24. Roadmap for Smart Grid in Denmark with emphasis on the transmission companies' role; DanGrid. Delrapport. Arbejdsgruppe 24. Roadmap for Smart Grid i Danmark med saerlig vaegt pae netselskabernes rolle

    Energy Technology Data Exchange (ETDEWEB)

    Lomholt Finnemann, K. [DONG Energy, Virum (Denmark); Soerensen, Per [TRE-FOR, Kolding (Denmark); Larsen, Jim [EnergiMidt, Silkeborg (Denmark); Balasiu, A. [Siemens, Ballerup (Denmark); Holmberg Rasmussen, L. [Nordjysk Elhandel, Aalborg (Denmark); Moeller Joergensen, J. [Energinet.dk, Fredericia (Denmark); Norsk Jensen, A.; Nejsum, T.; Andersen, Kim [Dansk Energi, Frederiksberg (Denmark)

    2012-09-15

    The present report identifies a number of recommendations where specifically grid companies, but also authorities, customers and market players must initiate actions and activities to realize Smart Grid in Denmark by 2020. The report forms the basis for each network operator to implement Smart Grid, and is divided such that: 1 the management can create an overview of the steps to be taken in connection with the implementation, and 2. the technical department can develop a series of concrete actions to be implemented in the Smart Grid. The measures are divided into four groups: 1 - Establishment of business case and strategy: Efforts that support that each network operator prepares a business case and define a strategy for the creation of a Smart Grid. 2 - New technology in the grid: Measures relating to the importation of new technology in the grid, for example establishment of technology solutions for automating and monitoring the load on the network, and installing additional measurements at strategic points in the distribution network. 3 - Enabling customers' demand response: Initiatives that support that the grid company actively involves end users through price signals or by entering into agreements to regulate or move power consumption to a time of free capacity in the grid. 4 - Other activities: Measures which are horizontal and support that network companies develop a Smart Grid. New economic regulation of network companies is required to support the introduction of new technology in the grid, and at the same time crucial to enable customers' demand response. IT and data security must be established and customer engagement as active consumers of electricity should be strengthened. (LN)

  8. DC-bus voltage control of grid-connected voltage source converter by using space vector modulated direct power control under unbalanced network conditions

    DEFF Research Database (Denmark)

    Xiao, Lei; Huang, Shoudao; Lu, Kaiyuan

    2013-01-01

    Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load. In this......Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load....... In this study, a new proportional-integral-resonant (PI-RES) controller-based, space vector modulated direct power control topology is proposed to suppress the dc-bus voltage ripple and in the same time, controlling effectively the instantaneous power of the VSC. A special ac reactive power reference component...... is introduced in the controller, which is necessary in order to reduce the dc-bus voltage ripple and active power harmonics at the same time. The proposed control topology is implemented in the lab. Simulation and experimental results are provided to validate its performance and the analysis presented...

  9. AGIS: The ATLAS Grid Information System

    CERN Document Server

    Anisenkov, A; The ATLAS collaboration; Klimentov, A; Senchenko, A

    2012-01-01

    The ATLAS Computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we present ATLAS Grid Information System (AGIS) designed to integrate configuration and status information about resources, services and topology of whole ATLAS Grid needed by ATLAS Distributed Computing applications and services.

  10. Quality Assurance Framework for Mini-Grids

    Energy Technology Data Exchange (ETDEWEB)

    Esterly, Sean; Baring-Gould, Ian; Booth, Samuel

    2017-05-04

    To address the root challenges of providing quality power to remote consumers through financially viable mini-grids, the Global Lighting and Energy Access Partnership (Global LEAP) initiative of the Clean Energy Ministerial and the U.S. Department of Energy teamed with the National Renewable Energy Laboratory (NREL) and Power Africa to develop a Quality Assurance Framework (QAF) for isolated mini-grids. The framework addresses both alternating current (AC) and direct current (DC) mini-grids, and is applicable to renewable, fossil-fuel, and hybrid systems.

  11. A Theorem on Grid Access Control

    Institute of Scientific and Technical Information of China (English)

    XU ZhiWei(徐志伟); BU GuanYing(卜冠英)

    2003-01-01

    The current grid security research is mainly focused on the authentication of grid systems. A problem to be solved by grid systems is to ensure consistent access control. This problem is complicated because the hosts in a grid computing environment usually span multiple autonomous administrative domains. This paper presents a grid access control model, based on asynchronous automata theory and the classic Bell-LaPadula model. This model is useful to formally study the confidentiality and integrity problems in a grid computing environment. A theorem is proved, which gives the necessary and sufficient conditions to a grid to maintain confidentiality.These conditions are the formalized descriptions of local (node) relations or relationship between grid subjects and node subjects.

  12. Security for grids

    Energy Technology Data Exchange (ETDEWEB)

    Humphrey, Marty; Thompson, Mary R.; Jackson, Keith R.

    2005-08-14

    Securing a Grid environment presents a distinctive set of challenges. This paper groups the activities that need to be secured into four categories: naming and authentication; secure communication; trust, policy, and authorization; and enforcement of access control. It examines the current state of the art in securing these processes and introduces new technologies that promise to meet the security requirements of Grids more completely.

  13. A control approach for the operation of DG units under variations of interfacing impedance in grid-connected mode

    DEFF Research Database (Denmark)

    Hoseini, S. Kazem; Pouresmaeil, E.; Hosseinnia, S. H.

    2016-01-01

    . However, the converter-based DG interface is subjected to the unexpected uncertainties, which highly influence performance of control loop of DG unit and operation of interfaced converter. The interfacing impedance seen by interfaced VSC may considerably vary in power grid, and the stability of interfaced...... converter is highly sensitive to the impacts of this impedance changes; then, DG unit cannot inject appropriate currents. To deal with the instability problem, a control method based on fractional order active sliding mode is proposed in this paper, which is less sensitive to variations of interfacing...... impedance. A fractional sliding surface, which demonstrates the desired dynamics of system is developed and then, the controller is designed in two phases as sliding and reaching phases to keep the control loop stable. Stability issues of the control method are discussed in details and the conditions...

