WorldWideScience

Sample records for grid flow solver

  1. A GPU-based incompressible Navier-Stokes solver on moving overset grids

    Science.gov (United States)

    Chandar, Dominic D. J.; Sitaraman, Jayanarayanan; Mavriplis, Dimitri J.

    2013-07-01

    In pursuit of obtaining high fidelity solutions to the fluid flow equations in a short span of time, graphics processing units (GPUs) which were originally intended for gaming applications are currently being used to accelerate computational fluid dynamics (CFD) codes. With a high peak throughput of about 1 TFLOPS on a PC, GPUs seem to be favourable for many high-resolution computations. One such computation that involves a lot of number crunching is computing time accurate flow solutions past moving bodies. The aim of the present paper is thus to discuss the development of a flow solver on unstructured and overset grids and its implementation on GPUs. In its present form, the flow solver solves the incompressible fluid flow equations on unstructured/hybrid/overset grids using a fully implicit projection method. The resulting discretised equations are solved using a matrix-free Krylov solver using several GPU kernels such as gradient, Laplacian and reduction. Some of the simple arithmetic vector calculations are implemented using the CU++: An Object Oriented Framework for Computational Fluid Dynamics Applications using Graphics Processing Units, Journal of Supercomputing, 2013, doi:10.1007/s11227-013-0985-9 approach where GPU kernels are automatically generated at compile time. Results are presented for two- and three-dimensional computations on static and moving grids.

  2. Development of a Cartesian grid based CFD solver (CARBS)

    International Nuclear Information System (INIS)

    Vaidya, A.M.; Maheshwari, N.K.; Vijayan, P.K.

    2013-12-01

    Formulation for 3D transient incompressible CFD solver is developed. The solution of variable property, laminar/turbulent, steady/unsteady, single/multi specie, incompressible with heat transfer in complex geometry will be obtained. The formulation can handle a flow system in which any number of arbitrarily shaped solid and fluid regions are present. The solver is based on the use of Cartesian grids. A method is proposed to handle complex shaped objects and boundaries on Cartesian grids. Implementation of multi-material, different types of boundary conditions, thermo physical properties is also considered. The proposed method is validated by solving two test cases. 1 st test case is that of lid driven flow in inclined cavity. 2 nd test case is the flow over cylinder. The 1 st test case involved steady internal flow subjected to WALL boundaries. The 2 nd test case involved unsteady external flow subjected to INLET, OUTLET and FREE-SLIP boundary types. In both the test cases, non-orthogonal geometry was involved. It was found that, under such a wide conditions, the Cartesian grid based code was found to give results which were matching well with benchmark data. Convergence characteristics are excellent. In all cases, the mass residue was converged to 1E-8. Based on this, development of 3D general purpose code based on the proposed approach can be taken up. (author)

  3. Algorithms for parallel flow solvers on message passing architectures

    Science.gov (United States)

    Vanderwijngaart, Rob F.

    1995-01-01

    The purpose of this project has been to identify and test suitable technologies for implementation of fluid flow solvers -- possibly coupled with structures and heat equation solvers -- on MIMD parallel computers. In the course of this investigation much attention has been paid to efficient domain decomposition strategies for ADI-type algorithms. Multi-partitioning derives its efficiency from the assignment of several blocks of grid points to each processor in the parallel computer. A coarse-grain parallelism is obtained, and a near-perfect load balance results. In uni-partitioning every processor receives responsibility for exactly one block of grid points instead of several. This necessitates fine-grain pipelined program execution in order to obtain a reasonable load balance. Although fine-grain parallelism is less desirable on many systems, especially high-latency networks of workstations, uni-partition methods are still in wide use in production codes for flow problems. Consequently, it remains important to achieve good efficiency with this technique that has essentially been superseded by multi-partitioning for parallel ADI-type algorithms. Another reason for the concentration on improving the performance of pipeline methods is their applicability in other types of flow solver kernels with stronger implied data dependence. Analytical expressions can be derived for the size of the dynamic load imbalance incurred in traditional pipelines. From these it can be determined what is the optimal first-processor retardation that leads to the shortest total completion time for the pipeline process. Theoretical predictions of pipeline performance with and without optimization match experimental observations on the iPSC/860 very well. Analysis of pipeline performance also highlights the effect of uncareful grid partitioning in flow solvers that employ pipeline algorithms. If grid blocks at boundaries are not at least as large in the wall-normal direction as those

  4. A sparse-grid isogeometric solver

    KAUST Repository

    Beck, Joakim; Sangalli, Giancarlo; Tamellini, Lorenzo

    2018-01-01

    Isogeometric Analysis (IGA) typically adopts tensor-product splines and NURBS as a basis for the approximation of the solution of PDEs. In this work, we investigate to which extent IGA solvers can benefit from the so-called sparse-grids construction in its combination technique form, which was first introduced in the early 90’s in the context of the approximation of high-dimensional PDEs.The tests that we report show that, in accordance to the literature, a sparse-grid construction can indeed be useful if the solution of the PDE at hand is sufficiently smooth. Sparse grids can also be useful in the case of non-smooth solutions when some a-priori knowledge on the location of the singularities of the solution can be exploited to devise suitable non-equispaced meshes. Finally, we remark that sparse grids can be seen as a simple way to parallelize pre-existing serial IGA solvers in a straightforward fashion, which can be beneficial in many practical situations.

  5. A sparse-grid isogeometric solver

    KAUST Repository

    Beck, Joakim

    2018-02-28

    Isogeometric Analysis (IGA) typically adopts tensor-product splines and NURBS as a basis for the approximation of the solution of PDEs. In this work, we investigate to which extent IGA solvers can benefit from the so-called sparse-grids construction in its combination technique form, which was first introduced in the early 90’s in the context of the approximation of high-dimensional PDEs.The tests that we report show that, in accordance to the literature, a sparse-grid construction can indeed be useful if the solution of the PDE at hand is sufficiently smooth. Sparse grids can also be useful in the case of non-smooth solutions when some a-priori knowledge on the location of the singularities of the solution can be exploited to devise suitable non-equispaced meshes. Finally, we remark that sparse grids can be seen as a simple way to parallelize pre-existing serial IGA solvers in a straightforward fashion, which can be beneficial in many practical situations.

  6. Direct solvers performance on h-adapted grids

    KAUST Repository

    Paszynski, Maciej; Pardo, David; Calo, Victor M.

    2015-01-01

    We analyse the performance of direct solvers when applied to a system of linear equations arising from an hh-adapted, C0C0 finite element space. Theoretical estimates are derived for typical hh-refinement patterns arising as a result of a point, edge, or face singularity as well as boundary layers. They are based on the elimination trees constructed specifically for the considered grids. Theoretical estimates are compared with experiments performed with MUMPS using the nested-dissection algorithm for construction of the elimination tree from METIS library. The numerical experiments provide the same performance for the cases where our trees are identical with those constructed by the nested-dissection algorithm, and worse performance for some cases where our trees are different. We also present numerical experiments for the cases with mixed singularities, where how to construct optimal elimination trees is unknown. In all analysed cases, the use of hh-adaptive grids significantly reduces the cost of the direct solver algorithm per unknown as compared to uniform grids. The theoretical estimates predict and the experimental data confirm that the computational complexity is linear for various refinement patterns. In most cases, the cost of the direct solver per unknown is lower when employing anisotropic refinements as opposed to isotropic ones.

  7. Direct solvers performance on h-adapted grids

    KAUST Repository

    Paszynski, Maciej

    2015-05-27

    We analyse the performance of direct solvers when applied to a system of linear equations arising from an hh-adapted, C0C0 finite element space. Theoretical estimates are derived for typical hh-refinement patterns arising as a result of a point, edge, or face singularity as well as boundary layers. They are based on the elimination trees constructed specifically for the considered grids. Theoretical estimates are compared with experiments performed with MUMPS using the nested-dissection algorithm for construction of the elimination tree from METIS library. The numerical experiments provide the same performance for the cases where our trees are identical with those constructed by the nested-dissection algorithm, and worse performance for some cases where our trees are different. We also present numerical experiments for the cases with mixed singularities, where how to construct optimal elimination trees is unknown. In all analysed cases, the use of hh-adaptive grids significantly reduces the cost of the direct solver algorithm per unknown as compared to uniform grids. The theoretical estimates predict and the experimental data confirm that the computational complexity is linear for various refinement patterns. In most cases, the cost of the direct solver per unknown is lower when employing anisotropic refinements as opposed to isotropic ones.

  8. Nearly Interactive Parabolized Navier-Stokes Solver for High Speed Forebody and Inlet Flows

    Science.gov (United States)

    Benson, Thomas J.; Liou, May-Fun; Jones, William H.; Trefny, Charles J.

    2009-01-01

    A system of computer programs is being developed for the preliminary design of high speed inlets and forebodies. The system comprises four functions: geometry definition, flow grid generation, flow solver, and graphics post-processor. The system runs on a dedicated personal computer using the Windows operating system and is controlled by graphical user interfaces written in MATLAB (The Mathworks, Inc.). The flow solver uses the Parabolized Navier-Stokes equations to compute millions of mesh points in several minutes. Sample two-dimensional and three-dimensional calculations are demonstrated in the paper.

  9. A Parallel Multigrid Solver for Viscous Flows on Anisotropic Structured Grids

    Science.gov (United States)

    Prieto, Manuel; Montero, Ruben S.; Llorente, Ignacio M.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    This paper presents an efficient parallel multigrid solver for speeding up the computation of a 3-D model that treats the flow of a viscous fluid over a flat plate. The main interest of this simulation lies in exhibiting some basic difficulties that prevent optimal multigrid efficiencies from being achieved. As the computing platform, we have used Coral, a Beowulf-class system based on Intel Pentium processors and equipped with GigaNet cLAN and switched Fast Ethernet networks. Our study not only examines the scalability of the solver but also includes a performance evaluation of Coral where the investigated solver has been used to compare several of its design choices, namely, the interconnection network (GigaNet versus switched Fast-Ethernet) and the node configuration (dual nodes versus single nodes). As a reference, the performance results have been compared with those obtained with the NAS-MG benchmark.

  10. A Parallel Multiblock Structured Grid Method with Automated Interblocked Unstructured Grids for Chemically Reacting Flows

    Science.gov (United States)

    Spiegel, Seth Christian

    An automated method for using unstructured grids to patch non- C0 interfaces between structured blocks has been developed in conjunction with a finite-volume method for solving chemically reacting flows on unstructured grids. Although the standalone unstructured solver, FVFLO-NCSU, is capable of resolving flows for high-speed aeropropulsion devices with complex geometries, unstructured-mesh algorithms are inherently inefficient when compared to their structured counterparts. However, the advantages of structured algorithms in developing a flow solution in a timely manner can be negated by the amount of time required to develop a mesh for complex geometries. The global domain can be split up into numerous smaller blocks during the grid-generation process to alleviate some of the difficulties in creating these complex meshes. An even greater abatement can be found by allowing the nodes on abutting block interfaces to be nonmatching or non-C 0 continuous. One code capable of solving chemically reacting flows on these multiblock grids is VULCAN, which uses a nonconservative approach for patching non-C0 block interfaces. The developed automated unstructured-grid patching algorithm has been installed within VULCAN to provide it the capability of a fully conservative approach for patching non-C0 block interfaces. Additionally, the FVFLO-NCSU solver algorithms have been deeply intertwined with the VULCAN source code to solve chemically reacting flows on these unstructured patches. Finally, the CGNS software library was added to the VULCAN postprocessor so structured and unstructured data can be stored in a single compact file. This final upgrade to VULCAN has been successfully installed and verified using test cases with particular interest towards those involving grids with non- C0 block interfaces.

  11. Hybrid direct and iterative solvers for h refined grids with singularities

    KAUST Repository

    Paszyński, Maciej R.

    2015-04-27

    This paper describes a hybrid direct and iterative solver for two and three dimensional h adaptive grids with point singularities. The point singularities are eliminated by using a sequential linear computational cost solver O(N) on CPU [1]. The remaining Schur complements are submitted to incomplete LU preconditioned conjugated gradient (ILUPCG) iterative solver. The approach is compared to the standard algorithm performing static condensation over the entire mesh and executing the ILUPCG algorithm on top of it. The hybrid solver is applied for two or three dimensional grids automatically h refined towards point or edge singularities. The automatic refinement is based on the relative error estimations between the coarse and fine mesh solutions [2], and the optimal refinements are selected using the projection based interpolation. The computational mesh is partitioned into sub-meshes with local point and edge singularities separated. This is done by using the following greedy algorithm.

  12. Geometrically Flexible and Efficient Flow Analysis of High Speed Vehicles Via Domain Decomposition, Part 1: Unstructured-Grid Solver for High Speed Flows

    Science.gov (United States)

    White, Jeffery A.; Baurle, Robert A.; Passe, Bradley J.; Spiegel, Seth C.; Nishikawa, Hiroaki

    2017-01-01

    The ability to solve the equations governing the hypersonic turbulent flow of a real gas on unstructured grids using a spatially-elliptic, 2nd-order accurate, cell-centered, finite-volume method has been recently implemented in the VULCAN-CFD code. This paper describes the key numerical methods and techniques that were found to be required to robustly obtain accurate solutions to hypersonic flows on non-hex-dominant unstructured grids. The methods and techniques described include: an augmented stencil, weighted linear least squares, cell-average gradient method, a robust multidimensional cell-average gradient-limiter process that is consistent with the augmented stencil of the cell-average gradient method and a cell-face gradient method that contains a cell skewness sensitive damping term derived using hyperbolic diffusion based concepts. A data-parallel matrix-based symmetric Gauss-Seidel point-implicit scheme, used to solve the governing equations, is described and shown to be more robust and efficient than a matrix-free alternative. In addition, a y+ adaptive turbulent wall boundary condition methodology is presented. This boundary condition methodology is deigned to automatically switch between a solve-to-the-wall and a wall-matching-function boundary condition based on the local y+ of the 1st cell center off the wall. The aforementioned methods and techniques are then applied to a series of hypersonic and supersonic turbulent flat plate unit tests to examine the efficiency, robustness and convergence behavior of the implicit scheme and to determine the ability of the solve-to-the-wall and y+ adaptive turbulent wall boundary conditions to reproduce the turbulent law-of-the-wall. Finally, the thermally perfect, chemically frozen, Mach 7.8 turbulent flow of air through a scramjet flow-path is computed and compared with experimental data to demonstrate the robustness, accuracy and convergence behavior of the unstructured-grid solver for a realistic 3-D geometry on

  13. A rapid and low noise switch from RANS to WMLES on curvilinear grids with compressible flow solvers

    Science.gov (United States)

    Deck, Sébastien; Weiss, Pierre-Elie; Renard, Nicolas

    2018-06-01

    A turbulent inflow for a rapid and low noise switch from RANS to Wall-Modelled LES on curvilinear grids with compressible flow solvers is presented. It can be embedded within the computational domain in practical applications with WMLES grids around three-dimensional geometries in a flexible zonal hybrid RANS/LES modelling context. It relies on a physics-motivated combination of Zonal Detached Eddy Simulation (ZDES) as the WMLES technique together with a Dynamic Forcing method processing the fluctuations caused by a Zonal Immersed Boundary Condition describing roughness elements. The performance in generating a physically-sound turbulent flow field with the proper mean skin friction and turbulent profiles after a short relaxation length is equivalent to more common inflow methods thanks to the generation of large-scale streamwise vorticity by the roughness elements. Comparisons in a low Mach-number zero-pressure-gradient flat-plate turbulent boundary layer up to Reθ = 6 100 reveal that the pressure field is dominated by the spurious noise caused by the synthetic turbulence methods (Synthetic Eddy Method and White Noise injection), contrary to the new low-noise approach which may be used to obtain the low-frequency component of wall pressure and reproduce its intermittent nature. The robustness of the method is tested in the flow around a three-element airfoil with WMLES in the upper boundary layer near the trailing edge of the main element. In spite of the very short relaxation distance allowed, self-sustainable resolved turbulence is generated in the outer layer with significantly less spurious noise than with the approach involving White Noise. The ZDES grid count for this latter test case is more than two orders of magnitude lower than the Wall-Resolved LES requirement and a unique mesh is involved, which is much simpler than some multiple-mesh strategies devised for WMLES or turbulent inflow.

  14. Self-organizing hybrid Cartesian grid generation and application to external and internal flow problems

    Energy Technology Data Exchange (ETDEWEB)

    Deister, F.; Hirschel, E.H. [Univ. Stuttgart, IAG, Stuttgart (Germany); Waymel, F.; Monnoyer, F. [Univ. de Valenciennes, LME, Valenciennes (France)

    2003-07-01

    An automatic adaptive hybrid Cartesian grid generation and simulation system is presented together with applications. The primary computational grid is an octree Cartesian grid. A quasi-prismatic grid may be added for resolving the boundary layer region of viscous flow around the solid body. For external flow simulations the flow solver TAU from the ''deutsche zentrum fuer luft- und raumfahrt (DLR)'' is integrated in the simulation system. Coarse grids are generated automatically, which are required by the multilevel method. As an application to an internal problem the thermal and dynamic modeling of a subway station is presented. (orig.)

  15. Reliability analysis of HVDC grid combined with power flow simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongtao; Langeland, Tore; Solvik, Johan [DNV AS, Hoevik (Norway); Stewart, Emma [DNV KEMA, Camino Ramon, CA (United States)

    2012-07-01

    Based on a DC grid power flow solver and the proposed GEIR, we carried out reliability analysis for a HVDC grid test system proposed by CIGRE working group B4-58, where the failure statistics are collected from literature survey. The proposed methodology is used to evaluate the impact of converter configuration on the overall reliability performance of the HVDC grid, where the symmetrical monopole configuration is compared with the bipole with metallic return wire configuration. The results quantify the improvement on reliability by using the later alternative. (orig.)

  16. An unstructured shock-fitting solver for hypersonic plasma flows in chemical non-equilibrium

    Science.gov (United States)

    Pepe, R.; Bonfiglioli, A.; D'Angola, A.; Colonna, G.; Paciorri, R.

    2015-11-01

    A CFD solver, using Residual Distribution Schemes on unstructured grids, has been extended to deal with inviscid chemical non-equilibrium flows. The conservative equations have been coupled with a kinetic model for argon plasma which includes the argon metastable state as independent species, taking into account electron-atom and atom-atom processes. Results in the case of an hypersonic flow around an infinite cylinder, obtained by using both shock-capturing and shock-fitting approaches, show higher accuracy of the shock-fitting approach.

  17. POSSOL, 2-D Poisson Equation Solver for Nonuniform Grid

    International Nuclear Information System (INIS)

    Orvis, W.J.

    1988-01-01

    1 - Description of program or function: POSSOL is a two-dimensional Poisson equation solver for problems with arbitrary non-uniform gridding in Cartesian coordinates. It is an adaptation of the uniform grid PWSCRT routine developed by Schwarztrauber and Sweet at the National Center for Atmospheric Research (NCAR). 2 - Method of solution: POSSOL will solve the Helmholtz equation on an arbitrary, non-uniform grid on a rectangular domain allowing only one type of boundary condition on any one side. It can also be used to handle more than one type of boundary condition on a side by means of a capacitance matrix technique. There are three types of boundary conditions that can be applied: fixed, derivative, or periodic

  18. Comparative study of incompressible and isothermal compressible flow solvers for cavitating flow dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Ho [Korea Maritime and Ocean University, Busan (Korea, Republic of); Rhee, Shin Hyung [Seoul National University, Seoul (Korea, Republic of)

    2015-08-15

    Incompressible flow solvers are generally used for numerical analysis of cavitating flows, but with limitations in handling compressibility effects on vapor phase. To study compressibility effects on vapor phase and cavity interface, pressure-based incompressible and isothermal compressible flow solvers based on a cell-centered finite volume method were developed using the OpenFOAM libraries. To validate the solvers, cavitating flow around a hemispherical head-form body was simulated and validated against the experimental data. The cavity shedding behavior, length of a re-entrant jet, drag history, and the Strouhal number were compared between the two solvers. The results confirmed that computations of the cavitating flow including compressibility effects improved the reproduction of cavitation dynamics.

  19. A fast Poisson solver for unsteady incompressible Navier-Stokes equations on the half-staggered grid

    Science.gov (United States)

    Golub, G. H.; Huang, L. C.; Simon, H.; Tang, W. -P.

    1995-01-01

    In this paper, a fast Poisson solver for unsteady, incompressible Navier-Stokes equations with finite difference methods on the non-uniform, half-staggered grid is presented. To achieve this, new algorithms for diagonalizing a semi-definite pair are developed. Our fast solver can also be extended to the three dimensional case. The motivation and related issues in using this second kind of staggered grid are also discussed. Numerical testing has indicated the effectiveness of this algorithm.

  20. Application of the FUN3D Unstructured-Grid Navier-Stokes Solver to the 4th AIAA Drag Prediction Workshop Cases

    Science.gov (United States)

    Lee-Rausch, Elizabeth M.; Hammond, Dana P.; Nielsen, Eric J.; Pirzadeh, S. Z.; Rumsey, Christopher L.

    2010-01-01

    FUN3D Navier-Stokes solutions were computed for the 4th AIAA Drag Prediction Workshop grid convergence study, downwash study, and Reynolds number study on a set of node-based mixed-element grids. All of the baseline tetrahedral grids were generated with the VGRID (developmental) advancing-layer and advancing-front grid generation software package following the gridding guidelines developed for the workshop. With maximum grid sizes exceeding 100 million nodes, the grid convergence study was particularly challenging for the node-based unstructured grid generators and flow solvers. At the time of the workshop, the super-fine grid with 105 million nodes and 600 million elements was the largest grid known to have been generated using VGRID. FUN3D Version 11.0 has a completely new pre- and post-processing paradigm that has been incorporated directly into the solver and functions entirely in a parallel, distributed memory environment. This feature allowed for practical pre-processing and solution times on the largest unstructured-grid size requested for the workshop. For the constant-lift grid convergence case, the convergence of total drag is approximately second-order on the finest three grids. The variation in total drag between the finest two grids is only 2 counts. At the finest grid levels, only small variations in wing and tail pressure distributions are seen with grid refinement. Similarly, a small wing side-of-body separation also shows little variation at the finest grid levels. Overall, the FUN3D results compare well with the structured-grid code CFL3D. The FUN3D downwash study and Reynolds number study results compare well with the range of results shown in the workshop presentations.

  1. Hybrid direct and iterative solvers for h refined grids with singularities

    KAUST Repository

    Paszyński, Maciej R.; Paszyńska, Anna; Dalcin, Lisandro; Calo, Victor M.

    2015-01-01

    on top of it. The hybrid solver is applied for two or three dimensional grids automatically h refined towards point or edge singularities. The automatic refinement is based on the relative error estimations between the coarse and fine mesh solutions [2

  2. Dip and anisotropy effects on flow using a vertically skewed model grid.

    Science.gov (United States)

    Hoaglund, John R; Pollard, David

    2003-01-01

    Darcy flow equations relating vertical and bedding-parallel flow to vertical and bedding-parallel gradient components are derived for a skewed Cartesian grid in a vertical plane, correcting for structural dip given the principal hydraulic conductivities in bedding-parallel and bedding-orthogonal directions. Incorrect-minus-correct flow error results are presented for ranges of structural dip (0 strike and dip, and a solver that can handle off-diagonal hydraulic conductivity terms.

  3. elsA-Hybrid: an all-in-one structured/unstructured solver for the simulation of internal and external flows. Application to turbomachinery

    Science.gov (United States)

    de la Llave Plata, M.; Couaillier, V.; Le Pape, M.-C.; Marmignon, C.; Gazaix, M.

    2013-03-01

    This paper reports recent work on the extension of the multiblock structured solver elsA to deal with hybrid grids. The new hybrid-grid solver is called elsA-H (elsA-Hybrid), is based on the investigation of a new unstructured-grid module has been built within the original elsA CFD (computational fluid dynamics) system. The implementation benefits from the flexibility of the object-oriented design. The aim of elsA-H is to take advantage of the full potential of structured solvers and unstructured mesh generation by allowing any type of grid to be used within the same simulation process. The main challenge lies in the numerical treatment of the hybrid-grid interfaces where blocks of different type meet. In particular, one must pay attention to the transfer of information across these boundaries, so that the accuracy of the numerical scheme is preserved and flux conservation is guaranteed. In this paper, the numerical approach allowing to achieve this is presented. A comparison between the hybrid and the structured-grid methods is also carried out by considering a fully hexahedral multiblock mesh for which a few blocks have been transformed into unstructured. The performance of elsA-H for the simulation of internal flows will be demonstrated on a number of turbomachinery configurations.

  4. Dynamic Programming Algorithm for Generation of Optimal Elimination Trees for Multi-frontal Direct Solver Over H-refined Grids

    KAUST Repository

    AbouEisha, Hassan M.

    2014-06-06

    In this paper we present a dynamic programming algorithm for finding optimal elimination trees for computational grids refined towards point or edge singularities. The elimination tree is utilized to guide the multi-frontal direct solver algorithm. Thus, the criterion for the optimization of the elimination tree is the computational cost associated with the multi-frontal solver algorithm executed over such tree. We illustrate the paper with several examples of optimal trees found for grids with point, isotropic edge and anisotropic edge mixed with point singularity. We show the comparison of the execution time of the multi-frontal solver algorithm with results of MUMPS solver with METIS library, implementing the nested dissection algorithm.

  5. Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong [Kookmin Univ., Seoul (Korea, Republic of)

    2007-03-15

    The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow.

  6. Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System

    International Nuclear Information System (INIS)

    Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong

    2007-03-01

    The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow

  7. The non-linear microscale flow solver 3DWind Developments and validation

    Energy Technology Data Exchange (ETDEWEB)

    Undheim, Ove

    2005-05-01

    This PhD thesis describes the implementation of a Reynolds Stress Model in the RANS microscale solver 3DWind, which is developed to model wind flow in complex terrain. The solver is also calibrated and validated with the two-dimensional channel flow test case C18 from the ERCOFTAC Classic database and the full-scale atmospheric flow case of the Askervein hill. The implemented equations calculate both flow cases in good accordance with available experimental and numerical results. Still, the simulation experience and obtained results show that modelling of recirculation is a difficult task. The calculated flow field is very sensitive to the separation point, which is sensitive to several other factors. One important factor is the wall functions, which cause the separation zone to depend on the thickness of the first grid cell. Compared to the k-{epsilon} model, results from simulations with the Reynolds Stress Model gave improvements in the calculated turbulence upstream the C18 hill. There were also differences in the solutions in the wake of both the C18 and the Askervein hills; still, the differences are too small to make any conclusions about the quality of the models. The disadvantages of decreased stability, more wiggles in the solution and increased computational effort are considered larger than the advantages of accounting for anisotropy and historical effects in the Reynolds stresses. The solver is further used to quantify the effects of roughness and topography by generalized two-dimensional investigations of atmospheric flow. Hills and ridges are in this analysis found to increase wind velocities at 80m by up to 38%, and wind velocities above the ocean at 80m are 14% higher than corresponding open land velocities. Finally, a full wind resource assessment has been carried out at Eldsfjellet at the Norwegian island Hitra. Results were compared with measured data and simulation results from the linearized model WAsP. WAsP was found to estimate higher

  8. Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids

    Science.gov (United States)

    Nielsen, Eric J.; Diskin, Boris; Yamaleev, Nail K.

    2009-01-01

    An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.

  9. Variable High Order Multiblock Overlapping Grid Methods for Mixed Steady and Unsteady Multiscale Viscous Flows

    Science.gov (United States)

    Sjogreen, Bjoern; Yee, H. C.

    2007-01-01

    Flows containing steady or nearly steady strong shocks in parts of the flow field, and unsteady turbulence with shocklets on other parts of the flow field are difficult to capture accurately and efficiently employing the same numerical scheme even under the multiblock grid or adaptive grid refinement framework. On one hand, sixth-order or higher shock-capturing methods are appropriate for unsteady turbulence with shocklets. On the other hand, lower order shock-capturing methods are more effective for strong steady shocks in terms of convergence. In order to minimize the shortcomings of low order and high order shock-capturing schemes for the subject flows,a multi- block overlapping grid with different orders of accuracy on different blocks is proposed. Test cases to illustrate the performance of the new solver are included.

  10. Advanced Algebraic Multigrid Solvers for Subsurface Flow Simulation

    KAUST Repository

    Chen, Meng-Huo

    2015-09-13

    In this research we are particularly interested in extending the robustness of multigrid solvers to encounter complex systems related to subsurface reservoir applications for flow problems in porous media. In many cases, the step for solving the pressure filed in subsurface flow simulation becomes a bottleneck for the performance of the simulator. For solving large sparse linear system arising from MPFA discretization, we choose multigrid methods as the linear solver. The possible difficulties and issues will be addressed and the corresponding remedies will be studied. As the multigrid methods are used as the linear solver, the simulator can be parallelized (although not trivial) and the high-resolution simulation become feasible, the ultimately goal which we desire to achieve.

  11. On the implicit density based OpenFOAM solver for turbulent compressible flows

    Science.gov (United States)

    Fürst, Jiří

    The contribution deals with the development of coupled implicit density based solver for compressible flows in the framework of open source package OpenFOAM. However the standard distribution of OpenFOAM contains several ready-made segregated solvers for compressible flows, the performance of those solvers is rather week in the case of transonic flows. Therefore we extend the work of Shen [15] and we develop an implicit semi-coupled solver. The main flow field variables are updated using lower-upper symmetric Gauss-Seidel method (LU-SGS) whereas the turbulence model variables are updated using implicit Euler method.

  12. Development of an international matrix-solver prediction system on a French-Japanese international grid computing environment

    International Nuclear Information System (INIS)

    Suzuki, Yoshio; Kushida, Noriyuki; Tatekawa, Takayuki; Teshima, Naoya; Caniou, Yves; Guivarch, Ronan; Dayde, Michel; Ramet, Pierre

    2010-01-01

    The 'Research and Development of International Matrix-Solver Prediction System (REDIMPS)' project aimed at improving the TLSE sparse linear algebra expert website by establishing an international grid computing environment between Japan and France. To help users in identifying the best solver or sparse linear algebra tool for their problems, we have developed an interoperable environment between French and Japanese grid infrastructures (respectively managed by DIET and AEGIS). Two main issues were considered. The first issue is how to submit a job from DIET to AEGIS. The second issue is how to bridge the difference of security between DIET and AEGIS. To overcome these issues, we developed APIs to communicate between different grid infrastructures by improving the client API of AEGIS. By developing a server deamon program (SeD) of DIET which behaves like an AEGIS user, DIET can call functions in AEGIS: authentication, file transfer, job submission, and so on. To intensify the security, we also developed functionalities to authenticate DIET sites and DIET users in order to access AEGIS computing resources. By this study, the set of software and computers available within TLSE to find an appropriate solver is enlarged over France (DIET) and Japan (AEGIS). (author)

  13. Scalable Newton-Krylov solver for very large power flow problems

    NARCIS (Netherlands)

    Idema, R.; Lahaye, D.J.P.; Vuik, C.; Van der Sluis, L.

    2010-01-01

    The power flow problem is generally solved by the Newton-Raphson method with a sparse direct solver for the linear system of equations in each iteration. While this works fine for small power flow problems, we will show that for very large problems the direct solver is very slow and we present

  14. Development of axisymmetric lattice Boltzmann flux solver for complex multiphase flows

    Science.gov (United States)

    Wang, Yan; Shu, Chang; Yang, Li-Ming; Yuan, Hai-Zhuan

    2018-05-01

    This paper presents an axisymmetric lattice Boltzmann flux solver (LBFS) for simulating axisymmetric multiphase flows. In the solver, the two-dimensional (2D) multiphase LBFS is applied to reconstruct macroscopic fluxes excluding axisymmetric effects. Source terms accounting for axisymmetric effects are introduced directly into the governing equations. As compared to conventional axisymmetric multiphase lattice Boltzmann (LB) method, the present solver has the kinetic feature for flux evaluation and avoids complex derivations of external forcing terms. In addition, the present solver also saves considerable computational efforts in comparison with three-dimensional (3D) computations. The capability of the proposed solver in simulating complex multiphase flows is demonstrated by studying single bubble rising in a circular tube. The obtained results compare well with the published data.

  15. Scalable multi-grid preconditioning techniques for the even-parity S_N solver in UNIC

    International Nuclear Information System (INIS)

    Mahadevan, Vijay S.; Smith, Michael A.

    2011-01-01

    The Even-parity neutron transport equation with FE-S_N discretization is solved traditionally using SOR preconditioned CG method at the lowest level of iterations in order to compute the criticality in reactor analysis problems. The use of high order isoparametric finite elements prohibits the formation of the discrete operator explicitly due to memory constraints in peta scale architectures. Hence, a h-p multi-grid preconditioner based on linear tessellation of the higher order mesh is introduced here for the space-angle system and compared against SOR and Algebraic MG black-box solvers. The performance and scalability of the multi-grid scheme was determined for two test problems and found to be competitive in terms of both computational time and memory requirements. The implementation of this preconditioner in an even-parity solver like UNIC from ANL can further enable high fidelity calculations in a scalable manner on peta flop machines. (author)

  16. Computational aeroelasticity using a pressure-based solver

    Science.gov (United States)

    Kamakoti, Ramji

    A computational methodology for performing fluid-structure interaction computations for three-dimensional elastic wing geometries is presented. The flow solver used is based on an unsteady Reynolds-Averaged Navier-Stokes (RANS) model. A well validated k-ε turbulence model with wall function treatment for near wall region was used to perform turbulent flow calculations. Relative merits of alternative flow solvers were investigated. The predictor-corrector-based Pressure Implicit Splitting of Operators (PISO) algorithm was found to be computationally economic for unsteady flow computations. Wing structure was modeled using Bernoulli-Euler beam theory. A fully implicit time-marching scheme (using the Newmark integration method) was used to integrate the equations of motion for structure. Bilinear interpolation and linear extrapolation techniques were used to transfer necessary information between fluid and structure solvers. Geometry deformation was accounted for by using a moving boundary module. The moving grid capability was based on a master/slave concept and transfinite interpolation techniques. Since computations were performed on a moving mesh system, the geometric conservation law must be preserved. This is achieved by appropriately evaluating the Jacobian values associated with each cell. Accurate computation of contravariant velocities for unsteady flows using the momentum interpolation method on collocated, curvilinear grids was also addressed. Flutter computations were performed for the AGARD 445.6 wing at subsonic, transonic and supersonic Mach numbers. Unsteady computations were performed at various dynamic pressures to predict the flutter boundary. Results showed favorable agreement of experiment and previous numerical results. The computational methodology exhibited capabilities to predict both qualitative and quantitative features of aeroelasticity.

  17. Study of the adaptive refinement on an open source 2D shallow-water flow solver using quadtree grid for flash flood simulations.

    Science.gov (United States)

    Kirstetter, G.; Popinet, S.; Fullana, J. M.; Lagrée, P. Y.; Josserand, C.

    2015-12-01

    The full resolution of shallow-water equations for modeling flash floods may have a high computational cost, so that majority of flood simulation softwares used for flood forecasting uses a simplification of this model : 1D approximations, diffusive or kinematic wave approximations or exotic models using non-physical free parameters. These kind of approximations permit to save a lot of computational time by sacrificing in an unquantified way the precision of simulations. To reduce drastically the cost of such 2D simulations by quantifying the lost of precision, we propose a 2D shallow-water flow solver built with the open source code Basilisk1, which is using adaptive refinement on a quadtree grid. This solver uses a well-balanced central-upwind scheme, which is at second order in time and space, and treats the friction and rain terms implicitly in finite volume approach. We demonstrate the validity of our simulation on the case of the flood of Tewkesbury (UK) occurred in July 2007, as shown on Fig. 1. On this case, a systematic study of the impact of the chosen criterium for adaptive refinement is performed. The criterium which has the best computational time / precision ratio is proposed. Finally, we present the power law giving the computational time in respect to the maximum resolution and we show that this law for our 2D simulation is close to the one of 1D simulation, thanks to the fractal dimension of the topography. [1] http://basilisk.fr/

  18. TIGER: Turbomachinery interactive grid generation

    Science.gov (United States)

    Soni, Bharat K.; Shih, Ming-Hsin; Janus, J. Mark

    1992-01-01

    A three dimensional, interactive grid generation code, TIGER, is being developed for analysis of flows around ducted or unducted propellers. TIGER is a customized grid generator that combines new technology with methods from general grid generation codes. The code generates multiple block, structured grids around multiple blade rows with a hub and shroud for either C grid or H grid topologies. The code is intended for use with a Euler/Navier-Stokes solver also being developed, but is general enough for use with other flow solvers. TIGER features a silicon graphics interactive graphics environment that displays a pop-up window, graphics window, and text window. The geometry is read as a discrete set of points with options for several industrial standard formats and NASA standard formats. Various splines are available for defining the surface geometries. Grid generation is done either interactively or through a batch mode operation using history files from a previously generated grid. The batch mode operation can be done either with a graphical display of the interactive session or with no graphics so that the code can be run on another computer system. Run time can be significantly reduced by running on a Cray-YMP.

  19. Chimera Grid Tools

    Science.gov (United States)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  20. Detailed Aerodynamic Analysis of a Shrouded Tail Rotor Using an Unstructured Mesh Flow Solver

    Science.gov (United States)

    Lee, Hee Dong; Kwon, Oh Joon

    The detailed aerodynamics of a shrouded tail rotor in hover has been numerically studied using a parallel inviscid flow solver on unstructured meshes. The numerical method is based on a cell-centered finite-volume discretization and an implicit Gauss-Seidel time integration. The calculation was made for a single blade by imposing a periodic boundary condition between adjacent rotor blades. The grid periodicity was also imposed at the periodic boundary planes to avoid numerical inaccuracy resulting from solution interpolation. The results were compared with available experimental data and those from a disk vortex theory for validation. It was found that realistic three-dimensional modeling is important for the prediction of detailed aerodynamics of shrouded rotors including the tip clearance gap flow.

  1. A direct solver with reutilization of LU factorizations for h-adaptive finite element grids with point singularities

    KAUST Repository

    Paszyński, Maciej R.

    2013-04-01

    This paper describes a direct solver algorithm for a sequence of finite element meshes that are h-refined towards one or several point singularities. For such a sequence of grids, the solver delivers linear computational cost O(N) in terms of CPU time and memory with respect to the number of unknowns N. The linear computational cost is achieved by utilizing the recursive structure provided by the sequence of h-adaptive grids with a special construction of the elimination tree that allows for reutilization of previously computed partial LU (or Cholesky) factorizations over the entire unrefined part of the computational mesh. The reutilization technique reduces the computational cost of the entire sequence of h-refined grids from O(N2) down to O(N). Theoretical estimates are illustrated with numerical results on two- and three-dimensional model problems exhibiting one or several point singularities. © 2013 Elsevier Ltd. All rights reserved.

  2. A direct solver with reutilization of LU factorizations for h-adaptive finite element grids with point singularities

    KAUST Repository

    Paszyński, Maciej R.; Calo, Victor M.; Pardo, David

    2013-01-01

    This paper describes a direct solver algorithm for a sequence of finite element meshes that are h-refined towards one or several point singularities. For such a sequence of grids, the solver delivers linear computational cost O(N) in terms of CPU time and memory with respect to the number of unknowns N. The linear computational cost is achieved by utilizing the recursive structure provided by the sequence of h-adaptive grids with a special construction of the elimination tree that allows for reutilization of previously computed partial LU (or Cholesky) factorizations over the entire unrefined part of the computational mesh. The reutilization technique reduces the computational cost of the entire sequence of h-refined grids from O(N2) down to O(N). Theoretical estimates are illustrated with numerical results on two- and three-dimensional model problems exhibiting one or several point singularities. © 2013 Elsevier Ltd. All rights reserved.

  3. MEDUSA - An overset grid flow solver for network-based parallel computer systems

    Science.gov (United States)

    Smith, Merritt H.; Pallis, Jani M.

    1993-01-01

    Continuing improvement in processing speed has made it feasible to solve the Reynolds-Averaged Navier-Stokes equations for simple three-dimensional flows on advanced workstations. Combining multiple workstations into a network-based heterogeneous parallel computer allows the application of programming principles learned on MIMD (Multiple Instruction Multiple Data) distributed memory parallel computers to the solution of larger problems. An overset-grid flow solution code has been developed which uses a cluster of workstations as a network-based parallel computer. Inter-process communication is provided by the Parallel Virtual Machine (PVM) software. Solution speed equivalent to one-third of a Cray-YMP processor has been achieved from a cluster of nine commonly used engineering workstation processors. Load imbalance and communication overhead are the principal impediments to parallel efficiency in this application.

  4. Simplified Eigen-structure decomposition solver for the simulation of two-phase flow systems

    International Nuclear Information System (INIS)

    Kumbaro, Anela

    2012-01-01

    This paper discusses the development of a new solver for a system of first-order non-linear differential equations that model the dynamics of compressible two-phase flow. The solver presents a lower-complexity alternative to Roe-type solvers because it only makes use of a partial Eigen-structure information while maintaining its accuracy: the outcome is hence a good complexity-tractability trade-off to consider as relevant in a large number of situations in the scope of two-phase flow numerical simulation. A number of numerical and physical benchmarks are presented to assess the solver. Comparison between the computational results from the simplified Eigen-structure decomposition solver and the conventional Roe-type solver gives insight upon the issues of accuracy, robustness and efficiency. (authors)

  5. A scalable geometric multigrid solver for nonsymmetric elliptic systems with application to variable-density flows

    Science.gov (United States)

    Esmaily, M.; Jofre, L.; Mani, A.; Iaccarino, G.

    2018-03-01

    A geometric multigrid algorithm is introduced for solving nonsymmetric linear systems resulting from the discretization of the variable density Navier-Stokes equations on nonuniform structured rectilinear grids and high-Reynolds number flows. The restriction operation is defined such that the resulting system on the coarser grids is symmetric, thereby allowing for the use of efficient smoother algorithms. To achieve an optimal rate of convergence, the sequence of interpolation and restriction operations are determined through a dynamic procedure. A parallel partitioning strategy is introduced to minimize communication while maintaining the load balance between all processors. To test the proposed algorithm, we consider two cases: 1) homogeneous isotropic turbulence discretized on uniform grids and 2) turbulent duct flow discretized on stretched grids. Testing the algorithm on systems with up to a billion unknowns shows that the cost varies linearly with the number of unknowns. This O (N) behavior confirms the robustness of the proposed multigrid method regarding ill-conditioning of large systems characteristic of multiscale high-Reynolds number turbulent flows. The robustness of our method to density variations is established by considering cases where density varies sharply in space by a factor of up to 104, showing its applicability to two-phase flow problems. Strong and weak scalability studies are carried out, employing up to 30,000 processors, to examine the parallel performance of our implementation. Excellent scalability of our solver is shown for a granularity as low as 104 to 105 unknowns per processor. At its tested peak throughput, it solves approximately 4 billion unknowns per second employing over 16,000 processors with a parallel efficiency higher than 50%.

  6. Wind turbine aerodynamics using an incompressible overset grid method

    DEFF Research Database (Denmark)

    Zahle, Frederik; Johansen, Jeppe; Sørensen, Niels N.

    2007-01-01

    In this paper 3D Navier-Stokes simulations of the unsteady flow over the NREL Phase VI turbine are presented. The computations are carried out using the structured grid, incompressible, finite volume flow solver EllipSys3D, which has been extended to include the use of overset grids. Computations...

  7. A new algorithm of the coupled solver for an incompressible flow

    International Nuclear Information System (INIS)

    Morii, Tadashi; Akamatsu, Mikio

    2009-01-01

    Verification and Validation (V and V) of CFD results is the key issue on applying CFD to nuclear reactor safety that needs high reliability of calculated results. Those include quantification of uncertainty by grid convergence studies (verification) and comparison with experiments (validation). The task for the systematic refinement of the grid size to demonstrate grid convergence of CFD results demands a large amount of computer resources because the calculation time tends to increase drastically with an increase of the number of the grid points. The segregated method employed by almost all commercial codes has the drawback that the iterations required for convergence are strongly dependent on the number of grid points. Since a decoupling between the momentum and continuity equations is attributed to the drawback, the coupled solution method in which the momentum and continuity equations are solved simultaneously can be an effective alternative to the segregated method. In fact, the coupled solution method has the preferable characteristics for iteration, which is little dependence on the number of grid points and requires no relaxation factors. However, the coefficient matrix of the coupled linear equation has a notable feature that the diagonal elements corresponding to the continuity are zero. In order to employ the iterative method for matrix solver such as the SOR and ICCG, preconditioning of the coefficient matrix of the original coupled linear equation is required. Constructing preconditioners has been and remains a most active area of research, and nevertheless no single 'best' method exists. Considering this issue from the physical viewpoint of the fluid dynamics, the new method SOAR has been developed to avoid the zero diagonal problem by replacing the real velocity field with newly defined artificial velocity field. This paper described to extend the SOAR to be applied to a wide range of flow encountered in nuclear reactor safety problems. (author)

  8. Numerical solver for compressible two-fluid flow

    NARCIS (Netherlands)

    J. Naber (Jorick)

    2005-01-01

    textabstractThis report treats the development of a numerical solver for the simulation of flows of two non-mixing fluids described by the two-dimensional Euler equations. A level-set equation in conservative form describes the interface. After each time step the deformed level-set function is

  9. Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations

    Science.gov (United States)

    van Hooft, J. Antoon; Popinet, Stéphane; van Heerwaarden, Chiel C.; van der Linden, Steven J. A.; de Roode, Stephan R.; van de Wiel, Bas J. H.

    2018-02-01

    We present a proof-of-concept for the adaptive mesh refinement method applied to atmospheric boundary-layer simulations. Such a method may form an attractive alternative to static grids for studies on atmospheric flows that have a high degree of scale separation in space and/or time. Examples include the diurnal cycle and a convective boundary layer capped by a strong inversion. For such cases, large-eddy simulations using regular grids often have to rely on a subgrid-scale closure for the most challenging regions in the spatial and/or temporal domain. Here we analyze a flow configuration that describes the growth and subsequent decay of a convective boundary layer using direct numerical simulation (DNS). We validate the obtained results and benchmark the performance of the adaptive solver against two runs using fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen and refine the grid dynamically whilst maintaining an accurate solution. In particular, during the initial growth of the convective boundary layer a high resolution is required compared to the subsequent stage of decaying turbulence. More specifically, the number of grid cells varies by two orders of magnitude over the course of the simulation. For this specific DNS case, the adaptive solver was not yet more efficient than the more traditional solver that is dedicated to these types of flows. However, the overall analysis shows that the method has a clear potential for numerical investigations of the most challenging atmospheric cases.

  10. Dynamic Programming Algorithm for Generation of Optimal Elimination Trees for Multi-frontal Direct Solver Over H-refined Grids

    KAUST Repository

    AbouEisha, Hassan M.; Moshkov, Mikhail; Calo, Victor M.; Paszynski, Maciej; Goik, Damian; Jopek, Konrad

    2014-01-01

    In this paper we present a dynamic programming algorithm for finding optimal elimination trees for computational grids refined towards point or edge singularities. The elimination tree is utilized to guide the multi-frontal direct solver algorithm

  11. Wind turbine rotor-tower interaction using an incompressible overset grid method

    DEFF Research Database (Denmark)

    Zahle, Frederik; Johansen, Jeppe; Sørensen, Niels N.

    2007-01-01

    In this paper 3D Navier-Stokes simulations of the flow over the NREL Phase VI turbine are presented. The computations are carried out using the structured grid, incompressible, finite volume flow solver EllipSys3D, which has been extended to include the use of overset grids. Computations are pres...

  12. Evaluating the performance of the two-phase flow solver interFoam

    International Nuclear Information System (INIS)

    Deshpande, Suraj S; Anumolu, Lakshman; Trujillo, Mario F

    2012-01-01

    The performance of the open source multiphase flow solver, interFoam, is evaluated in this work. The solver is based on a modified volume of fluid (VoF) approach, which incorporates an interfacial compression flux term to mitigate the effects of numerical smearing of the interface. It forms a part of the C + + libraries and utilities of OpenFOAM and is gaining popularity in the multiphase flow research community. However, to the best of our knowledge, the evaluation of this solver is confined to the validation tests of specific interest to the users of the code and the extent of its applicability to a wide range of multiphase flow situations remains to be explored. In this work, we have performed a thorough investigation of the solver performance using a variety of verification and validation test cases, which include (i) verification tests for pure advection (kinematics), (ii) dynamics in the high Weber number limit and (iii) dynamics of surface tension-dominated flows. With respect to (i), the kinematics tests show that the performance of interFoam is generally comparable with the recent algebraic VoF algorithms; however, it is noticeably worse than the geometric reconstruction schemes. For (ii), the simulations of inertia-dominated flows with large density ratios ∼O(10 3 ) yielded excellent agreement with analytical and experimental results. In regime (iii), where surface tension is important, consistency of pressure–surface tension formulation and accuracy of curvature are important, as established by Francois et al (2006 J. Comput. Phys. 213 141–73). Several verification tests were performed along these lines and the main findings are: (a) the algorithm of interFoam ensures a consistent formulation of pressure and surface tension; (b) the curvatures computed by the solver converge to a value slightly (10%) different from the analytical value and a scope for improvement exists in this respect. To reduce the disruptive effects of spurious currents, we

  13. Evaluating the performance of the two-phase flow solver interFoam

    Science.gov (United States)

    Deshpande, Suraj S.; Anumolu, Lakshman; Trujillo, Mario F.

    2012-01-01

    The performance of the open source multiphase flow solver, interFoam, is evaluated in this work. The solver is based on a modified volume of fluid (VoF) approach, which incorporates an interfacial compression flux term to mitigate the effects of numerical smearing of the interface. It forms a part of the C + + libraries and utilities of OpenFOAM and is gaining popularity in the multiphase flow research community. However, to the best of our knowledge, the evaluation of this solver is confined to the validation tests of specific interest to the users of the code and the extent of its applicability to a wide range of multiphase flow situations remains to be explored. In this work, we have performed a thorough investigation of the solver performance using a variety of verification and validation test cases, which include (i) verification tests for pure advection (kinematics), (ii) dynamics in the high Weber number limit and (iii) dynamics of surface tension-dominated flows. With respect to (i), the kinematics tests show that the performance of interFoam is generally comparable with the recent algebraic VoF algorithms; however, it is noticeably worse than the geometric reconstruction schemes. For (ii), the simulations of inertia-dominated flows with large density ratios {\\sim }\\mathscr {O}(10^3) yielded excellent agreement with analytical and experimental results. In regime (iii), where surface tension is important, consistency of pressure-surface tension formulation and accuracy of curvature are important, as established by Francois et al (2006 J. Comput. Phys. 213 141-73). Several verification tests were performed along these lines and the main findings are: (a) the algorithm of interFoam ensures a consistent formulation of pressure and surface tension; (b) the curvatures computed by the solver converge to a value slightly (10%) different from the analytical value and a scope for improvement exists in this respect. To reduce the disruptive effects of spurious

  14. GENIE - Generation of computational geometry-grids for internal-external flow configurations

    Science.gov (United States)

    Soni, B. K.

    1988-01-01

    Progress realized in the development of a master geometry-grid generation code GENIE is presented. The grid refinement process is enhanced by developing strategies to utilize bezier curves/surfaces and splines along with weighted transfinite interpolation technique and by formulating new forcing function for the elliptic solver based on the minimization of a non-orthogonality functional. A two step grid adaptation procedure is developed by optimally blending adaptive weightings with weighted transfinite interpolation technique. Examples of 2D-3D grids are provided to illustrate the success of these methods.

  15. A CFD Heterogeneous Parallel Solver Based on Collaborating CPU and GPU

    Science.gov (United States)

    Lai, Jianqi; Tian, Zhengyu; Li, Hua; Pan, Sha

    2018-03-01

    Since Graphic Processing Unit (GPU) has a strong ability of floating-point computation and memory bandwidth for data parallelism, it has been widely used in the areas of common computing such as molecular dynamics (MD), computational fluid dynamics (CFD) and so on. The emergence of compute unified device architecture (CUDA), which reduces the complexity of compiling program, brings the great opportunities to CFD. There are three different modes for parallel solution of NS equations: parallel solver based on CPU, parallel solver based on GPU and heterogeneous parallel solver based on collaborating CPU and GPU. As we can see, GPUs are relatively rich in compute capacity but poor in memory capacity and the CPUs do the opposite. We need to make full use of the GPUs and CPUs, so a CFD heterogeneous parallel solver based on collaborating CPU and GPU has been established. Three cases are presented to analyse the solver’s computational accuracy and heterogeneous parallel efficiency. The numerical results agree well with experiment results, which demonstrate that the heterogeneous parallel solver has high computational precision. The speedup on a single GPU is more than 40 for laminar flow, it decreases for turbulent flow, but it still can reach more than 20. What’s more, the speedup increases as the grid size becomes larger.

  16. High-order Two-Fluid Plasma Solver for Direct Numerical Simulations of Magnetic Flows with Realistic Transport Phenomena

    Science.gov (United States)

    Li, Zhaorui; Livescu, Daniel

    2017-11-01

    The two-fluid plasma equations with full transport terms, including temperature and magnetic field dependent ion and electron viscous stresses and heat fluxes, frictional drag force, and ohmic heating term have been solved by using the sixth-order non-dissipative compact scheme for plasma flows in several different regimes. In order to be able to fully resolve all the dynamically relevant time and length scales while maintaining computational feasibility, the assumptions of infinite speed of light and negligible electron inertia have been made. The accuracy and robustness of this two-fluid plasma solver in handling plasma flows have been tested against a series of canonical problems, such as Alfven-Whistler dispersion relation, electromagnetic plasma shock, magnetic reconnection, etc. For all test cases, grid convergence tests have been conducted to achieve fully resolved results. The roles of heat flux, viscosity, resistivity, Hall and Biermann battery effects, are investigated for the canonical flows studied.

  17. Toward a Grid Work flow Formal Composition

    International Nuclear Information System (INIS)

    Hlaoui, Y. B.; BenAyed, L. J.

    2007-01-01

    This paper exposes a new approach for the composition of grid work flow models. This approach proposes an abstract syntax for the UML Activity Diagrams (UML-AD) and a formal foundation for grid work flow composition in form of a work flow algebra based on UML-AD. This composition fulfils the need for collaborative model development particularly the specification and the reduction of the complexity of grid work flow model verification. This complexity has arisen with the increase in scale of grid work flow applications such as science and e-business applications since large amounts of computational resources are required and multiple parties could be involved in the development process and in the use of grid work flows. Furthermore, the proposed algebra allows the definition of work flow views which are useful to limit the access to predefined users in order to ensure the security of grid work flow applications. (Author)

  18. An adaptive mesh refinement-multiphase lattice Boltzmann flux solver for simulation of complex binary fluid flows

    Science.gov (United States)

    Yuan, H. Z.; Wang, Y.; Shu, C.

    2017-12-01

    This paper presents an adaptive mesh refinement-multiphase lattice Boltzmann flux solver (AMR-MLBFS) for effective simulation of complex binary fluid flows at large density ratios. In this method, an AMR algorithm is proposed by introducing a simple indicator on the root block for grid refinement and two possible statuses for each block. Unlike available block-structured AMR methods, which refine their mesh by spawning or removing four child blocks simultaneously, the present method is able to refine its mesh locally by spawning or removing one to four child blocks independently when the refinement indicator is triggered. As a result, the AMR mesh used in this work can be more focused on the flow region near the phase interface and its size is further reduced. In each block of mesh, the recently proposed MLBFS is applied for the solution of the flow field and the level-set method is used for capturing the fluid interface. As compared with existing AMR-lattice Boltzmann models, the present method avoids both spatial and temporal interpolations of density distribution functions so that converged solutions on different AMR meshes and uniform grids can be obtained. The proposed method has been successfully validated by simulating a static bubble immersed in another fluid, a falling droplet, instabilities of two-layered fluids, a bubble rising in a box, and a droplet splashing on a thin film with large density ratios and high Reynolds numbers. Good agreement with the theoretical solution, the uniform-grid result, and/or the published data has been achieved. Numerical results also show its effectiveness in saving computational time and virtual memory as compared with computations on uniform meshes.

  19. A Solution Adaptive Structured/Unstructured Overset Grid Flow Solver with Applications to Helicopter Rotor Flows

    Science.gov (United States)

    Duque, Earl P. N.; Biswas, Rupak; Strawn, Roger C.

    1995-01-01

    This paper summarizes a method that solves both the three dimensional thin-layer Navier-Stokes equations and the Euler equations using overset structured and solution adaptive unstructured grids with applications to helicopter rotor flowfields. The overset structured grids use an implicit finite-difference method to solve the thin-layer Navier-Stokes/Euler equations while the unstructured grid uses an explicit finite-volume method to solve the Euler equations. Solutions on a helicopter rotor in hover show the ability to accurately convect the rotor wake. However, isotropic subdivision of the tetrahedral mesh rapidly increases the overall problem size.

  20. GPU accelerated flow solver for direct numerical simulation of turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Salvadore, Francesco [CASPUR – via dei Tizii 6/b, 00185 Rome (Italy); Bernardini, Matteo, E-mail: matteo.bernardini@uniroma1.it [Department of Mechanical and Aerospace Engineering, University of Rome ‘La Sapienza’ – via Eudossiana 18, 00184 Rome (Italy); Botti, Michela [CASPUR – via dei Tizii 6/b, 00185 Rome (Italy)

    2013-02-15

    Graphical processing units (GPUs), characterized by significant computing performance, are nowadays very appealing for the solution of computationally demanding tasks in a wide variety of scientific applications. However, to run on GPUs, existing codes need to be ported and optimized, a procedure which is not yet standardized and may require non trivial efforts, even to high-performance computing specialists. In the present paper we accurately describe the porting to CUDA (Compute Unified Device Architecture) of a finite-difference compressible Navier–Stokes solver, suitable for direct numerical simulation (DNS) of turbulent flows. Porting and validation processes are illustrated in detail, with emphasis on computational strategies and techniques that can be applied to overcome typical bottlenecks arising from the porting of common computational fluid dynamics solvers. We demonstrate that a careful optimization work is crucial to get the highest performance from GPU accelerators. The results show that the overall speedup of one NVIDIA Tesla S2070 GPU is approximately 22 compared with one AMD Opteron 2352 Barcelona chip and 11 compared with one Intel Xeon X5650 Westmere core. The potential of GPU devices in the simulation of unsteady three-dimensional turbulent flows is proved by performing a DNS of a spatially evolving compressible mixing layer.

  1. High-resolution multi-code implementation of unsteady Navier-Stokes flow solver based on paralleled overset adaptive mesh refinement and high-order low-dissipation hybrid schemes

    Science.gov (United States)

    Li, Gaohua; Fu, Xiang; Wang, Fuxin

    2017-10-01

    The low-dissipation high-order accurate hybrid up-winding/central scheme based on fifth-order weighted essentially non-oscillatory (WENO) and sixth-order central schemes, along with the Spalart-Allmaras (SA)-based delayed detached eddy simulation (DDES) turbulence model, and the flow feature-based adaptive mesh refinement (AMR), are implemented into a dual-mesh overset grid infrastructure with parallel computing capabilities, for the purpose of simulating vortex-dominated unsteady detached wake flows with high spatial resolutions. The overset grid assembly (OGA) process based on collection detection theory and implicit hole-cutting algorithm achieves an automatic coupling for the near-body and off-body solvers, and the error-and-try method is used for obtaining a globally balanced load distribution among the composed multiple codes. The results of flows over high Reynolds cylinder and two-bladed helicopter rotor show that the combination of high-order hybrid scheme, advanced turbulence model, and overset adaptive mesh refinement can effectively enhance the spatial resolution for the simulation of turbulent wake eddies.

  2. A Fokker-Planck-Landau collision equation solver on two-dimensional velocity grid and its application to particle-in-cell simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, E. S.; Chang, C. S., E-mail: cschang@pppl.gov [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Korea Advanced Institute of Science and Technology, Yuseong-gu, DaeJeon 305-701 (Korea, Republic of)

    2014-03-15

    An approximate two-dimensional solver of the nonlinear Fokker-Planck-Landau collision operator has been developed using the assumption that the particle probability distribution function is independent of gyroangle in the limit of strong magnetic field. The isotropic one-dimensional scheme developed for nonlinear Fokker-Planck-Landau equation by Buet and Cordier [J. Comput. Phys. 179, 43 (2002)] and for linear Fokker-Planck-Landau equation by Chang and Cooper [J. Comput. Phys. 6, 1 (1970)] have been modified and extended to two-dimensional nonlinear equation. In addition, a method is suggested to apply the new velocity-grid based collision solver to Lagrangian particle-in-cell simulation by adjusting the weights of marker particles and is applied to a five dimensional particle-in-cell code to calculate the neoclassical ion thermal conductivity in a tokamak plasma. Error verifications show practical aspects of the present scheme for both grid-based and particle-based kinetic codes.

  3. COMPARATIVE STUDY OF THREE LINEAR SYSTEM SOLVER APPLIED TO FAST DECOUPLED LOAD FLOW METHOD FOR CONTINGENCY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Syafii

    2017-03-01

    Full Text Available This paper presents the assessment of fast decoupled load flow computation using three linear system solver scheme. The full matrix version of the fast decoupled load flow based on XB methods used in this study. The numerical investigations are carried out on the small and large test systems. The execution time of small system such as IEEE 14, 30, and 57 are very fast, therefore the computation time can not be compared for these cases. Another cases IEEE 118, 300 and TNB 664 produced significant execution speedup. The superLU factorization sparse matrix solver has best performance and speedup of load flow solution as well as in contigency analysis. The invers full matrix solver can solved only for IEEE 118 bus test system in 3.715 second and for another cases take too long time. However for superLU factorization linear solver can solved all of test system in 7.832 second for a largest of test system. Therefore the superLU factorization linear solver can be a viable alternative applied in contingency analysis.

  4. Parametric analysis of protective grid flow induced vibration

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jooyoung; Eom, Kyongbo; Jeon, Sangyoun; Suh, Jungmin [KEPCO NF Co., Daejeon (Korea, Republic of)

    2012-10-15

    Protective grid (P-grid) flow-induced vibration in a nuclear power reactor is one of the critical factors for the mechanical integrity of a nuclear fuel. The P-grid is located at the lower most position above the bottom nozzle of the nuclear fuel as shown in Fig. 1, and it is required for not only filtering debris, but also supporting fuel rods. On the other hand, P-grid working conditions installed in a nuclear fuel in a reactor are severe in terms of flow speed, temperature and pressure. Considering such a severe condition of P-grid's functional performance in working environment, excessive vibration could be developed. Furthermore, if the P-grid is exposed to high levels of excessive vibration over a long period of time, fatigue failure could be unavoidable. Therefore, it is important to reduce excessive vibration while maintaining P-grid's own functional performance. KEPCO Nuclear Fuel has developed a test facility - Investigation Flow-induced Vibration (INFINIT) - to study flow-induced vibration caused by flowing coolant at various flow rates. To investigate specific relationships between configuration of P-grid and flow-induced vibration characteristics, several types of the P-grids were tested in INFINIT facility. And, based on the test results through parametric studies, the flow-induced vibration characteristics could be analyzed, and critical design parameters were found.

