Liseikin, Vladimir D
2010-01-01
This book is an introduction to structured and unstructured grid methods in scientific computing, addressing graduate students, scientists as well as practitioners. Basic local and integral grid quality measures are formulated and new approaches to mesh generation are reviewed. In addition to the content of the successful first edition, a more detailed and practice oriented description of monitor metrics in Beltrami and diffusion equations is given for generating adaptive numerical grids. Also, new techniques developed by the author are presented, in particular a technique based on the inverted form of Beltrami’s partial differential equations with respect to control metrics. This technique allows the generation of adaptive grids for a wide variety of computational physics problems, including grid clustering to given function values and gradients, grid alignment with given vector fields, and combinations thereof. Applications of geometric methods to the analysis of numerical grid behavior as well as grid ge...
GPU based contouring method on grid DEM data
Tan, Liheng; Wan, Gang; Li, Feng; Chen, Xiaohui; Du, Wenlong
2017-08-01
This paper presents a novel method to generate contour lines from grid DEM data based on the programmable GPU pipeline. The previous contouring approaches often use CPU to construct a finite element mesh from the raw DEM data, and then extract contour segments from the elements. They also need a tracing or sorting strategy to generate the final continuous contours. These approaches can be heavily CPU-costing and time-consuming. Meanwhile the generated contours would be unsmooth if the raw data is sparsely distributed. Unlike the CPU approaches, we employ the GPU's vertex shader to generate a triangular mesh with arbitrary user-defined density, in which the height of each vertex is calculated through a third-order Cardinal spline function. Then in the same frame, segments are extracted from the triangles by the geometry shader, and translated to the CPU-side with an internal order in the GPU's transform feedback stage. Finally we propose a "Grid Sorting" algorithm to achieve the continuous contour lines by travelling the segments only once. Our method makes use of multiple stages of GPU pipeline for computation, which can generate smooth contour lines, and is significantly faster than the previous CPU approaches. The algorithm can be easily implemented with OpenGL 3.3 API or higher on consumer-level PCs.
Optimal Control of Micro Grid Operation Mode Seamless Switching Based on Radau Allocation Method
Chen, Xiaomin; Wang, Gang
2017-05-01
The seamless switching process of micro grid operation mode directly affects the safety and stability of its operation. According to the switching process from island mode to grid-connected mode of micro grid, we establish a dynamic optimization model based on two grid-connected inverters. We use Radau allocation method to discretize the model, and use Newton iteration method to obtain the optimal solution. Finally, we implement the optimization mode in MATLAB and get the optimal control trajectory of the inverters.
Hybrid method based on embedded coupled simulation of vortex particles in grid based solution
Kornev, Nikolai
2017-09-01
The paper presents a novel hybrid approach developed to improve the resolution of concentrated vortices in computational fluid mechanics. The method is based on combination of a grid based and the grid free computational vortex (CVM) methods. The large scale flow structures are simulated on the grid whereas the concentrated structures are modeled using CVM. Due to this combination the advantages of both methods are strengthened whereas the disadvantages are diminished. The procedure of the separation of small concentrated vortices from the large scale ones is based on LES filtering idea. The flow dynamics is governed by two coupled transport equations taking two-way interaction between large and fine structures into account. The fine structures are mapped back to the grid if their size grows due to diffusion. Algorithmic aspects of the hybrid method are discussed. Advantages of the new approach are illustrated on some simple two dimensional canonical flows containing concentrated vortices.
Grid impedance estimation based hybrid islanding detection method for AC microgrids
DEFF Research Database (Denmark)
Ghzaiel, Walid; Jebali-Ben Ghorbal, Manel; Slama-Belkhodja, Ilhem
2017-01-01
This paper focuses on a hybrid islanding detection algorithm for parallel-inverters-based microgrids. The proposed algorithm is implemented on the unit ensuring the control of the intelligent bypass switch connecting or disconnecting the microgrid from the utility. This method employs a grid...... to avoid interactions with other units. The selected inverter will be the one closest to the controllable distributed generation system or to a healthy grid side in case of meshed microgrid with multiple-grid connections. The detection algorithm is applied to quickly detect the resonance phenomena, so...
Liseikin, Vladimir D
2017-01-01
This new edition provides a description of current developments relating to grid methods, grid codes, and their applications to actual problems. Grid generation methods are indispensable for the numerical solution of differential equations. Adaptive grid-mapping techniques, in particular, are the main focus and represent a promising tool to deal with systems with singularities. This 3rd edition includes three new chapters on numerical implementations (10), control of grid properties (11), and applications to mechanical, fluid, and plasma related problems (13). Also the other chapters have been updated including new topics, such as curvatures of discrete surfaces (3). Concise descriptions of hybrid mesh generation, drag and sweeping methods, parallel algorithms for mesh generation have been included too. This new edition addresses a broad range of readers: students, researchers, and practitioners in applied mathematics, mechanics, engineering, physics and other areas of applications.
Frequency scanning-based stability analysis method for grid-connected inverter system
DEFF Research Database (Denmark)
Wang, Yanbo; Wang, Xiongfei; Blaabjerg, Frede
2017-01-01
This paper proposes a frequency scanning-based impedance analysis for stability assessment of grid-connected inverter system, which is able to perform stability assessment without using system mathematical models and inherit the superior feature of impedance-based stability criterion with conside......This paper proposes a frequency scanning-based impedance analysis for stability assessment of grid-connected inverter system, which is able to perform stability assessment without using system mathematical models and inherit the superior feature of impedance-based stability criterion...... with consideration of the inverter nonlinearities. Small current disturbance is injected into grid-connected inverter system in a particular frequency range, and the impedance is computed according to the harmonic-frequency response using Fourier analysis, and then the stability is predicted on the basis...... of the impedance stability criterion. The stability issues of grid-connected inverters with grid-current feedback and the converter-current feedback are addressed using the proposed method. The results obtained from simulation and experiments validate the effectiveness of the method. The frequency scanning...
A composite passive damping method of the LLCL-filter based grid-tied inverter
DEFF Research Database (Denmark)
Wu, Weimin; Huang, Min; Sun, Yunjie
2012-01-01
This paper investigates the maximum and the minimum gain of the proportional resonant based grid current controller for a grid-tied inverter with a passive damped high-order power filter. It is found that the choice of the controller gain is limited to the local maximum amplitude determined by Q......-factor around the characteristic frequency of the filter and grid impedance. To obtain the Q-factor of a high-order system, an equivalent circuit analysis method is proposed and illustrated through several classical passive damped LCL- and LLCL-filters. It is shown that both the RC parallel damper...... that is in parallel with the capacitor of the LCL-filter or with the Lf-Cf resonant circuit of the LLCL-filter, and the RL series damper in series with the grid-side inductor have their own application limits. Thus, a composite passive damped LLCL-filter for the grid-tied inverter is proposed, which can effectively...
DEFF Research Database (Denmark)
Ghzaiel, Walid; Jebali-Ben Ghorbal, Manel; Slama-Belkhodja, Ilhem
2014-01-01
This paper presents a hybrid islanding detection algorithm integrated on the distributed generation unit more close to the point of common coupling of a Microgrid based on parallel inverters where one of them is responsible to control the system. The method is based on resonance excitation under...... parameters, both resistive and inductive parts, from the injected resonance frequency determination. Finally, the inverter will disconnect the microgrid from the faulty grid and reconnect the parallel inverter system to the controllable distributed system in order to ensure high power quality. This paper...... shows that grid impedance variation detection estimation can be an efficient method for islanding detection in microgrid systems. Theoretical analysis and simulation results are presented to validate the proposed method....
Research on the Method of Urban Waterlogging Flood Routing Based on Hexagonal Grid
Directory of Open Access Journals (Sweden)
LAI Guangling
2016-12-01
Full Text Available An evolution of the urban waterlogging flood routing was studied in this paper based on the method of hexagonal grid modeling. Using the method of discrete grid, established an urban geometry model on account of the regular multi-scale discrete grid. With the fusion of 3D topographic survey data and 2D building vector data, formed a regular network model of surface. This model took multi special block into account, such as urban terrain and buildings. On this basis, a method of reverse flow deduction was proposed, which was an inverse computation from the state of flood to the evolution process. That is, based on the water depth of flood, made use of the connectivity with the outfall to calculate the range of water logging, and then implemented the urban waterlogging flood simulation deduction. The test indicated that, this method can implement the evolution of urban waterlogging scenario deduction effectively. And the correlational research could provide scientific basis for urban disaster prevention and emergency decision-making.
A new service-oriented grid-based method for AIoT application and implementation
Zou, Yiqin; Quan, Li
2017-07-01
The traditional three-layer Internet of things (IoT) model, which includes physical perception layer, information transferring layer and service application layer, cannot express complexity and diversity in agricultural engineering area completely. It is hard to categorize, organize and manage the agricultural things with these three layers. Based on the above requirements, we propose a new service-oriented grid-based method to set up and build the agricultural IoT. Considering the heterogeneous, limitation, transparency and leveling attributes of agricultural things, we propose an abstract model for all agricultural resources. This model is service-oriented and expressed with Open Grid Services Architecture (OGSA). Information and data of agricultural things were described and encapsulated by using XML in this model. Every agricultural engineering application will provide service by enabling one application node in this service-oriented grid. Description of Web Service Resource Framework (WSRF)-based Agricultural Internet of Things (AIoT) and the encapsulation method were also discussed in this paper for resource management in this model.
Wang, Zian; Li, Shiguang; Yu, Ting
2015-12-01
This paper propose online identification method of regional frequency deviation coefficient based on the analysis of interconnected grid AGC adjustment response mechanism of regional frequency deviation coefficient and the generator online real-time operation state by measured data through PMU, analyze the optimization method of regional frequency deviation coefficient in case of the actual operation state of the power system and achieve a more accurate and efficient automatic generation control in power system. Verify the validity of the online identification method of regional frequency deviation coefficient by establishing the long-term frequency control simulation model of two-regional interconnected power system.
A sparse grid based method for generative dimensionality reduction of high-dimensional data
Bohn, Bastian; Garcke, Jochen; Griebel, Michael
2016-03-01
Generative dimensionality reduction methods play an important role in machine learning applications because they construct an explicit mapping from a low-dimensional space to the high-dimensional data space. We discuss a general framework to describe generative dimensionality reduction methods, where the main focus lies on a regularized principal manifold learning variant. Since most generative dimensionality reduction algorithms exploit the representer theorem for reproducing kernel Hilbert spaces, their computational costs grow at least quadratically in the number n of data. Instead, we introduce a grid-based discretization approach which automatically scales just linearly in n. To circumvent the curse of dimensionality of full tensor product grids, we use the concept of sparse grids. Furthermore, in real-world applications, some embedding directions are usually more important than others and it is reasonable to refine the underlying discretization space only in these directions. To this end, we employ a dimension-adaptive algorithm which is based on the ANOVA (analysis of variance) decomposition of a function. In particular, the reconstruction error is used to measure the quality of an embedding. As an application, the study of large simulation data from an engineering application in the automotive industry (car crash simulation) is performed.
A Corner-Point-Grid-Based Voxelization Method for Complex Geological Structure Model with Folds
Chen, Qiyu; Mariethoz, Gregoire; Liu, Gang
2017-04-01
3D voxelization is the foundation of geological property modeling, and is also an effective approach to realize the 3D visualization of the heterogeneous attributes in geological structures. The corner-point grid is a representative data model among all voxel models, and is a structured grid type that is widely applied at present. When carrying out subdivision for complex geological structure model with folds, we should fully consider its structural morphology and bedding features to make the generated voxels keep its original morphology. And on the basis of which, they can depict the detailed bedding features and the spatial heterogeneity of the internal attributes. In order to solve the shortage of the existing technologies, this work puts forward a corner-point-grid-based voxelization method for complex geological structure model with folds. We have realized the fast conversion from the 3D geological structure model to the fine voxel model according to the rule of isocline in Ramsay's fold classification. In addition, the voxel model conforms to the spatial features of folds, pinch-out and other complex geological structures, and the voxels of the laminas inside a fold accords with the result of geological sedimentation and tectonic movement. This will provide a carrier and model foundation for the subsequent attribute assignment as well as the quantitative analysis and evaluation based on the spatial voxels. Ultimately, we use examples and the contrastive analysis between the examples and the Ramsay's description of isoclines to discuss the effectiveness and advantages of the method proposed in this work when dealing with the voxelization of 3D geologic structural model with folds based on corner-point grids.
Coding Model and Mapping Method of Spherical Diamond Discrete Grids Based on Icosahedron
Directory of Open Access Journals (Sweden)
LIN Bingxian
2016-12-01
Full Text Available Discrete Global Grid(DGG provides a fundamental environment for global-scale spatial data's organization and management. DGG's encoding scheme, which blocks coordinate transformation between different coordination reference frames and reduces the complexity of spatial analysis, contributes a lot to the multi-scale expression and unified modeling of spatial data. Compared with other kinds of DGGs, Diamond Discrete Global Grid(DDGG based on icosahedron is beneficial to the spherical spatial data's integration and expression for much better geometric properties. However, its structure seems more complicated than DDGG on octahedron due to its initial diamond's edges cannot fit meridian and parallel. New challenges are posed when it comes to the construction of hierarchical encoding system and mapping relationship with geographic coordinates. On this issue, this paper presents a DDGG's coding system based on the Hilbert curve and designs conversion methods between codes and geographical coordinates. The study results indicate that this encoding system based on the Hilbert curve can express space scale and location information implicitly with the similarity between DDG and planar grid put into practice, and balances efficiency and accuracy of conversion between codes and geographical coordinates in order to support global massive spatial data's modeling, integrated management and all kinds of spatial analysis.
A measurement method for micro 3D shape based on grids-processing and stereovision technology
International Nuclear Information System (INIS)
Li, Chuanwei; Xie, Huimin; Liu, Zhanwei
2013-01-01
An integrated measurement method for micro 3D surface shape by a combination of stereovision technology in a scanning electron microscope (SEM) and grids-processing methodology is proposed. The principle of the proposed method is introduced in detail. By capturing two images of the tested specimen with grids on the surface at different tilt angles in an SEM, the 3D surface shape of the specimen can be obtained. Numerical simulation is applied to analyze the feasibility of the proposed method. A validation experiment is performed here. The surface shape of the metal-wire/polymer-membrane structures with thermal deformation is reconstructed. By processing the surface grids of the specimen, the out-of-plane displacement field of the specimen surface is also obtained. Compared with the measurement results obtained by a 3D digital microscope, the experimental error of the proposed method is discussed (paper)
DEFF Research Database (Denmark)
Jin, Lin; Yuan-zhang, Sun; Sørensen, Poul Ejnar
2012-01-01
published studies are based entirely on deterministic methodology. This paper presents a novel assessment method based on Time-Frequency Transformation to overcome shortcomings of existing methods. The main contribution of the paper is to propose a stochastic process simulation model which is a better...... alternative of the existing dynamic frequency deviation simulation model. In this way, the method takes the stochastic wind power fluctuation into full account so as to give a quantitative risk assessment of grid frequency deviation to grid operators, even without using any dynamic simulation tool. The case...
Control strategy of grid-connected photovoltaic generation system based on GMPPT method
Wang, Zhongfeng; Zhang, Xuyang; Hu, Bo; Liu, Jun; Li, Ligang; Gu, Yongqiang; Zhou, Bowen
2018-02-01
There are multiple local maximum power points when photovoltaic (PV) array runs under partial shading condition (PSC).However, the traditional maximum power point tracking (MPPT) algorithm might be easily trapped in local maximum power points (MPPs) and cannot find the global maximum power point (GMPP). To solve such problem, a global maximum power point tracking method (GMPPT) is improved, combined with traditional MPPT method and particle swarm optimization (PSO) algorithm. Under different operating conditions of PV cells, different tracking algorithms are used. When the environment changes, the improved PSO algorithm is adopted to realize the global optimal search, and the variable step incremental conductance (INC) method is adopted to achieve MPPT in optimal local location. Based on the simulation model of the PV grid system built in Matlab/Simulink, comparative analysis of the tracking effect of MPPT by the proposed control algorithm and the traditional MPPT method under the uniform solar condition and PSC, validate the correctness, feasibility and effectiveness of the proposed control strategy.
DEFF Research Database (Denmark)
Wu, Weimin; Liu, Yuan; He, Yuanbin
2017-01-01
Grid-tied voltage source inverters using LCL filter have been widely adopted in distributed power generation systems (DPGSs). As high-order LCL filters contain multiple resonant frequencies, switching harmonics generated by the inverter and current harmonics generated by the active/passive loads...... innovative damping methods have been proposed. A comprehensive overview on those contributions and their classification on the inverter- and grid-side damping measures are presented. Based on the concept of the impedance-based stability analysis, all damping methods can ensure the system stability...
An Efficient Mesh Generation Method for Fractured Network System Based on Dynamic Grid Deformation
Directory of Open Access Journals (Sweden)
Shuli Sun
2013-01-01
Full Text Available Meshing quality of the discrete model influences the accuracy, convergence, and efficiency of the solution for fractured network system in geological problem. However, modeling and meshing of such a fractured network system are usually tedious and difficult due to geometric complexity of the computational domain induced by existence and extension of fractures. The traditional meshing method to deal with fractures usually involves boundary recovery operation based on topological transformation, which relies on many complicated techniques and skills. This paper presents an alternative and efficient approach for meshing fractured network system. The method firstly presets points on fractures and then performs Delaunay triangulation to obtain preliminary mesh by point-by-point centroid insertion algorithm. Then the fractures are exactly recovered by local correction with revised dynamic grid deformation approach. Smoothing algorithm is finally applied to improve the quality of mesh. The proposed approach is efficient, easy to implement, and applicable to the cases of initial existing fractures and extension of fractures. The method is successfully applied to modeling of two- and three-dimensional discrete fractured network (DFN system in geological problems to demonstrate its effectiveness and high efficiency.
Directory of Open Access Journals (Sweden)
Qinghai Zhao
2015-01-01
Full Text Available A mathematical framework is developed which integrates the reliability concept into topology optimization to solve reliability-based topology optimization (RBTO problems under uncertainty. Two typical methodologies have been presented and implemented, including the performance measure approach (PMA and the sequential optimization and reliability assessment (SORA. To enhance the computational efficiency of reliability analysis, stochastic response surface method (SRSM is applied to approximate the true limit state function with respect to the normalized random variables, combined with the reasonable design of experiments generated by sparse grid design, which was proven to be an effective and special discretization technique. The uncertainties such as material property and external loads are considered on three numerical examples: a cantilever beam, a loaded knee structure, and a heat conduction problem. Monte-Carlo simulations are also performed to verify the accuracy of the failure probabilities computed by the proposed approach. Based on the results, it is demonstrated that application of SRSM with SGD can produce an efficient reliability analysis in RBTO which enables a more reliable design than that obtained by DTO. It is also found that, under identical accuracy, SORA is superior to PMA in view of computational efficiency.
Liang, Weibin; Ouyang, Sen; Huang, Xiang; Su, Weijian
2017-05-01
The existing modeling process of power quality about electrified railways connected to power grid is complicated and the simulation scene is incomplete, so this paper puts forward a novel evaluation method of power quality based on PSCAD/ETMDC. Firstly, a model of power quality about electrified railways connected to power grid is established, which is based on testing report or measured data. The equivalent model of electrified locomotive contains power characteristic and harmonic characteristic, which are substituted by load and harmonic source. Secondly, in order to make evaluation more complete, an analysis scheme has been put forward. The scheme uses a combination of three-dimensions of electrified locomotive, which contains types, working conditions and quantity. At last, Shenmao Railway is taken as example to evaluate the power quality at different scenes, and the result shows electrified railways connected to power grid have significant effect on power quality.
Directory of Open Access Journals (Sweden)
Yukai Yao
2015-01-01
Full Text Available We propose an optimized Support Vector Machine classifier, named PMSVM, in which System Normalization, PCA, and Multilevel Grid Search methods are comprehensively considered for data preprocessing and parameters optimization, respectively. The main goals of this study are to improve the classification efficiency and accuracy of SVM. Sensitivity, Specificity, Precision, and ROC curve, and so forth, are adopted to appraise the performances of PMSVM. Experimental results show that PMSVM has relatively better accuracy and remarkable higher efficiency compared with traditional SVM algorithms.
DEFF Research Database (Denmark)
Ciobotaru, Mihai; Agelidis, Vassilios; Teodorescu, Remus
2008-01-01
Islanding prediction is a necessary feature of inverter-based photovoltaic (PV) system in order to meet stringent standard requirements for interconnection with the electrical grid. Both passive and active anti-islanding methods exist. Typically, active methods modify a given parameter, which also...... extracted from the voltage at PCC moves outside of a preset threshold value. This new active anti-islanding method meets both standard requirements IEEE 929-2000, IEEE 1547.1 and VDE 0126.1.1. The disturbance used by this method is small compared to other active anti-islanding methods, such as active...
DEFF Research Database (Denmark)
Wu, Weimin; Lin, Zhe; Sun, Yunjie
2013-01-01
Grid-tied inverters have been widely used to inject the renewable energies into the distributed power generation systems. However, a large variation of the grid impedance challenges the stability of the high-order power filter based grid-tied inverter. Many passive and active damping methods have...... been proposed to overcome this issue. Recently, a composite passive damping method for a high-order power filter based grid-tied inverter with an RC parallel damper and an RL series damper was presented to eliminate this problem, but at the cost of more material and power losses. In this paper...
Grid Transmission Expansion Planning Model Based on Grid Vulnerability
Tang, Quan; Wang, Xi; Li, Ting; Zhang, Quanming; Zhang, Hongli; Li, Huaqiang
2018-03-01
Based on grid vulnerability and uniformity theory, proposed global network structure and state vulnerability factor model used to measure different grid models. established a multi-objective power grid planning model which considering the global power network vulnerability, economy and grid security constraint. Using improved chaos crossover and mutation genetic algorithm to optimize the optimal plan. For the problem of multi-objective optimization, dimension is not uniform, the weight is not easy given. Using principal component analysis (PCA) method to comprehensive assessment of the population every generation, make the results more objective and credible assessment. the feasibility and effectiveness of the proposed model are validated by simulation results of Garver-6 bus system and Garver-18 bus.
International Nuclear Information System (INIS)
Ma Xiang; Zabaras, Nicholas
2009-01-01
A new approach to modeling inverse problems using a Bayesian inference method is introduced. The Bayesian approach considers the unknown parameters as random variables and seeks the probabilistic distribution of the unknowns. By introducing the concept of the stochastic prior state space to the Bayesian formulation, we reformulate the deterministic forward problem as a stochastic one. The adaptive hierarchical sparse grid collocation (ASGC) method is used for constructing an interpolant to the solution of the forward model in this prior space which is large enough to capture all the variability/uncertainty in the posterior distribution of the unknown parameters. This solution can be considered as a function of the random unknowns and serves as a stochastic surrogate model for the likelihood calculation. Hierarchical Bayesian formulation is used to derive the posterior probability density function (PPDF). The spatial model is represented as a convolution of a smooth kernel and a Markov random field. The state space of the PPDF is explored using Markov chain Monte Carlo algorithms to obtain statistics of the unknowns. The likelihood calculation is performed by directly sampling the approximate stochastic solution obtained through the ASGC method. The technique is assessed on two nonlinear inverse problems: source inversion and permeability estimation in flow through porous media
Directory of Open Access Journals (Sweden)
Hongbo Zhu
2018-01-01
Full Text Available The real-time pricing (RTP scheme is an ideal method to adjust the power balance between supply and demand in smart grid systems. This scheme has a profound impact on users’ behavior, system operation, and overall grid management in the electricity industry. In this research, we conduct an extended discussion of a RTP optimization model and give a theoretical analysis of the existence and uniqueness of the Lagrangian multiplier. A distributed optimization method based on the alternating direction method of multipliers (ADMM algorithm with Gaussian back substitution (GBS is proposed in this study. On the one hand, the proposed algorithm takes abundant advantage of the separability among variables in the model. On the other hand, the proposed algorithm can not only speed up the convergence rate to enhance the efficiency of computing, but also overcome the deficiency of the distributed dual subgradient algorithm, the possibility of nonconvergence in the iteration process. In addition, we give the theoretical proof of the convergence of the proposed algorithm. Furthermore, the interdependent relationship between variables has been discussed in depth during numerical simulations in the study. Compared with the dual subgradient method, the simulation results validate that the proposed algorithm has a higher convergence speed and better implementation effect.
Equivalent Simplification Method of Micro-Grid
Cai Changchun; Cao Xiangqin
2013-01-01
The paper concentrates on the equivalent simplification method for the micro-grid system connection into distributed network. The equivalent simplification method proposed for interaction study between micro-grid and distributed network. Micro-grid network, composite load, gas turbine synchronous generation, wind generation are equivalent simplification and parallel connect into the point of common coupling. A micro-grid system is built and three phase and single phase grounded faults are per...
Kunaifi, Kunaifi; Reinders, Angelina H.M.E.; Smets, Arno
2017-01-01
In this paper, we compare two methods for estimating the technical potential of grid-connected PV systems in Indonesia. One was a method developed by Veldhuis and Renders [1] and the other is a new method using Geographic Information System (GIS) and multi-criteria decision making (MCDM). The first
Optimal Operation Method of Smart House by Controllable Loads based on Smart Grid Topology
Yoza, Akihiro; Uchida, Kosuke; Yona, Atsushi; Senju, Tomonobu
2013-08-01
From the perspective of global warming suppression and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all electrification apartment house or residence such as DC smart house have increased in recent years. However, due to fluctuating power from renewable energy sources and loads, supply-demand balancing fluctuations of power system become problematic. Therefore, "smart grid" has become very popular in the worldwide. This article presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuations. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuations, it is possible to reduce the maximum electric power consumption and the electric cost. This system consists of photovoltaics generator, heat pump, battery, solar collector, and load. In order to verify the effectiveness of the proposed system, MATLAB is used in simulations.
Directory of Open Access Journals (Sweden)
Shuyu Dai
2017-10-01
Full Text Available As an important implementing body of the national energy strategy, grid enterprises bear the important responsibility of optimizing the allocation of energy resources and serving the economic and social development, and their levels of sustainable development have a direct impact on the national economy and social life. In this paper, the model of fuzzy group ideal point method and combination weighting method with improved group order relation method and entropy weight method is proposed to evaluate the sustainable development of power grid enterprises. Firstly, on the basis of consulting a large amount of literature, the important criteria of the comprehensive evaluation of the sustainable development of power grid enterprises are preliminarily selected. The opinions of the industry experts are consulted and fed back for many rounds through the Delphi method and the evaluation criteria system for sustainable development of power grid enterprises is determined, then doing the consistent and non dimensional processing of the evaluation criteria. After that, based on the basic order relation method, the weights of each expert judgment matrix are synthesized to construct the compound matter elements. By using matter element analysis, the subjective weights of the criteria are obtained. And entropy weight method is used to determine the objective weights of the preprocessed criteria. Then, combining the subjective and objective information with the combination weighting method based on the subjective and objective weighted attribute value consistency, a more comprehensive, reasonable and accurate combination weight is calculated. Finally, based on the traditional TOPSIS method, the triangular fuzzy numbers are introduced to better realize the scientific processing of the data information which is difficult to quantify, and the queuing indication value of each object and the ranking result are obtained. A numerical example is taken to prove that the
Directory of Open Access Journals (Sweden)
Mehmet Emin Meral
2018-01-01
Full Text Available The control of power converter devices is one of the main research lines in interfaced renewable energy sources, such as solar cells and wind turbines. Therefore, suitable control algorithms should be designed in order to regulate power or current properly and attain a good power quality for some disturbances, such as voltage sag/swell, voltage unbalances and fluctuations, long interruptions, and harmonics. Various synchronisation techniques based control strategies are implemented for the hybrid power system applications under unbalanced conditions in literature studies. In this paper, synchronisation algorithms based Proportional-Resonant (PR power/current controller is applied to the hybrid power system (solar cell + wind turbine + grid, and Dual Second Order Generalized Integrator-Phase Locked Loop (DSOGI-PLL based PR controller in stationary reference frame provides a solution to overcome these problems. The influence of various cases, such as unbalance, and harmonic conditions, is examined, analysed and compared to the PR controllers based on DSOGI-PLL and SRF-PLL. The results verify the effectiveness and correctness of the proposed DSOGI-PLL based power control method.