  14. Synchronization of grid-connected renewable energy sources under highly distorted voltages and unbalanced grid faults

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Blaabjerg, Frede

    2013-01-01

    Renewable energy sources require accurate and appropriate performance not only under normal grid operation but also under abnormal and faulty grid conditions according to the modern grid codes. This paper proposes a novel phase-locked loop algorithm (MSHDC-PLL), which can enable the fast...... and dynamic synchronization of the interconnected renewable energy system under unbalanced grid faults and under highly harmonic distorted voltage. The outstanding performance of the suggested PLL is achieved by implementing an innovative multi-sequence/harmonic decoupling cell in order to dynamically cancel...... renewable energy systems. Therefore, the performance of the new PLL can increase the quality of the injected power under abnormal conditions and in addition enable the renewable energy systems to provide the appropriate support to the grid under balanced and unbalanced grid faults....

  15. MEDOW - Multi-terminal DC Grid for Offshore Wind, Final report

    DEFF Research Database (Denmark)

    A DC grid based on multi-terminal voltage-source converter is a newly emerging technology, which is particularly suitable for the connection of offshore wind farms. Multi-terminal DC grids will be the key technology for the European offshore ‘Super Grid’. In the project, DC power flow, DC relaying...... protection, steady state operation, dynamic stability, fault-ride through capability, and impacts of DC grids on the operation of AC grids and power market were studied. Systematic comparison of DC grid topologies and stability control strategies was carried out, and DC grids for offshore wind power...

  16. Operation strategy for grid-tied DC-coupling power converter interface integrating wind/solar/battery

    Science.gov (United States)

    Jou, H. L.; Wu, J. C.; Lin, J. H.; Su, W. N.; Wu, T. S.; Lin, Y. T.

    2017-11-01

    The operation strategy for a small-capacity grid-tied DC-coupling power converter interface (GDPCI) integrating wind energy, solar energy and battery energy storage is proposed. The GDPCI is composed of a wind generator, a solar module set a battery bank, a boost DC-DC power converter (DDPC), a bidirectional DDPC power converter, an AC-DC power converter (ADPC) and a five-level DC-AC inverter (DAI). A solar module set, a wind generator and a battery bank are coupled to the common DC bus through the boost DDPC, the ADPC and the bidirectional DDPC, respectively. For verifying the performance of the GDPCI under different operation modes, computer simulation is carried out by PSIM.

  17. Day-Ahead Coordination of Vehicle-to-Grid Operation and Wind Power in Security Constraints Unit Commitment (SCUC)

    OpenAIRE

    Mohammad Javad Abdollahi; Majid Moazzami

    2015-01-01

    In this paper security constraints unit commitment (SCUC) in the presence of wind power resources and electrical vehicles to grid is presented. SCUC operation prepare an optimal time table for generation unit commitment in order to maximize security, minimize operation cost and satisfy the constraints of networks and units in a period of time, as one of the most important research interest in power systems. Today, the relationship between power network and energy storage systems is interested...

  18. Point-form electrodynamics and the construction of conserved current operators

    International Nuclear Information System (INIS)

    Klink, W.H.

    2003-01-01

    A general procedure for constructing conserved electromagnetic current operators in the presence of hadronic interactions is given. The four-momentum operator in point-form relativistic quantum mechanics is written as the sum of hadronic, photon, and electromagnetic four-momentum operators, where the electromagnetic four-momentum operator is generated from a vertex operator, in which a conserved current operator is contracted with the four-vector potential operator. The current operator is the sum of free, dynamically determined and model-dependent operators. The dynamically determined current operator is formed form a free current operator and the interacting hadronic four-momentum operator, in such a way that the sum of free and dynamically determined current operators is conserved with respect to the hadronic interactions. The model-dependent operator is a many-body current operator, formed as the commutator of an antisymmetric operator with the hadronic four-momentum operator. It is shown that such an operator is also conserved with respect to the hadronic interactions and also does not renormalize the charge. Refs. 9 (author)

  19. Research and design of smart grid monitoring control via terminal based on iOS system

    Science.gov (United States)

    Fu, Wei; Gong, Li; Chen, Heli; Pan, Guangji

    2017-06-01

    Aiming at a series of problems existing in current smart grid monitoring Control Terminal, such as high costs, poor portability, simple monitoring system, poor software extensions, low system reliability when transmitting information, single man-machine interface, poor security, etc., smart grid remote monitoring system based on the iOS system has been designed. The system interacts with smart grid server so that it can acquire grid data through WiFi/3G/4G networks, and monitor each grid line running status, as well as power plant equipment operating conditions. When it occurs an exception in the power plant, incident information can be sent to the user iOS terminal equipment timely, which will provide troubleshooting information to help the grid staff to make the right decisions in a timely manner, to avoid further accidents. Field tests have shown the system realizes the integrated grid monitoring functions, low maintenance cost, friendly interface, high security and reliability, and it possesses certain applicable value.

  20. Advanced fault ride-through control of DFIG based wind turbines including grid connection via VSC-HVDC

    Energy Technology Data Exchange (ETDEWEB)

    Feltes, Christian

    2012-07-01

    With the growing renewable energy share in the power generation mix it becomes inevitable that also these new generation technologies participate on the provision of grid services to guarantee stable operation of the grid, especially when one considers the decreasing number of conventional power plants in operation as a result of the expansion of wind based generation plants. These so-called ancillary services include frequency / active power control, voltage / reactive power control and fault ride-through (FRT) with fast voltage control and are stipulated in modern grid codes. In the context of this thesis advanced control algorithms have been developed for wind turbines based on doubly-fed induction generator (DFIG) to allow safe FRT during symmetrical and unsymmetrical faults. This covers the control for conventional AC grid connection as well as for the connection through voltage source converter (VSC) based high voltage direct current transmission (HVDC). Currently, the DFIG is the most used generator technology in modem wind turbines, since it combines a relatively simple slip-ring induction machine with a frequency converter rated to only approx. 30% of the total power. This makes the DFIG a cost-effective concept, which offers a variable speed range and a high degree of flexibility in control. However, due to the direct coupling of the generator stator circuit to the grid, grid faults are a special challenge for the frequency converter, its protection circuits and control algorithms. As base for the detailed evaluation of the impact of grid faults to the DFIG, this thesis contains the analytical derivation of the DFIG short circuit currents under consideration of frequency converter control. The DFIG concept presented in this thesis makes use of a DC chopper in the frequency converter, which allows safe FRT with grid voltage support through both converter sides. The developed control contains a new algorithm for a clear separation and control of positive

  1. Suggested Grid Code Modifications to Ensure Wide-Scale Adoption of Photovoltaic Energy in Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Enjeti, Prasad; Blaabjerg, Frede

    2013-01-01

    Current grid standards seem to largely require low power (e.g. several kilowatts) single-phase photovoltaic (PV) systems to operate at unity power factor with maximum power point tracking, and disconnect from the grid under grid faults. However, in case of a wide-scale penetration of single......-phase PV systems in the distributed grid, the disconnection under grid faults can contribute to: a) voltage flickers, b) power outages, and c) system instability. In this paper, grid code modifications are explored for wide-scale adoption of PV systems in the distribution grid. More recently, Italy...... and Japan, have undertaken a major review of standards for PV power conversion systems connected to low voltage networks. In view of this, the importance of low voltage ride-through for single-phase PV power systems under grid faults along with reactive power injection is studied in this paper. Three...