  5. A sparse version of IGA solvers

    KAUST Repository

    Beck, Joakim; Sangalli, Giancarlo; Tamellini, Lorenzo

    2017-01-01

    Isogeometric Analysis (IGA) typically adopts tensor-product splines and NURBS as a basis for the approximation of the solution of PDEs. In this work, we investigate to which extent IGA solvers can benefit from the so-called sparse-grids construction in its combination technique form, which was first introduced in the early 90s in the context of the approximation of high-dimensional PDEs. The tests that we report show that, in accordance to the literature, a sparse grids construction can indeed be useful if the solution of the PDE at hand is sufficiently smooth. Sparse grids can also be useful in the case of non-smooth solutions when some a-priori knowledge on the location of the singularities of the solution can be exploited to devise suitable non-equispaced meshes. Finally, we remark that sparse grids can be seen as a simple way to parallelize pre-existing serial IGA solvers in a straightforward fashion, which can be beneficial in many practical situations.

  6. A sparse version of IGA solvers

    KAUST Repository

    Beck, Joakim

    2017-07-30

    Isogeometric Analysis (IGA) typically adopts tensor-product splines and NURBS as a basis for the approximation of the solution of PDEs. In this work, we investigate to which extent IGA solvers can benefit from the so-called sparse-grids construction in its combination technique form, which was first introduced in the early 90s in the context of the approximation of high-dimensional PDEs. The tests that we report show that, in accordance to the literature, a sparse grids construction can indeed be useful if the solution of the PDE at hand is sufficiently smooth. Sparse grids can also be useful in the case of non-smooth solutions when some a-priori knowledge on the location of the singularities of the solution can be exploited to devise suitable non-equispaced meshes. Finally, we remark that sparse grids can be seen as a simple way to parallelize pre-existing serial IGA solvers in a straightforward fashion, which can be beneficial in many practical situations.

  7. Resolving Neighbourhood Relations in a Parallel Fluid Dynamic Solver

    KAUST Repository

    Frisch, Jerome; Mundani, Ralf-Peter; Rank, Ernst

    2012-01-01

    solver with a special aspect on the hierarchical data structure, unique cell and grid identification, and the neighbourhood relations in-between grids on different processes. A special server concept keeps track of every grid over all processes while

  8. Development and validation of a magneto-hydrodynamic solver for blood flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kainz, W; Guag, J; Krauthamer, V; Myklebust, J; Bassen, H; Chang, I [Center for Devices and Radiological Health, FDA, Silver Spring, MD (United States); Benkler, S; Chavannes, N [Schmid and Partner Engineering AG, Zurich (Switzerland); Szczerba, D; Neufeld, E; Kuster, N [Foundation for Research on Information Technology in Society (IT' IS), Zurich (Switzerland); Kim, J H; Sarntinoranont, M, E-mail: wolfgang.kainz@fda.hhs.go [Soft Tissue Mechanics and Drug Delivery Laboratory, Mechanical and Aerospace Engineering, University of Florida, FL (United States)

    2010-12-07

    The objective of this study was to develop a numerical solver to calculate the magneto-hydrodynamic (MHD) signal produced by a moving conductive liquid, i.e. blood flow in the great vessels of the heart, in a static magnetic field. We believe that this MHD signal is able to non-invasively characterize cardiac blood flow in order to supplement the present non-invasive techniques for the assessment of heart failure conditions. The MHD signal can be recorded on the electrocardiogram (ECG) while the subject is exposed to a strong static magnetic field. The MHD signal can only be measured indirectly as a combination of the heart's electrical signal and the MHD signal. The MHD signal itself is caused by induced electrical currents in the blood due to the moving of the blood in the magnetic field. To characterize and eventually optimize MHD measurements, we developed a MHD solver based on a finite element code. This code was validated against literature, experimental and analytical data. The validation of the MHD solver shows good agreement with all three reference values. Future studies will include the calculation of the MHD signals for anatomical models. We will vary the orientation of the static magnetic field to determine an optimized location for the measurement of the MHD blood flow signal.

  9. Finite Volume Methods for Incompressible Navier-Stokes Equations on Collocated Grids with Nonconformal Interfaces

    DEFF Research Database (Denmark)

    Kolmogorov, Dmitry

    turbine computations, collocated grid-based SIMPLE-like algorithms are developed for computations on block-structured grids with nonconformal interfaces. A technique to enhance both the convergence speed and the solution accuracy of the SIMPLE-like algorithms is presented. The erroneous behavior, which...... versions of the SIMPLE algorithm. The new technique is implemented in an existing conservative 2nd order finite-volume scheme flow solver (EllipSys), which is extended to cope with grids with nonconformal interfaces. The behavior of the discrete Navier-Stokes equations is discussed in detail...... Block LU relaxation scheme is shown to possess several optimal conditions, which enables to preserve high efficiency of the multigrid solver on both conformal and nonconformal grids. The developments are done using a parallel MPI algorithm, which can handle multiple numbers of interfaces with multiple...

  10. Accuracy of an unstructured-grid upwind-Euler algorithm for the ONERA M6 wing

    Science.gov (United States)

    Batina, John T.

    1991-01-01

    Improved algorithms for the solution of the three-dimensional, time-dependent Euler equations are presented for aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured-grid flow solvers. The spatial discretization involves a flux-split approach that is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves either an explicit time-integration scheme using a multistage Runge-Kutta procedure or an implicit time-integration scheme using a Gauss-Seidel relaxation procedure, which is computationally efficient for either steady or unsteady flow problems. With the implicit Gauss-Seidel procedure, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady flow results are presented for both the NACA 0012 airfoil and the Office National d'Etudes et de Recherches Aerospatiales M6 wing to demonstrate applications of the new Euler solvers. The paper presents a description of the Euler solvers along with results and comparisons that assess the capability.

  11. Wing aeroelasticity analysis based on an integral boundary-layer method coupled with Euler solver

    Directory of Open Access Journals (Sweden)

    Ma Yanfeng

    2016-10-01

    Full Text Available An interactive boundary-layer method, which solves the unsteady flow, is developed for aeroelastic computation in the time domain. The coupled method combines the Euler solver with the integral boundary-layer solver (Euler/BL in a “semi-inverse” manner to compute flows with the inviscid and viscous interaction. Unsteady boundary conditions on moving surfaces are taken into account by utilizing the approximate small-perturbation method without moving the computational grids. The steady and unsteady flow calculations for the LANN wing are presented. The wing tip displacement of high Reynolds number aero-structural dynamics (HIRENASD Project is simulated under different angles of attack. The flutter-boundary predictions for the AGARD 445.6 wing are provided. The results of the interactive boundary-layer method are compared with those of the Euler method and experimental data. The study shows that viscous effects are significant for these cases and the further data analysis confirms the validity and practicability of the coupled method.

  12. User's Manual for FOMOCO Utilities-Force and Moment Computation Tools for Overset Grids

    Science.gov (United States)

    Chan, William M.; Buning, Pieter G.

    1996-01-01

    In the numerical computations of flows around complex configurations, accurate calculations of force and moment coefficients for aerodynamic surfaces are required. When overset grid methods are used, the surfaces on which force and moment coefficients are sought typically consist of a collection of overlapping surface grids. Direct integration of flow quantities on the overlapping grids would result in the overlapped regions being counted more than once. The FOMOCO Utilities is a software package for computing flow coefficients (force, moment, and mass flow rate) on a collection of overset surfaces with accurate accounting of the overlapped zones. FOMOCO Utilities can be used in stand-alone mode or in conjunction with the Chimera overset grid compressible Navier-Stokes flow solver OVERFLOW. The software package consists of two modules corresponding to a two-step procedure: (1) hybrid surface grid generation (MIXSUR module), and (2) flow quantities integration (OVERINT module). Instructions on how to use this software package are described in this user's manual. Equations used in the flow coefficients calculation are given in Appendix A.

  13. Computing Flows Using Chimera and Unstructured Grids

    Science.gov (United States)

    Liou, Meng-Sing; Zheng, Yao

    2006-01-01

    DRAGONFLOW is a computer program that solves the Navier-Stokes equations of flows in complexly shaped three-dimensional regions discretized by use of a direct replacement of arbitrary grid overlapping by nonstructured (DRAGON) grid. A DRAGON grid (see figure) is a combination of a chimera grid (a composite of structured subgrids) and a collection of unstructured subgrids. DRAGONFLOW incorporates modified versions of two prior Navier-Stokes-equation-solving programs: OVERFLOW, which is designed to solve on chimera grids; and USM3D, which is used to solve on unstructured grids. A master module controls the invocation of individual modules in the libraries. At each time step of a simulated flow, DRAGONFLOW is invoked on the chimera portion of the DRAGON grid in alternation with USM3D, which is invoked on the unstructured subgrids of the DRAGON grid. The USM3D and OVERFLOW modules then immediately exchange their solutions and other data. As a result, USM3D and OVERFLOW are coupled seamlessly.

  14. A compact active grid for stirring pipe flow

    NARCIS (Netherlands)

    Verbeek, A.A.; Pos, R.C.; Stoffels, G.G.M.; Geurts, B.J.; Meer, van der Th.

    2013-01-01

    A compact active grid is developed with which a pipe flow can be stirred in order to enhance the turbulence. The active grid is composed of a stationary and a rotating disk with characteristic hole patterns. This active grid is placed inside the pipe, allowing flow to pass through it. With only one

  15. A compact active grid for stirring pipe flow

    NARCIS (Netherlands)

    Verbeek, Antonie Alex; Pos, R.C.; Stoffels, Genie G.M.; Geurts, Bernardus J.; van der Meer, Theodorus H.

    A compact active grid is developed with which a pipe flow can be stirred in order to enhance the turbulence. The active grid is composed of a stationary and a rotating disk with characteristic hole patterns. This active grid is placed inside the pipe, allowing flow to pass through it. With only one

  16. Navier-Stokes calculations on multi-element airfoils using a chimera-based solver

    Science.gov (United States)

    Jasper, Donald W.; Agrawal, Shreekant; Robinson, Brian A.

    1993-01-01

    A study of Navier-Stokes calculations of flows about multielement airfoils using a chimera grid approach is presented. The chimera approach utilizes structured, overlapped grids which allow great flexibility of grid arrangement and simplifies grid generation. Calculations are made for two-, three-, and four-element airfoils, and modeling of the effect of gap distance between elements is demonstrated for a two element case. Solutions are obtained using the thin-layer form of the Reynolds averaged Navier-Stokes equations with turbulence closure provided by the Baldwin-Lomax algebraic model or the Baldwin-Barth one equation model. The Baldwin-Barth turbulence model is shown to provide better agreement with experimental data and to dramatically improve convergence rates for some cases. Recently developed, improved farfield boundary conditions are incorporated into the solver for greater efficiency. Computed results show good comparison with experimental data which include aerodynamic forces, surface pressures, and boundary layer velocity profiles.

  17. Effects of high-frequency damping on iterative convergence of implicit viscous solver

    Science.gov (United States)

    Nishikawa, Hiroaki; Nakashima, Yoshitaka; Watanabe, Norihiko

    2017-11-01

    This paper discusses effects of high-frequency damping on iterative convergence of an implicit defect-correction solver for viscous problems. The study targets a finite-volume discretization with a one parameter family of damped viscous schemes. The parameter α controls high-frequency damping: zero damping with α = 0, and larger damping for larger α (> 0). Convergence rates are predicted for a model diffusion equation by a Fourier analysis over a practical range of α. It is shown that the convergence rate attains its minimum at α = 1 on regular quadrilateral grids, and deteriorates for larger values of α. A similar behavior is observed for regular triangular grids. In both quadrilateral and triangular grids, the solver is predicted to diverge for α smaller than approximately 0.5. Numerical results are shown for the diffusion equation and the Navier-Stokes equations on regular and irregular grids. The study suggests that α = 1 and 4/3 are suitable values for robust and efficient computations, and α = 4 / 3 is recommended for the diffusion equation, which achieves higher-order accuracy on regular quadrilateral grids. Finally, a Jacobian-Free Newton-Krylov solver with the implicit solver (a low-order Jacobian approximately inverted by a multi-color Gauss-Seidel relaxation scheme) used as a variable preconditioner is recommended for practical computations, which provides robust and efficient convergence for a wide range of α.

  18. Nonlinear multigrid solvers exploiting AMGe coarse spaces with approximation properties

    DEFF Research Database (Denmark)

    Christensen, Max la Cour; Vassilevski, Panayot S.; Villa, Umberto

    2017-01-01

    discretizations on general unstructured grids for a large class of nonlinear partial differential equations, including saddle point problems. The approximation properties of the coarse spaces ensure that our FAS approach for general unstructured meshes leads to optimal mesh-independent convergence rates similar...... to those achieved by geometric FAS on a nested hierarchy of refined meshes. In the numerical results, Newton’s method and Picard iterations with state-of-the-art inner linear solvers are compared to our FAS algorithm for the solution of a nonlinear saddle point problem arising from porous media flow...

  19. A study of the pressure correction approach in the colocated grid arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Miettinen, A. [Helsinki University of Technology, Espoo (Finland)

    1997-12-31

    A pressure correction approach in a collocated grid arrangement is studied. The SIMPLE algorithm has been implemented into a two-dimensional Navier-Stokes solver for incompressible flows. A multigrid Poisson solver for the pressure correction equation is utilized. It has been tested alone and as a part of the Navier- Stokes solver. In the former case. the improvement in the convergence rate is remarkable. As a part of a carefully performed Navier-Stokes computation, the multigrid Poisson solver is able to decrease the total CPU time to one third. Cell-face velocity formulas for the continuity equation are also studied. The solution method is tested using several flow cases including a lid-driven cavity and a buoyancy-driven flow. The Rhie and Chow interpolation method and its simplified and limited versions are compared with each other. The traditional Rhie and Chow interpolation method had problems if the flow field contained a high pressure gradient, which can be overcome by using the two latter versions. For buoyancy-driven flows, a body force term in the cell-face velocity formula has been proposed, but the buoyancy-driven test case (Ra -> 10{sup 9}) indicated that this is not necessary. (orig.) 72 refs.

  20. Approximate Riemann solvers and flux vector splitting schemes for two-phase flow

    International Nuclear Information System (INIS)

    Toumi, I.; Kumbaro, A.; Paillere, H.

    1999-01-01

    These course notes, presented at the 30. Von Karman Institute Lecture Series in Computational Fluid Dynamics, give a detailed and through review of upwind differencing methods for two-phase flow models. After recalling some fundamental aspects of two-phase flow modelling, from mixture model to two-fluid models, the mathematical properties of the general 6-equation model are analysed by examining the Eigen-structure of the system, and deriving conditions under which the model can be made hyperbolic. The following chapters are devoted to extensions of state-of-the-art upwind differencing schemes such as Roe's Approximate Riemann Solver or the Characteristic Flux Splitting method to two-phase flow. Non-trivial steps in the construction of such solvers include the linearization, the treatment of non-conservative terms and the construction of a Roe-type matrix on which the numerical dissipation of the schemes is based. Extension of the 1-D models to multi-dimensions in an unstructured finite volume formulation is also described; Finally, numerical results for a variety of test-cases are shown to illustrate the accuracy and robustness of the methods. (authors)

  1. An unstructured finite volume solver for two phase water/vapour flows based on an elliptic oriented fractional step method

    International Nuclear Information System (INIS)

    Mechitoua, N.; Boucker, M.; Lavieville, J.; Pigny, S.; Serre, G.

    2003-01-01

    Based on experience gained at EDF and Cea, a more general and robust 3-dimensional (3D) multiphase flow solver has been being currently developed for over three years. This solver, based on an elliptic oriented fractional step approach, is able to simulate multicomponent/multiphase flows. Discretization follows a 3D full unstructured finite volume approach, with a collocated arrangement of all variables. The non linear behaviour between pressure and volume fractions and a symmetric treatment of all fields are taken into account in the iterative procedure, within the time step. It greatly enforces the realizability of volume fractions (i.e 0 < α < 1), without artificial numerical needs. Applications to widespread test cases as static sedimentation, water hammer and phase separation are shown to assess the accuracy and the robustness of the flow solver in different flow conditions, encountered in nuclear reactors pipes. (authors)

  2. ''A Parallel Adaptive Simulation Tool for Two Phase Steady State Reacting Flows in Industrial Boilers and Furnaces''; FINAL

    International Nuclear Information System (INIS)

    Michael J. Bockelie

    2002-01-01

    This DOE SBIR Phase II final report summarizes research that has been performed to develop a parallel adaptive tool for modeling steady, two phase turbulent reacting flow. The target applications for the new tool are full scale, fossil-fuel fired boilers and furnaces such as those used in the electric utility industry, chemical process industry and mineral/metal process industry. The type of analyses to be performed on these systems are engineering calculations to evaluate the impact on overall furnace performance due to operational, process or equipment changes. To develop a Computational Fluid Dynamics (CFD) model of an industrial scale furnace requires a carefully designed grid that will capture all of the large and small scale features of the flowfield. Industrial systems are quite large, usually measured in tens of feet, but contain numerous burners, air injection ports, flames and localized behavior with dimensions that are measured in inches or fractions of inches. To create an accurate computational model of such systems requires capturing length scales within the flow field that span several orders of magnitude. In addition, to create an industrially useful model, the grid can not contain too many grid points - the model must be able to execute on an inexpensive desktop PC in a matter of days. An adaptive mesh provides a convenient means to create a grid that can capture both fine flow field detail within a very large domain with a ''reasonable'' number of grid points. However, the use of an adaptive mesh requires the development of a new flow solver. To create the new simulation tool, we have combined existing reacting CFD modeling software with new software based on emerging block structured Adaptive Mesh Refinement (AMR) technologies developed at Lawrence Berkeley National Laboratory (LBNL). Specifically, we combined: -physical models, modeling expertise, and software from existing combustion simulation codes used by Reaction Engineering International

  3. GAIA: A 2-D Curvilinear moving grid hydrodynamic code

    International Nuclear Information System (INIS)

    Jourdren, H.

    1987-02-01

    The GAIA computer code is developed for time dependent, compressible, multimaterial fluid flow problems, to overcome some drawbacks of traditional 2-D Lagrangian codes. The initial goals of robustness, entropy accuracies, efficiency in presence of large interfacial slip, have already been achieved. The general GODUNOV approach is applied to an arbitrary time varying control-volume formulation. We review in this paper the Riemann solver, the GODUNOV cartesian and curvilinear moving grid schemes and an efficient grid generation algorithm. We finally outline a possible second order accuracy extension

  4. An Immersed Boundary - Adaptive Mesh Refinement solver (IB-AMR) for high fidelity fully resolved wind turbine simulations

    Science.gov (United States)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2015-11-01

    The geometrical details of wind turbines determine the structure of the turbulence in the near and far wake and should be taken in account when performing high fidelity calculations. Multi-resolution simulations coupled with an immersed boundary method constitutes a powerful framework for high-fidelity calculations past wind farms located over complex terrains. We develop a 3D Immersed-Boundary Adaptive Mesh Refinement flow solver (IB-AMR) which enables turbine-resolving LES of wind turbines. The idea of using a hybrid staggered/non-staggered grid layout adopted in the Curvilinear Immersed Boundary Method (CURVIB) has been successfully incorporated on unstructured meshes and the fractional step method has been employed. The overall performance and robustness of the second order accurate, parallel, unstructured solver is evaluated by comparing the numerical simulations against conforming grid calculations and experimental measurements of laminar and turbulent flows over complex geometries. We also present turbine-resolving multi-scale LES considering all the details affecting the induced flow field; including the geometry of the tower, the nacelle and especially the rotor blades of a wind tunnel scale turbine. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the Sandia National Laboratories.

  5. PDF modeling of turbulent flows on unstructured grids

    Science.gov (United States)

    Bakosi, Jozsef

    modeling the dispersion of passive scalars in inhomogeneous turbulent flows. Two different micromixing models are investigated that incorporate the effect of small scale mixing on the transported scalar: the widely used interaction by exchange with the mean and the interaction by exchange with the conditional mean model. An adaptive algorithm to compute the velocity-conditioned scalar mean is proposed that homogenizes the statistical error over the sample space with no assumption on the shape of the underlying velocity PDF. The development also concentrates on a generally applicable micromixing timescale for complex flow domains. Several newly developed algorithms are described in detail that facilitate a stable numerical solution in arbitrarily complex flow geometries, including a stabilized mean-pressure projection scheme, the estimation of conditional and unconditional Eulerian statistics and their derivatives from stochastic particle fields employing finite element shapefunctions, particle tracking through unstructured grids, an efficient particle redistribution procedure and techniques related to efficient random number generation. The algorithm is validated and tested by computing three different turbulent flows: the fully developed turbulent channel flow, a street canyon (or cavity) flow and the turbulent wake behind a circular cylinder at a sub-critical Reynolds number. The solver has been parallelized and optimized for shared memory and multi-core architectures using the OpenMP standard. Relevant aspects of performance and parallelism on cache-based shared memory machines are discussed and presented in detail. The methodology shows great promise in the simulation of high-Reynolds-number incompressible inert or reactive turbulent flows in realistic configurations.

  6. SAGE - MULTIDIMENSIONAL SELF-ADAPTIVE GRID CODE

    Science.gov (United States)

    Davies, C. B.

    1994-01-01

    SAGE, Self Adaptive Grid codE, is a flexible tool for adapting and restructuring both 2D and 3D grids. Solution-adaptive grid methods are useful tools for efficient and accurate flow predictions. In supersonic and hypersonic flows, strong gradient regions such as shocks, contact discontinuities, shear layers, etc., require careful distribution of grid points to minimize grid error and produce accurate flow-field predictions. SAGE helps the user obtain more accurate solutions by intelligently redistributing (i.e. adapting) the original grid points based on an initial or interim flow-field solution. The user then computes a new solution using the adapted grid as input to the flow solver. The adaptive-grid methodology poses the problem in an algebraic, unidirectional manner for multi-dimensional adaptations. The procedure is analogous to applying tension and torsion spring forces proportional to the local flow gradient at every grid point and finding the equilibrium position of the resulting system of grid points. The multi-dimensional problem of grid adaption is split into a series of one-dimensional problems along the computational coordinate lines. The reduced one dimensional problem then requires a tridiagonal solver to find the location of grid points along a coordinate line. Multi-directional adaption is achieved by the sequential application of the method in each coordinate direction. The tension forces direct the redistribution of points to the strong gradient region. To maintain smoothness and a measure of orthogonality of grid lines, torsional forces are introduced that relate information between the family of lines adjacent to one another. The smoothness and orthogonality constraints are direction-dependent, since they relate only the coordinate lines that are being adapted to the neighboring lines that have already been adapted. Therefore the solutions are non-unique and depend on the order and direction of adaption. Non-uniqueness of the adapted grid is

  7. A Two-Phase Flow Solver for Incompressible Viscous Fluids, Using a Pure Streamfunction Formulation and the Volume of Fluid Technique

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    Accurate multi-phase flow solvers at low Reynolds number are of particular interest for the simulation of interface instabilities in the co-processing of multilayered material. We present a two-phase flow solver for incompressible viscous fluids which uses the streamfunction as the primary variable...... of the flow. Contrary to fractional step methods, the streamfunction formulation eliminates the pressure unknowns, and automatically fulfills the incompressibility constraint by construction. As a result, the method circumvents the loss of temporal accuracy at low Reynolds numbers. The interface is tracked...

  8. A Two-Phase Flow Solver for Incompressible Viscous Fluids, Using a Pure Streamfunction Formulation and the Volume of Fluid Technique

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    2014-01-01

    Accurate multi-phase flow solvers at low Reynolds number are of particular interest for the simulation of interface instabilities in the co-processing of multilayered material. We present a two-phase flow solver for incompressible viscous fluids which uses the streamfunction as the primary variable...... of the flow. Contrary to fractional step methods, the streamfunction formulation eliminates the pressure unknowns, and automatically fulfills the incompressibility constraint by construction. As a result, the method circumvents the loss of temporal accuracy at low Reynolds numbers. The interface is tracked...

  9. Local grid refinement for free-surface flow simulations

    NARCIS (Netherlands)

    van der Plas, Peter

    2017-01-01

    The principal goal of the current study is to explore and investigate the potential of local grid refinement for increasing the numerical efficiency of free-surface flow simulations in a practical context. In this thesis we propose a method for local grid refinement in the free-surface flow model

  10. Higher-order differencing method with a multigrid approach for the solution of the incompressible flow equations at high Reynolds numbers

    International Nuclear Information System (INIS)

    Tzanos, C.P.

    1992-01-01

    A higher-order differencing method was recently proposed for the convection-diffusion equation, which even with a coarse mesh gives oscillation-free solutions that are far more accurate than those of the upwind scheme. In this paper, the performance of this method is investigated in conjunction with the performance of different iterative solvers for the solution of the Navier-Stokes equations in the vorticity-streamfunction formulation for incompressible flow at high Reynolds numbers. Flow in a square cavity with a moving lid was chosen as a model problem. Solvers that performed well at low Re numbers either failed to converge or had a computationally prohibitive convergence rate at high Re numbers. The additive correction method of Settari and Aziz and an iterative incomplete lower and upper (ILU) solver were used in a multigrid approach that performed well in the whole range of Re numbers considered (from 1000 to 10,000) and for uniform as well as nonuniform grids. At high Re numbers, point or line Gauss-Seidel solvers converged with uniform grids, but failed to converge with nonuniform grids

  11. Validation Process for LEWICE by Use of a Navier-Stokes Solver

    Science.gov (United States)

    Wright, William B.; Porter, Christopher E.

    2017-01-01

    A research project is underway at NASA Glenn to produce computer software that can accurately predict ice growth under any meteorological conditions for any aircraft surface. This report will present results from the latest LEWICE release, version 3.5. This program differs from previous releases in its ability to model mixed phase and ice crystal conditions such as those encountered inside an engine. It also has expanded capability to use structured grids and a new capability to use results from unstructured grid flow solvers. A quantitative comparison of the results against a database of ice shapes that have been generated in the NASA Glenn Icing Research Tunnel (IRT) has also been performed. This paper will extend the comparison of ice shapes between LEWICE 3.5 and experimental data from a previous paper. Comparisons of lift and drag are made between experimentally collected data from experimentally obtained ice shapes and simulated (CFD) data on simulated (LEWICE) ice shapes. Comparisons are also made between experimentally collected and simulated performance data on select experimental ice shapes to ensure the CFD solver, FUN3D, is valid within the flight regime. The results show that the predicted results are within the accuracy limits of the experimental data for the majority of cases.

  12. StagBL : A Scalable, Portable, High-Performance Discretization and Solver Layer for Geodynamic Simulation

    Science.gov (United States)

    Sanan, P.; Tackley, P. J.; Gerya, T.; Kaus, B. J. P.; May, D.

    2017-12-01

    StagBL is an open-source parallel solver and discretization library for geodynamic simulation,encapsulating and optimizing operations essential to staggered-grid finite volume Stokes flow solvers.It provides a parallel staggered-grid abstraction with a high-level interface in C and Fortran.On top of this abstraction, tools are available to define boundary conditions and interact with particle systems.Tools and examples to efficiently solve Stokes systems defined on the grid are provided in small (direct solver), medium (simple preconditioners), and large (block factorization and multigrid) model regimes.By working directly with leading application codes (StagYY, I3ELVIS, and LaMEM) and providing an API and examples to integrate with others, StagBL aims to become a community tool supplying scalable, portable, reproducible performance toward novel science in regional- and planet-scale geodynamics and planetary science.By implementing kernels used by many research groups beneath a uniform abstraction layer, the library will enable optimization for modern hardware, thus reducing community barriers to large- or extreme-scale parallel simulation on modern architectures. In particular, the library will include CPU-, Manycore-, and GPU-optimized variants of matrix-free operators and multigrid components.The common layer provides a framework upon which to introduce innovative new tools.StagBL will leverage p4est to provide distributed adaptive meshes, and incorporate a multigrid convergence analysis tool.These options, in addition to a wealth of solver options provided by an interface to PETSc, will make the most modern solution techniques available from a common interface. StagBL in turn provides a PETSc interface, DMStag, to its central staggered grid abstraction.We present public version 0.5 of StagBL, including preliminary integration with application codes and demonstrations with its own demonstration application, StagBLDemo. Central to StagBL is the notion of an

  13. Development of numerical Grids for UZ Flow and Transport Modeling

    International Nuclear Information System (INIS)

    P. Dobson

    2004-01-01

    This report describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain, Nevada. Numerical grid generation is an integral part of the development of the unsaturated zone (UZ) flow and transport model, a complex, three-dimensional (3-D) model of Yucca Mountain. This revision contains changes made to improve the clarity of the description of grid generation. The numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal-loading conditions. The technical scope, content, and management for the current revision of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 2). Grids generated and documented in this report supersede those documented in Revision 00 of this report, ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2001 [DIRS 159356]). The grids presented in this report are the same as those developed in Revision 01 (BSC 2003 [DIRS 160109]); however, the documentation of the development of the grids in Revision 02 has been updated to address technical inconsistencies and achieve greater transparency, readability, and traceability. The constraints, assumptions, and limitations associated with this report are discussed in the appropriate sections that follow

  14. Development of Numerical Grids for UZ Flow and Transport Modeling

    International Nuclear Information System (INIS)

    Hinds, J.

    2001-01-01

    This Analysis/Model Report (AMR) describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain. Numerical grid generation is an integral part of the development of a complex, three-dimensional (3-D) model, such as the Unsaturated-Zone Flow and Transport Model (UZ Model) of Yucca Mountain. The resulting numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal loading conditions. Revision 00 of the work described herein follows the planning and work direction outlined in the ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (CRWMS M and O 1999c). The technical scope, content, and management of ICN 01 of this AMR is currently controlled by the planning document, ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical Product Input Department'' (BSC 2001 b, Addendum B, Section 4.1). The steps involved in numerical grid development include: (1) defining the location of important calibration features, (2) determining model grid layers and fault geometry based on the Geologic Framework Model (GFM), the Integrated Site Model (ISM), and definition of hydrogeologic units (HGUs), (3) analyzing and extracting GFM and ISM data pertaining to layer contacts and property distributions, (4) discretizing and refining the two-dimensional (2-D), plan-view numerical grid, (5) generating the 3-D grid with finer resolution at the repository horizon and within the Calico Hills nonwelded (CHn) hydrogeologic unit, and (6) formulating the dual-permeability mesh. The

  15. Flow Battery Solution for Smart Grid Applications

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-30

    To address future grid requirements, a U.S. Department of Energy ARRA Storage Demonstration program was launched in 2009 to commercialize promising technologies needed for stronger and more renewables-intensive grids. Raytheon Ktech and EnerVault received a cost-share grant award from the U.S. Department of Energy to develop a grid-scale storage system based on EnerVault’s iron-chromium redox flow battery technology.

  16. A weakly compressible free-surface flow solver for liquid–gas systems using the volume-of-fluid approach

    CSIR Research Space (South Africa)

    Heyns, Johan A

    2013-05-01

    Full Text Available of the gas has a noteworthy effect on predicted pressure loads in liquid–gas flow in certain instances. With the aim of providing a more accurate numerical representation of dynamic two-fluid flow, the solver is subsequently extended to account for variations...

  17. Slat Noise Predictions Using Higher-Order Finite-Difference Methods on Overset Grids

    Science.gov (United States)

    Housman, Jeffrey A.; Kiris, Cetin

    2016-01-01

    Computational aeroacoustic simulations using the structured overset grid approach and higher-order finite difference methods within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for slat noise predictions. The simulations are part of a collaborative study comparing noise generation mechanisms between a conventional slat and a Krueger leading edge flap. Simulation results are compared with experimental data acquired during an aeroacoustic test in the NASA Langley Quiet Flow Facility. Details of the structured overset grid, numerical discretization, and turbulence model are provided.

  18. Telescopic Hybrid Fast Solver for 3D Elliptic Problems with Point Singularities

    KAUST Repository

    Paszyńska, Anna; Jopek, Konrad; Banaś, Krzysztof; Paszyński, Maciej; Gurgul, Piotr; Lenerth, Andrew; Nguyen, Donald; Pingali, Keshav; Dalcind, Lisandro; Calo, Victor M.

    2015-01-01

    This paper describes a telescopic solver for two dimensional h adaptive grids with point singularities. The input for the telescopic solver is an h refined two dimensional computational mesh with rectangular finite elements. The candidates for point singularities are first localized over the mesh by using a greedy algorithm. Having the candidates for point singularities, we execute either a direct solver, that performs multiple refinements towards selected point singularities and executes a parallel direct solver algorithm which has logarithmic cost with respect to refinement level. The direct solvers executed over each candidate for point singularity return local Schur complement matrices that can be merged together and submitted to iterative solver. In this paper we utilize a parallel multi-thread GALOIS solver as a direct solver. We use Incomplete LU Preconditioned Conjugated Gradients (ILUPCG) as an iterative solver. We also show that elimination of point singularities from the refined mesh reduces significantly the number of iterations to be performed by the ILUPCG iterative solver.

  19. Telescopic Hybrid Fast Solver for 3D Elliptic Problems with Point Singularities

    KAUST Repository

    Paszyńska, Anna

    2015-06-01

    This paper describes a telescopic solver for two dimensional h adaptive grids with point singularities. The input for the telescopic solver is an h refined two dimensional computational mesh with rectangular finite elements. The candidates for point singularities are first localized over the mesh by using a greedy algorithm. Having the candidates for point singularities, we execute either a direct solver, that performs multiple refinements towards selected point singularities and executes a parallel direct solver algorithm which has logarithmic cost with respect to refinement level. The direct solvers executed over each candidate for point singularity return local Schur complement matrices that can be merged together and submitted to iterative solver. In this paper we utilize a parallel multi-thread GALOIS solver as a direct solver. We use Incomplete LU Preconditioned Conjugated Gradients (ILUPCG) as an iterative solver. We also show that elimination of point singularities from the refined mesh reduces significantly the number of iterations to be performed by the ILUPCG iterative solver.

  20. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  1. Adding complex terrain and stable atmospheric condition capability to the OpenFOAM-based flow solver of the simulator for on/offshore wind farm applications (SOWFA

    Directory of Open Access Journals (Sweden)

    Churchfield Matthew J.

    2014-01-01

    Full Text Available The National Renewable Energy Laboratory's Simulator for On/Offshore Wind Farm Applications contains an OpenFOAM-based flow solver for performing large-eddy simulation of flow through wind plants. The solver computes the atmospheric boundary layer flow and models turbines with actuator lines. Until recently, the solver was limited to flows over flat terrain and could only use the standard Smagorinsky subgrid-scale model. In this work, we present our improvements to the flow solver that enable us to 1 use any OpenFOAM-standard subgrid-scale model and 2 simulate flow over complex terrain. We used the flow solver to compute a stably stratified atmospheric boundary layer using both the standard and the Lagrangian-averaged scale-independent dynamic Smagorinsky models. Surprisingly, the results using the standard Smagorinsky model compare well to other researchers' results of the same case, although it is often said that the standard Smagorinsky model is too dissipative for accurate stable stratification calculations. The scale-independent dynamic subgrid-scale model produced poor results, probably due to the spikes in model constant with values as high as 4.6. We applied a simple bounding of the model constant to remove these spikes, which caused the model to produce results much more in line with other researchers' results. We also computed flow over a simple hilly terrain and performed some basic qualitative analysis to verify the proper operation of the terrain-local surface stress model we employed.

  2. Resolving Neighbourhood Relations in a Parallel Fluid Dynamic Solver

    KAUST Repository

    Frisch, Jerome

    2012-06-01

    Computational Fluid Dynamics simulations require an enormous computational effort if a physically reasonable accuracy should be reached. Therefore, a parallel implementation is inevitable. This paper describes the basics of our implemented fluid solver with a special aspect on the hierarchical data structure, unique cell and grid identification, and the neighbourhood relations in-between grids on different processes. A special server concept keeps track of every grid over all processes while minimising data transfer between the nodes. © 2012 IEEE.

  3. Capability of State-of-the-Art Navier-Stokes Solvers for the Prediction of Helicopter Fuselage Aerodynamics

    DEFF Research Database (Denmark)

    N., Kroll; P., Renzoni; M., Amato

    1998-01-01

    The purpose of this paper is to describe the influence of different Navier-Stokes solvers and grids on the prediction of the global coefficients for a simplified geometry of a helicopter fuselage.......The purpose of this paper is to describe the influence of different Navier-Stokes solvers and grids on the prediction of the global coefficients for a simplified geometry of a helicopter fuselage....

  4. Tests of a 3D Self Magnetic Field Solver in the Finite Element Gun Code MICHELLE

    CERN Document Server

    Nelson, Eric M

    2005-01-01

    We have recently implemented a prototype 3d self magnetic field solver in the finite-element gun code MICHELLE. The new solver computes the magnetic vector potential on unstructured grids. The solver employs edge basis functions in the curl-curl formulation of the finite-element method. A novel current accumulation algorithm takes advantage of the unstructured grid particle tracker to produce a compatible source vector, for which the singular matrix equation is easily solved by the conjugate gradient method. We will present some test cases demonstrating the capabilities of the prototype 3d self magnetic field solver. One test case is self magnetic field in a square drift tube. Another is a relativistic axisymmetric beam freely expanding in a round pipe.

  5. Towards multi-phase flow simulations in the PDE framework Peano

    KAUST Repository

    Bungartz, Hans-Joachim

    2011-07-27

    In this work, we present recent enhancements and new functionalities of our flow solver in the partial differential equation framework Peano. We start with an introduction including an overview of the Peano development and a short description of the basic concepts of Peano and the flow solver in Peano concerning the underlying structured but adaptive Cartesian grids, the data structure and data access optimisation, and spatial and time discretisation of the flow solver. The new features cover geometry interfaces and additional application functionalities. The two geometry interfaces, a triangulation-based description supported by the tool preCICE and a built-in geometry using geometry primitives such as cubes, spheres, or tetrahedra allow for the efficient treatment of complex and changing geometries, an essential ingredient for most application scenarios. The new application functionality concerns a coupled heat-flow problem and two-phase flows. We present numerical examples, performance and validation results for these new functionalities. © 2011 Springer-Verlag.

  6. Adaptive hierarchical grid model of water-borne pollutant dispersion

    Science.gov (United States)

    Borthwick, A. G. L.; Marchant, R. D.; Copeland, G. J. M.

    Water pollution by industrial and agricultural waste is an increasingly major public health issue. It is therefore important for water engineers and managers to be able to predict accurately the local behaviour of water-borne pollutants. This paper describes the novel and efficient coupling of dynamically adaptive hierarchical grids with standard solvers of the advection-diffusion equation. Adaptive quadtree grids are able to focus on regions of interest such as pollutant fronts, while retaining economy in the total number of grid elements through selective grid refinement. Advection is treated using Lagrangian particle tracking. Diffusion is solved separately using two grid-based methods; one is by explicit finite differences, the other a diffusion-velocity approach. Results are given in two dimensions for pure diffusion of an initially Gaussian plume, advection-diffusion of the Gaussian plume in the rotating flow field of a forced vortex, and the transport of species in a rectangular channel with side wall boundary layers. Close agreement is achieved with analytical solutions of the advection-diffusion equation and simulations from a Lagrangian random walk model. An application to Sepetiba Bay, Brazil is included to demonstrate the method with complex flows and topography.

  7. CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. II. GRAY RADIATION HYDRODYNAMICS

    International Nuclear Information System (INIS)

    Zhang, W.; Almgren, A.; Bell, J.; Howell, L.; Burrows, A.

    2011-01-01

    We describe the development of a flux-limited gray radiation solver for the compressible astrophysics code, CASTRO. CASTRO uses an Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. The gray radiation solver is based on a mixed-frame formulation of radiation hydrodynamics. In our approach, the system is split into two parts, one part that couples the radiation and fluid in a hyperbolic subsystem, and another parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem is solved explicitly with a high-order Godunov scheme, whereas the parabolic part is solved implicitly with a first-order backward Euler method.

  8. A Python interface to Diffpack-based classes and solvers

    OpenAIRE

    Munthe-Kaas, Heidi Vikki

    2013-01-01

    Python is a programming language that has gained a lot of popularity during the last 15 years, and as a very easy-to-learn and flexible scripting language it is very well suited for computa- tional science, both in mathematics and in physics. Diffpack is a PDE library written in C++, made for easier implementation of both smaller PDE solvers and for larger libraries of simu- lators. It contains large class hierarchies for different solvers, grids, arrays, parallel computing and almost everyth...

  9. Unified solver for fluid dynamics and aeroacoustics in isentropic gas flows

    Science.gov (United States)

    Pont, Arnau; Codina, Ramon; Baiges, Joan; Guasch, Oriol

    2018-06-01

    The high computational cost of solving numerically the fully compressible Navier-Stokes equations, together with the poor performance of most numerical formulations for compressible flow in the low Mach number regime, has led to the necessity for more affordable numerical models for Computational Aeroacoustics. For low Mach number subsonic flows with neither shocks nor thermal coupling, both flow dynamics and wave propagation can be considered isentropic. Therefore, a joint isentropic formulation for flow and aeroacoustics can be devised which avoids the need for segregating flow and acoustic scales. Under these assumptions density and pressure fluctuations are directly proportional, and a two field velocity-pressure compressible formulation can be derived as an extension of an incompressible solver. Moreover, the linear system of equations which arises from the proposed isentropic formulation is better conditioned than the homologous incompressible one due to the presence of a pressure time derivative. Similarly to other compressible formulations the prescription of boundary conditions will have to deal with the backscattering of acoustic waves. In this sense, a separated imposition of boundary conditions for flow and acoustic scales which allows the evacuation of waves through Dirichlet boundaries without using any tailored damping model will be presented.

  10. Implementation of density-based solver for all speeds in the framework of OpenFOAM

    Science.gov (United States)

    Shen, Chun; Sun, Fengxian; Xia, Xinlin

    2014-10-01

    In the framework of open source CFD code OpenFOAM, a density-based solver for all speeds flow field is developed. In this solver the preconditioned all speeds AUSM+(P) scheme is adopted and the dual time scheme is implemented to complete the unsteady process. Parallel computation could be implemented to accelerate the solving process. Different interface reconstruction algorithms are implemented, and their accuracy with respect to convection is compared. Three benchmark tests of lid-driven cavity flow, flow crossing over a bump, and flow over a forward-facing step are presented to show the accuracy of the AUSM+(P) solver for low-speed incompressible flow, transonic flow, and supersonic/hypersonic flow. Firstly, for the lid driven cavity flow, the computational results obtained by different interface reconstruction algorithms are compared. It is indicated that the one dimensional reconstruction scheme adopted in this solver possesses high accuracy and the solver developed in this paper can effectively catch the features of low incompressible flow. Then via the test cases regarding the flow crossing over bump and over forward step, the ability to capture characteristics of the transonic and supersonic/hypersonic flows are confirmed. The forward-facing step proves to be the most challenging for the preconditioned solvers with and without the dual time scheme. Nonetheless, the solvers described in this paper reproduce the main features of this flow, including the evolution of the initial transient.

  11. A feasibility Study: The Succinct Solver v2.0, XSB Prolog v2.6, and Flow-Logic Based Program Analysis for Carmel

    DEFF Research Database (Denmark)

    Pilegaard, Henrik

    2003-01-01

    We perform a direct comparison of the {Succinct Solver v2.0} and {XSB Prolog v2.6} based on experiments with {Control Flow Analyses} of scalable {Discretionary Ambient programs} and {Carmel programs}. To facilitate this comparison we expand ALFP clauses accepted by the Succinct Solver into more g...

  12. A block structured method for the simulation of the flow around complex configurations; Ein blockstrukturiertes Verfahren zur Simulation der Umstroemung komplexer Konfigurationen

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, T.O.

    2005-07-01

    A block structured method for the simulation of the viscous flow around complex configurations is presented. The computational domain is discretized with overlapping meshes. The meshes are composed of individually created grids for the components of a configuration and an automatically generated Cartesian background grid. The background grid is a multi-block mesh with hanging grid nodes, which is adapted to the cell size of the component grids. The cells of the background grid can be cubes or cuboids. The overlapping grid approach simplifies the generation of block structured grids significantly. The flow computations are performed with a Navier-Stokes solver. The Chimera capabilities of the solver are extended by methods for the computation of interpolation coefficients and global forces in case of grid overlap on body surfaces. Additionally, a flux conservative boundary condition for the hanging grid nodes is implemented. The consistency and accuracy of the methods is proved by grid refinement studies. Validation test cases include a three element airfoil, a helicopter fuselage and an airplane in landing configuration. Numerical results obtained for Chimera meshes as well as conventional grids agree very well. The agreement with wind tunnel experiments is good. The computational costs for Chimera computations are slightly higher than for conventional grids. (orig.)

  13. LES analysis of the flow in a simplified PWR assembly with mixing grid

    Science.gov (United States)

    Bieder, Ulrich; Falk, Francois

    2014-06-01

    The flow in fuel assemblies of PWRs with mixing grids has been analyzed with CFD calculations by numerous authors. The comparisons between calculation and experiment are focused on the flow in the near wake of the mixing grid, i.e. on the flow in the first 10 to 20 hydraulic diameters (dh) downstream of the grid. In the study presented here, the comparison between the measurements in the AGATE facility (5x5 tube bundle) and TrioU calculations is done for the whole distance between two successive mixing grids that is up to 0.6m downstream of the grid. The AGATE experiments have originally not been designed for CFD validation but to characterize different types of mixing grids. Nevertheless, the quality of the experimental data allows the quantitative comparison between measurement and calculation. The conclusions of the comparison are summarized below: Linear turbulent viscosity models seem to work rather well as long as the cross flow velocity in the rod gaps is advection controlled, that is directly downstream of the mixing grid, Further downstream, when the cross flow velocity is reduced and isotropic turbulence becomes a more and more important mixing phenomena, linear viscosity models will fail, The mixing grid affects the cross flow velocity up to the successive grid at a distance of about 50dh. The flow in fuel assemblies is never similar to that in undisturbed rod bundles. The test section of the AGATE facility has been discretized on 300 million control volumes by using a staggered grid approach on tetrahedral meshes. 20 days of CPU on 4600 nodes of the HPC machine CURIE of the CCRT was necessary to calculate the statistics of the turbulent flow, in particular the mean velocity and the RMS of the turbulent fluctuations.

  14. LES analysis of the flow in a simplified PWR assembly with mixing grid

    International Nuclear Information System (INIS)

    Bieder, U.; Falk, F.

    2013-01-01

    The flow in fuel assemblies of PWRs with mixing grids has been analyzed with CFD calculations by numerous authors. The comparisons between calculation and experiment are focused on the flow in the near wake of the mixing grid, i.e. on the flow in the first 10 to 20 hydraulic diameters (d h ) downstream of the grid. In the study presented here, the comparison between the measurements in the AGATE facility (5*5 tube bundle) and Trio U calculations is done for the whole distance between two successive mixing grids that is up to 0.6 m downstream of the grid. The AGATE experiments have originally not been designed for CFD validation but to characterize different types of mixing grids. Nevertheless, the quality of the experimental data allows the quantitative comparison between measurement and calculation. The conclusions of the comparison are summarized below. First, the linear turbulent viscosity models seem to work rather well as long as the cross flow velocity in the rod gaps is advection controlled, that is directly downstream of the mixing grid. Secondly, further downstream, when the cross flow velocity is reduced and isotropic turbulence becomes a more and more important mixing phenomena, linear viscosity models will fail. Thirdly, the mixing grid affects the cross flow velocity up to the successive grid at a distance of about 50 d h . The flow in fuel assemblies is never similar to that in undisturbed rod bundles. The test section of the AGATE facility has been discretized on 300 million control volumes by using a staggered grid approach on tetrahedral meshes. 20 days of CPU on 4600 nodes of the HPC machine CURIE of the CCRT (Computer Center for Research and Technology - France) was necessary to calculate the statistics of the turbulent flow, in particular the mean velocity and the RMS of the turbulent fluctuations. (authors)

  15. NEW RSW & Wall Coarse Tet Only Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the RSW Coarse Tet Only grid with the root viscous tunnel wall. This grid is for a node-based unstructured solver. Quad Surface Faces= 0 Tria Surface Faces=...

  16. NEW RSW & Wall Coarse Mixed Element Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the Coarse Mixed Element Grid for the RSW with a viscous wall at the root. This grid is for a node-based unstructured solver. Quad Surface Faces= 9728 Tria...

  17. Hybrid Multiphase CFD Solver for Coupled Dispersed/Segregated Flows in Liquid-Liquid Extraction

    Directory of Open Access Journals (Sweden)

    Kent E. Wardle

    2013-01-01

    Full Text Available The flows in stage-wise liquid-liquid extraction devices include both phase segregated and dispersed flow regimes. As a additional layer of complexity, for extraction equipment such as the annular centrifugal contactor, free-surface flows also play a critical role in both the mixing and separation regions of the device and cannot be neglected. Traditionally, computional fluid dynamics (CFD of multiphase systems is regime dependent—different methods are used for segregated and dispersed flows. A hybrid multiphase method based on the combination of an Eulerian multifluid solution framework (per-phase momentum equations and sharp interface capturing using Volume of Fluid (VOF on selected phase pairs has been developed using the open-source CFD toolkit OpenFOAM. Demonstration of the solver capability is presented through various examples relevant to liquid-liquid extraction device flows including three-phase, liquid-liquid-air simulations in which a sharp interface is maintained between each liquid and air, but dispersed phase modeling is used for the liquid-liquid interactions.

  18. LES analysis of the flow in a simplified PWR assembly with mixing grid

    International Nuclear Information System (INIS)

    Bieder, Ulrich; Fauchet, Gauthier; Falk, Francois

    2014-01-01

    The flow in fuel assemblies of Pressurized Water Reactors (PWR) with mixing grids has been analysed with Computational Fluid Dynamics (CFD) by numerous authors. The comparisons between calculation and experiment are mostly focused on the flow in the near wake of the mixing grid, i.e. on the flow in the first 5 to 10 hydraulic diameters (dh) downstream of the grid. In the study presented here, the comparison between the measurements in the AGATE facility (5 * 5 tube bundle) and Trio-U calculations is done for the whole distance between two successive mixing grids that is up to about 50 d h downstream of the grid. The AGATE experiments have originally not been designed for CFD validation but to characterize different types of mixing grids. Nevertheless, the quality of the experimental data allows the quantitative comparison between measurement and calculation. The conclusions of the comparison are summarized below: Linear turbulent viscosity models seem to work rather well as long as the cross flow velocity in the rod gaps is advection controlled, that is directly downstream of the mixing grid, Further downstream, when the cross flow velocity is reduced and anisotropic turbulence becomes a more and more important mixing phenomena, linear viscosity models can fail, The mixing grid affects the cross flow velocity up to the successive grid. The flow in fuel assemblies is never similar to that in undisturbed rod bundles. The test section of the AGATE facility has been discretized on 300 million control volumes by using a staggered grid approach on tetrahedral meshes. 20 days of CPU on 4600 cores of the High Performance Computer (HPC) cluster CURIE of the Centre de Calcul, Recherche et Technologie (CCRT) were necessary to converge the statistics of the turbulent fluctuations, completely converge the mean velocity and incompletely converge the RMS of the turbulent fluctuations. (authors)

  19. Numerical analysis for two-dimensional compressible and two-phase flow fields of air-water in Eulerian grid framework

    International Nuclear Information System (INIS)

    Park, Chan Wook; Lee, Sung Su

    2008-01-01

    Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of ech phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe's approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated

  20. Equilibrium Wall Model Implementation in a Nodal Finite Element Flow Solver JENRE for Large Eddy Simulations

    Science.gov (United States)

    2017-11-13

    finite element flow solver JENRE developed at the Naval Research Laboratory. The Crocco- Busemann relation is used to account for the compressibility. In...3 1. Comparison with the measurement data...Naval Research Laboratory. The Crocco-Busemann relation is used to account for the compressibility. In this wall-model implementation, the first

  1. A multi-solver quasi-Newton method for the partitioned simulation of fluid-structure interaction

    International Nuclear Information System (INIS)

    Degroote, J; Annerel, S; Vierendeels, J

    2010-01-01

    In partitioned fluid-structure interaction simulations, the flow equations and the structural equations are solved separately. Consequently, the stresses and displacements on both sides of the fluid-structure interface are not automatically in equilibrium. Coupling techniques like Aitken relaxation and the Interface Block Quasi-Newton method with approximate Jacobians from Least-Squares models (IBQN-LS) enforce this equilibrium, even with black-box solvers. However, all existing coupling techniques use only one flow solver and one structural solver. To benefit from the large number of multi-core processors in modern clusters, a new Multi-Solver Interface Block Quasi-Newton (MS-IBQN-LS) algorithm has been developed. This algorithm uses more than one flow solver and structural solver, each running in parallel on a number of cores. One-dimensional and three-dimensional numerical experiments demonstrate that the run time of a simulation decreases as the number of solvers increases, albeit at a slower pace. Hence, the presented multi-solver algorithm accelerates fluid-structure interaction calculations by increasing the number of solvers, especially when the run time does not decrease further if more cores are used per solver.

  2. Implicit approximate Riemann solver for two fluid two phase flow models

    International Nuclear Information System (INIS)

    Raymond, P.; Toumi, I.; Kumbaro, A.

    1993-01-01

    This paper is devoted to the description of new numerical methods developed for the numerical treatment of two phase flow models with two velocity fields which are now widely used in nuclear engineering for design or safety calculations. These methods are finite volumes numerical methods and are based on the use of Approximate Riemann Solver's concepts in order to define convective flux versus mean cell quantities. The first part of the communication will describe the numerical method for a three dimensional drift flux model and the extensions which were performed to make the numerical scheme implicit and to have fast running calculations of steady states. Such a scheme is now implemented in the FLICA-4 computer code devoted to 3-D steady state and transient core computations. We will present results obtained for a steady state flow with rod bow effect evaluation and for a Steam Line Break calculation were the 3-D core thermal computation was coupled with a 3-D kinetic calculation and a thermal-hydraulic transient calculation for the four loops of a Pressurized Water Reactor. The second part of the paper will detail the development of an equivalent numerical method based on an approximate Riemann Solver for a two fluid model with two momentum balance equations for the liquid and the gas phases. The main difficulty for these models is due to the existence of differential modelling terms such as added mass effects or interfacial pressure terms which make hyperbolic the model. These terms does not permit to write the balance equations system in a conservative form, and the classical theory for discontinuity propagation for non-linear systems cannot be applied. Meanwhile, the use of non-conservative products theory allows the study of discontinuity propagation for a non conservative model and this will permit the construction of a numerical scheme for two fluid two phase flow model. These different points will be detailed in that section which will be illustrated by

  3. Towards Green Multi-frontal Solver for Adaptive Finite Element Method

    KAUST Repository

    AbbouEisha, H.

    2015-06-01

    In this paper we present the optimization of the energy consumption for the multi-frontal solver algorithm executed over two dimensional grids with point singularities. The multi-frontal solver algorithm is controlled by so-called elimination tree, defining the order of elimination of rows from particular frontal matrices, as well as order of memory transfers for Schur complement matrices. For a given mesh there are many possible elimination trees resulting in different number of floating point operations (FLOPs) of the solver or different amount of data trans- ferred via memory transfers. In this paper we utilize the dynamic programming optimization procedure and we compare elimination trees optimized with respect to FLOPs with elimination trees optimized with respect to energy consumption.

  4. Towards Green Multi-frontal Solver for Adaptive Finite Element Method

    KAUST Repository

    AbbouEisha, H.; Moshkov, Mikhail; Jopek, K.; Gepner, P.; Kitowski, J.; Paszyn'ski, M.

    2015-01-01

    In this paper we present the optimization of the energy consumption for the multi-frontal solver algorithm executed over two dimensional grids with point singularities. The multi-frontal solver algorithm is controlled by so-called elimination tree, defining the order of elimination of rows from particular frontal matrices, as well as order of memory transfers for Schur complement matrices. For a given mesh there are many possible elimination trees resulting in different number of floating point operations (FLOPs) of the solver or different amount of data trans- ferred via memory transfers. In this paper we utilize the dynamic programming optimization procedure and we compare elimination trees optimized with respect to FLOPs with elimination trees optimized with respect to energy consumption.

  5. SmaggIce 2.0: Additional Capabilities for Interactive Grid Generation of Iced Airfoils

    Science.gov (United States)

    Kreeger, Richard E.; Baez, Marivell; Braun, Donald C.; Schilling, Herbert W.; Vickerman, Mary B.

    2008-01-01

    The Surface Modeling and Grid Generation for Iced Airfoils (SmaggIce) software toolkit has been extended to allow interactive grid generation for multi-element iced airfoils. The essential phases of an icing effects study include geometry preparation, block creation and grid generation. SmaggIce Version 2.0 now includes these main capabilities for both single and multi-element airfoils, plus an improved flow solver interface and a variety of additional tools to enhance the efficiency and accuracy of icing effects studies. An overview of these features is given, especially the new multi-element blocking strategy using the multiple wakes method. Examples are given which illustrate the capabilities of SmaggIce for conducting an icing effects study for both single and multi-element airfoils.

  6. Effect of top ligament blanking on reducing flow induced vibration of protective grid

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Kyong Bo; Ryu, Joo Young; Kwon, Oh Joon; Park, Joon Kyoo; Jeon, Sang Youn; Suh, Jung Min [KEPCO NF Co., Daejeon (Korea, Republic of)

    2012-10-15

    The protective grid is a Inconel 718 spacer grid located just above the bottom nozzle in many kinds of fuel assemblies for PWR. The purpose of using protective grid is to capture debris before they flow up into the fuel assembly and get trapped by the other grids causing fuel rod damages as well as to provide support at the lower end plugs of fuel rods. Recently, it has been reported that strap failure has occurred in the protective grids and the flow induced vibration of the strap has resulted in the strap fatigue failure. After the root cause of the protective grid failure was found to be the flow induced vibration of the strap, KEPCO NF has made an effort to find the vibration tendencies of grid strap and draw vibration mitigation concepts of the protective grid strap. The vibration tendency and the effect of the vibration mitigation concept of the protective grid which have been found by the results of the loop tests and simulations in KEPCO NF are presented herein.

  7. Smart grids, information flows and emerging domestic energy practices

    International Nuclear Information System (INIS)

    Naus, Joeri; Spaargaren, Gert; Vliet, Bas J.M. van; Horst, Hilje M. van der

    2014-01-01

    Smart energy grids and smart meters are commonly expected to promote more sustainable ways of living. This paper presents a conceptual framework for analysing the different ways in which smart grid developments shape – and are shaped by – the everyday lives of residents. Drawing upon theories of social practices and the concept of informational governance, the framework discerns three categories of ‘information flows’: flows between household-members, flows between households and energy service providers, and flows between local and distant households. Based on interviews with Dutch stakeholders and observations at workshops we examine, for all three information flows, the changes in domestic energy practices and the social relations they help to create. The analysis reveals that new information flows may not produce more sustainable practices in linear and predictable ways. Instead, changes are contextual and emergent. Second, new possibilities for information sharing between households open up a terrain for new practices. Third, information flows affect social relationships in ways as illustrated by the debates on consumer privacy in the Netherlands. An exclusive focus on privacy, however, deviates attention from opportunities for information disclosure by energy providers, and from the significance of transparency issues in redefining relationships both within and between households. - Highlights: • Smart grids generate three key new information flows that affect social relations. • Practice theory can reveal the ways in which households handle/govern information. • Householders show ambivalence about the workings of the different information flows. • Policies should account for the ‘bright’ as well as the ‘dark’ sides of information

  8. A Structured Grid Based Solution-Adaptive Technique for Complex Separated Flows

    Science.gov (United States)

    Thornburg, Hugh; Soni, Bharat K.; Kishore, Boyalakuntla; Yu, Robert

    1996-01-01

    The objective of this work was to enhance the predictive capability of widely used computational fluid dynamic (CFD) codes through the use of solution adaptive gridding. Most problems of engineering interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that the adaptive grid feature detection algorithm be developed to recognize flow structures of different type as well as differing intensity, and adequately address scaling and normalization across blocks. In order to study the accuracy and efficiency improvements due to the grid adaptation, it is necessary to quantify grid size and distribution requirements as well as computational times of non-adapted solutions. Flow fields about launch vehicles of practical interest often involve supersonic freestream conditions at angle of attack exhibiting large scale separate vortical flow, vortex-vortex and vortex-surface interactions, separated shear layers and multiple shocks of different intensity. In this work, a weight function and an associated mesh redistribution procedure is presented which detects and resolves these features without user intervention. Particular emphasis has been placed upon accurate resolution of expansion regions and boundary layers. Flow past a wedge at Mach=2.0 is used to illustrate the enhanced detection capabilities of this newly developed weight function.