Directory of Open Access Journals (Sweden)
Ali Hadi Abdulwahid
2018-04-01
Full Text Available This paper addresses the energy challenges related to the weak protection of renewable energy from reverse energy flow and expanding access to high-quality energy at the same time. Furthermore, this paper focuses on participation in the global transition to clean and low-carbon energy systems. Moreover, the increased demand for renewable energy seems to likely depend on whether it will be possible to greatly accelerate rates of progress toward increased efficiency, de-carbonization, greater generating diversity and lower pollutant emissions. This paper focuses on the protection of renewable energy technologies because they can be particularly attractive in dispersed areas and therefore, represent an important option for rural areas that lack electrical energy and distribution infrastructure. This paper proposes an improved protection device for a reverse power protection system using a new intelligent decision support system (IDSS. The IDSS is a support system for decision making, which makes extensive use of artificial intelligence (AI techniques. The new method integrates the powerful specification for neural networks and fuzzy inference systems. The main advantage of this method is that it causes a decrease in the steady state oscillation for the reverse power relay. In addition, the proposed method has the ability to monitor extreme environmental conditions. The generator can be converted into a motor when the steam supply to a turbine is interrupted while the generator is still connected to a grid (or operates in parallel with another generator. As a result, the generator will become a synchronous motor and will actually cause significant mechanical damage. The reverse energy protection device should be included in the generator protection scheme. Smart grids use communication networks with sophisticated algorithms to ensure coordination between protection systems. ZigBee is a newly developed technology that can be used in wireless sensor
Ecosystem Based Business Model of Smart Grid
Lundgaard, Morten Raahauge; Ma, Zheng; Jørgensen, Bo Nørregaard
2015-01-01
This paper tries to investigate the ecosystem based business model in a smart grid infrastructure and the potential of value capture in the highly complex macro infrastructure such as smart grid. This paper proposes an alternative perspective to study the smart grid business ecosystem to support the infrastructural challenges, such as the interoperability of business components for smart grid. So far little research has explored the business ecosystem in the smart grid concept. The study on t...
Synchronization method for grid integrated battery storage systems during asymmetrical grid faults
Directory of Open Access Journals (Sweden)
Popadić Bane
2017-01-01
Full Text Available This paper aims at presenting a robust and reliable synchronization method for battery storage systems during asymmetrical grid faults. For this purpose, a Matlab/Simulink based model for testing of the power electronic interface between the grid and the battery storage systems has been developed. The synchronization method proposed in the paper is based on the proportional integral resonant controller with the delay signal cancellation. The validity of the synchronization method has been verified using the advanced laboratory station for the control of grid connected distributed energy sources. The proposed synchronization method has eliminated unfavourable components from the estimated grid angular frequency, leading to the more accurate and reliable tracking of the grid voltage vector positive sequence during both the normal operation and the operation during asymmetrical grid faults. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 042004: Integrated and Interdisciplinary Research entitled: Smart Electricity Distribution Grids Based on Distribution Management System and Distributed Generation
DEFF Research Database (Denmark)
Zhao, Xin; Firoozabadi, Mehdi Savaghebi; Quintero, Juan Carlos Vasquez
2015-01-01
. In this paper, a voltage support strategy based on negative sequence droop control, which regulate the positive/negative sequence active and reactive power flow by means of sending proper voltage reference to the inner control loop, is proposed for the grid connected MGs to ride through voltage sags under...... complex line impedance conditions. In this case, the MGs should inject a certain amount of positive and negative sequence power to the grid so that the voltage quality at load side can be maintained at a satisfied level. A two layer hierarchical control strategy is proposed in this paper. The primary...... control loop consists of voltage and current inner loops, conventional droop control and virtual impedance loop while the secondary control loop is based on positive/negative sequence droop control which can achieve power injection under voltage sags. Experimental results with asymmetrical voltage sags...
Li, Tianxin; Zhou, Xing Chen; Ikhumhen, Harrison Odion; Difei, An
2018-05-01
In recent years, with the significant increase in urban development, it has become necessary to optimize the current air monitoring stations to reflect the quality of air in the environment. Highlighting the spatial representation of some air monitoring stations using Beijing's regional air monitoring station data from 2012 to 2014, the monthly mean particulate matter concentration (PM10) in the region was calculated and through the IDW interpolation method and spatial grid statistical method using GIS, the spatial distribution of PM10 concentration in the whole region was deduced. The spatial distribution variation of districts in Beijing using the gridding model was performed, and through the 3-year spatial analysis, PM10 concentration data including the variation and spatial overlay (1.5 km × 1.5 km cell resolution grid), the spatial distribution result obtained showed that the total PM10 concentration frequency variation exceeded the standard. It is very important to optimize the layout of the existing air monitoring stations by combining the concentration distribution of air pollutants with the spatial region using GIS.
Directory of Open Access Journals (Sweden)
Tarun Kumar Raghuvanshi
2015-12-01
Full Text Available The present study area is located in Meta Robi District of West Showa Zone in Oromiya Regional State in Ethiopia. The main objective of the present study was to evaluate landslide hazard zonation (LHZ by utilizing ‘Grid overlay’ and ‘GIS modeling’ approaches. Also, it was attempted to know the effectiveness of the two methods. The methodology followed was based on the analysis of past landslides in the area. For the present study six causative factors namely; slope material, slope, aspect, elevation, land use and land cover and groundwater surface traces were considered. Later, Landslide Susceptibility Index (LSI was computed based on the relative influence of causative factors on past landslides. For the ‘Grid overlay’ method a grid with cells 10 m by 10 m was overlaid over the study area and later it was geo-processed to delineate various sub-classes of each causative factor. LSI values were assigned to each sub-causative factor within each grid cell and a ‘Total Landslide Susceptibility Index’ was calculated to produce the LHZ map. For ‘GIS modeling’ the same causative factors and similar LSI values were utilized. In the case of LHZ map prepared by the ‘Grid overlay’ method about 82% of past landslides fall within ‘very high hazard’ or ‘high hazard’ zones whereas in the case of ‘GIS modeling’ about 95% of past landslides fall within ‘very high hazard’ or ‘high hazard’ zones. Finally, the validation showed that ‘GIS modeling’ produced better LHZ map. Also, ‘Grid overlay’ method is more tedious and time consuming as compared to GIS modeling.
A Grid Voltage Measurement Method for Wind Power Systems during Grid Fault Conditions
Directory of Open Access Journals (Sweden)
Cheol-Hee Yoo
2014-11-01
Full Text Available Grid codes in many countries require low-voltage ride-through (LVRT capability to maintain power system stability and reliability during grid fault conditions. To meet the LVRT requirement, wind power systems must stay connected to the grid and also supply reactive currents to the grid to support the recovery from fault voltages. This paper presents a new fault detection method and inverter control scheme to improve the LVRT capability for full-scale permanent magnet synchronous generator (PMSG wind power systems. Fast fault detection can help the wind power systems maintain the DC-link voltage in a safe region. The proposed fault detection method is based on on-line adaptive parameter estimation. The performance of the proposed method is verified in comparison to the conventional voltage measurement method defined in the IEC 61400-21 standard.
Chen, Meng-Huo; Greenbaum, Anne
2015-01-01
Summary: A two-grid convergence analysis based on the paper [Algebraic analysis of aggregation-based multigrid, by A. Napov and Y. Notay, Numer. Lin. Alg. Appl. 18 (2011), pp. 539-564] is derived for various aggregation schemes applied to a finite element discretization of a rotated anisotropic diffusion equation. As expected, it is shown that the best aggregation scheme is one in which aggregates are aligned with the anisotropy. In practice, however, this is not what automatic aggregation procedures do. We suggest approaches for determining appropriate aggregates based on eigenvectors associated with small eigenvalues of a block splitting matrix or based on minimizing a quantity related to the spectral radius of the iteration matrix. © 2015 John Wiley & Sons, Ltd.
Chen, Meng-Huo
2015-03-18
Summary: A two-grid convergence analysis based on the paper [Algebraic analysis of aggregation-based multigrid, by A. Napov and Y. Notay, Numer. Lin. Alg. Appl. 18 (2011), pp. 539-564] is derived for various aggregation schemes applied to a finite element discretization of a rotated anisotropic diffusion equation. As expected, it is shown that the best aggregation scheme is one in which aggregates are aligned with the anisotropy. In practice, however, this is not what automatic aggregation procedures do. We suggest approaches for determining appropriate aggregates based on eigenvectors associated with small eigenvalues of a block splitting matrix or based on minimizing a quantity related to the spectral radius of the iteration matrix. © 2015 John Wiley & Sons, Ltd.
Ecosystem Based Business Model of Smart Grid
DEFF Research Database (Denmark)
Lundgaard, Morten Raahauge; Ma, Zheng; Jørgensen, Bo Nørregaard
2015-01-01
This paper tries to investigate the ecosystem based business model in a smart grid infrastructure and the potential of value capture in the highly complex macro infrastructure such as smart grid. This paper proposes an alternative perspective to study the smart grid business ecosystem to support...... the infrastructural challenges, such as the interoperability of business components for smart grid. So far little research has explored the business ecosystem in the smart grid concept. The study on the smart grid with the theory of business ecosystem may open opportunities to understand market catalysts. This study...... contributes an understanding of business ecosystem applicable for smart grid. Smart grid infrastructure is an intricate business ecosystem, which have several intentions to deliver the value proposition and what it should be. The findings help to identify and capture value from markets....
Adaptive Method Using Controlled Grid Deformation
Directory of Open Access Journals (Sweden)
Florin FRUNZULICA
2011-09-01
Full Text Available The paper presents an adaptive method using the controlled grid deformation over an elastic, isotropic and continuous domain. The adaptive process is controlled with the principal strains and principal strain directions and uses the finite elements method. Numerical results are presented for several test cases.
Finite volume methods for the incompressible Navier-Stokes equations on unstructured grids
Energy Technology Data Exchange (ETDEWEB)
Meese, Ernst Arne
1998-07-01
Most solution methods of computational fluid dynamics (CFD) use structured grids based on curvilinear coordinates for compliance with complex geometries. In a typical industry application, about 80% of the time used to produce the results is spent constructing computational grids. Recently the use of unstructured grids has been strongly advocated. For unstructured grids there are methods for generating them automatically on quite complex domains. This thesis focuses on the design of Navier-Stokes solvers that can cope with unstructured grids and ''low quality grids'', thus reducing the need for human intervention in the grid generation.
Energy Technology Data Exchange (ETDEWEB)
Alloui, L., E-mail: lotfi.alloui@lgep.supelec.fr [Laboratoire de Genie Electrique de Paris - LGEP, CNRS UMR 8507, Supelec, Universite Pierre et Marie Curie-Paris 6, Universite Paris Sud-Paris 11, Plateau de Moulon, 11 rue Joliot Curie, 91192 Gif-Sur-Yvette Cedex (France); Laboratoire de modelisation des systemes energetiques (LMSE), Universite de Biskra, 07000 Biskra (Algeria); Bouillault, F., E-mail: bouillault@lgep.supelec.fr [Laboratoire de Genie Electrique de Paris - LGEP, CNRS UMR 8507, Supelec, Universite Pierre et Marie Curie-Paris 6, Universite Paris Sud-Paris 11, Plateau de Moulon, 11 rue Joliot Curie, 91192 Gif-Sur-Yvette Cedex (France); Bernard, L., E-mail: laurent.bernardl@lgep.supelc.fr [Laboratoire de Genie Electrique de Paris - LGEP, CNRS UMR 8507, Supelec, Universite Pierre et Marie Curie-Paris 6, Universite Paris Sud-Paris 11, Plateau de Moulon, 11 rue Joliot Curie, 91192 Gif-Sur-Yvette Cedex (France); Leveque, J., E-mail: jean.leveque@green.uhp-nancy.fr [Groupe de recherche en electronique et electrotechnique de Nancy, Universite Henry Poincare, BP 239, 54506 Vandoeuvre les Nancy (France)
2012-05-15
In this paper we present new 3D numerical model to calculate the vertical and the guidance forces in high temperature superconductors taking into account the influence of the flux creep phenomena. In the suggested numerical model, we adopt a new approach of the control volume method. This approach is based on the use of an unstructured grid which can be used to model more complex geometries. A comparison of the control volume method results with experiments verifies the validity of this approach and the proposed numerical model. Based on this model, the levitation force's relaxation at different temperatures was also studied.
International Nuclear Information System (INIS)
Alavi, Seyed Arash; Ahmadian, Ali; Aliakbar-Golkar, Masoud
2015-01-01
Highlights: • Energy management is necessary in the active distribution network to reduce operation costs. • Uncertainty modeling is essential in energy management studies in active distribution networks. • Point estimate method is a suitable method for uncertainty modeling due to its lower computation time and acceptable accuracy. • In the absence of Probability Distribution Function (PDF) robust optimization has a good ability for uncertainty modeling. - Abstract: Uncertainty can be defined as the probability of difference between the forecasted value and the real value. As this probability is small, the operation cost of the power system will be less. This purpose necessitates modeling of system random variables (such as the output power of renewable resources and the load demand) with appropriate and practicable methods. In this paper, an adequate procedure is proposed in order to do an optimal energy management on a typical micro-grid with regard to the relevant uncertainties. The point estimate method is applied for modeling the wind power and solar power uncertainties, and robust optimization technique is utilized to model load demand uncertainty. Finally, a comparison is done between deterministic and probabilistic management in different scenarios and their results are analyzed and evaluated
Wang, Shiyao; Deng, Zhidong; Yin, Gang
2016-02-24
A high-performance differential global positioning system (GPS) receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS-inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car.
Directory of Open Access Journals (Sweden)
Shiyao Wang
2016-02-01
Full Text Available A high-performance differential global positioning system (GPS receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS–inertial measurement unit (IMU/dead reckoning (DR data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car.
MrGrid: a portable grid based molecular replacement pipeline.
Directory of Open Access Journals (Sweden)
Jason W Schmidberger
Full Text Available BACKGROUND: The crystallographic determination of protein structures can be computationally demanding and for difficult cases can benefit from user-friendly interfaces to high-performance computing resources. Molecular replacement (MR is a popular protein crystallographic technique that exploits the structural similarity between proteins that share some sequence similarity. But the need to trial permutations of search models, space group symmetries and other parameters makes MR time- and labour-intensive. However, MR calculations are embarrassingly parallel and thus ideally suited to distributed computing. In order to address this problem we have developed MrGrid, web-based software that allows multiple MR calculations to be executed across a grid of networked computers, allowing high-throughput MR. METHODOLOGY/PRINCIPAL FINDINGS: MrGrid is a portable web based application written in Java/JSP and Ruby, and taking advantage of Apple Xgrid technology. Designed to interface with a user defined Xgrid resource the package manages the distribution of multiple MR runs to the available nodes on the Xgrid. We evaluated MrGrid using 10 different protein test cases on a network of 13 computers, and achieved an average speed up factor of 5.69. CONCLUSIONS: MrGrid enables the user to retrieve and manage the results of tens to hundreds of MR calculations quickly and via a single web interface, as well as broadening the range of strategies that can be attempted. This high-throughput approach allows parameter sweeps to be performed in parallel, improving the chances of MR success.
Energy Technology Data Exchange (ETDEWEB)
Karaagac, U.; Mahseredjian, J.; Saad, H. [Ecole Polytechnique de Montreal, QC (Canada); Jensen, S.; Cai, L. [REpower Systems AG, Hamburg (Germany)
2012-07-01
The fault ride-through (FRT) performance of offshore wind farms (OWFs) is a challenging task when the OWF is connected to the onshore ac grid through a voltage source converter (VSC) based HVDC transmission system. The injected power from the OWF cannot be reduced by the offshore VSC during onshore ac faults and this causes a fast increase in the dc network voltage. Without any special FRT method, the dc network voltage may increase up to intolerable levels and cause operation of dc overvoltage protection. This paper compares various FRT methods based on fast reduction of power generation in OWFs. In addition, this paper proposes an improved FRT method based on controlled voltage drop for output power reduction in OWFs. The proposed improvement reduces mechanical stress on the wind turbine (WT) drive train, and electrical stress on the insulated gate bipolar transistors (IGBTs) of the HVDC and doubly-fed induction generator (DFIG) converters. Practical onshore ac fault scenarios are simulated for an OWF composed of DFIG type WTs and connected to a practical ac grid through a point-to-point modular multilevel converter (MMC) based HVDC system. (orig.)
Use of dynamic grid adaption in the ASWR-method
International Nuclear Information System (INIS)
Graf, U.; Romstedt, P.; Werner, W.
1985-01-01
A dynamic grid adaption method has been developed for use with the ASWR-method. The method automatically adapts the number and position of the spatial meshpoints as the solution of hyperbolic or parabolic vector partial differential equations progresses in time. The mesh selection algorithm is based on the minimization of the L 2 -norm of the spatial discretization error. The method permits accurate calculation of the evolution of inhomogenities like wave fronts, shock layers and other sharp transitions, while generally using a coarse computational grid. The number of required mesh points is significantly reduced, relative to a fixed Eulerian grid. Since the mesh selection algorithm is computationally inexpensive, a corresponding reduction of computing time results
Directory of Open Access Journals (Sweden)
Galway LP
2012-04-01
Full Text Available Abstract Background Mortality estimates can measure and monitor the impacts of conflict on a population, guide humanitarian efforts, and help to better understand the public health impacts of conflict. Vital statistics registration and surveillance systems are rarely functional in conflict settings, posing a challenge of estimating mortality using retrospective population-based surveys. Results We present a two-stage cluster sampling method for application in population-based mortality surveys. The sampling method utilizes gridded population data and a geographic information system (GIS to select clusters in the first sampling stage and Google Earth TM imagery and sampling grids to select households in the second sampling stage. The sampling method is implemented in a household mortality study in Iraq in 2011. Factors affecting feasibility and methodological quality are described. Conclusion Sampling is a challenge in retrospective population-based mortality studies and alternatives that improve on the conventional approaches are needed. The sampling strategy presented here was designed to generate a representative sample of the Iraqi population while reducing the potential for bias and considering the context specific challenges of the study setting. This sampling strategy, or variations on it, are adaptable and should be considered and tested in other conflict settings.
Energy Technology Data Exchange (ETDEWEB)
Tranekjaer Jensen, M.; Nielsen, Ole-Kenneth; Hjorth Mikkelsen, M.; Winther, M.; Gyldenkaerne, S.; Viuf OErby, P.; Boll Illerup, J.
2008-03-15
This report explains methods for reporting emissions on EMEP grid with a resolution of 50km x 50km for the reporting years 1990, 1995, 2000 an 2005. The applied and geographical distributed emission data on grid represents the latest delivery (per March 2007) to UNECE LRTAP (United Nations Economic Commission for Europe Long-range Transboundary Air Pollution). Thus data represents the latest recalculation of historical values. The reporting of emissions on EMEP grid with a resolution of 50km x 50km is a part of the Danish submission under the above mentioned convention (UNECE LRTAP). Emission inventories on grid are reported every fifth year and involves all sectors under UNECE LRTAP. The reporting of emissions on grid includes 14 mandatory emission components, which are: SO{sub 2}, NOx NH{sub 3}, NMVOC, CO, TSP, PM{sub 10}, PM{sub 2.5}, Pb, Cd, Hg, Dioxin, PAH and HCB. It is furthermore possible to make additional reporting for a range of components. The report summarizes the most crucial principles and considerations according to work with distributing air emissions on grid within predefined categories for gridding defined by the United Nations (UN 2003). For each of the reported categories, the report gives a detailed explanation of the specific level for distributing emissions spatially. For most reporting categories the process of distributing emissions has been carried out at the highly detailed SNAP level, whereas for others it has been a necessity to make aggregates of several SNAP categories for spatial distribution. The report present final maps for selected air pollutants (SOx, NOx and NH{sub 3}) and discuss shortly possible reasons for variations within time and space. Based on current experience, the report finally gives some recommendations for improving future reporting of gridded emission data. The recommendations pin point, that the EMEP program should provide harmonized and well-documented basic spatial data sets for gridding, to encourage each
DEFF Research Database (Denmark)
Kwon, JunBum; Wang, Xiongfei; Bak, Claus Leth
2014-01-01
This paper addresses the harmonic compensation error problem existing with parallel connected inverter in the same grid interface conditions by means of impedance-based analysis and modeling. Unlike the single grid connected inverter, it is found that multiple parallel connected inverters and grid...... impedance can make influence to each other if they each have a harmonic compensation function. The analysis method proposed in this paper is based on the relationship between the overall output impedance and input impedance of parallel connected inverter, where controller gain design method, which can...
A Grid Voltage Measurement Method for Wind Power Systems during Grid Fault Conditions
Yoo, Cheol-Hee; Chung, Il-Yop; Yoo, Hyun-Jae; Hong, Sung-Soo
2014-01-01
Grid codes in many countries require low-voltage ride-through (LVRT) capability to maintain power system stability and reliability during grid fault conditions. To meet the LVRT requirement, wind power systems must stay connected to the grid and also supply reactive currents to the grid to support the recovery from fault voltages. This paper presents a new fault detection method and inverter control scheme to improve the LVRT capability for full-scale permanent magnet synchronous generator (P...
Comparison tomography relocation hypocenter grid search and guided grid search method in Java island
International Nuclear Information System (INIS)
Nurdian, S. W.; Adu, N.; Palupi, I. R.; Raharjo, W.
2016-01-01
The main data in this research is earthquake data recorded from 1952 to 2012 with 9162 P wave and 2426 events are recorded by 30 stations located around Java island. Relocation hypocenter processed using grid search and guidded grid search method. Then the result of relocation hypocenter become input for tomography pseudo bending inversion process. It can be used to identification the velocity distribution in subsurface. The result of relocation hypocenter by grid search and guided grid search method after tomography process shown in locally and globally. In locally area grid search method result is better than guided grid search according to geological reseach area. But in globally area the result of guided grid search method is better for a broad area because the velocity variation is more diverse than the other one and in accordance with local geological research conditions. (paper)
Yang, Lei; Yan, Hongyong; Liu, Hong
2017-03-01
Implicit staggered-grid finite-difference (ISFD) scheme is competitive for its great accuracy and stability, whereas its coefficients are conventionally determined by the Taylor-series expansion (TE) method, leading to a loss in numerical precision. In this paper, we modify the TE method using the minimax approximation (MA), and propose a new optimal ISFD scheme based on the modified TE (MTE) with MA method. The new ISFD scheme takes the advantage of the TE method that guarantees great accuracy at small wavenumbers, and keeps the property of the MA method that keeps the numerical errors within a limited bound at the same time. Thus, it leads to great accuracy for numerical solution of the wave equations. We derive the optimal ISFD coefficients by applying the new method to the construction of the objective function, and using a Remez algorithm to minimize its maximum. Numerical analysis is made in comparison with the conventional TE-based ISFD scheme, indicating that the MTE-based ISFD scheme with appropriate parameters can widen the wavenumber range with high accuracy, and achieve greater precision than the conventional ISFD scheme. The numerical modeling results also demonstrate that the MTE-based ISFD scheme performs well in elastic wave simulation, and is more efficient than the conventional ISFD scheme for elastic modeling.
A gridding method for object-oriented PIC codes
International Nuclear Information System (INIS)
Gisler, G.; Peter, W.; Nash, H.; Acquah, J.; Lin, C.; Rine, D.
1993-01-01
A simple, rule-based gridding method for object-oriented PIC codes is described which is not only capable of dealing with complicated structures such as multiply-connected regions, but is also computationally faster than classical gridding techniques. Using, these smart grids, vacant cells (e.g., cells enclosed by conductors) will never have to be stored or calculated, thus avoiding the usual situation of having to zero electromagnetic fields within conductors after valuable cpu time has been spent in calculating the fields within these cells in the first place. This object-oriented gridding technique makes use of encapsulating characteristics of actual physical objects (particles, fields, grids, etc.) in C ++ classes and supporting software reuse of these entities through C ++ class inheritance relations. It has been implemented in the form of a simple two-dimensional plasma particle-in-cell code, and forms the initial effort of an AFOSR research project to develop a flexible software simulation environment for particle-in-cell algorithms based on object-oriented technology
DEFF Research Database (Denmark)
Zhou, Xiaoping; Zhou, Leming; Chen, Yandong
2018-01-01
In this paper, a robust grid-current-feedback reso-nance suppression (GCFRS) method for LCL-type grid-connected inverter is proposed to enhance the system damping without introducing the switching noise and eliminate the impact of control delay on system robustness against grid-impedance variation....... It is composed of GCFRS method, the full duty-ratio and zero-beat-lag PWM method, and the lead-grid-current-feedback-resonance-suppression (LGCFRS) method. Firstly, the GCFRS is used to suppress the LCL-resonant peak well and avoid introducing the switching noise. Secondly, the proposed full duty-ratio and zero......-beat-lag PWM method is used to elimi-nate the one-beat-lag computation delay without introducing duty cycle limitations. Moreover, it can also realize the smooth switching from positive to negative half-wave of the grid current and improve the waveform quality. Thirdly, the proposed LGCFRS is used to further...
DEFF Research Database (Denmark)
Lu, Xiaonan; Sun, Kai; Huang, Lipei
2014-01-01
around the switching frequency and its multiples. Although the LCL-filters have several advantages compared to single inductance filter, its resonance problem should be noticed. Conventionally, the resonance analysis is mainly focused on the single inverter system, whereas in a renewable energy system...... to the conventional active damping approaches, the biquad filter based active damping method does not require additional sensors and control loops. Meanwhile, the multiple instable closed-loop poles of the parallel inverter system can be moved to the stable region simultaneously. Real-time simulations based on d...
GRID-BASED EXPLORATION OF COSMOLOGICAL PARAMETER SPACE WITH SNAKE
International Nuclear Information System (INIS)
Mikkelsen, K.; Næss, S. K.; Eriksen, H. K.