  2. The Optimization dispatching of Micro Grid Considering Load Control

    Science.gov (United States)

    Zhang, Pengfei; Xie, Jiqiang; Yang, Xiu; He, Hongli

    2018-01-01

    This paper proposes an optimization control of micro-grid system economy operation model. It coordinates the new energy and storage operation with diesel generator output, so as to achieve the economic operation purpose of micro-grid. In this paper, the micro-grid network economic operation model is transformed into mixed integer programming problem, which is solved by the mature commercial software, and the new model is proved to be economical, and the load control strategy can reduce the charge and discharge times of energy storage devices, and extend the service life of the energy storage device to a certain extent.

  3. Smart-grid Investments, Regulation and Organization

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter; Mikkers, Misja

    2013-01-01

    Grid infrastructure managers worldwide are facing demands for reinvestments in new assets with higher on-grid and off-grid functionality in order to meet new environmental targets. The roles of the current actors will change as the vertical interfaces between regulated and unregulated tasks become...... blurred. In this paper, we characterize some of the effects of new asset investments policy on the network tasks, assets and costs and contrast this with the assumptions of the current economic network regulation. To provide structure, we present a model of investment provision under regulation between...

  4. SuperGrid or SmartGrid: Competing strategies for large-scale integration of intermittent renewables?

    DEFF Research Database (Denmark)

    Blarke, Morten; M. Jenkins, Bryan

    2013-01-01

    This paper defines and compares two strategies for integrating intermittent renewables: SuperGrid and SmartGrid. While conventional energy policy suggests that these strategies may be implemented alongside each other, the paper identifies significant technological and socio-economic conflicts...... of interest between the two. The article identifies differences between a domestic strategy for the integration of intermittent renewables, vis-à-vis the SmartGrid, and a cross-system strategy, vis-à-vis the SuperGrid. Policy makers and transmission system operators must understand the need for both...... a paradigmatic case study from West Denmark which supports the hypothesis that these strategies are mutually exclusive. The case study shows that increasing cross-system transmission capacity jeopardizes the feasibility of SmartGrid technology investments. A political effort is required for establishing...

  5. Grid system design on the plasma cathode electron source

    International Nuclear Information System (INIS)

    Agus Purwadi

    2014-01-01

    It has been designed the grid system on the Plasma Cathode Electron Source (PCES). Grid system with the electron emission hole of (15 x 60) cm 2 , the single aperture grid size of (0,5 x O,5) mm 2 and the grid wire diameter of 0,25 mm, will be used on the plasma generator chamber. If the sum of grid holes known and the value of electron emission current through every the grid hole known too then the total value of electron emission Current which emits from the plasma generator chamber can be determined It has been calculated the value of electron emission current I e as function of the grid radius r e =(0.28, 0.40, 0.49, 0.56, 0.63, 0.69) mm on the electron temperature of T e = 5 eV for varying of the value plasma electron densities n e = (10 15 , 10 16 , 10 17 , 10 18 ) m -3 . Also for the value of electron emission current fe as function of the grid radius r e = (0.28, 0.40, 0.49. 0.56, 0.63,0.69) mm on the electron density n e = 10 17 m -3 for varying of the value of plasma electron temperatures T e = (1, 2, 3, 4, 5) eV. electron emission current will be increase by increasing grid radius, electron temperature as well as plasma electron density. (author)

  6. Enhanced Power Quality and Minimized Peak Current Control in An Inverter based Microgrid under Unbalanced Grid Faults

    DEFF Research Database (Denmark)

    Liu, Wenzhao; Guo, Xiaoqiang; Sulligoi, Giorgio

    2016-01-01

    The microgrid inverter experiences the power oscillations and current harmonics in case of the unbalanced grid voltage faults. However, there is a trade-off between power oscillations and current harmonics should be considered in three phase three wire inverter systems during the conventional fault...... ride through control. In order to solve this problem, a novel control strategy is proposed to enhance the output current quality while mitigating the active and reactive output power oscillations. Moreover, a simple current-limited control strategy can be achieved without the necessity of the voltage....../current positive/negative sequence extraction. Finally, the simulation tests of the conventional and proposed control solutions are carried out. The results verify the effectiveness of the proposed strategy....

  7. Three-electrode pulse electron gun with currents up to 250 A

    International Nuclear Information System (INIS)

    Grigor'ev, Yu.V.; Shanturin, L.P.

    1977-01-01

    The design and operating conditions of a pulsed electron gun are described. The electron gun has three electrodes: a cathode, an anode and a control electrode in the form of a grid. The cathode is made from lanthanum hexaboride, which ensures its operation in a low vacuum at a temperature of 1,700 deg C. The control electrode and anode grid are fabricated from sheet tantalum. The anode-grid characteristics of the gun are given. It is shown that at an accelerating voltage of 100 kV, a temperature of 1,700 deg C and a zero control electrode potential the beam current is 250 A

  8. Micro-Grids for Colonias (TX)

    Energy Technology Data Exchange (ETDEWEB)

    Dean Schneider; Michael Martin; Renee Berry; Charles Moyer

    2012-07-31

    This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing power generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid

  9. Results from the Operational Testing of the General Electric Smart Grid Capable Electric Vehicle Supply Equipment (EVSE)

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Richard Barney [Idaho National Lab. (INL), Idaho Falls, ID (United States); Scoffield, Don [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bennett, Brion [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-12-01