  9. Survey on efficient linear solvers for porous media flow models on recent hardware architectures

    International Nuclear Information System (INIS)

    Anciaux-Sedrakian, Ani; Gratien, Jean-Marc; Guignon, Thomas; Gottschling, Peter

    2014-01-01

    In the past few years, High Performance Computing (HPC) technologies led to General Purpose Processing on Graphics Processing Units (GPGPU) and many-core architectures. These emerging technologies offer massive processing units and are interesting for porous media flow simulators may used for CO 2 geological sequestration or Enhanced Oil Recovery (EOR) simulation. However the crucial point is 'are current algorithms and software able to use these new technologies efficiently?' The resolution of large sparse linear systems, almost ill-conditioned, constitutes the most CPU-consuming part of such simulators. This paper proposes a survey on various solver and pre-conditioner algorithms, analyzes their efficiency and performance regarding these distinct architectures. Furthermore it proposes a novel approach based on a hybrid programming model for both GPU and many-core clusters. The proposed optimization techniques are validated through a Krylov subspace solver; BiCGStab and some pre-conditioners like ILU0 on GPU, multi-core and many-core architectures, on various large real study cases in EOR simulation. (authors)

  10. Development of Numerical Grids for UZ Flow and Transport Modeling

    International Nuclear Information System (INIS)

    P. Dobson

    2003-01-01

    This Scientific Analysis report describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain. Numerical grid generation is an integral part of the development of the Unsaturated Zone Flow and Transport Model (UZ Model), a complex, three-dimensional (3-D) model of Yucca Mountain. This revision incorporates changes made to both the geologic framework model and the proposed repository layout. The resulting numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal-loading conditions. The technical scope, content, and management of this Scientific Analysis report was initially controlled by the planning document, ''Technical Work Plan (TWP) for: Unsaturated Zone Sections of License Application Chapters 8 and 12'' (BSC 2002 [159051], Section 1.6.4). This TWP was later superseded by ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819]), which contains the Data Qualification Plan used to qualify the DTN: MO0212GWLSSPAX.000 [161271] (See Attachment IV). Grids generated and documented in this report supersede those documented in previous versions of this report (BSC 2001 [159356]). The constraints, assumptions, and limitations associated with this report are discussed in the appropriate sections that follow. There were no deviations from the TWP scope of work in this report. Two software packages not listed in Table IV-2 of the TWP (BSC 2002 [159051]), ARCINFO V7.2.1 (CRWMS M and O 2000 [157019]; USGS 2000 [148304]) and 2kgrid8.for V1.0 (LBNL 2002 [154787]), were utilized in the development of the numerical grids; the use of additional software is accounted for in the TWP (BSC 2002 [159051], Section 13). The use of

  11. 5 X 5 rod bundle flow field measurements downstream a PWR spacer grid

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Higor F.P.; Silva, Vitor V A.; Santos, André A.C.; Veloso, Maria A.F., E-mail: higorfabiano@gmail.com, E-mail: mdora@nuclear.ufmg.br, E-mail: vitors@cdtn.br, E-mail: aacs@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The spacer grids are structures present in nuclear fuel assembly of Pressurized Water Reactors (PWR). They play an important structural role and also assist in heat removal through the assembly by promoting increased turbulence of the flow. Understanding the flow dynamics downstream the spacer grid is paramount for fuel element design and analysis. This paper presents water flow velocity profiles measurements downstream a spacer grid in a 5 x 5 rod bundle test rig with the objective of highlighting important fluid dynamic behavior near the grid and supplying data for CFD simulation validation. These velocity profiles were obtained at two different heights downstream the spacer grid using a LDV (Laser Doppler Velocimetry) through the top of test rig. The turbulence intensities and patterns of the swirl and cross flow were evaluated. The tests were conducted for Reynolds numbers ranging from 1.8 x 10{sup 4} to 5.4 x 10{sup 4}. This experimental research was carried out in thermo-hydraulics laboratory of Nuclear Technology Development Center – CDTN. Results show great repeatability and low uncertainties (< 1.24 %). Details of the flow field show how the mixture and turbulence induced by the spacer grid quickly decays downstream the spacer grid. It is shown that the developed methodology can supply high resolution low uncertainty results that can be used for validation of CFD simulations. (author)

  12. 5 X 5 rod bundle flow field measurements downstream a PWR spacer grid

    International Nuclear Information System (INIS)

    Castro, Higor F.P.; Silva, Vitor V A.; Santos, André A.C.; Veloso, Maria A.F.

    2017-01-01

    The spacer grids are structures present in nuclear fuel assembly of Pressurized Water Reactors (PWR). They play an important structural role and also assist in heat removal through the assembly by promoting increased turbulence of the flow. Understanding the flow dynamics downstream the spacer grid is paramount for fuel element design and analysis. This paper presents water flow velocity profiles measurements downstream a spacer grid in a 5 x 5 rod bundle test rig with the objective of highlighting important fluid dynamic behavior near the grid and supplying data for CFD simulation validation. These velocity profiles were obtained at two different heights downstream the spacer grid using a LDV (Laser Doppler Velocimetry) through the top of test rig. The turbulence intensities and patterns of the swirl and cross flow were evaluated. The tests were conducted for Reynolds numbers ranging from 1.8 x 10"4 to 5.4 x 10"4. This experimental research was carried out in thermo-hydraulics laboratory of Nuclear Technology Development Center – CDTN. Results show great repeatability and low uncertainties (< 1.24 %). Details of the flow field show how the mixture and turbulence induced by the spacer grid quickly decays downstream the spacer grid. It is shown that the developed methodology can supply high resolution low uncertainty results that can be used for validation of CFD simulations. (author)

  13. Numerical 3D flow simulation of attached cavitation structures at ultrasonic horn tips and statistical evaluation of flow aggressiveness via load collectives

    Science.gov (United States)

    Mottyll, S.; Skoda, R.

    2015-12-01

    A compressible inviscid flow solver with barotropic cavitation model is applied to two different ultrasonic horn set-ups and compared to hydrophone, shadowgraphy as well as erosion test data. The statistical analysis of single collapse events in wall-adjacent flow regions allows the determination of the flow aggressiveness via load collectives (cumulative event rate vs collapse pressure), which show an exponential decrease in agreement to studies on hydrodynamic cavitation [1]. A post-processing projection of event rate and collapse pressure on a reference grid reduces the grid dependency significantly. In order to evaluate the erosion-sensitive areas a statistical analysis of transient wall loads is utilised. Predicted erosion sensitive areas as well as temporal pressure and vapour volume evolution are in good agreement to the experimental data.

  14. An immersed interface vortex particle-mesh solver

    Science.gov (United States)

    Marichal, Yves; Chatelain, Philippe; Winckelmans, Gregoire

    2014-11-01

    An immersed interface-enabled vortex particle-mesh (VPM) solver is presented for the simulation of 2-D incompressible viscous flows, in the framework of external aerodynamics. Considering the simulation of free vortical flows, such as wakes and jets, vortex particle-mesh methods already provide a valuable alternative to standard CFD methods, thanks to the interesting numerical properties arising from its Lagrangian nature. Yet, accounting for solid bodies remains challenging, despite the extensive research efforts that have been made for several decades. The present immersed interface approach aims at improving the consistency and the accuracy of one very common technique (based on Lighthill's model) for the enforcement of the no-slip condition at the wall in vortex methods. Targeting a sharp treatment of the wall calls for substantial modifications at all computational levels of the VPM solver. More specifically, the solution of the underlying Poisson equation, the computation of the diffusion term and the particle-mesh interpolation are adapted accordingly and the spatial accuracy is assessed. The immersed interface VPM solver is subsequently validated on the simulation of some challenging impulsively started flows, such as the flow past a cylinder and that past an airfoil. Research Fellow (PhD student) of the F.R.S.-FNRS of Belgium.

  15. LES of Internal Combustion Engine Flows Using Cartesian Overset Grids

    Directory of Open Access Journals (Sweden)

    Falkenstein Tobias

    2017-11-01

    Full Text Available Accurate computations of turbulent flows using the Large-Eddy Simulation (LES technique with an appropriate SubFilter Scale (SFS model require low artificial dissipation such that the physical energy cascade process is not perturbed by numerical artifacts. To realize this in practical simulations, energy-conserving numerical schemes and high-quality computational grids are needed. If unstructured meshes are used, the latter requirement often makes grid generation for complex geometries very difficult. Structured Cartesian grids offer the advantage that uncertainties in mesh quality are reduced to choosing appropriate resolution. However, two intrinsic challenges of the structured approach are local mesh refinement and representation of complex geometries. In this work, the effectiveness of numerical methods which can be expected to reduce both drawbacks is assessed in engine flows, using a multi-physics inhouse code. The overset grid approach is utilized to arbitrarily combine grid patches of different spacing to a flow domain of complex shape during mesh generation. Walls are handled by an Immersed Boundary (IB method, which is combined with a wall function to treat underresolved boundary layers. A statistically stationary Spark Ignition (SI engine port flow is simulated at Reynolds numbers typical for engine operation. Good agreement of computed and measured integral flow quantities like overall pressure loss and tumble number is found. A comparison of simulated velocity fields to Particle Image Velocimetry (PIV measurement data concludes the validation of the enhanced numerical framework for both mean velocity and turbulent fluctuations. The performance of two SFS models, the dynamic Smagorinsky model with Lagrangian averaging along pathlines and the coherent structure model, is tested on different grids. Sensitivity of pressure loss and tumble ratio to the wall treatment and mesh refinement is presented. It is shown that increased wall

  16. CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. III. MULTIGROUP RADIATION HYDRODYNAMICS

    International Nuclear Information System (INIS)

    Zhang, W.; Almgren, A.; Bell, J.; Howell, L.; Burrows, A.; Dolence, J.

    2013-01-01

    We present a formulation for multigroup radiation hydrodynamics that is correct to order O(v/c) using the comoving-frame approach and the flux-limited diffusion approximation. We describe a numerical algorithm for solving the system, implemented in the compressible astrophysics code, CASTRO. CASTRO uses a Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. In our multigroup radiation solver, the system is split into three parts: one part that couples the radiation and fluid in a hyperbolic subsystem, another part that advects the radiation in frequency space, and a parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem and the frequency space advection are solved explicitly with high-order Godunov schemes, whereas the parabolic part is solved implicitly with a first-order backward Euler method. Our multigroup radiation solver works for both neutrino and photon radiation.

  17. Identification of severe wind conditions using a Reynolds averaged Navier-Stokes solver

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Bechmann, Andreas; Johansen, Jeppe

    2007-01-01

    The present paper describes the application of a Navier-Stokes solver to predict the presence of severe flow conditions in complex terrain, capturing conditions that may be critical to the siting of wind turbines in the terrain. First it is documented that the flow solver is capable of predicting...

  18. Cosmos++: relativistic magnetohydrodynamics on unstructured grids with local adaptive refinement

    International Nuclear Information System (INIS)

    Salmonson, Jay D; Anninos, Peter; Fragile, P Chris; Camarda, Karen

    2007-01-01

    A code and methodology are introduced for solving the fully general relativistic magnetohydrodynamic (GRMHD) equations using time-explicit, finite-volume discretization. The code has options for solving the GRMHD equations using traditional artificial-viscosity (AV) or non-oscillatory central difference (NOCD) methods, or a new extended AV (eAV) scheme using artificial-viscosity together with a dual energy-flux-conserving formulation. The dual energy approach allows for accurate modeling of highly relativistic flows at boost factors well beyond what has been achieved to date by standard artificial viscosity methods. It provides the benefit of Godunov methods in capturing high Lorentz boosted flows but without complicated Riemann solvers, and the advantages of traditional artificial viscosity methods in their speed and flexibility. Additionally, the GRMHD equations are solved on an unstructured grid that supports local adaptive mesh refinement using a fully threaded oct-tree (in three dimensions) network to traverse the grid hierarchy across levels and immediate neighbors. Some recent studies will be summarized

  19. Parallel linear solvers for simulations of reactor thermal hydraulics

    International Nuclear Information System (INIS)

    Yan, Y.; Antal, S.P.; Edge, B.; Keyes, D.E.; Shaver, D.; Bolotnov, I.A.; Podowski, M.Z.

    2011-01-01

    The state-of-the-art multiphase fluid dynamics code, NPHASE-CMFD, performs multiphase flow simulations in complex domains using implicit nonlinear treatment of the governing equations and in parallel, which is a very challenging environment for the linear solver. The present work illustrates how the Portable, Extensible Toolkit for Scientific Computation (PETSc) and scalable Algebraic Multigrid (AMG) preconditioner from Hypre can be utilized to construct robust and scalable linear solvers for the Newton correction equation obtained from the discretized system of governing conservation equations in NPHASE-CMFD. The overall long-tem objective of this work is to extend the NPHASE-CMFD code into a fully-scalable solver of multiphase flow and heat transfer problems, applicable to both steady-state and stiff time-dependent phenomena in complete fuel assemblies of nuclear reactors and, eventually, the entire reactor core (such as the Virtual Reactor concept envisioned by CASL). This campaign appropriately begins with the linear algebraic equation solver, which is traditionally a bottleneck to scalability in PDE-based codes. The computational complexity of the solver is usually superlinear in problem size, whereas the rest of the code, the “physics” portion, usually has its complexity linear in the problem size. (author)

  20. SOMAR-LES: A framework for multi-scale modeling of turbulent stratified oceanic flows

    Science.gov (United States)

    Chalamalla, Vamsi K.; Santilli, Edward; Scotti, Alberto; Jalali, Masoud; Sarkar, Sutanu

    2017-12-01

    A new multi-scale modeling technique, SOMAR-LES, is presented in this paper. Localized grid refinement gives SOMAR (the Stratified Ocean Model with Adaptive Resolution) access to small scales of the flow which are normally inaccessible to general circulation models (GCMs). SOMAR-LES drives a LES (Large Eddy Simulation) on SOMAR's finest grids, forced with large scale forcing from the coarser grids. Three-dimensional simulations of internal tide generation, propagation and scattering are performed to demonstrate this multi-scale modeling technique. In the case of internal tide generation at a two-dimensional bathymetry, SOMAR-LES is able to balance the baroclinic energy budget and accurately model turbulence losses at only 10% of the computational cost required by a non-adaptive solver running at SOMAR-LES's fine grid resolution. This relative cost is significantly reduced in situations with intermittent turbulence or where the location of the turbulence is not known a priori because SOMAR-LES does not require persistent, global, high resolution. To illustrate this point, we consider a three-dimensional bathymetry with grids adaptively refined along the tidally generated internal waves to capture remote mixing in regions of wave focusing. The computational cost in this case is found to be nearly 25 times smaller than that of a non-adaptive solver at comparable resolution. In the final test case, we consider the scattering of a mode-1 internal wave at an isolated two-dimensional and three-dimensional topography, and we compare the results with Legg (2014) numerical experiments. We find good agreement with theoretical estimates. SOMAR-LES is less dissipative than the closure scheme employed by Legg (2014) near the bathymetry. Depending on the flow configuration and resolution employed, a reduction of more than an order of magnitude in computational costs is expected, relative to traditional existing solvers.

  1. MAGNETOHYDRODYNAMIC MODELING OF SOLAR SYSTEM PROCESSES ON GEODESIC GRIDS

    Energy Technology Data Exchange (ETDEWEB)

    Florinski, V. [Department of Physics, University of Alabama, Huntsville, AL 35899 (United States); Guo, X. [Center for Space Plasma and Aeronomic Research, University of Alabama, Huntsville, AL 35899 (United States); Balsara, D. S.; Meyer, C. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2013-04-01

    This report describes a new magnetohydrodynamic numerical model based on a hexagonal spherical geodesic grid. The model is designed to simulate astrophysical flows of partially ionized plasmas around a central compact object, such as a star or a planet with a magnetic field. The geodesic grid, produced by a recursive subdivision of a base platonic solid (an icosahedron), is free from control volume singularities inherent in spherical polar grids. Multiple populations of plasma and neutral particles, coupled via charge-exchange interactions, can be simulated simultaneously with this model. Our numerical scheme uses piecewise linear reconstruction on a surface of a sphere in a local two-dimensional 'Cartesian' frame. The code employs Haarten-Lax-van-Leer-type approximate Riemann solvers and includes facilities to control the divergence of the magnetic field and maintain pressure positivity. Several test solutions are discussed, including a problem of an interaction between the solar wind and the local interstellar medium, and a simulation of Earth's magnetosphere.

  2. MAGNETOHYDRODYNAMIC MODELING OF SOLAR SYSTEM PROCESSES ON GEODESIC GRIDS

    International Nuclear Information System (INIS)

    Florinski, V.; Guo, X.; Balsara, D. S.; Meyer, C.

    2013-01-01

    This report describes a new magnetohydrodynamic numerical model based on a hexagonal spherical geodesic grid. The model is designed to simulate astrophysical flows of partially ionized plasmas around a central compact object, such as a star or a planet with a magnetic field. The geodesic grid, produced by a recursive subdivision of a base platonic solid (an icosahedron), is free from control volume singularities inherent in spherical polar grids. Multiple populations of plasma and neutral particles, coupled via charge-exchange interactions, can be simulated simultaneously with this model. Our numerical scheme uses piecewise linear reconstruction on a surface of a sphere in a local two-dimensional 'Cartesian' frame. The code employs Haarten-Lax-van-Leer-type approximate Riemann solvers and includes facilities to control the divergence of the magnetic field and maintain pressure positivity. Several test solutions are discussed, including a problem of an interaction between the solar wind and the local interstellar medium, and a simulation of Earth's magnetosphere.

  3. A HYBRID SOLAR WIND MODEL OF THE CESE+HLL METHOD WITH A YIN-YANG OVERSET GRID AND AN AMR GRID

    International Nuclear Information System (INIS)

    Feng Xueshang; Zhang Shaohua; Xiang Changqing; Yang Liping; Jiang Chaowei; Wu, S. T.

    2011-01-01

    A hybrid three-dimensional (3D) MHD model for solar wind study is proposed in the present paper with combined grid systems and solvers. The computational domain from the Sun to Earth space is decomposed into the near-Sun and off-Sun domains, which are respectively constructed with a Yin-Yang overset grid system and a Cartesian adaptive mesh refinement (AMR) grid system and coupled with a domain connection interface in the overlapping region between the near-Sun and off-Sun domains. The space-time conservation element and solution element method is used in the near-Sun domain, while the Harten-Lax-Leer method is employed in the off-Sun domain. The Yin-Yang overset grid can avoid well-known singularity and polar grid convergence problems and its body-fitting property helps achieve high-quality resolution near the solar surface. The block structured AMR Cartesian grid can automatically capture far-field plasma flow features, such as heliospheric current sheets and shock waves, and at the same time, it can save significant computational resources compared to the uniformly structured Cartesian grid. A numerical study of the solar wind structure for Carrington rotation 2069 shows that the newly developed hybrid MHD solar wind model successfully produces many realistic features of the background solar wind, in both the solar corona and interplanetary space, by comparisons with multiple solar and interplanetary observations.

  4. High performance parallel computing of flows in complex geometries: I. Methods

    International Nuclear Information System (INIS)

    Gourdain, N; Gicquel, L; Montagnac, M; Vermorel, O; Staffelbach, G; Garcia, M; Boussuge, J-F; Gazaix, M; Poinsot, T

    2009-01-01

    Efficient numerical tools coupled with high-performance computers, have become a key element of the design process in the fields of energy supply and transportation. However flow phenomena that occur in complex systems such as gas turbines and aircrafts are still not understood mainly because of the models that are needed. In fact, most computational fluid dynamics (CFD) predictions as found today in industry focus on a reduced or simplified version of the real system (such as a periodic sector) and are usually solved with a steady-state assumption. This paper shows how to overcome such barriers and how such a new challenge can be addressed by developing flow solvers running on high-end computing platforms, using thousands of computing cores. Parallel strategies used by modern flow solvers are discussed with particular emphases on mesh-partitioning, load balancing and communication. Two examples are used to illustrate these concepts: a multi-block structured code and an unstructured code. Parallel computing strategies used with both flow solvers are detailed and compared. This comparison indicates that mesh-partitioning and load balancing are more straightforward with unstructured grids than with multi-block structured meshes. However, the mesh-partitioning stage can be challenging for unstructured grids, mainly due to memory limitations of the newly developed massively parallel architectures. Finally, detailed investigations show that the impact of mesh-partitioning on the numerical CFD solutions, due to rounding errors and block splitting, may be of importance and should be accurately addressed before qualifying massively parallel CFD tools for a routine industrial use.

  5. Reduction of numerical diffusion in three-dimensional vortical flows using a coupled Eulerian/Lagrangian solution procedure

    Science.gov (United States)

    Felici, Helene M.; Drela, Mark

    1993-01-01

    A new approach based on the coupling of an Eulerian and a Lagrangian solver, aimed at reducing the numerical diffusion errors of standard Eulerian time-marching finite-volume solvers, is presented. The approach is applied to the computation of the secondary flow in two bent pipes and the flow around a 3D wing. Using convective point markers the Lagrangian approach provides a correction of the basic Eulerian solution. The Eulerian flow in turn integrates in time the Lagrangian state-vector. A comparison of coarse and fine grid Eulerian solutions makes it possible to identify numerical diffusion. It is shown that the Eulerian/Lagrangian approach is an effective method for reducing numerical diffusion errors.

  6. Study of two-dimensional flow by triangular unstructured grid around airfoil with dynamic ground effect

    International Nuclear Information System (INIS)

    Haghbin, S.; Farahat, S.

    2004-01-01

    In this paper, the numerical solution of two-dimensional incompressible viscid flow by triangular unstructured grid around airfoil with dynamic ground effect and by using geometric conservation law (GCL) has been represented. In this analysis, after the mesh generation for physical model, for the purpose of adaption of meshes with physical condition, the mesh adaption method has been used. Also, for increasing the speed of results convergence, the Multigrid method has been applied to the solver of governing equations. Because of the movement of meshes in this analysis, by using a spring simulation, the generated meshes have been moved and in every time step for the purpose of controlling the quality of meshes, by considering the EquiAngle Skew coefficient (EAS) and the volume of each mesh, the meshes that had a large EAS and a volume more than and less than defined maximum and minimum value, have been removed and then regenerated. Also, because the continuity and momentum conservations law were insufficient to work with these moving grids, the geometric conservation law was combined with the other conservation laws and a general equation was obtained for the dynamic meshes. For solving this general equation, the Simple Algorithm has been used. According to the results, the dynamic ground effect causes unsteadiness and also the Lift coefficient is increased vibrationally. And with respect to the type of airfoil, the Drag coefficient can decrease or increase vibrationally. (author)

  7. Study of two-dimensional flow by triangular unstructured grid around airfoil with dynamic ground effect

    Energy Technology Data Exchange (ETDEWEB)

    Haghbin, S.; Farahat, S. [Sistan and Baluchestan Univ., Dept. of Mechanical Engineering, Zahedan (Iran, Islamic Republic of)]. E-mail: sadegh_haghbin@yahoo.com

    2004-07-01

    In this paper, the numerical solution of two-dimensional incompressible viscid flow by triangular unstructured grid around airfoil with dynamic ground effect and by using geometric conservation law (GCL) has been represented. In this analysis, after the mesh generation for physical model, for the purpose of adaption of meshes with physical condition, the mesh adaption method has been used. Also, for increasing the speed of results convergence, the Multigrid method has been applied to the solver of governing equations. Because of the movement of meshes in this analysis, by using a spring simulation, the generated meshes have been moved and in every time step for the purpose of controlling the quality of meshes, by considering the EquiAngle Skew coefficient (EAS) and the volume of each mesh, the meshes that had a large EAS and a volume more than and less than defined maximum and minimum value, have been removed and then regenerated. Also, because the continuity and momentum conservations law were insufficient to work with these moving grids, the geometric conservation law was combined with the other conservation laws and a general equation was obtained for the dynamic meshes. For solving this general equation, the Simple Algorithm has been used. According to the results, the dynamic ground effect causes unsteadiness and also the Lift coefficient is increased vibrationally. And with respect to the type of airfoil, the Drag coefficient can decrease or increase vibrationally. (author)

  8. Coarse Grid Modeling of Turbine Film Cooling Flows Using Volumetric Source Terms

    Science.gov (United States)

    Heidmann, James D.; Hunter, Scott D.

    2001-01-01

    The recent trend in numerical modeling of turbine film cooling flows has been toward higher fidelity grids and more complex geometries. This trend has been enabled by the rapid increase in computing power available to researchers. However, the turbine design community requires fast turnaround time in its design computations, rendering these comprehensive simulations ineffective in the design cycle. The present study describes a methodology for implementing a volumetric source term distribution in a coarse grid calculation that can model the small-scale and three-dimensional effects present in turbine film cooling flows. This model could be implemented in turbine design codes or in multistage turbomachinery codes such as APNASA, where the computational grid size may be larger than the film hole size. Detailed computations of a single row of 35 deg round holes on a flat plate have been obtained for blowing ratios of 0.5, 0.8, and 1.0, and density ratios of 1.0 and 2.0 using a multiblock grid system to resolve the flows on both sides of the plate as well as inside the hole itself. These detailed flow fields were spatially averaged to generate a field of volumetric source terms for each conservative flow variable. Solutions were also obtained using three coarse grids having streamwise and spanwise grid spacings of 3d, 1d, and d/3. These coarse grid solutions used the integrated hole exit mass, momentum, energy, and turbulence quantities from the detailed solutions as volumetric source terms. It is shown that a uniform source term addition over a distance from the wall on the order of the hole diameter is able to predict adiabatic film effectiveness better than a near-wall source term model, while strictly enforcing correct values of integrated boundary layer quantities.

  9. Solution adaptive grids applied to low Reynolds number flow

    Science.gov (United States)

    de With, G.; Holdø, A. E.; Huld, T. A.

    2003-08-01

    A numerical study has been undertaken to investigate the use of a solution adaptive grid for flow around a cylinder in the laminar flow regime. The main purpose of this work is twofold. The first aim is to investigate the suitability of a grid adaptation algorithm and the reduction in mesh size that can be obtained. Secondly, the uniform asymmetric flow structures are ideal to validate the mesh structures due to mesh refinement and consequently the selected refinement criteria. The refinement variable used in this work is a product of the rate of strain and the mesh cell size, and contains two variables Cm and Cstr which determine the order of each term. By altering the order of either one of these terms the refinement behaviour can be modified.

  10. Computations of ideal and real gas high altitude plume flows

    Science.gov (United States)

    Feiereisen, William J.; Venkatapathy, Ethiraj

    1988-01-01

    In the present work, complete flow fields around generic space vehicles in supersonic and hypersonic flight regimes are studied numerically. Numerical simulation is performed with a flux-split, time asymptotic viscous flow solver that incorporates a generalized equilibrium chemistry model. Solutions to generic problems at various altitude and flight conditions show the complexity of the flow, the equilibrium chemical dissociation and its effect on the overall flow field. Viscous ideal gas solutions are compared against equilibrium gas solutions to illustrate the effect of equilibrium chemistry. Improved solution accuracy is achieved through adaptive grid refinement.

  11. A comparison of hyperbolic solvers for ideal and real gas flows

    Directory of Open Access Journals (Sweden)

    R. M. L. Coelho

    2006-09-01

    Full Text Available Classical and recent numerical schemes for solving hyperbolic conservation laws were analyzed for computational efficiency and application to nonideal gas flows. The Roe-Pike approximate Riemann solver with entropy correction, the Harten second-order scheme and the extension of the Roe-Pike method to second-order by the MUSCL strategy were compared for one-dimensional flows of an ideal gas. These methods require the so-called Roe's average state, which is frequently difficult and sometimes impossible to obtain. Other methods that do not require the average state are best suited for complex equations of state. Of these, the VFRoe, AUSM+ and Hybrid Lax-Friedrich-Lax-Wendroff methods were compared for one-dimensional compressible flows of a Van der Waals gas. All methods were evaluated regarding their accuracy for given mesh sizes and their computational cost for a given solution accuracy. It was shown that, even though they require more floating points and indirect addressing operations per time step, for a given time interval for integration the second-order methods are less-time consuming than the first-order methods for a required accuracy. It was also shown that AUSM+ and VFRoe are the most accurate methods and that AUSM+ is much faster than the others, and is thus recommended for nonideal one-phase gas flows.

  12. Multiphysics Simulations of Entrained Flow Gasification. Part I: Validating the Nonreacting Flow Solver and the Particle Turbulent Dispersion Model

    KAUST Repository

    Kumar, Mayank

    2012-01-19

    In this two-part paper, we describe the construction, validation, and application of a multiscale model of entrained flow gasification. The accuracy of the model is demonstrated by (1) rigorously constructing and validating the key constituent submodels against relevant canonical test cases from the literature and (2) validating the integrated model against experimental data from laboratory scale and commercial scale gasifiers. In part I, the flow solver and particle turbulent dispersion models are validated against experimental data from nonswirling flow and swirling flow test cases in an axisymmetric sudden expansion geometry and a two-phase flow test case in a cylindrical bluff body geometry. Results show that while the large eddy simulation (LES) performs best among all tested models in predicting both swirling and nonswirling flows, the shear stress transport (SST) k-ω model is the best choice among the commonly used Reynolds-averaged Navier-Stokes (RANS) models. The particle turbulent dispersion model is accurate enough in predicting particle trajectories in complex turbulent flows when the underlying turbulent flow is well predicted. Moreover, a commonly used modeling constant in the particle dispersion model is optimized on the basis of comparisons with particle-phase experimental data for the two-phase flow bluff body case. © 2011 American Chemical Society.

  13. Response analysis of a laminar premixed M-flame to flow perturbations using a linearized compressible Navier-Stokes solver

    International Nuclear Information System (INIS)

    Blanchard, M.; Schuller, T.; Sipp, D.; Schmid, P. J.

    2015-01-01

    The response of a laminar premixed methane-air flame subjected to flow perturbations around a steady state is examined experimentally and using a linearized compressible Navier-Stokes solver with a one-step chemistry mechanism to describe combustion. The unperturbed flame takes an M-shape stabilized both by a central bluff body and by the external rim of a cylindrical nozzle. This base flow is computed by a nonlinear direct simulation of the steady reacting flow, and the flame topology is shown to qualitatively correspond to experiments conducted under comparable conditions. The flame is then subjected to acoustic disturbances produced at different locations in the numerical domain, and its response is examined using the linearized solver. This linear numerical model then allows the componentwise investigation of the effects of flow disturbances on unsteady combustion and the feedback from the flame on the unsteady flow field. It is shown that a wrinkled reaction layer produces hydrodynamic disturbances in the fresh reactant flow field that superimpose on the acoustic field. This phenomenon, observed in several experiments, is fully interpreted here. The additional perturbations convected by the mean flow stem from the feedback of the perturbed flame sheet dynamics onto the flow field by a mechanism similar to that of a perturbed vortex sheet. The different regimes where this mechanism prevails are investigated by examining the phase and group velocities of flow disturbances along an axis oriented along the main direction of the flow in the fresh reactant flow field. It is shown that this mechanism dominates the low-frequency response of the wrinkled shape taken by the flame and, in particular, that it fully determines the dynamics of the flame tip from where the bulk of noise is radiated

  14. Assessment of the Unstructured Grid Software TetrUSS for Drag Prediction of the DLR-F4 Configuration

    Science.gov (United States)

    Pirzadeh, Shahyar Z.; Frink, Neal T.

    2002-01-01

    An application of the NASA unstructured grid software system TetrUSS is presented for the prediction of aerodynamic drag on a transport configuration. The paper briefly describes the underlying methodology and summarizes the results obtained on the DLR-F4 transport configuration recently presented in the first AIAA computational fluid dynamics (CFD) Drag Prediction Workshop. TetrUSS is a suite of loosely coupled unstructured grid CFD codes developed at the NASA Langley Research Center. The meshing approach is based on the advancing-front and the advancing-layers procedures. The flow solver employs a cell-centered, finite volume scheme for solving the Reynolds Averaged Navier-Stokes equations on tetrahedral grids. For the present computations, flow in the viscous sublayer has been modeled with an analytical wall function. The emphasis of the paper is placed on the practicality of the methodology for accurately predicting aerodynamic drag data.

  15. Geometric effects of spacer grid in an annulus flow channel during reflooding period

    International Nuclear Information System (INIS)

    Cho, S.; Chun, S. Y.; Kim, B. D.; Park, J. K.; Yun, Y. J.; Baek, W. P.

    2004-01-01

    A number of studies on the reflooding phase were actively carried out from the early 70's due to its importance for the safety of the nuclear reactor. (Martini et al., 1973; Henry, 1974; Chung, 1978;) However, few studies have presented the spacer grid effect during the reflooding period. Since the grid is an obstruction in the flow passage, it causes an increased pressure drop due to form and skin friction losses. On the other hand, the spacer grid tends to increase the local wall heat transfer. The present work has been performed in a vertical annulus flow channel with various flow conditions. The objective of this paper is to evaluate the effects of a swirl-vane spacer grid on the rewetting phenomena during the reflooding phase

  16. Parallel sparse direct solver for integrated circuit simulation

    CERN Document Server

    Chen, Xiaoming; Yang, Huazhong

    2017-01-01

    This book describes algorithmic methods and parallelization techniques to design a parallel sparse direct solver which is specifically targeted at integrated circuit simulation problems. The authors describe a complete flow and detailed parallel algorithms of the sparse direct solver. They also show how to improve the performance by simple but effective numerical techniques. The sparse direct solver techniques described can be applied to any SPICE-like integrated circuit simulator and have been proven to be high-performance in actual circuit simulation. Readers will benefit from the state-of-the-art parallel integrated circuit simulation techniques described in this book, especially the latest parallel sparse matrix solution techniques. · Introduces complicated algorithms of sparse linear solvers, using concise principles and simple examples, without complex theory or lengthy derivations; · Describes a parallel sparse direct solver that can be adopted to accelerate any SPICE-like integrated circuit simulato...

  17. Rotor wake and flow analysis using a coupled Eulerian–Lagrangian method

    Directory of Open Access Journals (Sweden)

    Yongjie Shi

    2016-01-01

    Full Text Available A coupled Eulerian–Lagrangian methodology was developed in this paper in order to provide an efficient and accurate tool for rotor wake and flow prediction. A Eulerian-based Reynolds-averaged Navier–Stokes (RANS solver was employed to simulate the grid-covered near-body zone, and a grid-free Lagrangian-based viscous wake method (VWM was implemented to model the complicated rotor-wake dynamics in the off-body wake zone. A carefully designed coupling strategy was developed to pass the flow variables between two solvers. A sample case of a forward flying rotor was performed first in order to show the capabilities of the VWM for wake simulations. Next, the coupled method was applied to rotors in several representative flight conditions. Excellent agreement regarding wake geometry, chordwise pressure distribution and sectional normal force with available experimental data demonstrated the validity of the method. In addition, a comparison with the full computational fluid dynamics (CFD method is presented to illustrate the efficiency and accuracy of the proposed coupled method.

  18. Topologically protected loop flows in high voltage AC power grids

    International Nuclear Information System (INIS)

    Coletta, T; Delabays, R; Jacquod, Ph; Adagideli, I

    2016-01-01

    Geographical features such as mountain ranges or big lakes and inland seas often result in large closed loops in high voltage AC power grids. Sizable circulating power flows have been recorded around such loops, which take up transmission line capacity and dissipate but do not deliver electric power. Power flows in high voltage AC transmission grids are dominantly governed by voltage angle differences between connected buses, much in the same way as Josephson currents depend on phase differences between tunnel-coupled superconductors. From this previously overlooked similarity we argue here that circulating power flows in AC power grids are analogous to supercurrents flowing in superconducting rings and in rings of Josephson junctions. We investigate how circulating power flows can be created and how they behave in the presence of ohmic dissipation. We show how changing operating conditions may generate them, how significantly more power is ohmically dissipated in their presence and how they are topologically protected, even in the presence of dissipation, so that they persist when operating conditions are returned to their original values. We identify three mechanisms for creating circulating power flows, (i) by loss of stability of the equilibrium state carrying no circulating loop flow, (ii) by tripping of a line traversing a large loop in the network and (iii) by reclosing a loop that tripped or was open earlier. Because voltages are uniquely defined, circulating power flows can take on only discrete values, much in the same way as circulation around vortices is quantized in superfluids. (paper)

  19. Advanced Algebraic Multigrid Solvers for Subsurface Flow Simulation

    KAUST Repository

    Chen, Meng-Huo; Sun, Shuyu; Salama, Amgad

    2015-01-01

    and issues will be addressed and the corresponding remedies will be studied. As the multigrid methods are used as the linear solver, the simulator can be parallelized (although not trivial) and the high-resolution simulation become feasible, the ultimately

  20. Validation of the simpleFoam (RANS solver for the atmospheric boundary layer in complex terrain

    Directory of Open Access Journals (Sweden)

    Peralta C.

    2014-01-01

    Full Text Available We validate the simpleFoam (RANS solver in OpenFOAM (version 2.1.1 for simulating neutral atmospheric boundary layer flows in complex terrain. Initial and boundary conditions are given using Richards and Hoxey proposal [1]. In order to obtain stable simulation of the ABL, modified wall functions are used to set the near-wall boundary conditions, following Blocken et al remedial measures [2]. A structured grid is generated with the new library terrainBlockMesher [3,4], based on OpenFOAM's blockMesh native mesher. The new tool is capable of adding orographic features and the forest canopy. Additionally, the mesh can be refined in regions with complex orography. We study both the classical benchmark case of Askervein hill [5] and the more recent Bolund island data set [6]. Our purpose is two-folded: to validate the performance of OpenFOAM steady state solvers, and the suitability of the new meshing tool to generate high quality structured meshes, which will be used in the future for performing more computationally intensive LES simulations in complex terrain.

  1. High-Reynolds Number Viscous Flow Simulations on Embedded-Boundary Cartesian Grids

    Science.gov (United States)

    2016-05-05

    AFRL-AFOSR-VA-TR-2016-0192 High- Reynolds Number Viscous Flow Simulations on Embedded-Boundary Cartesian Grids Marsha Berger NEW YORK UNIVERSITY Final...TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY) 30/04/2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) High- Reynolds 4. TITLE AND...SUBTITLE High- Reynolds Number Viscous Flow Simulations on Embedded-Boundary Cartesian Grids 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1

  2. The Openpipeflow Navier–Stokes solver

    Directory of Open Access Journals (Sweden)

    Ashley P. Willis

    2017-01-01

    Full Text Available Pipelines are used in a huge range of industrial processes involving fluids, and the ability to accurately predict properties of the flow through a pipe is of fundamental engineering importance. Armed with parallel MPI, Arnoldi and Newton–Krylov solvers, the Openpipeflow code can be used in a range of settings, from large-scale simulation of highly turbulent flow, to the detailed analysis of nonlinear invariant solutions (equilibria and periodic orbits and their influence on the dynamics of the flow.

  3. Experimental study of circle grid fractal pattern on turbulent intensity in pipe flow

    International Nuclear Information System (INIS)

    Manshoor, B; Zaman, I; Othman, M F; Khalid, Amir

    2013-01-01

    Fractal turbulence is deemed much more efficient than grid turbulence in terms of a turbulence generation. In this paper, the hotwire experimental results for the circle grids fractal pattern as a turbulent generator will be presented. The self-similar edge characteristic of the circle grid fractal pattern is thought to play a vital role in the enhancement of turbulent intensity. Three different beta ratios of perforated plates based on circle grids fractal pattern were used in the experimental work and each paired with standard circle grids with similar porosity. The objectives were to study the fractal scaling influence on the flow and also to explore the potential of the circle grids fractal pattern in enhancing the turbulent intensity. The results provided an excellent insight of the fractal generated turbulence and the fractal flow physics. Across the circle grids fractal pattern, the pressure drop was lower but the turbulent intensity was higher than those across the paired standard circle grids

  4. A Quadtree-gridding LBM with Immersed Boundary for Two-dimension Viscous Flows

    Science.gov (United States)

    Yao, Jieke; Feng, Wenliang; Chen, Bin; Zhou, Wei; Cao, Shikun

    2017-07-01

    An un-uniform quadtree grids lattice Boltzmann method (LBM) with immersed boundary is presented in this paper. In overlapping for different level grids, temporal and spatial interpolation are necessary to ensure the continuity of physical quantity. In order to take advantage of the equation for temporal and spatial step in the same level grids, equal interval interpolation, which is simple to apply to any refined boundary grids in the LBM, is adopted in temporal and spatial aspects to obtain second-order accuracy. The velocity correction, which can guarantee more preferably no-slip boundary condition than the direct forcing method and the momentum exchange method in the traditional immersed-boundary LBM, is used for solid boundary to make the best of Cartesian grid. In present quadtree-gridding immersed-boundary LBM, large eddy simulation (LES) is adopted to simulate the flows over obstacle in higher Reynolds number (Re). The incompressible viscous flows over circular cylinder are carried out, and a great agreement is obtained.

  5. New multigrid solver advances in TOPS

    International Nuclear Information System (INIS)

    Falgout, R D; Brannick, J; Brezina, M; Manteuffel, T; McCormick, S

    2005-01-01

    In this paper, we highlight new multigrid solver advances in the Terascale Optimal PDE Simulations (TOPS) project in the Scientific Discovery Through Advanced Computing (SciDAC) program. We discuss two new algebraic multigrid (AMG) developments in TOPS: the adaptive smoothed aggregation method (αSA) and a coarse-grid selection algorithm based on compatible relaxation (CR). The αSA method is showing promising results in initial studies for Quantum Chromodynamics (QCD) applications. The CR method has the potential to greatly improve the applicability of AMG

  6. Parallelization of pressure equation solver for incompressible N-S equations

    International Nuclear Information System (INIS)

    Ichihara, Kiyoshi; Yokokawa, Mitsuo; Kaburaki, Hideo.

    1996-03-01

    A pressure equation solver in a code for 3-dimensional incompressible flow analysis has been parallelized by using red-black SOR method and PCG method on Fujitsu VPP500, a vector parallel computer with distributed memory. For the comparison of scalability, the solver using the red-black SOR method has been also parallelized on the Intel Paragon, a scalar parallel computer with a distributed memory. The scalability of the red-black SOR method on both VPP500 and Paragon was lost, when number of processor elements was increased. The reason of non-scalability on both systems is increasing communication time between processor elements. In addition, the parallelization by DO-loop division makes the vectorizing efficiency lower on VPP500. For an effective implementation on VPP500, a large scale problem which holds very long vectorized DO-loops in the parallel program should be solved. PCG method with red-black SOR method applied to incomplete LU factorization (red-black PCG) has more iteration steps than normal PCG method with forward and backward substitution, in spite of same number of the floating point operations in a DO-loop of incomplete LU factorization. The parallelized red-black PCG method has less merits than the parallelized red-black SOR method when the computational region has fewer grids, because the low vectorization efficiency is obtained in red-black PCG method. (author)

  7. Evaluation of load flow and grid expansion in a unit-commitment and expansion optimization model SciGRID International Conference on Power Grid Modelling

    Science.gov (United States)

    Senkpiel, Charlotte; Biener, Wolfgang; Shammugam, Shivenes; Längle, Sven

    2018-02-01

    Energy system models serve as a basis for long term system planning. Joint optimization of electricity generating technologies, storage systems and the electricity grid leads to lower total system cost compared to an approach in which the grid expansion follows a given technology portfolio and their distribution. Modelers often face the problem of finding a good tradeoff between computational time and the level of detail that can be modeled. This paper analyses the differences between a transport model and a DC load flow model to evaluate the validity of using a simple but faster transport model within the system optimization model in terms of system reliability. The main findings in this paper are that a higher regional resolution of a system leads to better results compared to an approach in which regions are clustered as more overloads can be detected. An aggregation of lines between two model regions compared to a line sharp representation has little influence on grid expansion within a system optimizer. In a DC load flow model overloads can be detected in a line sharp case, which is therefore preferred. Overall the regions that need to reinforce the grid are identified within the system optimizer. Finally the paper recommends the usage of a load-flow model to test the validity of the model results.

  8. Numerical Simulation for Flow Distribution in ACE7 Fuel Assemblies affected by a Spacer Grid Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongpil; Jeong, Ji Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In spite of various efforts to understand hydraulic phenomena in a rod bundle containing deformed rods due to swelling and/or ballooning of clad, the studies for flow blockage due to spacer grid deformation have been limited. In the present work, 3D CFD analysis for flow blockage was performed to evaluate coolant flow within ACE7 fuel assemblies (FAs) containing a FA affected by a spacer grid deformation. The real geometry except for inner grids was used in the simulation and the region including inner grid was replaced by porous media. In the present work, the numerical simulation was performed to predict coolant flow within ACE7 FAs affected by a Mid grid deformation. The 3D CFD result shows that approximately 60 subchannel hydraulic diameter is required to fully recover coolant flow under normal operating condition.

  9. Sub-Grid Modeling of Electrokinetic Effects in Micro Flows

    Science.gov (United States)

    Chen, C. P.

    2005-01-01

    Advances in micro-fabrication processes have generated tremendous interests in miniaturizing chemical and biomedical analyses into integrated microsystems (Lab-on-Chip devices). To successfully design and operate the micro fluidics system, it is essential to understand the fundamental fluid flow phenomena when channel sizes are shrink to micron or even nano dimensions. One important phenomenon is the electro kinetic effect in micro/nano channels due to the existence of the electrical double layer (EDL) near a solid-liquid interface. Not only EDL is responsible for electro-osmosis pumping when an electric field parallel to the surface is imposed, EDL also causes extra flow resistance (the electro-viscous effect) and flow anomaly (such as early transition from laminar to turbulent flow) observed in pressure-driven microchannel flows. Modeling and simulation of electro-kinetic effects on micro flows poses significant numerical challenge due to the fact that the sizes of the double layer (10 nm up to microns) are very thin compared to channel width (can be up to 100 s of m). Since the typical thickness of the double layer is extremely small compared to the channel width, it would be computationally very costly to capture the velocity profile inside the double layer by placing sufficient number of grid cells in the layer to resolve the velocity changes, especially in complex, 3-d geometries. Existing approaches using "slip" wall velocity and augmented double layer are difficult to use when the flow geometry is complicated, e.g. flow in a T-junction, X-junction, etc. In order to overcome the difficulties arising from those two approaches, we have developed a sub-grid integration method to properly account for the physics of the double layer. The integration approach can be used on simple or complicated flow geometries. Resolution of the double layer is not needed in this approach, and the effects of the double layer can be accounted for at the same time. With this

  10. s-Step Krylov Subspace Methods as Bottom Solvers for Geometric Multigrid

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lijewski, Mike [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Almgren, Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Straalen, Brian Van [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Carson, Erin [Univ. of California, Berkeley, CA (United States); Knight, Nicholas [Univ. of California, Berkeley, CA (United States); Demmel, James [Univ. of California, Berkeley, CA (United States)

    2014-08-14

    Geometric multigrid solvers within adaptive mesh refinement (AMR) applications often reach a point where further coarsening of the grid becomes impractical as individual sub domain sizes approach unity. At this point the most common solution is to use a bottom solver, such as BiCGStab, to reduce the residual by a fixed factor at the coarsest level. Each iteration of BiCGStab requires multiple global reductions (MPI collectives). As the number of BiCGStab iterations required for convergence grows with problem size, and the time for each collective operation increases with machine scale, bottom solves in large-scale applications can constitute a significant fraction of the overall multigrid solve time. In this paper, we implement, evaluate, and optimize a communication-avoiding s-step formulation of BiCGStab (CABiCGStab for short) as a high-performance, distributed-memory bottom solver for geometric multigrid solvers. This is the first time s-step Krylov subspace methods have been leveraged to improve multigrid bottom solver performance. We use a synthetic benchmark for detailed analysis and integrate the best implementation into BoxLib in order to evaluate the benefit of a s-step Krylov subspace method on the multigrid solves found in the applications LMC and Nyx on up to 32,768 cores on the Cray XE6 at NERSC. Overall, we see bottom solver improvements of up to 4.2x on synthetic problems and up to 2.7x in real applications. This results in as much as a 1.5x improvement in solver performance in real applications.

  11. On the research of flow around obstacle using the viscous Cartesian grid technique

    Directory of Open Access Journals (Sweden)

    Liu Yan-Hua

    2012-01-01

    Full Text Available A new 2-D viscous Cartesian grid is proposed in current research. It is a combination of the existent body-fitted grid and Cartesian grid technology. On the interface of the two different type of grid, a fined triangular mesh is used to connect the two grids. Tests with flow around the cylinder and aerofoil NACA0012 show that the proposed scheme is easy for implement with high accuracy.

  12. An Optimized Multicolor Point-Implicit Solver for Unstructured Grid Applications on Graphics Processing Units

    Science.gov (United States)

    Zubair, Mohammad; Nielsen, Eric; Luitjens, Justin; Hammond, Dana

    2016-01-01

    In the field of computational fluid dynamics, the Navier-Stokes equations are often solved using an unstructuredgrid approach to accommodate geometric complexity. Implicit solution methodologies for such spatial discretizations generally require frequent solution of large tightly-coupled systems of block-sparse linear equations. The multicolor point-implicit solver used in the current work typically requires a significant fraction of the overall application run time. In this work, an efficient implementation of the solver for graphics processing units is proposed. Several factors present unique challenges to achieving an efficient implementation in this environment. These include the variable amount of parallelism available in different kernel calls, indirect memory access patterns, low arithmetic intensity, and the requirement to support variable block sizes. In this work, the solver is reformulated to use standard sparse and dense Basic Linear Algebra Subprograms (BLAS) functions. However, numerical experiments show that the performance of the BLAS functions available in existing CUDA libraries is suboptimal for matrices representative of those encountered in actual simulations. Instead, optimized versions of these functions are developed. Depending on block size, the new implementations show performance gains of up to 7x over the existing CUDA library functions.

  13. Hybrid Direct and Iterative Solver with Library of Multi-criteria Optimal Orderings for h Adaptive Finite Element Method Computations

    KAUST Repository

    AbouEisha, Hassan M.

    2016-06-02

    In this paper we present a multi-criteria optimization of element partition trees and resulting orderings for multi-frontal solver algorithms executed for two dimensional h adaptive finite element method. In particular, the problem of optimal ordering of elimination of rows in the sparse matrices resulting from adaptive finite element method computations is reduced to the problem of finding of optimal element partition trees. Given a two dimensional h refined mesh, we find all optimal element partition trees by using the dynamic programming approach. An element partition tree defines a prescribed order of elimination of degrees of freedom over the mesh. We utilize three different metrics to estimate the quality of the element partition tree. As the first criterion we consider the number of floating point operations(FLOPs) performed by the multi-frontal solver. As the second criterion we consider the number of memory transfers (MEMOPS) performed by the multi-frontal solver algorithm. As the third criterion we consider memory usage (NONZEROS) of the multi-frontal direct solver. We show the optimization results for FLOPs vs MEMOPS as well as for the execution time estimated as FLOPs+100MEMOPS vs NONZEROS. We obtain Pareto fronts with multiple optimal trees, for each mesh, and for each refinement level. We generate a library of optimal elimination trees for small grids with local singularities. We also propose an algorithm that for a given large mesh with identified local sub-grids, each one with local singularity. We compute Schur complements over the sub-grids using the optimal trees from the library, and we submit the sequence of Schur complements into the iterative solver ILUPCG.

  14. Application of a compressible flow solver and barotropic cavitation model for the evaluation of the suction head in a low specific speed centrifugal pump impeller channel

    International Nuclear Information System (INIS)

    Limbach, P; Müller, T; Skoda, R

    2015-01-01

    Commonly, for the simulation of cavitation in centrifugal pumps incompressible flow solvers with VOF kind cavitation models are applied. Since the source/sink terms of the void fraction transport equation are based on simplified bubble dynamics, empirical parameters may need to be adjusted to the particular pump operating point. In the present study a barotropic cavitation model, which is based solely on thermodynamic fluid properties and does not include any empirical parameters, is applied on a single flow channel of a pump impeller in combination with a time-explicit viscous compressible flow solver. The suction head curves (head drop) are compared to the results of an incompressible implicit standard industrial CFD tool and are predicted qualitatively correct by the barotropic model. (paper)

  15. Investigation of grid-enhanced two-phase convective heat transfer in the dispersed flow film boiling regime

    International Nuclear Information System (INIS)

    Miller, D.J.; Cheung, F.B.; Bajorek, S.M.

    2013-01-01

    Highlights: • Experiments were done in the RBHT facility to study the droplet flow in rod bundle. • The presence of a droplet field was found to greatly enhance heat transfer. • A second-stage augmentation was observed downstream of a spacer grid. • This augmentation is due to the breakup of liquid ligaments downstream of the grid. - Abstract: A two-phase dispersed droplet flow investigation of the grid-enhanced heat transfer augmentation has been done using steam cooling with droplet injection experimental data obtained from the Penn State/NRC Rod Bundle Heat Transfer (RBHT) facility. The RBHT facility is a vertical, full length, 7 × 7-rod bundle heat transfer facility having 45 electrically heated fuel rod simulators of 9.5 mm (0.374-in.) diameter on a 12.6 mm (0.496-in.) pitch which simulates a portion of a PWR fuel assembly. The facility operates at low pressure, up to 4 bars (60 psia) and has over 500 channels of instrumentation including heater rod thermocouples, spacer grid thermocouples, closely-spaced differential pressure cells along the test section, several fluid temperature measurements within the rod bundle flow area, inlet and exit flows, absolute pressure, and the bundle power. A series of carefully controlled and well instrumented steam cooling with droplet injection experiments were performed over a range of Reynolds numbers and droplet injection flow rates. The experimental results were analyzed to obtain the axial variation of the local heat transfer coefficients along the rod bundle. At the spacer grid location, the flow was found to be substantially disrupted, with the hydrodynamic and thermal boundary layers undergoing redevelopment. Owing to this flow restructuring, the heat transfer downstream of a grid spacer was found to be augmented above the fully developed flow heat transfer as a result of flow disruption induced by the grid. Furthermore, the presence of a droplet field further enhanced the heat transfer as compared to single

  16. A Survey of Solver-Related Geometry and Meshing Issues

    Science.gov (United States)

    Masters, James; Daniel, Derick; Gudenkauf, Jared; Hine, David; Sideroff, Chris

    2016-01-01

    There is a concern in the computational fluid dynamics community that mesh generation is a significant bottleneck in the CFD workflow. This is one of several papers that will help set the stage for a moderated panel discussion addressing this issue. Although certain general "rules of thumb" and a priori mesh metrics can be used to ensure that some base level of mesh quality is achieved, inadequate consideration is often given to the type of solver or particular flow regime on which the mesh will be utilized. This paper explores how an analyst may want to think differently about a mesh based on considerations such as if a flow is compressible vs. incompressible or hypersonic vs. subsonic or if the solver is node-centered vs. cell-centered. This paper is a high-level investigation intended to provide general insight into how considering the nature of the solver or flow when performing mesh generation has the potential to increase the accuracy and/or robustness of the solution and drive the mesh generation process to a state where it is no longer a hindrance to the analysis process.

  17. Computational complexity and memory usage for multi-frontal direct solvers used in p finite element analysis

    KAUST Repository

    Calo, Victor M.; Collier, Nathan; Pardo, David; Paszyński, Maciej R.

    2011-01-01

    The multi-frontal direct solver is the state of the art for the direct solution of linear systems. This paper provides computational complexity and memory usage estimates for the application of the multi-frontal direct solver algorithm on linear systems resulting from p finite elements. Specifically we provide the estimates for systems resulting from C0 polynomial spaces spanned by B-splines. The structured grid and uniform polynomial order used in isogeometric meshes simplifies the analysis.

  18. Computational complexity and memory usage for multi-frontal direct solvers used in p finite element analysis

    KAUST Repository

    Calo, Victor M.

    2011-05-14

    The multi-frontal direct solver is the state of the art for the direct solution of linear systems. This paper provides computational complexity and memory usage estimates for the application of the multi-frontal direct solver algorithm on linear systems resulting from p finite elements. Specifically we provide the estimates for systems resulting from C0 polynomial spaces spanned by B-splines. The structured grid and uniform polynomial order used in isogeometric meshes simplifies the analysis.

  19. A fast mass spring model solver for high-resolution elastic objects

    Science.gov (United States)

    Zheng, Mianlun; Yuan, Zhiyong; Zhu, Weixu; Zhang, Guian

    2017-03-01

    Real-time simulation of elastic objects is of great importance for computer graphics and virtual reality applications. The fast mass spring model solver can achieve visually realistic simulation in an efficient way. Unfortunately, this method suffers from resolution limitations and lack of mechanical realism for a surface geometry model, which greatly restricts its application. To tackle these problems, in this paper we propose a fast mass spring model solver for high-resolution elastic objects. First, we project the complex surface geometry model into a set of uniform grid cells as cages through *cages mean value coordinate method to reflect its internal structure and mechanics properties. Then, we replace the original Cholesky decomposition method in the fast mass spring model solver with a conjugate gradient method, which can make the fast mass spring model solver more efficient for detailed surface geometry models. Finally, we propose a graphics processing unit accelerated parallel algorithm for the conjugate gradient method. Experimental results show that our method can realize efficient deformation simulation of 3D elastic objects with visual reality and physical fidelity, which has a great potential for applications in computer animation.

  20. A general multiblock Euler code for propulsion integration. Volume 1: Theory document

    Science.gov (United States)

    Chen, H. C.; Su, T. Y.; Kao, T. J.

    1991-01-01

    A general multiblock Euler solver was developed for the analysis of flow fields over geometrically complex configurations either in free air or in a wind tunnel. In this approach, the external space around a complex configuration was divided into a number of topologically simple blocks, so that surface-fitted grids and an efficient flow solution algorithm could be easily applied in each block. The computational grid in each block is generated using a combination of algebraic and elliptic methods. A grid generation/flow solver interface program was developed to facilitate the establishment of block-to-block relations and the boundary conditions for each block. The flow solver utilizes a finite volume formulation and an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. The generality of the method was demonstrated through the analysis of two complex configurations at various flow conditions. Results were compared to available test data. Two accompanying volumes, user manuals for the preparation of multi-block grids (vol. 2) and for the Euler flow solver (vol. 3), provide information on input data format and program execution.

  1. Identification of severe wind conditions using a Reynolds Averaged Navier-Stokes solver

    International Nuclear Information System (INIS)

    Soerensen, N N; Bechmann, A; Johansen, J; Myllerup, L; Botha, P; Vinther, S; Nielsen, B S

    2007-01-01

    The present paper describes the application of a Navier-Stokes solver to predict the presence of severe flow conditions in complex terrain, capturing conditions that may be critical to the siting of wind turbines in the terrain. First it is documented that the flow solver is capable of predicting the flow in the complex terrain by comparing with measurements from two meteorology masts. Next, it is illustrated how levels of turbulent kinetic energy can be used to easily identify areas with severe flow conditions, relying on a high correlation between high turbulence intensity and severe flow conditions, in the form of high wind shear and directional shear which may seriously lower the lifetime of a wind turbine

  2. A closed-form analytical model for predicting 3D boundary layer displacement thickness for the validation of viscous flow solvers

    Science.gov (United States)

    Kumar, V. R. Sanal; Sankar, Vigneshwaran; Chandrasekaran, Nichith; Saravanan, Vignesh; Natarajan, Vishnu; Padmanabhan, Sathyan; Sukumaran, Ajith; Mani, Sivabalan; Rameshkumar, Tharikaa; Nagaraju Doddi, Hema Sai; Vysaprasad, Krithika; Sharan, Sharad; Murugesh, Pavithra; Shankar, S. Ganesh; Nejaamtheen, Mohammed Niyasdeen; Baskaran, Roshan Vignesh; Rahman Mohamed Rafic, Sulthan Ariff; Harisrinivasan, Ukeshkumar; Srinivasan, Vivek

    2018-02-01

    A closed-form analytical model is developed for estimating the 3D boundary-layer-displacement thickness of an internal flow system at the Sanal flow choking condition for adiabatic flows obeying the physics of compressible viscous fluids. At this unique condition the boundary-layer blockage induced fluid-throat choking and the adiabatic wall-friction persuaded flow choking occur at a single sonic-fluid-throat location. The beauty and novelty of this model is that without missing the flow physics we could predict the exact boundary-layer blockage of both 2D and 3D cases at the sonic-fluid-throat from the known values of the inlet Mach number, the adiabatic index of the gas and the inlet port diameter of the internal flow system. We found that the 3D blockage factor is 47.33 % lower than the 2D blockage factor with air as the working fluid. We concluded that the exact prediction of the boundary-layer-displacement thickness at the sonic-fluid-throat provides a means to correctly pinpoint the causes of errors of the viscous flow solvers. The methodology presented herein with state-of-the-art will play pivotal roles in future physical and biological sciences for a credible verification, calibration and validation of various viscous flow solvers for high-fidelity 2D/3D numerical simulations of real-world flows. Furthermore, our closed-form analytical model will be useful for the solid and hybrid rocket designers for the grain-port-geometry optimization of new generation single-stage-to-orbit dual-thrust-motors with the highest promising propellant loading density within the given envelope without manifestation of the Sanal flow choking leading to possible shock waves causing catastrophic failures.

  3. A closed-form analytical model for predicting 3D boundary layer displacement thickness for the validation of viscous flow solvers

    Directory of Open Access Journals (Sweden)

    V. R. Sanal Kumar

    2018-02-01

    Full Text Available A closed-form analytical model is developed for estimating the 3D boundary-layer-displacement thickness of an internal flow system at the Sanal flow choking condition for adiabatic flows obeying the physics of compressible viscous fluids. At this unique condition the boundary-layer blockage induced fluid-throat choking and the adiabatic wall-friction persuaded flow choking occur at a single sonic-fluid-throat location. The beauty and novelty of this model is that without missing the flow physics we could predict the exact boundary-layer blockage of both 2D and 3D cases at the sonic-fluid-throat from the known values of the inlet Mach number, the adiabatic index of the gas and the inlet port diameter of the internal flow system. We found that the 3D blockage factor is 47.33 % lower than the 2D blockage factor with air as the working fluid. We concluded that the exact prediction of the boundary-layer-displacement thickness at the sonic-fluid-throat provides a means to correctly pinpoint the causes of errors of the viscous flow solvers. The methodology presented herein with state-of-the-art will play pivotal roles in future physical and biological sciences for a credible verification, calibration and validation of various viscous flow solvers for high-fidelity 2D/3D numerical simulations of real-world flows. Furthermore, our closed-form analytical model will be useful for the solid and hybrid rocket designers for the grain-port-geometry optimization of new generation single-stage-to-orbit dual-thrust-motors with the highest promising propellant loading density within the given envelope without manifestation of the Sanal flow choking leading to possible shock waves causing catastrophic failures.

  4. Parallel CFD Algorithms for Aerodynamical Flow Solvers on Unstructured Meshes. Parts 1 and 2

    Science.gov (United States)

    Barth, Timothy J.; Kwak, Dochan (Technical Monitor)

    1995-01-01

    The Advisory Group for Aerospace Research and Development (AGARD) has requested my participation in the lecture series entitled Parallel Computing in Computational Fluid Dynamics to be held at the von Karman Institute in Brussels, Belgium on May 15-19, 1995. In addition, a request has been made from the US Coordinator for AGARD at the Pentagon for NASA Ames to hold a repetition of the lecture series on October 16-20, 1995. I have been asked to be a local coordinator for the Ames event. All AGARD lecture series events have attendance limited to NATO allied countries. A brief of the lecture series is provided in the attached enclosure. Specifically, I have been asked to give two lectures of approximately 75 minutes each on the subject of parallel solution techniques for the fluid flow equations on unstructured meshes. The title of my lectures is "Parallel CFD Algorithms for Aerodynamical Flow Solvers on Unstructured Meshes" (Parts I-II). The contents of these lectures will be largely review in nature and will draw upon previously published work in this area. Topics of my lectures will include: (1) Mesh partitioning algorithms. Recursive techniques based on coordinate bisection, Cuthill-McKee level structures, and spectral bisection. (2) Newton's method for large scale CFD problems. Size and complexity estimates for Newton's method, modifications for insuring global convergence. (3) Techniques for constructing the Jacobian matrix. Analytic and numerical techniques for Jacobian matrix-vector products, constructing the transposed matrix, extensions to optimization and homotopy theories. (4) Iterative solution algorithms. Practical experience with GIVIRES and BICG-STAB matrix solvers. (5) Parallel matrix preconditioning. Incomplete Lower-Upper (ILU) factorization, domain-decomposed ILU, approximate Schur complement strategies.