2013-01-01
We present a fully parallelized grid-based parameter estimation algorithm for investigating multidimensional likelihoods called Snake, and apply it to cosmological parameter estimation. The basic idea is to map out the likelihood grid-cell by grid-cell according to decreasing likelihood, and stop when a certain threshold has been reached. This approach improves vastly on the 'curse of dimensionality' problem plaguing standard grid-based parameter estimation simply by disregarding grid cells with negligible likelihood. The main advantages of this method compared to standard Metropolis-Hastings Markov Chain Monte Carlo methods include (1) trivial extraction of arbitrary conditional distributions; (2) direct access to Bayesian evidences; (3) better sampling of the tails of the distribution; and (4) nearly perfect parallelization scaling. The main disadvantage is, as in the case of brute-force grid-based evaluation, a dependency on the number of parameters, N par . One of the main goals of the present paper is to determine how large N par can be, while still maintaining reasonable computational efficiency; we find that N par = 12 is well within the capabilities of the method. The performance of the code is tested by comparing cosmological parameters estimated using Snake and the WMAP-7 data with those obtained using CosmoMC, the current standard code in the field. We find fully consistent results, with similar computational expenses, but shorter wall time due to the perfect parallelization scheme
GRID-BASED EXPLORATION OF COSMOLOGICAL PARAMETER SPACE WITH SNAKE
Energy Technology Data Exchange (ETDEWEB)
Mikkelsen, K.; Næss, S. K.; Eriksen, H. K., E-mail: kristin.mikkelsen@astro.uio.no [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway)
2013-11-10
We present a fully parallelized grid-based parameter estimation algorithm for investigating multidimensional likelihoods called Snake, and apply it to cosmological parameter estimation. The basic idea is to map out the likelihood grid-cell by grid-cell according to decreasing likelihood, and stop when a certain threshold has been reached. This approach improves vastly on the 'curse of dimensionality' problem plaguing standard grid-based parameter estimation simply by disregarding grid cells with negligible likelihood. The main advantages of this method compared to standard Metropolis-Hastings Markov Chain Monte Carlo methods include (1) trivial extraction of arbitrary conditional distributions; (2) direct access to Bayesian evidences; (3) better sampling of the tails of the distribution; and (4) nearly perfect parallelization scaling. The main disadvantage is, as in the case of brute-force grid-based evaluation, a dependency on the number of parameters, N{sub par}. One of the main goals of the present paper is to determine how large N{sub par} can be, while still maintaining reasonable computational efficiency; we find that N{sub par} = 12 is well within the capabilities of the method. The performance of the code is tested by comparing cosmological parameters estimated using Snake and the WMAP-7 data with those obtained using CosmoMC, the current standard code in the field. We find fully consistent results, with similar computational expenses, but shorter wall time due to the perfect parallelization scheme.
International Nuclear Information System (INIS)
Chang, Pyung-Hun; Park, Joon-Young
2002-01-01
This paper presents a Task Oriented Design method for robot kinematics based on grid method, widely used in finite difference method and heat transfer/fluid flow analyses. This approach drastically reduces complexities and computational burden due to previous approaches. More specifically, the grid method with a new formulation simplifies the design to a problem of three-design-variable unit grid, which does not require to solve inverse/forward kinematics. The effectiveness of the grid method has been confirmed through a kinematics design of a robot for nuclear power plants. (author)
Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie
2009-10-01
Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of
Adaptive Micro-Grid Operation Based on IEC 61850
Directory of Open Access Journals (Sweden)
Wei Deng
2015-05-01
Full Text Available Automatically identifying the new equipment after its integration and adjusting operation strategy to realize “plug and play” functionality are becoming essential for micro-grid operations. In order to improve and perfect the micro-grid “plug and play” function with the increased amount of equipment with different information protocols and more diverse system applications, this paper presents a solution for adaptive micro-grid operation based on IEC 61850, and proposes the design and specific implementation methods of micro-grid “plug and play” function and system operation mode conversion in detail, by using the established IEC 61850 information model of a micro-grid. Actual operation tests based on the developed IED and micro-grid test platform are performed to verify the feasibility and validity of the proposed solution. The tests results show that the solution can automatically identify the IEC 61850 information model of equipment after its integration, intelligently adjust the operation strategies to adapt to new system states and achieves a reliable system operation mode conversion.
An automated method for estimating reliability of grid systems using Bayesian networks
International Nuclear Information System (INIS)
Doguc, Ozge; Emmanuel Ramirez-Marquez, Jose
2012-01-01
Grid computing has become relevant due to its applications to large-scale resource sharing, wide-area information transfer, and multi-institutional collaborating. In general, in grid computing a service requests the use of a set of resources, available in a grid, to complete certain tasks. Although analysis tools and techniques for these types of systems have been studied, grid reliability analysis is generally computation-intensive to obtain due to the complexity of the system. Moreover, conventional reliability models have some common assumptions that cannot be applied to the grid systems. Therefore, new analytical methods are needed for effective and accurate assessment of grid reliability. This study presents a new method for estimating grid service reliability, which does not require prior knowledge about the grid system structure unlike the previous studies. Moreover, the proposed method does not rely on any assumptions about the link and node failure rates. This approach is based on a data-mining algorithm, the K2, to discover the grid system structure from raw historical system data, that allows to find minimum resource spanning trees (MRST) within the grid then, uses Bayesian networks (BN) to model the MRST and estimate grid service reliability.
Directory of Open Access Journals (Sweden)
Kutaiba Sabah Nimma
2018-04-01
Full Text Available In the revolution of green energy development, microgrids with renewable energy sources such as solar, wind and fuel cells are becoming a popular and effective way of controlling and managing these sources. On the other hand, owing to the intermittency and wide range of dynamic responses of renewable energy sources, battery energy-storage systems have become an integral feature of microgrids. Intelligent energy management and battery sizing are essential requirements in the microgrids to ensure the optimal use of the renewable sources and reduce conventional fuel utilization in such complex systems. This paper presents a novel approach to meet these requirements by using the grey wolf optimization (GWO technique. The proposed algorithm is implemented for different scenarios, and the numerical simulation results are compared with other optimization methods including the genetic algorithm (GA, particle swarm optimization (PSO, the Bat algorithm (BA, and the improved bat algorithm (IBA. The proposed method (GWO shows outstanding results and superior performance compared with other algorithms in terms of solution quality and computational efficiency. The numerical results show that the GWO with a smart utilization of battery energy storage (BES helped to minimize the operational costs of microgrid by 33.185% in comparison with GA, PSO, BA and IBA.
Ortiz-Matos, L.; Aguila-Tellez, A.; Hincapié-Reyes, R. C.; González-Sanchez, J. W.
2017-07-01
In order to design electrification systems, recent mathematical models solve the problem of location, type of electrification components, and the design of possible distribution microgrids. However, due to the amount of points to be electrified increases, the solution to these models require high computational times, thereby becoming unviable practice models. This study posed a new heuristic method for the electrification of rural areas in order to solve the problem. This heuristic algorithm presents the deployment of rural electrification microgrids in the world, by finding routes for optimal placement lines and transformers in transmission and distribution microgrids. The challenge is to obtain a display with equity in losses, considering the capacity constraints of the devices and topology of the land at minimal economic cost. An optimal scenario ensures the electrification of all neighbourhoods to a minimum investment cost in terms of the distance between electric conductors and the amount of transformation devices.
Som, Dipasree; Tak, Megha; Setia, Mohit; Patil, Asawari; Sengupta, Amit; Chilakapati, C Murali Krishna; Srivastava, Anurag; Parmar, Vani; Nair, Nita; Sarin, Rajiv; Badwe, R
2016-01-01
Raman spectroscopy which is based upon inelastic scattering of photons has a potential to emerge as a noninvasive bedside in vivo or ex vivo molecular diagnostic tool. There is a need to improve the sensitivity and predictability of Raman spectroscopy. We developed a grid matrix-based tissue mapping protocol to acquire cellular-specific spectra that also involved digital microscopy for localizing malignant and lymphocytic cells in sentinel lymph node biopsy sample. Biosignals acquired from specific cellular milieu were subjected to an advanced supervised analytical method, i.e., cross-correlation and peak-to-peak ratio in addition to PCA and PC-LDA. We observed decreased spectral intensity as well as shift in the spectral peaks of amides and lipid bands in the completely metastatic (cancer cells) lymph nodes with high cellular density. Spectral library of normal lymphocytes and metastatic cancer cells created using the cellular specific mapping technique can be utilized to create an automated smart diagnostic tool for bench side screening of sampled lymph nodes. Spectral library of normal lymphocytes and metastatic cancer cells created using the cellular specific mapping technique can be utilized to develop an automated smart diagnostic tool for bench side screening of sampled lymph nodes supported by ongoing global research in developing better technology and signal and big data processing algorithms.
Thyristor based short circuit current injection in isolated grids
Hoff, Bjarte; Sharma, Pawan; Østrem, Trond
2017-01-01
This paper proposes a thyristor based short circuit current injector for providing short circuit current in isolated and weak grids, where sufficient fault current to trigger circuit breakers may not be available. This will allow the use of conventional miniature circuit breakers, which requires high fault current for instantaneous tripping. The method has been validated through experiments.
The Experiment Method for Manufacturing Grid Development on Single Computer
Institute of Scientific and Technical Information of China (English)
XIAO Youan; ZHOU Zude
2006-01-01
In this paper, an experiment method for the Manufacturing Grid application system development in the single personal computer environment is proposed. The characteristic of the proposed method is constructing a full prototype Manufacturing Grid application system which is hosted on a single personal computer with the virtual machine technology. Firstly, it builds all the Manufacturing Grid physical resource nodes on an abstraction layer of a single personal computer with the virtual machine technology. Secondly, all the virtual Manufacturing Grid resource nodes will be connected with virtual network and the application software will be deployed on each Manufacturing Grid nodes. Then, we can obtain a prototype Manufacturing Grid application system which is working in the single personal computer, and can carry on the experiment on this foundation. Compared with the known experiment methods for the Manufacturing Grid application system development, the proposed method has the advantages of the known methods, such as cost inexpensively, operation simple, and can get the confidence experiment result easily. The Manufacturing Grid application system constructed with the proposed method has the high scalability, stability and reliability. It is can be migrated to the real application environment rapidly.
International Nuclear Information System (INIS)
Chiem, Kok Siong; Zhao Yong
2004-01-01
In this study, a high-resolution characteristic-based finite-volume (FV) method on unstructured grids [Int. J. Numer. Method Eng. 50 (2001) 11; Int. J. Heat Fluid Flow 21 (2000) 432] is extended by a matrix-free implicit dual-time stepping scheme for the numerical simulation of steady and unsteady flow and heat transfer with porous media. The method has been used to study the characteristics of a complex problem: flow and heat transfer in a channel with multiple discrete porous blocks, which was originally proposed by Huang and Vafai [J. Thermophys. Heat Transfer 8 (3) (1994) 563]. In addition, flow and heat transfer in a channel partially or fully filled with porous layers and containing solid protruding blocks with constant heat flux on its lower surface are also investigated in details. Hydrodynamic and heat transfer results are reported for both steady and transient flow cases. In particular, the effects of Darcy and Reynolds numbers on heat transfer augmentation and pressure loss are studied. An in-depth discussion of the formation and variation of recirculation is presented and the existence of optimum porous insert is demonstrated. At high Reynolds numbers the flow in the porous channel exhibits a cyclic characteristics although unlike the non-porous channel flow, the cyclic vortex development is only restricted to a small area behind the last solid block, while temperature changes more slowly and does not exhibit cyclic variations over a long period of time. It is shown that for all the cases studied altering some parametric values can have significant and interesting effects on both flow pattern as well as heat transfer characteristics
Interpolation from Grid Lines: Linear, Transfinite and Weighted Method
DEFF Research Database (Denmark)
Lindberg, Anne-Sofie Wessel; Jørgensen, Thomas Martini; Dahl, Vedrana Andersen
2017-01-01
When two sets of line scans are acquired orthogonal to each other, intensity values are known along the lines of a grid. To view these values as an image, intensities need to be interpolated at regularly spaced pixel positions. In this paper we evaluate three methods for interpolation from grid l...
Grid based calibration of SWAT hydrological models
Directory of Open Access Journals (Sweden)
D. Gorgan
2012-07-01
Full Text Available The calibration and execution of large hydrological models, such as SWAT (soil and water assessment tool, developed for large areas, high resolution, and huge input data, need not only quite a long execution time but also high computation resources. SWAT hydrological model supports studies and predictions of the impact of land management practices on water, sediment, and agricultural chemical yields in complex watersheds. The paper presents the gSWAT application as a web practical solution for environmental specialists to calibrate extensive hydrological models and to run scenarios, by hiding the complex control of processes and heterogeneous resources across the grid based high computation infrastructure. The paper highlights the basic functionalities of the gSWAT platform, and the features of the graphical user interface. The presentation is concerned with the development of working sessions, interactive control of calibration, direct and basic editing of parameters, process monitoring, and graphical and interactive visualization of the results. The experiments performed on different SWAT models and the obtained results argue the benefits brought by the grid parallel and distributed environment as a solution for the processing platform. All the instances of SWAT models used in the reported experiments have been developed through the enviroGRIDS project, targeting the Black Sea catchment area.
Construction method of pre assembled unit of bolt sphere grid
Hu, L. W.; Guo, F. L.; Wang, J. L.; Bu, F. M.
2018-03-01
The traditional construction of bolt sphere grid has many disadvantages, such as high cost, large amount of work at high altitude and long construction period, in order to make up for these shortcomings, in this paper, a new and applicable construction method is explored: setting up local scaffolding, installing the bolt sphere grid starting frame on the local scaffolding, then the pre assembled unit of bolt sphere grid is assembled on the ground, using small hoisting equipment to lift pre assembled unit to high altitude and install. Compared with the traditional installation method, the construction method has strong practicability and high economic efficiency, and has achieved good social and economic benefits.
The biometric-based module of smart grid system
Engel, E.; Kovalev, I. V.; Ermoshkina, A.
2015-10-01
Within Smart Grid concept the flexible biometric-based module base on Principal Component Analysis (PCA) and selective Neural Network is developed. The formation of the selective Neural Network the biometric-based module uses the method which includes three main stages: preliminary processing of the image, face localization and face recognition. Experiments on the Yale face database show that (i) selective Neural Network exhibits promising classification capability for face detection, recognition problems; and (ii) the proposed biometric-based module achieves near real-time face detection, recognition speed and the competitive performance, as compared to some existing subspaces-based methods.
Mechanical/structural performance test method of a spacer grid
International Nuclear Information System (INIS)
Yoon, Kyung Ho
2000-06-01
The spacer grid is one of the main structural components in the fuel assembly, which supports the fuel rods, guides cooling water, and protects the system from an external impact load, such as earthquakes. In order to develop the spacer grid with the high mechanical performance, the mechanical and structural properties of the spacer grids must be extensively examined while designing it. In this report, the mechanical/structural test methods, i.e. the characteristic test of a spacer grid spring or dimple, static buckling test of a partial or full size spacer grid and dynamic impact test of them are described. The characteristic test of a spacer grid spring or dimple is accomplished with universal tensile test machine, a specimen is fixed with test fixture and then applied compressive load. The characteristic test data is saved at loading and unloading event. The static buckling test of a partial or full size spacer grid is executed with the same universal tensile testing machine, a specimen is fixed between cross-heads and then applied the compressive load. The buckling strength is decided the maximum strength at load vs. displacement curve. The dynamic impact test of a partial or full size spacer grid is performed with pendulum type impact machine and free fall shock test machine, a specimen is fixed with test fixture and then applied the impact load by impact hammer. Specially, the pendulum type impact test machine is also possible under the operating temperature because a furnace is separately attached with test machine
Risky Group Decision-Making Method for Distribution Grid Planning
Li, Cunbin; Yuan, Jiahang; Qi, Zhiqiang
2015-12-01
With rapid speed on electricity using and increasing in renewable energy, more and more research pay attention on distribution grid planning. For the drawbacks of existing research, this paper proposes a new risky group decision-making method for distribution grid planning. Firstly, a mixing index system with qualitative and quantitative indices is built. On the basis of considering the fuzziness of language evaluation, choose cloud model to realize "quantitative to qualitative" transformation and construct interval numbers decision matrices according to the "3En" principle. An m-dimensional interval numbers decision vector is regarded as super cuboids in m-dimensional attributes space, using two-level orthogonal experiment to arrange points uniformly and dispersedly. The numbers of points are assured by testing numbers of two-level orthogonal arrays and these points compose of distribution points set to stand for decision-making project. In order to eliminate the influence of correlation among indices, Mahalanobis distance is used to calculate the distance from each solutions to others which means that dynamic solutions are viewed as the reference. Secondly, due to the decision-maker's attitude can affect the results, this paper defines the prospect value function based on SNR which is from Mahalanobis-Taguchi system and attains the comprehensive prospect value of each program as well as the order. At last, the validity and reliability of this method is illustrated by examples which prove the method is more valuable and superiority than the other.
Smart electric vehicle (EV) charging and grid integration apparatus and methods
Gadh, Rajit; Mal, Siddhartha; Prabhu, Shivanand; Chu, Chi-Cheng; Sheikh, Omar; Chung, Ching-Yen; He, Lei; Xiao, Bingjun; Shi, Yiyu
2015-05-05
An expert system manages a power grid wherein charging stations are connected to the power grid, with electric vehicles connected to the charging stations, whereby the expert system selectively backfills power from connected electric vehicles to the power grid through a grid tie inverter (if present) within the charging stations. In more traditional usage, the expert system allows for electric vehicle charging, coupled with user preferences as to charge time, charge cost, and charging station capabilities, without exceeding the power grid capacity at any point. A robust yet accurate state of charge (SOC) calculation method is also presented, whereby initially an open circuit voltage (OCV) based on sampled battery voltages and currents is calculated, and then the SOC is obtained based on a mapping between a previously measured reference OCV (ROCV) and SOC. The OCV-SOC calculation method accommodates likely any battery type with any current profile.
Control and Optimization Methods for Electric Smart Grids
Ilić, Marija
2012-01-01
Control and Optimization Methods for Electric Smart Grids brings together leading experts in power, control and communication systems,and consolidates some of the most promising recent research in smart grid modeling,control and optimization in hopes of laying the foundation for future advances in this critical field of study. The contents comprise eighteen essays addressing wide varieties of control-theoretic problems for tomorrow’s power grid. Topics covered include: Control architectures for power system networks with large-scale penetration of renewable energy and plug-in vehicles Optimal demand response New modeling methods for electricity markets Control strategies for data centers Cyber-security Wide-area monitoring and control using synchronized phasor measurements. The authors present theoretical results supported by illustrative examples and practical case studies, making the material comprehensible to a wide audience. The results reflect the exponential transformation that today’s grid is going...
DEFF Research Database (Denmark)
Zhang, Chunjiang; Zhao, Xiaojun; Wang, Xiaohuan
2018-01-01
in the grid voltages, the general SOGI’s performance suffers from its generated dc effect in the lagging sine signal at the output. Therefore, in this paper, a mixed second- and third-order generalized integrator (MSTOGI) is proposed to eliminate this effect caused by the dc offset of grid voltages......The second order generalized integrator (SOGI) has been widely used to implement grid synchronization for grid-connected inverters, and from grid voltages it is able to extract the fundamental components with an output of two orthogonal sinusoidal signals. However, if there is a dc offset existing...
Authentication Method for Privacy Protection in Smart Grid Environment
Directory of Open Access Journals (Sweden)
Do-Eun Cho
2014-01-01
Full Text Available Recently, the interest in green energy is increasing as a means to resolve problems including the exhaustion of the energy source and, effective management of energy through the convergence of various fields. Therefore, the projects of smart grid which is called intelligent electrical grid for the accomplishment of low carbon green growth are being carried out in a rush. However, as the IT is centered upon the electrical grid, the shortage of IT also appears in smart grid and the complexity of convergence is aggravating the problem. Also, various personal information and payment information within the smart grid are gradually becoming big data and target for external invasion and attack; thus, there is increase in concerns for this matter. The purpose of this study is to analyze the security vulnerabilities and security requirement within smart grid and the authentication and access control method for privacy protection within home network. Therefore, we propose a secure access authentication and remote control method for user’s home device within home network environment, and we present their security analysis. The proposed access authentication method blocks the unauthorized external access and enables secure remote access to home network and its devices with a secure message authentication protocol.
Improved delayed signal cancellation-based SRF-PLL for unbalanced grid
DEFF Research Database (Denmark)
Messo, Tuomas; Sihvo, Jussi; Yang, Dongsheng
2017-01-01
Problems with power quality in the grid have gained a lot of attention recently due to rapid increase in the amount of grid-connected power converters. The converter should produce sinusoidal currents also during abnormal conditions, such as unbalanced grid voltages. Several methods, like...... the delayed signal cancellation-based method (DSC), have been proposed to alleviate the detrimental effect of unbalance. This paper proposes an improvement to a delayed signal cancellation based synchronization algorithm for unbalanced grids. The proposed PLL structure employs only half of the delay required...
Wilde-Piorko, M.; Polkowski, M.
2016-12-01
Seismic wave travel time calculation is the most common numerical operation in seismology. The most efficient is travel time calculation in 1D velocity model - for given source, receiver depths and angular distance time is calculated within fraction of a second. Unfortunately, in most cases 1D is not enough to encounter differentiating local and regional structures. Whenever possible travel time through 3D velocity model has to be calculated. It can be achieved using ray calculation or time propagation in space. While single ray path calculation is quick it is complicated to find the ray path that connects source with the receiver. Time propagation in space using Fast Marching Method seems more efficient in most cases, especially when there are multiple receivers. In this presentation final release of a Python module pySeismicFMM is presented - simple and very efficient tool for calculating travel time from sources to receivers. Calculation requires regular 2D or 3D velocity grid either in Cartesian or geographic coordinates. On desktop class computer calculation speed is 200k grid cells per second. Calculation has to be performed once for every source location and provides travel time to all receivers. pySeismicFMM is free and open source. Development of this tool is a part of authors PhD thesis. Source code of pySeismicFMM will be published before Fall Meeting. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.
Development of a Cartesian grid based CFD solver (CARBS)
International Nuclear Information System (INIS)
Vaidya, A.M.; Maheshwari, N.K.; Vijayan, P.K.
2013-12-01
Formulation for 3D transient incompressible CFD solver is developed. The solution of variable property, laminar/turbulent, steady/unsteady, single/multi specie, incompressible with heat transfer in complex geometry will be obtained. The formulation can handle a flow system in which any number of arbitrarily shaped solid and fluid regions are present. The solver is based on the use of Cartesian grids. A method is proposed to handle complex shaped objects and boundaries on Cartesian grids. Implementation of multi-material, different types of boundary conditions, thermo physical properties is also considered. The proposed method is validated by solving two test cases. 1 st test case is that of lid driven flow in inclined cavity. 2 nd test case is the flow over cylinder. The 1 st test case involved steady internal flow subjected to WALL boundaries. The 2 nd test case involved unsteady external flow subjected to INLET, OUTLET and FREE-SLIP boundary types. In both the test cases, non-orthogonal geometry was involved. It was found that, under such a wide conditions, the Cartesian grid based code was found to give results which were matching well with benchmark data. Convergence characteristics are excellent. In all cases, the mass residue was converged to 1E-8. Based on this, development of 3D general purpose code based on the proposed approach can be taken up. (author)
Spiegel, Seth Christian
An automated method for using unstructured grids to patch non- C0 interfaces between structured blocks has been developed in conjunction with a finite-volume method for solving chemically reacting flows on unstructured grids. Although the standalone unstructured solver, FVFLO-NCSU, is capable of resolving flows for high-speed aeropropulsion devices with complex geometries, unstructured-mesh algorithms are inherently inefficient when compared to their structured counterparts. However, the advantages of structured algorithms in developing a flow solution in a timely manner can be negated by the amount of time required to develop a mesh for complex geometries. The global domain can be split up into numerous smaller blocks during the grid-generation process to alleviate some of the difficulties in creating these complex meshes. An even greater abatement can be found by allowing the nodes on abutting block interfaces to be nonmatching or non-C 0 continuous. One code capable of solving chemically reacting flows on these multiblock grids is VULCAN, which uses a nonconservative approach for patching non-C0 block interfaces. The developed automated unstructured-grid patching algorithm has been installed within VULCAN to provide it the capability of a fully conservative approach for patching non-C0 block interfaces. Additionally, the FVFLO-NCSU solver algorithms have been deeply intertwined with the VULCAN source code to solve chemically reacting flows on these unstructured patches. Finally, the CGNS software library was added to the VULCAN postprocessor so structured and unstructured data can be stored in a single compact file. This final upgrade to VULCAN has been successfully installed and verified using test cases with particular interest towards those involving grids with non- C0 block interfaces.
Grid portal-based data management for lattice QCD data
Energy Technology Data Exchange (ETDEWEB)
Andronico, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Catania, via S. Sofia 64, 95123 Catania (Italy)]. E-mail: giuseppe.andronico@ct.infn.it; Barbera, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Catania, via S. Sofia 64, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia dell' Universita di Catania, via S. Sofia 64, 95123 Catania (Italy); Falzone, A. [NICE SRL, via Marchesi di Roero 1, 14020 Cortanze (Italy)
2004-11-21
We describe here a case of the European Union DataGrid Project data management services by a Lattice Quantum ChromoDynamics (LQCD) application to share the large amount of configurations generated and based on a solution developed from the International Lattice Data Grid Project using a XML dialect called QCDML. In order to allow the user to store, search and browse the lattice configurations described by QCDML in an uniform and transparent way, we have exploited the functionalities of the GENIUS Grid portal, jointly developed by INFN and NICE srl in the context of the Italian INFN Grid and EU DataGrid Projects.
Grid portal-based data management for lattice QCD data
International Nuclear Information System (INIS)
Andronico, G.; Barbera, R.; Falzone, A.
2004-01-01
We describe here a case of the European Union DataGrid Project data management services by a Lattice Quantum ChromoDynamics (LQCD) application to share the large amount of configurations generated and based on a solution developed from the International Lattice Data Grid Project using a XML dialect called QCDML. In order to allow the user to store, search and browse the lattice configurations described by QCDML in an uniform and transparent way, we have exploited the functionalities of the GENIUS Grid portal, jointly developed by INFN and NICE srl in the context of the Italian INFN Grid and EU DataGrid Projects
Hardware-in-the-loop grid simulator system and method
Fox, John Curtiss; Collins, Edward Randolph; Rigas, Nikolaos
2017-05-16
A hardware-in-the-loop (HIL) electrical grid simulation system and method that combines a reactive divider with a variable frequency converter to better mimic and control expected and unexpected parameters in an electrical grid. The invention provides grid simulation in a manner to allow improved testing of variable power generators, such as wind turbines, and their operation once interconnected with an electrical grid in multiple countries. The system further comprises an improved variable fault reactance (reactive divider) capable of providing a variable fault reactance power output to control a voltage profile, therein creating an arbitrary recovery voltage. The system further comprises an improved isolation transformer designed to isolate zero-sequence current from either a primary or secondary winding in a transformer or pass the zero-sequence current from a primary to a secondary winding.
Soil Erosion Estimation Using Grid-based Computation
Directory of Open Access Journals (Sweden)
Josef Vlasák
2005-06-01
Full Text Available Soil erosion estimation is an important part of a land consolidation process. Universal soil loss equation (USLE was presented by Wischmeier and Smith. USLE computation uses several factors, namely R – rainfall factor, K – soil erodability, L – slope length factor, S – slope gradient factor, C – cropping management factor, and P – erosion control management factor. L and S factors are usually combined to one LS factor – Topographic factor. The single factors are determined from several sources, such as DTM (Digital Terrain Model, BPEJ – soil type map, aerial and satellite images, etc. A conventional approach to the USLE computation, which is widely used in the Czech Republic, is based on the selection of characteristic profiles for which all above-mentioned factors must be determined. The result (G – annual soil loss of such computation is then applied for a whole area (slope of interest. Another approach to the USLE computation uses grids as a main data-structure. A prerequisite for a grid-based USLE computation is that each of the above-mentioned factors exists as a separate grid layer. The crucial step in this computation is a selection of appropriate grid resolution (grid cell size. A large cell size can cause an undesirable precision degradation. Too small cell size can noticeably slow down the whole computation. Provided that the cell size is derived from the source’s precision, the appropriate cell size for the Czech Republic varies from 30m to 50m. In some cases, especially when new surveying was done, grid computations can be performed with higher accuracy, i.e. with a smaller grid cell size. In such case, we have proposed a new method using the two-step computation. The first step computation uses a bigger cell size and is designed to identify higher erosion spots. The second step then uses a smaller cell size but it make the computation only the area identified in the previous step. This decomposition allows a
A New Design Method for the Passive Damped LCL and LLCL Filter-Based Single-Phase Grid-Tied Inverter
DEFF Research Database (Denmark)
Wu, Weimin; He, Yuanbin; Tang, Tianhao
2013-01-01
A higher order passive power filter (LLCL filter) for the grid-tied inverter is becoming attractive for industrial applications due to the possibility to reduce the cost of the copper and the magnetic material. However, similar to the conventional LCL filter, the grid-tied inverter is facing...