    The Idaho National Laboratory conducted testing and analysis of the General Electric (GE) smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from GE for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the GE smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  10. Proceedings of the second workshop of LHC Computing Grid, LCG-France

    International Nuclear Information System (INIS)

    Chollet, Frederique; Hernandez, Fabio; Malek, Fairouz; Gaelle, Shifrin

    2007-03-01

    The second LCG-France Workshop was held in Clermont-Ferrand on 14-15 March 2007. These sessions organized by IN2P3 and DAPNIA were attended by around 70 participants working with the Computing Grid of LHC in France. The workshop was a opportunity of exchanges of information between the French and foreign site representatives on one side and delegates of experiments on the other side. The event allowed enlightening the place of LHC Computing Task within the frame of W-LCG world project, the undergoing actions and the prospects in 2007 and beyond. The following communications were presented: 1. The current status of the LHC computation in France; 2.The LHC Grid infrastructure in France and associated resources; 3.Commissioning of Tier 1; 4.The sites of Tier-2s and Tier-3s; 5.Computing in ALICE experiment; 6.Computing in ATLAS experiment; 7.Computing in the CMS experiments; 8.Computing in the LHCb experiments; 9.Management and operation of computing grids; 10.'The VOs talk to sites'; 11.Peculiarities of ATLAS; 12.Peculiarities of CMS and ALICE; 13.Peculiarities of LHCb; 14.'The sites talk to VOs'; 15. Worldwide operation of Grid; 16.Following-up the Grid jobs; 17.Surveillance and managing the failures; 18. Job scheduling and tuning; 19.Managing the site infrastructure; 20.LCG-France communications; 21.Managing the Grid data; 22.Pointing the net infrastructure and site storage. 23.ALICE bulk transfers; 24.ATLAS bulk transfers; 25.CMS bulk transfers; 26. LHCb bulk transfers; 27.Access to LHCb data; 28.Access to CMS data; 29.Access to ATLAS data; 30.Access to ALICE data; 31.Data analysis centers; 32.D0 Analysis Farm; 33.Some CMS grid analyses; 34.PROOF; 35.Distributed analysis using GANGA; 36.T2 set-up for end-users. In their concluding remarks Fairouz Malek and Dominique Pallin stressed that the current workshop was more close to users while the tasks for tightening the links between the sites and the experiments were definitely achieved. The IN2P3 leadership expressed

  11. Smart homes as a base for smart grids; Smart Home als Basis fuer Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Segbusch, Klaus von [ABB AG, Mannheim (Germany). Team Business Development Smart Grids; Struwe, Christian [Busch-Jaeger Elektro GmbH, Luedenscheid (Germany)

    2010-09-15

    Integration of renewable energy sources requires more intelligent distribution systems, i.e. so-called smart grids. For this, it is necessary to integrate the end customers in grid operation, giving them financial incentives, information in near real time from the utility, and means for automatic control of their consumption. (orig.)

  12. Basic properties of the current-current correlation measure for random Schroedinger operators

    International Nuclear Information System (INIS)

    Hislop, Peter D.; Lenoble, Olivier

    2006-01-01

    The current-current correlation measure plays a crucial role in the theory of conductivity for disordered systems. We prove a Pastur-Shubin-type formula for the current-current correlation measure expressing it as a thermodynamic limit for random Schroedinger operators on the lattice and the continuum. We prove that the limit is independent of the self-adjoint boundary conditions and independent of a large family of expanding regions. We relate this finite-volume definition to the definition obtained by using the infinite-volume operators and the trace-per-unit volume

  13. Smart Grids and Distributed Generation

    Directory of Open Access Journals (Sweden)

    Dorin BICĂ

    2018-06-01

    Full Text Available This paper describes the main characteristics of Smart Grids and distributed generation. Smart Grids can be defined as a modernization of the power system so it monitors, protects and automatically optimizes the operation of its interconnected elements (power plants, transmission and distribution system, industrial and residential loads. Distributed generation (DG refers to the production of electricity near the consumption place using renewable energy sources. A load flow analysis is performed for the IEEE14 system in which a DG source (a 5MW wind turbine is added that is on-grid or off-grid. The power losses are determined for these two cases.

  14. European electricity grid. Status and perspective

    International Nuclear Information System (INIS)

    Maillard, Dominique

    2010-01-01

    There is no doubt about the need to expand and modernize the European electricity grid, especially in order to allow renewable energies to be fed stochastically into existing systems. As it is hardly possible at the present time and also in the near future to store electricity on a major scale and at adequate prices, electricity must be transmitted from the point of generation to the point of consumption directly and in real time. The development of grid systems, including cross-border transmission systems, is still behind expectations. This is not due to a shortage of projects or a lack of interest on the part of grid operators; the necessary political support is available as well, and investments at present are covered by the feed tariffs. The problem is the lack of acceptance. It is difficult to obtain new permits or commission new grids. This problem of the licensing authorities often results in considerable delays. Consequently, it is up to the grid operators to handle this situation and promote new, intelligent grid systems in an effort to achieve acceptance of a technical-scale infrastructure. This includes transparency in grid expansion, exchange with the public in order to reach mutual understanding and trust and also find compromises as well as the willingness to discuss various approaches to solutions (underground routing, upgrading of existing grid systems, smart systems, and intelligent designs) so as to optimize the use of the existing infrastructure. (orig.)

  15. CMOS Current-mode Operational Amplifier

    DEFF Research Database (Denmark)

    Kaulberg, Thomas

    1992-01-01

    current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain bandwidth product of 8 MHz, an offset current of 0.8 ¿A (signal-range ±700¿A) and a (theoretically) unlimited slew-rate. The amplifier is realized in a standard CMOS 2......A fully differential-input differential-output current-mode operational amplifier (COA) is described. The amplifier utilizes three second generation current-conveyors (CCII) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced...

  16. Grid connection of active stall wind farms using a VSC based DC transmission system

    DEFF Research Database (Denmark)

    Iov, F.; Sørensen, Poul Ejnar; Hansen, A.D.