  5. An Analysis of Elliptic Grid Generation Techniques Using an Implicit Euler Solver.

    Science.gov (United States)

    1986-06-09

    at M. =0.90 and a=00 is when interpolating for the radius of curvature obtained. One expects the computed shock strength (r), a second examination is...solver to yield accurate second-order, ... v.s zd solutions. References Snn, .:-P.. Flr.e ’rference Methods In Z, .tational Fluid DinamIcs , to he published

  6. Using SPARK as a Solver for Modelica

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael; Wetter, Michael; Haves, Philip; Moshier, Michael A.; Sowell, Edward F.

    2008-06-30

    Modelica is an object-oriented acausal modeling language that is well positioned to become a de-facto standard for expressing models of complex physical systems. To simulate a model expressed in Modelica, it needs to be translated into executable code. For generating run-time efficient code, such a translation needs to employ algebraic formula manipulations. As the SPARK solver has been shown to be competitive for generating such code but currently cannot be used with the Modelica language, we report in this paper how SPARK's symbolic and numerical algorithms can be implemented in OpenModelica, an open-source implementation of a Modelica modeling and simulation environment. We also report benchmark results that show that for our air flow network simulation benchmark, the SPARK solver is competitive with Dymola, which is believed to provide the best solver for Modelica.

  7. A ghost-cell immersed boundary method for flow in complex geometry

    International Nuclear Information System (INIS)

    Tseng, Y.-H.; Ferziger, Joel H.

    2003-01-01

    An efficient ghost-cell immersed boundary method (GCIBM) for simulating turbulent flows in complex geometries is presented. A boundary condition is enforced through a ghost cell method. The reconstruction procedure allows systematic development of numerical schemes for treating the immersed boundary while preserving the overall second-order accuracy of the base solver. Both Dirichlet and Neumann boundary conditions can be treated. The current ghost cell treatment is both suitable for staggered and non-staggered Cartesian grids. The accuracy of the current method is validated using flow past a circular cylinder and large eddy simulation of turbulent flow over a wavy surface. Numerical results are compared with experimental data and boundary-fitted grid results. The method is further extended to an existing ocean model (MITGCM) to simulate geophysical flow over a three-dimensional bump. The method is easily implemented as evidenced by our use of several existing codes

  8. An efficient direct solver for rarefied gas flows with arbitrary statistics

    International Nuclear Information System (INIS)

    Diaz, Manuel A.; Yang, Jaw-Yen

    2016-01-01

    A new numerical methodology associated with a unified treatment is presented to solve the Boltzmann–BGK equation of gas dynamics for the classical and quantum gases described by the Bose–Einstein and Fermi–Dirac statistics. Utilizing a class of globally-stiffly-accurate implicit–explicit Runge–Kutta scheme for the temporal evolution, associated with the discrete ordinate method for the quadratures in the momentum space and the weighted essentially non-oscillatory method for the spatial discretization, the proposed scheme is asymptotic-preserving and imposes no non-linear solver or requires the knowledge of fugacity and temperature to capture the flow structures in the hydrodynamic (Euler) limit. The proposed treatment overcomes the limitations found in the work by Yang and Muljadi (2011) [33] due to the non-linear nature of quantum relations, and can be applied in studying the dynamics of a gas with internal degrees of freedom with correct values of the ratio of specific heat for the flow regimes for all Knudsen numbers and energy wave lengths. The present methodology is numerically validated with the unified treatment by the one-dimensional shock tube problem and the two-dimensional Riemann problems for gases of arbitrary statistics. Descriptions of ideal quantum gases including rotational degrees of freedom have been successfully achieved under the proposed methodology.

  9. Application of a New Hybrid RANS/LES Modeling Paradigm to Compressible Flow

    Science.gov (United States)

    Oliver, Todd; Pederson, Clark; Haering, Sigfried; Moser, Robert

    2017-11-01

    It is well-known that traditional hybrid RANS/LES modeling approaches suffer from a number of deficiencies. These deficiencies often stem from overly simplistic blending strategies based on scalar measures of turbulence length scale and grid resolution and from use of isotropic subgrid models in LES regions. A recently developed hybrid modeling approach has shown promise in overcoming these deficiencies in incompressible flows [Haering, 2015]. In the approach, RANS/LES blending is accomplished using a hybridization parameter that is governed by an additional model transport equation and is driven to achieve equilibrium between the resolved and unresolved turbulence for the given grid. Further, the model uses an tensor eddy viscosity that is formulated to represent the effects of anisotropic grid resolution on subgrid quantities. In this work, this modeling approach is extended to compressible flows and implemented in the compressible flow solver SU2 (http://su2.stanford.edu/). We discuss both modeling and implementation challenges and show preliminary results for compressible flow test cases with smooth wall separation.

  10. Performance of uncertainty quantification methodologies and linear solvers in cardiovascular simulations

    Science.gov (United States)

    Seo, Jongmin; Schiavazzi, Daniele; Marsden, Alison

    2017-11-01

    Cardiovascular simulations are increasingly used in clinical decision making, surgical planning, and disease diagnostics. Patient-specific modeling and simulation typically proceeds through a pipeline from anatomic model construction using medical image data to blood flow simulation and analysis. To provide confidence intervals on simulation predictions, we use an uncertainty quantification (UQ) framework to analyze the effects of numerous uncertainties that stem from clinical data acquisition, modeling, material properties, and boundary condition selection. However, UQ poses a computational challenge requiring multiple evaluations of the Navier-Stokes equations in complex 3-D models. To achieve efficiency in UQ problems with many function evaluations, we implement and compare a range of iterative linear solver and preconditioning techniques in our flow solver. We then discuss applications to patient-specific cardiovascular simulation and how the problem/boundary condition formulation in the solver affects the selection of the most efficient linear solver. Finally, we discuss performance improvements in the context of uncertainty propagation. Support from National Institute of Health (R01 EB018302) is greatly appreciated.

  11. T2CG1, a package of preconditioned conjugate gradient solvers for TOUGH2

    International Nuclear Information System (INIS)

    Moridis, G.; Pruess, K.; Antunez, E.

    1994-03-01

    Most of the computational work in the numerical simulation of fluid and heat flows in permeable media arises in the solution of large systems of linear equations. The simplest technique for solving such equations is by direct methods. However, because of large storage requirements and accumulation of roundoff errors, the application of direct solution techniques is limited, depending on matrix bandwidth, to systems of a few hundred to at most a few thousand simultaneous equations. T2CG1, a package of preconditioned conjugate gradient solvers, has been added to TOUGH2 to complement its direct solver and significantly increase the size of problems tractable on PCs. T2CG1 includes three different solvers: a Bi-Conjugate Gradient (BCG) solver, a Bi-Conjugate Gradient Squared (BCGS) solver, and a Generalized Minimum Residual (GMRES) solver. Results from six test problems with up to 30,000 equations show that T2CG1 (1) is significantly (and invariably) faster and requires far less memory than the MA28 direct solver, (2) it makes possible the solution of very large three-dimensional problems on PCs, and (3) that the BCGS solver is the fastest of the three in the tested problems. Sample problems are presented related to heat and fluid flow at Yucca Mountain and WIPP, environmental remediation by the Thermal Enhanced Vapor Extraction System, and geothermal resources

  12. Estimating the system price of redox flow batteries for grid storage

    Science.gov (United States)

    Ha, Seungbum; Gallagher, Kevin G.

    2015-11-01

    Low-cost energy storage systems are required to support extensive deployment of intermittent renewable energy on the electricity grid. Redox flow batteries have potential advantages to meet the stringent cost target for grid applications as compared to more traditional batteries based on an enclosed architecture. However, the manufacturing process and therefore potential high-volume production price of redox flow batteries is largely unquantified. We present a comprehensive assessment of a prospective production process for aqueous all vanadium flow battery and nonaqueous lithium polysulfide flow battery. The estimated investment and variable costs are translated to fixed expenses, profit, and warranty as a function of production volume. When compared to lithium-ion batteries, redox flow batteries are estimated to exhibit lower costs of manufacture, here calculated as the unit price less materials costs, owing to their simpler reactor (cell) design, lower required area, and thus simpler manufacturing process. Redox flow batteries are also projected to achieve the majority of manufacturing scale benefits at lower production volumes as compared to lithium-ion. However, this advantage is offset due to the dramatically lower present production volume of flow batteries compared to competitive technologies such as lithium-ion.

  13. Method to predetermine current/power flow change in a dc grid

    DEFF Research Database (Denmark)

    2017-01-01

    occurs at one of the AC/DC converters; establishing a generalized droop feedback gain matrix G; controlling current/power flow within DC grid towards predefined setpoints, by use of control law. The invention presents an analytical approach to derive the generalized feedback gain allowing......The invention relates to a method for controlling current/power flow within a power transmission system, comprising two or more interconnected converter stations. The method comprises the steps of: providing a DC admittance matrix given from the DC grid; providing a current distribution matrix...... for a number of, such as for all possible AC/DC converter outages; providing a DC bus voltage vector for the DC grid; the DC bus voltage vector being a vector containing the values of the voltage change at the AC/DC converters, measured at the AC/DC converters, before, during and after a forced current change...

  14. Modularization and Validation of FUN3D as a CREATE-AV Helios Near-Body Solver

    Science.gov (United States)

    Jain, Rohit; Biedron, Robert T.; Jones, William T.; Lee-Rausch, Elizabeth M.

    2016-01-01

    Under a recent collaborative effort between the US Army Aeroflightdynamics Directorate (AFDD) and NASA Langley, NASA's general unstructured CFD solver, FUN3D, was modularized as a CREATE-AV Helios near-body unstructured grid solver. The strategies adopted in Helios/FUN3D integration effort are described. A validation study of the new capability is performed for rotorcraft cases spanning hover prediction, airloads prediction, coupling with computational structural dynamics, counter-rotating dual-rotor configurations, and free-flight trim. The integration of FUN3D, along with the previously integrated NASA OVERFLOW solver, lays the ground for future interaction opportunities where capabilities of one component could be leveraged with those of others in a relatively seamless fashion within CREATE-AV Helios.

  15. An Eulerian finite volume solver for multi-material fluid flows with cylindrical symmetry

    International Nuclear Information System (INIS)

    Bernard-Champmartin, Aude; Ghidaglia, Jean-Michel; Braeunig, Jean-Philippe

    2013-01-01

    In this paper, we adapt a pre-existing 2D cartesian cell centered finite volume solver to treat the compressible 3D Euler equations with cylindrical symmetry. We then extend it to multi-material flows. Assuming cylindrical symmetry with respect to the z axis (i.e. all the functions do not depend explicitly on the angular variable h), we obtain a set of five conservation laws with source terms that can be decoupled in two systems solved on a 2D orthogonal mesh in which a cell as a torus geometry. A specific up-winding treatment of the source term is required and implemented for the stationary case. Test cases will be presented for vanishing and non-vanishing azimuthal velocity uh. (authors)

  16. Ramses-GPU: Second order MUSCL-Handcock finite volume fluid solver

    Science.gov (United States)

    Kestener, Pierre

    2017-10-01

    RamsesGPU is a reimplementation of RAMSES (ascl:1011.007) which drops the adaptive mesh refinement (AMR) features to optimize 3D uniform grid algorithms for modern graphics processor units (GPU) to provide an efficient software package for astrophysics applications that do not need AMR features but do require a very large number of integration time steps. RamsesGPU provides an very efficient C++/CUDA/MPI software implementation of a second order MUSCL-Handcock finite volume fluid solver for compressible hydrodynamics as a magnetohydrodynamics solver based on the constraint transport technique. Other useful modules includes static gravity, dissipative terms (viscosity, resistivity), and forcing source term for turbulence studies, and special care was taken to enhance parallel input/output performance by using state-of-the-art libraries such as HDF5 and parallel-netcdf.

  17. Study of ion flow dynamics in an inertial electrostatic confinement device through sequential grid construction

    International Nuclear Information System (INIS)

    Murali, S. Krupakar; Kulcinski, G. L.; Santarius, J. F.

    2008-01-01

    Experiments were performed to understand the dynamics of the ion flow in an inertial electrostatic confinement (IEC) device. This was done by monitoring the fusion rate as the symmetry of the grid was increased starting with a single loop all the way until the entire grid is constructed. The fusion rate was observed to increase with grid symmetry and eventually saturate. A single loop grid was observed to generate a cylindrical (∼line) fusion source. The ion flow distribution was measured by introducing fine wires across a single loop of the grid in the form of a chord of a circle (chord wires). This study revealed that with increased symmetry of the cathode grid wires the convergence of the ions improves. The chord wires provided electrons for ionization even at low pressures (∼6.67 mPa) and helped sustain the plasma. The impinging ions heat these wires locally and the temperature of the wires was measured using an infrared thermometer that was used to understand the ion flow distribution across the cathode grid. The presence of the grid wires seems to affect the fusion rate more drastically than previously thought (was assumed to be uniform around the central grid). Most of the fusion reactions were observed to occur in the ion microchannels that form in gaps between the cathode wires. This work helps understand the fusion source regimes and calibrate the IEC device.

  18. Application of the Chimera overlapped grid scheme to simulation of Space Shuttle ascent flows

    Science.gov (United States)

    Buning, Pieter G.; Parks, Steven J.; Chan, William M.; Renze, Kevin J.

    1992-01-01

    Several issues relating to the application of Chimera overlapped grids to complex geometries and flowfields are discussed. These include the addition of geometric components with different grid topologies, gridding for intersecting pieces of geometry, and turbulence modeling in grid overlap regions. Sample results are presented for transonic flow about the Space Shuttle launch vehicle. Comparisons with wind tunnel and flight measured pressures are shown.

  19. Mapping of the lateral flow field in typical subchannels of a support grid with vanes

    International Nuclear Information System (INIS)

    McClusky, Heather L.; Holloway, Mary V.; Conover, Timothy A.; Beasley, Donald E.; Conner, Michael E.; Smith III, L. David

    2003-01-01

    Lateral flow fields in four subchannels of a model rod bundle fuel assembly are measured using particle image velocimetry. Vanes (split-vane pairs) are located on the downstream edge of the support grids in the rod bundle fuel assembly and generate swirling flow. Measurements are acquired at a nominal Reynolds number of 28,000 and for seven streamwise locations ranging from 1.4 to 17.0 hydraulic diameters downstream of the grid. The streamwise development of the lateral flow field is divided into two regions based on the lateral flow structure. In Region I, multiple vortices are present in the flow field and vortex interactions occur. Either a single circular vortex or a hairpin shaped flow structure is formed in Region II. Lateral kinetic energy, maximum lateral velocity, centroid of vorticity, radial profiles of azimuthal velocity, and angular momentum are employed as measures of the streamwise development of the lateral flow field. The particle image velocimetry measurements of the present study are compared with laser doppler velocimetry measurements taken for the identical support grids and flow condition. (author)

  20. Simulation of hypersonic rarefied flows with the immersed-boundary method

    Science.gov (United States)

    Bruno, D.; De Palma, P.; de Tullio, M. D.

    2011-05-01

    This paper provides a validation of an immersed boundary method for computing hypersonic rarefied gas flows. The method is based on the solution of the Navier-Stokes equation and is validated versus numerical results obtained by the DSMC approach. The Navier-Stokes solver employs a flexible local grid refinement technique and is implemented on parallel machines using a domain-decomposition approach. Thanks to the efficient grid generation process, based on the ray-tracing technique, and the use of the METIS software, it is possible to obtain the partitioned grids to be assigned to each processor with a minimal effort by the user. This allows one to by-pass the expensive (in terms of time and human resources) classical generation process of a body fitted grid. First-order slip-velocity boundary conditions are employed and tested for taking into account rarefied gas effects.

  1. Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taehun [City Univ. (CUNY), NY (United States)

    2015-10-20

    The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations, better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.

  2. A second-order coupled immersed boundary-SAMR construction for chemically reacting flow over a heat-conducting Cartesian grid-conforming solid

    KAUST Repository

    Kedia, Kushal S.; Safta, Cosmin; Ray, Jaideep; Najm, Habib N.; Ghoniem, Ahmed F.

    2014-01-01

    In this paper, we present a second-order numerical method for simulations of reacting flow around heat-conducting immersed solid objects. The method is coupled with a block-structured adaptive mesh refinement (SAMR) framework and a low-Mach number operator-split projection algorithm. A "buffer zone" methodology is introduced to impose the solid-fluid boundary conditions such that the solver uses symmetric derivatives and interpolation stencils throughout the interior of the numerical domain; irrespective of whether it describes fluid or solid cells. Solid cells are tracked using a binary marker function. The no-slip velocity boundary condition at the immersed wall is imposed using the staggered mesh. Near the immersed solid boundary, single-sided buffer zones (inside the solid) are created to resolve the species discontinuities, and dual buffer zones (inside and outside the solid) are created to capture the temperature gradient discontinuities. The development discussed in this paper is limited to a two-dimensional Cartesian grid-conforming solid. We validate the code using benchmark simulations documented in the literature. We also demonstrate the overall second-order convergence of our numerical method. To demonstrate its capability, a reacting flow simulation of a methane/air premixed flame stabilized on a channel-confined bluff-body using a detailed chemical kinetics model is discussed. © 2014 Elsevier Inc.

  3. A second-order coupled immersed boundary-SAMR construction for chemically reacting flow over a heat-conducting Cartesian grid-conforming solid

    KAUST Repository

    Kedia, Kushal S.

    2014-09-01

    In this paper, we present a second-order numerical method for simulations of reacting flow around heat-conducting immersed solid objects. The method is coupled with a block-structured adaptive mesh refinement (SAMR) framework and a low-Mach number operator-split projection algorithm. A "buffer zone" methodology is introduced to impose the solid-fluid boundary conditions such that the solver uses symmetric derivatives and interpolation stencils throughout the interior of the numerical domain; irrespective of whether it describes fluid or solid cells. Solid cells are tracked using a binary marker function. The no-slip velocity boundary condition at the immersed wall is imposed using the staggered mesh. Near the immersed solid boundary, single-sided buffer zones (inside the solid) are created to resolve the species discontinuities, and dual buffer zones (inside and outside the solid) are created to capture the temperature gradient discontinuities. The development discussed in this paper is limited to a two-dimensional Cartesian grid-conforming solid. We validate the code using benchmark simulations documented in the literature. We also demonstrate the overall second-order convergence of our numerical method. To demonstrate its capability, a reacting flow simulation of a methane/air premixed flame stabilized on a channel-confined bluff-body using a detailed chemical kinetics model is discussed. © 2014 Elsevier Inc.

  4. Validation Process for LEWICE Coupled by Use of a Navier-stokes Solver

    Science.gov (United States)

    Wright, William B.

    2016-01-01

    A research project is underway at NASA Glenn to produce computer software that can accurately predict ice growth for many meteorological conditions for any aircraft surface. This report will present results from the latest LEWICE release, version 3.5. This program differs from previous releases in its ability to model mixed phase and ice crystal conditions such as those encountered inside an engine. It also has expanded capability to use structured grids and a new capability to use results from unstructured grid flow solvers. An extensive comparison of the results in a quantifiable manner against the database of ice shapes that have been generated in the NASA Glenn Icing Research Tunnel (IRT) has also been performed. This paper will show the differences in ice shape between LEWICE 3.5 and experimental data. In addition, comparisons will be made between the lift and drag calculated on the ice shapes from experiment and those produced by LEWICE. This report will also provide a description of both programs. Quantitative geometric comparisons are shown for horn height, horn angle, icing limit, area and leading edge thickness. Quantitative comparisons of calculated lift and drag will also be shown. The results show that the predicted results are within the accuracy limits of the experimental data for the majority of cases.

  5. Development of a High-Order Navier-Stokes Solver Using Flux Reconstruction to Simulate Three-Dimensional Vortex Structures in a Curved Artery Model

    Science.gov (United States)

    Cox, Christopher

    Low-order numerical methods are widespread in academic solvers and ubiquitous in industrial solvers due to their robustness and usability. High-order methods are less robust and more complicated to implement; however, they exhibit low numerical dissipation and have the potential to improve the accuracy of flow simulations at a lower computational cost when compared to low-order methods. This motivates our development of a high-order compact method using Huynh's flux reconstruction scheme for solving unsteady incompressible flow on unstructured grids. We use Chorin's classic artificial compressibility formulation with dual time stepping to solve unsteady flow problems. In 2D, an implicit non-linear lower-upper symmetric Gauss-Seidel scheme with backward Euler discretization is used to efficiently march the solution in pseudo time, while a second-order backward Euler discretization is used to march in physical time. We verify and validate implementation of the high-order method coupled with our implicit time stepping scheme using both steady and unsteady incompressible flow problems. The current implicit time stepping scheme is proven effective in satisfying the divergence-free constraint on the velocity field in the artificial compressibility formulation. The high-order solver is extended to 3D and parallelized using MPI. Due to its simplicity, time marching for 3D problems is done explicitly. The feasibility of using the current implicit time stepping scheme for large scale three-dimensional problems with high-order polynomial basis still remains to be seen. We directly use the aforementioned numerical solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180-degree curved artery model. One of the most physiologically relevant forces within the cardiovascular system is the wall shear stress. This force is important because atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the

  6. Hypersonic simulations using open-source CFD and DSMC solvers

    Science.gov (United States)

    Casseau, V.; Scanlon, T. J.; John, B.; Emerson, D. R.; Brown, R. E.

    2016-11-01

    Hypersonic hybrid hydrodynamic-molecular gas flow solvers are required to satisfy the two essential requirements of any high-speed reacting code, these being physical accuracy and computational efficiency. The James Weir Fluids Laboratory at the University of Strathclyde is currently developing an open-source hybrid code which will eventually reconcile the direct simulation Monte-Carlo method, making use of the OpenFOAM application called dsmcFoam, and the newly coded open-source two-temperature computational fluid dynamics solver named hy2Foam. In conjunction with employing the CVDV chemistry-vibration model in hy2Foam, novel use is made of the QK rates in a CFD solver. In this paper, further testing is performed, in particular with the CFD solver, to ensure its efficacy before considering more advanced test cases. The hy2Foam and dsmcFoam codes have shown to compare reasonably well, thus providing a useful basis for other codes to compare against.

  7. CFD analysis of the flow in the near wake of a generic PWR mixing grid

    International Nuclear Information System (INIS)

    Bieder, Ulrich; Falk, François; Fauchet, Gauthier

    2015-01-01

    Highlights: • The flow in a 5 × 5 rod bundle with mixing grid is analyzed experimentally and with CFD. • LES and RANS (k–ε) calculations are performed. • The parallelism of the Trio-U code was tested with a strong scaling method. • Close downstream of the grid, k–ε and LES give similar results and fit well the experiment. - Abstract: The flow in fuel assemblies of PWRs with mixing grids has been analyzed with CFD calculations by numerous authors. The comparison between calculation and experiment has often shown an insensitivity of the calculated cross flow velocity on the turbulence modeling. The study presented here was carried out to confirm this result. The comparison between measurements in the AGATE facility (5 × 5 tube bundle) and Trio-U calculations with a linear eddy viscosity turbulence model (k–ε) and Large Eddy Simulations (LES) is presented. The AGATE experiments have originally not been designed for CFD validation but to characterize different types of mixing grids. Nevertheless, the quality of the experimental data allows the quantitative comparison between measurement and calculation. The test section of the AGATE facility has been discretized for the LES calculation on 300 million control volumes by using a staggered grid approach on tetrahedral meshes. 20 days of CPU on 4600 cores of the HPC machine CURIE of the TGCC was necessary to calculate the statistics of the turbulent flow, in particular the mean velocity and the RMS of the turbulent fluctuations. The parallelism of Trio-U was tested up to 10,000 processor cores using strong scaling and has shown a good efficiency up to about 6000 cores, i.e., 40,000 control volumes per core. For various distances from the mixing grid, calculated horizontal profiles of the cross flow velocity and of the axial velocity are compared to measurements. It seems that the flow patterns directly downstream of the grid are insensitive to the used turbulence model. Inertia forces related to the

  8. Adaptive moving grid methods for two-phase flow in porous media

    KAUST Repository

    Dong, Hao

    2014-08-01

    In this paper, we present an application of the moving mesh method for approximating numerical solutions of the two-phase flow model in porous media. The numerical schemes combine a mixed finite element method and a finite volume method, which can handle the nonlinearities of the governing equations in an efficient way. The adaptive moving grid method is then used to distribute more grid points near the sharp interfaces, which enables us to obtain accurate numerical solutions with fewer computational resources. The numerical experiments indicate that the proposed moving mesh strategy could be an effective way to approximate two-phase flows in porous media. © 2013 Elsevier B.V. All rights reserved.

  9. Interior point algorithm-based power flow optimisation of a combined AC and DC multi-terminal grid

    Directory of Open Access Journals (Sweden)

    Farhan Beg

    2015-01-01

    Full Text Available The high cost of power electronic equipment, lower reliability and poor power handling capacity of the semiconductor devices had stalled the deployment of systems based on DC (multi-terminal direct current system (MTDC networks. The introduction of voltage source converters (VSCs for transmission has renewed the interest in the development of large interconnected grids based on both alternate current (AC and DC transmission networks. Such a grid platform also realises the added advantage of integrating the renewable energy sources into the grid. Thus a grid based on DC MTDC network is a possible solution to improve energy security and check the increasing supply demand gap. An optimal power solution for combined AC and DC grids obtained by the solution of the interior point algorithm is proposed in this study. Multi-terminal HVDC grids lie at the heart of various suggested transmission capacity increases. A significant difference is observed when MTDC grids are solved for power flows in place of conventional AC grids. This study deals with the power flow problem of a combined MTDC and an AC grid. The AC side is modelled with the full power flow equations and the VSCs are modelled using a connecting line, two generators and an AC node. The VSC and the DC losses are also considered. The optimisation focuses on several different goals. Three different scenarios are presented in an arbitrary grid network with ten AC nodes and five converter stations.

  10. A solution algorithm for fluid-particle flows across all flow regimes

    Science.gov (United States)

    Kong, Bo; Fox, Rodney O.

    2017-09-01

    Many fluid-particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are close-packed as well as very dilute regions where particle-particle collisions are rare. Thus, in order to simulate such fluid-particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in the flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas-particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid-particle flows.

  11. Preliminary Investigation on Turbulent Flow in Tight-lattice Rod Bundle with Twist-mixing Vane Spacer Grid

    International Nuclear Information System (INIS)

    Lee, Chiyoung; Kwack, Youngkyun; Park, Juyong; Shin, Changhwan; In, Wangkee

    2013-01-01

    Our research group has investigated the effect of P/D difference on the behavior of turbulent rod bundle flow without the mixing vane spacer grid, using PIV (Particle Image Velocimetry) and MIR (Matching Index of Refraction) techniques for tight lattice fuel rod bundle application. In this work, using the tight-lattice rod bundle with a twist-mixing vane spacer grid, the turbulent rod bundle flow is preliminarily examined to validate the PIV measurement and CFD (Computational Fluid Dynamics) simulation. The turbulent flow in the tight-lattice rod bundle with a twist-mixing vane spacer grid was preliminarily examined to validate the PIV measurement and CFD simulation. Both were in agreement with each other within a reasonable degree of accuracy. Using PIV measurement and CFD simulation tested in this work, the detailed investigations on the behavior of turbulent rod bundle flow with the twist-mixing vane spacer grid will be performed at various conditions, and reported in the near future

  12. Effect of grid resolution on large eddy simulation of wall-bounded turbulence

    Science.gov (United States)

    Rezaeiravesh, S.; Liefvendahl, M.

    2018-05-01

    The effect of grid resolution on a large eddy simulation (LES) of a wall-bounded turbulent flow is investigated. A channel flow simulation campaign involving a systematic variation of the streamwise (Δx) and spanwise (Δz) grid resolution is used for this purpose. The main friction-velocity-based Reynolds number investigated is 300. Near the walls, the grid cell size is determined by the frictional scaling, Δx+ and Δz+, and strongly anisotropic cells, with first Δy+ ˜ 1, thus aiming for the wall-resolving LES. Results are compared to direct numerical simulations, and several quality measures are investigated, including the error in the predicted mean friction velocity and the error in cross-channel profiles of flow statistics. To reduce the total number of channel flow simulations, techniques from the framework of uncertainty quantification are employed. In particular, a generalized polynomial chaos expansion (gPCE) is used to create metamodels for the errors over the allowed parameter ranges. The differing behavior of the different quality measures is demonstrated and analyzed. It is shown that friction velocity and profiles of the velocity and Reynolds stress tensor are most sensitive to Δz+, while the error in the turbulent kinetic energy is mostly influenced by Δx+. Recommendations for grid resolution requirements are given, together with the quantification of the resulting predictive accuracy. The sensitivity of the results to the subgrid-scale (SGS) model and varying Reynolds number is also investigated. All simulations are carried out with second-order accurate finite-volume-based solver OpenFOAM. It is shown that the choice of numerical scheme for the convective term significantly influences the error portraits. It is emphasized that the proposed methodology, involving the gPCE, can be applied to other modeling approaches, i.e., other numerical methods and the choice of SGS model.

  13. A high-order finite-difference linear seakeeping solver tool for calculation of added resistance in waves

    DEFF Research Database (Denmark)

    Amini Afshar, Mostafa; Bingham, Harry B.; Read, Robert

    During recent years a computational strategy has been developed at the Technical University of Denmark for numerical simulation of water wave problems based on the high-order nite-dierence method, [2],[4]. These methods exhibit a linear scaling of the computational eort as the number of grid points...... increases. This understanding is being applied to develop a tool for predicting the added resistance (drift force) of ships in ocean waves. We expect that the optimal scaling properties of this solver will allow us to make a convincing demonstration of convergence of the added resistance calculations based...... on both near-eld and far-eld methods. The solver has been written inside a C++ library known as Overture [3], which can be used to solve partial dierential equations on overlapping grids based on the high-order nite-dierence method. The resulting code is able to solve, in the time domain, the linearised...

  14. Finite volume methods for the incompressible Navier-Stokes equations on unstructured grids

    Energy Technology Data Exchange (ETDEWEB)

    Meese, Ernst Arne

    1998-07-01

    Most solution methods of computational fluid dynamics (CFD) use structured grids based on curvilinear coordinates for compliance with complex geometries. In a typical industry application, about 80% of the time used to produce the results is spent constructing computational grids. Recently the use of unstructured grids has been strongly advocated. For unstructured grids there are methods for generating them automatically on quite complex domains. This thesis focuses on the design of Navier-Stokes solvers that can cope with unstructured grids and ''low quality grids'', thus reducing the need for human intervention in the grid generation.

  15. Parallelization of elliptic solver for solving 1D Boussinesq model

    Science.gov (United States)

    Tarwidi, D.; Adytia, D.

    2018-03-01

    In this paper, a parallel implementation of an elliptic solver in solving 1D Boussinesq model is presented. Numerical solution of Boussinesq model is obtained by implementing a staggered grid scheme to continuity, momentum, and elliptic equation of Boussinesq model. Tridiagonal system emerging from numerical scheme of elliptic equation is solved by cyclic reduction algorithm. The parallel implementation of cyclic reduction is executed on multicore processors with shared memory architectures using OpenMP. To measure the performance of parallel program, large number of grids is varied from 28 to 214. Two test cases of numerical experiment, i.e. propagation of solitary and standing wave, are proposed to evaluate the parallel program. The numerical results are verified with analytical solution of solitary and standing wave. The best speedup of solitary and standing wave test cases is about 2.07 with 214 of grids and 1.86 with 213 of grids, respectively, which are executed by using 8 threads. Moreover, the best efficiency of parallel program is 76.2% and 73.5% for solitary and standing wave test cases, respectively.

  16. Lattice Boltzmann Simulations in the Slip and Transition Flow Regime with the Peano Framework

    KAUST Repository

    Neumann, Philipp

    2012-01-01

    We present simulation results of flows in the finite Knudsen range, which is in the slip and transition flow regime. Our implementations are based on the Lattice Boltzmann method and are accomplished within the Peano framework. We validate our code by solving two- and three-dimensional channel flow problems and compare our results with respective experiments from other research groups. We further apply our Lattice Boltzmann solver to the geometrical setup of a microreactor consisting of differently sized channels and a reactor chamber. Here, we apply static adaptive grids to fur-ther reduce computational costs. We further investigate the influence of using a simple BGK collision kernel in coarse grid regions which are further away from the slip boundaries. Our results are in good agreement with theory and non-adaptive simulations, demonstrating the validity and the capabilities of our adaptive simulation software for flow problems at finite Knudsen numbers.

  17. Experimental Simulation of Flow-Induced Vibration for Developing a Grid-to-Rod Fretting Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngho; Kim, Hyungkyu; Kang, Heungseok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    GTRF margin was calculated based on the fuel reliabilities program of operating power plants. But they have not accumulated sufficient experience under challenging operating conditions to be considered proven solutions. In addition, GTRF behaviors were significantly differed according to the plant types, operating condition and fuel types. So, analytical methods to resolve GTRF degradations are considered as difficult procedures for actual application. One of the most important problems is that it is difficult to evaluate the GTRF resistance of new spacer grid under operating power plant condition. Up to now, as a consequence, compliance with the fretting wear limit (typically 10% of the cladding thickness) is checked a posteriori, through post-irradiation examination. Therefore, in this study, rod simulation method for determining GTRF resistance of new spacer grid was proposed with a specially designed wear tester. This simulator enables us to examine the spacer grid shape effect under relatively short development period. In addition, for developing GTRF model, flow-induced vibration (FIV) was measured with different major variables such as GTR clearance, flow rate, etc. Fretting wear tests of nuclear fuel rods (i. e. grid-to-rod fretting) have been performed to examine the flow rate effect by using a specially designed test section with a simulated primary coolant. Based on above results, developed FIV-wear simulator could be effective to examine the spacer grid shape effect with short development period. Further study will be discussed on the GTR clearance effect with various spacer grid shapes.

  18. Steady-State Anderson Accelerated Coupling of Lattice Boltzmann and Navier–Stokes Solvers

    KAUST Repository

    Atanasov, Atanas

    2016-10-17

    We present an Anderson acceleration-based approach to spatially couple three-dimensional Lattice Boltzmann and Navier–Stokes (LBNS) flow simulations. This allows to locally exploit the computational features of both fluid flow solver approaches to the fullest extent and yields enhanced control to match the LB and NS degrees of freedom within the LBNS overlap layer. Designed for parallel Schwarz coupling, the Anderson acceleration allows for the simultaneous execution of both Lattice Boltzmann and Navier–Stokes solver. We detail our coupling methodology, validate it, and study convergence and accuracy of the Anderson accelerated coupling, considering three steady-state scenarios: plane channel flow, flow around a sphere and channel flow across a porous structure. We find that the Anderson accelerated coupling yields a speed-up (in terms of iteration steps) of up to 40% in the considered scenarios, compared to strictly sequential Schwarz coupling.

  19. Method for controlling power flow between an electrochemical cell and a power grid

    International Nuclear Information System (INIS)

    Coleman, A. K.

    1981-01-01

    A method is disclosed for controlling a force-commutated inverter coupled between an electrochemical cell and a power grid for adjusting the magnitude and direction of the electrical energy flowing therebetween. Both the real power component and the reactive power component of ac electrical energy flow can be independently VARied through the switching waveform presented to the intermediately coupled inverter. A VAR error signal is derived from a comparison of a var command signal with a signal proportional to the actual reactive power circulating between the inverter and the power grid. This signal is presented to a voltage controller which essentially varies only the effective magnitude of the fundamental voltage waveform out of the inverter , thereby leaving the real power component substantially unaffected. In a similar manner, a power error signal is derived by a comparison of a power command signal with a signal proportional to the actual real power flowing between the electrochemical cell and the power grid. This signal is presented to a phase controller which varies only the phase of the fundamental component of the voltage waveform out of the inverter relative to that of the power grid and changes only the real power in proportion thereto, thus leaving the reactive power component substantially unaffected

  20. The effect of spacer grid critical component on pressure drop under both single and two phase flow conditions

    International Nuclear Information System (INIS)

    Han, B.; Yang, B.W.; Zhang, H.; Mao, H.; Zha, Y.

    2016-01-01

    As pressure drop is one of the most critical thermal hydraulic parameters for spacer grids the accurate estimation of it is the key to the design and development of spacer grids. Most of the available correlations for pressure drop do not contain any real geometrical parameters that characterize the grid effect. The main functions for spacer grid are structural support and flow mixing. Once the boundary sublayer near the rod bundle is disturbed, the liquid forms swirls or flow separation that affect pressure drop. However, under two phase flow conditions, due to the existence of steam bubble, the complexity for spacer grid are multiplied and pressure drop calculation becomes much more challenging. The influence of the dimple location, distance of mixing vane to the nearest strip, and the effect of inter-subchannel mixing among neighboring subchannels on pressure drop and downstream flow fields are analyzed in this paper. Based on this study, more detailed space grid geometry parameters are recommended for adding into the correlation when predicting pressure drop.

  1. Sandia’s Current Energy Conversion module for the Flexible-Mesh Delft3D flow solver v. 1.0

    Energy Technology Data Exchange (ETDEWEB)

    2018-04-25

    The DOE has funded Sandia National Labs (SNL) to develop an open-source modeling tool to guide the design and layout of marine hydrokinetic (MHK) arrays to maximize power production while minimizing environmental effects. This modeling framework simulates flows through and around a MHK arrays while quantifying environmental responses. As an augmented version of the Dutch company, Deltares’s, environmental hydrodynamics code, Delft3D, SNL-Delft3D-CEC-FM includes a new module that simulates energy conversion (momentum withdrawal) by MHK current energy conversion devices with commensurate changes in the turbulent kinetic energy and its dissipation rate. SNL-Delft3D-CEC-FM modified the Delft3D flexible mesh flow solver, DFlowFM.

  2. A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids

    Science.gov (United States)

    Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme; Loubère, Raphaël; Rebourcet, Bernard

    2013-02-01

    In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic-plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs the von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.

  3. Parameter investigation with line-implicit lower-upper symmetric Gauss-Seidel on 3D stretched grids

    Science.gov (United States)

    Otero, Evelyn; Eliasson, Peter

    2015-03-01

    An implicit lower-upper symmetric Gauss-Seidel (LU-SGS) solver has been implemented as a multigrid smoother combined with a line-implicit method as an acceleration technique for Reynolds-averaged Navier-Stokes (RANS) simulation on stretched meshes. The computational fluid dynamics code concerned is Edge, an edge-based finite volume Navier-Stokes flow solver for structured and unstructured grids. The paper focuses on the investigation of the parameters related to our novel line-implicit LU-SGS solver for convergence acceleration on 3D RANS meshes. The LU-SGS parameters are defined as the Courant-Friedrichs-Lewy number, the left-hand side dissipation, and the convergence of iterative solution of the linear problem arising from the linearisation of the implicit scheme. The influence of these parameters on the overall convergence is presented and default values are defined for maximum convergence acceleration. The optimised settings are applied to 3D RANS computations for comparison with explicit and line-implicit Runge-Kutta smoothing. For most of the cases, a computing time acceleration of the order of 2 is found depending on the mesh type, namely the boundary layer and the magnitude of residual reduction.

  4. Advanced validation of CFD-FDTD combined method using highly applicable solver for reentry blackout prediction

    International Nuclear Information System (INIS)

    Takahashi, Yusuke

    2016-01-01

    An analysis model of plasma flow and electromagnetic waves around a reentry vehicle for radio frequency blackout prediction during aerodynamic heating was developed in this study. The model was validated based on experimental results from the radio attenuation measurement program. The plasma flow properties, such as electron number density, in the shock layer and wake region were obtained using a newly developed unstructured grid solver that incorporated real gas effect models and could treat thermochemically non-equilibrium flow. To predict the electromagnetic waves in plasma, a frequency-dependent finite-difference time-domain method was used. Moreover, the complicated behaviour of electromagnetic waves in the plasma layer during atmospheric reentry was clarified at several altitudes. The prediction performance of the combined model was evaluated with profiles and peak values of the electron number density in the plasma layer. In addition, to validate the models, the signal losses measured during communication with the reentry vehicle were directly compared with the predicted results. Based on the study, it was suggested that the present analysis model accurately predicts the radio frequency blackout and plasma attenuation of electromagnetic waves in plasma in communication. (paper)

  5. Development of a Two-Phase Flow Analysis Code based on a Unstructured-Mesh SIMPLE Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Tae; Park, Ik Kyu; Cho, Heong Kyu; Yoon, Han Young; Kim, Kyung Doo; Jeong, Jae Jun

    2008-09-15

    For analyses of multi-phase flows in a water-cooled nuclear power plant, a three-dimensional SIMPLE-algorithm based hydrodynamic solver CUPID-S has been developed. As governing equations, it adopts a two-fluid three-field model for the two-phase flows. The three fields represent a continuous liquid, a dispersed droplets, and a vapour field. The governing equations are discretized by a finite volume method on an unstructured grid to handle the geometrical complexity of the nuclear reactors. The phasic momentum equations are coupled and solved with a sparse block Gauss-Seidel matrix solver to increase a numerical stability. The pressure correction equation derived by summing the phasic volume fraction equations is applied on the unstructured mesh in the context of a cell-centered co-located scheme. This paper presents the numerical method and the preliminary results of the calculations.

  6. Investigation on the Use of a Multiphase Eulerian CFD solver to simulate breaking waves

    DEFF Research Database (Denmark)

    Tomaselli, Pietro D.; Christensen, Erik Damgaard

    2015-01-01

    investigation on a CFD model capable of handling this problem. The model is based on a solver, available in the open-source CFD toolkit OpenFOAM, which combines the Eulerian multi-fluid approach for dispersed flows with a numerical interface sharpening method. The solver, enhanced with additional formulations...

  7. Robust Multiscale Iterative Solvers for Nonlinear Flows in Highly Heterogeneous Media

    KAUST Repository

    Efendiev, Y.

    2012-08-01

    In this paper, we study robust iterative solvers for finite element systems resulting in approximation of steady-state Richards\\' equation in porous media with highly heterogeneous conductivity fields. It is known that in such cases the contrast, ratio between the highest and lowest values of the conductivity, can adversely affect the performance of the preconditioners and, consequently, a design of robust preconditioners is important for many practical applications. The proposed iterative solvers consist of two kinds of iterations, outer and inner iterations. Outer iterations are designed to handle nonlinearities by linearizing the equation around the previous solution state. As a result of the linearization, a large-scale linear system needs to be solved. This linear system is solved iteratively (called inner iterations), and since it can have large variations in the coefficients, a robust preconditioner is needed. First, we show that under some assumptions the number of outer iterations is independent of the contrast. Second, based on the recently developed iterative methods, we construct a class of preconditioners that yields convergence rate that is independent of the contrast. Thus, the proposed iterative solvers are optimal with respect to the large variation in the physical parameters. Since the same preconditioner can be reused in every outer iteration, this provides an additional computational savings in the overall solution process. Numerical tests are presented to confirm the theoretical results. © 2012 Global-Science Press.

  8. Grid adaptation using chimera composite overlapping meshes

    Science.gov (United States)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1994-01-01

    The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.

  9. Experimental study on the convective heat transfer enhancement in single-phase steam flow by a support grid

    International Nuclear Information System (INIS)

    Kim, Byoung Jae; Kim, Kihwan; Kim, Dong-Eok; Youn, Young-Jung; Park, Jong-Kuk; Moon, Sang-Ki; Song, Chul-Hwa

    2014-01-01

    Highlights: • The convective heat transfer enhancement by support grids is investigated. • Experiments were performed in a square array 2 × 2 rod bundle. • The enhancement was affected not only by the blockage ratio also by the Reynolds number. • For low Reynolds numbers, the enhancement depends on the Reynolds number (Re). • For high Reynolds numbers, the enhancement is nearly independent of Re. - Abstract: Single-phase flow occurs in the fuel rod bundle of a pressurized water reactor, during the normal operation period or at the early stage of the reflood phase in a loss-of-coolant accident scenario. In the former period, the flow is single-phase water flow, but in the latter case, the flow is single-phase steam flow. Support grids are required to maintain a proper geometry configuration of fuel rods within nuclear fuel assemblies. This study was conducted to elucidate the effects of support grids on the convective heat transfer in single-phase steam flow. Experiments were made in a square array 2 × 2 rod bundle. The four electrically-heating rods were maintained by support grids with mixing vanes creating a swirl flow. Two types of support grids were considered in this study. The two types are geometrically similar except the blockage ratio by different mixing vane angles. For all test runs, 2 kW power was supplied to each rod. The working fluid was superheated steam with Re = 2,301–39,594. The axial profile of the rod surface temperatures was measured, and the convective heat transfer enhancement by the presence of the support grids was examined. The peak heat transfer enhancement was a function of not only the blockage ratio but also the Reynolds number. Given the same blockage ratio, the heat transfer enhancement was sensitive to the Reynolds number in laminar flow, whereas it was nearly independent of the Reynolds number in turbulent flow

  10. A numerical study of secondary flow and large eddies in a driven cavity

    Energy Technology Data Exchange (ETDEWEB)

    Yau, Y. H.; Badarudin, A. [University of Malaya, Lumpur (Malaysia); Rubini, P. A. [University of Hull, East Yorkshire (United Kingdom)

    2012-01-15

    This paper reports on the application of a newly developed LES flow solver to compute a true three-dimensional flow. The research also investigates the behavior of turbulence statistics by comparing transient simulation results to available data based on experiments and simulations. An extensive discussion on the results such as energy spectrum, velocity profiles and time trace of velocities is carried out in the research as well. Based on the results obtained, the application of the flow solver for a turbulent three-dimensional driven cavity flow by using three grids with varying densities is proven. In addition, the research successfully verifies that in many instances computational results agreed reasonably well with the reference data, and the changes in the statistical properties of turbulence with respect to time are closely related to the changes in the flow structure and strength of vortices. The focus of this study is on the prediction of a subgrid scale Reynolds shear stress profiles, and the results show that the standard model is able to reproduce general trends measured from experiments. Furthermore, in certain areas inside the cavity the computed shear stress values are in close agreement with experimental data.

  11. A numerical study of secondary flow and large eddies in a driven cavity

    International Nuclear Information System (INIS)

    Yau, Y. H.; Badarudin, A.; Rubini, P. A.

    2012-01-01

    This paper reports on the application of a newly developed LES flow solver to compute a true three-dimensional flow. The research also investigates the behavior of turbulence statistics by comparing transient simulation results to available data based on experiments and simulations. An extensive discussion on the results such as energy spectrum, velocity profiles and time trace of velocities is carried out in the research as well. Based on the results obtained, the application of the flow solver for a turbulent three-dimensional driven cavity flow by using three grids with varying densities is proven. In addition, the research successfully verifies that in many instances computational results agreed reasonably well with the reference data, and the changes in the statistical properties of turbulence with respect to time are closely related to the changes in the flow structure and strength of vortices. The focus of this study is on the prediction of a subgrid scale Reynolds shear stress profiles, and the results show that the standard model is able to reproduce general trends measured from experiments. Furthermore, in certain areas inside the cavity the computed shear stress values are in close agreement with experimental data

  12. Comparison of OpenFOAM and EllipSys3D for neutral atmospheric flow over complex terrain

    Directory of Open Access Journals (Sweden)

    D. Cavar

    2016-05-01

    Full Text Available The flow solvers OpenFOAM and EllipSys3D are compared in the case of neutral atmospheric flow over terrain using the test cases of Askervein and Bolund hills. Both solvers are run using the steady-state Reynolds-averaged Navier–Stokes k–ϵ turbulence model. One of the main modeling differences between the two solvers is the wall-function approach. The OpenFOAM v.1.7.1 uses a Nikuradse's sand roughness model, while EllipSys3D uses a model based on the atmospheric roughness length. It is found that Nikuradse's model introduces an error dependent on the near-wall cell height. To mitigate this error the near-wall cells should be at least 10 times larger than the surface roughness. It is nonetheless possible to obtain very similar results between EllipSys3D and OpenFOAM v.1.7.1. The more recent OpenFOAM v.2.2.1, which includes the atmospheric roughness length wall-function approach, has also been tested and compared to the results of OpenFOAM v.1.7.1 and EllipSys3D. The numerical results obtained using the same wall-modeling approach in both EllipSys3D and OpenFOAM v.2.1.1 proved to be almost identical. Two meshing strategies are investigated using HypGrid and SnappyHexMesh. The performance of OpenFOAM on SnappyHexMesh-based low-aspect-ratio unstructured meshes is found to be almost an order of magnitude faster than on HypGrid-based structured and high-aspect-ratio meshes. However, proper control of boundary layer resolution is found to be very difficult when the SnappyHexMesh tool is utilized for grid generation purposes. The OpenFOAM is generally found to be 2–6 times slower than EllipSys3D in achieving numerical results of the same order of accuracy on similar or identical computational meshes, when utilization of EllipSys3D default grid sequencing procedures is included.

  13. IGA-ADS: Isogeometric analysis FEM using ADS solver

    Science.gov (United States)

    Łoś, Marcin M.; Woźniak, Maciej; Paszyński, Maciej; Lenharth, Andrew; Hassaan, Muhamm Amber; Pingali, Keshav

    2017-08-01

    In this paper we present a fast explicit solver for solution of non-stationary problems using L2 projections with isogeometric finite element method. The solver has been implemented within GALOIS framework. It enables parallel multi-core simulations of different time-dependent problems, in 1D, 2D, or 3D. We have prepared the solver framework in a way that enables direct implementation of the selected PDE and corresponding boundary conditions. In this paper we describe the installation, implementation of exemplary three PDEs, and execution of the simulations on multi-core Linux cluster nodes. We consider three case studies, including heat transfer, linear elasticity, as well as non-linear flow in heterogeneous media. The presented package generates output suitable for interfacing with Gnuplot and ParaView visualization software. The exemplary simulations show near perfect scalability on Gilbert shared-memory node with four Intel® Xeon® CPU E7-4860 processors, each possessing 10 physical cores (for a total of 40 cores).

  14. Calm water resistance prediction of a bulk carrier using Reynolds averaged Navier-Stokes based solver

    Science.gov (United States)

    Rahaman, Md. Mashiur; Islam, Hafizul; Islam, Md. Tariqul; Khondoker, Md. Reaz Hasan

    2017-12-01

    Maneuverability and resistance prediction with suitable accuracy is essential for optimum ship design and propulsion power prediction. This paper aims at providing some of the maneuverability characteristics of a Japanese bulk carrier model, JBC in calm water using a computational fluid dynamics solver named SHIP Motion and OpenFOAM. The solvers are based on the Reynolds average Navier-Stokes method (RaNS) and solves structured grid using the Finite Volume Method (FVM). This paper comprises the numerical results of calm water test for the JBC model with available experimental results. The calm water test results include the total drag co-efficient, average sinkage, and trim data. Visualization data for pressure distribution on the hull surface and free water surface have also been included. The paper concludes that the presented solvers predict the resistance and maneuverability characteristics of the bulk carrier with reasonable accuracy utilizing minimum computational resources.

  15. A new solver for granular avalanche simulation: Indoor experiment verification and field scale case study

    Science.gov (United States)

    Wang, XiaoLiang; Li, JiaChun

    2017-12-01

    A new solver based on the high-resolution scheme with novel treatments of source terms and interface capture for the Savage-Hutter model is developed to simulate granular avalanche flows. The capability to simulate flow spread and deposit processes is verified through indoor experiments of a two-dimensional granular avalanche. Parameter studies show that reduction in bed friction enhances runout efficiency, and that lower earth pressure restraints enlarge the deposit spread. The April 9, 2000, Yigong avalanche in Tibet, China, is simulated as a case study by this new solver. The predicted results, including evolution process, deposit spread, and hazard impacts, generally agree with site observations. It is concluded that the new solver for the Savage-Hutter equation provides a comprehensive software platform for granular avalanche simulation at both experimental and field scales. In particular, the solver can be a valuable tool for providing necessary information for hazard forecasts, disaster mitigation, and countermeasure decisions in mountainous areas.

  16. Unstructured Cartesian refinement with sharp interface immersed boundary method for 3D unsteady incompressible flows

    Science.gov (United States)

    Angelidis, Dionysios; Chawdhary, Saurabh; Sotiropoulos, Fotis

    2016-11-01

    A novel numerical method is developed for solving the 3D, unsteady, incompressible Navier-Stokes equations on locally refined fully unstructured Cartesian grids in domains with arbitrarily complex immersed boundaries. Owing to the utilization of the fractional step method on an unstructured Cartesian hybrid staggered/non-staggered grid layout, flux mismatch and pressure discontinuity issues are avoided and the divergence free constraint is inherently satisfied to machine zero. Auxiliary/hanging nodes are used to facilitate the discretization of the governing equations. The second-order accuracy of the solver is ensured by using multi-dimension Lagrange interpolation operators and appropriate differencing schemes at the interface of regions with different levels of refinement. The sharp interface immersed boundary method is augmented with local near-boundary refinement to handle arbitrarily complex boundaries. The discrete momentum equation is solved with the matrix free Newton-Krylov method and the Krylov-subspace method is employed to solve the Poisson equation. The second-order accuracy of the proposed method on unstructured Cartesian grids is demonstrated by solving the Poisson equation with a known analytical solution. A number of three-dimensional laminar flow simulations of increasing complexity illustrate the ability of the method to handle flows across a range of Reynolds numbers and flow regimes. Laminar steady and unsteady flows past a sphere and the oblique vortex shedding from a circular cylinder mounted between two end walls demonstrate the accuracy, the efficiency and the smooth transition of scales and coherent structures across refinement levels. Large-eddy simulation (LES) past a miniature wind turbine rotor, parameterized using the actuator line approach, indicates the ability of the fully unstructured solver to simulate complex turbulent flows. Finally, a geometry resolving LES of turbulent flow past a complete hydrokinetic turbine illustrates

  17. Development of a large-scale general purpose two-phase flow analysis code

    International Nuclear Information System (INIS)

    Terasaka, Haruo; Shimizu, Sensuke

    2001-01-01

    A general purpose three-dimensional two-phase flow analysis code has been developed for solving large-scale problems in industrial fields. The code uses a two-fluid model to describe the conservation equations for two-phase flow in order to be applicable to various phenomena. Complicated geometrical conditions are modeled by FAVOR method in structured grid systems, and the discretization equations are solved by a modified SIMPLEST scheme. To reduce computing time a matrix solver for the pressure correction equation is parallelized with OpenMP. Results of numerical examples show that the accurate solutions can be obtained efficiently and stably. (author)

  18. 3-D minimum-structure inversion of magnetotelluric data using the finite-element method and tetrahedral grids

    Science.gov (United States)

    Jahandari, H.; Farquharson, C. G.

    2017-11-01

    Unstructured grids enable representing arbitrary structures more accurately and with fewer cells compared to regular structured grids. These grids also allow more efficient refinements compared to rectilinear meshes. In this study, tetrahedral grids are used for the inversion of magnetotelluric (MT) data, which allows for the direct inclusion of topography in the model, for constraining an inversion using a wireframe-based geological model and for local refinement at the observation stations. A minimum-structure method with an iterative model-space Gauss-Newton algorithm for optimization is used. An iterative solver is employed for solving the normal system of equations at each Gauss-Newton step and the sensitivity matrix-vector products that are required by this solver are calculated using pseudo-forward problems. This method alleviates the need to explicitly form the Hessian or Jacobian matrices which significantly reduces the required computation memory. Forward problems are formulated using an edge-based finite-element approach and a sparse direct solver is used for the solutions. This solver allows saving and re-using the factorization of matrices for similar pseudo-forward problems within a Gauss-Newton iteration which greatly minimizes the computation time. Two examples are presented to show the capability of the algorithm: the first example uses a benchmark model while the second example represents a realistic geological setting with topography and a sulphide deposit. The data that are inverted are the full-tensor impedance and the magnetic transfer function vector. The inversions sufficiently recovered the models and reproduced the data, which shows the effectiveness of unstructured grids for complex and realistic MT inversion scenarios. The first example is also used to demonstrate the computational efficiency of the presented model-space method by comparison with its data-space counterpart.

  19. A Posteriori Error Estimation for Finite Element Methods and Iterative Linear Solvers

    Energy Technology Data Exchange (ETDEWEB)

    Melboe, Hallgeir

    2001-10-01

    This thesis addresses a posteriori error estimation for finite element methods and iterative linear solvers. Adaptive finite element methods have gained a lot of popularity over the last decades due to their ability to produce accurate results with limited computer power. In these methods a posteriori error estimates play an essential role. Not only do they give information about how large the total error is, they also indicate which parts of the computational domain should be given a more sophisticated treatment in order to reduce the error. A posteriori error estimates are traditionally aimed at estimating the global error, but more recently so called goal oriented error estimators have been shown a lot of interest. The name reflects the fact that they estimate the error in user-defined local quantities. In this thesis the main focus is on global error estimators for highly stretched grids and goal oriented error estimators for flow problems on regular grids. Numerical methods for partial differential equations, such as finite element methods and other similar techniques, typically result in a linear system of equations that needs to be solved. Usually such systems are solved using some iterative procedure which due to a finite number of iterations introduces an additional error. Most such algorithms apply the residual in the stopping criterion, whereas the control of the actual error may be rather poor. A secondary focus in this thesis is on estimating the errors that are introduced during this last part of the solution procedure. The thesis contains new theoretical results regarding the behaviour of some well known, and a few new, a posteriori error estimators for finite element methods on anisotropic grids. Further, a goal oriented strategy for the computation of forces in flow problems is devised and investigated. Finally, an approach for estimating the actual errors associated with the iterative solution of linear systems of equations is suggested. (author)

  20. DebrisInterMixing-2.3: a finite volume solver for three-dimensional debris-flow simulations with two calibration parameters – Part 2: Model validation with experiments

    Directory of Open Access Journals (Sweden)

    A. von Boetticher

    2017-11-01

    Full Text Available Here, we present validation tests of the fluid dynamic solver presented in von Boetticher et al. (2016, simulating both laboratory-scale and large-scale debris-flow experiments. The new solver combines a Coulomb viscoplastic rheological model with a Herschel–Bulkley model based on material properties and rheological characteristics of the analyzed debris flow. For the selected experiments in this study, all necessary material properties were known – the content of sand, clay (including its mineral composition and gravel as well as the water content and the angle of repose of the gravel. Given these properties, two model parameters are sufficient for calibration, and a range of experiments with different material compositions can be reproduced by the model without recalibration. One calibration parameter, the Herschel–Bulkley exponent, was kept constant for all simulations. The model validation focuses on different case studies illustrating the sensitivity of debris flows to water and clay content, channel curvature, channel roughness and the angle of repose. We characterize the accuracy of the model using experimental observations of flow head positions, front velocities, run-out patterns and basal pressures.

  1. A multilevel in space and energy solver for multigroup diffusion eigenvalue problems

    Directory of Open Access Journals (Sweden)

    Ben C. Yee

    2017-09-01

    Full Text Available In this paper, we present a new multilevel in space and energy diffusion (MSED method for solving multigroup diffusion eigenvalue problems. The MSED method can be described as a PI scheme with three additional features: (1 a grey (one-group diffusion equation used to efficiently converge the fission source and eigenvalue, (2 a space-dependent Wielandt shift technique used to reduce the number of PIs required, and (3 a multigrid-in-space linear solver for the linear solves required by each PI step. In MSED, the convergence of the solution of the multigroup diffusion eigenvalue problem is accelerated by performing work on lower-order equations with only one group and/or coarser spatial grids. Results from several Fourier analyses and a one-dimensional test code are provided to verify the efficiency of the MSED method and to justify the incorporation of the grey diffusion equation and the multigrid linear solver. These results highlight the potential efficiency of the MSED method as a solver for multidimensional multigroup diffusion eigenvalue problems, and they serve as a proof of principle for future work. Our ultimate goal is to implement the MSED method as an efficient solver for the two-dimensional/three-dimensional coarse mesh finite difference diffusion system in the Michigan parallel characteristics transport code. The work in this paper represents a necessary step towards that goal.

  2. Intermediate flow mixing nonsupport grid for BWR fuel assembly

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.

    1987-01-01

    An intermediate flow mixing nonsupport grid is described for use in a nuclear reactor fuel assembly containing an array of elongated fuel rods. The grid comprises: (a) interleaved inner straps arranged in an egg-crate configuration to define inner cell openings for receiving respective ones of the fuel rods. The inner straps have outer terminal end portions; (b) an outer peripheral strap attached to the respective terminal end portions of the inner straps to define perimeter cell openings for receiving other ones of the fuel rods. The inner straps and outer strap together have opposite upstream and downstream sides; (c) a first group of mixing vanes disposed at the downstream side and being attached on portions of the outer strap and on respective portions of the inner straps. Together with the outer strap portions, they define the perimeter cell openings. Each of the mixing vanes of the first group extend generally in a downstream direction and inwardly toward the perimeter cell openings for deflecting coolant flowing; and (d) a second group of mixing vanes disposed at the downstream side and being attached on other portions of the inner straps. Together with the respective portions, they define the inner cell openings. Each of the mixing vanes of the second group extend generally in a downstream direction and inwardly toward the inner cell openings for deflecting coolant flowing therethrough; (e) the mixing vanes of the second group are substantially smaller in size than the mixing vanes of the first group so as to generate substantially less turbulence in the portions of the coolant flowing through the inner cell openings than in the portions of the coolant flowing through the perimeter cell openings

  3. A mathematical model for turbulent incompressible flows through mixing grids

    International Nuclear Information System (INIS)

    Allaire, G.

    1989-01-01

    A mathematical model is proposed for the computation of turbulent incompressible flows through mixing grids. This model is obtained as follows: in a three-dimentional-domain we represent a mixing grid by small identical wings of size ε 2 periodically distributed at the nodes of a plane regular mesh of size ε, and we consider incompressible Navier-Stokes equations with a no-slip condition on the wings. Using an appropriate homogenization process we pass to the limit when ε tends to zero and we obtain a Brinkman equation, i.e. a Navier-Stokes equation plus a zero-order term for the velocity, in a homogeneous domain without anymore wings. The interest of this model is that the spatial discretization is simpler in a homogeneous domain, and, moreover, the new term, which expresses the grid's mixing effect, can be evaluated with a local computation around a single wing

  4. A coupled systems code-CFD MHD solver for fusion blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Wolfendale, Michael J., E-mail: m.wolfendale11@imperial.ac.uk; Bluck, Michael J.

    2015-10-15

    Highlights: • A coupled systems code-CFD MHD solver for fusion blanket applications is proposed. • Development of a thermal hydraulic systems code with MHD capabilities is detailed. • A code coupling methodology based on the use of TCP socket communications is detailed. • Validation cases are briefly discussed for the systems code and coupled solver. - Abstract: The network of flow channels in a fusion blanket can be modelled using a 1D thermal hydraulic systems code. For more complex components such as junctions and manifolds, the simplifications employed in such codes can become invalid, requiring more detailed analyses. For magnetic confinement reactor blanket designs using a conducting fluid as coolant/breeder, the difficulties in flow modelling are particularly severe due to MHD effects. Blanket analysis is an ideal candidate for the application of a code coupling methodology, with a thermal hydraulic systems code modelling portions of the blanket amenable to 1D analysis, and CFD providing detail where necessary. A systems code, MHD-SYS, has been developed and validated against existing analyses. The code shows good agreement in the prediction of MHD pressure loss and the temperature profile in the fluid and wall regions of the blanket breeding zone. MHD-SYS has been coupled to an MHD solver developed in OpenFOAM and the coupled solver validated for test geometries in preparation for modelling blanket systems.