Finite Volume Method for Unstructured Grid
International Nuclear Information System (INIS)
Casmara; Kardana, N.D.
1997-01-01
The success of a computational method depends on the solution algorithm and mesh generation techniques. cell distributions are needed, which allow the solution to be calculated over the entire body surface with sufficient accuracy. to handle the mesh generation for multi-connected region such as multi-element bodies, the unstructured finite volume method will be applied. the advantages of the unstructured meshes are it provides a great deal more flexibility for generating meshes about complex geometries and provides a natural setting for the use of adaptive meshing. the governing equations to be discretized are inviscid and rotational euler equations. Applications of the method will be evaluated on flow around single and multi-component bodies
Methods and apparatus of analyzing electrical power grid data
Hafen, Ryan P.; Critchlow, Terence J.; Gibson, Tara D.
2017-09-05
Apparatus and methods of processing large-scale data regarding an electrical power grid are described. According to one aspect, a method of processing large-scale data regarding an electrical power grid includes accessing a large-scale data set comprising information regarding an electrical power grid; processing data of the large-scale data set to identify a filter which is configured to remove erroneous data from the large-scale data set; using the filter, removing erroneous data from the large-scale data set; and after the removing, processing data of the large-scale data set to identify an event detector which is configured to identify events of interest in the large-scale data set.
Neighboring Structure Visualization on a Grid-based Layout.
Marcou, G; Horvath, D; Varnek, A
2017-10-01
Here, we describe an algorithm to visualize chemical structures on a grid-based layout in such a way that similar structures are neighboring. It is based on structure reordering with the help of the Hilbert Schmidt Independence Criterion, representing an empirical estimate of the Hilbert-Schmidt norm of the cross-covariance operator. The method can be applied to any layout of bi- or three-dimensional shape. The approach is demonstrated on a set of dopamine D5 ligands visualized on squared, disk and spherical layouts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
SHOP: scaffold hopping by GRID-based similarity searches
DEFF Research Database (Denmark)
Bergmann, Rikke; Linusson, Anna; Zamora, Ismael
2007-01-01
A new GRID-based method for scaffold hopping (SHOP) is presented. In a fully automatic manner, scaffolds were identified in a database based on three types of 3D-descriptors. SHOP's ability to recover scaffolds was assessed and validated by searching a database spiked with fragments of known...... scaffolds were in the 31 top-ranked scaffolds. SHOP also identified new scaffolds with substantially different chemotypes from the queries. Docking analysis indicated that the new scaffolds would have similar binding modes to those of the respective query scaffolds observed in X-ray structures...
Zou, Peng; Cheng, Jiubing
2017-01-01
-difference method, we propose a modified pseudo-spectral method for wave propagation in arbitrary anisotropic media. Compared with an existing remedy of staggered-grid pseudo-spectral method based on stiffness matrix decomposition and a possible alternative using
Double-grid finite-difference frequency-domain (DG-FDFD) method for scattering from chiral objects
Alkan, Erdogan; Elsherbeni, Atef
2013-01-01
This book presents the application of the overlapping grids approach to solve chiral material problems using the FDFD method. Due to the two grids being used in the technique, we will name this method as Double-Grid Finite Difference Frequency-Domain (DG-FDFD) method. As a result of this new approach the electric and magnetic field components are defined at every node in the computation space. Thus, there is no need to perform averaging during the calculations as in the aforementioned FDFD technique [16]. We formulate general 3D frequency-domain numerical methods based on double-grid
A generalized endogenous grid method for discrete-continuous choice
John Rust; Bertel Schjerning; Fedor Iskhakov
2012-01-01
This paper extends Carroll's endogenous grid method (2006 "The method of endogenous gridpoints for solving dynamic stochastic optimization problems", Economic Letters) for models with sequential discrete and continuous choice. Unlike existing generalizations, we propose solution algorithm that inherits both advantages of the original method, namely it avoids all root finding operations, and also efficiently deals with restrictions on the continuous decision variable. To further speed up the s...
Camera Coverage Estimation Based on Multistage Grid Subdivision
Directory of Open Access Journals (Sweden)
Meizhen Wang
2017-04-01
Full Text Available Visual coverage is one of the most important quality indexes for depicting the usability of an individual camera or camera network. It is the basis for camera network deployment, placement, coverage-enhancement, planning, etc. Precision and efficiency are critical influences on applications, especially those involving several cameras. This paper proposes a new method to efficiently estimate superior camera coverage. First, the geographic area that is covered by the camera and its minimum bounding rectangle (MBR without considering obstacles is computed using the camera parameters. Second, the MBR is divided into grids using the initial grid size. The status of the four corners of each grid is estimated by a line of sight (LOS algorithm. If the camera, considering obstacles, covers a corner, the status is represented by 1, otherwise by 0. Consequently, the status of a grid can be represented by a code that is a combination of 0s or 1s. If the code is not homogeneous (not four 0s or four 1s, the grid will be divided into four sub-grids until the sub-grids are divided into a specific maximum level or their codes are homogeneous. Finally, after performing the process above, total camera coverage is estimated according to the size and status of all grids. Experimental results illustrate that the proposed method’s accuracy is determined by the method that divided the coverage area into the smallest grids at the maximum level, while its efficacy is closer to the method that divided the coverage area into the initial grids. It considers both efficiency and accuracy. The initial grid size and maximum level are two critical influences on the proposed method, which can be determined by weighing efficiency and accuracy.
Feature combination analysis in smart grid based using SOM for Sudan national grid
Bohari, Z. H.; Yusof, M. A. M.; Jali, M. H.; Sulaima, M. F.; Nasir, M. N. M.
2015-12-01
In the investigation of power grid security, the cascading failure in multicontingency situations has been a test because of its topological unpredictability and computational expense. Both system investigations and burden positioning routines have their limits. In this project, in view of sorting toward Self Organizing Maps (SOM), incorporated methodology consolidating spatial feature (distance)-based grouping with electrical attributes (load) to evaluate the vulnerability and cascading impact of various part sets in the force lattice. Utilizing the grouping result from SOM, sets of overwhelming stacked beginning victimized people to perform assault conspires and asses the consequent falling impact of their failures, and this SOM-based approach viably distinguishes the more powerless sets of substations than those from the conventional burden positioning and other bunching strategies. The robustness of power grids is a central topic in the design of the so called "smart grid". In this paper, to analyze the measures of importance of the nodes in a power grid under cascading failure. With these efforts, we can distinguish the most vulnerable nodes and protect them, improving the safety of the power grid. Also we can measure if a structure is proper for power grids.
Fast and accurate grid representations for atom-based docking with partner flexibility.
de Vries, Sjoerd J; Zacharias, Martin
2017-06-30
Macromolecular docking methods can broadly be divided into geometric and atom-based methods. Geometric methods use fast algorithms that operate on simplified, grid-like molecular representations, while atom-based methods are more realistic and flexible, but far less efficient. Here, a hybrid approach of grid-based and atom-based docking is presented, combining precalculated grid potentials with neighbor lists for fast and accurate calculation of atom-based intermolecular energies and forces. The grid representation is compatible with simultaneous multibody docking and can tolerate considerable protein flexibility. When implemented in our docking method ATTRACT, grid-based docking was found to be ∼35x faster. With the OPLSX forcefield instead of the ATTRACT coarse-grained forcefield, the average speed improvement was >100x. Grid-based representations may allow atom-based docking methods to explore large conformational spaces with many degrees of freedom, such as multiple macromolecules including flexibility. This increases the domain of biological problems to which docking methods can be applied. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
New ghost-node method for linking different models with varied grid refinement
James, S.C.; Dickinson, J.E.; Mehl, S.W.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Eddebbarh, A.-A.
2006-01-01
A flexible, robust method for linking grids of locally refined ground-water flow models constructed with different numerical methods is needed to address a variety of hydrologic problems. This work outlines and tests a new ghost-node model-linking method for a refined "child" model that is contained within a larger and coarser "parent" model that is based on the iterative method of Steffen W. Mehl and Mary C. Hill (2002, Advances in Water Res., 25, p. 497-511; 2004, Advances in Water Res., 27, p. 899-912). The method is applicable to steady-state solutions for ground-water flow. Tests are presented for a homogeneous two-dimensional system that has matching grids (parent cells border an integer number of child cells) or nonmatching grids. The coupled grids are simulated by using the finite-difference and finite-element models MODFLOW and FEHM, respectively. The simulations require no alteration of the MODFLOW or FEHM models and are executed using a batch file on Windows operating systems. Results indicate that when the grids are matched spatially so that nodes and child-cell boundaries are aligned, the new coupling technique has error nearly equal to that when coupling two MODFLOW models. When the grids are nonmatching, model accuracy is slightly increased compared to that for matching-grid cases. Overall, results indicate that the ghost-node technique is a viable means to couple distinct models because the overall head and flow errors relative to the analytical solution are less than if only the regional coarse-grid model was used to simulate flow in the child model's domain.
Operation Performance Evaluation of Power Grid Enterprise Using a Hybrid BWM-TOPSIS Method
Directory of Open Access Journals (Sweden)
Peipei You
2017-12-01
Full Text Available Electricity market reform is in progress in China, and the operational performance of power grid enterprises are vital for its healthy and sustainable development in the current electricity market environment. In this paper, a hybrid multi-criteria decision-making (MCDM framework for operational performance evaluation of a power grid enterprise is proposed from the perspective of sustainability. The latest MCDM method, namely the best-worst method (BWM was employed to determine the weights of all criteria, and the technique for order preference by similarity to an ideal solution (TOPSIS was applied to rank the operation performance of a power grid enterprise. The evaluation index system was built based on the concept of sustainability, which includes three criteria (namely economy, society, and environment and seven sub-criteria. Four power grid enterprises were selected to perform the empirical analysis, and the results indicate that power grid enterprise A1 has the best operation performance. The proposed hybrid BWM-TOPSIS-based framework for operation performance evaluation of a power grid enterprise is effective and practical.
Context-Aware Usage-Based Grid Authorization Framework
Institute of Scientific and Technical Information of China (English)
CUI Yongquan; HONG Fan; FU Cai
2006-01-01
Due to inherent heterogeneity, multi-domain characteristic and highly dynamic nature, authorization is a critical concern in grid computing. This paper proposes a general authorization and access control architecture, grid usage control (GUCON), for grid computing. It's based on the next generation access control mechanism usage control (UCON) model. The GUCON Framework dynamic grants and adapts permission to the subject based on a set of contextual information collected from the system environments; while retaining the authorization by evaluating access requests based on subject attributes, object attributes and requests. In general, GUCON model provides very flexible approaches to adapt the dynamically security request. GUCON model is being implemented in our experiment prototype.
A novel optimized LCL-filter designing method for grid connected converter
DEFF Research Database (Denmark)
Guohong, Zeng; Rasmussen, Tonny Wederberg; Teodorescu, Remus
2010-01-01
This paper presents a new LCL-filters optimized designing method for grid connected voltage source converter. This method is based on the analysis of converter output voltage components and inherent relations among LCL-filter parameters. By introducing an optimizing index of equivalent total capa...
GENECODIS-Grid: An online grid-based tool to predict functional information in gene lists
International Nuclear Information System (INIS)
Nogales, R.; Mejia, E.; Vicente, C.; Montes, E.; Delgado, A.; Perez Griffo, F. J.; Tirado, F.; Pascual-Montano, A.
2007-01-01
In this work we introduce GeneCodis-Grid, a grid-based alternative to a bioinformatics tool named Genecodis that integrates different sources of biological information to search for biological features (annotations) that frequently co-occur in a set of genes and rank them by statistical significance. GeneCodis-Grid is a web-based application that takes advantage of two independent grid networks and a computer cluster managed by a meta-scheduler and a web server that host the application. The mining of concurrent biological annotations provides significant information for the functional analysis of gene list obtained by high throughput experiments in biology. Due to the large popularity of this tool, that has registered more than 13000 visits since its publication in January 2007, there is a strong need to facilitate users from different sites to access the system simultaneously. In addition, the complexity of some of the statistical tests used in this approach has made this technique a good candidate for its implementation in a Grid opportunistic environment. (Author)
The Knowledge Base Interface for Parametric Grid Information
International Nuclear Information System (INIS)
Hipp, James R.; Simons, Randall W.; Young, Chris J.
1999-01-01
The parametric grid capability of the Knowledge Base (KBase) provides an efficient robust way to store and access interpolatable information that is needed to monitor the Comprehensive Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational monitoring systems, we use an approach which combines the error estimation of kriging with the speed and robustness of Natural Neighbor Interpolation. The method involves three basic steps: data preparation, data storage, and data access. In past presentations we have discussed in detail the first step. In this paper we focus on the latter two, describing in detail the type of information which must be stored and the interface used to retrieve parametric grid data from the Knowledge Base. Once data have been properly prepared, the information (tessellation and associated value surfaces) needed to support the interface functionality, can be entered into the KBase. The primary types of parametric grid data that must be stored include (1) generic header information; (2) base model, station, and phase names and associated ID's used to construct surface identifiers; (3) surface accounting information; (4) tessellation accounting information; (5) mesh data for each tessellation; (6) correction data defined for each surface at each node of the surfaces owning tessellation (7) mesh refinement calculation set-up and flag information; and (8) kriging calculation set-up and flag information. The eight data components not only represent the results of the data preparation process but also include all required input information for several population tools that would enable the complete regeneration of the data results if that should be necessary
Improving mobile robot localization: grid-based approach
Yan, Junchi
2012-02-01
Autonomous mobile robots have been widely studied not only as advanced facilities for industrial and daily life automation, but also as a testbed in robotics competitions for extending the frontier of current artificial intelligence. In many of such contests, the robot is supposed to navigate on the ground with a grid layout. Based on this observation, we present a localization error correction method by exploring the geometric feature of the tile patterns. On top of the classical inertia-based positioning, our approach employs three fiber-optic sensors that are assembled under the bottom of the robot, presenting an equilateral triangle layout. The sensor apparatus, together with the proposed supporting algorithm, are designed to detect a line's direction (vertical or horizontal) by monitoring the grid crossing events. As a result, the line coordinate information can be fused to rectify the cumulative localization deviation from inertia positioning. The proposed method is analyzed theoretically in terms of its error bound and also has been implemented and tested on a customary developed two-wheel autonomous mobile robot.
Grid-based electronic structure calculations: The tensor decomposition approach
Energy Technology Data Exchange (ETDEWEB)
Rakhuba, M.V., E-mail: rakhuba.m@gmail.com [Skolkovo Institute of Science and Technology, Novaya St. 100, 143025 Skolkovo, Moscow Region (Russian Federation); Oseledets, I.V., E-mail: i.oseledets@skoltech.ru [Skolkovo Institute of Science and Technology, Novaya St. 100, 143025 Skolkovo, Moscow Region (Russian Federation); Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina St. 8, 119333 Moscow (Russian Federation)
2016-05-01
We present a fully grid-based approach for solving Hartree–Fock and all-electron Kohn–Sham equations based on low-rank approximation of three-dimensional electron orbitals. Due to the low-rank structure the total complexity of the algorithm depends linearly with respect to the one-dimensional grid size. Linear complexity allows for the usage of fine grids, e.g. 8192{sup 3} and, thus, cheap extrapolation procedure. We test the proposed approach on closed-shell atoms up to the argon, several molecules and clusters of hydrogen atoms. All tests show systematical convergence with the required accuracy.
Use of a dynamic grid adaptation in the asymmetric weighted residual method
International Nuclear Information System (INIS)
Graf, V.; Romstedt, P.; Werner, W.
1986-01-01
A dynamic grid adaptive method has been developed for use with the asymmetric weighted residual method. The method automatically adapts the number and position of the spatial mesh points as the solution of hyperbolic or parabolic vector partial differential equations progresses in time. The mesh selection algorithm is based on the minimization of the L 2 norm of the spatial discretization error. The method permits the accurate calculation of the evolution of inhomogeneities, like wave fronts, shock layers, and other sharp transitions, while generally using a coarse computational grid. The number of required mesh points is significantly reduced, relative to a fixed Eulerian grid. Since the mesh selection algorithm is computationally inexpensive, a corresponding reduction of computing time results
Amme, J.; Pleßmann, G.; Bühler, J.; Hülk, L.; Kötter, E.; Schwaegerl, P.
2018-02-01
The increasing integration of renewable energy into the electricity supply system creates new challenges for distribution grids. The planning and operation of distribution systems requires appropriate grid models that consider the heterogeneity of existing grids. In this paper, we describe a novel method to generate synthetic medium-voltage (MV) grids, which we applied in our DIstribution Network GeneratOr (DINGO). DINGO is open-source software and uses freely available data. Medium-voltage grid topologies are synthesized based on location and electricity demand in defined demand areas. For this purpose, we use GIS data containing demand areas with high-resolution spatial data on physical properties, land use, energy, and demography. The grid topology is treated as a capacitated vehicle routing problem (CVRP) combined with a local search metaheuristics. We also consider the current planning principles for MV distribution networks, paying special attention to line congestion and voltage limit violations. In the modelling process, we included power flow calculations for validation. The resulting grid model datasets contain 3608 synthetic MV grids in high resolution, covering all of Germany and taking local characteristics into account. We compared the modelled networks with real network data. In terms of number of transformers and total cable length, we conclude that the method presented in this paper generates realistic grids that could be used to implement a cost-optimised electrical energy system.
Grid regulation services for energy storage devices based on grid frequency
Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K
2013-07-02
Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
Grid regulation services for energy storage devices based on grid frequency
Energy Technology Data Exchange (ETDEWEB)
Pratt, Richard M.; Hammerstrom, Donald J.; Kintner-Meyer, Michael C. W.; Tuffner, Francis K.
2017-09-05
Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
Zou, Peng
2017-05-10
Staggering grid is a very effective way to reduce the Nyquist errors and to suppress the non-causal ringing artefacts in the pseudo-spectral solution of first-order elastic wave equations. However, the straightforward use of a staggered-grid pseudo-spectral method is problematic for simulating wave propagation when the anisotropy level is greater than orthorhombic or when the anisotropic symmetries are not aligned with the computational grids. Inspired by the idea of rotated staggered-grid finite-difference method, we propose a modified pseudo-spectral method for wave propagation in arbitrary anisotropic media. Compared with an existing remedy of staggered-grid pseudo-spectral method based on stiffness matrix decomposition and a possible alternative using the Lebedev grids, the rotated staggered-grid-based pseudo-spectral method possesses the best balance between the mitigation of artefacts and efficiency. A 2D example on a transversely isotropic model with tilted symmetry axis verifies its effectiveness to suppress the ringing artefacts. Two 3D examples of increasing anisotropy levels demonstrate that the rotated staggered-grid-based pseudo-spectral method can successfully simulate complex wavefields in such anisotropic formations.
Hydrologic extremes - an intercomparison of multiple gridded statistical downscaling methods
Werner, Arelia T.; Cannon, Alex J.
2016-04-01
Gridded statistical downscaling methods are the main means of preparing climate model data to drive distributed hydrological models. Past work on the validation of climate downscaling methods has focused on temperature and precipitation, with less attention paid to the ultimate outputs from hydrological models. Also, as attention shifts towards projections of extreme events, downscaling comparisons now commonly assess methods in terms of climate extremes, but hydrologic extremes are less well explored. Here, we test the ability of gridded downscaling models to replicate historical properties of climate and hydrologic extremes, as measured in terms of temporal sequencing (i.e. correlation tests) and distributional properties (i.e. tests for equality of probability distributions). Outputs from seven downscaling methods - bias correction constructed analogues (BCCA), double BCCA (DBCCA), BCCA with quantile mapping reordering (BCCAQ), bias correction spatial disaggregation (BCSD), BCSD using minimum/maximum temperature (BCSDX), the climate imprint delta method (CI), and bias corrected CI (BCCI) - are used to drive the Variable Infiltration Capacity (VIC) model over the snow-dominated Peace River basin, British Columbia. Outputs are tested using split-sample validation on 26 climate extremes indices (ClimDEX) and two hydrologic extremes indices (3-day peak flow and 7-day peak flow). To characterize observational uncertainty, four atmospheric reanalyses are used as climate model surrogates and two gridded observational data sets are used as downscaling target data. The skill of the downscaling methods generally depended on reanalysis and gridded observational data set. However, CI failed to reproduce the distribution and BCSD and BCSDX the timing of winter 7-day low-flow events, regardless of reanalysis or observational data set. Overall, DBCCA passed the greatest number of tests for the ClimDEX indices, while BCCAQ, which is designed to more accurately resolve event
New Ghost-node method for linking different models with varied grid refinement
International Nuclear Information System (INIS)
Mehl, Steffen W.; Hill, Mary Catherine; James, Scott Carlton; Leake, Stanley A.; Zyvoloski, George A.; Dickinson, Jesse E.; Eddebbarh, Al A.
2006-01-01
A flexible, robust method for linking grids of locally refined models constructed with different numerical methods is needed to address a variety of hydrologic problems. This work outlines and tests a new ghost-node model-linking method for a refined 'child' model that is contained within a larger and coarser 'parent' model that is based on the iterative method of Mehl and Hill (2002, 2004). The method is applicable to steady-state solutions for ground-water flow. Tests are presented for a homogeneous two-dimensional system that has either matching grids (parent cells border an integer number of child cells; Figure 2a) or non-matching grids (parent cells border a non-integer number of child cells; Figure 2b). The coupled grids are simulated using the finite-difference and finite-element models MODFLOW and FEHM, respectively. The simulations require no alteration of the MODFLOW or FEHM models and are executed using a batch file on Windows operating systems. Results indicate that when the grids are matched spatially so that nodes and child cell boundaries are aligned, the new coupling technique has error nearly equal to that when coupling two MODFLOW models (Mehl and Hill, 2002). When the grids are non-matching, model accuracy is slightly increased over matching-grid cases. Overall, results indicate that the ghost-node technique is a viable means to accurately couple distinct models because the overall error is less than if only the regional model was used to simulate flow in the child model's domain
DEFF Research Database (Denmark)
Demirok, Erhan; Gonzalez, Pablo Casado; Frederiksen, Kenn H. B.
2011-01-01
on sensitivity analysis. The sensitivity analysis shows that the same amount of reactive power becomes more effective for grid voltage support if the solar inverter is located at the end of a feeder. Based on this fundamental knowledge, a location-dependent power factor set value can be assigned to each inverter......voltage (LV) grids by means of solar inverters with reactive power control capability. This paper underlines weak points of standard reactive power strategies which are already imposed by certain grid codes, and then, the study introduces a new reactive power control method that is based......, and the grid voltage support can be achieved with less total reactive power consumption. In order to prevent unnecessary reactive power absorption from the grid during admissible voltage range or to increase reactive power contribution from the inverters that are closest to the transformer during grid...
Real-space grid implementation of the projector augmented wave method
DEFF Research Database (Denmark)
Mortensen, Jens Jørgen; Hansen, Lars Bruno; Jacobsen, Karsten Wedel
2005-01-01
A grid-based real-space implementation of the projector augmented wave sPAWd method of Blöchl fPhys. Rev. B 50, 17953 s1994dg for density functional theory sDFTd calculations is presented. The use of uniform three-dimensional s3Dd real-space grids for representing wave functions, densities...... valence wave functions that can be represented on relatively coarse grids. We demonstrate the accuracy of the method by calculating the atomization energies of 20 small molecules, and the bulk modulus and lattice constants of bulk aluminum. We show that the approach in terms of computational efficiency...... is comparable to standard plane-wave methods, but the memory requirements are higher....
Disturbance estimator based predictive current control of grid-connected inverters
Al-Khafaji, Ahmed Samawi Ghthwan
2013-01-01
ABSTRACT: The work presented in my thesis considers one of the modern discrete-time control approaches based on digital signal processing methods, that have been developed to improve the performance control of grid-connected three-phase inverters. Disturbance estimator based predictive current control of grid-connected inverters is proposed. For inverter modeling with respect to the design of current controllers, we choose the d-q synchronous reference frame to make it easier to understand an...
3D magnetospheric parallel hybrid multi-grid method applied to planet–plasma interactions
Energy Technology Data Exchange (ETDEWEB)
Leclercq, L., E-mail: ludivine.leclercq@latmos.ipsl.fr [LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt (France); Modolo, R., E-mail: ronan.modolo@latmos.ipsl.fr [LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt (France); Leblanc, F. [LATMOS/IPSL, UPMC Univ. Paris 06 Sorbonne Universités, UVSQ, CNRS, Paris (France); Hess, S. [ONERA, Toulouse (France); Mancini, M. [LUTH, Observatoire Paris-Meudon (France)
2016-03-15
We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet–plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order to conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.
International Nuclear Information System (INIS)
Wagner, B; Kileng, B
2014-01-01
The Nordic Tier-1 centre for LHC is distributed over several computing centres. It uses ARC as the internal computing grid middleware. ALICE uses its own grid middleware AliEn to distribute jobs and the necessary software application stack. To make use of most of the AliEn infrastructure and software deployment methods for running ALICE grid jobs on ARC, we are investigating different possible virtualisation technologies. For this a testbed and possible framework for bridging different middleware systems is under development. It allows us to test a variety of virtualisation methods and software deployment technologies in the form of different virtual machines.
Design of Energy Storage Management System Based on FPGA in Micro-Grid
Liang, Yafeng; Wang, Yanping; Han, Dexiao
2018-01-01
Energy storage system is the core to maintain the stable operation of smart micro-grid. Aiming at the existing problems of the energy storage management system in the micro-grid such as Low fault tolerance, easy to cause fluctuations in micro-grid, a new intelligent battery management system based on field programmable gate array is proposed : taking advantage of FPGA to combine the battery management system with the intelligent micro-grid control strategy. Finally, aiming at the problem that during estimation of battery charge State by neural network, initialization of weights and thresholds are not accurate leading to large errors in prediction results, the genetic algorithm is proposed to optimize the neural network method, and the experimental simulation is carried out. The experimental results show that the algorithm has high precision and provides guarantee for the stable operation of micro-grid.
Numerical and adaptive grid methods for ideal magnetohydrodynamics
Loring, Burlen
2008-02-01
In this thesis numerical finite difference methods for ideal magnetohydrodynamics(MHD) are investigated. A review of the relevant physics, essential for interpreting the results of numerical solutions and constructing validation cases, is presented. This review includes a discusion of the propagation of small amplitude waves in the MHD system as well as a thorough discussion of MHD shocks, contacts and rarefactions and how they can be piece together to obtain a solutions to the MHD Riemann problem. Numerical issues relevant to the MHD system such as: the loss of nonlinear numerical stability in the presence of discontinuous solutions, the introduction of spurious forces due to the growth of the divergence of the magnetic flux density, the loss of pressure positivity, and the effects of non-conservative numerical methods are discussed, along with the practical approaches which can be used to remedy or minimize the negative consequences of each. The use of block structured adaptive mesh refinement is investigated in the context of a divergence free MHD code. A new method for conserving magnetic flux across AMR grid interfaces is developed and a detailed discussion of our implementation of this method using the CHOMBO AMR framework is given. A preliminary validation of the new method for conserving magnetic flux density across AMR grid interfaces illustrates that the method works. Finally a number of code validation cases are examined spurring a discussion of the strengths and weaknesses of the numerics employed.