    2005-01-01

    Currently, there is an increasing trend to connect large MW wind farms to the transmission system. Requirements that focus on the influence of the farms on the grid stability and power quality, and on the control capabilities of wind farms have already been established. The main trends of modern...... wind turbines/farms are clearly the variable speed operation and a grid connection through a power electronic interface, especially using doubly fed induction generators. Using power electronics the control capabilities of these wind turbines/farms are extended and thus the grid requirements...... are fulfilled. However, the traditional squirrel-cage generators based wind turbines/wind farms directly connected to the grid have less control capabilities. These wind turbines/farms cannot regulate their production and contribute to power system stability. A DC transmission system for connection...

  17. High-speed narrowband PLC - High-performance Access Powerline Communication structures in smart grid; High-Speed Narrowband PLC. Leistungsfaehige Access-Powerline-Kommunikationsstrukturen im Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Offner, Georg [devolo AG, Aachen (Germany)

    2012-07-01

    The smart grid provides a stable operation of a decentralized power system which is fed more and more by small providers by means of solar technology and wind power technology. Furthermore, commercial and private clients profit from the smart grid, as they may capture information about their current consumption in real time or can obtain these data from the Internet. The author of the contribution under consideration presents new approaches to access powerline communications that enable efficient communication between IPv6 based household meter and network station. The contribution under consideration describes the technologies used as well as practical experiences and initial results from field tests. Here insights from the integration of G3-PLC are in the foreground.

  18. Geographical failover for the EGEE-WLCG grid collaboration tools

    International Nuclear Information System (INIS)

    Cavalli, A; Pagano, A; Aidel, O; L'Orphelin, C; Mathieu, G; Lichwala, R

    2008-01-01

    Worldwide grid projects such as EGEE and WLCG need services with high availability, not only for grid usage, but also for associated operations. In particular, tools used for daily activities or operational procedures are considered to be critical. The operations activity of EGEE relies on many tools developed by teams from different countries. For each tool, only one instance was originally deployed, thus representing single points of failure. In this context, the EGEE failover problem was solved by replicating tools at different sites, using specific DNS features to automatically failover to a given service. A new domain for grid operations (gridops.org) was registered and deployed following DNS testing in a virtual machine (vm) environment using nsupdate, NS/zone configuration and fast TTLs. In addition, replication of databases, web servers and web services have been tested and configured. In this paper, we describe the technical mechanism used in our approach to replication and failover. We also describe the procedure implemented for the EGEE/WLCG CIC Operations Portal use case. Furthermore, we present the interest in failover procedures in the context of other grid projects and grid services. Future plans for improvements of the procedures are also described

  19. Impacts of Severe Space Weather on the Electric Grid

    Science.gov (United States)

    2011-11-01

    human infrastructure are examined, particularly in how they generate geomagnetically induced currents (GICs) in electric grids. The solar origins of...capacitors and AC and HVDC transmission lines all have tripped in prior storms due to relay mis-operations’ (J. Kappenman, Jason Presentation 2011). Over...called quasi-satellite orbits because many large bodies , including the Earth have small "companion" objects in quasi-spacecraft orbits around them

  20. The Three-Phase Power Router and Its Operation with Matrix Converter toward Smart-Grid Applications

    Directory of Open Access Journals (Sweden)

    Alexandros Kordonis

    2015-04-01

    Full Text Available A power router has been recently developed for both AC and DC applications that has the potential for smart-grid applications. This study focuses on three-phase power switching through the development of an experimental setup which consists of a three-phase direct AC/AC matrix converter with a power router attached to its output. Various experimental switching scenarios with the loads connected to different input sources were investigated. The crescent introduction of decentralized power generators throughout the power-grid obligates us to take measurements for a better distribution and management of the power. Power routers and matrix converters have great potential to succeed this goal with the help of power electronics devices. In this paper, a novel experimental three-phase power switching was achieved and the advantages of this operation are presented, such as on-demand and constant power supply at the desired loads.

  1. Efficient Pseudorecursive Evaluation Schemes for Non-adaptive Sparse Grids

    KAUST Repository

    Buse, Gerrit

    2014-01-01

    In this work we propose novel algorithms for storing and evaluating sparse grid functions, operating on regular (not spatially adaptive), yet potentially dimensionally adaptive grid types. Besides regular sparse grids our approach includes truncated grids, both with and without boundary grid points. Similar to the implicit data structures proposed in Feuersänger (Dünngitterverfahren für hochdimensionale elliptische partielle Differntialgleichungen. Diploma Thesis, Institut für Numerische Simulation, Universität Bonn, 2005) and Murarasu et al. (Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel Programming. Cambridge University Press, New York, 2011, pp. 25–34) we also define a bijective mapping from the multi-dimensional space of grid points to a contiguous index, such that the grid data can be stored in a simple array without overhead. Our approach is especially well-suited to exploit all levels of current commodity hardware, including cache-levels and vector extensions. Furthermore, this kind of data structure is extremely attractive for today’s real-time applications, as it gives direct access to the hierarchical structure of the grids, while outperforming other common sparse grid structures (hash maps, etc.) which do not match with modern compute platforms that well. For dimensionality d ≤ 10 we achieve good speedups on a 12 core Intel Westmere-EP NUMA platform compared to the results presented in Murarasu et al. (Proceedings of the International Conference on Computational Science—ICCS 2012. Procedia Computer Science, 2012). As we show, this also holds for the results obtained on Nvidia Fermi GPUs, for which we observe speedups over our own CPU implementation of up to 4.5 when dealing with moderate dimensionality. In high-dimensional settings, in the order of tens to hundreds of dimensions, our sparse grid evaluation kernels on the CPU outperform any other known implementation.

  2. Influence of plug-in hybrid electric vehicles on smart grids; Management der Trendwatching Group. Einfluss von Plug-In Hybrid Vehicles auf intelligente Verteilnetze (Smart Grids) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R. [ENCO Energie Consulting AG, Bubendorf (Switzerland); Strub, P. [Pierre Strub, Basel (Switzerland)

    2008-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the influence of plug-in hybrid vehicles on intelligent electricity distribution grids. The work of a trend-watching group which examined the regulatory services at the interface between such 'smart' grids and electrically powered vehicles is reported on. The trend-watching group includes research institutes, energy suppliers, NGOs, the automobile industry and technology companies. Vehicle-to-grid concepts and innovative developments in the Swiss market are commented on and the group's own activities (research, business models, technological development and politics) are discussed. The group will accompany relevant research programs and the implementation of measures as well as accompanying feasibility evaluations concerning current market developments. The Swiss federal strategy is to be discussed and international co-operation (with the IEA) is to be further strengthened.