  5. Grid deformation strategies for CFD analysis of screw compressors

    OpenAIRE

    Rane, S.; Kovacevic, A.; Stosic, N.; Kethidi, M.

    2013-01-01

    Customized grid generation of twin screw machines for CFD analysis is widely used by the refrigeration and air-conditioning industry today, but is currently not suitable for topologies such as those of single screw, variable pitch or tri screw rotors. This paper investigates a technique called key-frame re-meshing that supplies pre-generated unstructured grids to the CFD solver at different time steps. To evaluate its accuracy, the results of an isentropic compression-expansion process in a r...

  6. Grid adaption using Chimera composite overlapping meshes

    Science.gov (United States)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  7. Fast Laplace solver approach to pore-scale permeability

    Science.gov (United States)

    Arns, C. H.; Adler, P. M.

    2018-02-01

    We introduce a powerful and easily implemented method to calculate the permeability of porous media at the pore scale using an approximation based on the Poiseulle equation to calculate permeability to fluid flow with a Laplace solver. The method consists of calculating the Euclidean distance map of the fluid phase to assign local conductivities and lends itself naturally to the treatment of multiscale problems. We compare with analytical solutions as well as experimental measurements and lattice Boltzmann calculations of permeability for Fontainebleau sandstone. The solver is significantly more stable than the lattice Boltzmann approach, uses less memory, and is significantly faster. Permeabilities are in excellent agreement over a wide range of porosities.

  8. Coarse-grid-CFD. An advantageous alternative to subchannel analysis

    International Nuclear Information System (INIS)

    Class, A.G.; Himmel, S.R.; Viellieber, M.O.

    2011-01-01

    In the 1960 th to 80 th when current GEN II reactor technology was developed, the only possible approach was to use one-dimensional subchannel analysis to compute the flow inside a fuel bundle so that the subchannel scale could be resolved. For simulations of the whole reactor core either system codes or homogenization were employed. In system codes resolution of individual assemblies was the state of the art. Homogenization used porous media equations simulations and averaged the thermohydraulics on reactor core scale. Current potent computing power allows using Computational Fluid Dynamics (CFD) to simulate individual fuel assemblies. Yet the large number of fuel assemblies within the core forbids exploiting CFD for core wide simulation. We propose to combine ideas of subchannel analysis and CFD to develop a new methodology which takes advantage of the fast development of commercial CFD software and the efficiency of subchannel analysis. In this methodology was first applied to simulate a wire-wrap fuel bundle of the High Performance Light Water Reactor (HPLWR). Computations using an inviscid Euler solver on an extremely coarse grid were tuned to predict the true thermohydraulics by adding volumetric forces. These forces represent the non-resolved sub-grid physics. The volumetric forces cannot be measured directly. However, they can be accessed from detailed CFD simulations resolving all relevant physics. Parameterization of these subgrid forces can be realized analogous to models in subchannel codes. In the present work we extend the methodology to the open source solver OpenFOAM and a specific hexagonal fuel assembly which is studied in the framework of liquid metal cooled GEN IV reactor concepts. (orig.)

  9. Differential equations problem solver

    CERN Document Server

    Arterburn, David R

    2012-01-01

    REA's Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Differential Equations Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Differential Equations problems. The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions. They're perfect for undergraduate and graduate studies.The Differential Equations Problem Solver is the perfect resource for any class, any exam, and

  10. Reentrainment of droplet from grid spacer in mist flow portion of LOCA reflood of PWR

    International Nuclear Information System (INIS)

    Lee, S.L.; Cho, S.K.; Sheen, H.J.

    1983-01-01

    An investigation is made on the influence of a quenched grid spacer on the greatly enhanced heat transfer from heated fuel rods during the mist flow phase of emergency reflood of loss of coolant accident (LOCA) of a pressurized water reactor (PWR). The situation for the case of a dry grid spacer before its quenching has not been covered in this study. The experimental technique used is a relatively simple optical scheme which combines the reference-mode laser-Doppler anemometry making use of the scattering of a light beam from a droplet. The results reveal that the large droplets in the mist flow, which are intercepted by the grid spacer, are responsible for the creation of a large number of smaller droplets. These small droplets, due to their large surface area to mass ratios, can serve as superb evaporative cooling agents to heat transfer downstream of the grid spacer

  11. Evaluation of sub grid scale and local wall models in Large-eddy simulations of separated flow

    Directory of Open Access Journals (Sweden)

    Sam Ali Al

    2015-01-01

    Full Text Available The performance of the Sub Grid Scale models is studied by simulating a separated flow over a wavy channel. The first and second order statistical moments of the resolved velocities obtained by using Large-Eddy simulations at different mesh resolutions are compared with Direct Numerical Simulations data. The effectiveness of modeling the wall stresses by using local log-law is then tested on a relatively coarse grid. The results exhibit a good agreement between highly-resolved Large Eddy Simulations and Direct Numerical Simulations data regardless the Sub Grid Scale models. However, the agreement is less satisfactory with relatively coarse grid without using any wall models and the differences between Sub Grid Scale models are distinguishable. Using local wall model retuned the basic flow topology and reduced significantly the differences between the coarse meshed Large-Eddy Simulations and Direct Numerical Simulations data. The results show that the ability of local wall model to predict the separation zone depends strongly on its implementation way.

  12. The hybridized Discontinuous Galerkin method for Implicit Large-Eddy Simulation of transitional turbulent flows

    Science.gov (United States)

    Fernandez, P.; Nguyen, N. C.; Peraire, J.

    2017-05-01

    We present a high-order Implicit Large-Eddy Simulation (ILES) approach for transitional aerodynamic flows. The approach encompasses a hybridized Discontinuous Galerkin (DG) method for the discretization of the Navier-Stokes (NS) equations, and a parallel preconditioned Newton-GMRES solver for the resulting nonlinear system of equations. The combination of hybridized DG methods with an efficient solution procedure leads to a high-order accurate NS solver that is competitive to alternative approaches, such as finite volume and finite difference codes, in terms of computational cost. The proposed approach is applied to transitional flows over the NACA 65-(18)10 compressor cascade and the Eppler 387 wing at Reynolds numbers up to 460,000. Grid convergence studies are presented and the required resolution to capture transition at different Reynolds numbers is investigated. Numerical results show rapid convergence and excellent agreement with experimental data. In short, this work aims to demonstrate the potential of high-order ILES for simulating transitional aerodynamic flows. This is illustrated through numerical results and supported by theoretical considerations.

  13. Turbulent Bubbly Flow in a Vertical Pipe Computed By an Eddy-Resolving Reynolds Stress Model

    Science.gov (United States)

    2014-09-19

    the numerical code OpenFOAM R©. 1 Introduction Turbulent bubbly flows are encountered in many industrially relevant applications, such as chemical in...performed using the OpenFOAM -2.2.2 computational code utilizing a cell- center-based finite volume method on an unstructured numerical grid. The...the mean Courant number is always below 0.4. The utilized turbulence models were implemented into the so-called twoPhaseEulerFoam solver in OpenFOAM , to

  14. A Parallel Algebraic Multigrid Solver on Graphics Processing Units

    KAUST Repository

    Haase, Gundolf

    2010-01-01

    The paper presents a multi-GPU implementation of the preconditioned conjugate gradient algorithm with an algebraic multigrid preconditioner (PCG-AMG) for an elliptic model problem on a 3D unstructured grid. An efficient parallel sparse matrix-vector multiplication scheme underlying the PCG-AMG algorithm is presented for the many-core GPU architecture. A performance comparison of the parallel solver shows that a singe Nvidia Tesla C1060 GPU board delivers the performance of a sixteen node Infiniband cluster and a multi-GPU configuration with eight GPUs is about 100 times faster than a typical server CPU core. © 2010 Springer-Verlag.

  15. Computing the flow past Vortex Generators: Comparison between RANS Simulations and Experiments

    DEFF Research Database (Denmark)

    Manolesos, M.; Sørensen, Niels N.; Troldborg, Niels

    2016-01-01

    The flow around a wind turbine airfoil equipped with Vortex Generators (VGs) is examined. Predictions from three different Reynolds Averaged Navier Stokes (RANS) solvers with two different turbulence models and two different VG modelling approaches are compared between them and with experimental ...... data. The best results are obtained with the more expensive fully resolved VG approach. The cost efficient BAY model can also provide acceptable results, if grid related numerical diffusion is minimized and only force coefficient polars are considered....

  16. A numerical calculation method for flow discretisation in complex geometry with body-fitted grids

    International Nuclear Information System (INIS)

    Jin, X.

    2001-04-01

    A numerical calculation method basing on body fitted grids is developed in this work for computational fluid dynamics in complex geometry. The method solves the conservation equations in a general nonorthogonal coordinate system which matches the curvilinear boundary. The nonorthogonal, patched grid is generated by a grid generator which solves algebraic equations. By means of an interface its geometrical data can be used by this method. The conservation equations are transformed from the Cartesian system to a general curvilinear system keeping the physical Cartesian velocity components as dependent variables. Using a staggered arrangement of variables, the three Cartesian velocity components are defined on every cell surface. Thus the coupling between pressure and velocity is ensured, and numerical oscillations are avoided. The contravariant velocity for calculating mass flux on one cell surface is resulting from dependent Cartesian velocity components. After the discretisation and linear interpolation, a three dimensional 19-point pressure equation is found. Using the explicit treatment for cross-derivative terms, it reduces to the usual 7-point equation. Under the same data and process structure, this method is compatible with the code FLUTAN using Cartesian coordinates. In order to verify this method, several laminar flows are simulated in orthogonal grids at tilted space directions and in nonorthogonal grids with variations of cell angles. The simulated flow types are considered like various duct flows, transient heat conduction, natural convection in a chimney and natural convection in cavities. Their results achieve very good agreement with analytical solutions or empirical data. Convergence for highly nonorthogonal grids is obtained. After the successful validation of this method, it is applied for a reactor safety case. A transient natural convection flow for an optional sump cooling concept SUCO is simulated. The numerical result is comparable with the

  17. Radiation Coupling with the FUN3D Unstructured-Grid CFD Code

    Science.gov (United States)

    Wood, William A.

    2012-01-01

    The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.

  18. Development of a Robust and Efficient Parallel Solver for Unsteady Turbomachinery Flows

    Science.gov (United States)

    West, Jeff; Wright, Jeffrey; Thakur, Siddharth; Luke, Ed; Grinstead, Nathan

    2012-01-01

    The traditional design and analysis practice for advanced propulsion systems relies heavily on expensive full-scale prototype development and testing. Over the past decade, use of high-fidelity analysis and design tools such as CFD early in the product development cycle has been identified as one way to alleviate testing costs and to develop these devices better, faster and cheaper. In the design of advanced propulsion systems, CFD plays a major role in defining the required performance over the entire flight regime, as well as in testing the sensitivity of the design to the different modes of operation. Increased emphasis is being placed on developing and applying CFD models to simulate the flow field environments and performance of advanced propulsion systems. This necessitates the development of next generation computational tools which can be used effectively and reliably in a design environment. The turbomachinery simulation capability presented here is being developed in a computational tool called Loci-STREAM [1]. It integrates proven numerical methods for generalized grids and state-of-the-art physical models in a novel rule-based programming framework called Loci [2] which allows: (a) seamless integration of multidisciplinary physics in a unified manner, and (b) automatic handling of massively parallel computing. The objective is to be able to routinely simulate problems involving complex geometries requiring large unstructured grids and complex multidisciplinary physics. An immediate application of interest is simulation of unsteady flows in rocket turbopumps, particularly in cryogenic liquid rocket engines. The key components of the overall methodology presented in this paper are the following: (a) high fidelity unsteady simulation capability based on Detached Eddy Simulation (DES) in conjunction with second-order temporal discretization, (b) compliance with Geometric Conservation Law (GCL) in order to maintain conservative property on moving meshes for

  19. Computational Fluid Dynamics (CFD) Design of a Blended Wing Body (BWB) with Boundary Layer Ingestion (BLI) Nacelles

    Science.gov (United States)

    Morehouse, Melissa B.

    2001-01-01

    A study is being conducted to improve the propulsion/airframe integration for the Blended Wing-Body (BWB) configuration with boundary layer ingestion nacelles. TWO unstructured grid flow solvers, USM3D and FUN3D, have been coupled with different design methods and are being used to redesign the aft wing region and the nacelles to reduce drag and flow separation. An initial study comparing analyses from these two flow solvers against data from a wind tunnel test as well as predictions from the OVERFLOW structured grid code for a BWB without nacelles has been completed. Results indicate that the unstructured grid codes are sufficiently accurate for use in design. Results from the BWB design study will be presented.

  20. Conservative Overset Grids for Overflow For The Sonic Wave Atmospheric Propagation Project

    Science.gov (United States)

    Onufer, Jeff T.; Cummings, Russell M.

    1999-01-01

    Methods are presented that can be used to make multiple, overset grids communicate in a conservative manner. The methods are developed for use with the Chimera overset method using the PEGSUS code and the OVERFLOW solver.

  1. High order Poisson Solver for unbounded flows

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    2015-01-01

    This paper presents a high order method for solving the unbounded Poisson equation on a regular mesh using a Green’s function solution. The high order convergence was achieved by formulating mollified integration kernels, that were derived from a filter regularisation of the solution field....... The method was implemented on a rectangular domain using fast Fourier transforms (FFT) to increase computational efficiency. The Poisson solver was extended to directly solve the derivatives of the solution. This is achieved either by including the differential operator in the integration kernel...... the equations of fluid mechanics as an example, but can be used in many physical problems to solve the Poisson equation on a rectangular unbounded domain. For the two-dimensional case we propose an infinitely smooth test function which allows for arbitrary high order convergence. Using Gaussian smoothing...

  2. Multidisciplinary Simulation Acceleration using Multiple Shared-Memory Graphical Processing Units

    Science.gov (United States)

    Kemal, Jonathan Yashar

    For purposes of optimizing and analyzing turbomachinery and other designs, the unsteady Favre-averaged flow-field differential equations for an ideal compressible gas can be solved in conjunction with the heat conduction equation. We solve all equations using the finite-volume multiple-grid numerical technique, with the dual time-step scheme used for unsteady simulations. Our numerical solver code targets CUDA-capable Graphical Processing Units (GPUs) produced by NVIDIA. Making use of MPI, our solver can run across networked compute notes, where each MPI process can use either a GPU or a Central Processing Unit (CPU) core for primary solver calculations. We use NVIDIA Tesla C2050/C2070 GPUs based on the Fermi architecture, and compare our resulting performance against Intel Zeon X5690 CPUs. Solver routines converted to CUDA typically run about 10 times faster on a GPU for sufficiently dense computational grids. We used a conjugate cylinder computational grid and ran a turbulent steady flow simulation using 4 increasingly dense computational grids. Our densest computational grid is divided into 13 blocks each containing 1033x1033 grid points, for a total of 13.87 million grid points or 1.07 million grid points per domain block. To obtain overall speedups, we compare the execution time of the solver's iteration loop, including all resource intensive GPU-related memory copies. Comparing the performance of 8 GPUs to that of 8 CPUs, we obtain an overall speedup of about 6.0 when using our densest computational grid. This amounts to an 8-GPU simulation running about 39.5 times faster than running than a single-CPU simulation.

  3. Verification of continuum drift kinetic equation solvers in NIMROD

    Energy Technology Data Exchange (ETDEWEB)

    Held, E. D.; Ji, J.-Y. [Utah State University, Logan, Utah 84322-4415 (United States); Kruger, S. E. [Tech-X Corporation, Boulder, Colorado 80303 (United States); Belli, E. A. [General Atomics, San Diego, California 92186-5608 (United States); Lyons, B. C. [Program in Plasma Physics, Princeton University, Princeton, New Jersey 08543-0451 (United States)

    2015-03-15

    Verification of continuum solutions to the electron and ion drift kinetic equations (DKEs) in NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] is demonstrated through comparison with several neoclassical transport codes, most notably NEO [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 54, 015015 (2012)]. The DKE solutions use NIMROD's spatial representation, 2D finite-elements in the poloidal plane and a 1D Fourier expansion in toroidal angle. For 2D velocity space, a novel 1D expansion in finite elements is applied for the pitch angle dependence and a collocation grid is used for the normalized speed coordinate. The full, linearized Coulomb collision operator is kept and shown to be important for obtaining quantitative results. Bootstrap currents, parallel ion flows, and radial particle and heat fluxes show quantitative agreement between NIMROD and NEO for a variety of tokamak equilibria. In addition, velocity space distribution function contours for ions and electrons show nearly identical detailed structure and agree quantitatively. A Θ-centered, implicit time discretization and a block-preconditioned, iterative linear algebra solver provide efficient electron and ion DKE solutions that ultimately will be used to obtain closures for NIMROD's evolving fluid model.

  4. Approximate Riemann solvers and flux vector splitting schemes for two-phase flow; Solveurs de Riemann approches et schemas de decentrement de flux pour les ecoulements diphasiques

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I.; Kumbaro, A.; Paillere, H

    1999-07-01

    These course notes, presented at the 30. Von Karman Institute Lecture Series in Computational Fluid Dynamics, give a detailed and through review of upwind differencing methods for two-phase flow models. After recalling some fundamental aspects of two-phase flow modelling, from mixture model to two-fluid models, the mathematical properties of the general 6-equation model are analysed by examining the Eigen-structure of the system, and deriving conditions under which the model can be made hyperbolic. The following chapters are devoted to extensions of state-of-the-art upwind differencing schemes such as Roe's Approximate Riemann Solver or the Characteristic Flux Splitting method to two-phase flow. Non-trivial steps in the construction of such solvers include the linearization, the treatment of non-conservative terms and the construction of a Roe-type matrix on which the numerical dissipation of the schemes is based. Extension of the 1-D models to multi-dimensions in an unstructured finite volume formulation is also described; Finally, numerical results for a variety of test-cases are shown to illustrate the accuracy and robustness of the methods. (authors)

  5. Preliminary CFD analysis methodology for flow in a LFR fuel assembly

    International Nuclear Information System (INIS)

    Catana, A.; Ioan, M.; Serbanel, M.

    2013-01-01

    In this paper a preliminary Computational Fluid Dynamics (CFD) analysis was performed in order to setup a methodology to be used for more complex coolant flow analysis inside ALFRED nuclear reactor fuel assembly. The core contains 171 separated fuel assembly, each consisting in a hexagonal array of 127 fuel rods. Three honey comb spacer grids are proposed along fuel rods with the aim to keep flow geometry intact during reactor operation. The main goal of this paper is to compute some hydraulic parameters: pressure, velocity, wall shear stress and turbulence parameters with and without spacer grids. In this analysis we consider an adiabatic case, so far no heat transfer is considered but we pave the road toward more complex thermo hydraulic analysis for ALFRED (LFR in general). The CAELINUX CFD distribution was used with its main components: Salome-Meca (for geometry and mesh) and Code-Saturne as mono-phase CFD solver. Paraview and Visist Postprocessors were used for data extraction and graphical displays. (authors)

  6. Smart grid technologies in local electric grids

    Science.gov (United States)

    Lezhniuk, Petro D.; Pijarski, Paweł; Buslavets, Olga A.

    2017-08-01

    The research is devoted to the creation of favorable conditions for the integration of renewable sources of energy into electric grids, which were designed to be supplied from centralized generation at large electric power stations. Development of distributed generation in electric grids influences the conditions of their operation - conflict of interests arises. The possibility of optimal functioning of electric grids and renewable sources of energy, when complex criterion of the optimality is balance reliability of electric energy in local electric system and minimum losses of electric energy in it. Multilevel automated system for power flows control in electric grids by means of change of distributed generation of power is developed. Optimization of power flows is performed by local systems of automatic control of small hydropower stations and, if possible, solar power plants.

  7. Modeling Thermally Driven Flow Problems with a Grid-Free Vortex Filament Scheme: Part 1

    Science.gov (United States)

    2018-02-01

    simulation FMM Fast Multipole Method GPUs graphic processing units LES Large Eddy Simulation M-O Monin-Obukhov MPI Message Passing Interface Re Reynolds...mail.mil>. Grid-free representation of turbulent flow via vortex filaments offers a means for large eddy simulations that faithfully and efficiently...particle, Lagrangian, turbulence, grid-free, large eddy simulation , natural convection, thermal bubble 56 Pat Collins 301-394-5617Unclassified

  8. Simulation of Particulate Flows Multi-Processor Machines with Distributed Memory

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, M.

    2004-07-01

    We presented a method for the parallelization of an immersed boundary algorithm for particulate flows using the MPI standard of communication. The treatment of the fluid phase used the domain decomposition technique over a Cartesian processor grid. The solution of the Helmholtz problem is approximately factorized an relies upon apparel tri-diagonal solver the Poisson problem is solved by means of a parallel multi-grid technique similar to MUDPACK. for the solid phase we employ a master-slaves technique where one processor handles all the particles contained in its Eulerian fluid sub-domain and zero or more neighbor processors collaborate in the computation of particle-related quantities whenever a particle position over laps the boundary of a sub-domain. the parallel efficiency for some preliminary computations is presented. (Author) 9 refs.

  9. Implicit gas-kinetic unified algorithm based on multi-block docking grid for multi-body reentry flows covering all flow regimes

    Science.gov (United States)

    Peng, Ao-Ping; Li, Zhi-Hui; Wu, Jun-Lin; Jiang, Xin-Yu

    2016-12-01

    Based on the previous researches of the Gas-Kinetic Unified Algorithm (GKUA) for flows from highly rarefied free-molecule transition to continuum, a new implicit scheme of cell-centered finite volume method is presented for directly solving the unified Boltzmann model equation covering various flow regimes. In view of the difficulty in generating the single-block grid system with high quality for complex irregular bodies, a multi-block docking grid generation method is designed on the basis of data transmission between blocks, and the data structure is constructed for processing arbitrary connection relations between blocks with high efficiency and reliability. As a result, the gas-kinetic unified algorithm with the implicit scheme and multi-block docking grid has been firstly established and used to solve the reentry flow problems around the multi-bodies covering all flow regimes with the whole range of Knudsen numbers from 10 to 3.7E-6. The implicit and explicit schemes are applied to computing and analyzing the supersonic flows in near-continuum and continuum regimes around a circular cylinder with careful comparison each other. It is shown that the present algorithm and modelling possess much higher computational efficiency and faster converging properties. The flow problems including two and three side-by-side cylinders are simulated from highly rarefied to near-continuum flow regimes, and the present computed results are found in good agreement with the related DSMC simulation and theoretical analysis solutions, which verify the good accuracy and reliability of the present method. It is observed that the spacing of the multi-body is smaller, the cylindrical throat obstruction is greater with the flow field of single-body asymmetrical more obviously and the normal force coefficient bigger. While in the near-continuum transitional flow regime of near-space flying surroundings, the spacing of the multi-body increases to six times of the diameter of the single

  10. The General-Use Nodal Network Solver (GUNNS) Modeling Package for Space Vehicle Flow System Simulation

    Science.gov (United States)

    Harvey, Jason; Moore, Michael

    2013-01-01

    The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.

  11. A SEMI-LAGRANGIAN TWO-LEVEL PRECONDITIONED NEWTON-KRYLOV SOLVER FOR CONSTRAINED DIFFEOMORPHIC IMAGE REGISTRATION.

    Science.gov (United States)

    Mang, Andreas; Biros, George

    2017-01-01

    We propose an efficient numerical algorithm for the solution of diffeomorphic image registration problems. We use a variational formulation constrained by a partial differential equation (PDE), where the constraints are a scalar transport equation. We use a pseudospectral discretization in space and second-order accurate semi-Lagrangian time stepping scheme for the transport equations. We solve for a stationary velocity field using a preconditioned, globalized, matrix-free Newton-Krylov scheme. We propose and test a two-level Hessian preconditioner. We consider two strategies for inverting the preconditioner on the coarse grid: a nested preconditioned conjugate gradient method (exact solve) and a nested Chebyshev iterative method (inexact solve) with a fixed number of iterations. We test the performance of our solver in different synthetic and real-world two-dimensional application scenarios. We study grid convergence and computational efficiency of our new scheme. We compare the performance of our solver against our initial implementation that uses the same spatial discretization but a standard, explicit, second-order Runge-Kutta scheme for the numerical time integration of the transport equations and a single-level preconditioner. Our improved scheme delivers significant speedups over our original implementation. As a highlight, we observe a 20 × speedup for a two dimensional, real world multi-subject medical image registration problem.

  12. Numerical study on flow fields and aerodynamics of tilt rotor aircraft in conversion mode based on embedded grid and actuator model

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2015-02-01

    Full Text Available A method combining rotor actuator disk model and embedded grid technique is presented in this paper, aimed at predicting the flow fields and aerodynamic characteristics of tilt rotor aircraft in conversion mode more efficiently and effectively. In this method, rotor’s influence is considered in terms of the momentum it impacts to the fluid around it; transformation matrixes among different coordinate systems are deduced to extend actuator method’s utility to conversion mode flow fields’ calculation. Meanwhile, an embedded grid system is designed, in which grids generated around fuselage and actuator disk are regarded as background grid and minor grid respectively, and a new method is presented for ‘donor searching’ and ‘hole cutting’ during grid assembling. Based on the above methods, flow fields of tilt rotor aircraft in conversion mode are simulated, with three-dimensional Navier–Stokes equations discretized by a second-order upwind finite-volume scheme and an implicit lower–upper symmetric Gauss–Seidel (LU-SGS time-stepping scheme. Numerical results demonstrate that the proposed CFD method is very effective in simulating the conversion mode flow fields of tilt rotor aircraft.

  13. Reliability of the grid as function of power flow and configuration during maintenance

    International Nuclear Information System (INIS)

    Kovacs, Z.; Hlavac, P.; Janicek, F.

    2012-01-01

    The paper describes using of PSA (Probabilistic Safety Assessment) for analysis of the partial and total blackout of the grid for different power flows and configuration of the grid given by the preventive maintenance activities. The method uses event and fault tree analysis in combination with the dynamic stability analysis of the grid. The event trees model the grid response to the initiating event of the accident. The fault trees are used to model the reliability of the substation protection systems. Different end states of the event trees are simulated on the basis of dynamic stability analysis, as safe and emergency state, partial and total blackout. Minimal cut sets are generated, importance measures (Fussel-Vesely importance, risk increase factor and risk decrease factors) are calculated for the total and partial blackout. The most dominant initiating events and component failures are identified from the risk point of view. Using the PSA the model, of the transmission grid is being developed. The model can be implemented into the risk monitor software to analyze the risk for different configurations of the grid and to support the operation and the maintenance activities. (Authors)

  14. Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub

    International Nuclear Information System (INIS)

    Ma, Tengfei; Wu, Junyong; Hao, Liangliang

    2017-01-01

    Highlights: • Design a novel architecture for energy hub integrating power hub, cooling hub and heating hub. • The micro energy grid based on energy hub is introduced and its advantages are discussed. • Propose a generic modeling method for the energy flow of micro energy grid. • Propose an optimal operation model for micro energy grid with considering demand response. • The roles of renewable energy, energy storage devices and demand response are discussed separately. - Abstract: The energy security and environmental problems impel people to explore a more efficient, environment friendly and economical energy utilization pattern. In this paper, the coordinated operation and optimal dispatch strategies for multiple energy system are studied at the whole Micro Energy Grid level. To augment the operation flexibility of energy hub, the innovation sub-energy hub structure including power hub, heating hub and cooling hub is put forward. Basing on it, a generic energy hub architecture integrating renewable energy, combined cooling heating and power, and energy storage devices is developed. Moreover, a generic modeling method for the energy flow of micro energy grid is proposed. To minimize the daily operation cost, a day-ahead dynamic optimal operation model is formulated as a mixed integer linear programming optimization problem with considering the demand response. Case studies are undertaken on a community Micro Energy Grid in four different scenarios on a typical summer day and the roles of renewable energy, energy storage devices and demand response are discussed separately. Numerical simulation results indicate that the proposed energy flow modeling and optimal operation method are universal and effective over the entire energy dispatching horizon.

  15. Peano—A Traversal and Storage Scheme for Octree-Like Adaptive Cartesian Multiscale Grids

    KAUST Repository

    Weinzierl, Tobias

    2011-01-01

    Almost all approaches to solving partial differential equations (PDEs) are based upon a spatial discretization of the computational domain-a grid. This paper presents an algorithm to generate, store, and traverse a hierarchy of d-dimensional Cartesian grids represented by a (k = 3)- spacetree, a generalization of the well-known octree concept, and it also shows the correctness of the approach. These grids may change their adaptive structure throughout the traversal. The algorithm uses 2d + 4 stacks as data structures for both cells and vertices, and the storage requirements for the pure grid reduce to one bit per vertex for both the complete grid connectivity structure and the multilevel grid relations. Since the traversal algorithm uses only stacks, the algorithm\\'s cache hit rate is continually higher than 99.9 percent, and the runtime per vertex remains almost constant; i.e., it does not depend on the overall number of vertices or the adaptivity pattern. We use the algorithmic approach as the fundamental concept for a mesh management for d-dimensional PDEs and for a matrix-free PDE solver represented by a compact discrete 3 d-point operator. In the latter case, one can implement a Jacobi smoother, a Krylov solver, or a geometric multigrid scheme within the presented traversal scheme which inherits the low memory requirements and the good memory access characteristics directly. © 2011 Society for Industrial and Applied Mathematics.

  16. Large Eddy Simulation of Wall-Bounded Turbulent Flows with the Lattice Boltzmann Method: Effect of Collision Model, SGS Model and Grid Resolution

    Science.gov (United States)

    Pradhan, Aniruddhe; Akhavan, Rayhaneh

    2017-11-01

    Effect of collision model, subgrid-scale model and grid resolution in Large Eddy Simulation (LES) of wall-bounded turbulent flows with the Lattice Boltzmann Method (LBM) is investigated in turbulent channel flow. The Single Relaxation Time (SRT) collision model is found to be more accurate than Multi-Relaxation Time (MRT) collision model in well-resolved LES. Accurate LES requires grid resolutions of Δ+ LBM requires either grid-embedding in the near-wall region, with grid resolutions comparable to DNS, or a wall model. Results of LES with grid-embedding and wall models will be discussed.

  17. IRMHD: an implicit radiative and magnetohydrodynamical solver for self-gravitating systems

    Science.gov (United States)

    Hujeirat, A.

    1998-07-01

    The 2D implicit hydrodynamical solver developed by Hujeirat & Rannacher is now modified to include the effects of radiation, magnetic fields and self-gravity in different geometries. The underlying numerical concept is based on the operator splitting approach, and the resulting 2D matrices are inverted using different efficient preconditionings such as ADI (alternating direction implicit), the approximate factorization method and Line-Gauss-Seidel or similar iteration procedures. Second-order finite volume with third-order upwinding and second-order time discretization is used. To speed up convergence and enhance efficiency we have incorporated an adaptive time-step control and monotonic multilevel grid distributions as well as vectorizing the code. Test calculations had shown that it requires only 38 per cent more computational effort than its explicit counterpart, whereas its range of application to astrophysical problems is much larger. For example, strongly time-dependent, quasi-stationary and steady-state solutions for the set of Euler and Navier-Stokes equations can now be sought on a non-linearly distributed and strongly stretched mesh. As most of the numerical techniques used to build up this algorithm have been described by Hujeirat & Rannacher in an earlier paper, we focus in this paper on the inclusion of self-gravity, radiation and magnetic fields. Strategies for satisfying the condition ∇.B=0 in the implicit evolution of MHD flows are given. A new discretization strategy for the vector potential which allows alternating use of the direct method is prescribed. We investigate the efficiencies of several 2D solvers for a Poisson-like equation and compare their convergence rates. We provide a splitting approach for the radiative flux within the FLD (flux-limited diffusion) approximation to enhance consistency and accuracy between regions of different optical depths. The results of some test problems are presented to demonstrate the accuracy and

  18. An assessment of unstructured grid finite volume schemes for cold gas hypersonic flow calculations

    Directory of Open Access Journals (Sweden)

    João Luiz F. Azevedo

    2009-06-01

    Full Text Available A comparison of five different spatial discretization schemes is performed considering a typical high speed flow application. Flowfields are simulated using the 2-D Euler equations, discretized in a cell-centered finite volume procedure on unstructured triangular meshes. The algorithms studied include a central difference-type scheme, and 1st- and 2nd-order van Leer and Liou flux-vector splitting schemes. These methods are implemented in an efficient, edge-based, unstructured grid procedure which allows for adaptive mesh refinement based on flow property gradients. Details of the unstructured grid implementation of the methods are presented together with a discussion of the data structure and of the adaptive refinement strategy. The application of interest is the cold gas flow through a typical hypersonic inlet. Results for different entrance Mach numbers and mesh topologies are discussed in order to assess the comparative performance of the various spatial discretization schemes.

  19. Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.C.; Mani, V.; Mohanty, K.K. [Univ. of Houston, TX (United States)

    1997-08-01

    Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.

  20. Simulation of Particulate Flows on Multi-Processor Machines with Distributed Memory

    International Nuclear Information System (INIS)

    Uhlmann, M.

    2004-01-01

    We present a method for the parallelization of an immersed boundary algorithm for particulate flows using the MPI standard of communication. The treatment of the fluid phase uses the domain decomposition technique over a Cartesian processor grid. The solution of the Hehnholtz problem is approximately factorized an relies upon apparel tri-diagonal solver; the Poisson problem is solved by means of a parallel multi-grid technique simulator MUDPACK. For the solid phase we employ a master-slaves technique where one process or handles all the particles contained in its Eulerian fluid sub-domain and zero or more neighbor processors collaborate in the computation of particle-related quantities whenever a particle position overlaps the boundary of a sub- do mam.The parallel efficiency for some preliminary computations is presented. (Author) 9 refs

  1. Grid generation for the solution of partial differential equations

    Science.gov (United States)

    Eiseman, Peter R.; Erlebacher, Gordon

    1989-01-01

    A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given.

  2. Discrete Adjoint-Based Design for Unsteady Turbulent Flows On Dynamic Overset Unstructured Grids

    Science.gov (United States)

    Nielsen, Eric J.; Diskin, Boris

    2012-01-01

    A discrete adjoint-based design methodology for unsteady turbulent flows on three-dimensional dynamic overset unstructured grids is formulated, implemented, and verified. The methodology supports both compressible and incompressible flows and is amenable to massively parallel computing environments. The approach provides a general framework for performing highly efficient and discretely consistent sensitivity analysis for problems involving arbitrary combinations of overset unstructured grids which may be static, undergoing rigid or deforming motions, or any combination thereof. General parent-child motions are also accommodated, and the accuracy of the implementation is established using an independent verification based on a complex-variable approach. The methodology is used to demonstrate aerodynamic optimizations of a wind turbine geometry, a biologically-inspired flapping wing, and a complex helicopter configuration subject to trimming constraints. The objective function for each problem is successfully reduced and all specified constraints are satisfied.

  3. Cluster Optimization and Parallelization of Simulations with Dynamically Adaptive Grids

    KAUST Repository

    Schreiber, Martin; Weinzierl, Tobias; Bungartz, Hans-Joachim

    2013-01-01

    The present paper studies solvers for partial differential equations that work on dynamically adaptive grids stemming from spacetrees. Due to the underlying tree formalism, such grids efficiently can be decomposed into connected grid regions (clusters) on-the-fly. A graph on those clusters classified according to their grid invariancy, workload, multi-core affinity, and further meta data represents the inter-cluster communication. While stationary clusters already can be handled more efficiently than their dynamic counterparts, we propose to treat them as atomic grid entities and introduce a skip mechanism that allows the grid traversal to omit those regions completely. The communication graph ensures that the cluster data nevertheless are kept consistent, and several shared memory parallelization strategies are feasible. A hyperbolic benchmark that has to remesh selected mesh regions iteratively to preserve conforming tessellations acts as benchmark for the present work. We discuss runtime improvements resulting from the skip mechanism and the implications on shared memory performance and load balancing. © 2013 Springer-Verlag.

  4. Applications of an implicit HLLC-based Godunov solver for steady state hypersonic problems

    International Nuclear Information System (INIS)

    Link, R.A.; Sharman, B.

    2005-01-01

    Over the past few years, there has been considerable activity developing research vehicles for studying hypersonic propulsion. Successful launches of the Australian Hyshot and the US Hyper-X vehicles have added a significant amount of flight test data to a field that had previously been limited to numerical simulation. A number of approaches have been proposed for hypersonics propulsion, including attached detonation wave, supersonics combustion, and shock induced combustion. Due to the high cost of developing flight hardware, CFD simulations will continue to be a key tool for investigating the feasibility of these concepts. Capturing the interactions of the vehicle body with the boundary layer and chemical reactions pushes the limits of available modelling tools and computer hardware. Explicit formulations are extremely slow in converging to a steady state; therefore, the use of implicit methods are warranted. An implicit LLC-based Godunov solver has been developed at Martec in collaboration with DRDC Valcartier to solve hypersonic problems with a minimum of CPU time and RAM storage. The solver, Chinook Implicit, is based upon the implicit formulation adopted by Batten et. al. The solver is based on a point implicit Gauss-Seidel method for unstructured grids, and includes fully implicit boundary conditions. Preliminary results for small and large scale inviscid hypersonics problems will be presented. (author)

  5. Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yu-Hang, E-mail: yuhang_tang@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI (United States); Kudo, Shuhei, E-mail: shuhei-kudo@outlook.jp [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501 (Japan); Bian, Xin, E-mail: xin_bian@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI (United States); Li, Zhen, E-mail: zhen_li@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI (United States); Karniadakis, George Em, E-mail: george_karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI (United States); Collaboratory on Mathematics for Mesoscopic Modeling of Materials, Pacific Northwest National Laboratory, Richland, WA 99354 (United States)

    2015-09-15

    Graphical abstract: - Abstract: Concurrently coupled numerical simulations using heterogeneous solvers are powerful tools for modeling multiscale phenomena. However, major modifications to existing codes are often required to enable such simulations, posing significant difficulties in practice. In this paper we present a C++ library, i.e. the Multiscale Universal Interface (MUI), which is capable of facilitating the coupling effort for a wide range of multiscale simulations. The library adopts a header-only form with minimal external dependency and hence can be easily dropped into existing codes. A data sampler concept is introduced, combined with a hybrid dynamic/static typing mechanism, to create an easily customizable framework for solver-independent data interpretation. The library integrates MPI MPMD support and an asynchronous communication protocol to handle inter-solver information exchange irrespective of the solvers' own MPI awareness. Template metaprogramming is heavily employed to simultaneously improve runtime performance and code flexibility. We validated the library by solving three different multiscale problems, which also serve to demonstrate the flexibility of the framework in handling heterogeneous models and solvers. In the first example, a Couette flow was simulated using two concurrently coupled Smoothed Particle Hydrodynamics (SPH) simulations of different spatial resolutions. In the second example, we coupled the deterministic SPH method with the stochastic Dissipative Particle Dynamics (DPD) method to study the effect of surface grafting on the hydrodynamics properties on the surface. In the third example, we consider conjugate heat transfer between a solid domain and a fluid domain by coupling the particle-based energy-conserving DPD (eDPD) method with the Finite Element Method (FEM)

  6. Multi-grid Particle-in-cell Simulations of Plasma Microturbulence

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2003-01-01

    A new scheme to accurately retain kinetic electron effects in particle-in-cell (PIC) simulations for the case of electrostatic drift waves is presented. The splitting scheme, which is based on exact separation between adiabatic and on adiabatic electron responses, is shown to yield more accurate linear growth rates than the standard df scheme. The linear and nonlinear elliptic problems that arise in the splitting scheme are solved using a multi-grid solver. The multi-grid particle-in-cell approach offers an attractive path, both from the physics and numerical points of view, to simulate kinetic electron dynamics in global toroidal plasmas

  7. interThermalPhaseChangeFoam—A framework for two-phase flow simulations with thermally driven phase change

    Directory of Open Access Journals (Sweden)

    Mahdi Nabil

    2016-01-01

    Full Text Available The volume-of-fluid (VOF approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam, which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A. By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.

  8. interThermalPhaseChangeFoam-A framework for two-phase flow simulations with thermally driven phase change

    Science.gov (United States)

    Nabil, Mahdi; Rattner, Alexander S.

    The volume-of-fluid (VOF) approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam), which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A). By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.

  9. A comparison of SuperLU solvers on the intel MIC architecture

    Science.gov (United States)

    Tuncel, Mehmet; Duran, Ahmet; Celebi, M. Serdar; Akaydin, Bora; Topkaya, Figen O.

    2016-10-01

    In many science and engineering applications, problems may result in solving a sparse linear system AX=B. For example, SuperLU_MCDT, a linear solver, was used for the large penta-diagonal matrices for 2D problems and hepta-diagonal matrices for 3D problems, coming from the incompressible blood flow simulation (see [1]). It is important to test the status and potential improvements of state-of-the-art solvers on new technologies. In this work, sequential, multithreaded and distributed versions of SuperLU solvers (see [2]) are examined on the Intel Xeon Phi coprocessors using offload programming model at the EURORA cluster of CINECA in Italy. We consider a portfolio of test matrices containing patterned matrices from UFMM ([3]) and randomly located matrices. This architecture can benefit from high parallelism and large vectors. We find that the sequential SuperLU benefited up to 45 % performance improvement from the offload programming depending on the sparse matrix type and the size of transferred and processed data.

  10. Numerical method for two-phase flow discontinuity propagation calculation

    International Nuclear Information System (INIS)

    Toumi, I.; Raymond, P.

    1989-01-01

    In this paper, we present a class of numerical shock-capturing schemes for hyperbolic systems of conservation laws modelling two-phase flow. First, we solve the Riemann problem for a two-phase flow with unequal velocities. Then, we construct two approximate Riemann solvers: an one intermediate-state Riemann solver and a generalized Roe's approximate Riemann solver. We give some numerical results for one-dimensional shock-tube problems and for a standard two-phase flow heat addition problem involving two-phase flow instabilities

  11. Development of a global toroidal gyrokinetic Vlasov code with new real space field solver

    International Nuclear Information System (INIS)

    Obrejan, Kevin; Imadera, Kenji; Li, Ji-Quan; Kishimoto, Yasuaki

    2015-01-01

    This work introduces a new full-f toroidal gyrokinetic (GK) Vlasov simulation code that uses a real space field solver. This solver enables us to compute the gyro-averaging operators in real space to allow proper treatment of finite Larmor radius (FLR) effects without requiring any particular hypothesis and in any magnetic field configuration (X-point, D-shaped etc). The code was well verified through benchmark tests such as toroidal Ion Temperature Gradient (ITG) instability and collisionless damping of zonal flow. (author)

  12. Iterative solvers in forming process simulations

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Rietman, Bert; Huetink, Han

    1998-01-01

    The use of iterative solvers in implicit forming process simulations is studied. The time and memory requirements are compared with direct solvers and assessed in relation with the rest of the Newton-Raphson iteration process. It is shown that conjugate gradient{like solvers with a proper

  13. Grid-converged solution and analysis of the unsteady viscous flow in a two-dimensional shock tube

    Science.gov (United States)

    Zhou, Guangzhao; Xu, Kun; Liu, Feng

    2018-01-01

    The flow in a shock tube is extremely complex with dynamic multi-scale structures of sharp fronts, flow separation, and vortices due to the interaction of the shock wave, the contact surface, and the boundary layer over the side wall of the tube. Prediction and understanding of the complex fluid dynamics are of theoretical and practical importance. It is also an extremely challenging problem for numerical simulation, especially at relatively high Reynolds numbers. Daru and Tenaud ["Evaluation of TVD high resolution schemes for unsteady viscous shocked flows," Comput. Fluids 30, 89-113 (2001)] proposed a two-dimensional model problem as a numerical test case for high-resolution schemes to simulate the flow field in a square closed shock tube. Though many researchers attempted this problem using a variety of computational methods, there is not yet an agreed-upon grid-converged solution of the problem at the Reynolds number of 1000. This paper presents a rigorous grid-convergence study and the resulting grid-converged solutions for this problem by using a newly developed, efficient, and high-order gas-kinetic scheme. Critical data extracted from the converged solutions are documented as benchmark data. The complex fluid dynamics of the flow at Re = 1000 are discussed and analyzed in detail. Major phenomena revealed by the numerical computations include the downward concentration of the fluid through the curved shock, the formation of the vortices, the mechanism of the shock wave bifurcation, the structure of the jet along the bottom wall, and the Kelvin-Helmholtz instability near the contact surface. Presentation and analysis of those flow processes provide important physical insight into the complex flow physics occurring in a shock tube.

  14. Analysis and Experimental Verification of New Power Flow Control for Grid-Connected Inverter with LCL Filter in Microgrid

    Science.gov (United States)

    Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang

    2014-01-01

    Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method. PMID:24672304

  15. Analysis and experimental verification of new power flow control for grid-connected inverter with LCL filter in microgrid.

    Science.gov (United States)

    Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang

    2014-01-01

    Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method.

  16. Experimental investigations of turbulent flows in rod bundles with and without spacer grids

    International Nuclear Information System (INIS)

    Trippe, G.

    1979-07-01

    In the thermofluiddynamic design of liquid metal cooled reactor fuel elements the lack of experimentally confirmed knowledge of the three-dimensional flow events in rod bundles provided with spacer grids has appeared as a significant problem. To close this gap of knowledge, detailed measurements of the local velocities were made on a 19-rod bundle model. The Pitot method of differential pressure measurements was used as the measuring system. In the first part of the work the fully developed flow regime not influenced by spacers was investigated. A simple relation was derived for distributing the mass flow among the subchannels of a rod bundle; it is but slightly dependent on the Reynolds number. This relation allows a quick, coarse calculation of the distribution of the undisturbed, fully developed mass flow in bundles with similar geometries. By evaluation of further experiments known from the literature, empirical relationships were found for the local velocity distribution within the subchannels of such bundles. In the second part the effect of grid shaped spacers was investigated. The three-dimensional flow events caused by the spacers were completely recorded and interpreted physically. The deeper understanding of these flow processes can now serve to improve the model concept used in the present design computer programs. Single results of the investigations which take primary importance are the quantitative relations existing between the changes of mass flow in the bundle boundary zone, caused by a spacer, and the geometry of this spacer. The transferability to other bundle geometries was discussed and delimited. Moreover, it was shown that the mass flow in the bundle boundary zone can be successively reduced by spacers placed one behind the other in the bundle. A noticeable dependence of flow events on the Reynolds number was not found for the range relevant in practical application (30.000 [de

  17. Multilayer shallow shelf approximation: Minimisation formulation, finite element solvers and applications

    Energy Technology Data Exchange (ETDEWEB)

    Jouvet, Guillaume, E-mail: jouvet@vaw.baug.ethz.ch [Institut für Mathematik, Freie Universität Berlin (Germany); Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich (Switzerland)

    2015-04-15

    In this paper, a multilayer generalisation of the Shallow Shelf Approximation (SSA) is considered. In this recent hybrid ice flow model, the ice thickness is divided into thin layers, which can spread out, contract and slide over each other in such a way that the velocity profile is layer-wise constant. Like the SSA (1-layer model), the multilayer model can be reformulated as a minimisation problem. However, unlike the SSA, the functional to be minimised involves a new penalisation term for the interlayer jumps of the velocity, which represents the vertical shear stresses induced by interlayer sliding. Taking advantage of this reformulation, numerical solvers developed for the SSA can be naturally extended layer-wise or column-wise. Numerical results show that the column-wise extension of a Newton multigrid solver proves to be robust in the sense that its convergence is barely influenced by the number of layers and the type of ice flow. In addition, the multilayer formulation appears to be naturally better conditioned than the one of the first-order approximation to face the anisotropic conditions of the sliding-dominant ice flow of ISMIP-HOM experiments.

  18. Multi-GPU-based acceleration of the explicit time domain volume integral equation solver using MPI-OpenACC

    KAUST Repository

    Feki, Saber

    2013-07-01

    An explicit marching-on-in-time (MOT)-based time-domain volume integral equation (TDVIE) solver has recently been developed for characterizing transient electromagnetic wave interactions on arbitrarily shaped dielectric bodies (A. Al-Jarro et al., IEEE Trans. Antennas Propag., vol. 60, no. 11, 2012). The solver discretizes the spatio-temporal convolutions of the source fields with the background medium\\'s Green function using nodal discretization in space and linear interpolation in time. The Green tensor, which involves second order spatial and temporal derivatives, is computed using finite differences on the temporal and spatial grid. A predictor-corrector algorithm is used to maintain the stability of the MOT scheme. The simplicity of the discretization scheme permits the computation of the discretized spatio-temporal convolutions on the fly during time marching; no \\'interaction\\' matrices are pre-computed or stored resulting in a memory efficient scheme. As a result, most often the applicability of this solver to the characterization of wave interactions on electrically large structures is limited by the computation time but not the memory. © 2013 IEEE.

  19. Grid Generation Techniques Utilizing the Volume Grid Manipulator

    Science.gov (United States)

    Alter, Stephen J.

    1998-01-01

    This paper presents grid generation techniques available in the Volume Grid Manipulation (VGM) code. The VGM code is designed to manipulate existing line, surface and volume grids to improve the quality of the data. It embodies an easy to read rich language of commands that enables such alterations as topology changes, grid adaption and smoothing. Additionally, the VGM code can be used to construct simplified straight lines, splines, and conic sections which are common curves used in the generation and manipulation of points, lines, surfaces and volumes (i.e., grid data). These simple geometric curves are essential in the construction of domain discretizations for computational fluid dynamic simulations. By comparison to previously established methods of generating these curves interactively, the VGM code provides control of slope continuity and grid point-to-point stretchings as well as quick changes in the controlling parameters. The VGM code offers the capability to couple the generation of these geometries with an extensive manipulation methodology in a scripting language. The scripting language allows parametric studies of a vehicle geometry to be efficiently performed to evaluate favorable trends in the design process. As examples of the powerful capabilities of the VGM code, a wake flow field domain will be appended to an existing X33 Venturestar volume grid; negative volumes resulting from grid expansions to enable flow field capture on a simple geometry, will be corrected; and geometrical changes to a vehicle component of the X33 Venturestar will be shown.

  20. Preliminary results for validation of Computational Fluid Dynamics for prediction of flow through a split vane spacer grid

    International Nuclear Information System (INIS)

    Rashkovan, A.; Novog, D.R.

    2012-01-01

    This paper presents the results of the CFD simulations of turbulent flow past spacer grid with mixing vanes. This study summarizes the first stage of the ongoing numerical blind exercise organized by OECD-NEA. McMaster University along with other participants plan to submit a numerical prediction of the detailed flow field and turbulence characteristics of the flow past 5x5 rod bundle with a spacer grid equipped with two types of mixing vanes. The results will be compared with blind experimental measurements performed in Korea. Due to the fact that a number of the modeling strategies are suggested in literature for such types of flows, we have performed a series of tests to assess the mesh requirements, flow steadiness, turbulence modeling and wall treatment effects. Results of these studies are reported in the present paper. (author)

  1. LSPRAY-IV: A Lagrangian Spray Module

    Science.gov (United States)

    Raju, M. S.

    2012-01-01

    LSPRAY-IV is a Lagrangian spray solver developed for application with parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type for the gas flow grid representation. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray. Some important research areas covered as a part of the code development are: (1) the extension of combined CFD/scalar-Monte- Carlo-PDF method to spray modeling, (2) the multi-component liquid spray modeling, and (3) the assessment of various atomization models used in spray calculations. The current version contains the extension to the modeling of superheated sprays. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers.

  2. Implementation of a Forth-Order Aeroelastic Coupling into a Viscous-Inviscid Flow Solver with Experimental Validation (for One Degree of Freedom)

    Science.gov (United States)

    Bartholomay, Sirko; Ramos-García, Néstor; Mikkelsen, Robert Flemming; Technical University of Denmark (DTU)-WInd Energy Team

    2014-11-01

    The viscous-inviscid flow solver Q3UIC for 2D aerodynamics has recently been developed at the Technical University of Denmark. The Q3UIC solver takes viscous and unsteady effects into account by coupling an unsteady inviscid panel method with the integral boundary layer equations by means of a strong coupling between the viscous and inviscid parts, and in this respect differs from other classic panel codes e.g. Xfoil. In the current work a Runge-Kutta-Nyström scheme was employed to couple inertial, elastic and aerodynamical forces and moments calculated by Q3UIC for a two-dimensional blade section in the time-domain. Numerical simulations are validated by a three step experimental verification process carried out in the low-turbulence wind tunnel at DTU. First, a comparison against steady experiments for a NACA 64418 profile and a flexible trailing edge flap is presented for different fixed flap angles, and second, the measured aerodynamic characteristics considering prescribed motion of the airfoil with a moving flap are compared to the Q3UIC predictions. Finally, an aeroelastic experiment for one degree of freedom-airfoil pitching- is used to evaluate the accuracy of aeroelastic coupling.

  3. Micro grids toward the smart grid

    International Nuclear Information System (INIS)

    Guerrero, J.

    2011-01-01

    Worldwide electrical grids are expecting to become smarter in the near future, with interest in Microgrids likely to grow. A microgrid can be defined as a part of the grid with elements of prime energy movers, power electronics converters, distributed energy storage systems and local loads, that can operate autonomously but also interacting with main grid. Thus, the ability of intelligent Microgrids to operate in island mode or connected to the grid will be a keypoint to cope with new functionalities and the integration of renewable energy resources. The functionalities expected for these small grids are: black start operation, frequency and voltage stability, active and reactive power flow control, active power filter capabilities, and storage energy management. In this presentation, a review of the main concepts related to flexible Microgrids will be introduced, with examples of real Microgrids. AC and DC Microgrids to integrate renewable and distributed energy resources will also be presented, as well as distributed energy storage systems, and standardization issues of these Microgrids. Finally, Microgrid hierarchical control will be analyzed looking at three different levels: i) a primary control based on the droop method, including an output impedance virtual loop; ii) a secondary control, which enables restoring any deviations produced by the primary control; and iii) a tertiary control to manage the power flow between the microgrid and the external electrical distribution system.

  4. Numerical Analysis of the Cavity Flow subjected to Passive Controls Techniques

    Science.gov (United States)

    Melih Guleren, Kursad; Turk, Seyfettin; Mirza Demircan, Osman; Demir, Oguzhan

    2018-03-01

    Open-source flow solvers are getting more and more popular for the analysis of challenging flow problems in aeronautical and mechanical engineering applications. They are offered under the GNU General Public License and can be run, examined, shared and modified according to user’s requirements. SU2 and OpenFOAM are the two most popular open-source solvers in Computational Fluid Dynamics (CFD) community. In the present study, some passive control methods on the high-speed cavity flows are numerically simulated using these open-source flow solvers along with one commercial flow solver called ANSYS/Fluent. The results are compared with the available experimental data. The solver SU2 are seen to predict satisfactory the mean streamline velocity but not turbulent kinetic energy and overall averaged sound pressure level (OASPL). Whereas OpenFOAM predicts all these parameters nearly as the same levels of ANSYS/Fluent.

  5. Quantifiably secure power grid operation, management, and evolution :

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Genetha Anne.; Watson, Jean-Paul; Silva Monroy, Cesar Augusto; Gramacy, Robert B.

    2013-09-01

    This report summarizes findings and results of the Quantifiably Secure Power Grid Operation, Management, and Evolution LDRD. The focus of the LDRD was to develop decisionsupport technologies to enable rational and quantifiable risk management for two key grid operational timescales: scheduling (day-ahead) and planning (month-to-year-ahead). Risk or resiliency metrics are foundational in this effort. The 2003 Northeast Blackout investigative report stressed the criticality of enforceable metrics for system resiliency the grids ability to satisfy demands subject to perturbation. However, we neither have well-defined risk metrics for addressing the pervasive uncertainties in a renewable energy era, nor decision-support tools for their enforcement, which severely impacts efforts to rationally improve grid security. For day-ahead unit commitment, decision-support tools must account for topological security constraints, loss-of-load (economic) costs, and supply and demand variability especially given high renewables penetration. For long-term planning, transmission and generation expansion must ensure realized demand is satisfied for various projected technological, climate, and growth scenarios. The decision-support tools investigated in this project paid particular attention to tailoriented risk metrics for explicitly addressing high-consequence events. Historically, decisionsupport tools for the grid consider expected cost minimization, largely ignoring risk and instead penalizing loss-of-load through artificial parameters. The technical focus of this work was the development of scalable solvers for enforcing risk metrics. Advanced stochastic programming solvers were developed to address generation and transmission expansion and unit commitment, minimizing cost subject to pre-specified risk thresholds. Particular attention was paid to renewables where security critically depends on production and demand prediction accuracy. To address this

  6. Computational comparison of the effect of mixing grids of 'swirler' and 'run-through' types on flow parameters and the behavior of steam phase in WWER fuel assemblies

    International Nuclear Information System (INIS)

    Shcherbakov, S.; Sergeev, V.

    2011-01-01

    The results obtained using the TURBOFLOW computer code are presented for the numerical calculations of space distributions of coolant flow, heating and boiling characteristics in WWER fuel assemblies with regard to the effect of mixing grids of 'Swirler' and 'Run-through' types installed in FA on the above processes. The nature of the effect of these grids on coolant flow was demonstrated to be different. Thus, the relaxation length of cross flows after passing a 'Run-through' grid is five times as compared to a 'Swirler'-type grid, which correlates well with the experimental data. At the same time, accelerations occurring in the flow downstream of a 'Swirler'-type grid are by an order of magnitude greater than those after a 'Run-through' grid. As a result, the efficiency of one-phase coolant mixing is much higher for the grids of 'Run-through' type, while the efficiency of steam removal from fuel surface is much higher for 'Swirler'-type grids. To achieve optimal removal of steam from fuel surface it has been proposed to install into fuel assemblies two 'Swirler'-type grids in tandem at a distance of about 10 cm from each other with flow swirling in opposite directions. 'Run-through' grids would be appropriate for use for mixing in fuel assemblies with a high non-uniformity of fuel-by-fuel power generation. (authors)

  7. Investigation of a wire wrapped fuel assembly with the anisotropic Coarse-Grid-CFD (AP-CGCFD)

    Energy Technology Data Exchange (ETDEWEB)

    Viellieber, Mathias; Dietrich, Philipp; Class, Andreas [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). AREVA Nuclear Professional School (ANPS)

    2013-07-01

    Within this work we demonstrated the ability of the AP-CGCFD method to deal with complex geometries like wire wrapped spacer grid fuel assemblies. Both qualitative and quantitative values like the pressure profile and velocity structures could be reproduced from the detailed RANS CFD simulation. Furthermore we introduced a novel mathematical formulation of the method. Compared to state-of-the-art subchannel analyses, neither parameter tuning is needed, nor empirical or experimental input, to adjust the solvers for a specific geometry. Certainly, this method requires the user making educated decisions on the representative geometry segments and a suitable parameter space for the initial fine CFD simulations needed to extract the volumetric source terms. Since similar flow conditions repeat many times, the costs of the representative CFD simulations needed to extract the volumetric forces are much lower than a full simulation. Thus AP-CGCFD simulations are suitable for simulations of geometries where flow situations are repeating many times. (orig.)

  8. Comparative Performance Analysis of Coarse Solvers for Algebraic Multigrid on Multicore and Manycore Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Druinsky, A; Ghysels, P; Li, XS; Marques, O; Williams, S; Barker, A; Kalchev, D; Vassilevski, P

    2016-04-02

    In this paper, we study the performance of a two-level algebraic-multigrid algorithm, with a focus on the impact of the coarse-grid solver on performance. We consider two algorithms for solving the coarse-space systems: the preconditioned conjugate gradient method and a new robust HSS-embedded low-rank sparse-factorization algorithm. Our test data comes from the SPE Comparative Solution Project for oil-reservoir simulations. We contrast the performance of our code on one 12-core socket of a Cray XC30 machine with performance on a 60-core Intel Xeon Phi coprocessor. To obtain top performance, we optimized the code to take full advantage of fine-grained parallelism and made it thread-friendly for high thread count. We also developed a bounds-and-bottlenecks performance model of the solver which we used to guide us through the optimization effort, and also carried out performance tuning in the solver’s large parameter space. Finally, as a result, significant speedups were obtained on both machines.

  9. Towards grid-converged wall-modeled LES of atmospheric boundary layer flows

    Science.gov (United States)

    Yellapantula, Shashank; Vijayakumar, Ganesh; Henry de Frahan, Marc; Churchfield, Matthew; Sprague, Michael

    2017-11-01

    Accurate characterization of incoming atmospheric boundary layer (ABL) turbulence is a critical factor in improving accuracy and predictive nature of simulation of wind farm flows. Modern commercial wind turbines operate in the log layer of the ABL that are typically simulated using wall-modeled large-eddy simulation (WMLES). One of the long-standing issues associated with wall modeling for LES and hybrid RANS-LES for atmospheric boundary layers is the over-prediction of the mean-velocity gradient, commonly referred to as log-layer mismatch. Kawai and Larsson in 2012, identified under-resolution of the near-wall region and the incorrect information received by the wall model as potential causes for the log-layer mismatch in WMLES of smooth-wall boundary-layer flows. To solve the log layer mismatch issue, they proposed linking the wall model to the LES solution at a physical of height of ym, instead of the first grid point. In this study, we extend their wall modeling approach to LES of the rough-wall ABL to investigate issues of log-layer mismatch and grid convergence. This work was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind Energy Technologies Office, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

  10. Hybrid mesh finite volume CFD code for studying heat transfer in a forward-facing step

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, J S; Kumar, Inder [Bhabha Atomic Research Center, Mumbai (India); Eswaran, V, E-mail: jsjayan@gmail.com, E-mail: inderk@barc.gov.in, E-mail: eswar@iitk.ac.in [Indian Institute of Technology, Kanpur (India)

    2010-12-15

    Computational fluid dynamics (CFD) methods employ two types of grid: structured and unstructured. Developing the solver and data structures for a finite-volume solver is easier than for unstructured grids. But real-life problems are too complicated to be fitted flexibly by structured grids. Therefore, unstructured grids are widely used for solving real-life problems. However, using only one type of unstructured element consumes a lot of computational time because the number of elements cannot be controlled. Hence, a hybrid grid that contains mixed elements, such as the use of hexahedral elements along with tetrahedral and pyramidal elements, gives the user control over the number of elements in the domain, and thus only the domain that requires a finer grid is meshed finer and not the entire domain. This work aims to develop such a finite-volume hybrid grid solver capable of handling turbulence flows and conjugate heat transfer. It has been extended to solving flow involving separation and subsequent reattachment occurring due to sudden expansion or contraction. A significant effect of mixing high- and low-enthalpy fluid occurs in the reattached regions of these devices. This makes the study of the backward-facing and forward-facing step with heat transfer an important field of research. The problem of the forward-facing step with conjugate heat transfer was taken up and solved for turbulence flow using a two-equation model of k-{omega}. The variation in the flow profile and heat transfer behavior has been studied with the variation in Re and solid to fluid thermal conductivity ratios. The results for the variation in local Nusselt number, interface temperature and skin friction factor are presented.