Algorithm for Wireless Sensor Networks Based on Grid Management
Directory of Open Access Journals (Sweden)
Geng Zhang
2014-05-01
Full Text Available This paper analyzes the key issues for wireless sensor network trust model and describes a method to build a wireless sensor network, such as the definition of trust for wireless sensor networks, computing and credibility of trust model application. And for the problem that nodes are vulnerable to attack, this paper proposed a grid-based trust algorithm by deep exploration trust model within the framework of credit management. Algorithm for node reliability screening and rotation schedule to cover parallel manner based on the implementation of the nodes within the area covered by trust. And analyze the results of the size of trust threshold has great influence on the safety and quality of coverage throughout the coverage area. The simulation tests the validity and correctness of the algorithm.
The more the merrier: grid based modelling of Kepler dwarfs with 5-dimensional stellar grids
Directory of Open Access Journals (Sweden)
Serenelli Aldo
2017-01-01
Full Text Available We present preliminary results of our grid based modelling (GBM of the dwarf/subgiant sample of stars observed with Kepler including global asteroseismic parameters. GBM analysis in this work is based on a large grid of stellar models that is characterized by five independent parameters: model mass and age, initial metallicity (Zini, initial helium (Yini, and mixing length parameter (αMLT. Using this grid relaxes assumptions used in all previous GBM work where the initial composition is determined by a single parameter and that αMLT is fixed to a solar-calibrated value. The new grid allows us to study, for example, the impact of different galactic chemical enrichment models on the determination of stellar parameters such as mass radius and age. Also, it allows to include new results from stellar atmosphere models on αMLT in the GBM analysis in a simple manner. Alternatively, it can be tested if global asteroseismology is a useful tool to constraint our ignorance on quantities such as Yini and αMLT. Initial findings show that mass determination is robust with respect to freedom in the latter quantities, with a 4.4% maximum deviation for extreme assumptions regarding prior information on Yini – Zini relations and aMLT. On the other hand, tests carried out so far seem to indicate that global seismology does not have much power to constrain Yini – Zni relations of αMLT values without resourcing to additional information.
Deploying web-based visual exploration tools on the grid
Energy Technology Data Exchange (ETDEWEB)
Jankun-Kelly, T.J.; Kreylos, Oliver; Shalf, John; Ma, Kwan-Liu; Hamann, Bernd; Joy, Kenneth; Bethel, E. Wes
2002-02-01
We discuss a web-based portal for the exploration, encapsulation, and dissemination of visualization results over the Grid. This portal integrates three components: an interface client for structured visualization exploration, a visualization web application to manage the generation and capture of the visualization results, and a centralized portal application server to access and manage grid resources. We demonstrate the usefulness of the developed system using an example for Adaptive Mesh Refinement (AMR) data visualization.
Energy Technology Data Exchange (ETDEWEB)
Sheng, Qin, E-mail: Qin_Sheng@baylor.edu [Department of Mathematics and Center for Astrophysics, Space Physics and Engineering Research, Baylor University, One Bear Place, Waco, TX 76798-7328 (United States); Sun, Hai-wei, E-mail: hsun@umac.mo [Department of Mathematics, University of Macau (Macao)
2016-11-15
This study concerns the asymptotic stability of an eikonal, or ray, transformation based Peaceman–Rachford splitting method for solving the paraxial Helmholtz equation with high wave numbers. Arbitrary nonuniform grids are considered in transverse and beam propagation directions. The differential equation targeted has been used for modeling propagations of high intensity laser pulses over a long distance without diffractions. Self-focusing of high intensity beams may be balanced with the de-focusing effect of created ionized plasma channel in the situation, and applications of grid adaptations are frequently essential. It is shown rigorously that the fully discretized oscillation-free decomposition method on arbitrary adaptive grids is asymptotically stable with a stability index one. Simulation experiments are carried out to illustrate our concern and conclusions.
Online Optimization Method for Operation of Generators in a Micro Grid
Hayashi, Yasuhiro; Miyamoto, Hideki; Matsuki, Junya; Iizuka, Toshio; Azuma, Hitoshi
Recently a lot of studies and developments about distributed generator such as photovoltaic generation system, wind turbine generation system and fuel cell have been performed under the background of the global environment issues and deregulation of the electricity market, and the technique of these distributed generators have progressed. Especially, micro grid which consists of several distributed generators, loads and storage battery is expected as one of the new operation system of distributed generator. However, since precipitous load fluctuation occurs in micro grid for the reason of its smaller capacity compared with conventional power system, high-accuracy load forecasting and control scheme to balance of supply and demand are needed. Namely, it is necessary to improve the precision of operation in micro grid by observing load fluctuation and correcting start-stop schedule and output of generators online. But it is not easy to determine the operation schedule of each generator in short time, because the problem to determine start-up, shut-down and output of each generator in micro grid is a mixed integer programming problem. In this paper, the authors propose an online optimization method for the optimal operation schedule of generators in micro grid. The proposed method is based on enumeration method and particle swarm optimization (PSO). In the proposed method, after picking up all unit commitment patterns of each generators satisfied with minimum up time and minimum down time constraint by using enumeration method, optimal schedule and output of generators are determined under the other operational constraints by using PSO. Numerical simulation is carried out for a micro grid model with five generators and photovoltaic generation system in order to examine the validity of the proposed method.
International Nuclear Information System (INIS)
Yoon, Kyung Ho; Lee, Kang Hee; Kang, Heung Seok; Song, Kee Nam
2006-01-01
Characterization tests (load vs. displacement curve) are conducted for the springs of Zirconium alloy spacer grids for an advanced LWR fuel assembly. Twofold testing is employed: strap-based and assembly-based tests. The assembly-based test satisfies the in situ boundary conditions of the spring within the grid assembly. The aim of the characterization test via the aforementioned two methods is to establish an appropriate assembly-based test method that fulfills the actual boundary conditions. A characterization test under the spacer grid assembly boundary condition is also conducted to investigate the actual behavior of the spring in the core. The stiffness of the characteristic curve is smaller than that of the strap-wised boundary condition. This phenomenon may cause the strap slit condition. A spacer grid consists of horizontal and vertical straps. The strap slit positions are differentiated from each other. They affords examination of the variation of the external load distribution in the grid spring. Localized regions of high stress and their values are analyzed, as they may be affected by the spring shape. Through a comparison of the results of the test and FE analysis, it is concluded that the present assembly-based analysis model and procedure are reasonably well conducted and can be used for spring characterization in the core. Guidelines for improving the mechanical integrity of the spring are also discussed
Grist: Grid-based Data Mining for Astronomy
Jacob, J. C.; Katz, D. S.; Miller, C. D.; Walia, H.; Williams, R. D.; Djorgovski, S. G.; Graham, M. J.; Mahabal, A. A.; Babu, G. J.; vanden Berk, D. E.; Nichol, R.
2005-12-01
The Grist project is developing a grid-technology based system as a research environment for astronomy with massive and complex datasets. This knowledge extraction system will consist of a library of distributed grid services controlled by a workflow system, compliant with standards emerging from the grid computing, web services, and virtual observatory communities. This new technology is being used to find high redshift quasars, study peculiar variable objects, search for transients in real time, and fit SDSS QSO spectra to measure black hole masses. Grist services are also a component of the ``hyperatlas'' project to serve high-resolution multi-wavelength imagery over the Internet. In support of these science and outreach objectives, the Grist framework will provide the enabling fabric to tie together distributed grid services in the areas of data access, federation, mining, subsetting, source extraction, image mosaicking, statistics, and visualization.
Grist : grid-based data mining for astronomy
Jacob, Joseph C.; Katz, Daniel S.; Miller, Craig D.; Walia, Harshpreet; Williams, Roy; Djorgovski, S. George; Graham, Matthew J.; Mahabal, Ashish; Babu, Jogesh; Berk, Daniel E. Vanden;
2004-01-01
The Grist project is developing a grid-technology based system as a research environment for astronomy with massive and complex datasets. This knowledge extraction system will consist of a library of distributed grid services controlled by a workflow system, compliant with standards emerging from the grid computing, web services, and virtual observatory communities. This new technology is being used to find high redshift quasars, study peculiar variable objects, search for transients in real time, and fit SDSS QSO spectra to measure black hole masses. Grist services are also a component of the 'hyperatlas' project to serve high-resolution multi-wavelength imagery over the Internet. In support of these science and outreach objectives, the Grist framework will provide the enabling fabric to tie together distributed grid services in the areas of data access, federation, mining, subsetting, source extraction, image mosaicking, statistics, and visualization.
Micro-grid platform based on NODE.JS architecture, implemented in electrical network instrumentation
Duque, M.; Cando, E.; Aguinaga, A.; Llulluna, F.; Jara, N.; Moreno, T.
2016-05-01
In this document, I propose a theory about the impact of systems based on microgrids in non-industrialized countries that have the goal to improve energy exploitation through alternatives methods of a clean and renewable energy generation and the creation of the app to manage the behavior of the micro-grids based on the NodeJS, Django and IOJS technologies. The micro-grids allow the optimal way to manage energy flow by electric injection directly in electric network small urban's cells in a low cost and available way. In difference from conventional systems, micro-grids can communicate between them to carry energy to places that have higher demand in accurate moments. This system does not require energy storage, so, costs are lower than conventional systems like fuel cells, solar panels or else; even though micro-grids are independent systems, they are not isolated. The impact that this analysis will generate, is the improvement of the electrical network without having greater control than an intelligent network (SMART-GRID); this leads to move to a 20% increase in energy use in a specified network; that suggest there are others sources of energy generation; but for today's needs, we need to standardize methods and remain in place to support all future technologies and the best option are the Smart Grids and Micro-Grids.
An Efficient Topology-Based Algorithm for Transient Analysis of Power Grid
Yang, Lan
2015-08-10
In the design flow of integrated circuits, chip-level verification is an important step that sanity checks the performance is as expected. Power grid verification is one of the most expensive and time-consuming steps of chip-level verification, due to its extremely large size. Efficient power grid analysis technology is highly demanded as it saves computing resources and enables faster iteration. In this paper, a topology-base power grid transient analysis algorithm is proposed. Nodal analysis is adopted to analyze the topology which is mathematically equivalent to iteratively solving a positive semi-definite linear equation. The convergence of the method is proved.
A New Power Calculation Method for Single-Phase Grid-Connected Systems
DEFF Research Database (Denmark)
Yang, Yongheng; Blaabjerg, Frede
2013-01-01
A new method to calculate average active power and reactive power for single-phase systems is proposed in this paper. It can be used in different applications where the output active power and reactive power need to be calculated accurately and fast. For example, a grid-connected photovoltaic...... system in low voltage ride through operation mode requires a power feedback for the power control loop. Commonly, a Discrete Fourier Transform (DFT) based power calculation method can be adopted in such systems. However, the DFT method introduces at least a one-cycle time delay. The new power calculation...... method, which is based on the adaptive filtering technique, can achieve a faster response. The performance of the proposed method is verified by experiments and demonstrated in a 1 kW single-phase grid-connected system operating under different conditions.Experimental results show the effectiveness...
Hierarchical Data Replication and Service Monitoring Methods in a Scientific Data Grid
Directory of Open Access Journals (Sweden)
Weizhong Lu
2009-04-01
Full Text Available In a grid and distributed computing environment, data replication is an effective way to improve data accessibility and data accessing efficiency. It is also significant in developing a real-time service monitoring system for a Chinese Scientific Data Grid to guarantee the system stability and data availability. Hierarchical data replication and service monitoring methods are proposed in this paper. The hierarchical data replication method divides the network into different domains and replicates data in local domains. The nodes in a local domain are classified into hierarchies to improve data accessibility according to bandwidth and storage memory space. An extensible agent-based prototype of a hierarchical service monitoring system is presented. The status information of services in the Chinese Scientific Data Grid is collected from the grid nodes based on agent technology and then is transformed into real-time operational pictures for management needs. This paper presents frameworks of the hierarchical data replication and service monitoring methods and gives detailed resolutions. Simulation analyses have demonstrated improved data accessing efficiency and verified the effectiveness of the methods at the same time.
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced
Authentication Method for Privacy Protection in Smart Grid Environment
Cho, Do-Eun; Yeo, Sang-Soo; Kim, Si-Jung
2014-01-01
Recently, the interest in green energy is increasing as a means to resolve problems including the exhaustion of the energy source and, effective management of energy through the convergence of various fields. Therefore, the projects of smart grid which is called intelligent electrical grid for the accomplishment of low carbon green growth are being carried out in a rush. However, as the IT is centered upon the electrical grid, the shortage of IT also appears in smart grid and the complexity o...
DEFF Research Database (Denmark)
Ghzaiel, Walid; Jebali-Ben Ghorbal, Manel; Slama-Belkhodja, Ilhem
2013-01-01
and to take the decision of either keep the DG connected, or disconnect it from the utility grid. The proposed method is based on a fast and easy grid fault detection method. A virtual damping resistance is used to drive the system to the resonance in order to extract the grid impedance parameters, both...... the power quality and even damage some sensitive loads connected at the point of the common coupling (PCC). This paper presents detection-estimation method of the grid impedance variation. This estimation tehnique aims to improve the dynamic of the distributed generation (DG) interfacing inverter control...
Energy Technology Data Exchange (ETDEWEB)
Rinkel, J.; Dinten, J.M.; Tabary, J
2004-07-01
The use of focused anti-scatter grids on digital radiographic systems with two-dimensional detectors produces acquisitions with a decreased scatter to primary ratio and thus improved contrast and resolution. Simulation software is of great interest in optimizing grid configuration according to a specific application. Classical simulators are based on complete detailed geometric descriptions of the grid. They are accurate but very time consuming since they use Monte Carlo code to simulate scatter within the high-frequency grids. We propose a new practical method which couples an analytical simulation of the grid interaction with a radiographic system simulation program. First, a two dimensional matrix of probability depending on the grid is created offline, in which the first dimension represents the angle of impact with respect to the normal to the grid lines and the other the energy of the photon. This matrix of probability is then used by the Monte Carlo simulation software in order to provide the final scattered flux image. To evaluate the gain of CPU time, we define the increasing factor as the increase of CPU time of the simulation with as opposed to without the grid. Increasing factors were calculated with the new model and with classical methods representing the grid with its CAD model as part of the object. With the new method, increasing factors are shorter by one to two orders of magnitude compared with the second one. These results were obtained with a difference in calculated scatter of less than five percent between the new and the classical method. (authors)
Reinforcement Learning Based Novel Adaptive Learning Framework for Smart Grid Prediction
Directory of Open Access Journals (Sweden)
Tian Li
2017-01-01
Full Text Available Smart grid is a potential infrastructure to supply electricity demand for end users in a safe and reliable manner. With the rapid increase of the share of renewable energy and controllable loads in smart grid, the operation uncertainty of smart grid has increased briskly during recent years. The forecast is responsible for the safety and economic operation of the smart grid. However, most existing forecast methods cannot account for the smart grid due to the disabilities to adapt to the varying operational conditions. In this paper, reinforcement learning is firstly exploited to develop an online learning framework for the smart grid. With the capability of multitime scale resolution, wavelet neural network has been adopted in the online learning framework to yield reinforcement learning and wavelet neural network (RLWNN based adaptive learning scheme. The simulations on two typical prediction problems in smart grid, including wind power prediction and load forecast, validate the effectiveness and the scalability of the proposed RLWNN based learning framework and algorithm.
International Nuclear Information System (INIS)
Alagoz, B. Baykant; Kaygusuz, Asim; Akcin, Murat; Alagoz, Serkan
2013-01-01
Future smart grids will require a flexible, observable, and controllable network for reliable and efficient energy delivery under uncertain generation and demand conditions. One of the mechanisms for efficient and reliable energy generation is dynamic demand-responsive generation management based on energy price adjustments that creates a balance in energy markets. This study presents a closed-loop PID (proportional–integral–derivative) controller-based price control method for autonomous and real-time balancing of energy demand and generation in smart grid electricity markets. The PID control system can regulate energy prices online to respond dynamically and instantaneously to the varying energy demands of grid consumers. Independent energy suppliers in the smart grid decide whether to sell their energy to the grid according to the energy prices declared by the closed-loop PID controller system. Energy market simulations demonstrate that PID-controlled energy price regulation can effectively maintain an energy balance for hourly demand fluctuations of consumers. - Highlights: • This study presents a control theoretic approach for management of energy balance. • A closed-loop PID controller-based price controlling method is used in smart grid. • The simulation results demonstrate advantages of PID-based energy price control. • This method is appropriate for demand responsive management of smart grid markets
Real Time Load Optimisation of Cable Based Transmission Grids
DEFF Research Database (Denmark)
Olsen, Rasmus Schmidt; Holbøll, Joachim; Guðmundsdottir, Unnur Stella
2011-01-01
Energinet.dk has launched an investigation of dynamic current ratings of cable based transmission grids, where both internal and external parameters are variables. The first topic was to investigate state of the art within calculating the current carrying capacity (ampacity or loadability......) of cables embedded in larger cable systems. Some recently published research has been concerned with dynamic loadability, but such researches are based on many assumptions. It is shown in the paper, that only limited research has been concerned with larger cable grids, and no remarkable work could been...
Software-Based Challenges of Developing the Future Distribution Grid
Energy Technology Data Exchange (ETDEWEB)
Stewart, Emma; Kiliccote, Sila; McParland, Charles
2014-06-01
distribution grid modeling, and measured data sources are a key missing element . Modeling tools need to be calibrated based on measured grid data to validate their output in varied conditions such as high renewables penetration and rapidly changing topology. In addition, establishing a standardized data modeling format would enable users to transfer data among tools to take advantage of different analysis features. ?
The semi-Lagrangian method on curvilinear grids
Directory of Open Access Journals (Sweden)
Hamiaz Adnane
2016-09-01
Full Text Available We study the semi-Lagrangian method on curvilinear grids. The classical backward semi-Lagrangian method [1] preserves constant states but is not mass conservative. Natural reconstruction of the field permits nevertheless to have at least first order in time conservation of mass, even if the spatial error is large. Interpolation is performed with classical cubic splines and also cubic Hermite interpolation with arbitrary reconstruction order of the derivatives. High odd order reconstruction of the derivatives is shown to be a good ersatz of cubic splines which do not behave very well as time step tends to zero. A conservative semi-Lagrangian scheme along the lines of [2] is then described; here conservation of mass is automatically satisfied and constant states are shown to be preserved up to first order in time.
DEFF Research Database (Denmark)
Hartelius, Karsten; Carstensen, Jens Michael
2003-01-01
A method for locating distorted grid structures in images is presented. The method is based on the theories of template matching and Bayesian image restoration. The grid is modeled as a deformable template. Prior knowledge of the grid is described through a Markov random field (MRF) model which r...
A Costing Analysis for Decision Making Grid Model in Failure-Based Maintenance
Directory of Open Access Journals (Sweden)
Burhanuddin M. A.
2011-01-01
Full Text Available Background. In current economic downturn, industries have to set good control on production cost, to maintain their profit margin. Maintenance department as an imperative unit in industries should attain all maintenance data, process information instantaneously, and subsequently transform it into a useful decision. Then act on the alternative to reduce production cost. Decision Making Grid model is used to identify strategies for maintenance decision. However, the model has limitation as it consider two factors only, that is, downtime and frequency of failures. We consider third factor, cost, in this study for failure-based maintenance. The objective of this paper is to introduce the formulae to estimate maintenance cost. Methods. Fish bone analysis conducted with Ishikawa model and Decision Making Grid methods are used in this study to reveal some underlying risk factors that delay failure-based maintenance. The goal of the study is to estimate the risk factor that is, repair cost to fit in the Decision Making Grid model. Decision Making grid model consider two variables, frequency of failure and downtime in the analysis. This paper introduces third variable, repair cost for Decision Making Grid model. This approaches give better result to categorize the machines, reduce cost, and boost the earning for the manufacturing plant. Results. We collected data from one of the food processing factories in Malaysia. From our empirical result, Machine C, Machine D, Machine F, and Machine I must be in the Decision Making Grid model even though their frequency of failures and downtime are less than Machine B and Machine N, based on the costing analysis. The case study and experimental results show that the cost analysis in Decision Making Grid model gives more promising strategies in failure-based maintenance. Conclusions. The improvement of Decision Making Grid model for decision analysis with costing analysis is our contribution in this paper for
An Active Power Sharing Method among Distributed Energy Sources in an Islanded Series Micro-Grid
Directory of Open Access Journals (Sweden)
Wei-Man Yang
2014-11-01
Full Text Available Active power-sharing among distributed energy sources (DESs is not only an important way to realize optimal operation of micro-grids, but also the key to maintaining stability for islanded operation. Due to the unique configuration of series micro-grids (SMGs, the power-sharing method adopted in an ordinary AC, DC, and hybrid AC/DC system cannot be directly applied into SMGs. Power-sharing in one SMG with multiple DESs involves two aspects. On the one hand, capacitor voltage stability based on an energy storage system (ESS in the DC link must be complemented. Actually, this is a problem of power allocation between the generating unit and the ESS in the DES; an extensively researched, similar problem has been grid-off distributed power generation, for which there are good solutions. On the other hand, power-sharing among DESs should be considered to optimize the operation of a series micro-grid. In this paper, a novel method combining master control with auxiliary control is proposed. Master action of a quasi-proportional resonant controller is responsible for stability of the islanded SMG; auxiliary action based on state of charge (SOC realizes coordinated allocation of load power among the source. At the same time, it is important to ensure that the auxiliary control does not influence the master action.
Yang, Xiaoquan; Cheng, Jian; Liu, Tiegang; Luo, Hong
2015-11-01
The direct discontinuous Galerkin (DDG) method based on a traditional discontinuous Galerkin (DG) formulation is extended and implemented for solving the compressible Navier-Stokes equations on arbitrary grids. Compared to the widely used second Bassi-Rebay (BR2) scheme for the discretization of diffusive fluxes, the DDG method has two attractive features: first, it is simple to implement as it is directly based on the weak form, and therefore there is no need for any local or global lifting operator; second, it can deliver comparable results, if not better than BR2 scheme, in a more efficient way with much less CPU time. Two approaches to perform the DDG flux for the Navier- Stokes equations are presented in this work, one is based on conservative variables, the other is based on primitive variables. In the implementation of the DDG method for arbitrary grid, the definition of mesh size plays a critical role as the formation of viscous flux explicitly depends on the geometry. A variety of test cases are presented to demonstrate the accuracy and efficiency of the DDG method for discretizing the viscous fluxes in the compressible Navier-Stokes equations on arbitrary grids.
The extended RBAC model based on grid computing
Institute of Scientific and Technical Information of China (English)
CHEN Jian-gang; WANG Ru-chuan; WANG Hai-yan
2006-01-01
This article proposes the extended role-based access control (RBAC) model for solving dynamic and multidomain problems in grid computing, The formulated description of the model has been provided. The introduction of context and the mapping relations of context-to-role and context-to-permission help the model adapt to dynamic property in grid environment.The multidomain role inheritance relation by the authorization agent service realizes the multidomain authorization amongst the autonomy domain. A function has been proposed for solving the role inheritance conflict during the establishment of the multidomain role inheritance relation.
Deployment of a Grid-based Medical Imaging Application
Amendolia, S R; Frate, C; Gálvez, J; Hassan, W; Hauer, T; Manset, D; McClatchey, R; Odeh, M; Rogulin, D; Solomonides, T; Warren, R
2005-01-01
The MammoGrid project has deployed its Service-Oriented Architecture (SOA)-based Grid application in a real environment comprising actual participating hospitals. The resultant setup is currently being exploited to conduct rigorous in-house tests in the first phase before handing over the setup to the actual clinicians to get their feedback. This paper elaborates the deployment details and the experiences acquired during this phase of the project. Finally the strategy regarding migration to an upcoming middleware from EGEE project will be described. This paper concludes by highlighting some of the potential areas of future work.
The Geographic Information Grid System Based on Mobile Agent
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
We analyze the deficiencies of current application systems, and discuss the key requirements of distributed Geographic Information service (GIS). We construct the distributed GIS on grid platform. Considering the flexibility and efficiency, we integrate the mobile agent technology into the system. We propose a new prototype system, the Geographic Information Grid System (GIGS) based on mobile agent. This system has flexible services and high performance, and improves the sharing of distributed resources. The service strategy of the system and the examples are also presented.
Analysis of the Passive Damping Losses in LCL-Filter-Based Grid Converters
DEFF Research Database (Denmark)
Alzola, Rafael Pena; Liserre, Marco; Blaabjerg, Frede
2013-01-01
Passive damping is the most adopted method to guarantee the stability of LCL-filter-based grid converters. The method is simple and, if the switching and sampling frequencies are sufficiently high, the damping losses are negligible. This letter proposes the tuning of different passive damping...
Investigating low-frequency compression using the Grid method
DEFF Research Database (Denmark)
Fereczkowski, Michal; Dau, Torsten; MacDonald, Ewen
2016-01-01
in literature. Moreover, slopes of the low-level portions of the BM I/O functions estimated at 500 Hz were examined, to determine whether the 500-Hz off-frequency forward masking curves were affected by compression. Overall, the collected data showed a trend confirming the compressive behaviour. However......There is an ongoing discussion about whether the amount of cochlear compression in humans at low frequencies (below 1 kHz) is as high as that at higher frequencies. It is controversial whether the compression affects the slope of the off-frequency forward masking curves at those frequencies. Here......, the Grid method with a 2-interval 1-up 3-down tracking rule was applied to estimate forward masking curves at two characteristic frequencies: 500 Hz and 4000 Hz. The resulting curves and the corresponding basilar membrane input-output (BM I/O) functions were found to be comparable to those reported...
Dynamically Authorized Role-Based Access Control for Grid Applications
Institute of Scientific and Technical Information of China (English)
YAO Hanbing; HU Heping; LU Zhengding; LI Ruixuan
2006-01-01
Grid computing is concerned with the sharing and coordinated use of diverse resources in distributed "virtual organizations". The heterogeneous, dynamic and multi-domain nature of these environments makes challenging security issues that demand new technical approaches. Despite the recent advances in access control approaches applicable to Grid computing, there remain issues that impede the development of effective access control models for Grid applications. Among them there are the lack of context-based models for access control, and reliance on identity or capability-based access control schemes. An access control scheme that resolve these issues is presented, and a dynamically authorized role-based access control (D-RBAC) model extending the RBAC with context constraints is proposed. The D-RABC mechanisms dynamically grant permissions to users based on a set of contextual information collected from the system and user's environments, while retaining the advantages of RBAC model. The implementation architecture of D-RBAC for the Grid application is also described.
Grid-based Simulation of Industrial Thin Film Production
Krzhizhanovskaya, V.V.; Sloot, P.M.A.; Gorbachev, Y.E.
2005-01-01
In this article, the authors introduce a Grid-based virtual reactor, a High Level Architecture (HLA)-supported problem-solving environment that allows for detailed numerical study of industrial thin-film production in plasma-enhanced chemical vapor deposition (PECVD) reactors. They briefly describe
A Comparative Study on Evaluation Methods of Fluid Forces on Cartesian Grids
Directory of Open Access Journals (Sweden)
Taku Nonomura
2017-01-01
Full Text Available We investigate the accuracy and the computational efficiency of the numerical schemes for evaluating fluid forces in Cartesian grid systems. A comparison is made between two different types of schemes, namely, polygon-based methods and mesh-based methods, which differ in the discretization of the surface of the object. The present assessment is intended to investigate the effects of the Reynolds number, the object motion, and the complexity of the object surface. The results show that the mesh-based methods work as well as the polygon-based methods, even if the object surface is discretized in a staircase manner. In addition, the results also show that the accuracy of the mesh-based methods is strongly dependent on the evaluation of shear stresses, and thus they must be evaluated by using a reliable method, such as the ghost-cell or ghost-fluid method.