  3. Importance of Grid Center Arrangement

    Science.gov (United States)

    Pasaogullari, O.; Usul, N.

    2012-12-01

    In Digital Elevation Modeling, grid size is accepted to be the most important parameter. Despite the point density and/or scale of the source data, it is freely decided by the user. Most of the time, arrangement of the grid centers are ignored, even most GIS packages omit the choice of grid center coordinate selection. In our study; importance of the arrangement of grid centers is investigated. Using the analogy between "Raster Grid DEM" and "Bitmap Image", importance of placement of grid centers in DEMs are measured. The study has been conducted on four different grid DEMs obtained from a half ellipsoid. These grid DEMs are obtained in such a way that they are half grid size apart from each other. Resulting grid DEMs are investigated through similarity measures. Image processing scientists use different measures to investigate the dis/similarity between the images and the amount of different information they carry. Grid DEMs are projected to a finer grid in order to co-center. Similarity measures are then applied to each grid DEM pairs. These similarity measures are adapted to DEM with band reduction and real number operation. One of the measures gives function graph and the others give measure matrices. Application of similarity measures to six grid DEM pairs shows interesting results. These four different grid DEMs are created with the same method for the same area, surprisingly; thirteen out of 14 measures state that, the half grid size apart grid DEMs are different from each other. The results indicated that although grid DEMs carry mutual information, they have also additional individual information. In other words, half grid size apart constructed grid DEMs have non-redundant information.; Joint Probability Distributions Function Graphs

  4. Design of A Grid Integrated PV System with MPPT Control and Voltage Oriented Controller using MATLAB/PLECES

    Science.gov (United States)

    Soreng, Bineeta; Behera, Pradyumna; Pradhan, Raseswari

    2017-08-01

    This paper presents model of a grid-integrated photovoltaic array with Maximum Power Point Tracker (MPPT) and voltage oriented controller. The MPPT of the PV array is usually an essential part of PV system as MPPT helps the operating point of the solar array to align its maximum power point. In this model, the MPPT along with a DC-DC converter lets a PV generator to produce continuous power, despite of the measurement conditions. The neutral-point-clamped converter (NPC) with a boost converter raises the voltage from the panels to the DC-link. An LCL-filter smoothens the current ripple caused by the PWM modulation of the grid-side inverter. In addition to the MPPT, the system has two more two controllers, such as voltage controller and a current controller. The voltage control has a PI controller to regulate the PV voltage to optimal level by controlling the amount of current injected into the boost stage. Here, the grid-side converter transfers the power from the DC-link into the grid and maintains the DC-link voltage. Three-phase PV inverters are used for off-grid or designed to create utility frequency AC. The PV system can be connected in series or parallel to get the desired output power. To justify the working of this model, the grid-integrated PV system has been designed in MATLAB/PLECS. The simulation shows the P-V curve of implemented PV Array consisting 4 X 20 modules, reactive, real power, grid voltage and current.

  5. Efficient Pseudorecursive Evaluation Schemes for Non-adaptive Sparse Grids

    KAUST Repository

    Buse, Gerrit; Pflü ger, Dirk; Jacob, Riko

    2014-01-01

    In this work we propose novel algorithms for storing and evaluating sparse grid functions, operating on regular (not spatially adaptive), yet potentially dimensionally adaptive grid types. Besides regular sparse grids our approach includes truncated

  6. Robust Control of Wide Bandgap Power Electronics Device Enabled Smart Grid

    Science.gov (United States)

    Yao, Tong

    In recent years, wide bandgap (WBG) devices enable power converters with higher power density and higher efficiency. On the other hand, smart grid technologies are getting mature due to new battery technology and computer technology. In the near future, the two technologies will form the next generation of smart grid enabled by WBG devices. This dissertation deals with two applications: silicon carbide (SiC) device used for medium voltage level interface (7.2 kV to 240 V) and gallium nitride (GaN) device used for low voltage level interface (240 V/120 V). A 20 kW solid state transformer (SST) is designed with 6 kHz switching frequency SiC rectifier. Then three robust control design methods are proposed for each of its smart grid operation modes. In grid connected mode, a new LCL filter design method is proposed considering grid voltage THD, grid current THD and current regulation loop robust stability with respect to the grid impedance change. In grid islanded mode, micro synthesis method combined with variable structure control is used to design a robust controller for grid voltage regulation. For grid emergency mode, multivariable controller designed using Hinfinity synthesis method is proposed for accurate power sharing. Controller-hardware-in-the-loop (CHIL) testbed considering 7-SST system is setup with Real Time Digital Simulator (RTDS). The real TMS320F28335 DSP and Spartan 6 FPGA control board is used to interface a switching model SST in RTDS. And the proposed control methods are tested. For low voltage level application, a 3.3 kW smart grid hardware is built with 3 GaN inverters. The inverters are designed with the GaN device characterized using the proposed multi-function double pulse tester. The inverter is controlled by onboard TMS320F28379D dual core DSP with 200 kHz sampling frequency. Each inverter is tested to process 2.2 kW power with overall efficiency of 96.5 % at room temperature. The smart grid monitor system and fault interrupt devices (FID

  7. A vacuum sealed high emission current and transmission efficiency carbon nanotube triode

    Energy Technology Data Exchange (ETDEWEB)

    Di, Yunsong [School of Electronic Science & Engineering, Southeast University, Nanjing 210096 (China); Jiangsu Key Laboratory of Optoelectronic Technology, Nanjing Normal University, Nanjing 210023 (China); Wang, Qilong; Zhang, Xiaobing, E-mail: bell@seu.edu.cn; Lei, Wei; Du, Xiaofei; Yu, Cairu [School of Electronic Science & Engineering, Southeast University, Nanjing 210096 (China)

    2016-04-15

    A vacuum sealed carbon nanotubes (CNTs) triode with a concave and spoke-shaped Mo grid is presented. Due to the high aperture ratio of the grid, the emission current could be modulated at a relatively high electric field. Totally 75 mA emission current has been obtained from the CNTs cathode with the average applied field by the grid shifting from 8 to 13 V/μm. Whilst with the electron transmission efficiency of the grid over 56%, a remarkable high modulated current electron beam over 42 mA has been collected by the anode. Also contributed by the high aperture ration of the grid, desorbed gas molecules could flow away from the emission area rapidly when the triode has been operated at a relative high emission current, and finally collected by a vacion pump. The working pressure has been maintained at ∼1 × 10{sup −7} Torr, seldom spark phenomena occurred. Nearly perfect I-V curve and corresponding Fowler-Nordheim (FN) plot confirmed the accuracy of the measured data, and the emission current was long term stable and reproducible. Thusly, this kind of triode would be used as a high-power electron source.