  11. Hybrid mesh finite volume CFD code for studying heat transfer in a forward-facing step

    Science.gov (United States)

    Jayakumar, J. S.; Kumar, Inder; Eswaran, V.

    2010-12-01

    Computational fluid dynamics (CFD) methods employ two types of grid: structured and unstructured. Developing the solver and data structures for a finite-volume solver is easier than for unstructured grids. But real-life problems are too complicated to be fitted flexibly by structured grids. Therefore, unstructured grids are widely used for solving real-life problems. However, using only one type of unstructured element consumes a lot of computational time because the number of elements cannot be controlled. Hence, a hybrid grid that contains mixed elements, such as the use of hexahedral elements along with tetrahedral and pyramidal elements, gives the user control over the number of elements in the domain, and thus only the domain that requires a finer grid is meshed finer and not the entire domain. This work aims to develop such a finite-volume hybrid grid solver capable of handling turbulence flows and conjugate heat transfer. It has been extended to solving flow involving separation and subsequent reattachment occurring due to sudden expansion or contraction. A significant effect of mixing high- and low-enthalpy fluid occurs in the reattached regions of these devices. This makes the study of the backward-facing and forward-facing step with heat transfer an important field of research. The problem of the forward-facing step with conjugate heat transfer was taken up and solved for turbulence flow using a two-equation model of k-ω. The variation in the flow profile and heat transfer behavior has been studied with the variation in Re and solid to fluid thermal conductivity ratios. The results for the variation in local Nusselt number, interface temperature and skin friction factor are presented.

  12. Hybrid mesh finite volume CFD code for studying heat transfer in a forward-facing step

    International Nuclear Information System (INIS)

    Jayakumar, J S; Kumar, Inder; Eswaran, V

    2010-01-01

    Computational fluid dynamics (CFD) methods employ two types of grid: structured and unstructured. Developing the solver and data structures for a finite-volume solver is easier than for unstructured grids. But real-life problems are too complicated to be fitted flexibly by structured grids. Therefore, unstructured grids are widely used for solving real-life problems. However, using only one type of unstructured element consumes a lot of computational time because the number of elements cannot be controlled. Hence, a hybrid grid that contains mixed elements, such as the use of hexahedral elements along with tetrahedral and pyramidal elements, gives the user control over the number of elements in the domain, and thus only the domain that requires a finer grid is meshed finer and not the entire domain. This work aims to develop such a finite-volume hybrid grid solver capable of handling turbulence flows and conjugate heat transfer. It has been extended to solving flow involving separation and subsequent reattachment occurring due to sudden expansion or contraction. A significant effect of mixing high- and low-enthalpy fluid occurs in the reattached regions of these devices. This makes the study of the backward-facing and forward-facing step with heat transfer an important field of research. The problem of the forward-facing step with conjugate heat transfer was taken up and solved for turbulence flow using a two-equation model of k-ω. The variation in the flow profile and heat transfer behavior has been studied with the variation in Re and solid to fluid thermal conductivity ratios. The results for the variation in local Nusselt number, interface temperature and skin friction factor are presented.

  13. Comparison of open-source linear programming solvers.

    Energy Technology Data Exchange (ETDEWEB)

    Gearhart, Jared Lee; Adair, Kristin Lynn; Durfee, Justin David.; Jones, Katherine A.; Martin, Nathaniel; Detry, Richard Joseph

    2013-10-01

    When developing linear programming models, issues such as budget limitations, customer requirements, or licensing may preclude the use of commercial linear programming solvers. In such cases, one option is to use an open-source linear programming solver. A survey of linear programming tools was conducted to identify potential open-source solvers. From this survey, four open-source solvers were tested using a collection of linear programming test problems and the results were compared to IBM ILOG CPLEX Optimizer (CPLEX) [1], an industry standard. The solvers considered were: COIN-OR Linear Programming (CLP) [2], [3], GNU Linear Programming Kit (GLPK) [4], lp_solve [5] and Modular In-core Nonlinear Optimization System (MINOS) [6]. As no open-source solver outperforms CPLEX, this study demonstrates the power of commercial linear programming software. CLP was found to be the top performing open-source solver considered in terms of capability and speed. GLPK also performed well but cannot match the speed of CLP or CPLEX. lp_solve and MINOS were considerably slower and encountered issues when solving several test problems.

  14. Parallelization of Unsteady Adaptive Mesh Refinement for Unstructured Navier-Stokes Solvers

    Science.gov (United States)

    Schwing, Alan M.; Nompelis, Ioannis; Candler, Graham V.

    2014-01-01

    This paper explores the implementation of the MPI parallelization in a Navier-Stokes solver using adaptive mesh re nement. Viscous and inviscid test problems are considered for the purpose of benchmarking, as are implicit and explicit time advancement methods. The main test problem for comparison includes e ects from boundary layers and other viscous features and requires a large number of grid points for accurate computation. Ex- perimental validation against double cone experiments in hypersonic ow are shown. The adaptive mesh re nement shows promise for a staple test problem in the hypersonic com- munity. Extension to more advanced techniques for more complicated ows is described.

  15. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes.

    Science.gov (United States)

    Botti, Lorenzo; Paliwal, Nikhil; Conti, Pierangelo; Antiga, Luca; Meng, Hui

    2018-06-01

    Image-based computational fluid dynamics (CFD) has shown potential to aid in the clinical management of intracranial aneurysms (IAs) but its adoption in the clinical practice has been missing, partially due to lack of accuracy assessment and sensitivity analysis. To numerically solve the flow-governing equations CFD solvers generally rely on two spatial discretization schemes: Finite Volume (FV) and Finite Element (FE). Since increasingly accurate numerical solutions are obtained by different means, accuracies and computational costs of FV and FE formulations cannot be compared directly. To this end, in this study we benchmark two representative CFD solvers in simulating flow in a patient-specific IA model: (1) ANSYS Fluent, a commercial FV-based solver and (2) VMTKLab multidGetto, a discontinuous Galerkin (dG) FE-based solver. The FV solver's accuracy is improved by increasing the spatial mesh resolution (134k, 1.1m, 8.6m and 68.5m tetrahedral element meshes). The dGFE solver accuracy is increased by increasing the degree of polynomials (first, second, third and fourth degree) on the base 134k tetrahedral element mesh. Solutions from best FV and dGFE approximations are used as baseline for error quantification. On average, velocity errors for second-best approximations are approximately 1cm/s for a [0,125]cm/s velocity magnitude field. Results show that high-order dGFE provide better accuracy per degree of freedom but worse accuracy per Jacobian non-zero entry as compared to FV. Cross-comparison of velocity errors demonstrates asymptotic convergence of both solvers to the same numerical solution. Nevertheless, the discrepancy between under-resolved velocity fields suggests that mesh independence is reached following different paths. This article is protected by copyright. All rights reserved.

  16. Progress in Grid Generation: From Chimera to DRAGON Grids

    Science.gov (United States)

    Liou, Meng-Sing; Kao, Kai-Hsiung

    1994-01-01

    Hybrid grids, composed of structured and unstructured grids, combines the best features of both. The chimera method is a major stepstone toward a hybrid grid from which the present approach is evolved. The chimera grid composes a set of overlapped structured grids which are independently generated and body-fitted, yielding a high quality grid readily accessible for efficient solution schemes. The chimera method has been shown to be efficient to generate a grid about complex geometries and has been demonstrated to deliver accurate aerodynamic prediction of complex flows. While its geometrical flexibility is attractive, interpolation of data in the overlapped regions - which in today's practice in 3D is done in a nonconservative fashion, is not. In the present paper we propose a hybrid grid scheme that maximizes the advantages of the chimera scheme and adapts the strengths of the unstructured grid while at the same time keeps its weaknesses minimal. Like the chimera method, we first divide up the physical domain by a set of structured body-fitted grids which are separately generated and overlaid throughout a complex configuration. To eliminate any pure data manipulation which does not necessarily follow governing equations, we use non-structured grids only to directly replace the region of the arbitrarily overlapped grids. This new adaptation to the chimera thinking is coined the DRAGON grid. The nonstructured grid region sandwiched between the structured grids is limited in size, resulting in only a small increase in memory and computational effort. The DRAGON method has three important advantages: (1) preserving strengths of the chimera grid; (2) eliminating difficulties sometimes encountered in the chimera scheme, such as the orphan points and bad quality of interpolation stencils; and (3) making grid communication in a fully conservative and consistent manner insofar as the governing equations are concerned. To demonstrate its use, the governing equations are

  17. A non-conformal finite element/finite volume scheme for the non-structured grid-based approximation of low Mach number flows

    International Nuclear Information System (INIS)

    Ansanay-Alex, G.

    2009-01-01

    The development of simulation codes aimed at a precise simulation of fires requires a precise approach of flame front phenomena by using very fine grids. The need to take different spatial scale into consideration leads to a local grid refinement and to a discretization with homogeneous grid for computing time and memory purposes. The author reports the approximation of the non-linear convection term, the scalar advection-diffusion in finite volumes, numerical simulations of a flow in a bent tube, of a three-dimensional laminar flame and of a low Mach number an-isotherm flow. Non conformal finite elements are also presented (Rannacher-Turek and Crouzeix-Raviart elements)

  18. Algebraic multigrid preconditioning within parallel finite-element solvers for 3-D electromagnetic modelling problems in geophysics

    Science.gov (United States)

    Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María

    2014-06-01

    We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the

  19. A Nonlinear Modal Aeroelastic Solver for FUN3D

    Science.gov (United States)

    Goldman, Benjamin D.; Bartels, Robert E.; Biedron, Robert T.; Scott, Robert C.

    2016-01-01

    A nonlinear structural solver has been implemented internally within the NASA FUN3D computational fluid dynamics code, allowing for some new aeroelastic capabilities. Using a modal representation of the structure, a set of differential or differential-algebraic equations are derived for general thin structures with geometric nonlinearities. ODEPACK and LAPACK routines are linked with FUN3D, and the nonlinear equations are solved at each CFD time step. The existing predictor-corrector method is retained, whereby the structural solution is updated after mesh deformation. The nonlinear solver is validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. Agreement with linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures, but structural nonlinearities limit deformation amplitudes at high dynamic pressures. No flutter was found at any of the tested trajectory points, though LCO may be possible in the transonic regime.

  20. Numerical methods for two-phase flow with contact lines

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Clauido

    2012-07-01

    This thesis focuses on numerical methods for two-phase flows, and especially flows with a moving contact line. Moving contact lines occur where the interface between two fluids is in contact with a solid wall. At the location where both fluids and the wall meet, the common continuum descriptions for fluids are not longer valid, since the dynamics around such a contact line are governed by interactions at the molecular level. Therefore the standard numerical continuum models have to be adjusted to handle moving contact lines. In the main part of the thesis a method to manipulate the position and the velocity of a contact line in a two-phase solver, is described. The Navier-Stokes equations are discretized using an explicit finite difference method on a staggered grid. The position of the interface is tracked with the level set method and the discontinuities at the interface are treated in a sharp manner with the ghost fluid method. The contact line is tracked explicitly and its dynamics can be described by an arbitrary function. The key part of the procedure is to enforce a coupling between the contact line and the Navier-Stokes equations as well as the level set method. Results for different contact line models are presented and it is demonstrated that they are in agreement with analytical solutions or results reported in the literature.The presented Navier-Stokes solver is applied as a part in a multiscale method to simulate capillary driven flows. A relation between the contact angle and the contact line velocity is computed by a phase field model resolving the micro scale dynamics in the region around the contact line. The relation of the microscale model is then used to prescribe the dynamics of the contact line in the macro scale solver. This approach allows to exploit the scale separation between the contact line dynamics and the bulk flow. Therefore coarser meshes can be applied for the macro scale flow solver compared to global phase field simulations

  1. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Garrick, Daniel P. [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States); Owkes, Mark [Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT (United States); Regele, Jonathan D., E-mail: jregele@iastate.edu [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States)

    2017-06-15

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge–Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten–Lax–van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas–liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.

  2. A software application for energy flow simulation of a grid connected photovoltaic system

    International Nuclear Information System (INIS)

    Hamad, Ayman A.; Alsaad, Mohammad A.

    2010-01-01

    A computer software application was developed to simulate hourly energy flow of a grid connected photovoltaic system. This software application enables conducting an operational evaluation of a studied photovoltaic system in terms of energy exchange with the electrical grid. The system model consists of a photovoltaic array, a converter and an optional generic energy storage component that supports scheduled charging/discharging. In addition to system design parameters, the software uses hourly solar data and hourly load data to determine the amount of energy exchanged with electrical grid for each hour of the simulated year. The resulting information is useful in assessing the impact of the system on demand for electrical energy of a building that uses it. The software also aggregates these hourly results in daily, monthly and full year sums. The software finds the financial benefit of the system as the difference in grid electrical energy cost between two simultaneously considered cases. One is with load supplied only by the electrical grid, while the other is with the photovoltaic system present and contributing energy. The software supports the energy pricing scheme used in Jordan for domestic consumers, which is based on slices of monthly consumption. By projecting the yearly financial results on the system lifetime, the application weighs the financial benefit resulting from using the system against its cost, thus facilitating an economical evaluation.

  3. Aerodynamic analysis of potential use of flow control devices on helicopter rotor blades

    International Nuclear Information System (INIS)

    Tejero, F; Doerffer, P; Szulc, O

    2014-01-01

    The interest in the application of flow control devices has been rising in the last years. Recently, several passive streamwise vortex generators have been analysed in a configuration of a curved wall nozzle within the framework of the UFAST project (Unsteady Effects of Shock Wave Induced Separation, 2005 – 2009). Experimental and numerical results proved that the technology is effective in delaying flow separation. The numerical investigation has been extended to helicopter rotor blades in hover and forward flight applying the FLOWer solver (RANS approach) implementing the chimera overlapping grids technique and high performance computing. CFD results for hover conditions confirm that the proposed passive control method reduces the flow separation increasing the thrust over power consumption. The paper presents the numerical validation for both states of flight and the possible implementation of RVGs on helicopter rotor blades.

  4. Numerical study of MHD supersonic flow control

    Science.gov (United States)

    Ryakhovskiy, A. I.; Schmidt, A. A.

    2017-11-01

    Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.

  5. Commissioning of a grid-based Boltzmann solver for cervical cancer brachytherapy treatment planning with shielded colpostats.

    Science.gov (United States)

    Mikell, Justin K; Klopp, Ann H; Price, Michael; Mourtada, Firas

    2013-01-01

    We sought to commission a gynecologic shielded colpostat analytic model provided from a treatment planning system (TPS) library. We have reported retrospectively the dosimetric impact of this applicator model in a cohort of patients. A commercial TPS with a grid-based Boltzmann solver (GBBS) was commissioned for (192)Ir high-dose-rate (HDR) brachytherapy for cervical cancer with stainless steel-shielded colpostats. Verification of the colpostat analytic model was verified using a radiograph and vendor schematics. MCNPX v2.6 Monte Carlo simulations were performed to compare dose distributions around the applicator in water with the TPS GBBS dose predictions. Retrospectively, the dosimetric impact was assessed over 24 cervical cancer patients' HDR plans. Applicator (TPS ID #AL13122005) shield dimensions were within 0.4 mm of the independent shield dimensions verification. GBBS profiles in planes bisecting the cap around the applicator agreed with Monte Carlo simulations within 2% at most locations; differing screw representations resulted in differences of up to 9%. For the retrospective study, the GBBS doses differed from TG-43 as follows (mean value ± standard deviation [min, max]): International Commission on Radiation units [ICRU]rectum (-8.4 ± 2.5% [-14.1, -4.1%]), ICRUbladder (-7.2 ± 3.6% [-15.7, -2.1%]), D2cc-rectum (-6.2 ± 2.6% [-11.9, -0.8%]), D2cc-sigmoid (-5.6 ± 2.6% [-9.3, -2.0%]), and D2cc-bladder (-3.4 ± 1.9% [-7.2, -1.1%]). As brachytherapy TPSs implement advanced model-based dose calculations, the analytic applicator models stored in TPSs should be independently validated before clinical use. For this cohort, clinically meaningful differences (>5%) from TG-43 were observed. Accurate dosimetric modeling of shielded applicators may help to refine organ toxicity studies. Copyright © 2013 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  6. The Finite-Surface Method for incompressible flow: a step beyond staggered grid

    Science.gov (United States)

    Hokpunna, Arpiruk; Misaka, Takashi; Obayashi, Shigeru

    2017-11-01

    We present a newly developed higher-order finite surface method for the incompressible Navier-Stokes equations (NSE). This method defines the velocities as a surface-averaged value on the surfaces of the pressure cells. Consequently, the mass conservation on the pressure cells becomes an exact equation. The only things left to approximate is the momentum equation and the pressure at the new time step. At certain conditions, the exact mass conservation enables the explicit n-th order accurate NSE solver to be used with the pressure treatment that is two or four order less accurate without loosing the apparent convergence rate. This feature was not possible with finite volume of finite difference methods. We use Fourier analysis with a model spectrum to determine the condition and found that the range covers standard boundary layer flows. The formal convergence and the performance of the proposed scheme is compared with a sixth-order finite volume method. Finally, the accuracy and performance of the method is evaluated in turbulent channel flows. This work is partially funded by a research colloaboration from IFS, Tohoku university and ASEAN+3 funding scheme from CMUIC, Chiang Mai University.

  7. Application of Nearly Linear Solvers to Electric Power System Computation

    Science.gov (United States)

    Grant, Lisa L.

    To meet the future needs of the electric power system, improvements need to be made in the areas of power system algorithms, simulation, and modeling, specifically to achieve a time frame that is useful to industry. If power system time-domain simulations could run in real-time, then system operators would have situational awareness to implement online control and avoid cascading failures, significantly improving power system reliability. Several power system applications rely on the solution of a very large linear system. As the demands on power systems continue to grow, there is a greater computational complexity involved in solving these large linear systems within reasonable time. This project expands on the current work in fast linear solvers, developed for solving symmetric and diagonally dominant linear systems, in order to produce power system specific methods that can be solved in nearly-linear run times. The work explores a new theoretical method that is based on ideas in graph theory and combinatorics. The technique builds a chain of progressively smaller approximate systems with preconditioners based on the system's low stretch spanning tree. The method is compared to traditional linear solvers and shown to reduce the time and iterations required for an accurate solution, especially as the system size increases. A simulation validation is performed, comparing the solution capabilities of the chain method to LU factorization, which is the standard linear solver for power flow. The chain method was successfully demonstrated to produce accurate solutions for power flow simulation on a number of IEEE test cases, and a discussion on how to further improve the method's speed and accuracy is included.

  8. Non-Galerkin Coarse Grids for Algebraic Multigrid

    Energy Technology Data Exchange (ETDEWEB)

    Falgout, Robert D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schroder, Jacob B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-06-26

    Algebraic multigrid (AMG) is a popular and effective solver for systems of linear equations that arise from discretized partial differential equations. And while AMG has been effectively implemented on large scale parallel machines, challenges remain, especially when moving to exascale. Particularly, stencil sizes (the number of nonzeros in a row) tend to increase further down in the coarse grid hierarchy, and this growth leads to more communication. Therefore, as problem size increases and the number of levels in the hierarchy grows, the overall efficiency of the parallel AMG method decreases, sometimes dramatically. This growth in stencil size is due to the standard Galerkin coarse grid operator, $P^T A P$, where $P$ is the prolongation (i.e., interpolation) operator. For example, the coarse grid stencil size for a simple three-dimensional (3D) seven-point finite differencing approximation to diffusion can increase into the thousands on present day machines, causing an associated increase in communication costs. We therefore consider algebraically truncating coarse grid stencils to obtain a non-Galerkin coarse grid. First, the sparsity pattern of the non-Galerkin coarse grid is determined by employing a heuristic minimal “safe” pattern together with strength-of-connection ideas. Second, the nonzero entries are determined by collapsing the stencils in the Galerkin operator using traditional AMG techniques. The result is a reduction in coarse grid stencil size, overall operator complexity, and parallel AMG solve phase times.

  9. Nonlinear Multigrid solver exploiting AMGe Coarse Spaces with Approximation Properties

    DEFF Research Database (Denmark)

    Christensen, Max la Cour; Villa, Umberto; Engsig-Karup, Allan Peter

    The paper introduces a nonlinear multigrid solver for mixed finite element discretizations based on the Full Approximation Scheme (FAS) and element-based Algebraic Multigrid (AMGe). The main motivation to use FAS for unstructured problems is the guaranteed approximation property of the AMGe coarse...... properties of the coarse spaces. With coarse spaces with approximation properties, our FAS approach on unstructured meshes has the ability to be as powerful/successful as FAS on geometrically refined meshes. For comparison, Newton’s method and Picard iterations with an inner state-of-the-art linear solver...... are compared to FAS on a nonlinear saddle point problem with applications to porous media flow. It is demonstrated that FAS is faster than Newton’s method and Picard iterations for the experiments considered here. Due to the guaranteed approximation properties of our AMGe, the coarse spaces are very accurate...

  10. On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools

    Energy Technology Data Exchange (ETDEWEB)

    Vermeire, B.C., E-mail: brian.vermeire@concordia.ca; Witherden, F.D.; Vincent, P.E.

    2017-04-01

    First- and second-order accurate numerical methods, implemented for CPUs, underpin the majority of industrial CFD solvers. Whilst this technology has proven very successful at solving steady-state problems via a Reynolds Averaged Navier–Stokes approach, its utility for undertaking scale-resolving simulations of unsteady flows is less clear. High-order methods for unstructured grids and GPU accelerators have been proposed as an enabling technology for unsteady scale-resolving simulations of flow over complex geometries. In this study we systematically compare accuracy and cost of the high-order Flux Reconstruction solver PyFR running on GPUs and the industry-standard solver STAR-CCM+ running on CPUs when applied to a range of unsteady flow problems. Specifically, we perform comparisons of accuracy and cost for isentropic vortex advection (EV), decay of the Taylor–Green vortex (TGV), turbulent flow over a circular cylinder, and turbulent flow over an SD7003 aerofoil. We consider two configurations of STAR-CCM+: a second-order configuration, and a third-order configuration, where the latter was recommended by CD-adapco for more effective computation of unsteady flow problems. Results from both PyFR and STAR-CCM+ demonstrate that third-order schemes can be more accurate than second-order schemes for a given cost e.g. going from second- to third-order, the PyFR simulations of the EV and TGV achieve 75× and 3× error reduction respectively for the same or reduced cost, and STAR-CCM+ simulations of the cylinder recovered wake statistics significantly more accurately for only twice the cost. Moreover, advancing to higher-order schemes on GPUs with PyFR was found to offer even further accuracy vs. cost benefits relative to industry-standard tools.

  11. On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools

    Science.gov (United States)

    Vermeire, B. C.; Witherden, F. D.; Vincent, P. E.

    2017-04-01

    First- and second-order accurate numerical methods, implemented for CPUs, underpin the majority of industrial CFD solvers. Whilst this technology has proven very successful at solving steady-state problems via a Reynolds Averaged Navier-Stokes approach, its utility for undertaking scale-resolving simulations of unsteady flows is less clear. High-order methods for unstructured grids and GPU accelerators have been proposed as an enabling technology for unsteady scale-resolving simulations of flow over complex geometries. In this study we systematically compare accuracy and cost of the high-order Flux Reconstruction solver PyFR running on GPUs and the industry-standard solver STAR-CCM+ running on CPUs when applied to a range of unsteady flow problems. Specifically, we perform comparisons of accuracy and cost for isentropic vortex advection (EV), decay of the Taylor-Green vortex (TGV), turbulent flow over a circular cylinder, and turbulent flow over an SD7003 aerofoil. We consider two configurations of STAR-CCM+: a second-order configuration, and a third-order configuration, where the latter was recommended by CD-adapco for more effective computation of unsteady flow problems. Results from both PyFR and STAR-CCM+ demonstrate that third-order schemes can be more accurate than second-order schemes for a given cost e.g. going from second- to third-order, the PyFR simulations of the EV and TGV achieve 75× and 3× error reduction respectively for the same or reduced cost, and STAR-CCM+ simulations of the cylinder recovered wake statistics significantly more accurately for only twice the cost. Moreover, advancing to higher-order schemes on GPUs with PyFR was found to offer even further accuracy vs. cost benefits relative to industry-standard tools.

  12. On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools

    International Nuclear Information System (INIS)

    Vermeire, B.C.; Witherden, F.D.; Vincent, P.E.

    2017-01-01

    First- and second-order accurate numerical methods, implemented for CPUs, underpin the majority of industrial CFD solvers. Whilst this technology has proven very successful at solving steady-state problems via a Reynolds Averaged Navier–Stokes approach, its utility for undertaking scale-resolving simulations of unsteady flows is less clear. High-order methods for unstructured grids and GPU accelerators have been proposed as an enabling technology for unsteady scale-resolving simulations of flow over complex geometries. In this study we systematically compare accuracy and cost of the high-order Flux Reconstruction solver PyFR running on GPUs and the industry-standard solver STAR-CCM+ running on CPUs when applied to a range of unsteady flow problems. Specifically, we perform comparisons of accuracy and cost for isentropic vortex advection (EV), decay of the Taylor–Green vortex (TGV), turbulent flow over a circular cylinder, and turbulent flow over an SD7003 aerofoil. We consider two configurations of STAR-CCM+: a second-order configuration, and a third-order configuration, where the latter was recommended by CD-adapco for more effective computation of unsteady flow problems. Results from both PyFR and STAR-CCM+ demonstrate that third-order schemes can be more accurate than second-order schemes for a given cost e.g. going from second- to third-order, the PyFR simulations of the EV and TGV achieve 75× and 3× error reduction respectively for the same or reduced cost, and STAR-CCM+ simulations of the cylinder recovered wake statistics significantly more accurately for only twice the cost. Moreover, advancing to higher-order schemes on GPUs with PyFR was found to offer even further accuracy vs. cost benefits relative to industry-standard tools.

  13. Evaluation of sub grid scale and local wall models in Large-eddy simulations of separated flow

    OpenAIRE

    Sam Ali Al; Szasz Robert; Revstedt Johan

    2015-01-01

    The performance of the Sub Grid Scale models is studied by simulating a separated flow over a wavy channel. The first and second order statistical moments of the resolved velocities obtained by using Large-Eddy simulations at different mesh resolutions are compared with Direct Numerical Simulations data. The effectiveness of modeling the wall stresses by using local log-law is then tested on a relatively coarse grid. The results exhibit a good agreement between highly-resolved Large Eddy Simu...

  14. Icing modelling in NSMB with chimera overset grids

    Energy Technology Data Exchange (ETDEWEB)

    Pena, D. [Ècole Polytechnique de Montréal (Canada); ICUBE, Strasbourg University (France); Deloze, T.; Laurendeau, E. [Ècole Polytechnique de Montréal (Canada); Hoarau, Y. [ICUBE, Strasbourg University (France)

    2015-03-10

    In aerospace Engineering, the accurate simulation of ice accretion is a key element to increase flight safety and avoid accidents related to icing effects. The icing code developed in the NSMB solver is based on an Eulerian formulation for droplets tracking, an iterative Messinger model using a modified water runback scheme for ice thickness calculation and mesh deformation to track the ice/air interface through time. The whole process is parallelized with MPI and applied with chimera grids.

  15. Hydrography-driven coarsening of grid digital elevation models

    Science.gov (United States)

    Moretti, G.; Orlandini, S.

    2017-12-01

    A new grid coarsening strategy, denoted as hydrography-driven (HD) coarsening, is developed in the present study. The HD coarsening strategy is designed to retain the essential hydrographic features of surface flow paths observed in high-resolution digital elevation models (DEMs): (1) depressions are filled in the considered high-resolution DEM, (2) the obtained topographic data are used to extract a reference grid network composed of all surface flow paths, (3) the Horton order is assigned to each link of the reference grid network, and (4) within each coarse grid cell, the elevation of the point lying along the highest-order path of the reference grid network and displaying the minimum distance to the cell center is assigned to this coarse grid cell center. The capabilities of the HD coarsening strategy to provide consistent surface flow paths with respect to those observed in high-resolution DEMs are evaluated over a synthetic valley and two real drainage basins located in the Italian Alps and in the Italian Apennines. The HD coarsening is found to yield significantly more accurate surface flow path profiles than the standard nearest neighbor (NN) coarsening. In addition, the proposed strategy is found to reduce drastically the impact of depression-filling procedures in coarsened topographic data. The HD coarsening strategy is therefore advocated for all those cases in which the relief of the extracted drainage network is an important hydrographic feature. The figure below reports DEMs of a synthetic valley and extracted surface flow paths. (a) 10-m grid DEM displaying no depressions and extracted surface flow path (gray line). (b) 1-km grid DEM obtained from NN coarsening. (c) 1-km grid DEM obtained from NN coarsening plus depression-filling and extracted surface flow path (light blue line). (d) 1-km grid DEM obtained from HD coarsening and extracted surface flow path (magenta line).

  16. An analysis of supersonic flows with low-Reynolds number compressible two-equation turbulence models using LU finite volume implicit numerical techniques

    Science.gov (United States)

    Lee, J.

    1994-01-01

    A generalized flow solver using an implicit Lower-upper (LU) diagonal decomposition based numerical technique has been coupled with three low-Reynolds number kappa-epsilon models for analysis of problems with engineering applications. The feasibility of using the LU technique to obtain efficient solutions to supersonic problems using the kappa-epsilon model has been demonstrated. The flow solver is then used to explore limitations and convergence characteristics of several popular two equation turbulence models. Several changes to the LU solver have been made to improve the efficiency of turbulent flow predictions. In general, the low-Reynolds number kappa-epsilon models are easier to implement than the models with wall-functions, but require much finer near-wall grid to accurately resolve the physics. The three kappa-epsilon models use different approaches to characterize the near wall regions of the flow. Therefore, the limitations imposed by the near wall characteristics have been carefully resolved. The convergence characteristics of a particular model using a given numerical technique are also an important, but most often overlooked, aspect of turbulence model predictions. It is found that some convergence characteristics could be sacrificed for more accurate near-wall prediction. However, even this gain in accuracy is not sufficient to model the effects of an external pressure gradient imposed by a shock-wave/ boundary-layer interaction. Additional work on turbulence models, especially for compressibility, is required since the solutions obtained with base line turbulence are in only reasonable agreement with the experimental data for the viscous interaction problems.

  17. Adaptive grid generation in a patient-specific cerebral aneurysm

    Science.gov (United States)

    Hodis, Simona; Kallmes, David F.; Dragomir-Daescu, Dan

    2013-11-01

    Adapting grid density to flow behavior provides the advantage of increasing solution accuracy while decreasing the number of grid elements in the simulation domain, therefore reducing the computational time. One method for grid adaptation requires successive refinement of grid density based on observed solution behavior until the numerical errors between successive grids are negligible. However, such an approach is time consuming and it is often neglected by the researchers. We present a technique to calculate the grid size distribution of an adaptive grid for computational fluid dynamics (CFD) simulations in a complex cerebral aneurysm geometry based on the kinematic curvature and torsion calculated from the velocity field. The relationship between the kinematic characteristics of the flow and the element size of the adaptive grid leads to a mathematical equation to calculate the grid size in different regions of the flow. The adaptive grid density is obtained such that it captures the more complex details of the flow with locally smaller grid size, while less complex flow characteristics are calculated on locally larger grid size. The current study shows that kinematic curvature and torsion calculated from the velocity field in a cerebral aneurysm can be used to find the locations of complex flow where the computational grid needs to be refined in order to obtain an accurate solution. We found that the complexity of the flow can be adequately described by velocity and vorticity and the angle between the two vectors. For example, inside the aneurysm bleb, at the bifurcation, and at the major arterial turns the element size in the lumen needs to be less than 10% of the artery radius, while at the boundary layer, the element size should be smaller than 1% of the artery radius, for accurate results within a 0.5% relative approximation error. This technique of quantifying flow complexity and adaptive remeshing has the potential to improve results accuracy and reduce

  18. Implementing High-Performance Geometric Multigrid Solver with Naturally Grained Messages

    Energy Technology Data Exchange (ETDEWEB)

    Shan, H; Williams, S; Zheng, Y; Kamil, A; Yelick, K

    2015-10-26

    Structured-grid linear solvers often require manually packing and unpacking of communication data to achieve high performance.Orchestrating this process efficiently is challenging, labor-intensive, and potentially error-prone.In this paper, we explore an alternative approach that communicates the data with naturally grained messagesizes without manual packing and unpacking. This approach is the distributed analogue of shared-memory programming, taking advantage of the global addressspace in PGAS languages to provide substantial programming ease. However, its performance may suffer from the large number of small messages. We investigate theruntime support required in the UPC ++ library for this naturally grained version to close the performance gap between the two approaches and attain comparable performance at scale using the High-Performance Geometric Multgrid (HPGMG-FV) benchmark as a driver.

  19. Autotuning of Adaptive Mesh Refinement PDE Solvers on Shared Memory Architectures

    KAUST Repository

    Nogina, Svetlana

    2012-01-01

    Many multithreaded, grid-based, dynamically adaptive solvers for partial differential equations permanently have to traverse subgrids (patches) of different and changing sizes. The parallel efficiency of this traversal depends on the interplay of the patch size, the architecture used, the operations triggered throughout the traversal, and the grain size, i.e. the size of the subtasks the patch is broken into. We propose an oracle mechanism delivering grain sizes on-the-fly. It takes historical runtime measurements for different patch and grain sizes as well as the traverse\\'s operations into account, and it yields reasonable speedups. Neither magic configuration settings nor an expensive pre-tuning phase are necessary. It is an autotuning approach. © 2012 Springer-Verlag.

  20. Modeling complex biological flows in multi-scale systems using the APDEC framework

    Science.gov (United States)

    Trebotich, David

    2006-09-01

    We have developed advanced numerical algorithms to model biological fluids in multiscale flow environments using the software framework developed under the SciDAC APDEC ISIC. The foundation of our computational effort is an approach for modeling DNA laden fluids as ''bead-rod'' polymers whose dynamics are fully coupled to an incompressible viscous solvent. The method is capable of modeling short range forces and interactions between particles using soft potentials and rigid constraints. Our methods are based on higher-order finite difference methods in complex geometry with adaptivity, leveraging algorithms and solvers in the APDEC Framework. Our Cartesian grid embedded boundary approach to incompressible viscous flow in irregular geometries has also been interfaced to a fast and accurate level-sets method within the APDEC Framework for extracting surfaces from volume renderings of medical image data and used to simulate cardio-vascular and pulmonary flows in critical anatomies.

  1. Parallel SOR methods with a parabolic-diffusion acceleration technique for solving an unstructured-grid Poisson equation on 3D arbitrary geometries

    Science.gov (United States)

    Zapata, M. A. Uh; Van Bang, D. Pham; Nguyen, K. D.

    2016-05-01

    This paper presents a parallel algorithm for the finite-volume discretisation of the Poisson equation on three-dimensional arbitrary geometries. The proposed method is formulated by using a 2D horizontal block domain decomposition and interprocessor data communication techniques with message passing interface. The horizontal unstructured-grid cells are reordered according to the neighbouring relations and decomposed into blocks using a load-balanced distribution to give all processors an equal amount of elements. In this algorithm, two parallel successive over-relaxation methods are presented: a multi-colour ordering technique for unstructured grids based on distributed memory and a block method using reordering index following similar ideas of the partitioning for structured grids. In all cases, the parallel algorithms are implemented with a combination of an acceleration iterative solver. This solver is based on a parabolic-diffusion equation introduced to obtain faster solutions of the linear systems arising from the discretisation. Numerical results are given to evaluate the performances of the methods showing speedups better than linear.

  2. Constraint Solver Techniques for Implementing Precise and Scalable Static Program Analysis

    DEFF Research Database (Denmark)

    Zhang, Ye

    solver using unification we could make a program analysis easier to design and implement, much more scalable, and still as precise as expected. We present an inclusion constraint language with the explicit equality constructs for specifying program analysis problems, and a parameterized framework...... developers to build reliable software systems more quickly and with fewer bugs or security defects. While designing and implementing a program analysis remains a hard work, making it both scalable and precise is even more challenging. In this dissertation, we show that with a general inclusion constraint...... data flow analyses for C language, we demonstrate a large amount of equivalences could be detected by off-line analyses, and they could then be used by a constraint solver to significantly improve the scalability of an analysis without sacrificing any precision....

  3. On the development of OpenFOAM solvers based on explicit and implicit high-order Runge-Kutta schemes for incompressible flows with heat transfer

    Science.gov (United States)

    D'Alessandro, Valerio; Binci, Lorenzo; Montelpare, Sergio; Ricci, Renato

    2018-01-01

    Open-source CFD codes provide suitable environments for implementing and testing low-dissipative algorithms typically used to simulate turbulence. In this research work we developed CFD solvers for incompressible flows based on high-order explicit and diagonally implicit Runge-Kutta (RK) schemes for time integration. In particular, an iterated PISO-like procedure based on Rhie-Chow correction was used to handle pressure-velocity coupling within each implicit RK stage. For the explicit approach, a projected scheme was used to avoid the "checker-board" effect. The above-mentioned approaches were also extended to flow problems involving heat transfer. It is worth noting that the numerical technology available in the OpenFOAM library was used for space discretization. In this work, we additionally explore the reliability and effectiveness of the proposed implementations by computing several unsteady flow benchmarks; we also show that the numerical diffusion due to the time integration approach is completely canceled using the solution techniques proposed here.

  4. High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Cho, KT; Ridgway, P; Weber, AZ; Haussener, S; Battaglia, V; Srinivasan, V

    2012-01-01

    The electrochemical behavior of a promising hydrogen/bromine redox flow battery is investigated for grid-scale energy-storage application with some of the best redox-flow-battery performance results to date, including a peak power of 1.4 W/cm(2) and a 91% voltaic efficiency at 0.4 W/cm(2) constant-power operation. The kinetics of bromine on various materials is discussed, with both rotating-disk-electrode and cell studies demonstrating that a carbon porous electrode for the bromine reaction can conduct platinum-comparable performance as long as sufficient surface area is realized. The effect of flow-cell designs and operating temperature is examined, and ohmic and mass-transfer losses are decreased by utilizing a flow-through electrode design and increasing cell temperature. Charge/discharge and discharge-rate tests also reveal that this system has highly reversible behavior and good rate capability. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.018211jes] All rights reserved.

  5. Impact of Considering 110 kV Grid Structures on the Congestion Management in the German Transmission Grid

    Science.gov (United States)

    Hoffrichter, André; Barrios, Hans; Massmann, Janek; Venkataramanachar, Bhavasagar; Schnettler, Armin

    2018-02-01

    The structural changes in the European energy system lead to an increase of renewable energy sources that are primarily connected to the distribution grid. Hence the stationary analysis of the transmission grid and the regionalization of generation capacities are strongly influenced by subordinate grid structures. To quantify the impact on the congestion management in the German transmission grid, a 110 kV grid model is derived using publicly available data delivered by Open Street Map and integrated into an existing model of the European transmission grid. Power flow and redispatch simulations are performed for three different regionalization methods and grid configurations. The results show a significant impact of the 110 kV system and prove an overestimation of power flows in the transmission grid when neglecting subordinate grids. Thus, the redispatch volume in Germany to dissolve bottlenecks in case of N-1 contingencies decreases by 38 % when considering the 110 kV grid.

  6. TradeWind Deliverable 5.1: Effects of increasing wind power penetration on the power flows in European grids

    DEFF Research Database (Denmark)

    Lemström, Bettina; Uski-Joutsenvuo, Sanna; Holttinen, Hannele

    2008-01-01

    This report presents the main activities and results of Work Package 5 – Effects of increasing wind power penetration on the power flows in European grids in the TradeWind project. VTT is the leader of Work Package 5 and carries the overall responsibility of this report. The work is based on power...... flow simulations with a grid and market model developed in TradeWind Work Package 3, led by Sintef Energy Research. VTT, Sintef Energy Research and Risø have carried out the simulations of the different scenarios, analysed the results and written Chapter 4 about the impact of wind power on cross...

  7. Flow simulations about steady-complex and unsteady moving configurations using structured-overlapped and unstructured grids

    Science.gov (United States)

    Newman, James C., III

    1995-01-01

    The limiting factor in simulating flows past realistic configurations of interest has been the discretization of the physical domain on which the governing equations of fluid flow may be solved. In an attempt to circumvent this problem, many Computational Fluid Dynamic (CFD) methodologies that are based on different grid generation and domain decomposition techniques have been developed. However, due to the costs involved and expertise required, very few comparative studies between these methods have been performed. In the present work, the two CFD methodologies which show the most promise for treating complex three-dimensional configurations as well as unsteady moving boundary problems are evaluated. These are namely the structured-overlapped and the unstructured grid schemes. Both methods use a cell centered, finite volume, upwind approach. The structured-overlapped algorithm uses an approximately factored, alternating direction implicit scheme to perform the time integration, whereas, the unstructured algorithm uses an explicit Runge-Kutta method. To examine the accuracy, efficiency, and limitations of each scheme, they are applied to the same steady complex multicomponent configurations and unsteady moving boundary problems. The steady complex cases consist of computing the subsonic flow about a two-dimensional high-lift multielement airfoil and the transonic flow about a three-dimensional wing/pylon/finned store assembly. The unsteady moving boundary problems are a forced pitching oscillation of an airfoil in a transonic freestream and a two-dimensional, subsonic airfoil/store separation sequence. Accuracy was accessed through the comparison of computed and experimentally measured pressure coefficient data on several of the wing/pylon/finned store assembly's components and at numerous angles-of-attack for the pitching airfoil. From this study, it was found that both the structured-overlapped and the unstructured grid schemes yielded flow solutions of

  8. Thermal hydraulics-II. 2. Benchmarking of the TRIO Two-Phase-Flow Module

    International Nuclear Information System (INIS)

    Helton, Donald; Kumbaro, Anela; Hassan, Yassin

    2001-01-01

    The Commissariat a l'Energie Atomique (CEA) is currently developing a two-phase-flow module for the Trio-U CFD computer program. Work in the area of advanced numerical technique application to two-phase flow is being carried out by the SYSCO division at the CEA Saclay center. Recently, this division implemented several advanced numerical solvers, including approximate Riemann solvers and flux vector splitting schemes. As a test of these new advances, several benchmark tests were executed. This paper describes the pertinent results of this study. The first benchmark problem was the Ransom faucet problem. This problem consists of a vertical column of water acting under the gravity force. The appeal of this problem is that it tests the program's handling of the body force term and it has an analytical solution. The Trio results [based on a two-fluid, two-dimensional (2-D) simulation] for this problem were very encouraging. The two-phase-flow module was able to reproduce the analytical velocity and void fraction profiles. A reasonable amount of numerical diffusion was observed, and the numerical solution converged to the analytical solution as the grid size was refined, as shown in Fig. 1. A second series of benchmark problems is concerned with the employment of a drag force term. In a first approach, we test the capability of the code to take account of this source term, using a flux scheme solution technique. For this test, a rectangular duct was utilized. As shown in Fig. 2, mesh refinement results in an approach to the analytical solution. Next, a convergent/divergent nozzle problem is proposed. The nozzle is characterized by a brief contraction section and a long expansion section. A two-phase, 2-D, non-condensing model is used in conjunction with the Rieman solver. Figure 3 shows a comparison of the pressure profile for the experimental case and for the values calculated by the TRIO U two-phase-flow module. Trio was able to handle the drag force term and

  9. Hybrid finite-volume/transported PDF method for the simulation of turbulent reactive flows

    Science.gov (United States)

    Raman, Venkatramanan

    A novel computational scheme is formulated for simulating turbulent reactive flows in complex geometries with detailed chemical kinetics. A Probability Density Function (PDF) based method that handles the scalar transport equation is coupled with an existing Finite Volume (FV) Reynolds-Averaged Navier-Stokes (RANS) flow solver. The PDF formulation leads to closed chemical source terms and facilitates the use of detailed chemical mechanisms without approximations. The particle-based PDF scheme is modified to handle complex geometries and grid structures. Grid-independent particle evolution schemes that scale linearly with the problem size are implemented in the Monte-Carlo PDF solver. A novel algorithm, in situ adaptive tabulation (ISAT) is employed to ensure tractability of complex chemistry involving a multitude of species. Several non-reacting test cases are performed to ascertain the efficiency and accuracy of the method. Simulation results from a turbulent jet-diffusion flame case are compared against experimental data. The effect of micromixing model, turbulence model and reaction scheme on flame predictions are discussed extensively. Finally, the method is used to analyze the Dow Chlorination Reactor. Detailed kinetics involving 37 species and 158 reactions as well as a reduced form with 16 species and 21 reactions are used. The effect of inlet configuration on reactor behavior and product distribution is analyzed. Plant-scale reactors exhibit quenching phenomena that cannot be reproduced by conventional simulation methods. The FV-PDF method predicts quenching accurately and provides insight into the dynamics of the reactor near extinction. The accuracy of the fractional time-stepping technique in discussed in the context of apparent multiple-steady states observed in a non-premixed feed configuration of the chlorination reactor.

  10. A novel method for automated grid generation of ice shapes for local-flow analysis

    Science.gov (United States)

    Ogretim, Egemen; Huebsch, Wade W.

    2004-02-01

    Modelling a complex geometry, such as ice roughness, plays a key role for the computational flow analysis over rough surfaces. This paper presents two enhancement ideas in modelling roughness geometry for local flow analysis over an aerodynamic surface. The first enhancement is use of the leading-edge region of an airfoil as a perturbation to the parabola surface. The reasons for using a parabola as the base geometry are: it resembles the airfoil leading edge in the vicinity of its apex and it allows the use of a lower apparent Reynolds number. The second enhancement makes use of the Fourier analysis for modelling complex ice roughness on the leading edge of airfoils. This method of modelling provides an analytical expression, which describes the roughness geometry and the corresponding derivatives. The factors affecting the performance of the Fourier analysis were also investigated. It was shown that the number of sine-cosine terms and the number of control points are of importance. Finally, these enhancements are incorporated into an automated grid generation method over the airfoil ice accretion surface. The validations for both enhancements demonstrate that they can improve the current capability of grid generation and computational flow field analysis around airfoils with ice roughness.

  11. Speeding up the flash calculations in two-phase compositional flow simulations - The application of sparse grids

    KAUST Repository

    Wu, Yuanqing; Kowitz, Christoph; Sun, Shuyu; Salama, Amgad

    2015-01-01

    Flash calculations have become a performance bottleneck in the simulation of compositional flow in subsurface reservoirs. We apply a sparse grid surrogate model to substitute the flash calculation and thus try to remove the bottleneck from

  12. Extending the Finite Domain Solver of GNU Prolog

    NARCIS (Netherlands)

    Bloemen, Vincent; Diaz, Daniel; van der Bijl, Machiel; Abreu, Salvador; Ströder, Thomas; Swift, Terrance

    This paper describes three significant extensions for the Finite Domain solver of GNU Prolog. First, the solver now supports negative integers. Second, the solver detects and prevents integer overflows from occurring. Third, the internal representation of sparse domains has been redesigned to

  13. PolyRES: A polygon-based Richards equation solver

    International Nuclear Information System (INIS)

    Hills, R.G.

    1995-12-01

    This document describes the theory, implementation, and use of a software package designed to solve the transient, two-dimensional, Richards equation for water flow in unsaturated-saturated soils. This package was specifically designed to model complex geometries with minimal input from the user and to simulate groundwater flow related to assessment of low-level radioactive waste disposal sites and engineered facilities. The spatial variation of the hydraulic properties can be defined across individual polygon-shaped subdomains, called objects. These objects combine to form a polygon-shaped model domain. Each object can have its own distribution of hydraulic parameters. The resulting model domain and polygon-shaped internal objects are mapped onto a rectangular, finite-volume, computational grid by a preprocessor. This allows the user to specify model geometry independently of the underlying grid and greatly simplifies user input for complex geometries. In addition, this approach significantly reduces the computational requirements since complex geometries are actually modeled on a rectangular grid. This results in well-structured, finite difference-like systems of equations that require minimal storage and are very efficient to solve. The documentation for this software package includes a user's manual, a detailed description of the underlying theory, and a detailed discussion of program flow. Several example problems are presented that show the use and features of the software package. The water flow predictions for several of these example problems are compared to those of another algorithm to test for prediction equivalency

  14. libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations

    Science.gov (United States)

    Jaruga, A.; Arabas, S.; Jarecka, D.; Pawlowska, H.; Smolarkiewicz, P. K.; Waruszewski, M.

    2015-04-01

    This paper accompanies the first release of libmpdata++, a C++ library implementing the multi-dimensional positive-definite advection transport algorithm (MPDATA) on regular structured grid. The library offers basic numerical solvers for systems of generalised transport equations. The solvers are forward-in-time, conservative and non-linearly stable. The libmpdata++ library covers the basic second-order-accurate formulation of MPDATA, its third-order variant, the infinite-gauge option for variable-sign fields and a flux-corrected transport extension to guarantee non-oscillatory solutions. The library is equipped with a non-symmetric variational elliptic solver for implicit evaluation of pressure gradient terms. All solvers offer parallelisation through domain decomposition using shared-memory parallelisation. The paper describes the library programming interface, and serves as a user guide. Supported options are illustrated with benchmarks discussed in the MPDATA literature. Benchmark descriptions include code snippets as well as quantitative representations of simulation results. Examples of applications include homogeneous transport in one, two and three dimensions in Cartesian and spherical domains; a shallow-water system compared with analytical solution (originally derived for a 2-D case); and a buoyant convection problem in an incompressible Boussinesq fluid with interfacial instability. All the examples are implemented out of the library tree. Regardless of the differences in the problem dimensionality, right-hand-side terms, boundary conditions and parallelisation approach, all the examples use the same unmodified library, which is a key goal of libmpdata++ design. The design, based on the principle of separation of concerns, prioritises the user and developer productivity. The libmpdata++ library is implemented in C++, making use of the Blitz++ multi-dimensional array containers, and is released as free/libre and open-source software.

  15. Grid refinement in Cartesian coordinates for groundwater flow models using the divergence theorem and Taylor's series.

    Science.gov (United States)

    Mansour, M M; Spink, A E F

    2013-01-01

    Grid refinement is introduced in a numerical groundwater model to increase the accuracy of the solution over local areas without compromising the run time of the model. Numerical methods developed for grid refinement suffered certain drawbacks, for example, deficiencies in the implemented interpolation technique; the non-reciprocity in head calculations or flow calculations; lack of accuracy resulting from high truncation errors, and numerical problems resulting from the construction of elongated meshes. A refinement scheme based on the divergence theorem and Taylor's expansions is presented in this article. This scheme is based on the work of De Marsily (1986) but includes more terms of the Taylor's series to improve the numerical solution. In this scheme, flow reciprocity is maintained and high order of refinement was achievable. The new numerical method is applied to simulate groundwater flows in homogeneous and heterogeneous confined aquifers. It produced results with acceptable degrees of accuracy. This method shows the potential for its application to solving groundwater heads over nested meshes with irregular shapes. © 2012, British Geological Survey © NERC 2012. Ground Water © 2012, National GroundWater Association.

  16. Self-correcting Multigrid Solver

    International Nuclear Information System (INIS)

    Lewandowski, Jerome L.V.

    2004-01-01

    A new multigrid algorithm based on the method of self-correction for the solution of elliptic problems is described. The method exploits information contained in the residual to dynamically modify the source term (right-hand side) of the elliptic problem. It is shown that the self-correcting solver is more efficient at damping the short wavelength modes of the algebraic error than its standard equivalent. When used in conjunction with a multigrid method, the resulting solver displays an improved convergence rate with no additional computational work

  17. Study of grid independence of finite element method on MHD free convective casson fluid flow with slip effect

    Science.gov (United States)

    Raju, R. Srinivasa; Ramesh, K.

    2018-05-01

    The purpose of this work is to study the grid independence of finite element method on MHD Casson fluid flow past a vertically inclined plate filled in a porous medium in presence of chemical reaction, heat absorption, an external magnetic field and slip effect has been investigated. For this study of grid independence, a mathematical model is developed and analyzed by using appropriate mathematical technique, called finite element method. Grid study discussed with the help of numerical values of velocity, temperature and concentration profiles in tabular form. avourable comparisons with previously published work on various special cases of the problem are obtained.

  18. A non-hybrid method for the PDF equations of turbulent flows on unstructured grids

    International Nuclear Information System (INIS)

    Bakosi, J.; Franzese, P.; Boybeyi, Z.

    2008-01-01

    In probability density function (PDF) methods of turbulent flows, the joint PDF of several flow variables is computed by numerically integrating a system of stochastic differential equations for Lagrangian particles. A set of parallel algorithms is proposed to provide an efficient solution of the PDF transport equation modeling the joint PDF of turbulent velocity, frequency and concentration of a passive scalar in geometrically complex configurations. In the vicinity of walls the flow is resolved by an elliptic relaxation technique down to the viscous sublayer, explicitly modeling the high anisotropy and inhomogeneity of the low-Reynolds-number wall region without damping or wall-functions. An unstructured Eulerian grid is employed to extract Eulerian statistics, to solve for quantities represented at fixed locations of the domain (i.e., the mean pressure and the elliptic relaxation tensor) and to track particles. All three aspects regarding the grid make use of the finite element method employing the simplest linear shapefunctions. To model the small-scale mixing of the transported scalar, the interaction by exchange with the conditional mean (IECM) model is adopted. An adaptive algorithm to compute the velocity-conditioned scalar mean is proposed that homogenizes the statistical error over the sample space with no assumption on the shape of the underlying velocity PDF. Compared to other hybrid particle-in-cell approaches for the PDF equations, the current methodology is consistent without the need for consistency conditions. The algorithm is tested by computing the dispersion of passive scalars released from concentrated sources in two different turbulent flows: the fully developed turbulent channel flow and a street canyon (or cavity) flow. Algorithmic details on estimating conditional and unconditional statistics, particle tracking and particle-number control are presented in detail. Relevant aspects of performance and parallelism on cache-based shared memory

  19. Acceleration of the OpenFOAM-based MHD solver using graphics processing units

    International Nuclear Information System (INIS)

    He, Qingyun; Chen, Hongli; Feng, Jingchao

    2015-01-01

    Highlights: • A 3D PISO-MHD was implemented on Kepler-class graphics processing units (GPUs) using CUDA technology. • A consistent and conservative scheme is used in the code which was validated by three basic benchmarks in a rectangular and round ducts. • Parallelized of CPU and GPU acceleration were compared relating to single core CPU in MHD problems and non-MHD problems. • Different preconditions for solving MHD solver were compared and the results showed that AMG method is better for calculations. - Abstract: The pressure-implicit with splitting of operators (PISO) magnetohydrodynamics MHD solver of the couple of Navier–Stokes equations and Maxwell equations was implemented on Kepler-class graphics processing units (GPUs) using the CUDA technology. The solver is developed on open source code OpenFOAM based on consistent and conservative scheme which is suitable for simulating MHD flow under strong magnetic field in fusion liquid metal blanket with structured or unstructured mesh. We verified the validity of the implementation on several standard cases including the benchmark I of Shercliff and Hunt's cases, benchmark II of fully developed circular pipe MHD flow cases and benchmark III of KIT experimental case. Computational performance of the GPU implementation was examined by comparing its double precision run times with those of essentially the same algorithms and meshes. The resulted showed that a GPU (GTX 770) can outperform a server-class 4-core, 8-thread CPU (Intel Core i7-4770k) by a factor of 2 at least.

  20. Acceleration of the OpenFOAM-based MHD solver using graphics processing units

    Energy Technology Data Exchange (ETDEWEB)

    He, Qingyun; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Feng, Jingchao

    2015-12-15

    Highlights: • A 3D PISO-MHD was implemented on Kepler-class graphics processing units (GPUs) using CUDA technology. • A consistent and conservative scheme is used in the code which was validated by three basic benchmarks in a rectangular and round ducts. • Parallelized of CPU and GPU acceleration were compared relating to single core CPU in MHD problems and non-MHD problems. • Different preconditions for solving MHD solver were compared and the results showed that AMG method is better for calculations. - Abstract: The pressure-implicit with splitting of operators (PISO) magnetohydrodynamics MHD solver of the couple of Navier–Stokes equations and Maxwell equations was implemented on Kepler-class graphics processing units (GPUs) using the CUDA technology. The solver is developed on open source code OpenFOAM based on consistent and conservative scheme which is suitable for simulating MHD flow under strong magnetic field in fusion liquid metal blanket with structured or unstructured mesh. We verified the validity of the implementation on several standard cases including the benchmark I of Shercliff and Hunt's cases, benchmark II of fully developed circular pipe MHD flow cases and benchmark III of KIT experimental case. Computational performance of the GPU implementation was examined by comparing its double precision run times with those of essentially the same algorithms and meshes. The resulted showed that a GPU (GTX 770) can outperform a server-class 4-core, 8-thread CPU (Intel Core i7-4770k) by a factor of 2 at least.

  1. Parallel Solver for H(div) Problems Using Hybridization and AMG

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chak S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-15

    In this paper, a scalable parallel solver is proposed for H(div) problems discretized by arbitrary order finite elements on general unstructured meshes. The solver is based on hybridization and algebraic multigrid (AMG). Unlike some previously studied H(div) solvers, the hybridization solver does not require discrete curl and gradient operators as additional input from the user. Instead, only some element information is needed in the construction of the solver. The hybridization results in a H1-equivalent symmetric positive definite system, which is then rescaled and solved by AMG solvers designed for H1 problems. Weak and strong scaling of the method are examined through several numerical tests. Our numerical results show that the proposed solver provides a promising alternative to ADS, a state-of-the-art solver [12], for H(div) problems. In fact, it outperforms ADS for higher order elements.

  2. Development of a 3-D flow analysis computer program for integral reactor

    International Nuclear Information System (INIS)

    Youn, H. Y.; Lee, K. H.; Kim, H. K.; Whang, Y. D.; Kim, H. C.

    2003-01-01

    A 3-D computational fluid dynamics program TASS-3D is being developed for the flow analysis of primary coolant system consists of complex geometries such as SMART. A pre/post processor also is being developed to reduce the pre/post processing works such as a computational grid generation, set-up the analysis conditions and analysis of the calculated results. TASS-3D solver employs a non-orthogonal coordinate system and FVM based on the non-staggered grid system. The program includes the various models to simulate the physical phenomena expected to be occurred in the integral reactor and will be coupled with core dynamics code, core T/H code and the secondary system code modules. Currently, the application of TASS-3D is limited to the single phase of liquid, but the code will be further developed including 2-phase phenomena expected for the normal operation and the various transients of the integrator reactor in the next stage

  3. Job Flow Distribution and Ranked Jobs Scheduling in Grid Virtual Organizations

    CERN Document Server

    Toporkov, Victor; Tselishchev, Alexey; Yemelyanov, Dmitry; Potekhin, Petr

    2015-01-01

    In this work, we consider the problems of job flow distribution and ranked job framework forming within a model of cycle scheduling in Grid virtual organizations. The problem of job flow distribution is solved in terms of jobs and computing resource domains compatibility. A coefficient estimating such compatibility is introduced and studied experimentally. Two distribution strategies are suggested. Job framework forming is justified with such quality of service indicators as an average job execution time, a number of required scheduling cycles, and a number of job execution declines. Two methods for job selection and scheduling are proposed and compared: the first one is based on the knapsack problem solution, while the second one utilizes the mentioned compatibility coefficient. Along with these methods we present experimental results demonstrating the efficiency of proposed approaches and compare them with random job selection.

  4. Advanced numerical methods for three dimensional two-phase flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.

  5. Advanced numerical methods for three dimensional two-phase flow calculations

    International Nuclear Information System (INIS)

    Toumi, I.; Caruge, D.

    1997-01-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe's method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations

  6. Scaling of a Fast Fourier Transform and a pseudo-spectral fluid solver up to 196608 cores

    KAUST Repository

    Chatterjee, Anando G.

    2017-11-04

    In this paper we present scaling results of a FFT library, FFTK, and a pseudospectral code, Tarang, on grid resolutions up to 81923 grid using 65536 cores of Blue Gene/P and 196608 cores of Cray XC40 supercomputers. We observe that communication dominates computation, more so on the Cray XC40. The computation time scales as Tcomp∼p−1, and the communication time as Tcomm∼n−γ2 with γ2 ranging from 0.7 to 0.9 for Blue Gene/P, and from 0.43 to 0.73 for Cray XC40. FFTK, and the fluid and convection solvers of Tarang exhibit weak as well as strong scaling nearly up to 196608 cores of Cray XC40. We perform a comparative study of the performance on the Blue Gene/P and Cray XC40 clusters.

  7. Scaling of a Fast Fourier Transform and a pseudo-spectral fluid solver up to 196608 cores

    KAUST Repository

    Chatterjee, Anando G.; Verma, Mahendra K.; Kumar, Abhishek; Samtaney, Ravi; Hadri, Bilel; Khurram, Rooh Ul Amin

    2017-01-01

    In this paper we present scaling results of a FFT library, FFTK, and a pseudospectral code, Tarang, on grid resolutions up to 81923 grid using 65536 cores of Blue Gene/P and 196608 cores of Cray XC40 supercomputers. We observe that communication dominates computation, more so on the Cray XC40. The computation time scales as Tcomp∼p−1, and the communication time as Tcomm∼n−γ2 with γ2 ranging from 0.7 to 0.9 for Blue Gene/P, and from 0.43 to 0.73 for Cray XC40. FFTK, and the fluid and convection solvers of Tarang exhibit weak as well as strong scaling nearly up to 196608 cores of Cray XC40. We perform a comparative study of the performance on the Blue Gene/P and Cray XC40 clusters.

  8. COARSE-GRID SIMULATION OF REACTING AND NON-REACTING GAS-PARTICLE FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran Sundaresan

    2004-03-01

    The principal goal of this project, funded under the ''DOE Vision 21 Virtual Demonstration Initiative'' is virtual demonstration of circulating fluidized bed performance. We had proposed a ''virtual demonstration tool'', which is based on the open-domain CFD code MFIX. The principal challenge funded through this grant is to devise and implement in this CFD code sound physical models for the rheological characteristics of the gas-particle mixtures. Within the past year, which was the third year of the project, we have made the following specific advances. (a) We have completed a study of the impact of sub-grid models of different levels of detail on the results obtained in coarse-grid simulations of gas-particle flow. (b) We have also completed a study of a model problem to understand the effect of wall friction, which was proved in our earlier work to be very important for stable operation of standpipes in a circulating fluidized bed circuit. These are described in a greater detail in this report.