The gridding method for image reconstruction by Fourier transformation
International Nuclear Information System (INIS)
Schomberg, H.; Timmer, J.
1995-01-01
This paper explores a computational method for reconstructing an n-dimensional signal f from a sampled version of its Fourier transform f. The method involves a window function w and proceeds in three steps. First, the convolution g = w * f is computed numerically on a Cartesian grid, using the available samples of f. Then, g = wf is computed via the inverse discrete Fourier transform, and finally f is obtained as g/w. Due to the smoothing effect of the convolution, evaluating w * f is much less error prone than merely interpolating f. The method was originally devised for image reconstruction in radio astronomy, but is actually applicable to a broad range of reconstructive imaging methods, including magnetic resonance imaging and computed tomography. In particular, it provides a fast and accurate alternative to the filtered backprojection. The basic method has several variants with other applications, such as the equidistant resampling of arbitrarily sampled signals or the fast computation of the Radon (Hough) transform
Application of a non-contiguous grid generation method to complex configurations
International Nuclear Information System (INIS)
Chen, S.; McIlwain, S.; Khalid, M.
2003-01-01
An economical non-contiguous grid generation method was developed to efficiently generate structured grids for complex 3D problems. Compared with traditional contiguous grids, this new approach generated grids for different block clusters independently and was able to distribute the grid points more economically according to the user's specific topology design. The method was evaluated by applying it to a Navier-Stokes computation of flow past a hypersonic projectile. Both the flow velocity and the heat transfer characteristics of the projectile agreed qualitatively with other numerical data in the literature and with available field data. Detailed grid topology designs for 3D geometries were addressed, and the advantages of this approach were analysed and compared with traditional contiguous grid generation methods. (author)
A data grid for imaging-based clinical trials
Zhou, Zheng; Chao, Sander S.; Lee, Jasper; Liu, Brent; Documet, Jorge; Huang, H. K.
2007-03-01
Clinical trials play a crucial role in testing new drugs or devices in modern medicine. Medical imaging has also become an important tool in clinical trials because images provide a unique and fast diagnosis with visual observation and quantitative assessment. A typical imaging-based clinical trial consists of: 1) A well-defined rigorous clinical trial protocol, 2) a radiology core that has a quality control mechanism, a biostatistics component, and a server for storing and distributing data and analysis results; and 3) many field sites that generate and send image studies to the radiology core. As the number of clinical trials increases, it becomes a challenge for a radiology core servicing multiple trials to have a server robust enough to administrate and quickly distribute information to participating radiologists/clinicians worldwide. The Data Grid can satisfy the aforementioned requirements of imaging based clinical trials. In this paper, we present a Data Grid architecture for imaging-based clinical trials. A Data Grid prototype has been implemented in the Image Processing and Informatics (IPI) Laboratory at the University of Southern California to test and evaluate performance in storing trial images and analysis results for a clinical trial. The implementation methodology and evaluation protocol of the Data Grid are presented.
Grid-friendly wind power systems based on the synchronverter technology
International Nuclear Information System (INIS)
Zhong, Qing-Chang; Ma, Zhenyu; Ming, Wen-Long; Konstantopoulos, George C.
2015-01-01
Highlights: • A grid-friendly wind power system that uses the synchronverter technology is proposed. • Both the rotor-side and the grid-side converters act as synchronverters. • The complete generator–motor–generator system improves the performance under grid faults. • Real-time digital simulation results verify the effectiveness of the proposed method. - Abstract: Back-to-back PWM converters are becoming a realistic alternative to conventional converters in high-power wind power applications. In this paper, a control strategy based on the synchronverter technology is proposed for back-to-back PWM converters. Both converters are run as synchronverters, which are mathematically equivalent to the conventional synchronous generators. The rotor-side converter is responsible for maintaining the DC link voltage and the grid-side converter is responsible for the maximum power point tracking (MPPT). As the two converters are operated using the synchronverter technology, the formed wind power system becomes more friendly to the grid. Extensive real-time digital simulation results are presented to verify the effectiveness of the proposed method under normal operation and grid-fault scenarios
Electrothermal Coordination in Cable Based Transmission Grids
DEFF Research Database (Denmark)
Olsen, Rasmus Schmidt; Holbøll, Joachim; Gudmundsdottir, Unnur Stella
2013-01-01
behavior of the components. The dynamic temperature calculations of power cables are suggested to be based on thermoelectric equivalents (TEEs). It is shown that the thermal behavior can be built into widely used load flow software, creating a strong ETC tool. ETC is, through two case scenarios, proven...... to be beneficial for both operator and system planner. It is shown how the thermal behavior can be monitored in real-time during normal dynamic load and during emergencies. In that way, ETC enables cables to be loaded above their normal rating, while maintaining high reliability of the system, which potentially...
Wind turbine aerodynamics using an incompressible overset grid method
DEFF Research Database (Denmark)
Zahle, Frederik; Johansen, Jeppe; Sørensen, Niels N.
2007-01-01
In this paper 3D Navier-Stokes simulations of the unsteady flow over the NREL Phase VI turbine are presented. The computations are carried out using the structured grid, incompressible, finite volume flow solver EllipSys3D, which has been extended to include the use of overset grids. Computations...
Energy Technology Data Exchange (ETDEWEB)
Huang, Zhenyu; Zhou, Ning; Tuffner, Francis K.; Chen, Yousu; Trudnowski, Daniel J.; Diao, Ruisheng; Fuller, Jason C.; Mittelstadt, William A.; Hauer, John F.; Dagle, Jeffery E.
2010-10-18
Small signal stability problems are one of the major threats to grid stability and reliability in the U.S. power grid. An undamped mode can cause large-amplitude oscillations and may result in system breakups and large-scale blackouts. There have been several incidents of system-wide oscillations. Of those incidents, the most notable is the August 10, 1996 western system breakup, a result of undamped system-wide oscillations. Significant efforts have been devoted to monitoring system oscillatory behaviors from measurements in the past 20 years. The deployment of phasor measurement units (PMU) provides high-precision, time-synchronized data needed for detecting oscillation modes. Measurement-based modal analysis, also known as ModeMeter, uses real-time phasor measurements to identify system oscillation modes and their damping. Low damping indicates potential system stability issues. Modal analysis has been demonstrated with phasor measurements to have the capability of estimating system modes from both oscillation signals and ambient data. With more and more phasor measurements available and ModeMeter techniques maturing, there is yet a need for methods to bring modal analysis from monitoring to actions. The methods should be able to associate low damping with grid operating conditions, so operators or automated operation schemes can respond when low damping is observed. The work presented in this report aims to develop such a method and establish a Modal Analysis for Grid Operation (MANGO) procedure to aid grid operation decision making to increase inter-area modal damping. The procedure can provide operation suggestions (such as increasing generation or decreasing load) for mitigating inter-area oscillations.
A numerical calculation method for flow discretisation in complex geometry with body-fitted grids
International Nuclear Information System (INIS)
Jin, X.
2001-04-01
A numerical calculation method basing on body fitted grids is developed in this work for computational fluid dynamics in complex geometry. The method solves the conservation equations in a general nonorthogonal coordinate system which matches the curvilinear boundary. The nonorthogonal, patched grid is generated by a grid generator which solves algebraic equations. By means of an interface its geometrical data can be used by this method. The conservation equations are transformed from the Cartesian system to a general curvilinear system keeping the physical Cartesian velocity components as dependent variables. Using a staggered arrangement of variables, the three Cartesian velocity components are defined on every cell surface. Thus the coupling between pressure and velocity is ensured, and numerical oscillations are avoided. The contravariant velocity for calculating mass flux on one cell surface is resulting from dependent Cartesian velocity components. After the discretisation and linear interpolation, a three dimensional 19-point pressure equation is found. Using the explicit treatment for cross-derivative terms, it reduces to the usual 7-point equation. Under the same data and process structure, this method is compatible with the code FLUTAN using Cartesian coordinates. In order to verify this method, several laminar flows are simulated in orthogonal grids at tilted space directions and in nonorthogonal grids with variations of cell angles. The simulated flow types are considered like various duct flows, transient heat conduction, natural convection in a chimney and natural convection in cavities. Their results achieve very good agreement with analytical solutions or empirical data. Convergence for highly nonorthogonal grids is obtained. After the successful validation of this method, it is applied for a reactor safety case. A transient natural convection flow for an optional sump cooling concept SUCO is simulated. The numerical result is comparable with the
Qiu, J. P.; Niu, D. X.
Micro-grid is one of the key technologies of the future energy supplies. Take economic planning. reliability, and environmental protection of micro grid as a basis for the analysis of multi-strategy objective programming problems for micro grid which contains wind power, solar power, and battery and micro gas turbine. Establish the mathematical model of each power generation characteristics and energy dissipation. and change micro grid planning multi-objective function under different operating strategies to a single objective model based on AHP method. Example analysis shows that in combination with dynamic ant mixed genetic algorithm can get the optimal power output of this model.
DEFF Research Database (Denmark)
Golestan, Saeed; Monfared, Mohammad; Guerrero, Josep M.
2013-01-01
The reference current generation (RCG) is a crucial part in the control of a shunt active power filter (APF). A variety of RCG techniques have been proposed in literature. Among these, the instantaneous reactive power theory, called pq theory, is probably the most widely used technique. The pq...... theory offers advantages such as satisfactory steady-state and dynamic performance, and at the same time simple digital implementation, however its application was limited to three-phase systems. To exploit the advantages of pq theory in single-phase systems, the single-phase pq theory has been proposed...... recently. In this paper, a simple and effective implementation of the single phase pq theory for single-phase shunt APFs is proposed. The suggested approach is based on employing second order generalized integrators (SOGI), and a phase locked loop (PLL). To fine tune the control parameters, a systematic...
Machine Learning Methods for Attack Detection in the Smart Grid.
Ozay, Mete; Esnaola, Inaki; Yarman Vural, Fatos Tunay; Kulkarni, Sanjeev R; Poor, H Vincent
2016-08-01
Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.
Chu, Chunlei
2012-01-01
Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations. © 2011 Elsevier B.V.
Identification of reliable gridded reference data for statistical downscaling methods in Alberta
Eum, H. I.; Gupta, A.
2017-12-01
Climate models provide essential information to assess impacts of climate change at regional and global scales. However, statistical downscaling methods have been applied to prepare climate model data for various applications such as hydrologic and ecologic modelling at a watershed scale. As the reliability and (spatial and temporal) resolution of statistically downscaled climate data mainly depend on a reference data, identifying the most reliable reference data is crucial for statistical downscaling. A growing number of gridded climate products are available for key climate variables which are main input data to regional modelling systems. However, inconsistencies in these climate products, for example, different combinations of climate variables, varying data domains and data lengths and data accuracy varying with physiographic characteristics of the landscape, have caused significant challenges in selecting the most suitable reference climate data for various environmental studies and modelling. Employing various observation-based daily gridded climate products available in public domain, i.e. thin plate spline regression products (ANUSPLIN and TPS), inverse distance method (Alberta Townships), and numerical climate model (North American Regional Reanalysis) and an optimum interpolation technique (Canadian Precipitation Analysis), this study evaluates the accuracy of the climate products at each grid point by comparing with the Adjusted and Homogenized Canadian Climate Data (AHCCD) observations for precipitation, minimum and maximum temperature over the province of Alberta. Based on the performance of climate products at AHCCD stations, we ranked the reliability of these publically available climate products corresponding to the elevations of stations discretized into several classes. According to the rank of climate products for each elevation class, we identified the most reliable climate products based on the elevation of target points. A web-based system
Operation of an InGrid based X-ray detector at the CAST experiment
Directory of Open Access Journals (Sweden)
Krieger Christoph
2018-01-01
During operation at the experiment, background rates in the order of 10−5 keV−1 cm−2 s−1 have been achieved by application of a likelihood based method discriminating the non-photon background originating mostly from cosmic rays. For continued operation in 2016, an upgraded InGrid based detector is to be installed among other improvements including decoupling and sampling of the signal induced on the grid as well as a veto scintillator to further lower the observed background rates and improving sensitivity.
A novel approach for UI charge reduction using AMI based load prioritization in smart grid
Directory of Open Access Journals (Sweden)
Avani Pujara
2017-09-01
Full Text Available System frequency is vital part for power system balance. As per India Electricity Grid code frequency should be in the range of 49.5 Hz–50.5 Hz. Deviation from above mentioned range is charged as Unscheduled Interchange (UI charge. This paper proposes a new method for load and frequency control based on control of third parameter of three-part Availability Based Tariff (ABT i.e. Unscheduled Interchange charges. New circuit is designed considering prioritization of load and using Advanced Metering Infrastructure (AMI under Smart Grid environment.
Piehl, Hampus
2014-01-01
Smart grids seem to be the solution to use energy from renewable and intermittent energy sources in an efficient manner. There are many research projects around the world and two of them are Jeju Smart Grid Test-bed and Smart Grid Gotland. They have in common that they are both island-based projects and connected to the Powergrid on the mainland by HVDC-link. The purpose of this thesis is to compare the two projects and find out what challenges and strategies they have related to wind power i...
Energy Technology Data Exchange (ETDEWEB)
Lou, Jialin [North Carolina State Univ., Raleigh, NC (United States); Xia, Yidong [Idaho National Lab. (INL), Idaho Falls, ID (United States); Luo, Lixiang [North Carolina State Univ., Raleigh, NC (United States); Luo, Hong [North Carolina State Univ., Raleigh, NC (United States); Edwards, Jack [North Carolina State Univ., Raleigh, NC (United States); Mueller, Frank [North Carolina State Univ., Raleigh, NC (United States)
2016-09-01
In this study, we use a combination of modeling techniques to describe the relationship between fracture radius that might be accomplished in a hypothetical enhanced geothermal system (EGS) and drilling distance required to create and access those fractures. We use a combination of commonly applied analytical solutions for heat transport in parallel fractures and 3D finite-element method models of more realistic heat extraction geometries. For a conceptual model involving multiple parallel fractures developed perpendicular to an inclined or horizontal borehole, calculations demonstrate that EGS will likely require very large fractures, of greater than 300 m radius, to keep interfracture drilling distances to ~10 km or less. As drilling distances are generally inversely proportional to the square of fracture radius, drilling costs quickly escalate as the fracture radius decreases. It is important to know, however, whether fracture spacing will be dictated by thermal or mechanical considerations, as the relationship between drilling distance and number of fractures is quite different in each case. Information about the likelihood of hydraulically creating very large fractures comes primarily from petroleum recovery industry data describing hydraulic fractures in shale. Those data suggest that fractures with radii on the order of several hundred meters may, indeed, be possible. The results of this study demonstrate that relatively simple calculations can be used to estimate primary design constraints on a system, particularly regarding the relationship between generated fracture radius and the total length of drilling needed in the fracture creation zone. Comparison of the numerical simulations of more realistic geometries than addressed in the analytical solutions suggest that simple proportionalities can readily be derived to relate a particular flow field.
Directory of Open Access Journals (Sweden)
Juhani Latvakoski
2015-07-01
Full Text Available Modern society is facing great challenges due to pollution and increased carbon dioxide (CO2 emissions. As part of solving these challenges, the use of renewable energy sources and electric vehicles (EVs is rapidly increasing. However, increased dynamics have triggered problems in balancing energy supply and consumption demand in the power systems. The resulting uncertainty and unpredictability of energy production, consumption, and management of peak loads has caused an increase in costs for energy market actors. Therefore, the means for studying the balancing of local smart grids with EVs is a starting point for this paper. The main contribution is a simulation-based approach which was developed to enable the study of the balancing of local distribution grids with EV batteries in a cost-efficient manner. The simulation-based approach is applied to enable the execution of a distributed system with the simulation of a local distribution grid, including a number of charging stations and EVs. A simulation system has been constructed to support the simulation-based approach. The evaluation has been carried out by executing the scenario related to balancing local distribution grids with EV batteries in a step-by-step manner. The evaluation results indicate that the simulation-based approach is able to facilitate the evaluation of smart grid– and EV-related communication protocols, control algorithms for charging, and functionalities of local distribution grids as part of a complex, critical cyber-physical system. In addition, the simulation system is able to incorporate advanced methods for monitoring, controlling, tracking, and modeling behavior. The simulation model of the local distribution grid can be executed with the smart control of charging and discharging powers of the EVs according to the load situation in the local distribution grid. The resulting simulation system can be applied to the study of balancing local smart grids with EV
Moving grids for magnetic reconnection via Newton-Krylov methods
Yuan, Xuefei; Jardin, Stephen C.; Keyes, David E.
2011-01-01
This paper presents a set of computationally efficient, adaptive grids for magnetic reconnection phenomenon where the current density can develop large gradients in the reconnection region. Four-field extended MagnetoHydroDynamics (MHD) equations
Moving grids for magnetic reconnection via Newton-Krylov methods
Yuan, Xuefei
2011-01-01
This paper presents a set of computationally efficient, adaptive grids for magnetic reconnection phenomenon where the current density can develop large gradients in the reconnection region. Four-field extended MagnetoHydroDynamics (MHD) equations with hyperviscosity terms are transformed so that the curvilinear coordinates replace the Cartesian coordinates as the independent variables, and moving grids\\' velocities are also considered in this transformed system as a part of interpolating the physical solutions from the old grid to the new grid as time advances. The curvilinear coordinates derived from the current density through the Monge-Kantorovich (MK) optimization approach help to reduce the resolution requirements during the computation. © 2010 Elsevier B.V. All rights reserved.
Streamline integration as a method for two-dimensional elliptic grid generation
Energy Technology Data Exchange (ETDEWEB)
Wiesenberger, M., E-mail: Matthias.Wiesenberger@uibk.ac.at [Institute for Ion Physics and Applied Physics, Universität Innsbruck, A-6020 Innsbruck (Austria); Held, M. [Institute for Ion Physics and Applied Physics, Universität Innsbruck, A-6020 Innsbruck (Austria); Einkemmer, L. [Numerical Analysis group, Universität Innsbruck, A-6020 Innsbruck (Austria)
2017-07-01
We propose a new numerical algorithm to construct a structured numerical elliptic grid of a doubly connected domain. Our method is applicable to domains with boundaries defined by two contour lines of a two-dimensional function. Furthermore, we can adapt any analytically given boundary aligned structured grid, which specifically includes polar and Cartesian grids. The resulting coordinate lines are orthogonal to the boundary. Grid points as well as the elements of the Jacobian matrix can be computed efficiently and up to machine precision. In the simplest case we construct conformal grids, yet with the help of weight functions and monitor metrics we can control the distribution of cells across the domain. Our algorithm is parallelizable and easy to implement with elementary numerical methods. We assess the quality of grids by considering both the distribution of cell sizes and the accuracy of the solution to elliptic problems. Among the tested grids these key properties are best fulfilled by the grid constructed with the monitor metric approach. - Graphical abstract: - Highlights: • Construct structured, elliptic numerical grids with elementary numerical methods. • Align coordinate lines with or make them orthogonal to the domain boundary. • Compute grid points and metric elements up to machine precision. • Control cell distribution by adaption functions or monitor metrics.
Grid-based virtual clinic for medical diagnosis tutoring | Yatchou ...
African Journals Online (AJOL)
La réalisation visée est un outil collaboratif d\\'enseignement pour les médecins du terrain et les étudiants en médecine au sein d\\'une organisation virtuelle. The emerging grid-based technologies are increasingly adopted to enhance education and provide better learning services. This is characterized all over the world, ...
A Simplified Control Method for Tie-Line Power of DC Micro-Grid
Directory of Open Access Journals (Sweden)
Yanbo Che
2018-04-01
Full Text Available Compared with the AC micro-grid, the DC micro-grid has low energy loss and no issues of frequency stability, which makes it more accessible for distributed energy. Thus, the DC micro-grid has good potential for development. A variety of renewable energy is included in the DC micro-grid, which is easily affected by the environment, causing fluctuation of the DC voltage. For grid-connected DC micro-grid with droop control strategy, the tie-line power is affected by fluctuations in the DC voltage, which sets higher requirements for coordinated control of the DC micro-grid. This paper presents a simplified control method to maintain a constant tie-line power that is suitable for the DC micro-grid with the droop control strategy. By coordinating the designs of the droop control characteristics of generators, energy storage units and grid-connected inverter, a dead band is introduced to the droop control to improve the system performance. The tie-line power in the steady state is constant. When a large disturbance occurs, the AC power grid can provide power support to the micro-grid in time. The simulation example verifies the effectiveness of the proposed control strategy.
Method for the depth corrected detection of ionizing events from a co-planar grids sensor
De Geronimo, Gianluigi [Syosset, NY; Bolotnikov, Aleksey E [South Setauket, NY; Carini, Gabriella [Port Jefferson, NY
2009-05-12
A method for the detection of ionizing events utilizing a co-planar grids sensor comprising a semiconductor substrate, cathode electrode, collecting grid and non-collecting grid. The semiconductor substrate is sensitive to ionizing radiation. A voltage less than 0 Volts is applied to the cathode electrode. A voltage greater than the voltage applied to the cathode is applied to the non-collecting grid. A voltage greater than the voltage applied to the non-collecting grid is applied to the collecting grid. The collecting grid and the non-collecting grid are summed and subtracted creating a sum and difference respectively. The difference and sum are divided creating a ratio. A gain coefficient factor for each depth (distance between the ionizing event and the collecting grid) is determined, whereby the difference between the collecting electrode and the non-collecting electrode multiplied by the corresponding gain coefficient is the depth corrected energy of an ionizing event. Therefore, the energy of each ionizing event is the difference between the collecting grid and the non-collecting grid multiplied by the corresponding gain coefficient. The depth of the ionizing event can also be determined from the ratio.
DEFF Research Database (Denmark)
Ricchiuto, D.; Liserre, M.; Kerekes, Tamas
2011-01-01
Grid-connected converters usually employ an LCL-filter to reduce PWM harmonics. To avoid the wellknown stability problems it is requested to use either passive or active damping methods. Active damping methods avoid losses and preserve the filter effectiveness but they are more sensitive...... to parameters variation. In this paper the robustness of active damping methods is investigated considering those using only the same state variable (grid-side or converter-side current) normally used for current control (filter-based) or those methods using more state-variables (multiloop). Simulation...
Measuring device and method for dimples height differences of 17 x 17 grid
International Nuclear Information System (INIS)
Xu Yilan; Zheng Zhihui; Yan Liwei; Wang Xihe
2001-01-01
There are 264 cell for fastening fuel rods in the grid of 17 x 17 fuel assembly of PWR. The height differences of top and bottom dimples in a grid is an important quality characteristic of the grid. The report deals with measuring machine and method for dimples height differences of the grid. The device has two measuring probes. The Parallel Leaf Spring is used for transmitting the little displacement between two probes. The uncertainty of the device is σ≤4 μm. The measuring method is shown to be practicable
A two-dimensional adaptive numerical grids generation method and its realization
International Nuclear Information System (INIS)
Xu Tao; Shui Hongshou
1998-12-01
A two-dimensional adaptive numerical grids generation method and its particular realization is discussed. This method is effective and easy to realize if the control functions are given continuously, and the grids for some regions is showed in this case. For Computational Fluid Dynamics, because the control values of adaptive grids-numerical solution is given in dispersed form, it is needed to interpolate these values to get the continuous control functions. These interpolation techniques are discussed, and some efficient adaptive grids are given. A two-dimensional fluid dynamics example was also given
Silicon-based metallic micro grid for electron field emission
International Nuclear Information System (INIS)
Kim, Jaehong; Jeon, Seok-Gy; Kim, Jung-Il; Kim, Geun-Ju; Heo, Duchang; Shin, Dong Hoon; Sun, Yuning; Lee, Cheol Jin
2012-01-01
A micro-scale metal grid based on a silicon frame for application to electron field emission devices is introduced and experimentally demonstrated. A silicon lattice containing aperture holes with an area of 80 × 80 µm 2 and a thickness of 10 µm is precisely manufactured by dry etching the silicon on one side of a double-polished silicon wafer and by wet etching the opposite side. Because a silicon lattice is more rigid than a pure metal lattice, a thin layer of Au/Ti deposited on the silicon lattice for voltage application can be more resistant to the geometric stress caused by the applied electric field. The micro-fabrication process, the images of the fabricated grid with 88% geometric transparency and the surface profile measurement after thermal feasibility testing up to 700 °C are presented. (paper)
DEFF Research Database (Denmark)
Liu, Yuan; Wu, Weimin; Li, Yun
2016-01-01
The capacitor-current-feedback active damping method is attractive for high-order-filter-based high power grid-tied inverter when the grid impedance varies within a wide range. In order to improve the system control bandwidth and attenuate the high order grid background harmonics by using the quasi....... In this paper, a low pass filter is proposed to be inserted in the capacitor current feedback loop op LLCL-filter based grid-tied inverter together with a digital proportional and differential compensator. The detailed theoretical analysis is given. For verification, simulations on a 2kW/220V/10kHz LLCL...
Application of rule-based data mining techniques to real time ATLAS Grid job monitoring data
Ahrens, R; The ATLAS collaboration; Kalinin, S; Maettig, P; Sandhoff, M; dos Santos, T; Volkmer, F
2012-01-01
The Job Execution Monitor (JEM) is a job-centric grid job monitoring software developed at the University of Wuppertal and integrated into the pilot-based “PanDA” job brokerage system leveraging physics analysis and Monte Carlo event production for the ATLAS experiment on the Worldwide LHC Computing Grid (WLCG). With JEM, job progress and grid worker node health can be supervised in real time by users, site admins and shift personnel. Imminent error conditions can be detected early and countermeasures can be initiated by the Job’s owner immideatly. Grid site admins can access aggregated data of all monitored jobs to infer the site status and to detect job and Grid worker node misbehaviour. Shifters can use the same aggregated data to quickly react to site error conditions and broken production tasks. In this work, the application of novel data-centric rule based methods and data-mining techniques to the real time monitoring data is discussed. The usage of such automatic inference techniques on monitorin...
Smart homes as a base for smart grids; Smart Home als Basis fuer Smart Grid
Energy Technology Data Exchange (ETDEWEB)
Segbusch, Klaus von [ABB AG, Mannheim (Germany). Team Business Development Smart Grids; Struwe, Christian [Busch-Jaeger Elektro GmbH, Luedenscheid (Germany)
2010-09-15
Integration of renewable energy sources requires more intelligent distribution systems, i.e. so-called smart grids. For this, it is necessary to integrate the end customers in grid operation, giving them financial incentives, information in near real time from the utility, and means for automatic control of their consumption. (orig.)
Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub
International Nuclear Information System (INIS)
Ma, Tengfei; Wu, Junyong; Hao, Liangliang
2017-01-01
Highlights: • Design a novel architecture for energy hub integrating power hub, cooling hub and heating hub. • The micro energy grid based on energy hub is introduced and its advantages are discussed. • Propose a generic modeling method for the energy flow of micro energy grid. • Propose an optimal operation model for micro energy grid with considering demand response. • The roles of renewable energy, energy storage devices and demand response are discussed separately. - Abstract: The energy security and environmental problems impel people to explore a more efficient, environment friendly and economical energy utilization pattern. In this paper, the coordinated operation and optimal dispatch strategies for multiple energy system are studied at the whole Micro Energy Grid level. To augment the operation flexibility of energy hub, the innovation sub-energy hub structure including power hub, heating hub and cooling hub is put forward. Basing on it, a generic energy hub architecture integrating renewable energy, combined cooling heating and power, and energy storage devices is developed. Moreover, a generic modeling method for the energy flow of micro energy grid is proposed. To minimize the daily operation cost, a day-ahead dynamic optimal operation model is formulated as a mixed integer linear programming optimization problem with considering the demand response. Case studies are undertaken on a community Micro Energy Grid in four different scenarios on a typical summer day and the roles of renewable energy, energy storage devices and demand response are discussed separately. Numerical simulation results indicate that the proposed energy flow modeling and optimal operation method are universal and effective over the entire energy dispatching horizon.