  8. Power control for wind turbines in weak grids: Project summary

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    . The two case studies (Madeira, Portugal and Co. Donegal, Ireland) revealed that sometimes theleast cost and most attractive option is change in the operating strategy of the power system. This allowed that further wind energy can be integrated at competitive cost in the Madeira power system. In Co....... Donegal the options for pumped storage are goodcombined with good wind resources. Unfortunately the grid is weak. The least cost option for the feeder studied is either grid reinforcement or a power control system based on pumped storage if rather large amounts of wind energy are to be absorbed...... by thepower system. The cost estimates for the two options are in the same range. The current report is a summary of the work done in the project 'Power Control for Wind Turbines in Weak Grids'. The project has been partly funded by EU under contractJOR3-CT95-0067....

  9. Generalized coupling resonance modeling, analysis, and active damping of multi-parallel inverters in microgrid operating in grid-connected mode

    DEFF Research Database (Denmark)

    Chen, Zhiyong; Chen, Yandong; Guerrero, Josep M.

    2016-01-01

    This paper firstly presents an equivalent coupling circuit modeling of multi-parallel inverters in microgrid operating in grid-connected mode. By using the model, the coupling resonance phenomena are explicitly investigated through the mathematical approach, and the intrinsic and extrinsic...

  10. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence E. [Alstom Grid, Inc., Washington, DC (United States)

    2011-11-01

    This is the executive summary for a report that provides findings from the field regarding the best ways in which to guide operational strategies, business processes and control room tools to support the integration of renewable energy into electrical grids.

  11. Power grids

    International Nuclear Information System (INIS)

    Viterbo, J.

    2012-01-01

    The implementation of renewable energies represents new challenges for electrical systems. The objective: making power grids smarter so they can handle intermittent production. The advent of smart grids will allow flexible operations like distributing energy in a multidirectional manner instead of just one way and it will make electrical systems capable of integrating actions by different users, consumers and producers in order to maintain efficient, sustainable, economical and secure power supplies. Practically speaking, they associate sensors, instrumentation and controls with information processing and communication systems in order to create massively automated networks. Smart grids require huge investments: for example more than 7 billion dollars have been invested in China and in the Usa in 2010 and France is ranked 9. worldwide with 265 million dollars invested. It is expected that smart grids will promote the development of new business models and a change in the value chain for energy. Decentralized production combined with the probable introduction of more or less flexible rates for sales or purchases and of new supplier-customer relationships will open the way to the creation of new businesses. (A.C.)

  12. The electricity grid as a marketplace. Mannheim tests virtual energy market for generators, consumers and grid operators; Das Stromnetz wird zum Marktplatz. Mannheim erprobt virtuellen Energiemarkt fuer Erzeuger, Verbraucher und Netzbetreiber

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Uwe

    2011-07-01

    In future, electricity grids will have to transport large quantities of electricity from renewable energy sources fed centrally and decentrally. Plus, we need greater reserves, storage facilities and flexibility in the electricity market due to the fluctuating supply. In the ''Modellstadt Mannheim'' project, a virtual energy marketplace is being developed for energy generators, consumers and grid operators. Customers can see the source and price of their electricity and influence them directly via the timing and extent of their consumption and the delivery from their own generation systems. This approach also includes gas, water and district heating. (orig.)

  13. Electrolyzers Enhancing Flexibility in Electric Grids

    Directory of Open Access Journals (Sweden)

    Manish Mohanpurkar

    2017-11-01

    Full Text Available This paper presents a real-time simulation with a hardware-in-the-loop (HIL-based approach for verifying the performance of electrolyzer systems in providing grid support. Hydrogen refueling stations may use electrolyzer systems to generate hydrogen and are proposed to have the potential of becoming smarter loads that can proactively provide grid services. On the basis of experimental findings, electrolyzer systems with balance of plant are observed to have a high level of controllability and hence can add flexibility to the grid from the demand side. A generic front end controller (FEC is proposed, which enables an optimal operation of the load on the basis of market and grid conditions. This controller has been simulated and tested in a real-time environment with electrolyzer hardware for a performance assessment. It can optimize the operation of electrolyzer systems on the basis of the information collected by a communication module. Real-time simulation tests are performed to verify the performance of the FEC-driven electrolyzers to provide grid support that enables flexibility, greater economic revenue, and grid support for hydrogen producers under dynamic conditions. The FEC proposed in this paper is tested with electrolyzers, however, it is proposed as a generic control topology that is applicable to any load.

  14. A study of authorization architectures for grid security

    International Nuclear Information System (INIS)

    Pang Yanguang; Sun Gongxing; Pei Erming; Ma Nan

    2006-01-01

    Grid security is one of key issues in grid computing, while current research focus is put on the grid authorization. There is a brief discussion about the drawback of the common GSI (Grid Security Infrastructure) authorization firstly, then analysis is made on the latest several grid authorization architectures, such as structures, policy descriptions, engines, applications, and finally their features are summarized. (authors)

  15. Optimal operation control of low-voltage grids with a high share of distributed power generation[Dissertation 17063]; Optimierte Betriebsfuehrung von Niederspannungsnetzen mit einem hohen Anteil an dezentraler Erzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Malte, C. T.