  9. Helicopter Rotor Blade Computation in Unsteady Flows Using Moving Overset Grids

    Science.gov (United States)

    Ahmad, Jasim; Duque, Earl P. N.

    1996-01-01

    An overset grid thin-layer Navier-Stokes code has been extended to include dynamic motion of helicopter rotor blades through relative grid motion. The unsteady flowfield and airloads on an AH-IG rotor in forward flight were computed to verify the methodology and to demonstrate the method's potential usefulness towards comprehensive helicopter codes. In addition, the method uses the blade's first harmonics measured in the flight test to prescribe the blade motion. The solution was impulsively started and became periodic in less than three rotor revolutions. Detailed unsteady numerical flow visualization techniques were applied to the entire unsteady data set of five rotor revolutions and exhibited flowfield features such as blade vortex interaction and wake roll-up. The unsteady blade loads and surface pressures compare well against those from flight measurements. Details of the method, a discussion of the resulting predicted flowfield, and requirements for future work are presented. Overall, given the proper blade dynamics, this method can compute the unsteady flowfield of a general helicopter rotor in forward flight.

  10. Time Domain Surface Integral Equation Solvers for Quantum Corrected Electromagnetic Analysis of Plasmonic Nanostructures

    KAUST Repository

    Uysal, Ismail Enes

    2016-10-01

    Plasmonic structures are utilized in many applications ranging from bio-medicine to solar energy generation and transfer. Numerical schemes capable of solving equations of classical electrodynamics have been the method of choice for characterizing scattering properties of such structures. However, as dimensions of these plasmonic structures reduce to nanometer scale, quantum mechanical effects start to appear. These effects cannot be accurately modeled by available classical numerical methods. One of these quantum effects is the tunneling, which is observed when two structures are located within a sub-nanometer distance of each other. At these small distances electrons “jump" from one structure to another and introduce a path for electric current to flow. Classical equations of electrodynamics and the schemes used for solving them do not account for this additional current path. This limitation can be lifted by introducing an auxiliary tunnel with material properties obtained using quantum models and applying a classical solver to the structures connected by this auxiliary tunnel. Early work on this topic focused on quantum models that are generated using a simple one-dimensional wave function to find the tunneling probability and assume a simple Drude model for the permittivity of the tunnel. These tunnel models are then used together with a classical frequency domain solver. In this thesis, a time domain surface integral equation solver for quantum corrected analysis of transient plasmonic interactions is proposed. This solver has several advantages: (i) As opposed to frequency domain solvers, it provides results at a broad band of frequencies with a single simulation. (ii) As opposed to differential equation solvers, it only discretizes surfaces (reducing number of unknowns), enforces the radiation condition implicitly (increasing the accuracy), and allows for time step selection independent of spatial discretization (increasing efficiency). The quantum model

  11. A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Fakhari, Abbas, E-mail: afakhari@nd.edu [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Geier, Martin [TU Braunschweig, Institute for Computational Modeling in Civil Engineering (iRMB), TU-Braunschweig, Pockelsstr. 3, 38106 Braunschweig (Germany); Lee, Taehun [Department of Mechanical Engineering, The City College of the City University of New York, New York, NY 10031 (United States)

    2016-06-15

    A mass-conserving lattice Boltzmann method (LBM) for multiphase flows is presented in this paper. The proposed LBM improves a previous model (Lee and Liu, 2010 [21]) in terms of mass conservation, speed-up, and efficiency, and also extends its capabilities for implementation on non-uniform grids. The presented model consists of a phase-field lattice Boltzmann equation (LBE) for tracking the interface between different fluids and a pressure-evolution LBM for recovering the hydrodynamic properties. In addition to the mass conservation property and the simplicity of the algorithm, the advantages of the current phase-field LBE are that it is an order of magnitude faster than the previous interface tracking LBE proposed by Lee and Liu (2010) [21] and it requires less memory resources for data storage. Meanwhile, the pressure-evolution LBM is equipped with a multi-relaxation-time (MRT) collision operator to facilitate attainability of small relaxation rates thereby allowing simulation of multiphase flows at higher Reynolds numbers. Additionally, we reformulate the presented MRT-LBM on nonuniform grids within an adaptive mesh refinement (AMR) framework. Various benchmark studies such as a rising bubble and a falling drop under buoyancy, droplet splashing on a wet surface, and droplet coalescence onto a fluid interface are conducted to examine the accuracy and versatility of the proposed AMR-LBM. The proposed model is further validated by comparing the results with other LB models on uniform grids. A factor of about 20 in savings of computational resources is achieved by using the proposed AMR-LBM. As a more demanding application, the Kelvin–Helmholtz instability (KHI) of a shear-layer flow is investigated for both density-matched and density-stratified binary fluids. The KHI results of the density-matched fluids are shown to be in good agreement with the benchmark AMR results based on the sharp-interface approach. When a density contrast between the two fluids exists, a

  12. A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows

    International Nuclear Information System (INIS)

    Fakhari, Abbas; Geier, Martin; Lee, Taehun

    2016-01-01

    A mass-conserving lattice Boltzmann method (LBM) for multiphase flows is presented in this paper. The proposed LBM improves a previous model (Lee and Liu, 2010 [21]) in terms of mass conservation, speed-up, and efficiency, and also extends its capabilities for implementation on non-uniform grids. The presented model consists of a phase-field lattice Boltzmann equation (LBE) for tracking the interface between different fluids and a pressure-evolution LBM for recovering the hydrodynamic properties. In addition to the mass conservation property and the simplicity of the algorithm, the advantages of the current phase-field LBE are that it is an order of magnitude faster than the previous interface tracking LBE proposed by Lee and Liu (2010) [21] and it requires less memory resources for data storage. Meanwhile, the pressure-evolution LBM is equipped with a multi-relaxation-time (MRT) collision operator to facilitate attainability of small relaxation rates thereby allowing simulation of multiphase flows at higher Reynolds numbers. Additionally, we reformulate the presented MRT-LBM on nonuniform grids within an adaptive mesh refinement (AMR) framework. Various benchmark studies such as a rising bubble and a falling drop under buoyancy, droplet splashing on a wet surface, and droplet coalescence onto a fluid interface are conducted to examine the accuracy and versatility of the proposed AMR-LBM. The proposed model is further validated by comparing the results with other LB models on uniform grids. A factor of about 20 in savings of computational resources is achieved by using the proposed AMR-LBM. As a more demanding application, the Kelvin–Helmholtz instability (KHI) of a shear-layer flow is investigated for both density-matched and density-stratified binary fluids. The KHI results of the density-matched fluids are shown to be in good agreement with the benchmark AMR results based on the sharp-interface approach. When a density contrast between the two fluids exists, a

  13. HypGrid2D. A 2-d mesh generator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, N N

    1998-03-01

    The implementation of a hyperbolic mesh generation procedure, based on an equation for orthogonality and an equation for the cell face area is described. The method is fast, robust and gives meshes with good smoothness and orthogonality. The procedure is implemented in a program called HypGrid2D. The HypGrid2D program is capable of generating C-, O- and `H`-meshes for use in connection with the EllipSys2D Navier-Stokes solver. To illustrate the capabilities of the program, some test examples are shown. First a series of C-meshes are generated around a NACA-0012 airfoil. Secondly a series of O-meshes are generated around a NACA-65-418 airfoil. Finally `H`-meshes are generated over a Gaussian hill and a linear escarpment. (au)

  14. Solution of Poisson equations for 3-dimensional grid generations. [computations of a flow field over a thin delta wing

    Science.gov (United States)

    Fujii, K.

    1983-01-01

    A method for generating three dimensional, finite difference grids about complicated geometries by using Poisson equations is developed. The inhomogenous terms are automatically chosen such that orthogonality and spacing restrictions at the body surface are satisfied. Spherical variables are used to avoid the axis singularity, and an alternating-direction-implicit (ADI) solution scheme is used to accelerate the computations. Computed results are presented that show the capability of the method. Since most of the results presented have been used as grids for flow-field computations, this is indicative that the method is a useful tool for generating three-dimensional grids about complicated geometries.

  15. Aggregation server for grid-integrated vehicles

    Science.gov (United States)

    Kempton, Willett

    2015-05-26

    Methods, systems, and apparatus for aggregating electric power flow between an electric grid and electric vehicles are disclosed. An apparatus for aggregating power flow may include a memory and a processor coupled to the memory to receive electric vehicle equipment (EVE) attributes from a plurality of EVEs, aggregate EVE attributes, predict total available capacity based on the EVE attributes, and dispatch at least a portion of the total available capacity to the grid. Power flow may be aggregated by receiving EVE operational parameters from each EVE, aggregating the received EVE operational parameters, predicting total available capacity based on the aggregated EVE operational parameters, and dispatching at least a portion of the total available capacity to the grid.

  16. Communication technologies in smart grid

    Directory of Open Access Journals (Sweden)

    Miladinović Nikola

    2013-01-01

    Full Text Available The role of communication technologies in Smart Grid lies in integration of large number of devices into one telecommunication system. This paper provides an overview of the technologies currently in use in electric power grid, that are not necessarily in compliance with the Smart Grid concept. Considering that the Smart Grid is open to the flow of information in all directions, it is necessary to provide reliability, protection and security of information.

  17. BCYCLIC: A parallel block tridiagonal matrix cyclic solver

    Science.gov (United States)

    Hirshman, S. P.; Perumalla, K. S.; Lynch, V. E.; Sanchez, R.

    2010-09-01

    A block tridiagonal matrix is factored with minimal fill-in using a cyclic reduction algorithm that is easily parallelized. Storage of the factored blocks allows the application of the inverse to multiple right-hand sides which may not be known at factorization time. Scalability with the number of block rows is achieved with cyclic reduction, while scalability with the block size is achieved using multithreaded routines (OpenMP, GotoBLAS) for block matrix manipulation. This dual scalability is a noteworthy feature of this new solver, as well as its ability to efficiently handle arbitrary (non-powers-of-2) block row and processor numbers. Comparison with a state-of-the art parallel sparse solver is presented. It is expected that this new solver will allow many physical applications to optimally use the parallel resources on current supercomputers. Example usage of the solver in magneto-hydrodynamic (MHD), three-dimensional equilibrium solvers for high-temperature fusion plasmas is cited.

  18. Optimal Water-Power Flow Problem: Formulation and Distributed Optimal Solution

    Energy Technology Data Exchange (ETDEWEB)

    Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zamzam, Admed S. [University of Minnesota; Sidiropoulos, Nicholas D. [University of Minnesota; Taylor, Josh A. [University of Toronto

    2018-01-12

    This paper formalizes an optimal water-power flow (OWPF) problem to optimize the use of controllable assets across power and water systems while accounting for the couplings between the two infrastructures. Tanks and pumps are optimally managed to satisfy water demand while improving power grid operations; {for the power network, an AC optimal power flow formulation is augmented to accommodate the controllability of water pumps.} Unfortunately, the physics governing the operation of the two infrastructures and coupling constraints lead to a nonconvex (and, in fact, NP-hard) problem; however, after reformulating OWPF as a nonconvex, quadratically-constrained quadratic problem, a feasible point pursuit-successive convex approximation approach is used to identify feasible and optimal solutions. In addition, a distributed solver based on the alternating direction method of multipliers enables water and power operators to pursue individual objectives while respecting the couplings between the two networks. The merits of the proposed approach are demonstrated for the case of a distribution feeder coupled with a municipal water distribution network.

  19. Turbulent premixed flames on fractal-grid-generated turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Soulopoulos, N; Kerl, J; Sponfeldner, T; Beyrau, F; Hardalupas, Y; Taylor, A M K P [Mechanical Engineering Department, Imperial College London, London SW7 2AZ (United Kingdom); Vassilicos, J C, E-mail: ns6@ic.ac.uk [Department of Aeronautics, Imperial College London, London SW7 2AZ (United Kingdom)

    2013-12-15

    A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent flame stabilized by a rod. The study compares the flame behaviour with a fractal grid to the behaviour when a standard square mesh grid with the same effective mesh size and solidity as the fractal grid is used. The isothermal gas flow turbulence characteristics, including mean flow velocity and rms of velocity fluctuations and Taylor length, were evaluated from hot-wire measurements. The behaviour of the flames was assessed with direct chemiluminescence emission from the flame and high-speed OH-laser-induced fluorescence. The characteristics of the two flames are considered in terms of turbulent flame thickness, local flame curvature and turbulent flame speed. It is found that, for the same flow rate and stoichiometry and at the same distance downstream of the location of the grid, fractal-grid-generated turbulence leads to a more turbulent flame with enhanced burning rate and increased flame surface area. (paper)

  20. Modern solvers for Helmholtz problems

    CERN Document Server

    Tang, Jok; Vuik, Kees

    2017-01-01

    This edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz equation. The book consists of three parts: new developments and analysis in Helmholtz solvers, practical methods and implementations of Helmholtz solvers, and industrial applications. The Helmholtz equation appears in a wide range of science and engineering disciplines in which wave propagation is modeled. Examples are: seismic inversion, ultrasone medical imaging, sonar detection of submarines, waves in harbours and many more. The partial differential equation looks simple but is hard to solve. In order to approximate the solution of the problem numerical methods are needed. First a discretization is done. Various methods can be used: (high order) Finite Difference Method, Finite Element Method, Discontinuous Galerkin Method and Boundary Element Method. The resulting linear system is large, where the size of the problem increases with increasing frequency. Due to higher frequencies the seismic images need to b...

  1. Preconditioned conjugate-gradient methods for low-speed flow calculations

    Science.gov (United States)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing

    1993-01-01

    An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations is integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the Lower-Upper Successive Symmetric Over-Relaxation iterative scheme is more efficient than a preconditioner based on Incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional Line Gauss-Seidel Relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.

  2. Preconditioned Conjugate Gradient methods for low speed flow calculations

    Science.gov (United States)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing

    1993-01-01

    An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations are integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and the convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the lower-upper (L-U)-successive symmetric over-relaxation iterative scheme is more efficient than a preconditioner based on incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional line Gauss-Seidel relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.

  3. Differences in the Processes of Solving Physics Problems between Good Physics Problem Solvers and Poor Physics Problem Solvers.

    Science.gov (United States)

    Finegold, M.; Mass, R.

    1985-01-01

    Good problem solvers and poor problem solvers in advanced physics (N=8) were significantly different in their ability in translating, planning, and physical reasoning, as well as in problem solving time; no differences in reliance on algebraic solutions and checking problems were noted. Implications for physics teaching are discussed. (DH)

  4. A finite different field solver for dipole modes

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1992-08-01

    A finite element field solver for dipole modes in axisymmetric structures has been written. The second-order elements used in this formulation yield accurate mode frequencies with no spurious modes. Quasi-periodic boundaries are included to allow travelling waves in periodic structures. The solver is useful in applications requiring precise frequency calculations such as detuned accelerator structures for linear colliders. Comparisons are made with measurements and with the popular but less accurate field solver URMEL

  5. Validation of numerical solvers for liquid metal flow in a complex geometry in the presence of a strong magnetic field

    Science.gov (United States)

    Patel, Anita; Pulugundla, Gautam; Smolentsev, Sergey; Abdou, Mohamed; Bhattacharyay, Rajendraprasad

    2018-04-01

    Following the magnetohydrodynamic (MHD) code validation and verification proposal by Smolentsev et al. (Fusion Eng Des 100:65-72, 2015), we perform code to code and code to experiment comparisons between two computational solvers, FLUIDYN and HIMAG, which are presently considered as two of the prospective CFD tools for fusion blanket applications. In such applications, an electrically conducting breeder/coolant circulates in the blanket ducts in the presence of a strong plasma-confining magnetic field at high Hartmann numbers, it{Ha} (it{Ha}^2 is the ratio between electromagnetic and viscous forces) and high interaction parameters, it{N} (it{N} is the ratio of electromagnetic to inertial forces). The main objective of this paper is to provide the scientific and engineering community with common references to assist fusion researchers in the selection of adequate computational means to be used for blanket design and analysis. As an initial validation case, the two codes are applied to the classic problem of a laminar fully developed MHD flows in a rectangular duct. Both codes demonstrate a very good agreement with the analytical solution for it{Ha} up to 15, 000. To address the capabilities of the two codes to properly resolve complex geometry flows, we consider a case of three-dimensional developing MHD flow in a geometry comprising of a series of interconnected electrically conducting rectangular ducts. The computed electric potential distributions for two flows (Case A) it{Ha}=515, it{N}=3.2 and (Case B) it{Ha}=2059, it{N}=63.8 are in very good agreement with the experimental data, while the comparisons for the MHD pressure drop are still unsatisfactory. To better interpret the observed differences, the obtained numerical data are analyzed against earlier theoretical and experimental studies for flows that involve changes in the relative orientation between the flow and the magnetic field.

  6. Operation and Power Flow Control of Multi-Terminal DC Networks for Grid Integration of Offshore Wind Farms Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Rodrigo Teixeira Pinto

    2012-12-01

    Full Text Available For achieving the European renewable electricity targets, a significant contribution is foreseen to come from offshore wind energy. Considering the large scale of the future planned offshore wind farms and the increasing distances to shore, grid integration through a transnational DC network is desirable for several reasons. This article investigates a nine-node DC grid connecting three northern European countries — namely UK, The Netherlands and Germany. The power-flow control inside the multi-terminal DC grid based on voltage-source converters is achieved through a novel method, called distributed voltage control (DVC. In this method, an optimal power flow (OPF is solved in order to minimize the transmission losses in the network. The main contribution of the paper is the utilization of a genetic algorithm (GA to solve the OPF problem while maintaining an N-1 security constraint. After describing main DC network component models, several case studies illustrate the dynamic behavior of the proposed control method.

  7. MODFLOW–LGR—Documentation of ghost node local grid refinement (LGR2) for multiple areas and the boundary flow and head (BFH2) package

    Science.gov (United States)

    Mehl, Steffen W.; Hill, Mary C.

    2013-01-01

    This report documents the addition of ghost node Local Grid Refinement (LGR2) to MODFLOW-2005, the U.S. Geological Survey modular, transient, three-dimensional, finite-difference groundwater flow model. LGR2 provides the capability to simulate groundwater flow using multiple block-shaped higher-resolution local grids (a child model) within a coarser-grid parent model. LGR2 accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the grid-refinement interface boundary. LGR2 can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined groundwater systems. Traditional one-way coupled telescopic mesh refinement methods can have large, often undetected, inconsistencies in heads and fluxes across the interface between two model grids. The iteratively coupled ghost-node method of LGR2 provides a more rigorous coupling in which the solution accuracy is controlled by convergence criteria defined by the user. In realistic problems, this can result in substantially more accurate solutions and require an increase in computer processing time. The rigorous coupling enables sensitivity analysis, parameter estimation, and uncertainty analysis that reflects conditions in both model grids. This report describes the method used by LGR2, evaluates accuracy and performance for two-and three-dimensional test cases, provides input instructions, and lists selected input and output files for an example problem. It also presents the Boundary Flow and Head (BFH2) Package, which allows the child and parent models to be simulated independently using the boundary conditions obtained through the iterative process of LGR2.

  8. SU-E-T-22: A Deterministic Solver of the Boltzmann-Fokker-Planck Equation for Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, X; Gao, H [Shanghai Jiao Tong University, Shanghai, Shanghai (China); Paganetti, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: The Boltzmann-Fokker-Planck equation (BFPE) accurately models the migration of photons/charged particles in tissues. While the Monte Carlo (MC) method is popular for solving BFPE in a statistical manner, we aim to develop a deterministic BFPE solver based on various state-of-art numerical acceleration techniques for rapid and accurate dose calculation. Methods: Our BFPE solver is based on the structured grid that is maximally parallelizable, with the discretization in energy, angle and space, and its cross section coefficients are derived or directly imported from the Geant4 database. The physical processes that are taken into account are Compton scattering, photoelectric effect, pair production for photons, and elastic scattering, ionization and bremsstrahlung for charged particles.While the spatial discretization is based on the diamond scheme, the angular discretization synergizes finite element method (FEM) and spherical harmonics (SH). Thus, SH is used to globally expand the scattering kernel and FFM is used to locally discretize the angular sphere. As a Result, this hybrid method (FEM-SH) is both accurate in dealing with forward-peaking scattering via FEM, and efficient for multi-energy-group computation via SH. In addition, FEM-SH enables the analytical integration in energy variable of delta scattering kernel for elastic scattering with reduced truncation error from the numerical integration based on the classic SH-based multi-energy-group method. Results: The accuracy of the proposed BFPE solver was benchmarked against Geant4 for photon dose calculation. In particular, FEM-SH had improved accuracy compared to FEM, while both were within 2% of the results obtained with Geant4. Conclusion: A deterministic solver of the Boltzmann-Fokker-Planck equation is developed for dose calculation, and benchmarked against Geant4. Xiang Hong and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang

  9. MINOS: A simplified Pn solver for core calculation

    International Nuclear Information System (INIS)

    Baudron, A.M.; Lautard, J.J.

    2007-01-01

    This paper describes a new generation of the neutronic core solver MINOS resulting from developments done in the DESCARTES project. For performance reasons, the numerical method of the existing MINOS solver in the SAPHYR system has been reused in the new system. It is based on the mixed-dual finite element approximation of the simplified transport equation. We have extended the previous method to the treatment of unstructured geometries composed by quadrilaterals, allowing us to treat geometries where fuel pins are exactly represented. For Cartesian geometries, the solver takes into account assembly discontinuity coefficients in the simplified P n context. The solver has been rewritten in C + + programming language using an object-oriented design. Its general architecture was reconsidered in order to improve its capability of evolution and its maintainability. Moreover, the performance of the previous version has been improved mainly regarding the matrix construction time; this result improves significantly the performance of the solver in the context of industrial application requiring thermal-hydraulic feedback and depletion calculations. (authors)

  10. Shallow-water sloshing in a moving vessel with variable cross-section and wetting-drying using an extension of George's well-balanced finite volume solver

    Science.gov (United States)

    Alemi Ardakani, Hamid; Bridges, Thomas J.; Turner, Matthew R.

    2016-06-01

    A class of augmented approximate Riemann solvers due to George (2008) [12] is extended to solve the shallow-water equations in a moving vessel with variable bottom topography and variable cross-section with wetting and drying. A class of Roe-type upwind solvers for the system of balance laws is derived which respects the steady-state solutions. The numerical solutions of the new adapted augmented f-wave solvers are validated against the Roe-type solvers. The theory is extended to solve the shallow-water flows in moving vessels with arbitrary cross-section with influx-efflux boundary conditions motivated by the shallow-water sloshing in the ocean wave energy converter (WEC) proposed by Offshore Wave Energy Ltd. (OWEL) [1]. A fractional step approach is used to handle the time-dependent forcing functions. The numerical solutions are compared to an extended new Roe-type solver for the system of balance laws with a time-dependent source function. The shallow-water sloshing finite volume solver can be coupled to a Runge-Kutta integrator for the vessel motion.

  11. Test set for initial value problem solvers

    NARCIS (Netherlands)

    W.M. Lioen (Walter); J.J.B. de Swart (Jacques)

    1998-01-01

    textabstractThe CWI test set for IVP solvers presents a collection of Initial Value Problems to test solvers for implicit differential equations. This test set can both decrease the effort for the code developer to test his software in a reliable way, and cross the bridge between the application

  12. Preliminary applications of the new Neptune two-phase CFD solver to pressurized thermal shock investigations

    International Nuclear Information System (INIS)

    Boucker, M.; Laviaville, J.; Martin, A.; Bechaud, C.; Bestion, D.; Coste, P.

    2004-01-01

    The objective of this communication is to present some preliminary applications to pressurized thermal shock (PTS) investigations of the CFD (Computational Fluid Dynamics) two-phase flow solver of the new NEPTUNE thermal-hydraulics platform. In the framework of plant life extension, the Reactor Pressure Vessel (RPV) integrity is a major concern, and an important part of RPV integrity assessment is related to PTS analysis. In the case where the cold legs are partially filled with steam, it becomes a two-phase problem and new important effects occur, such as condensation due to the Emergency Core Cooling (ECC) injections of sub-cooled water. Thus, an advanced prediction of RPV thermal loading during these transients requires sophisticated two-phase, local scale, 3-dimensional codes. In that purpose, a program has been set up to extend the capabilities of the NEPTUNE two-phase CFD solver. A simple set of turbulence and condensation model for free surface steam-water flow has been tested in simulation of an ECC high pressure injection representing facility, using a full 3-dimensional mesh and the new NEPTUNE solver. Encouraging results have been obtained but it should be noticed that several sources of error can compensate for one another. Nevertheless, the computation presented here allows to be reasonable confident in the use of two-phase CFD in order to carry out refined analysis of two-phase PTS scenarios within the next years

  13. AMPS: An Augmented Matrix Formulation for Principal Submatrix Updates with Application to Power Grids

    Energy Technology Data Exchange (ETDEWEB)

    Yeung, Yu-Hong; Pothen, Alex; Halappanavar, Mahantesh; Huang, Zhenyu

    2017-10-09

    We present an augmented matrix approach to update the solution to a linear system of equations when the coefficient matrix is modified by a few elements within a principal submatrix. This problem arises in the dynamic security analysis of a power grid, where operators need to perform $N-x$ contingency analysis, i.e., determine the state of the system when up to $x$ links from $N$ fail. Our algorithms augment the coefficient matrix to account for the changes in it, and then compute the solution to the augmented system without refactoring the modified matrix. We provide two algorithms, a direct method, and a hybrid direct-iterative method for solving the augmented system. We also exploit the sparsity of the matrices and vectors to accelerate the overall computation. Our algorithms are compared on three power grids with PARDISO, a parallel direct solver, and CHOLMOD, a direct solver with the ability to modify the Cholesky factors of the coefficient matrix. We show that our augmented algorithms outperform PARDISO (by two orders of magnitude), and CHOLMOD (by a factor of up to 5). Further, our algorithms scale better than CHOLMOD as the number of elements updated increases. The solutions are computed with high accuracy. Our algorithms are capable of computing $N-x$ contingency analysis on a $778K$ bus grid, updating a solution with $x=20$ elements in $1.6 \\times 10^{-2}$ seconds on an Intel Xeon processor.

  14. Riemann solvers for multi-component gas mixtures with temperature dependent heat capacities

    International Nuclear Information System (INIS)

    Beccantini, A.

    2001-01-01

    This thesis represents a contribution to the development of upwind splitting schemes for the Euler equations for ideal gaseous mixtures and their investigation in computing multidimensional flows in irregular geometries. In the preliminary part we develop and investigate the parameterization of the shock and rarefaction curves in the phase space. Then, we apply them to perform some field-by-field decompositions of the Riemann problem: the entropy-respecting one, the one which supposes that genuinely-non-linear (GNL) waves are both shocks (shock-shock one) and the one which supposes that GNL waves are both rarefactions (rarefaction-rarefaction one). We emphasize that their analysis is fundamental in Riemann solvers developing: the simpler the field-by-field decomposition, the simpler the Riemann solver based on it. As the specific heat capacities of the gases depend on the temperature, the shock-shock field-by-field decomposition is the easiest to perform. Then, in the second part of the thesis, we develop an upwind splitting scheme based on such decomposition. Afterwards, we investigate its robustness, precision and CPU-time consumption, with respect to some of the most popular upwind splitting schemes for polytropic/non-polytropic ideal gases. 1-D test-cases show that this scheme is both precise (exact capturing of stationary shock and stationary contact) and robust in dealing with strong shock and rarefaction waves. Multidimensional test-cases show that it suffers from some of the typical deficiencies which affect the upwind splitting schemes capable of exact capturing stationary contact discontinuities i.e the developing of non-physical instabilities in computing strong shock waves. In the final part, we use the high-order multidimensional solver here developed to compute fully-developed detonation flows. (author)

  15. A finite element field solver for dipole modes

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1992-01-01

    A finite element field solver for dipole modes in axisymmetric structures has been written. The second-order elements used in this formulation yield accurate mode frequencies with no spurious modes. Quasi-periodic boundaries are included to allow travelling waves in periodic structures. The solver is useful in applications requiring precise frequency calculations such as detuned accelerator structures for linear colliders. Comparisons are made with measurements and with the popular but less accurate field solver URMEL. (author). 7 refs., 4 figs

  16. Application of GPU to Multi-interfaces Advection and Reconstruction Solver (MARS)

    International Nuclear Information System (INIS)

    Nagatake, Taku; Takase, Kazuyuki; Kunugi, Tomoaki

    2010-01-01

    In the nuclear engineering fields, a high performance computer system is necessary to perform the large scale computations. Recently, a Graphics Processing Unit (GPU) has been developed as a rendering computational system in order to reduce a Central Processing Unit (CPU) load. In the graphics processing, the high performance computing is needed to render the high-quality 3D objects in some video games. Thus the GPU consists of many processing units and a wide memory bandwidth. In this study, the Multi-interfaces Advection and Reconstruction Solver (MARS) which is one of the interface volume tracking methods for multi-phase flows has been performed. The multi-phase flow computation is very important for the nuclear reactors and other engineering fields. The MARS consists of two computing parts: the interface tracking part and the fluid motion computing part. As for the interface tracking part, the performance of GPU (GTX280) was 6 times faster than that of the CPU (Dual-Xeon 5040), and in the fluid motion computing part the Poisson Solver by the GPU (GTX285) was 22 times faster than that by the CPU(Core i7). As for the Dam Breaking Problem, the result of GPU-MARS showed slightly different from the experimental result. Because the GPU-MARS was developed using the single-precision GPU, it can be considered that the round-off error might be accumulated. (author)

  17. Wind-US Users Guide Version 3.0

    Science.gov (United States)

    Yoder, Dennis A.

    2016-01-01

    Wind-US is a computational platform which may be used to numerically solve various sets of equations governing physical phenomena. Currently, the code supports the solution of the Euler and Navier-Stokes equations of fluid mechanics, along with supporting equation sets governing turbulent and chemically reacting flows. Wind-US is a product of the NPARC Alliance, a partnership between the NASA Glenn Research Center (GRC) and the Arnold Engineering Development Complex (AEDC) dedicated to the establishment of a national, applications-oriented flow simulation capability. The Boeing Company has also been closely associated with the Alliance since its inception, and represents the interests of the NPARC User's Association. The "Wind-US User's Guide" describes the operation and use of Wind-US, including: a basic tutorial; the physical and numerical models that are used; the boundary conditions; monitoring convergence; the files that are read and/or written; parallel execution; and a complete list of input keywords and test options. For current information about Wind-US and the NPARC Alliance, please see the Wind-US home page at http://www.grc.nasa.gov/WWW/winddocs/ and the NPARC Alliance home page at http://www.grc.nasa.gov/WWW/wind/. This manual describes the operation and use of Wind-US, a computational platform which may be used to numerically solve various sets of equations governing physical phenomena. Wind-US represents a merger of the capabilities of four CFD codes - NASTD (a structured grid flow solver developed at McDonnell Douglas, now part of Boeing), NPARC (the original NPARC Alliance structured grid flow solver), NXAIR (an AEDC structured grid code used primarily for store separation analysis), and ICAT (an unstructured grid flow solver developed at the Rockwell Science Center and Boeing).

  18. An Efficient and Robust Method for Lagrangian Magnetic Particle Tracking in Fluid Flow Simulations on Unstructured Grids

    NARCIS (Netherlands)

    Cohen Stuart, D.C.; Kleijn, C.R.; Kenjeres, S.

    2010-01-01

    In this paper we report on a newly developed particle tracking scheme for fluid flow simulations on 3D unstructured grids, aiming to provide detailed insights in the particle behaviour in complex geometries. A possible field of applications is the Magnetic Drug Targeting (MDT) technique, on which

  19. Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed.

    Science.gov (United States)

    Channegowda, M; Nejabati, R; Rashidi Fard, M; Peng, S; Amaya, N; Zervas, G; Simeonidou, D; Vilalta, R; Casellas, R; Martínez, R; Muñoz, R; Liu, L; Tsuritani, T; Morita, I; Autenrieth, A; Elbers, J P; Kostecki, P; Kaczmarek, P

    2013-03-11

    Software defined networking (SDN) and flexible grid optical transport technology are two key technologies that allow network operators to customize their infrastructure based on application requirements and therefore minimizing the extra capital and operational costs required for hosting new applications. In this paper, for the first time we report on design, implementation & demonstration of a novel OpenFlow based SDN unified control plane allowing seamless operation across heterogeneous state-of-the-art optical and packet transport domains. We verify and experimentally evaluate OpenFlow protocol extensions for flexible DWDM grid transport technology along with its integration with fixed DWDM grid and layer-2 packet switching.

  20. Effects of grid spacer with mixing vane on entrainments and depositions in two-phase annular flows

    Directory of Open Access Journals (Sweden)

    Akimaro Kawahara

    2015-06-01

    Full Text Available The effects of mixing vanes (MVs attached to a grid spacer on the characteristics of air–water annular flows were experimentally investigated. To know the effects, a grid spacer with or without MV was inserted in a vertical circular pipe of 16-mm internal diameter. For three cases (i.e., no spacer, spacer without MV, and spacer with MV, the liquid film thickness, liquid entrainment fraction, and deposition rate were measured by the constant current method, single liquid film extraction method, and double liquid film extraction method, respectively. The MVs significantly promote the re-deposition of liquid droplets in the gas core flow into the liquid film on the channel walls. The deposition mass transfer coefficient is three times higher for the spacer with MV than for the spacer without MV, even for cases 0.3-m downstream from the spacer. The liquid film thickness becomes thicker upstream and downstream for the spacer with MV, compared with the thickness for the spacer without MV and for the case with no spacer.

  1. Learning Domain-Specific Heuristics for Answer Set Solvers

    OpenAIRE

    Balduccini, Marcello

    2010-01-01

    In spite of the recent improvements in the performance of Answer Set Programming (ASP) solvers, when the search space is sufficiently large, it is still possible for the search algorithm to mistakenly focus on areas of the search space that contain no solutions or very few. When that happens, performance degrades substantially, even to the point that the solver may need to be terminated before returning an answer. This prospect is a concern when one is considering using such a solver in an in...

  2. Speeding up the flash calculations in two-phase compositional flow simulations - The application of sparse grids

    KAUST Repository

    Wu, Yuanqing

    2015-03-01

    Flash calculations have become a performance bottleneck in the simulation of compositional flow in subsurface reservoirs. We apply a sparse grid surrogate model to substitute the flash calculation and thus try to remove the bottleneck from the reservoir simulation. So instead of doing a flash calculation in each time step of the simulation, we just generate a sparse grid approximation of all possible results of the flash calculation before the reservoir simulation. Then we evaluate the constructed surrogate model to approximate the values of the flash calculation results from this surrogate during the simulations. The execution of the true flash calculation has been shifted from the online phase during the simulation to the offline phase before the simulation. Sparse grids are known to require only few unknowns in order to obtain good approximation qualities. In conjunction with local adaptivity, sparse grids ensure that the accuracy of the surrogate is acceptable while keeping the memory usage small by only storing a minimal amount of values for the surrogate. The accuracy of the sparse grid surrogate during the reservoir simulation is compared to the accuracy of using a surrogate based on regular Cartesian grids and the original flash calculation. The surrogate model improves the speed of the flash calculations and the simulation of the whole reservoir. In an experiment, it is shown that the speed of the online flash calculations is increased by about 2000 times and as a result the speed of the reservoir simulations has been enhanced by 21 times in the best conditions.

  3. Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes

    Science.gov (United States)

    Batina, John T.

    1990-01-01

    Improved algorithm for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements were developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration scheme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. A description of the Euler solvers is presented along with results and comparisons which assess the capability.

  4. A Simple GPU-Accelerated Two-Dimensional MUSCL-Hancock Solver for Ideal Magnetohydrodynamics

    Science.gov (United States)

    Bard, Christopher; Dorelli, John C.

    2013-01-01

    We describe our experience using NVIDIA's CUDA (Compute Unified Device Architecture) C programming environment to implement a two-dimensional second-order MUSCL-Hancock ideal magnetohydrodynamics (MHD) solver on a GTX 480 Graphics Processing Unit (GPU). Taking a simple approach in which the MHD variables are stored exclusively in the global memory of the GTX 480 and accessed in a cache-friendly manner (without further optimizing memory access by, for example, staging data in the GPU's faster shared memory), we achieved a maximum speed-up of approx. = 126 for a sq 1024 grid relative to the sequential C code running on a single Intel Nehalem (2.8 GHz) core. This speedup is consistent with simple estimates based on the known floating point performance, memory throughput and parallel processing capacity of the GTX 480.

  5. Numerical simulation of a hovering rotor using embedded grids

    Science.gov (United States)

    Duque, Earl-Peter N.; Srinivasan, Ganapathi R.

    1992-01-01

    The flow field for a rotor blade in hover was computed by numerically solving the compressible thin-layer Navier-Stokes equations on embedded grids. In this work, three embedded grids were used to discretize the flow field - one for the rotor blade and two to convect the rotor wake. The computations were performed at two hovering test conditions, for a two-bladed rectangular rotor of aspect ratio six. The results compare fairly with experiment and illustrates the use of embedded grids in solving helicopter type flow fields.

  6. Acceleration of FDTD mode solver by high-performance computing techniques.

    Science.gov (United States)

    Han, Lin; Xi, Yanping; Huang, Wei-Ping

    2010-06-21

    A two-dimensional (2D) compact finite-difference time-domain (FDTD) mode solver is developed based on wave equation formalism in combination with the matrix pencil method (MPM). The method is validated for calculation of both real guided and complex leaky modes of typical optical waveguides against the bench-mark finite-difference (FD) eigen mode solver. By taking advantage of the inherent parallel nature of the FDTD algorithm, the mode solver is implemented on graphics processing units (GPUs) using the compute unified device architecture (CUDA). It is demonstrated that the high-performance computing technique leads to significant acceleration of the FDTD mode solver with more than 30 times improvement in computational efficiency in comparison with the conventional FDTD mode solver running on CPU of a standard desktop computer. The computational efficiency of the accelerated FDTD method is in the same order of magnitude of the standard finite-difference eigen mode solver and yet require much less memory (e.g., less than 10%). Therefore, the new method may serve as an efficient, accurate and robust tool for mode calculation of optical waveguides even when the conventional eigen value mode solvers are no longer applicable due to memory limitation.

  7. Conjunction of 2D and 3D modified flow solvers for simulating spatio-temporal wind induced hydrodynamics in the Caspian Sea

    Science.gov (United States)

    Zounemat-Kermani, Mohammad; Sabbagh-Yazdi, Saeed-Reza

    2010-06-01

    The main objective of this study is the simulation of flow dynamics in the deep parts of the Caspian Sea, in which the southern and middle deep regions are surrounded by considerable areas of shallow zones. To simulate spatio-temporal wind induced hydrodynamics in deep waters, a conjunctive numerical model consisting of a 2D depth average model and a 3D pseudo compressible model is proposed. The 2D model is applied to determine time dependent free surface oscillations as well as the surface velocity patterns and is conjunct to the 3D flow solver for computing three-dimensional velocity and pressure fields which coverage to steady state for the top boundary condition. The modified 2D and 3D sets of equations are conjunct considering interface shear stresses. Both sets of 2D and 3D equations are solved on unstructured triangular and tetrahedral meshes using the Galerkin Finite Volume Method. The conjunctive model is utilized to investigate the deep currents affected by wind, Coriolis forces and the river inflow conditions of the Caspian Sea. In this study, the simulation of flow field due to major winds as well as transient winds in the Caspian Sea during a period of 6 hours in the winter season has been conducted and the numerical results for water surface level are then compared to the 2D numerical results.

  8. P-CSI v1.0, an accelerated barotropic solver for the high-resolution ocean model component in the Community Earth System Model v2.0

    Directory of Open Access Journals (Sweden)

    X. Huang

    2016-11-01

    Full Text Available In the Community Earth System Model (CESM, the ocean model is computationally expensive for high-resolution grids and is often the least scalable component for high-resolution production experiments. The major bottleneck is that the barotropic solver scales poorly at high core counts. We design a new barotropic solver to accelerate the high-resolution ocean simulation. The novel solver adopts a Chebyshev-type iterative method to reduce the global communication cost in conjunction with an effective block preconditioner to further reduce the iterations. The algorithm and its computational complexity are theoretically analyzed and compared with other existing methods. We confirm the significant reduction of the global communication time with a competitive convergence rate using a series of idealized tests. Numerical experiments using the CESM 0.1° global ocean model show that the proposed approach results in a factor of 1.7 speed-up over the original method with no loss of accuracy, achieving 10.5 simulated years per wall-clock day on 16 875 cores.

  9. Integrating PEVs with Renewables and the Grid

    Energy Technology Data Exchange (ETDEWEB)

    Meintz, Andrew; Markel, Tony; Jun, Myungsoo; Zhang, Jiucai

    2016-06-29

    This presentation is an overview of NREL's Electric Vehicle Grid Integration (EVGI) efforts toward integrating Plug-in Electric Vehicles (PEVs) with renewable energy and the grid. Efforts include managed charging, local power quality, emergency backup power, and bi-directional power flow. Discussion of future vehicle-related activities under the Grid Modernization Initiative by the Multi-Lab EV Smart Grid Working Group.

  10. Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction

    International Nuclear Information System (INIS)

    Li, Fei; Yu, Peicheng; Xu, Xinlu; Fiuza, Frederico; Decyk, Viktor K.

    2017-01-01

    In this study we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1^ direction). We show that this eliminates the main NCI modes with moderate |k_1|, while keeps additional main NCI modes well outside the range of physical interest with higher |k_1|. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1^ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss’ Law is satisfied. Lastly, we present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.

  11. Comparing direct and iterative equation solvers in a large structural analysis software system

    Science.gov (United States)

    Poole, E. L.

    1991-01-01

    Two direct Choleski equation solvers and two iterative preconditioned conjugate gradient (PCG) equation solvers used in a large structural analysis software system are described. The two direct solvers are implementations of the Choleski method for variable-band matrix storage and sparse matrix storage. The two iterative PCG solvers include the Jacobi conjugate gradient method and an incomplete Choleski conjugate gradient method. The performance of the direct and iterative solvers is compared by solving several representative structural analysis problems. Some key factors affecting the performance of the iterative solvers relative to the direct solvers are identified.

  12. An unstaggered central scheme on nonuniform grids for the simulation of a compressible two-phase flow model

    Energy Technology Data Exchange (ETDEWEB)

    Touma, Rony [Department of Computer Science & Mathematics, Lebanese American University, Beirut (Lebanon); Zeidan, Dia [School of Basic Sciences and Humanities, German Jordanian University, Amman (Jordan)

    2016-06-08

    In this paper we extend a central finite volume method on nonuniform grids to the case of drift-flux two-phase flow problems. The numerical base scheme is an unstaggered, non oscillatory, second-order accurate finite volume scheme that evolves a piecewise linear numerical solution on a single grid and uses dual cells intermediately while updating the numerical solution to avoid the resolution of the Riemann problems arising at the cell interfaces. We then apply the numerical scheme and solve a classical drift-flux problem. The obtained results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potential of the proposed scheme.

  13. Finite volume model for two-dimensional shallow environmental flow

    Science.gov (United States)

    Simoes, F.J.M.

    2011-01-01

    This paper presents the development of a two-dimensional, depth integrated, unsteady, free-surface model based on the shallow water equations. The development was motivated by the desire of balancing computational efficiency and accuracy by selective and conjunctive use of different numerical techniques. The base framework of the discrete model uses Godunov methods on unstructured triangular grids, but the solution technique emphasizes the use of a high-resolution Riemann solver where needed, switching to a simpler and computationally more efficient upwind finite volume technique in the smooth regions of the flow. Explicit time marching is accomplished with strong stability preserving Runge-Kutta methods, with additional acceleration techniques for steady-state computations. A simplified mass-preserving algorithm is used to deal with wet/dry fronts. Application of the model is made to several benchmark cases that show the interplay of the diverse solution techniques.

  14. Parallel Adaptive Mesh Refinement for High-Order Finite-Volume Schemes in Computational Fluid Dynamics

    Science.gov (United States)

    Schwing, Alan Michael

    For computational fluid dynamics, the governing equations are solved on a discretized domain of nodes, faces, and cells. The quality of the grid or mesh can be a driving source for error in the results. While refinement studies can help guide the creation of a mesh, grid quality is largely determined by user expertise and understanding of the flow physics. Adaptive mesh refinement is a technique for enriching the mesh during a simulation based on metrics for error, impact on important parameters, or location of important flow features. This can offload from the user some of the difficult and ambiguous decisions necessary when discretizing the domain. This work explores the implementation of adaptive mesh refinement in an implicit, unstructured, finite-volume solver. Consideration is made for applying modern computational techniques in the presence of hanging nodes and refined cells. The approach is developed to be independent of the flow solver in order to provide a path for augmenting existing codes. It is designed to be applicable for unsteady simulations and refinement and coarsening of the grid does not impact the conservatism of the underlying numerics. The effect on high-order numerical fluxes of fourth- and sixth-order are explored. Provided the criteria for refinement is appropriately selected, solutions obtained using adapted meshes have no additional error when compared to results obtained on traditional, unadapted meshes. In order to leverage large-scale computational resources common today, the methods are parallelized using MPI. Parallel performance is considered for several test problems in order to assess scalability of both adapted and unadapted grids. Dynamic repartitioning of the mesh during refinement is crucial for load balancing an evolving grid. Development of the methods outlined here depend on a dual-memory approach that is described in detail. Validation of the solver developed here against a number of motivating problems shows favorable

  15. Combined LAURA-UPS solution procedure for chemically-reacting flows. M.S. Thesis

    Science.gov (United States)

    Wood, William A.

    1994-01-01

    A new procedure seeks to combine the thin-layer Navier-Stokes solver LAURA with the parabolized Navier-Stokes solver UPS for the aerothermodynamic solution of chemically-reacting air flowfields. The interface protocol is presented and the method is applied to two slender, blunted shapes. Both axisymmetric and three dimensional solutions are included with surface pressure and heat transfer comparisons between the present method and previously published results. The case of Mach 25 flow over an axisymmetric six degree sphere-cone with a noncatalytic wall is considered to 100 nose radii. A stability bound on the marching step size was observed with this case and is attributed to chemistry effects resulting from the noncatalytic wall boundary condition. A second case with Mach 28 flow over a sphere-cone-cylinder-flare configuration is computed at both two and five degree angles of attack with a fully-catalytic wall. Surface pressures are seen to be within five percent with the present method compared to the baseline LAURA solution and heat transfers are within 10 percent. The effect of grid resolution is investigated and the nonequilibrium results are compared with a perfect gas solution, showing that while the surface pressure is relatively unchanged by the inclusion of reacting chemistry the nonequilibrium heating is 25 percent higher. The procedure demonstrates significant, order of magnitude reductions in solution time and required memory for the three dimensional case over an all thin-layer Navier-Stokes solution.

  16. Computational methods in wind power meteorology

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann Joergensen, B.; Ott, S.; Mann, J.; Badger, J.

    2006-06-15

    Subsets of measured wind data from the Hjardemael field experiment are extracted in order to produce test cases representing nearly stationary, neutral conditions with well defined upstream flow. Model solutions of the Reynolds Averaged Navier-Stokes (RANS) equations are obtained by utilizing the numerical flow solver EllipSys3D. When utilizing the well-knowh k - e model as a turbulence closure, the result is a nearly complete agreement between the measurements and the model solution - not only for the forward flow but also for the separating backward flow over the Hjardemael escarpment. Smal1 deviations can be understood from analyzing the conditions of the field experiment. It is of vital importance to understand the conditions under which the flow solver yields accurate solutions, in particular with respect to the grid generation, which was performed with the hyperbolic grid generator HypGrid2D/3D. The grid must allow the model to represent the underlying physics of the flow problem and the grid resolution must be sufficient to produce grid independent solutions. This fields not only the correct mean velocity but also the correct Turbulent Kinetic Energy (TKE). Devitations of the TKE in the zone very close to onset of separation can be understood by addressing the assumptions of a zero horizontal pressure gradient in the momentum balance near the surface. It is argued on basis of the obtained results that the model can be extended to non-neutral conditions and more complex terrain. The difficulties in using existing measurement data from a sparsely instrumented site, Porto, in complex terrain in Portugal for evaluating the model is demonstrated. Suggestions are offered to assist future field work incorporating wind measurements for complex terrain and non-neutral conditions in order to evaluate numerical flow models. (au)

  17. Pressure Drop of Chamfer on Spacer Grid Strap

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Euijae; Kim, Kanghoon; Kim, Kyounghong; Nahm, Keeyil [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2014-05-15

    A swirl flow and cross flow are generated by the spacer grid with mixing vane that enhances the thermal performance and critical heat flux (CHF). The additional pressure drop makes it difficult to meet acceptance criteria for overall pressure drop in fuel assembly depending upon the pump capacity. The chamfer on the end of spacer grid strap is one solution to reduce additional pressure drop without any adverse effect on flow fields. In this research, the pressure drop tests for spacer grid with and without chamfer were carried out at the hydraulic test facility. The result can be applied to develop high performance nuclear fuel assemblies for Pressurized Water Reactor (PWR) plants. The pressure drop tests for 5x5 spacer grid with and without chamfer as well as 6x6 spacer grid with and without chamfer were carried out at the INFINIT test facility. The Reynolds number ranged about from 16000 to 75000. The sweep-up and sweep-down test showed that the direction of sweep did not affect the pressure drop. The chamfer on spacer grid strap reduced the pressure drop due to the decreased in ratio of inlet area to outlet area. The pressure loss coefficient for spacer grid with chamfer was by up to 13.8 % lower than that for spacer grid without chamfer. Hence, the chamfer on spacer grid strap was one of effective ways to reduce the pressure drop.

  18. Exploring Shared-Memory Optimizations for an Unstructured Mesh CFD Application on Modern Parallel Systems

    KAUST Repository

    Mudigere, Dheevatsa; Sridharan, Srinivas; Deshpande, Anand; Park, Jongsoo; Heinecke, Alexander; Smelyanskiy, Mikhail; Kaul, Bharat; Dubey, Pradeep; Kaushik, Dinesh; Keyes, David E.

    2015-01-01

    -grid implicit flow solver, which forms the backbone of computational aerodynamics, poses particular challenges due to its large irregular working sets, unstructured memory accesses, and variable/limited amount of parallelism. This code, based on a domain

  19. Numerical Investigation of Flow Control Feasibility with a Trailing Edge Flap

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2014-01-01

    the control system, a standard PID controller is implemented in a finite volume based incompressible flow solver. An immersed boundary method is applied to treat the problem of simulating a deformable airfoil trailing edge. The flow field is solved using a 2D Reynolds averaged Navier-Stokes finite volume...... solver. In order to more accurately simulate wall bounded flows around the immersed boundary, a modified boundary condition is introduced in the k- ω turbulence model. As an example, turbulent flow over a NACA 64418 airfoil with a deformable trailing edge is investigated. Results from numerical...

  20. New iterative solvers for the NAG Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Salvini, S.; Shaw, G. [Numerical Algorithms Group Ltd., Oxford (United Kingdom)

    1996-12-31

    The purpose of this paper is to introduce the work which has been carried out at NAG Ltd to update the iterative solvers for sparse systems of linear equations, both symmetric and unsymmetric, in the NAG Fortran 77 Library. Our current plans to extend this work and include it in our other numerical libraries in our range are also briefly mentioned. We have added to the Library the new Chapter F11, entirely dedicated to sparse linear algebra. At Mark 17, the F11 Chapter includes sparse iterative solvers, preconditioners, utilities and black-box routines for sparse symmetric (both positive-definite and indefinite) linear systems. Mark 18 will add solvers, preconditioners, utilities and black-boxes for sparse unsymmetric systems: the development of these has already been completed.

  1. Nonlinear Conservation Laws and Finite Volume Methods

    Science.gov (United States)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  2. A ghost fluid method for sharp interface simulations of compressible multiphase flows

    International Nuclear Information System (INIS)

    Majidi, Sahand; Afshari, Asghar

    2016-01-01

    A ghost fluid based computational tool is developed to study a wide range of compressible multiphase flows involving strong shocks and contact discontinuities while accounting for surface tension, viscous stresses and gravitational forces. The solver utilizes constrained reinitialization method to predict the interface configuration at each time step. Surface tension effect is handled via an exact interface Riemann problem solver. Interfacial viscous stresses are approximated by considering continuous velocity and viscous stress across the interface. To assess the performance of the solver several benchmark problems are considered: One-dimensional gas-water shock tube problem, shock-bubble interaction, air cavity collapse in water, underwater explosion, Rayleigh-Taylor Instability, and ellipsoidal drop oscillations. Results obtained from the numerical simulations indicate that the numerical methodology performs reasonably well in predicting flow features and exhibit a very good agreement with prior experimental and numerical observations. To further examine the accuracy of the developed ghost fluid solver, the obtained results are compared to those by a conventional diffuse interface solver. The comparison shows the capability of our ghost fluid method in reproducing the experimentally observed flow characteristics while revealing more details regarding topological changes of the interface.

  3. A ghost fluid method for sharp interface simulations of compressible multiphase flows

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, Sahand; Afshari, Asghar [University of Tehran, Teheran (Iran, Islamic Republic of)

    2016-04-15

    A ghost fluid based computational tool is developed to study a wide range of compressible multiphase flows involving strong shocks and contact discontinuities while accounting for surface tension, viscous stresses and gravitational forces. The solver utilizes constrained reinitialization method to predict the interface configuration at each time step. Surface tension effect is handled via an exact interface Riemann problem solver. Interfacial viscous stresses are approximated by considering continuous velocity and viscous stress across the interface. To assess the performance of the solver several benchmark problems are considered: One-dimensional gas-water shock tube problem, shock-bubble interaction, air cavity collapse in water, underwater explosion, Rayleigh-Taylor Instability, and ellipsoidal drop oscillations. Results obtained from the numerical simulations indicate that the numerical methodology performs reasonably well in predicting flow features and exhibit a very good agreement with prior experimental and numerical observations. To further examine the accuracy of the developed ghost fluid solver, the obtained results are compared to those by a conventional diffuse interface solver. The comparison shows the capability of our ghost fluid method in reproducing the experimentally observed flow characteristics while revealing more details regarding topological changes of the interface.

  4. Three-Dimensional Incompressible Navier-Stokes Flow Computations about Complete Configurations Using a Multiblock Unstructured Grid Approach

    Science.gov (United States)

    Sheng, Chunhua; Hyams, Daniel G.; Sreenivas, Kidambi; Gaither, J. Adam; Marcum, David L.; Whitfield, David L.

    2000-01-01

    A multiblock unstructured grid approach is presented for solving three-dimensional incompressible inviscid and viscous turbulent flows about complete configurations. The artificial compressibility form of the governing equations is solved by a node-based, finite volume implicit scheme which uses a backward Euler time discretization. Point Gauss-Seidel relaxations are used to solve the linear system of equations at each time step. This work employs a multiblock strategy to the solution procedure, which greatly improves the efficiency of the algorithm by significantly reducing the memory requirements by a factor of 5 over the single-grid algorithm while maintaining a similar convergence behavior. The numerical accuracy of solutions is assessed by comparing with the experimental data for a submarine with stem appendages and a high-lift configuration.

  5. Air-water flooding in multirod channels: effects of spacer grids and blockages

    International Nuclear Information System (INIS)

    Cha, Jong Hee; Jun, Hyung Gil

    1993-01-01

    This paper presents the experimental results on flooding of countercurrent flow in vertical multirod channels, which consists of falling water film and upward air flow. In particular, the effects of spacer grids, with and without mixing vane, and of blockage in the multirod bundle on the behaviour of flooding were investigated. The 5 x 5 zircaloy tube bundle was used for the test section. The comparison of previous analytical models and empirical correlations with present data on flooding showed that the existing models and correlations predict much higher flooding curves. The spacer grid causes the lower flooding air flow rate to compare with the bare rod bundle. However, the mixing spacer grids need a higher flooding air flow rate for a constant liquid flow rate than the spacer grids without mixing vanes. The bundle containing blockages has the highest flooding air flow rate among the bundles with spacer grids and blokages. Empirical flooding correlations for the three types of test section have been made. (Author)

  6. Multitasking for flows about multiple body configurations using the chimera grid scheme

    Science.gov (United States)

    Dougherty, F. C.; Morgan, R. L.

    1987-01-01

    The multitasking of a finite-difference scheme using multiple overset meshes is described. In this chimera, or multiple overset mesh approach, a multiple body configuration is mapped using a major grid about the main component of the configuration, with minor overset meshes used to map each additional component. This type of code is well suited to multitasking. Both steady and unsteady two dimensional computations are run on parallel processors on a CRAY-X/MP 48, usually with one mesh per processor. Flow field results are compared with single processor results to demonstrate the feasibility of running multiple mesh codes on parallel processors and to show the increase in efficiency.

  7. A Novel Interactive MINLP Solver for CAPE Applications

    DEFF Research Database (Denmark)

    Henriksen, Jens Peter; Støy, S.; Russel, Boris Mariboe

    2000-01-01

    This paper presents an interactive MINLP solver that is particularly suitable for solution of process synthesis, design and analysis problems. The interactive MINLP solver is based on the decomposition based MINLP algorithms, where a NLP sub-problem is solved in the innerloop and a MILP master pr...

  8. Wavefront-ray grid FDTD algorithm

    OpenAIRE

    ÇİYDEM, MEHMET

    2016-01-01

    A finite difference time domain algorithm on a wavefront-ray grid (WRG-FDTD) is proposed in this study to reduce numerical dispersion of conventional FDTD methods. A FDTD algorithm conforming to a wavefront-ray grid can be useful to take into account anisotropy effects of numerical grids since it features directional energy flow along the rays. An explicit and second-order accurate WRG-FDTD algorithm is provided in generalized curvilinear coordinates for an inhomogeneous isotropic medium. Num...

  9. Numerical research of the compressible flow in a vortex tube using OpenFOAM software

    Directory of Open Access Journals (Sweden)

    Burazer Jela M.

    2017-01-01

    Full Text Available The work presented in this paper is dealing with numerical simulation of energy separation mechanism and flow phenomena within a Ranque-Hilsch vortex tube. Simulation of turbulent, compressible, highly swirling flow inside vortex tube is performed using RANS approach, with Favre averaged conservation equations. For turbulence closure, k-ε and k-ω shear-stress transport models are used. It is assumed that the mean flow is axisymmetric, so the 2-D computational domain is used. Computations were performed using open-source CFD software Open- FOAM. All compressible solvers available within OpenFOAM were tested, and it was found that most of the solvers cannot predict energy separation. Code of two chosen solvers, which proved as the most robust, is modified in terms of mean energy equation implementation. Newly created solvers predict physically accepted behavior in vortex tube, with good agreement with experimental results. Comparison between performances of solvers is also presented. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 35046

  10. Application of FUN3D Solver for Aeroacoustics Simulation of a Nose Landing Gear Configuration

    Science.gov (United States)

    Vatsa, Veer N.; Lockard, David P.; Khorrami, Mehdi R.

    2011-01-01

    Numerical simulations have been performed for a nose landing gear configuration corresponding to the experimental tests conducted in the Basic Aerodynamic Research Tunnel at NASA Langley Research Center. A widely used unstructured grid code, FUN3D, is examined for solving the unsteady flow field associated with this configuration. A series of successively finer unstructured grids has been generated to assess the effect of grid refinement. Solutions have been obtained on purely tetrahedral grids as well as mixed element grids using hybrid RANS/LES turbulence models. The agreement of FUN3D solutions with experimental data on the same size mesh is better on mixed element grids compared to pure tetrahedral grids, and in general improves with grid refinement.

  11. A multiscale method for compressible liquid-vapor flow with surface tension*

    Directory of Open Access Journals (Sweden)

    Jaegle Felix

    2013-01-01

    Full Text Available Discontinuous Galerkin methods have become a powerful tool for approximating the solution of compressible flow problems. Their direct use for two-phase flow problems with phase transformation is not straightforward because this type of flows requires a detailed tracking of the phase front. We consider the fronts in this contribution as sharp interfaces and propose a novel multiscale approach. It combines an efficient high-order Discontinuous Galerkin solver for the computation in the bulk phases on the macro-scale with the use of a generalized Riemann solver on the micro-scale. The Riemann solver takes into account the effects of moderate surface tension via the curvature of the sharp interface as well as phase transformation. First numerical experiments in three space dimensions underline the overall performance of the method.

  12. Two-dimensional time dependent Riemann solvers for neutron transport

    International Nuclear Information System (INIS)

    Brunner, Thomas A.; Holloway, James Paul

    2005-01-01

    A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P 1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem

  13. Parallel iterative solvers and preconditioners using approximate hierarchical methods

    Energy Technology Data Exchange (ETDEWEB)

    Grama, A.; Kumar, V.; Sameh, A. [Univ. of Minnesota, Minneapolis, MN (United States)

    1996-12-31

    In this paper, we report results of the performance, convergence, and accuracy of a parallel GMRES solver for Boundary Element Methods. The solver uses a hierarchical approximate matrix-vector product based on a hybrid Barnes-Hut / Fast Multipole Method. We study the impact of various accuracy parameters on the convergence and show that with minimal loss in accuracy, our solver yields significant speedups. We demonstrate the excellent parallel efficiency and scalability of our solver. The combined speedups from approximation and parallelism represent an improvement of several orders in solution time. We also develop fast and paralellizable preconditioners for this problem. We report on the performance of an inner-outer scheme and a preconditioner based on truncated Green`s function. Experimental results on a 256 processor Cray T3D are presented.

  14. The eGo grid model: An open source approach towards a model of German high and extra-high voltage power grids

    Science.gov (United States)

    Mueller, Ulf Philipp; Wienholt, Lukas; Kleinhans, David; Cussmann, Ilka; Bunke, Wolf-Dieter; Pleßmann, Guido; Wendiggensen, Jochen

    2018-02-01

    There are several power grid modelling approaches suitable for simulations in the field of power grid planning. The restrictive policies of grid operators, regulators and research institutes concerning their original data and models lead to an increased interest in open source approaches of grid models based on open data. By including all voltage levels between 60 kV (high voltage) and 380kV (extra high voltage), we dissolve the common distinction between transmission and distribution grid in energy system models and utilize a single, integrated model instead. An open data set for primarily Germany, which can be used for non-linear, linear and linear-optimal power flow methods, was developed. This data set consists of an electrically parameterised grid topology as well as allocated generation and demand characteristics for present and future scenarios at high spatial and temporal resolution. The usability of the grid model was demonstrated by the performance of exemplary power flow optimizations. Based on a marginal cost driven power plant dispatch, being subject to grid restrictions, congested power lines were identified. Continuous validation of the model is nescessary in order to reliably model storage and grid expansion in progressing research.