A New Method to Energy Saving in a Micro Grid
Directory of Open Access Journals (Sweden)
Andrea Vallati
2015-10-01
Full Text Available Optimization of energy production systems is a relevant issue that must be considered in order to follow the fossil fuels consumption reduction policies and CO2 emission regulation. Increasing electricity production from renewable resources (e.g., photovoltaic systems and wind farms is desirable but its unpredictability is a cause of problems for the main grid stability. A system with multiple energy sources represents an efficient solution, by realizing an interface among renewable energy sources, energy storage systems, and conventional power generators. Direct consequences of multi-energy systems are a wider energy flexibility and benefits for the electric grid, the purpose of this paper is to propose the best technology combination for electricity generation from a mix of renewable energy resources to satisfy the electrical needs. The paper identifies the optimal off-grid option and compares this with conventional grid extension, through the use of HOMER software. The solution obtained shows that a hybrid combination of renewable energy generators at an off-grid location can be a cost-effective alternative to grid extension and it is sustainable, techno-economically viable, and environmentally sound. The results show how this innovative energetic approach can provide a cost reduction in power supply and energy fees of 40% and 25%, respectively, and CO2 emission decrease attained around 18%. Furthermore, the multi-energy system taken as the case study has been optimized through the utilization of three different type of energy storage (Pb-Ac batteries, flywheels, and micro—Compressed Air Energy Storage (C.A.E.S..
Sustainable Power Supply Solutions for Off-Grid Base Stations
Directory of Open Access Journals (Sweden)
Asma Mohamad Aris
2015-09-01
Full Text Available The telecommunication sector plays a significant role in shaping the global economy and the way people share information and knowledge. At present, the telecommunication sector is liable for its energy consumption and the amount of emissions it emits in the environment. In the context of off-grid telecommunication applications, off-grid base stations (BSs are commonly used due to their ability to provide radio coverage over a wide geographic area. However, in the past, the off-grid BSs usually relied on emission-intensive power supply solutions such as diesel generators. In this review paper, various types of solutions (including, in particular, the sustainable solutions for powering BSs are discussed. The key aspects in designing an ideal power supply solution are reviewed, and these mainly include the pre-feasibility study and the thermal management of BSs, which comprise heating and cooling of the BS shelter/cabinets and BS electronic equipment and power supply components. The sizing and optimization approaches used to design the BSs’ power supply systems as well as the operational and control strategies adopted to manage the power supply systems are also reviewed in this paper.
Disaster Monitoring using Grid Based Data Fusion Algorithms
Directory of Open Access Journals (Sweden)
Cătălin NAE
2010-12-01
Full Text Available This is a study of the application of Grid technology and high performance parallelcomputing to a candidate algorithm for jointly accomplishing data fusion from different sensors. Thisincludes applications for both image analysis and/or data processing for simultaneously trackingmultiple targets in real-time. The emphasis is on comparing the architectures of the serial andparallel algorithms, and characterizing the performance benefits achieved by the parallel algorithmwith both on-ground and in-space hardware implementations. The improved performance levelsachieved by the use of Grid technology (middleware for Parallel Data Fusion are presented for themain metrics of interest in near real-time applications, namely latency, total computation load, andtotal sustainable throughput. The objective of this analysis is, therefore, to demonstrate animplementation of multi-sensor data fusion and/or multi-target tracking functions within an integratedmulti-node portable HPC architecture based on emerging Grid technology. The key metrics to bedetermined in support of ongoing system analyses includes: required computational throughput inMFLOPS; latency between receipt of input data and resulting outputs; and scalability, processorutilization and memory requirements. Furthermore, the standard MPI functions are considered to beused for inter-node communications in order to promote code portability across multiple HPCcomputer platforms, both in space and on-ground.
Non-overlapped P- and S-wave Poynting vectors and its solution on Grid Method
Lu, Yong Ming; Liu, Qiancheng
2017-01-01
Poynting vector represents the local directional energy flux density of seismic waves in geophysics. It is widely used in elastic reverse time migration (RTM) to analyze source illumination, suppress low-wavenumber noise, correct for image polarity and extract angle-domain common imaging gather (ADCIG). However, the P and S waves are mixed together during wavefield propagation such that the P and S energy fluxes are not clean everywhere, especially at the overlapped points. In this paper, we use a modified elastic wave equation in which the P and S vector wavefields are naturally separated. Then, we develop an efficient method to evaluate the separable P and S poynting vectors, respectively, based on the view that the group velocity and phase velocity have the same direction in isotropic elastic media. We furthermore formulate our method using an unstructured mesh based modeling method named the grid method. Finally, we verify our method using two numerical examples.
Non-overlapped P- and S-wave Poynting vectors and its solution on Grid Method
Lu, Yong Ming
2017-12-12
Poynting vector represents the local directional energy flux density of seismic waves in geophysics. It is widely used in elastic reverse time migration (RTM) to analyze source illumination, suppress low-wavenumber noise, correct for image polarity and extract angle-domain common imaging gather (ADCIG). However, the P and S waves are mixed together during wavefield propagation such that the P and S energy fluxes are not clean everywhere, especially at the overlapped points. In this paper, we use a modified elastic wave equation in which the P and S vector wavefields are naturally separated. Then, we develop an efficient method to evaluate the separable P and S poynting vectors, respectively, based on the view that the group velocity and phase velocity have the same direction in isotropic elastic media. We furthermore formulate our method using an unstructured mesh based modeling method named the grid method. Finally, we verify our method using two numerical examples.
Degenerate Quadtree Latitude/Longitude Grid Based on WGS-84 Ellipsoidal Facet
Directory of Open Access Journals (Sweden)
HU Bailin
2016-12-01
Full Text Available For the needs of digital earth development and solving many global problems, a new discrete global grid system-DQLLG (degenerate quadtree latitude/longitude grid was put forward, which was based on WGS-84 ellipsoidal facet. The hierarchical subdivision method, characteristics and grid column/row coordinate system were detailed. The Latitude/Longitude coordinate, area and side length of multi-resolution meshes on different subdivision levels were calculated. Then the changes of mesh areas and side lengths were analyzed and compared that with spherical DQLLG. The research indicates that the DQLLG had many excellent features:uniformity, hierarchy, consistency of direction, extensive data compatibility and so on. It has certain practicality for Global GIS in the future.
Methods for the Optimal Design of Grid-Connected PV Inverters
DEFF Research Database (Denmark)
Koutroulis, Eftichios; Blaabjerg, Frede
2011-01-01
and the efficient processing of this power by the DC/AC inverter. In this paper two new methods are presented for the optimal design of a PV inverter power section, output filter and MPPT control strategy. The influences of the electric grid regulations and standards as well as the PV array operational......The DC/AC inverters are used in grid-connected PV energy production systems as the power processing interface between the PV energy source and the electric grid. The energy injected into the electric grid by the PV installation depends on the amount of power extracted from the PV power source...
Automatic building extraction from LiDAR data fusion of point and grid-based features
Du, Shouji; Zhang, Yunsheng; Zou, Zhengrong; Xu, Shenghua; He, Xue; Chen, Siyang
2017-08-01
This paper proposes a method for extracting buildings from LiDAR point cloud data by combining point-based and grid-based features. To accurately discriminate buildings from vegetation, a point feature based on the variance of normal vectors is proposed. For a robust building extraction, a graph cuts algorithm is employed to combine the used features and consider the neighbor contexture information. As grid feature computing and a graph cuts algorithm are performed on a grid structure, a feature-retained DSM interpolation method is proposed in this paper. The proposed method is validated by the benchmark ISPRS Test Project on Urban Classification and 3D Building Reconstruction and compared to the state-art-of-the methods. The evaluation shows that the proposed method can obtain a promising result both at area-level and at object-level. The method is further applied to the entire ISPRS dataset and to a real dataset of the Wuhan City. The results show a completeness of 94.9% and a correctness of 92.2% at the per-area level for the former dataset and a completeness of 94.4% and a correctness of 95.8% for the latter one. The proposed method has a good potential for large-size LiDAR data.
A Family of Multipoint Flux Mixed Finite Element Methods for Elliptic Problems on General Grids
Wheeler, Mary F.; Xue, Guangri; Yotov, Ivan
2011-01-01
In this paper, we discuss a family of multipoint flux mixed finite element (MFMFE) methods on simplicial, quadrilateral, hexahedral, and triangular-prismatic grids. The MFMFE methods are locally conservative with continuous normal fluxes, since
Gridded precipitation dataset for the Rhine basin made with the genRE interpolation method
Osnabrugge, van B.; Uijlenhoet, R.
2017-01-01
A high resolution (1.2x1.2km) gridded precipitation dataset with hourly time step that covers the whole Rhine basin for the period 1997-2015. Made from gauge data with the genRE interpolation scheme. See "genRE: A method to extend gridded precipitation climatology datasets in near real-time for
A mixed nonoverlapping covolume method on quadrilateral grids for elliptic problems
Zhao, X.; Chen, Y.; Lv, J.
2016-01-01
A covolume method is proposed for the mixed formulation of second-order elliptic problems. The solution domain is divided by a quadrilateral grid, corresponding to which a nonoverlapping dual grid is constructed. The velocity and pressure are approximated by the lowest-order Raviart–Thomas space on
Method and apparatus for detecting cyber attacks on an alternating current power grid
McEachern, Alexander; Hofmann, Ronald
2017-04-11
A method and apparatus for detecting cyber attacks on remotely-operable elements of an alternating current distribution grid. Two state estimates of the distribution grid are prepared, one of which uses micro-synchrophasors. A difference between the two state estimates indicates a possible cyber attack.
The use of the spectral method within the fast adaptive composite grid method
Energy Technology Data Exchange (ETDEWEB)
McKay, S.M.
1994-12-31
The use of efficient algorithms for the solution of partial differential equations has been sought for many years. The fast adaptive composite grid (FAC) method combines an efficient algorithm with high accuracy to obtain low cost solutions to partial differential equations. The FAC method achieves fast solution by combining solutions on different grids with varying discretizations and using multigrid like techniques to find fast solution. Recently, the continuous FAC (CFAC) method has been developed which utilizes an analytic solution within a subdomain to iterate to a solution of the problem. This has been shown to achieve excellent results when the analytic solution can be found. The CFAC method will be extended to allow solvers which construct a function for the solution, e.g., spectral and finite element methods. In this discussion, the spectral methods will be used to provide a fast, accurate solution to the partial differential equation. As spectral methods are more accurate than finite difference methods, the ensuing accuracy from this hybrid method outside of the subdomain will be investigated.
Operation of an InGrid based X-ray detector at the CAST experiment
Krieger, Christoph; Desch, Klaus; Kaminski, Jochen; Lupberger, Michael
2018-02-01
The CERN Axion Solar Telescope (CAST) is searching for axions and other particles which could be candidates for DarkMatter and even Dark Energy. These particles could be produced in the Sun and detected by a conversion into soft X-ray photons inside a strong magnetic field. In order to increase the sensitivity for physics beyond the Standard Model, detectors with a threshold below 1 keV as well as efficient background rejection methods are required to compensate for low energies and weak couplings resulting in very low detection rates. Those criteria are fulfilled by a detector utilizing the combination of a pixelized readout chip with an integrated Micromegas stage. These InGrid (Integrated Grid) devices can be build by photolithographic postprocessing techniques, resulting in a close to perfect match of grid and pixels facilitating the detection of single electrons on the chip surface. The high spatial resolution allows for energy determination by simple electron counting as well as for an event-shape based analysis as background rejection method. Tests at an X-ray generator revealed the energy threshold of an InGrid based X-ray detector to be well below the carbon Kα line at 277 eV. After the successful demonstration of the detectors key features, the detector was mounted at one of CAST's four detector stations behind an X-ray telescope in 2014. After several months of successful operation without any detector related interruptions, the InGrid based X-ray detector continues data taking at CAST in 2015. During operation at the experiment, background rates in the order of 10-5 keV-1 cm-2 s-1 have been achieved by application of a likelihood based method discriminating the non-photon background originating mostly from cosmic rays. For continued operation in 2016, an upgraded InGrid based detector is to be installed among other improvements including decoupling and sampling of the signal induced on the grid as well as a veto scintillator to further lower the
Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.
2016-08-01
According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.
Feng, Shuo; Ji, Jim
2014-04-01
Parallel excitation (pTx) techniques with multiple transmit channels have been widely used in high field MRI imaging to shorten the RF pulse duration and/or reduce the specific absorption rate (SAR). However, the efficiency of pulse design still needs substantial improvement for practical real-time applications. In this paper, we present a detailed description of a fast pulse design method with Fourier domain gridding and a conjugate gradient method. Simulation results of the proposed method show that the proposed method can design pTx pulses at an efficiency 10 times higher than that of the conventional conjugate-gradient based method, without reducing the accuracy of the desirable excitation patterns.
Evaluation Methods for Market Models Used in Smart Grids
Skillbäck, Mikael; Ibrahim, Hany
2012-01-01
The European Union has set environmental targets on climate change in three areas: energy efficiency, renewable energy sources, and reduction of emissions. These targets are the main driver for the change in today’s power system. The defined targets do not only affect the production and distribution of electricity but also raise questions on how electricity is being consumed. An essential building block of an efficient power system is often referred to as the smart grid. One of the important ...
Schwarz-Christoffel Conformal Mapping based Grid Generation for Global Oceanic Circulation Models
Xu, Shiming
2015-04-01
We propose new grid generation algorithms for global ocean general circulation models (OGCMs). Contrary to conventional, analytical forms based dipolar or tripolar grids, the new algorithm are based on Schwarz-Christoffel (SC) conformal mapping with prescribed boundary information. While dealing with the conventional grid design problem of pole relocation, it also addresses more advanced issues of computational efficiency and the new requirements on OGCM grids arisen from the recent trend of high-resolution and multi-scale modeling. The proposed grid generation algorithm could potentially achieve the alignment of grid lines to coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the generated grids are still orthogonal curvilinear, they can be readily 10 utilized in existing Bryan-Cox-Semtner type ocean models. The proposed methodology can also be applied to the grid generation task for regional ocean modeling when complex land-ocean distribution is present.
International Nuclear Information System (INIS)
Suzuki, Y.; Nakajima, K.; Kushida, N.; Kino, C.; Aoyagi, T.; Nakajima, N.; Iba, K.; Hayashi, N.; Ozeki, T.; Totsuka, T.; Nakanishi, H.; Nagayama, Y.
2008-01-01
In collaboration with the Naka Fusion Institute of Japan Atomic Energy Agency (NFI/JAEA) and the National Institute for Fusion Science of National Institute of Natural Science (NIFS/NINS), Center for Computational Science and E-systems of Japan Atomic Energy Agency (CCSE/JAEA) aims at establishing an integrated framework for experiments and analyses in nuclear fusion research based on the atomic energy grid infrastructure (AEGIS). AEGIS has been being developed by CCSE/JAEA aiming at providing the infrastructure that enables atomic energy researchers in remote locations to carry out R and D efficiently and collaboratively through the Internet. Toward establishing the integrated framework, we have been applying AEGIS to pre-existing three systems: experiment system, remote data acquisition system, and integrated analysis system. For the experiment system, the secure remote experiment system with JT-60 has been successfully accomplished. For the remote data acquisition system, it will be possible to equivalently operate experimental data obtained from LHD data acquisition and management system (LABCOM system) and JT-60 Data System. The integrated analysis system has been extended to the system executable in heterogeneous computers among institutes
Trusted data management for Grid-based medical applications
van 't Noordende, G.J.; Olabarriaga, S.D.; Koot, M.R.; de Laat, C.T.A.M.; Udoh, E.
2011-01-01
Existing Grid technology has been foremost designed with performance and scalability in mind. When using Grid infrastructure for medical applications, privacy and security considerations become paramount. Privacy aspects require a re-thinking of the design and implementation of common Grid
International Nuclear Information System (INIS)
Ragusa, J. C.
2004-01-01
In this paper, a method for performing spatially adaptive computations in the framework of multigroup diffusion on 2-D and 3-D Cartesian grids is investigated. The numerical error, intrinsic to any computer simulation of physical phenomena, is monitored through an a posteriori error estimator. In a posteriori analysis, the computed solution itself is used to assess the accuracy. By efficiently estimating the spatial error, the entire computational process is controlled through successively adapted grids. Our analysis is based on a finite element solution of the diffusion equation. Bilinear test functions are used. The derived a posteriori error estimator is therefore based on the Hessian of the numerical solution. (authors)
Dickinson, J.E.; James, S.C.; Mehl, S.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Faunt, C.C.; Eddebbarh, A.-A.
2007-01-01
A flexible, robust method for linking parent (regional-scale) and child (local-scale) grids of locally refined models that use different numerical methods is developed based on a new, iterative ghost-node method. Tests are presented for two-dimensional and three-dimensional pumped systems that are homogeneous or that have simple heterogeneity. The parent and child grids are simulated using the block-centered finite-difference MODFLOW and control-volume finite-element FEHM models, respectively. The models are solved iteratively through head-dependent (child model) and specified-flow (parent model) boundary conditions. Boundary conditions for models with nonmatching grids or zones of different hydraulic conductivity are derived and tested against heads and flows from analytical or globally-refined models. Results indicate that for homogeneous two- and three-dimensional models with matched grids (integer number of child cells per parent cell), the new method is nearly as accurate as the coupling of two MODFLOW models using the shared-node method and, surprisingly, errors are slightly lower for nonmatching grids (noninteger number of child cells per parent cell). For heterogeneous three-dimensional systems, this paper compares two methods for each of the two sets of boundary conditions: external heads at head-dependent boundary conditions for the child model are calculated using bilinear interpolation or a Darcy-weighted interpolation; specified-flow boundary conditions for the parent model are calculated using model-grid or hydrogeologic-unit hydraulic conductivities. Results suggest that significantly more accurate heads and flows are produced when both Darcy-weighted interpolation and hydrogeologic-unit hydraulic conductivities are used, while the other methods produce larger errors at the boundary between the regional and local models. The tests suggest that, if posed correctly, the ghost-node method performs well. Additional testing is needed for highly
Efficient identification of opportunities for Distributed Generation based on Smart Grid Technology
DEFF Research Database (Denmark)
Mutule, Anna; Obushevs, Artjoms; Lvov, Aleksandr
2013-01-01
The paper presents the main goals and achievements of the Smart Grids ERA-NET project named “Efficient identification of opportunities for Distributed Generation based on Smart Grid Technology (SmartGen)” during the second stage of project implementation. A description of Smart Grid Technology (S......) models developed within the framework of the project is given. The performed study cases where the SGT-models were implemented to analyze the impact of the electrical grid are discussed....
An Analysis of Delay-based and Integrator-based Sequence Detectors for Grid-Connected Converters
DEFF Research Database (Denmark)
Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth
2017-01-01
-signal cancellation operators are the main members of the delay-based sequence detectors. The aim of this paper is to provide a theoretical and experimental comparative study between integrator and delay based sequence detectors. The theoretical analysis is conducted based on the small-signal modelling......Detecting and separating positive and negative sequence components of the grid voltage or current is of vital importance in the control of grid-connected power converters, HVDC systems, etc. To this end, several techniques have been proposed in recent years. These techniques can be broadly...... classified into two main classes: The integrator-based techniques and Delay-based techniques. The complex-coefficient filter-based technique, dual second-order generalized integrator-based method, multiple reference frame approach are the main members of the integrator-based sequence detector and the delay...
Grid-based platform for training in Earth Observation
Petcu, Dana; Zaharie, Daniela; Panica, Silviu; Frincu, Marc; Neagul, Marian; Gorgan, Dorian; Stefanut, Teodor
2010-05-01
GiSHEO platform [1] providing on-demand services for training and high education in Earth Observation is developed, in the frame of an ESA funded project through its PECS programme, to respond to the needs of powerful education resources in remote sensing field. It intends to be a Grid-based platform of which potential for experimentation and extensibility are the key benefits compared with a desktop software solution. Near-real time applications requiring simultaneous multiple short-time-response data-intensive tasks, as in the case of a short time training event, are the ones that are proved to be ideal for this platform. The platform is based on Globus Toolkit 4 facilities for security and process management, and on the clusters of four academic institutions involved in the project. The authorization uses a VOMS service. The main public services are the followings: the EO processing services (represented through special WSRF-type services); the workflow service exposing a particular workflow engine; the data indexing and discovery service for accessing the data management mechanisms; the processing services, a collection allowing easy access to the processing platform. The WSRF-type services for basic satellite image processing are reusing free image processing tools, OpenCV and GDAL. New algorithms and workflows were develop to tackle with challenging problems like detecting the underground remains of old fortifications, walls or houses. More details can be found in [2]. Composed services can be specified through workflows and are easy to be deployed. The workflow engine, OSyRIS (Orchestration System using a Rule based Inference Solution), is based on DROOLS, and a new rule-based workflow language, SILK (SImple Language for worKflow), has been built. Workflow creation in SILK can be done with or without a visual designing tools. The basics of SILK are the tasks and relations (rules) between them. It is similar with the SCUFL language, but not relying on XML in
The Stagger-grid: A grid of 3D stellar atmosphere models. I. Methods and general properties
Magic, Z.; Collet, R.; Asplund, M.; Trampedach, R.; Hayek, W.; Chiavassa, A.; Stein, R. F.; Nordlund, Å.
2013-09-01
Aims: We present the Stagger-grid, a comprehensive grid of time-dependent, three-dimensional (3D), hydrodynamic model atmospheres for late-type stars with realistic treatment of radiative transfer, covering a wide range in stellar parameters. This grid of 3D models is intended for various applications besides studies of stellar convection and atmospheres per se, including stellar parameter determination, stellar spectroscopy and abundance analysis, asteroseismology, calibration of stellar evolution models, interferometry, and extrasolar planet search. In this introductory paper, we describe the methods we applied for the computation of the grid and discuss the general properties of the 3D models as well as of their temporal and spatial averages (here denoted ⟨3D⟩ models). Methods: All our models were generated with the Stagger-code, using realistic input physics for the equation of state (EOS) and for continuous and line opacities. Our ~ 220 grid models range in effective temperature, Teff, from 4000 to 7000 K in steps of 500 K, in surface gravity, log g, from 1.5 to 5.0 in steps of 0.5 dex, and metallicity, [Fe/H], from - 4.0 to + 0.5 in steps of 0.5 and 1.0 dex. Results: We find a tight scaling relation between the vertical velocity and the surface entropy jump, which itself correlates with the constant entropy value of the adiabatic convection zone. The range in intensity contrast is enhanced at lower metallicity. The granule size correlates closely with the pressure scale height sampled at the depth of maximum velocity. We compare the ⟨3D⟩ models with currently widely applied one-dimensional (1D) atmosphere models, as well as with theoretical 1D hydrostatic models generated with the same EOS and opacity tables as the 3D models, in order to isolate the effects of using self-consistent and hydrodynamic modeling of convection, rather than the classical mixing length theory approach. For the first time, we are able to quantify systematically over a broad
GSIMF: a web service based software and database management system for the next generation grids
International Nuclear Information System (INIS)
Wang, N; Ananthan, B; Gieraltowski, G; May, E; Vaniachine, A
2008-01-01
To process the vast amount of data from high energy physics experiments, physicists rely on Computational and Data Grids; yet, the distribution, installation, and updating of a myriad of different versions of different programs over the Grid environment is complicated, time-consuming, and error-prone. Our Grid Software Installation Management Framework (GSIMF) is a set of Grid Services that has been developed for managing versioned and interdependent software applications and file-based databases over the Grid infrastructure. This set of Grid services provide a mechanism to install software packages on distributed Grid computing elements, thus automating the software and database installation management process on behalf of the users. This enables users to remotely install programs and tap into the computing power provided by Grids
Je, U. K.; Park, C. K.; Lim, H. W.; Cho, H. S.; Lee, D. Y.; Lee, H. W.; Kim, K. S.; Park, S. Y.; Kim, G. A.; Kang, S. Y.; Park, J. E.; Kim, W. S.; Jeon, D. H.; Woo, T. H.
2017-09-01
We have recently developed precise x-ray grids having strip densities in the range of 100 - 250 lines/inch by adopting the precision sawing process and carbon interspace material for the demands of specific x-ray imaging techniques. However, quality assurance in the grid manufacturing has not yet satisfactorily conducted because grid strips of a high strip density are often invisible through an x-ray nondestructive testing with a flat-panel detector of an ordinary pixel resolution (>100 μm). In this work, we propose a useful method to evaluate actual grid strip densities over the Nyquist sampling rate based on the moiré artifact analysis. We performed a systematic simulation and experiment with several sample grids and a detector having a 143- μm pixel resolution to verify the proposed quality assurance method. According to our results, the relative differences between the nominal and the evaluated grid strip densities were within 0.2% and 1.8% in the simulation and experiment, respectively, which demonstrates that the proposed method is viable with an ordinary detector having a moderate pixel resolution for quality assurance in grid manufacturing.
Zhang, Xiao-Bo; Qu, Xian-You; Li, Meng; Wang, Hui; Jing, Zhi-Xian; Liu, Xiang; Zhang, Zhi-Wei; Guo, Lan-Ping; Huang, Lu-Qi
2017-11-01
After the end of the national and local medicine resources census work, a large number of Chinese medicine resources and distribution of data will be summarized. The species richness between the regions is a valid indicator for objective reflection of inter-regional resources of Chinese medicine. Due to the large difference in the size of the county area, the assessment of the intercropping of the resources of the traditional Chinese medicine by the county as a statistical unit will lead to the deviation of the regional abundance statistics. Based on the rule grid or grid statistical methods, the size of the statistical unit due to different can be reduced, the differences in the richness of traditional Chinese medicine resources are caused. Taking Chongqing as an example, based on the existing survey data, the difference of richness of traditional Chinese medicine resources under different grid scale were compared and analyzed. The results showed that the 30 km grid could be selected and the richness of Chinese medicine resources in Chongqing could reflect the objective situation of intercropping resources richness in traditional Chinese medicine better. Copyright© by the Chinese Pharmaceutical Association.
Energy stable and high-order-accurate finite difference methods on staggered grids
O'Reilly, Ossian; Lundquist, Tomas; Dunham, Eric M.; Nordström, Jan
2017-10-01
For wave propagation over distances of many wavelengths, high-order finite difference methods on staggered grids are widely used due to their excellent dispersion properties. However, the enforcement of boundary conditions in a stable manner and treatment of interface problems with discontinuous coefficients usually pose many challenges. In this work, we construct a provably stable and high-order-accurate finite difference method on staggered grids that can be applied to a broad class of boundary and interface problems. The staggered grid difference operators are in summation-by-parts form and when combined with a weak enforcement of the boundary conditions, lead to an energy stable method on multiblock grids. The general applicability of the method is demonstrated by simulating an explosive acoustic source, generating waves reflecting against a free surface and material discontinuity.
Innovative Columnar Type of Grid Array SJ BIST HALT Method, Phase I
National Aeronautics and Space Administration — Ridgetop will develop a superior method for testing and qualifying columnar type of grid arrays such as field programmable gate arrays (FPGAs) packaged in column...
A Family of Multipoint Flux Mixed Finite Element Methods for Elliptic Problems on General Grids
Wheeler, Mary F.