    2007-07-01

    targets during development were that the system is able to manage autonomously a selected low-voltage grid including the installed (controllable) grid devices in order to improve power quality as well as to guarantee an economically optimised operation of the grid. Therefore, this system simplifies the integration of more and more DG units into already existing distribution grids and generates at the same time an economical and technical benefit for the concerned grid operator. All essential algorithms for the operation of PoMS have been developed within this PhD thesis. The approaches used in this work have been designed specially to fit for the application in limited low-voltage grid segments, e.g. area grids or industrial grids. It is a big advantage that the algorithms have been designed in such a general and scalable way, so that they can be used in a slightly modified form also for the optimisation of larger grids. From the very beginning the aim of the project was not only to design the system theoretically but also to test it under real conditions in an existing low-voltage grid. For that a fix time slot was given that had to be met under all circumstances. Therefore, the big challenge in the framework of this PhD thesis was not only to develop appropriate algorithms, but also to do this in the given time. With the successful test of PoMS it could be demonstrated that the developed algorithms are practical and allow an economically optimised grid management under real conditions. Further, it could be shown that PoMS can be used even for the operation of permanently islanded grids as well as for the operation of temporary islanded grids due to faults or interruptions on higher voltage levels ('Fault Ride Through'). (author)

  16. Optimal operation control of low-voltage grids with a high share of distributed power generation[Dissertation 17063]; Optimierte Betriebsfuehrung von Niederspannungsnetzen mit einem hohen Anteil an dezentraler Erzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Malte, C T

    2007-07-01

    able to manage autonomously a selected low-voltage grid including the installed (controllable) grid devices in order to improve power quality as well as to guarantee an economically optimised operation of the grid. Therefore, this system simplifies the integration of more and more DG units into already existing distribution grids and generates at the same time an economical and technical benefit for the concerned grid operator. All essential algorithms for the operation of PoMS have been developed within this PhD thesis. The approaches used in this work have been designed specially to fit for the application in limited low-voltage grid segments, e.g. area grids or industrial grids. It is a big advantage that the algorithms have been designed in such a general and scalable way, so that they can be used in a slightly modified form also for the optimisation of larger grids. From the very beginning the aim of the project was not only to design the system theoretically but also to test it under real conditions in an existing low-voltage grid. For that a fix time slot was given that had to be met under all circumstances. Therefore, the big challenge in the framework of this PhD thesis was not only to develop appropriate algorithms, but also to do this in the given time. With the successful test of PoMS it could be demonstrated that the developed algorithms are practical and allow an economically optimised grid management under real conditions. Further, it could be shown that PoMS can be used even for the operation of permanently islanded grids as well as for the operation of temporary islanded grids due to faults or interruptions on higher voltage levels ('Fault Ride Through'). (author)

  17. Leakage current analysis of a single-phase transformer-less PV inverter connected to the grid

    DEFF Research Database (Denmark)

    Ma, Lin; Tang, F.; Zhou, F.

    2009-01-01

    Due to the large surface of the PV generator, its stray capacity with respect to the ground reaches values that can be quite high. When no transformer is used in a grid-connected PV system, common-mode current, which caused by the common mode voltage, can flow through the stray capacitance between...... the PV array and the ground. It is quite harmful to the body safety and PV system. In order to avoid leakage current, different inverter topologies that generate no varying common-mode voltages, such as bipolar pulse-width modulation (PWM) full-bridge topology, NPC topology have been proposed. From...... the safety and energy saving viewpoint, it is necessary to develop a higher efficiency topology. In this paper, the generation mechanism of common mode current is discussed. Then different methods used to eliminate the leakage current are compared. Finally, the full-bridge which generates no varying common...

  18. Smart Control of Energy Distribution Grids over Heterogeneous Communication Networks

    DEFF Research Database (Denmark)

    Olsen, Rasmus Løvenstein; Iov, Florin; Hägerling, Christian

    2014-01-01

    The expected growth in distributed generation will significantly affect the operation and control of todays distribution grids. Being confronted with short time power variations of distributed generations, the assurance of a reliable service (grid stability, avoidance of energy losses) and the qu......The expected growth in distributed generation will significantly affect the operation and control of todays distribution grids. Being confronted with short time power variations of distributed generations, the assurance of a reliable service (grid stability, avoidance of energy losses...

  19. SuperGrid or SmartGrid: Competing strategies for large-scale integration of intermittent renewables?

    International Nuclear Information System (INIS)

    Blarke, Morten B.; Jenkins, Bryan M.

    2013-01-01

    This paper defines and compares two strategies for integrating intermittent renewables: SuperGrid and SmartGrid. While conventional energy policy suggests that these strategies may be implemented alongside each other, the paper identifies significant technological and socio-economic conflicts of interest between the two. The article identifies differences between a domestic strategy for the integration of intermittent renewables, vis-à-vis the SmartGrid, and a cross-system strategy, vis-à-vis the SuperGrid. Policy makers and transmission system operators must understand the need for both strategies to evolve in parallel, but in different territories, or with strategic integration, avoiding for one strategy to undermine the feasibility of the other. A strategic zoning strategy is introduced from which attentive societies as well as the global community stand to benefit. The analysis includes a paradigmatic case study from West Denmark which supports the hypothesis that these strategies are mutually exclusive. The case study shows that increasing cross-system transmission capacity jeopardizes the feasibility of SmartGrid technology investments. A political effort is required for establishing dedicated SmartGrid innovation zones, while also redefining infrastructure to avoid the narrow focus on grids and cables. SmartGrid Investment Trusts could be supported from reallocation of planned transmission grid investments to provide for the equitable development of SmartGrid strategies. - Highlights: • Compares SuperGrid and SmartGrid strategies for integrating intermittent renewables. • Identifies technological and socio-economic conflicts of interest between the two. • Proposes a strategic zoning strategy allowing for both strategies to evolve. • Presents a paradigmatic case study showing that strategies are mutually exclusive. • Proposes dedicated SmartGrid innovation zones and SmartGrid investment trusts

  20. Key figures for the regional- and distribution grid

    International Nuclear Information System (INIS)

    Vikingstad, S.

    1996-02-01

    In Norway, improving the efficiency of the hydroelectric grid operation is a stated goal of the Energy Act. Several studies have identified potential profits of such improvement. This publication focuses on costs and improvement potentials. Publication of key figures may stimulate grid owners, boards and administrations to improve the operating efficiency of their grids. The publication shows key figures for the regional- and distribution grid and is based on accounting data for 1994. The key figures are divided into: (1) Cost structure: The key figures express the relative contributions of each cost component to the total income of the grid, (2) Costs and physical quantities: The key figures show the cost of delivering the transport services, (3) Physical quantities: The key figures describe the working conditions of the energy utility. It appears that the cost structure of the sector varies considerably. The same is true of the cost related to the delivery of grid services. 30 figs., 6 tabs