  15. Redox flow batteries. Already an alternative storage solution for hybrid PV mini-grids?

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, Matthias; Dennenmoser, Martin; Schwunk, Simon; Smolinka, Tom [Fraunhofer Institute for Solar Energy Systems (ISE), Freiburg (Germany); Doetsch, Christian; Berthold, Sascha [Fraunhofer Institute for Environmental, Safety and Energy Technology (UMSICHT), Oberhausen (Germany); Tuebke, Jens; Noack, Jens [Fraunhofer Institute for Chemical Technology (ICT), Karlsruhe (Germany)

    2010-07-01

    Due to the flexible scalability of the power to energy ratio redox flow batteries are a suitable solution for quite a lot of decentralized applications. E.g. the autonomy time of a stand-alone system or mini-grid can be raised by increasing the tank size of the redox flow battery. In this paper the test site ''Rappenecker Hof'' in the black forest is used as an example for simulation based life cycle cost analyses of a vanadium redox flow battery integrated in an autonomous hybrid PV system. Two cases with lead acid batteries are considered as benchmarks for economic viability of the redox flow battery solution in such applications. At the moment a 1 KW / 6 kWh system for decentralized solutions is developed and will be installed in the ''Solarhaus'' in Freiburg. The main results of the cell stack and system design as well as performance data are presented. Furthermore simulation models and the model based development of the ''Smart Redox flow Control'' are described. For the optimized integration of the storage unit in the energy system a communication interface for exchanging data with the supervisory energy management system is introduced. On this basis a SOC forecast according to a given demand profile can be determined. (orig.)

  16. LSPRAY-V: A Lagrangian Spray Module

    Science.gov (United States)

    Raju, M. S.

    2015-01-01

    LSPRAY-V is a Lagrangian spray solver developed for application with unstructured grids and massively parallel computers. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray encountered over a wide range of operating conditions in modern aircraft engine development. It could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. With the development of LSPRAY-V, we have advanced the state-of-the-art in spray computations in several important ways.

  17. The impact of improved sparse linear solvers on industrial engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Heroux, M. [Cray Research, Inc., Eagan, MN (United States); Baddourah, M.; Poole, E.L.; Yang, Chao Wu

    1996-12-31

    There are usually many factors that ultimately determine the quality of computer simulation for engineering applications. Some of the most important are the quality of the analytical model and approximation scheme, the accuracy of the input data and the capability of the computing resources. However, in many engineering applications the characteristics of the sparse linear solver are the key factors in determining how complex a problem a given application code can solve. Therefore, the advent of a dramatically improved solver often brings with it dramatic improvements in our ability to do accurate and cost effective computer simulations. In this presentation we discuss the current status of sparse iterative and direct solvers in several key industrial CFD and structures codes, and show the impact that recent advances in linear solvers have made on both our ability to perform challenging simulations and the cost of those simulations. We also present some of the current challenges we have and the constraints we face in trying to improve these solvers. Finally, we discuss future requirements for sparse linear solvers on high performance architectures and try to indicate the opportunities that exist if we can develop even more improvements in linear solver capabilities.

  18. DC Voltage Control and Power-Sharing of Multi-Terminal DC Grids Based on Optimal DC Power Flow and Flexible Voltage Droop Strategy

    Directory of Open Access Journals (Sweden)

    F. Azma

    2015-06-01

    Full Text Available This paper develops an effective control framework for DC voltage control and power-sharing of multi-terminal DC (MTDC grids based on an optimal power flow (OPF procedure and the voltage-droop control. In the proposed approach, an OPF algorithm is executed at the secondary level to find optimal reference of DC voltages and active powers of all voltage-regulating converters. Then, the voltage droop characteristics of voltage-regulating converters, at the primary level, are tuned based on the OPF results such that the operating point of the MTDC grid lies on the voltage droop characteristics. Consequently, the optimally-tuned voltage droop controller leads to the optimal operation of the MTDC grid. In case of variation in load or generation of the grid, a new stable operating point is achieved based on the voltage droop characteristics. By execution of a new OPF, the voltage droop characteristics are re-tuned for optimal operation of the MTDC grid after the occurrence of the load or generation variations. The results of simulation on a grid inspired by CIGRE B4 DC grid test system demonstrate efficient grid performance under the proposed control strategy.

  19. Numerical solution of the full potential equation using a chimera grid approach

    Science.gov (United States)

    Holst, Terry L.

    1995-01-01

    A numerical scheme utilizing a chimera zonal grid approach for solving the full potential equation in two spatial dimensions is described. Within each grid zone a fully-implicit approximate factorization scheme is used to advance the solution one interaction. This is followed by the explicit advance of all common zonal grid boundaries using a bilinear interpolation of the velocity potential. The presentation is highlighted with numerical results simulating the flow about a two-dimensional, nonlifting, circular cylinder. For this problem, the flow domain is divided into two parts: an inner portion covered by a polar grid and an outer portion covered by a Cartesian grid. Both incompressible and compressible (transonic) flow solutions are included. Comparisons made with an analytic solution as well as single grid results indicate that the chimera zonal grid approach is a viable technique for solving the full potential equation.

  20. Smart Solar Grid. Integration of high penetration of photovoltaic in municipal low voltage distribution grids; Smart Solar Grid. Integration hoher Anteile von Photovoltaik in kommunalen Niederspannungsverteilnetzen

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Holger; Heilscher, Gerd [Hochschule Ulm (Germany); Meier, Florian [SWU Netze GmbH, Ulm (Germany)

    2012-07-01

    The high rate of decentralized generation in low voltage grids especially photovoltaic (PV) put the distribution grid operators to new challenges. Grid operation and grid planning have to respect the volatility and dynamic of decentralized generation now and in the future and adapt their previous proceedings. In the frame of the project Smart Solar Grid was a test site defined in the grid area of the DSO Stadtwerke Ulm/Neu-Ulm GmbH (SWU) to analyze the impact of the PV rise and possible solutions for the grid planning in the future. The first analysis based upon secondly measurements of the first test site. From this were statistical evaluation of the load flows and power variations done. Furthermore were the roof potential analysis results of the test site validated. These data are the base for the development of a forecast system for grid condition parameter. (orig.)

  1. On the application of Chimera/unstructured hybrid grids for conjugate heat transfer

    Science.gov (United States)

    Kao, Kai-Hsiung; Liou, Meng-Sing

    1995-01-01

    A hybrid grid system that combines the Chimera overset grid scheme and an unstructured grid method is developed to study fluid flow and heat transfer problems. With the proposed method, the solid structural region, in which only the heat conduction is considered, can be easily represented using an unstructured grid method. As for the fluid flow region external to the solid material, the Chimera overset grid scheme has been shown to be very flexible and efficient in resolving complex configurations. The numerical analyses require the flow field solution and material thermal response to be obtained simultaneously. A continuous transfer of temperature and heat flux is specified at the interface, which connects the solid structure and the fluid flow as an integral system. Numerical results are compared with analytical and experimental data for a flat plate and a C3X cooled turbine cascade. A simplified drum-disk system is also simulated to show the effectiveness of this hybrid grid system.

  2. Refined isogeometric analysis for a preconditioned conjugate gradient solver

    KAUST Repository

    Garcia, Daniel

    2018-02-12

    Starting from a highly continuous Isogeometric Analysis (IGA) discretization, refined Isogeometric Analysis (rIGA) introduces C0 hyperplanes that act as separators for the direct LU factorization solver. As a result, the total computational cost required to solve the corresponding system of equations using a direct LU factorization solver dramatically reduces (up to a factor of 55) Garcia et al. (2017). At the same time, rIGA enriches the IGA spaces, thus improving the best approximation error. In this work, we extend the complexity analysis of rIGA to the case of iterative solvers. We build an iterative solver as follows: we first construct the Schur complements using a direct solver over small subdomains (macro-elements). We then assemble those Schur complements into a global skeleton system. Subsequently, we solve this system iteratively using Conjugate Gradients (CG) with an incomplete LU (ILU) preconditioner. For a 2D Poisson model problem with a structured mesh and a uniform polynomial degree of approximation, rIGA achieves moderate savings with respect to IGA in terms of the number of Floating Point Operations (FLOPs) and computational time (in seconds) required to solve the resulting system of linear equations. For instance, for a mesh with four million elements and polynomial degree p=3, the iterative solver is approximately 2.6 times faster (in time) when applied to the rIGA system than to the IGA one. These savings occur because the skeleton rIGA system contains fewer non-zero entries than the IGA one. The opposite situation occurs for 3D problems, and as a result, 3D rIGA discretizations provide no gains with respect to their IGA counterparts when considering iterative solvers.

  3. Smart Grids and Distributed Generation

    Directory of Open Access Journals (Sweden)

    Dorin BICĂ

    2018-06-01

    Full Text Available This paper describes the main characteristics of Smart Grids and distributed generation. Smart Grids can be defined as a modernization of the power system so it monitors, protects and automatically optimizes the operation of its interconnected elements (power plants, transmission and distribution system, industrial and residential loads. Distributed generation (DG refers to the production of electricity near the consumption place using renewable energy sources. A load flow analysis is performed for the IEEE14 system in which a DG source (a 5MW wind turbine is added that is on-grid or off-grid. The power losses are determined for these two cases.

  4. A 3-D chimera grid embedding technique

    Science.gov (United States)

    Benek, J. A.; Buning, P. G.; Steger, J. L.

    1985-01-01

    A three-dimensional (3-D) chimera grid-embedding technique is described. The technique simplifies the construction of computational grids about complex geometries. The method subdivides the physical domain into regions which can accommodate easily generated grids. Communication among the grids is accomplished by interpolation of the dependent variables at grid boundaries. The procedures for constructing the composite mesh and the associated data structures are described. The method is demonstrated by solution of the Euler equations for the transonic flow about a wing/body, wing/body/tail, and a configuration of three ellipsoidal bodies.

  5. A stable partitioned FSI algorithm for incompressible flow and deforming beams

    International Nuclear Information System (INIS)

    Li, L.; Henshaw, W.D.; Banks, J.W.; Schwendeman, D.W.; Main, A.

    2016-01-01

    An added-mass partitioned (AMP) algorithm is described for solving fluid–structure interaction (FSI) problems coupling incompressible flows with thin elastic structures undergoing finite deformations. The new AMP scheme is fully second-order accurate and stable, without sub-time-step iterations, even for very light structures when added-mass effects are strong. The fluid, governed by the incompressible Navier–Stokes equations, is solved in velocity-pressure form using a fractional-step method; large deformations are treated with a mixed Eulerian-Lagrangian approach on deforming composite grids. The motion of the thin structure is governed by a generalized Euler–Bernoulli beam model, and these equations are solved in a Lagrangian frame using two approaches, one based on finite differences and the other on finite elements. The key AMP interface condition is a generalized Robin (mixed) condition on the fluid pressure. This condition, which is derived at a continuous level, has no adjustable parameters and is applied at the discrete level to couple the partitioned domain solvers. Special treatment of the AMP condition is required to couple the finite-element beam solver with the finite-difference-based fluid solver, and two coupling approaches are described. A normal-mode stability analysis is performed for a linearized model problem involving a beam separating two fluid domains, and it is shown that the AMP scheme is stable independent of the ratio of the mass of the fluid to that of the structure. A traditional partitioned (TP) scheme using a Dirichlet–Neumann coupling for the same model problem is shown to be unconditionally unstable if the added mass of the fluid is too large. A series of benchmark problems of increasing complexity are considered to illustrate the behavior of the AMP algorithm, and to compare the behavior with that of the TP scheme. The results of all these benchmark problems verify the stability and accuracy of the AMP scheme. Results for

  6. A stable partitioned FSI algorithm for incompressible flow and deforming beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, L., E-mail: lil19@rpi.edu [Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Henshaw, W.D., E-mail: henshw@rpi.edu [Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Banks, J.W., E-mail: banksj3@rpi.edu [Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Schwendeman, D.W., E-mail: schwed@rpi.edu [Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Main, A., E-mail: amain8511@gmail.com [Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708 (United States)

    2016-05-01

    An added-mass partitioned (AMP) algorithm is described for solving fluid–structure interaction (FSI) problems coupling incompressible flows with thin elastic structures undergoing finite deformations. The new AMP scheme is fully second-order accurate and stable, without sub-time-step iterations, even for very light structures when added-mass effects are strong. The fluid, governed by the incompressible Navier–Stokes equations, is solved in velocity-pressure form using a fractional-step method; large deformations are treated with a mixed Eulerian-Lagrangian approach on deforming composite grids. The motion of the thin structure is governed by a generalized Euler–Bernoulli beam model, and these equations are solved in a Lagrangian frame using two approaches, one based on finite differences and the other on finite elements. The key AMP interface condition is a generalized Robin (mixed) condition on the fluid pressure. This condition, which is derived at a continuous level, has no adjustable parameters and is applied at the discrete level to couple the partitioned domain solvers. Special treatment of the AMP condition is required to couple the finite-element beam solver with the finite-difference-based fluid solver, and two coupling approaches are described. A normal-mode stability analysis is performed for a linearized model problem involving a beam separating two fluid domains, and it is shown that the AMP scheme is stable independent of the ratio of the mass of the fluid to that of the structure. A traditional partitioned (TP) scheme using a Dirichlet–Neumann coupling for the same model problem is shown to be unconditionally unstable if the added mass of the fluid is too large. A series of benchmark problems of increasing complexity are considered to illustrate the behavior of the AMP algorithm, and to compare the behavior with that of the TP scheme. The results of all these benchmark problems verify the stability and accuracy of the AMP scheme. Results for

  7. A General Symbolic PDE Solver Generator: Explicit Schemes

    Directory of Open Access Journals (Sweden)

    K. Sheshadri

    2003-01-01

    Full Text Available A symbolic solver generator to deal with a system of partial differential equations (PDEs in functions of an arbitrary number of variables is presented; it can also handle arbitrary domains (geometries of the independent variables. Given a system of PDEs, the solver generates a set of explicit finite-difference methods to any specified order, and a Fourier stability criterion for each method. For a method that is stable, an iteration function is generated symbolically using the PDE and its initial and boundary conditions. This iteration function is dynamically generated for every PDE problem, and its evaluation provides a solution to the PDE problem. A C++/Fortran 90 code for the iteration function is generated using the MathCode system, which results in a performance gain of the order of a thousand over Mathematica, the language that has been used to code the solver generator. Examples of stability criteria are presented that agree with known criteria; examples that demonstrate the generality of the solver and the speed enhancement of the generated C++ and Fortran 90 codes are also presented.

  8. CFD simulations of steady flows over the IAR 65o delta wing

    International Nuclear Information System (INIS)

    Benmeddour, A.; Mebarki, Y.; Huang, X.Z.

    2004-01-01

    Computational Fluid Dynamics (CFD) studies have been conducted to simulate vortical flows around the IAR 65 o delta wing with a sharp leading edge. The effects of the centerbody on the aerodynamic characteristics of the wing are also investigated. Two flow solvers have been employed to compute steady inviscid flows over with and without centerbody configurations of the wing. These two solvers are an IAR in-house code, FJ3SOLV, and the CFD-FASTRAN commercial software. The computed flow solutions of the two solvers have been compared and correlated against the IAR wind tunnel data, including Pressure Sensitive Paint (PSP) measurements. The major features of the primary vortex have been well captured and overall reasonable accuracy was obtained. In accordance with the experimental observations for the flow conditions considered, the CFD computations revealed no major global effects of the centerbody on the surface pressure distributions of the wing and on the lift coefficient. However, CFD-FASTRAN seems to predict a vortex breakdown, which is neither predicted by FJ3SOLV nor observed in the wind tunnel for the flow conditions considered. (author)

  9. Development and acceleration of unstructured mesh-based cfd solver

    Science.gov (United States)

    Emelyanov, V.; Karpenko, A.; Volkov, K.

    2017-06-01

    The study was undertaken as part of a larger effort to establish a common computational fluid dynamics (CFD) code for simulation of internal and external flows and involves some basic validation studies. The governing equations are solved with ¦nite volume code on unstructured meshes. The computational procedure involves reconstruction of the solution in each control volume and extrapolation of the unknowns to find the flow variables on the faces of control volume, solution of Riemann problem for each face of the control volume, and evolution of the time step. The nonlinear CFD solver works in an explicit time-marching fashion, based on a three-step Runge-Kutta stepping procedure. Convergence to a steady state is accelerated by the use of geometric technique and by the application of Jacobi preconditioning for high-speed flows, with a separate low Mach number preconditioning method for use with low-speed flows. The CFD code is implemented on graphics processing units (GPUs). Speedup of solution on GPUs with respect to solution on central processing units (CPU) is compared with the use of different meshes and different methods of distribution of input data into blocks. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.

  10. Exact and grid-free solutions to the Lighthill-Whitham-Richards traffic flow model with bounded acceleration for a class of fundamental diagrams

    KAUST Repository

    Qiu, Shanwen

    2013-09-01

    In this article, we propose a new exact and grid-free numerical scheme for computing solutions associated with an hybrid traffic flow model based on the Lighthill-Whitham-Richards (LWR) partial differential equation, for a class of fundamental diagrams. In this hybrid flow model, the vehicles satisfy the LWR equation whenever possible, and have a constant acceleration otherwise. We first propose a mathematical definition of the solution as a minimization problem. We use this formulation to build a grid-free solution method for this model based on the minimization of component function. We then derive these component functions analytically for triangular fundamental diagrams, which are commonly used to model traffic flow. We also show that the proposed computational method can handle fixed or moving bottlenecks. A toolbox implementation of the resulting algorithm is briefly discussed, and posted at https://dl.dropbox.com/u/1318701/Toolbox.zip. © 2013 Elsevier Ltd.

  11. Simultaneous solution algorithms for Eulerian-Eulerian gas-solid flow models: Stability analysis and convergence behaviour of a point and a plane solver

    International Nuclear Information System (INIS)

    Wilde, Juray de; Vierendeels, Jan; Heynderickx, Geraldine J.; Marin, Guy B.

    2005-01-01

    Simultaneous solution algorithms for Eulerian-Eulerian gas-solid flow models are presented and their stability analyzed. The integration algorithms are based on dual-time stepping with fourth-order Runge-Kutta in pseudo-time. The domain is solved point or plane wise. The discretization of the inviscid terms is based on a low-Mach limit of the multi-phase preconditioned advection upstream splitting method (MP-AUSMP). The numerical stability of the simultaneous solution algorithms is analyzed in 2D with the Fourier method. Stability results are compared with the convergence behaviour of 3D riser simulations. The impact of the grid aspect ratio, preconditioning, artificial dissipation, and the treatment of the source terms is investigated. A particular advantage of the simultaneous solution algorithms is that they allow a fully implicit treatment of the source terms which are of crucial importance for the Eulerian-Eulerian gas-solid flow models and their solution. The numerical stability of the optimal simultaneous solution algorithm is analyzed for different solids volume fractions and gas-solid slip velocities. Furthermore, the effect of the grid resolution on the convergence behaviour and the simulation results is investigated. Finally, simulations of the bottom zone of a pilot-scale riser with a side solids inlet are experimentally validated

  12. CFD application to advanced design for high efficiency spacer grid

    International Nuclear Information System (INIS)

    Ikeda, Kazuo

    2014-01-01

    Highlights: • A new LDV was developed to investigate the local velocity in a rod bundle and inside a spacer grid. • The design information that utilizes for high efficiency spacer grid has been obtained. • CFD methodology that predicts flow field in a PWR fuel has been developed. • The high efficiency spacer grid was designed using the CFD methodology. - Abstract: Pressurized water reactor (PWR) fuels have been developed to meet the needs of the market. A spacer grid is a key component to improve thermal hydraulic performance of a PWR fuel assembly. Mixing structures (vanes) of a spacer grid promote coolant mixing and enhance heat removal from fuel rods. A larger mixing vane would improve mixing effect, which would increase the departure from nucleate boiling (DNB) benefit for fuel. However, the increased pressure loss at large mixing vanes would reduce the coolant flow at the mixed fuel core, which would reduce the DNB margin. The solution is to develop a spacer grid whose pressure loss is equal to or less than the current spacer grid and that has higher critical heat flux (CHF) performance. For this reason, a requirement of design tool for predicting the pressure loss and CHF performance of spacer grids has been increased. The author and co-workers have been worked for development of high efficiency spacer grid using Computational Fluid Dynamics (CFD) for nearly 20 years. A new laser Doppler velocimetry (LDV), which is miniaturized with fiber optics embedded in a fuel cladding, was developed to investigate the local velocity profile in a rod bundle and inside a spacer grid. The rod-embedded fiber LDV (rod LDV) can be inserted in an arbitrary grid cell instead of a fuel rod, and has the advantage of not disturbing the flow field since it is the same shape as a fuel rod. The probe volume of the rod LDV is small enough to measure spatial velocity profile in a rod gap and inside a spacer grid. According to benchmark experiments such as flow velocity

  13. CFD application to advanced design for high efficiency spacer grid

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazuo, E-mail: kazuo3_ikeda@ndc.mhi.co.jp

    2014-11-15

    Highlights: • A new LDV was developed to investigate the local velocity in a rod bundle and inside a spacer grid. • The design information that utilizes for high efficiency spacer grid has been obtained. • CFD methodology that predicts flow field in a PWR fuel has been developed. • The high efficiency spacer grid was designed using the CFD methodology. - Abstract: Pressurized water reactor (PWR) fuels have been developed to meet the needs of the market. A spacer grid is a key component to improve thermal hydraulic performance of a PWR fuel assembly. Mixing structures (vanes) of a spacer grid promote coolant mixing and enhance heat removal from fuel rods. A larger mixing vane would improve mixing effect, which would increase the departure from nucleate boiling (DNB) benefit for fuel. However, the increased pressure loss at large mixing vanes would reduce the coolant flow at the mixed fuel core, which would reduce the DNB margin. The solution is to develop a spacer grid whose pressure loss is equal to or less than the current spacer grid and that has higher critical heat flux (CHF) performance. For this reason, a requirement of design tool for predicting the pressure loss and CHF performance of spacer grids has been increased. The author and co-workers have been worked for development of high efficiency spacer grid using Computational Fluid Dynamics (CFD) for nearly 20 years. A new laser Doppler velocimetry (LDV), which is miniaturized with fiber optics embedded in a fuel cladding, was developed to investigate the local velocity profile in a rod bundle and inside a spacer grid. The rod-embedded fiber LDV (rod LDV) can be inserted in an arbitrary grid cell instead of a fuel rod, and has the advantage of not disturbing the flow field since it is the same shape as a fuel rod. The probe volume of the rod LDV is small enough to measure spatial velocity profile in a rod gap and inside a spacer grid. According to benchmark experiments such as flow velocity

  14. Development of a CFD Code for Analysis of Fluid Dynamic Forces in Seals

    Science.gov (United States)

    Athavale, Mahesh M.; Przekwas, Andrzej J.; Singhal, Ashok K.

    1991-01-01

    The aim is to develop a 3-D computational fluid dynamics (CFD) code for the analysis of fluid flow in cylindrical seals and evaluation of the dynamic forces on the seals. This code is expected to serve as a scientific tool for detailed flow analysis as well as a check for the accuracy of the 2D industrial codes. The features necessary in the CFD code are outlined. The initial focus was to develop or modify and implement new techniques and physical models. These include collocated grid formulation, rotating coordinate frames and moving grid formulation. Other advanced numerical techniques include higher order spatial and temporal differencing and an efficient linear equation solver. These techniques were implemented in a 2D flow solver for initial testing. Several benchmark test cases were computed using the 2D code, and the results of these were compared to analytical solutions or experimental data to check the accuracy. Tests presented here include planar wedge flow, flow due to an enclosed rotor, and flow in a 2D seal with a whirling rotor. Comparisons between numerical and experimental results for an annular seal and a 7-cavity labyrinth seal are also included.

  15. Iterative linear solvers in a 2D radiation-hydrodynamics code: Methods and performance

    International Nuclear Information System (INIS)

    Baldwin, C.; Brown, P.N.; Falgout, R.; Graziani, F.; Jones, J.

    1999-01-01

    Computer codes containing both hydrodynamics and radiation play a central role in simulating both astrophysical and inertial confinement fusion (ICF) phenomena. A crucial aspect of these codes is that they require an implicit solution of the radiation diffusion equations. The authors present in this paper the results of a comparison of five different linear solvers on a range of complex radiation and radiation-hydrodynamics problems. The linear solvers used are diagonally scaled conjugate gradient, GMRES with incomplete LU preconditioning, conjugate gradient with incomplete Cholesky preconditioning, multigrid, and multigrid-preconditioned conjugate gradient. These problems involve shock propagation, opacities varying over 5--6 orders of magnitude, tabular equations of state, and dynamic ALE (Arbitrary Lagrangian Eulerian) meshes. They perform a problem size scalability study by comparing linear solver performance over a wide range of problem sizes from 1,000 to 100,000 zones. The fundamental question they address in this paper is: Is it more efficient to invert the matrix in many inexpensive steps (like diagonally scaled conjugate gradient) or in fewer expensive steps (like multigrid)? In addition, what is the answer to this question as a function of problem size and is the answer problem dependent? They find that the diagonally scaled conjugate gradient method performs poorly with the growth of problem size, increasing in both iteration count and overall CPU time with the size of the problem and also increasing for larger time steps. For all problems considered, the multigrid algorithms scale almost perfectly (i.e., the iteration count is approximately independent of problem size and problem time step). For pure radiation flow problems (i.e., no hydrodynamics), they see speedups in CPU time of factors of ∼15--30 for the largest problems, when comparing the multigrid solvers relative to diagonal scaled conjugate gradient

  16. Application of a non-contiguous grid generation method to complex configurations

    International Nuclear Information System (INIS)

    Chen, S.; McIlwain, S.; Khalid, M.

    2003-01-01

    An economical non-contiguous grid generation method was developed to efficiently generate structured grids for complex 3D problems. Compared with traditional contiguous grids, this new approach generated grids for different block clusters independently and was able to distribute the grid points more economically according to the user's specific topology design. The method was evaluated by applying it to a Navier-Stokes computation of flow past a hypersonic projectile. Both the flow velocity and the heat transfer characteristics of the projectile agreed qualitatively with other numerical data in the literature and with available field data. Detailed grid topology designs for 3D geometries were addressed, and the advantages of this approach were analysed and compared with traditional contiguous grid generation methods. (author)

  17. High-Performance Small-Scale Solvers for Moving Horizon Estimation

    DEFF Research Database (Denmark)

    Frison, Gianluca; Vukov, Milan; Poulsen, Niels Kjølstad

    2015-01-01

    implementation techniques focusing on small-scale problems. The proposed MHE solver is implemented using custom linear algebra routines and is compared against implementations using BLAS libraries. Additionally, the MHE solver is interfaced to a code generation tool for nonlinear model predictive control (NMPC...

  18. Incompressible SPH (ISPH) with fast Poisson solver on a GPU

    Science.gov (United States)

    Chow, Alex D.; Rogers, Benedict D.; Lind, Steven J.; Stansby, Peter K.

    2018-05-01

    This paper presents a fast incompressible SPH (ISPH) solver implemented to run entirely on a graphics processing unit (GPU) capable of simulating several millions of particles in three dimensions on a single GPU. The ISPH algorithm is implemented by converting the highly optimised open-source weakly-compressible SPH (WCSPH) code DualSPHysics to run ISPH on the GPU, combining it with the open-source linear algebra library ViennaCL for fast solutions of the pressure Poisson equation (PPE). Several challenges are addressed with this research: constructing a PPE matrix every timestep on the GPU for moving particles, optimising the limited GPU memory, and exploiting fast matrix solvers. The ISPH pressure projection algorithm is implemented as 4 separate stages, each with a particle sweep, including an algorithm for the population of the PPE matrix suitable for the GPU, and mixed precision storage methods. An accurate and robust ISPH boundary condition ideal for parallel processing is also established by adapting an existing WCSPH boundary condition for ISPH. A variety of validation cases are presented: an impulsively started plate, incompressible flow around a moving square in a box, and dambreaks (2-D and 3-D) which demonstrate the accuracy, flexibility, and speed of the methodology. Fragmentation of the free surface is shown to influence the performance of matrix preconditioners and therefore the PPE matrix solution time. The Jacobi preconditioner demonstrates robustness and reliability in the presence of fragmented flows. For a dambreak simulation, GPU speed ups demonstrate up to 10-18 times and 1.1-4.5 times compared to single-threaded and 16-threaded CPU run times respectively.

  19. Users are problem solvers!

    NARCIS (Netherlands)

    Brouwer-Janse, M.D.

    1991-01-01

    Most formal problem-solving studies use verbal protocol and observational data of problem solvers working on a task. In user-centred product-design projects, observational studies of users are frequently used too. In the latter case, however, systematic control of conditions, indepth analysis and

  20. Application of a Steady Meandering River with Piers Using a Lattice Boltzmann Sub-Grid Model in Curvilinear Coordinate Grid

    Directory of Open Access Journals (Sweden)

    Liping Chen

    2018-05-01

    Full Text Available A sub-grid multiple relaxation time (MRT lattice Boltzmann model with curvilinear coordinates is applied to simulate an artificial meandering river. The method is based on the D2Q9 model and standard Smagorinsky sub-grid scale (SGS model is introduced to simulate meandering flows. The interpolation supplemented lattice Boltzmann method (ISLBM and the non-equilibrium extrapolation method are used for second-order accuracy and boundary conditions. The proposed model was validated by a meandering channel with a 180° bend and applied to a steady curved river with piers. Excellent agreement between the simulated results and previous computational and experimental data was found, showing that MRT-LBM (MRT lattice Boltzmann method coupled with a Smagorinsky sub-grid scale (SGS model in a curvilinear coordinates grid is capable of simulating practical meandering flows.

  1. An overset algorithm for 3D unstructured grids

    International Nuclear Information System (INIS)

    Pishevar, A.R.; Shateri, A.R.

    2004-01-01

    In this paper a new methodology is introduced to simulate flows around complex geometries by using overset unstructured grids. The proposed algorithm can also be used for the unsteady flows about objects in relative motions. In such a case since the elements are not deformed during the computation the costly part of conventional methods, re-meshing, is prevented. This method relies on the inter-grid boundary definition to establish communications among independent grids in the overset system. At the end, the Euler set of equations are integrated on several overset systems to examine the capabilities of this methodology. (author)

  2. Decentral Smart Grid Control

    Science.gov (United States)

    Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.

  3. Decentral Smart Grid Control

    International Nuclear Information System (INIS)

    Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals. (paper)

  4. Baseline Validation of Unstructured Grid Reynolds-Averaged Navier-Stokes Toward Flow Control

    Science.gov (United States)

    Joslin, Ronald D.; Viken, Sally A.

    2001-01-01

    The value of the use of the Reynolds-averaged Navier-Stokes methodology for active flow control applications is assessed. An experimental flow control database exists for a NACA0015 airfoil modified at the leading edge to implement a fluidic actuator; hence, this configuration is used. Computational results are documented for the baseline wing configuration (no control) with the experimental results and assumes two-dimensional flow. The baseline wing configuration has discontinuities at the leading edge, trailing edge, and aft of midchord on the upper surface. A limited number of active flow control applications have been tested in the laboratory and in flight. These applications include dynamic stall control using a deformable leading edge, separation control for takeoff and landing flight conditions using piezoelectric devices, pulsed vortex generators, zero-net-mass oscillations, and thrust vectoring with zero-net-mass piezoelectric-driven oscillatory actuation. As yet, there is no definitive comparison with experimental data that indicates current computational capabilities can quantitatively predict the large aerodynamic performance gains achieved with active flow control in the laboratory. However, one study using the Reynolds-averaged Navier-Stokes (RANS) methodology has shown good quantitative agreement with experimental results for an isolated zero-net-mass actuator. In addition, some recent studies have used RANS to demonstrate qualitative performance gains compared with the experimental data for separation control on an airfoil. Those quantitative comparisons for both baseline and flow control cases indicated that computational results were in poor quantitative agreement with the experiments. The current research thrust will investigate the potential use of an unstructured grid RANS approach to predict aerodynamic performance for active flow control applications building on the early studies. First the computational results must quantitatively match

  5. An arbitrary Lagrangian-Eulerian method for interfacial flows with insoluble surfactants

    Science.gov (United States)

    Yang, Xiaofeng

    Interfacial flows, fluid flows involving two or more fluids that do not mix, are common in many natural and industrial processes such as rain drop formation, crude oil recovery, polymer blending, fuel spray formation, and so on. Surfactants (surface active substances) play an important role in such processes because they significantly change the interfacial dynamics. In this thesis, an arbitrary Lagrangian-Eulerian (ALE) method has been developed to numerically simulate interfacial flows with insoluble surfactants. The interface is captured using a coupled level set and volume of fluid method. To evolve the surfactant concentration, the method directly tracks the surfactant mass and the interfacial area. The surfactant concentration, which determines the local surface tension through an equation of state, is then computed as surfactant mass per interfacial area. By directly tracking the surfactant mass, the method conserves the surfactant mass exactly. To accurately approximate the interfacial area, the fluid interface is reconstructed using piecewise parabolas. The evolution of the level set function, volume fraction, interfacial area, and the surfactant mass is performed using an ALE approach. The fluid flow is governed by Stokes equations, which are solved using a finite element method. The surface forces are included in the momentum equation using a continuum surface stress formulation. To efficiently resolve the complex interfacial dynamics, interfacial regions of high surface curvature, and near contact regions between two interacting interfaces, the grid near the interface is adaptively refined. The method is extendible to axisymmetric and 3D spaces, and can be coupled with other flow solvers, such as Navier-Stokes and viscoelastic flow solvers, as well. The method has been applied to study the effect of surfactants on drop deformation and breakup in an extensional flow. Drop deformation results are compared with available experimental and theoretical

  6. Fluid flow control system

    International Nuclear Information System (INIS)

    Rion, Jacky.

    1982-01-01

    Fluid flow control system featuring a series of grids placed perpendicular to the fluid flow direction, characterized by the fact that it is formed of a stack of identical and continuous grids, each of which consists of identical meshes forming a flat lattice. The said meshes are offset from one grid to the next. This system applies in particular to flow control of the coolant flowing at the foot of an assembly of a liquid metal cooled nuclear reactor [fr

  7. Computation of compressible quasi-axisymmetric slender vortex flow and breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.

    1991-01-01

    The unsteady, compressible Navier-Stokes equations are used to compute and analyze compressible quasi-axisymmetric isolated vortices. The Navier-Stokes equations are solved using an implicit, upwind, flux difference splitting finite volume scheme. The developed three dimensional solver was verified by comparing its solution profiles with those of a slender, quasi-axisymmetric vortex solver for a subsonic, quasi-axisymmetric vortex in an unbounded domain. The Navier-Stokes solver is then used to solve for a supersonic, quasi-axisymmetric vortex flow in a configured circular duct. Steady and unsteady vortex-shock interactions and breakdown were captured. The problem was also calculated using the Euler solver of the same code; the results were compared with those of the Navier-Stokes solver. The effect of the initial swirl was investigated.

  8. A non-conforming 3D spherical harmonic transport solver

    Energy Technology Data Exchange (ETDEWEB)

    Van Criekingen, S. [Commissariat a l' Energie Atomique CEA-Saclay, DEN/DM2S/SERMA/LENR Bat 470, 91191 Gif-sur-Yvette, Cedex (France)

    2006-07-01

    A new 3D transport solver for the time-independent Boltzmann transport equation has been developed. This solver is based on the second-order even-parity form of the transport equation. The angular discretization is performed through the expansion of the angular neutron flux in spherical harmonics (PN method). The novelty of this solver is the use of non-conforming finite elements for the spatial discretization. Such elements lead to a discontinuous flux approximation. This interface continuity requirement relaxation property is shared with mixed-dual formulations such as the ones based on Raviart-Thomas finite elements. Encouraging numerical results are presented. (authors)

  9. A non-conforming 3D spherical harmonic transport solver

    International Nuclear Information System (INIS)

    Van Criekingen, S.

    2006-01-01

    A new 3D transport solver for the time-independent Boltzmann transport equation has been developed. This solver is based on the second-order even-parity form of the transport equation. The angular discretization is performed through the expansion of the angular neutron flux in spherical harmonics (PN method). The novelty of this solver is the use of non-conforming finite elements for the spatial discretization. Such elements lead to a discontinuous flux approximation. This interface continuity requirement relaxation property is shared with mixed-dual formulations such as the ones based on Raviart-Thomas finite elements. Encouraging numerical results are presented. (authors)

  10. Development of a numerical modelling tool for combined near field and far field wave transformations using a coupling of potential flow solvers

    DEFF Research Database (Denmark)

    Verbrugghe, Tim; Troch, Peter; Kortenhaus, Andreas

    2016-01-01

    Wave energy converters (WECs) need to be deployed in large numbers in an array layout in order to have a significant power production. Each WEC has an impact on the incoming wave field, diffracting, reflecting and radiating waves. Simulating the wave transformations within and around a WEC farm...... of a wave-structure interaction solver and a wave propagation model, both based on the potential flow theory. This paper discusses the coupling method and illustrates the functionality with a proof-of-concept. Additionally, a projection of the evolution of the numerical tool is given. It can be concluded...... is complex; it is difficult to simulate both near field and far field effects with a single numerical model, with relatively fast computing times. Within this research a numerical tool is developed to model near-field and far-field wave transformations caused by WECs. The tool is based on the coupling...

  11. Computational model for turbulent flow around a grid spacer with mixing vane

    International Nuclear Information System (INIS)

    Tsutomu Ikeno; Takeo Kajishima

    2005-01-01

    Turbulent mixing coefficient and pressure drop are important factors in subchannel analysis to predict onset of DNB. However, universal correlations are difficult since these factors are significantly affected by the geometry of subchannel and a grid spacer with mixing vane. Therefore, we propose a computational model to estimate these factors. Computational model: To represent the effect of geometry of grid spacer in computational model, we applied a large eddy simulation (LES) technique in couple with an improved immersed-boundary method. In our previous work (Ikeno, et al., NURETH-10), detailed properties of turbulence in subchannel were successfully investigated by developing the immersed boundary method in LES. In this study, additional improvements are given: new one-equation dynamic sub-grid scale (SGS) model is introduced to account for the complex geometry without any artificial modification; the higher order accuracy is maintained by consistent treatment for boundary conditions for velocity and pressure. NUMERICAL TEST AND DISCUSSION: Turbulent mixing coefficient and pressure drop are affected strongly by the arrangement and inclination of mixing vane. Therefore, computations are carried out for each of convolute and periodic arrangements, and for each of 30 degree and 20 degree inclinations. The difference in turbulent mixing coefficient due to these factors is reasonably predicted by our method. (An example of this numerical test is shown in Fig. 1.) Turbulent flow of the problem includes unsteady separation behind the mixing vane and vortex shedding in downstream. Anisotropic distribution of turbulent stress is also appeared in rod gap. Therefore, our computational model has advantage for assessing the influence of arrangement and inclination of mixing vane. By coarser computational mesh, one can screen several candidates for spacer design. Then, by finer mesh, more quantitative analysis is possible. By such a scheme, we believe this method is useful

  12. Simulating the Smart Grid

    OpenAIRE

    Pöchacker, Manfred; Sobe, Anita; Elmenreich, Wilfried

    2013-01-01

    Major challenges for the transition of power systems do not only tackle power electronics but also communication technology, power market economy and user acceptance studies. Simulation is an important research method therein, as it helps to avoid costly failures. A common smart grid simulation platform is still missing. We introduce a conceptual model of agents in multiple flow networks. Flow networks extend the depth of established power flow analysis through use of networks of information ...

  13. Cafesat: A modern sat solver for scala

    OpenAIRE

    Blanc Régis

    2013-01-01

    We present CafeSat a SAT solver written in the Scala programming language. CafeSat is a modern solver based on DPLL and featuring many state of the art techniques and heuristics. It uses two watched literals for Boolean constraint propagation conict driven learning along with clause deletion a restarting strategy and the VSIDS heuristics for choosing the branching literal. CafeSat is both sound and complete. In order to achieve reasonable performance low level and hand tuned data structures a...

  14. A parallel finite-difference method for computational aerodynamics

    International Nuclear Information System (INIS)

    Swisshelm, J.M.

    1989-01-01

    A finite-difference scheme for solving complex three-dimensional aerodynamic flow on parallel-processing supercomputers is presented. The method consists of a basic flow solver with multigrid convergence acceleration, embedded grid refinements, and a zonal equation scheme. Multitasking and vectorization have been incorporated into the algorithm. Results obtained include multiprocessed flow simulations from the Cray X-MP and Cray-2. Speedups as high as 3.3 for the two-dimensional case and 3.5 for segments of the three-dimensional case have been achieved on the Cray-2. The entire solver attained a factor of 2.7 improvement over its unitasked version on the Cray-2. The performance of the parallel algorithm on each machine is analyzed. 14 refs

  15. Mitigation of grid-current distortion for LCL-filtered grid-connected voltage-source inverter with inverter-side current control

    DEFF Research Database (Denmark)

    Xin, Zhen; Mattavelli, Paolo; Yao, WenLi

    2017-01-01

    Due to the low inductance of an LCL-filter, the grid current generated by an LCL-filtered Voltage Source Inverter (VSI) is sensitive to low-order grid-voltage harmonics. This issue is especially tough for the control system with Inverter Current Feedback (ICF), because the grid-current harmonics...... can freely flow into the filter capacitor without control. To cope with this issue, this paper develops an approach for the ICF control system to suppress the grid-current harmonics without adding extra sensors. The proposed method applies harmonic controllers and feedforward scheme simultaneously...

  16. Comparison of the generalized Riemann solver and the gas-kinetic scheme for inviscid compressible flow simulations

    International Nuclear Information System (INIS)

    Li Jiequan; Li Qibing; Xu Kun

    2011-01-01

    The generalized Riemann problem (GRP) scheme for the Euler equations and gas-kinetic scheme (GKS) for the Boltzmann equation are two high resolution shock capturing schemes for fluid simulations. The difference is that one is based on the characteristics of the inviscid Euler equations and their wave interactions, and the other is based on the particle transport and collisions. The similarity between them is that both methods can use identical MUSCL-type initial reconstructions around a cell interface, and the spatial slopes on both sides of a cell interface involve in the gas evolution process and the construction of a time-dependent flux function. Although both methods have been applied successfully to the inviscid compressible flow computations, their performances have never been compared. Since both methods use the same initial reconstruction, any difference is solely coming from different underlying mechanism in their flux evaluation. Therefore, such a comparison is important to help us to understand the correspondence between physical modeling and numerical performances. Since GRP is so faithfully solving the inviscid Euler equations, the comparison can be also used to show the validity of solving the Euler equations itself. The numerical comparison shows that the GRP exhibits a slightly better computational efficiency, and has comparable accuracy with GKS for the Euler solutions in 1D case, but the GKS is more robust than GRP. For the 2D high Mach number flow simulations, the GKS is absent from the shock instability and converges to the steady state solutions faster than the GRP. The GRP has carbuncle phenomena, likes a cloud hanging over exact Riemann solvers. The GRP and GKS use different physical processes to describe the flow motion starting from a discontinuity. One is based on the assumption of equilibrium state with infinite number of particle collisions, and the other starts from the non-equilibrium free transport process to evolve into an

  17. Influence of mesh non-orthogonality on numerical simulation of buoyant jet flows

    International Nuclear Information System (INIS)

    Ishigaki, Masahiro; Abe, Satoshi; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2017-01-01

    Highlights: • Influence of mesh non-orthogonality on numerical solution of buoyant jet flows. • Buoyant jet flows are simulated with hexahedral and prismatic meshes. • Jet instability with prismatic meshes may be overestimated compared to that with hexahedral meshes. • Modified solvers that can reduce the influence of mesh non-orthogonality and reduce computation time are proposed. - Abstract: In the present research, we discuss the influence of mesh non-orthogonality on numerical solution of a type of buoyant flow. Buoyant jet flows are simulated numerically with hexahedral and prismatic mesh elements in an open source Computational Fluid Dynamics (CFD) code called “OpenFOAM”. Buoyant jet instability obtained with the prismatic meshes may be overestimated compared to that obtained with the hexahedral meshes when non-orthogonal correction is not applied in the code. Although the non-orthogonal correction method can improve the instability generated by mesh non-orthogonality, it may increase computation time required to reach a convergent solution. Thus, we propose modified solvers that can reduce the influence of mesh non-orthogonality and reduce the computation time compared to the existing solvers in OpenFOAM. It is demonstrated that calculations for a buoyant jet with a large temperature difference are performed faster by the modified solver.

  18. Influence of mesh non-orthogonality on numerical simulation of buoyant jet flows

    Energy Technology Data Exchange (ETDEWEB)

    Ishigaki, Masahiro, E-mail: ishigaki.masahiro@jaea.go.jp; Abe, Satoshi; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2017-04-01

    Highlights: • Influence of mesh non-orthogonality on numerical solution of buoyant jet flows. • Buoyant jet flows are simulated with hexahedral and prismatic meshes. • Jet instability with prismatic meshes may be overestimated compared to that with hexahedral meshes. • Modified solvers that can reduce the influence of mesh non-orthogonality and reduce computation time are proposed. - Abstract: In the present research, we discuss the influence of mesh non-orthogonality on numerical solution of a type of buoyant flow. Buoyant jet flows are simulated numerically with hexahedral and prismatic mesh elements in an open source Computational Fluid Dynamics (CFD) code called “OpenFOAM”. Buoyant jet instability obtained with the prismatic meshes may be overestimated compared to that obtained with the hexahedral meshes when non-orthogonal correction is not applied in the code. Although the non-orthogonal correction method can improve the instability generated by mesh non-orthogonality, it may increase computation time required to reach a convergent solution. Thus, we propose modified solvers that can reduce the influence of mesh non-orthogonality and reduce the computation time compared to the existing solvers in OpenFOAM. It is demonstrated that calculations for a buoyant jet with a large temperature difference are performed faster by the modified solver.

  19. A framework to identify Pareto-efficient subdaily environmental flow constraints on hydropower reservoirs using a grid-wide power dispatch model

    Science.gov (United States)

    Olivares, Marcelo A.; Haas, Jannik; Palma-Behnke, Rodrigo; Benavides, Carlos

    2015-05-01

    Hydrologic alteration due to hydropeaking reservoir operations is a main concern worldwide. Subdaily environmental flow constraints (ECs) on operations can be promising alternatives for mitigating negative impacts. However, those constraints reduce the flexibility of hydropower plants, potentially with higher costs for the power system. To study the economic and environmental efficiency of ECs, this work proposes a novel framework comprising four steps: (i) assessment of the current subdaily hydrologic alteration; (ii) formulation and implementation of a short-term, grid-wide hydrothermal coordination model; (iii) design of ECs in the form of maximum ramping rates (MRRs) and minimum flows (MIFs) for selected hydropower reservoirs; and (iv) identification of Pareto-efficient solutions in terms of grid-wide costs and the Richard-Baker flashiness index for subdaily hydrologic alteration (SDHA). The framework was applied to Chile's main power grid, assessing 25 EC cases, involving five MIFs and five MRRs. Each case was run for a dry, normal, and wet water year type. Three Pareto-efficient ECs are found, with remarkably small cost increase below 2% and a SDHA improvement between 28% and 90%. While the case involving the highest MIF worsens the flashiness of another basin, the other two have no negative effect on other basins and can be recommended for implementation.

  20. Using Flow Regime Lightning and Sounding Climatologies to Initialize Gridded Lightning Threat Forecasts for East Central Florida

    Science.gov (United States)

    Lambert, Winifred; Short, David; Volkmer, Matthew; Sharp, David; Spratt, Scott

    2007-01-01

    Each morning, the forecasters at the National Weather Service in Melbourne, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (httl://www.srh.weather.gov/mlb/ghwo/lightning.shtml) . Given the hazardous nature of lightning in East Central Florida, especially during the warm season months of May September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Until recently, the forecasters created each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent was to improve consistency between forecasters while allowing them to focus on the

  1. A numerical investigation on the unstable flow in a single stage of an axial compressors

    CERN Document Server

    Farhanieh, B; Ghorbanian, K

    2003-01-01

    An unsteady two-dimensional finite-volume solver was developed based on Van Leer's flux splitting algorithm in conjunction with sup M onotonic Upstream Scheme for Conservation Laws sup l imiters to improve the order of accuracy and the two-layer Baldwin-Lomax turbulence model was also implemented. Two test cases were prepared to validate the solver. The computed results were compared with the experimental data and a good agreement validated the solver. Finally, the solver was used for the flow through a multi-blade stage of an axial compressor in its off-design condition. The computed results showed a rotating stall-like instability with a periodic behavior. To investigate the flow properties during the instability condition, the flow pattern, vortex properties and the axial velocity were studied. It was concluded that the instability vortices in the multi-blade cascade do not have the same generation history of the separated vortices over a single body.

  2. Numerical and theoretical aspects of the modelling of compressible two-phase flow by interface capture methods

    International Nuclear Information System (INIS)

    Kokh, S.

    2001-01-01

    This research thesis reports the development of a numerical direct simulation of compressible two-phase flows by using interface capturing methods. These techniques are based on the use of an Eulerian fixed grid to describe flow variables as well as the interface between fluids. The author first recalls conventional interface capturing methods and makes the distinction between those based on discontinuous colour functions and those based on level set functions. The approach is then extended to a five equation model to allow the largest as possible choice of state equations for the fluids. Three variants are developed. A solver inspired by the Roe scheme is developed for one of them. These interface capturing methods are then refined, more particularly for problems of numerical diffusion at the interface. A last part addresses the study of dynamic phase change. Non-conventional thermodynamics tools are used to study the structures of an interface which performs phase transition [fr

  3. Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem

    Directory of Open Access Journals (Sweden)

    Aizat Abas

    2016-01-01

    Full Text Available This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI. Three different types of Lattice Boltzmann (LB models are computed, namely, single relaxation time (SRT, multiple relaxation time (MRT, and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV- based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required.

  4. VCODE, Ordinary Differential Equation Solver for Stiff and Non-Stiff Problems

    International Nuclear Information System (INIS)

    Cohen, Scott D.; Hindmarsh, Alan C.

    2001-01-01

    1 - Description of program or function: CVODE is a package written in ANSI standard C for solving initial value problems for ordinary differential equations. It solves both stiff and non stiff systems. In the stiff case, it includes a variety of options for treating the Jacobian of the system, including dense and band matrix solvers, and a preconditioned Krylov (iterative) solver. 2 - Method of solution: Integration is by Adams or BDF (Backward Differentiation Formula) methods, at user option. Corrector iteration is by functional iteration or Newton iteration. For the solution of linear systems within Newton iteration, users can select a dense solver, a band solver, a diagonal approximation, or a preconditioned Generalized Minimal Residual (GMRES) solver. In the dense and band cases, the user can supply a Jacobian approximation or let CVODE generate it internally. In the GMRES case, the pre-conditioner is user-supplied

  5. Minos: a SPN solver for core calculation in the DESCARTES system

    International Nuclear Information System (INIS)

    Baudron, A.M.; Lautard, J.J.

    2005-01-01

    This paper describes a new development of a neutronic core solver done in the context of a new generation neutronic reactor computational system, named DESCARTES. For performance reasons, the numerical method of the existing MINOS solver in the SAPHYR system has been reused in the new system. It is based on the mixed dual finite element approximation of the simplified transport equation. The solver takes into account assembly discontinuity coefficients (ADF) in the simplified transport equation (SPN) context. The solver has been rewritten in C++ programming language using an object oriented design. Its general architecture was reconsidered in order to improve its capability of evolution and its maintainability. Moreover, the performances of the old version have been improved mainly regarding the matrix construction time; this result improves significantly the performance of the solver in the context of industrial application requiring thermal hydraulic feedback and depletion calculations. (authors)

  6. A distributed-memory hierarchical solver for general sparse linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chao [Stanford Univ., CA (United States). Inst. for Computational and Mathematical Engineering; Pouransari, Hadi [Stanford Univ., CA (United States). Dept. of Mechanical Engineering; Rajamanickam, Sivasankaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Boman, Erik G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Darve, Eric [Stanford Univ., CA (United States). Inst. for Computational and Mathematical Engineering and Dept. of Mechanical Engineering

    2017-12-20

    We present a parallel hierarchical solver for general sparse linear systems on distributed-memory machines. For large-scale problems, this fully algebraic algorithm is faster and more memory-efficient than sparse direct solvers because it exploits the low-rank structure of fill-in blocks. Depending on the accuracy of low-rank approximations, the hierarchical solver can be used either as a direct solver or as a preconditioner. The parallel algorithm is based on data decomposition and requires only local communication for updating boundary data on every processor. Moreover, the computation-to-communication ratio of the parallel algorithm is approximately the volume-to-surface-area ratio of the subdomain owned by every processor. We also provide various numerical results to demonstrate the versatility and scalability of the parallel algorithm.

  7. Sherlock Holmes, Master Problem Solver.

    Science.gov (United States)

    Ballew, Hunter

    1994-01-01

    Shows the connections between Sherlock Holmes's investigative methods and mathematical problem solving, including observations, characteristics of the problem solver, importance of data, questioning the obvious, learning from experience, learning from errors, and indirect proof. (MKR)

  8. Experiences with linear solvers for oil reservoir simulation problems

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, W.; Janardhan, R. [Los Alamos National Lab., NM (United States); Biswas, D.; Carey, G.

    1996-12-31

    This talk will focus on practical experiences with iterative linear solver algorithms used in conjunction with Amoco Production Company`s Falcon oil reservoir simulation code. The goal of this study is to determine the best linear solver algorithms for these types of problems. The results of numerical experiments will be presented.

  9. Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; He, Qingyun; Ye, Minyou

    2015-11-15

    Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.

  10. Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM

    International Nuclear Information System (INIS)

    Feng, Jingchao; Chen, Hongli; He, Qingyun; Ye, Minyou

    2015-01-01

    Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.

  11. Offshore grid transmission planning using approximated HVDC power flows

    Energy Technology Data Exchange (ETDEWEB)

    Torbaghan, Shahab Shariat; Rawn, Barry G.; Gibescu, Madeleine; Meijden, Mart van der [Delft Univ. of Technology (Netherlands). Dept. of Electrical Sustainable Energy

    2012-07-01

    In this paper we introduce an optimization framework which determines a socially optimum design of a HVDC offshore grid, under the assumption of a centralized network expansion planning scheme. This gives the optimum grid topology and interconnections capacity. In addition, the analytical solution to the optimization problem yields a market structure that expresses the relationship between the different regions' electricity prices and congestion charges associated with the interconnections. The optimization model sets the transmission capacities in a way that congestion shadow prices to be collected by the end of the economic lifetime of the project pay off the initial investment capital. We use this framework to study the impact of exercising different dispatching policies on the optimum design of the grid. The framework is applied to a multi-bus test system that functions under 8 different time periods. (orig.)

  12. A multi-scale network method for two-phase flow in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Khayrat, Karim, E-mail: khayratk@ifd.mavt.ethz.ch; Jenny, Patrick

    2017-08-01

    Pore-network models of porous media are useful in the study of pore-scale flow in porous media. In order to extract macroscopic properties from flow simulations in pore-networks, it is crucial the networks are large enough to be considered representative elementary volumes. However, existing two-phase network flow solvers are limited to relatively small domains. For this purpose, a multi-scale pore-network (MSPN) method, which takes into account flow-rate effects and can simulate larger domains compared to existing methods, was developed. In our solution algorithm, a large pore network is partitioned into several smaller sub-networks. The algorithm to advance the fluid interfaces within each subnetwork consists of three steps. First, a global pressure problem on the network is solved approximately using the multiscale finite volume (MSFV) method. Next, the fluxes across the subnetworks are computed. Lastly, using fluxes as boundary conditions, a dynamic two-phase flow solver is used to advance the solution in time. Simulation results of drainage scenarios at different capillary numbers and unfavourable viscosity ratios are presented and used to validate the MSPN method against solutions obtained by an existing dynamic network flow solver.

  13. A multi-scale network method for two-phase flow in porous media

    International Nuclear Information System (INIS)

    Khayrat, Karim; Jenny, Patrick

    2017-01-01

    Pore-network models of porous media are useful in the study of pore-scale flow in porous media. In order to extract macroscopic properties from flow simulations in pore-networks, it is crucial the networks are large enough to be considered representative elementary volumes. However, existing two-phase network flow solvers are limited to relatively small domains. For this purpose, a multi-scale pore-network (MSPN) method, which takes into account flow-rate effects and can simulate larger domains compared to existing methods, was developed. In our solution algorithm, a large pore network is partitioned into several smaller sub-networks. The algorithm to advance the fluid interfaces within each subnetwork consists of three steps. First, a global pressure problem on the network is solved approximately using the multiscale finite volume (MSFV) method. Next, the fluxes across the subnetworks are computed. Lastly, using fluxes as boundary conditions, a dynamic two-phase flow solver is used to advance the solution in time. Simulation results of drainage scenarios at different capillary numbers and unfavourable viscosity ratios are presented and used to validate the MSPN method against solutions obtained by an existing dynamic network flow solver.

  14. Performance testing framework for smart grid communication network

    International Nuclear Information System (INIS)

    Quang, D N; See, O H; Chee, L L; Xuen, C Y; Karuppiah, S

    2013-01-01

    Smart grid communication network is comprised of different communication mediums and technologies. Performance evaluation is one of the main concerns in smart grid communication system. In any smart grid communication implementation, to determine the performance factor of the network, a testing of an end-to-end process flow is required. Therefore, an effective and coordinated testing procedure plays a crucial role in evaluating the performance of smart grid communications. In this paper, a testing framework is proposed as a guideline to analyze and assess the performance of smart grid communication network.

  15. An improved wavelength selection scheme for Monte Carlo solvers applied to hypersonic plasmas

    International Nuclear Information System (INIS)

    Feldick, Andrew; Modest, Michael F.

    2011-01-01

    A new databasing scheme is developed for Monte Carlo Ray Tracing methods applied to hypersonic planetary entry. In this scheme, the complex relationships for the emission wavelength selection of atomic and molecular species in nonequilibrium flows are simplified by developing random number relationships for individual transitions, as opposed to using relationships for the spectral emission coefficient of a given species. These new techniques speed up wavelength selection by about 2 orders of magnitude, and offer flexibility for use in weighted or part-spectrum Monte Carlo solvers.

  16. Experimental validation of GADRAS's coupled neutron-photon inverse radiation transport solver

    International Nuclear Information System (INIS)

    Mattingly, John K.; Mitchell, Dean James; Harding, Lee T.

    2010-01-01

    Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.

  17. RELATIVISTIC MAGNETOHYDRODYNAMICS: RENORMALIZED EIGENVECTORS AND FULL WAVE DECOMPOSITION RIEMANN SOLVER

    International Nuclear Information System (INIS)

    Anton, Luis; MartI, Jose M; Ibanez, Jose M; Aloy, Miguel A.; Mimica, Petar; Miralles, Juan A.

    2010-01-01

    We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wave front in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, and can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However, its relative efficiency increases in multidimensional simulations.

  18. An adaptive discretization of incompressible flow using a multitude of moving Cartesian grids

    Science.gov (United States)

    English, R. Elliot; Qiu, Linhai; Yu, Yue; Fedkiw, Ronald

    2013-12-01

    We present a novel method for discretizing the incompressible Navier-Stokes equations on a multitude of moving and overlapping Cartesian grids each with an independently chosen cell size to address adaptivity. Advection is handled with first and second order accurate semi-Lagrangian schemes in order to alleviate any time step restriction associated with small grid cell sizes. Likewise, an implicit temporal discretization is used for the parabolic terms including Navier-Stokes viscosity which we address separately through the development of a method for solving the heat diffusion equations. The most intricate aspect of any such discretization is the method used in order to solve the elliptic equation for the Navier-Stokes pressure or that resulting from the temporal discretization of parabolic terms. We address this by first removing any degrees of freedom which duplicately cover spatial regions due to overlapping grids, and then providing a discretization for the remaining degrees of freedom adjacent to these regions. We observe that a robust second order accurate symmetric positive definite readily preconditioned discretization can be obtained by constructing a local Voronoi region on the fly for each degree of freedom in question in order to obtain both its stencil (logically connected neighbors) and stencil weights. Internal curved boundaries such as at solid interfaces are handled using a simple immersed boundary approach which is directly applied to the Voronoi mesh in both the viscosity and pressure solves. We independently demonstrate each aspect of our approach on test problems in order to show efficacy and convergence before finally addressing a number of common test cases for incompressible flow with stationary and moving solid bodies.

  19. Large-Eddy Simulation of a High Reynolds Number Flow Around a Cylinder Including Aeroacoustic Predictions

    Science.gov (United States)

    Spyropoulos, Evangelos T.; Holmes, Bayard S.

    1997-01-01

    The dynamic subgrid-scale model is employed in large-eddy simulations of flow over a cylinder at a Reynolds number, based on the diameter of the cylinder, of 90,000. The Centric SPECTRUM(trademark) finite element solver is used for the analysis. The far field sound pressure is calculated from Lighthill-Curle's equation using the computed fluctuating pressure at the surface of the cylinder. The sound pressure level at a location 35 diameters away from the cylinder and at an angle of 90 deg with respect to the wake's downstream axis was found to have a peak value of approximately 110 db. Slightly smaller peak values were predicted at the 60 deg and 120 deg locations. A grid refinement study suggests that the dynamic model demands mesh refinement beyond that used here.

  20. Modeling and Grid Generation of Iced Airfoils

    Science.gov (United States)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Hackenberg, Anthony W.; Pennline, James A.; Schilling, Herbert W.

    2007-01-01

    SmaggIce Version 2.0 is a software toolkit for geometric modeling and grid generation for two-dimensional, singleand multi-element, clean and iced airfoils. A previous version of SmaggIce was described in Preparing and Analyzing Iced Airfoils, NASA Tech Briefs, Vol. 28, No. 8 (August 2004), page 32. To recapitulate: Ice shapes make it difficult to generate quality grids around airfoils, yet these grids are essential for predicting ice-induced complex flow. This software efficiently creates high-quality structured grids with tools that are uniquely tailored for various ice shapes. SmaggIce Version 2.0 significantly enhances the previous version primarily by adding the capability to generate grids for multi-element airfoils. This version of the software is an important step in streamlining the aeronautical analysis of ice airfoils using computational fluid dynamics (CFD) tools. The user may prepare the ice shape, define the flow domain, decompose it into blocks, generate grids, modify/divide/merge blocks, and control grid density and smoothness. All these steps may be performed efficiently even for the difficult glaze and rime ice shapes. Providing the means to generate highly controlled grids near rough ice, the software includes the creation of a wrap-around block (called the "viscous sublayer block"), which is a thin, C-type block around the wake line and iced airfoil. For multi-element airfoils, the software makes use of grids that wrap around and fill in the areas between the viscous sub-layer blocks for all elements that make up the airfoil. A scripting feature records the history of interactive steps, which can be edited and replayed later to produce other grids. Using this version of SmaggIce, ice shape handling and grid generation can become a practical engineering process, rather than a laborious research effort.