2011-01-01
In this paper, we discuss a family of multipoint flux mixed finite element (MFMFE) methods on simplicial, quadrilateral, hexahedral, and triangular-prismatic grids. The MFMFE methods are locally conservative with continuous normal fluxes, since they are developed within a variational framework as mixed finite element methods with special approximating spaces and quadrature rules. The latter allows for local flux elimination giving a cell-centered system for the scalar variable. We study two versions of the method: with a symmetric quadrature rule on smooth grids and a non-symmetric quadrature rule on rough grids. Theoretical and numerical results demonstrate first order convergence for problems with full-tensor coefficients. Second order superconvergence is observed on smooth grids. © 2011 Published by Elsevier Ltd.
Grid occupancy estimation for environment perception based on belief functions and PCR6
Moras, Julien; Dezert, Jean; Pannetier, Benjamin
2015-05-01
In this contribution, we propose to improve the grid map occupancy estimation method developed so far based on belief function modeling and the classical Dempster's rule of combination. Grid map offers a useful representation of the perceived world for mobile robotics navigation. It will play a major role for the security (obstacle avoidance) of next generations of terrestrial vehicles, as well as for future autonomous navigation systems. In a grid map, the occupancy of each cell representing a small piece of the surrounding area of the robot must be estimated at first from sensors measurements (typically LIDAR, or camera), and then it must also be classified into different classes in order to get a complete and precise perception of the dynamic environment where the robot moves. So far, the estimation and the grid map updating have been done using fusion techniques based on the probabilistic framework, or on the classical belief function framework thanks to an inverse model of the sensors. Mainly because the latter offers an interesting management of uncertainties when the quality of available information is low, and when the sources of information appear as conflicting. To improve the performances of the grid map estimation, we propose in this paper to replace Dempster's rule of combination by the PCR6 rule (Proportional Conflict Redistribution rule #6) proposed in DSmT (Dezert-Smarandache) Theory. As an illustrating scenario, we consider a platform moving in dynamic area and we compare our new realistic simulation results (based on a LIDAR sensor) with those obtained by the probabilistic and the classical belief-based approaches.
Transaction-Based Controls for Building-Grid Integration: VOLTTRON™
Energy Technology Data Exchange (ETDEWEB)
Akyol, Bora A.; Haack, Jereme N.; Hernandez, George; Katipamula, Srinivas; Widergren, Steven E.
2015-07-01
The U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) is supporting the development of a “transactional network” concept that supports energy, operational, and financial transactions between building systems (e.g., rooftop units -- RTUs), and the electric power grid using applications, or 'agents', that reside either on the equipment, on local building controllers, or in the Cloud. The transactional network vision is delivered using a real-time, scalable reference platform called VOLTTRON that supports the needs of the changing energy system. VOLTTRON is an agent execution and an innovative distributed control and sensing software platform that supports modern control strategies, including agent-based and transaction-based controls. It enables mobile and stationary software agents to perform information gathering, processing, and control actions.
A Novel Quad Harmony Search Algorithm for Grid-Based Path Finding
Directory of Open Access Journals (Sweden)
Saso Koceski
2014-09-01
Full Text Available A novel approach to the problem of grid-based path finding has been introduced. The method is a block-based search algorithm, founded on the bases of two algorithms, namely the quad-tree algorithm, which offered a great opportunity for decreasing the time needed to compute the solution, and the harmony search (HS algorithm, a meta-heuristic algorithm used to obtain the optimal solution. This quad HS algorithm uses the quad-tree decomposition of free space in the grid to mark the free areas and treat them as a single node, which greatly improves the execution. The results of the quad HS algorithm have been compared to other meta-heuristic algorithms, i.e., ant colony, genetic algorithm, particle swarm optimization and simulated annealing, and it was proved to obtain the best results in terms of time and giving the optimal path.
WebGIS based on semantic grid model and web services
Zhang, WangFei; Yue, CaiRong; Gao, JianGuo
2009-10-01
As the combination point of the network technology and GIS technology, WebGIS has got the fast development in recent years. With the restriction of Web and the characteristics of GIS, traditional WebGIS has some prominent problems existing in development. For example, it can't accomplish the interoperability of heterogeneous spatial databases; it can't accomplish the data access of cross-platform. With the appearance of Web Service and Grid technology, there appeared great change in field of WebGIS. Web Service provided an interface which can give information of different site the ability of data sharing and inter communication. The goal of Grid technology was to make the internet to a large and super computer, with this computer we can efficiently implement the overall sharing of computing resources, storage resource, data resource, information resource, knowledge resources and experts resources. But to WebGIS, we only implement the physically connection of data and information and these is far from the enough. Because of the different understanding of the world, following different professional regulations, different policies and different habits, the experts in different field will get different end when they observed the same geographic phenomenon and the semantic heterogeneity produced. Since these there are large differences to the same concept in different field. If we use the WebGIS without considering of the semantic heterogeneity, we will answer the questions users proposed wrongly or we can't answer the questions users proposed. To solve this problem, this paper put forward and experienced an effective method of combing semantic grid and Web Services technology to develop WebGIS. In this paper, we studied the method to construct ontology and the method to combine Grid technology and Web Services and with the detailed analysis of computing characteristics and application model in the distribution of data, we designed the WebGIS query system driven by
Electro-deposition as a repair method for embedded metal grids
Energy Technology Data Exchange (ETDEWEB)
Oostra, A. Jolt [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (Netherlands); Reddy, Anil; Smits, Edsger C.P.; Abbel, Robert; Groen, Wilhelm A. [Holst Centre/TNO, High Tech Campus 31, 5605 KN Eindhoven (Netherlands); Blom, Paul W.M. [Max Planck Institute für Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany); Michels, Jasper J., E-mail: michels@mpip-mainz.mpg.de [Holst Centre/TNO, High Tech Campus 31, 5605 KN Eindhoven (Netherlands); Max Planck Institute für Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany)
2016-03-31
A method is presented to self-repair cracks in embedded silver grid structures used in large area organic electronics. The repair procedure is based on electro-deposition, incited by the application of a moderate DC voltage across the crack. During this process the organic anode that is in direct electrical contact with the silver grid, functions as an appropriate medium for ion migration. Restoration of conductivity is achieved by the formation of dendritic metal structures that connect the cathodic to the anodic side of the crack. The metal dendrites decrease the gap resistance by one order of magnitude. Subsequently, another three orders of magnitude are gained upon sintering the dendrites using a high voltage pulse, yielding restored conductance levels nearly within one order of magnitude difference from native track conductance. - Highlights: • An innovative method to repair cracks in embedded silver electrodes is presented. • The method targets application in flexible hybrid- and organic electronics. • The mechanism relies on dendritic growth of metallic structures. • Sintering yields restored conductivity levels approaching the original value.
On-line grid impedance estimation based on harmonic injection for grid-connected PV inverter
DEFF Research Database (Denmark)
Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede
2007-01-01
two different signal processing algorithms. The DFT technique is used for the single harmonic injection and the statistic technique is used for the double harmonic injection. The grid impedance estimation is used for compliance with the anti-islanding requirements of the German standard (VDE0126...
Grid refinement model in lattice Boltzmann method for stream function-vorticity formulations
Energy Technology Data Exchange (ETDEWEB)
Shin, Myung Seob [Dept. of Mechanical Engineering, Dongyang Mirae University, Seoul (Korea, Republic of)
2015-03-15
In this study, we present a grid refinement model in the lattice Boltzmann method (LBM) for two-dimensional incompressible fluid flow. That is, the model combines the desirable features of the lattice Boltzmann method and stream function-vorticity formulations. In order to obtain an accurate result, very fine grid (or lattice) is required near the solid boundary. Therefore, the grid refinement model is used in the lattice Boltzmann method for stream function-vorticity formulation. This approach is more efficient in that it can obtain the same accurate solution as that in single-block approach even if few lattices are used for computation. In order to validate the grid refinement approach for the stream function-vorticity formulation, the numerical simulations of lid-driven cavity flows were performed and good results were obtained.
International Nuclear Information System (INIS)
Wang, Lin-Wang
2006-01-01
Quantum mechanical ab initio calculation constitutes the biggest portion of the computer time in material science and chemical science simulations. As a computer center like NERSC, to better serve these communities, it will be very useful to have a prediction for the future trends of ab initio calculations in these areas. Such prediction can help us to decide what future computer architecture can be most useful for these communities, and what should be emphasized on in future supercomputer procurement. As the size of the computer and the size of the simulated physical systems increase, there is a renewed interest in using the real space grid method in electronic structure calculations. This is fueled by two factors. First, it is generally assumed that the real space grid method is more suitable for parallel computation for its limited communication requirement, compared with spectrum method where a global FFT is required. Second, as the size N of the calculated system increases together with the computer power, O(N) scaling approaches become more favorable than the traditional direct O(N 3 ) scaling methods. These O(N) methods are usually based on localized orbital in real space, which can be described more naturally by the real space basis. In this report, the author compares the real space methods versus the traditional plane wave (PW) spectrum methods, for their technical pros and cons, and the possible of future trends. For the real space method, the author focuses on the regular grid finite different (FD) method and the finite element (FE) method. These are the methods used mostly in material science simulation. As for chemical science, the predominant methods are still Gaussian basis method, and sometime the atomic orbital basis method. These two basis sets are localized in real space, and there is no indication that their roles in quantum chemical simulation will change anytime soon. The author focuses on the density functional theory (DFT), which is the
Energy Technology Data Exchange (ETDEWEB)
Inoue, K [National Aerospace Laboratory, Tokyo (Japan)
1992-05-01
For the purpose of developing a fan for an engine with ultra-high by-pass ratio, the design code of three-dimensional cascade of blades based on the Navier-Stokes equation has already been developed. This paper describes a method created by calculation grids which are part of this design code. This method is to generate boundary fitted grids to calculate the flow field across a cascade of blades placed radially in the axially symmetric space between hub and casing. In this method, one-period domain of the cascade of blades is mapped on a box in computational space by a series of combined streching transformation and conformal mapping. The grid in physical space is then obtained by successive inverse conformal mapping on the grid points in computational space. The grid obtained in this method is H-type and has a periodicity which includes the inclination of grid lines at the periodic boundary. As an example of the grid generated by this method, grids for primary and secondary models of the fan with ultra-high by-pass ratio are shown. 6 refs., 12 figs.
Energy Technology Data Exchange (ETDEWEB)
Inoue, K [National Aerospace Laboratory, Tokyo (Japan)
1992-05-01
For the purpose of developing a fan for an engine with ultra-high by-pass ratio, the design code of three-dimensional cascade of blades based on the Navier-Stokes equation has already been developed. This paper describes a method created by calculation grids which are part of this design code. This method is to generate boundary fitted grids to calculate the flow field across a cascade of blades placed radially in the axially symmetric space between hub and casing. In this method, one-period domain of the cascade of blades is mapped on a box in computational space by a series of combined streching transformation and conformal mapping. The grid in physical space is then obtained by successive inverse conformal mapping on the grid points in computational space. The grid obtained in this method is H-type and has a periodicity which includes the inclination of grid lines at the periodic boundary. As an example of the grid generated by this method, grids for primary and secondary models of the fan with ultra-high by-pass ratio are shown. 6 refs., 12 figs.
Wind Farm Grid Integration Using VSC Based HVDC Transmission - An Overview
DEFF Research Database (Denmark)
Chaudhary, Sanjay Kumar; Teodorescu, Remus; Rodriguez, Pedro
2008-01-01
The paper gives an overview of HVAC and HVDC connection of wind farm to the grid, with an emphasis on Voltage Source Converter (VSC)-based HVDC for large wind farms requiring long distance cable connection. Flexible control capabilities of a VSC-based HVDC system enables smooth integration of wind...... farm into the power grid network while meeting the Grid Code Requirements (GCR). Operation of a wind farm with VSC-based HVDC connection is described....
Dual-loop control strategy for DFIG-based Wind turbines under grid voltage disturbances
DEFF Research Database (Denmark)
Zhu, Rongwu; Chen, Zhe; Tang, Yi
2016-01-01
, but also decay the stator transient flux, and avoid the accumulation of the stator transient flux. Moreover, the proposed strategy can obtain nearly constant stator active power and electromagnetic torque, which may prolong the lifetime of the drive train. A case study on a typical 2-MW DFIG-based wind......For a multimegawatts doubly-fed induction generator (DFIG), the grid voltage disturbances may affect the stator flux and induce the transient stator flux, due to the direct connection of the stator and the grid. The accumulation of the transient stator flux caused by the variations of the stator...... turbine demonstrating the effectiveness of the proposed control methods is verified with simulations in MATLAB/Simulink. The proposed control methods are also experimentally validated using a scaled-down 7.5-kW DFIG. The simulation and experimental results clearly validate the effectiveness...
Mollified birth in natural-age-grid Galerkin methods for age-structured biological systems
International Nuclear Information System (INIS)
Ayati, Bruce P; Dupont, Todd F
2009-01-01
We present natural-age-grid Galerkin methods for a model of a biological population undergoing aging. We use a mollified birth term in the method and analysis. The error due to mollification is of arbitrary order, depending on the choice of mollifier. The methods in this paper generalize the methods presented in [1], where the approximation space in age was taken to be a discontinuous piecewise polynomial subspace of L 2 . We refer to these methods as 'natural-age-grid' Galerkin methods since transport in the age variable is computed through the smooth movement of the age grid at the natural dimensionless velocity of one. The time variable has been left continuous to emphasize this smooth motion, as well as the independence of the time and age discretizations. The methods are shown to be superconvergent in the age variable
The boundary element method : errors and gridding for problems with hot spots
Kakuba, G.
2011-01-01
Adaptive gridding methods are of fundamental importance both for industry and academia. As one of the computing methods, the Boundary Element Method (BEM) is used to simulate problems whose fundamental solutions are available. The method is usually characterised as constant elements BEM or linear
A novel method for automated grid generation of ice shapes for local-flow analysis
Ogretim, Egemen; Huebsch, Wade W.
2004-02-01
Modelling a complex geometry, such as ice roughness, plays a key role for the computational flow analysis over rough surfaces. This paper presents two enhancement ideas in modelling roughness geometry for local flow analysis over an aerodynamic surface. The first enhancement is use of the leading-edge region of an airfoil as a perturbation to the parabola surface. The reasons for using a parabola as the base geometry are: it resembles the airfoil leading edge in the vicinity of its apex and it allows the use of a lower apparent Reynolds number. The second enhancement makes use of the Fourier analysis for modelling complex ice roughness on the leading edge of airfoils. This method of modelling provides an analytical expression, which describes the roughness geometry and the corresponding derivatives. The factors affecting the performance of the Fourier analysis were also investigated. It was shown that the number of sine-cosine terms and the number of control points are of importance. Finally, these enhancements are incorporated into an automated grid generation method over the airfoil ice accretion surface. The validations for both enhancements demonstrate that they can improve the current capability of grid generation and computational flow field analysis around airfoils with ice roughness.
A Synchronization Method for Single-Phase Grid-Tied Inverters
DEFF Research Database (Denmark)
Hadjidemetriou, Lenos; Kyriakides, Elias; Yang, Yongheng
2016-01-01
The controllers of single-phase grid-tied inverters require improvements to enable distribution generation systems to meet the grid codes/standards with respect to power quality and the fault ride through capability. In that case, the response of the selected synchronization technique is crucial...... for the performance of the entire grid-tied inverter. In this paper, a new synchronization method with good dynamics and high accuracy under a highly distorted voltage is proposed. This method uses a Multi-Harmonic Decoupling Cell (MHDC), which thus can cancel out the oscillations on the synchronization signals due...... to the harmonic voltage distortion while maintaining the dynamic response of the synchronization. Therefore, the accurate and dynamic response of the proposed MHDC-PLL can be beneficial for the performance of the whole single-phase grid-tied inverter....
High order spectral volume and spectral difference methods on unstructured grids
Kannan, Ravishekar
The spectral volume (SV) and the spectral difference (SD) methods were developed by Wang and Liu and their collaborators for conservation laws on unstructured grids. They were introduced to achieve high-order accuracy in an efficient manner. Recently, these methods were extended to three-dimensional systems and to the Navier Stokes equations. The simplicity and robustness of these methods have made them competitive against other higher order methods such as the discontinuous Galerkin and residual distribution methods. Although explicit TVD Runge-Kutta schemes for the temporal advancement are easy to implement, they suffer from small time step limited by the Courant-Friedrichs-Lewy (CFL) condition. When the polynomial order is high or when the grid is stretched due to complex geometries or boundary layers, the convergence rate of explicit schemes slows down rapidly. Solution strategies to remedy this problem include implicit methods and multigrid methods. A novel implicit lower-upper symmetric Gauss-Seidel (LU-SGS) relaxation method is employed as an iterative smoother. It is compared to the explicit TVD Runge-Kutta smoothers. For some p-multigrid calculations, combining implicit and explicit smoothers for different p-levels is also studied. The multigrid method considered is nonlinear and uses Full Approximation Scheme (FAS). An overall speed-up factor of up to 150 is obtained using a three-level p-multigrid LU-SGS approach in comparison with the single level explicit method for the Euler equations for the 3rd order SD method. A study of viscous flux formulations was carried out for the SV method. Three formulations were used to discretize the viscous fluxes: local discontinuous Galerkin (LDG), a penalty method and the 2nd method of Bassi and Rebay. Fourier analysis revealed some interesting advantages for the penalty method. These were implemented in the Navier Stokes solver. An implicit and p-multigrid method was also implemented for the above. An overall speed
Fast Grid Frequency Support from Distributed Inverter-Based Resources
Energy Technology Data Exchange (ETDEWEB)
Hoke, Anderson F [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2018-05-04
This presentation summarizes power hardware-in-the-loop testing performed to evaluate the ability of distributed inverter-coupled generation to support grid frequency on the fastest time scales. The research found that distributed PV inverters and other DERs can effectively support the grid on sub-second time scales.
The Construction of an Ontology-Based Ubiquitous Learning Grid
Liao, Ching-Jung; Chou, Chien-Chih; Yang, Jin-Tan David
2009-01-01
The purpose of this study is to incorporate adaptive ontology into ubiquitous learning grid to achieve seamless learning environment. Ubiquitous learning grid uses ubiquitous computing environment to infer and determine the most adaptive learning contents and procedures in anytime, any place and with any device. To achieve the goal, an…
International Nuclear Information System (INIS)
Hashemi-Dezaki, Hamed; Hamzeh, Mohsen; Askarian-Abyaneh, Hossein; Haeri-Khiavi, Homayoun
2015-01-01
Highlights: • Actual distribution system is used to analyze the proposed methodology. • A novel charging management method for PHEVs has been introduced. • The well-being criteria have been provided in addition to reliability indices. • The uncertainty of results is analyzed in addition to expected average results. • System effects due to charging and penetration level of PHEVs are analyzed. - Abstract: The unmanaged charging of plug-in-hybrid-electric vehicles (PHEVs) may adversely affect electric grid reliability because a large amount of additional electrical energy is required to charge the PHEVs. In this paper, a comprehensive method to evaluate the system reliability concerning the stochastic modeling of PHEVs, renewable resources, availability of devices, etc. is proposed. In addition, a novel risk management method in order to reduce the negative PHEVs effects is introduced. This method, which consists of managed charging and vehicle-to-grid (V2G) scenarios, can be practically implemented in smart grids because the bidirectional-power-conversion technologies and two-way of both the power and data are applicable. The introduced method was applied to a real 20 kV network of the Hormozgan Regional Electric Company (HREC) of Iran which is considered as a pilot system for upgrading to smart distribution grid. The results showed that the smart grid’s adequacy was jeopardized by using the PHEVs without any managed charging schedule. The sensitivity analyses results illustrated that by using the risk management scenarios, not only did the PHEVs not compromise the system reliability, but also in the V2G scenario acted as storage systems and improved the well-being criteria and adequacy indices. The comparison between the results based on the proposed method and the other conventional approaches in addition to study of various parameters uncertainty emphasized the advantages of the proposed method
International Nuclear Information System (INIS)
Kupka, F.
1997-11-01
This thesis deals with the extension of sparse grid techniques to spectral methods for the solution of partial differential equations with periodic boundary conditions. A review on boundary and initial-boundary value problems and a discussion on numerical resolution is used to motivate this research. Spectral methods are introduced by projection techniques, and by three model problems: the stationary and the transient Helmholtz equations, and the linear advection equation. The approximation theory on the hyperbolic cross is reviewed and its close relation to sparse grids is demonstrated. This approach extends to non-periodic problems. Various Sobolev spaces with dominant mixed derivative are introduced to provide error estimates for Fourier approximation and interpolation on the hyperbolic cross and on sparse grids by means of Sobolev norms. The theorems are immediately applicable to the stability and convergence analysis of sparse grid spectral methods. This is explicitly demonstrated for the three model problems. A variant of the von Neumann condition is introduced to simplify the stability analysis of the time-dependent model problems. The discrete Fourier transformation on sparse grids is discussed together with its software implementation. Results on numerical experiments are used to illustrate the performance of the new method with respect to the smoothness properties of each example. The potential of the method in mathematical modelling is estimated and generalizations to other sparse grid methods are suggested. The appendix includes a complete Fortran90 program to solve the linear advection equation by the sparse grid Fourier collocation method and a third-order Runge-Kutta routine for integration in time. (author)
Grid computing for LHC and methods for W boson mass measurement at CMS
International Nuclear Information System (INIS)
Jung, Christopher
2007-01-01
Two methods for measuring the W boson mass with the CMS detector have been presented in this thesis. Both methods use similarities between W boson and Z boson decays. Their statistical and systematic precisions have been determined for W → μν; the statistics corresponds to one inverse femtobarn of data. A large number of events needed to be simulated for this analysis; it was not possible to use the full simulation software because of the enormous computing time which would have been needed. Instead, a fast simulation tool for the CMS detector was used. Still, the computing requirements for the fast simulation exceeded the capacity of the local compute cluster. Since the data taken and processed at the LHC will be extremely large, the LHC experiments rely on the emerging grid computing tools. The computing capabilities of the grid have been used for simulating all physics events needed for this thesis. To achieve this, the local compute cluster had to be integrated into the grid and the administration of the grid components had to be secured. As this was the first installation of its kind, several contributions to grid training events could be made: courses on grid installation, administration and grid-enabled applications were given. The two methods for the W mass measurement are the morphing method and the scaling method. The morphing method relies on an analytical transformation of Z boson events into W boson events and determines the W boson mass by comparing the transverse mass distributions; the scaling method relies on scaled observables from W boson and Z boson events, e.g. the transverse muon momentum as studied in this thesis. In both cases, a re-weighting technique applied to Monte Carlo generated events is used to take into account different selection cuts, detector acceptances, and differences in production and decay of W boson and Z boson events. (orig.)
Grid computing for LHC and methods for W boson mass measurement at CMS
Energy Technology Data Exchange (ETDEWEB)
Jung, Christopher
2007-12-14
Two methods for measuring the W boson mass with the CMS detector have been presented in this thesis. Both methods use similarities between W boson and Z boson decays. Their statistical and systematic precisions have been determined for W {yields} {mu}{nu}; the statistics corresponds to one inverse femtobarn of data. A large number of events needed to be simulated for this analysis; it was not possible to use the full simulation software because of the enormous computing time which would have been needed. Instead, a fast simulation tool for the CMS detector was used. Still, the computing requirements for the fast simulation exceeded the capacity of the local compute cluster. Since the data taken and processed at the LHC will be extremely large, the LHC experiments rely on the emerging grid computing tools. The computing capabilities of the grid have been used for simulating all physics events needed for this thesis. To achieve this, the local compute cluster had to be integrated into the grid and the administration of the grid components had to be secured. As this was the first installation of its kind, several contributions to grid training events could be made: courses on grid installation, administration and grid-enabled applications were given. The two methods for the W mass measurement are the morphing method and the scaling method. The morphing method relies on an analytical transformation of Z boson events into W boson events and determines the W boson mass by comparing the transverse mass distributions; the scaling method relies on scaled observables from W boson and Z boson events, e.g. the transverse muon momentum as studied in this thesis. In both cases, a re-weighting technique applied to Monte Carlo generated events is used to take into account different selection cuts, detector acceptances, and differences in production and decay of W boson and Z boson events. (orig.)
Jayalakshmi, N. S.; Gaonkar, D. N.
2016-08-01
The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.
A Comprehensive Study of Gridding Methods for GPS Horizontal Velocity Fields
Wu, Yanqiang; Jiang, Zaisen; Liu, Xiaoxia; Wei, Wenxin; Zhu, Shuang; Zhang, Long; Zou, Zhenyu; Xiong, Xiaohui; Wang, Qixin; Du, Jiliang
2017-03-01
Four gridding methods for GPS velocities are compared in terms of their precision, applicability and robustness by analyzing simulated data with uncertainties from 0.0 to ±3.0 mm/a. When the input data are 1° × 1° grid sampled and the uncertainty of the additional error is greater than ±1.0 mm/a, the gridding results show that the least-squares collocation method is highly robust while the robustness of the Kriging method is low. In contrast, the spherical harmonics and the multi-surface function are moderately robust, and the regional singular values for the multi-surface function method and the edge effects for the spherical harmonics method become more significant with increasing uncertainty of the input data. When the input data (with additional errors of ±2.0 mm/a) are decimated by 50% from the 1° × 1° grid data and then erased in three 6° × 12° regions, the gridding results in these three regions indicate that the least-squares collocation and the spherical harmonics methods have good performances, while the multi-surface function and the Kriging methods may lead to singular values. The gridding techniques are also applied to GPS horizontal velocities with an average error of ±0.8 mm/a over the Chinese mainland and the surrounding areas, and the results show that the least-squares collocation method has the best performance, followed by the Kriging and multi-surface function methods. Furthermore, the edge effects of the spherical harmonics method are significantly affected by the sparseness and geometric distribution of the input data. In general, the least-squares collocation method is superior in terms of its robustness, edge effect, error distribution and stability, while the other methods have several positive features.
Environmental applications based on GIS and GRID technologies
Demontis, R.; Lorrai, E.; Marrone, V. A.; Muscas, L.; Spanu, V.; Vacca, A.; Valera, P.
2009-04-01
In the last decades, the collection and use of environmental data has enormously increased in a wide range of applications. Simultaneously, the explosive development of information technology and its ever wider data accessibility have made it possible to store and manipulate huge quantities of data. In this context, the GRID approach is emerging worldwide as a tool allowing to provision a computational task with administratively-distant resources. The aim of this paper is to present three environmental applications (Land Suitability, Desertification Risk Assessment, Georesources and Environmental Geochemistry) foreseen within the AGISGRID (Access and query of a distributed GIS/Database within the GRID infrastructure, http://grida3.crs4.it/enginframe/agisgrid/index.xml) activities of the GRIDA3 (Administrator of sharing resources for data analysis and environmental applications, http://grida3.crs4.it) project. This project, co-funded by the Italian Ministry of research, is based on the use of shared environmental data through GRID technologies and accessible by a WEB interface, aimed at public and private users in the field of environmental management and land use planning. The technologies used for AGISGRID include: - the client-server-middleware iRODSâ¢ (Integrated Rule-Oriented Data System) (https://irods.org); - the EnginFrame system (http://www.nice-italy.com/main/index.php?id=32), the grid portal that supplies a frame to make available, via Intranet/Internet, the developed GRID applications; - the software GIS GRASS (Geographic Resources Analysis Support System) (http://grass.itc.it); - the relational database PostgreSQL (http://www.posgresql.org) and the spatial database extension PostGis; - the open source multiplatform Mapserver (http://mapserver.gis.umn.edu), used to represent the geospatial data through typical WEB GIS functionalities. Three GRID nodes are directly involved in the applications: the application workflow is implemented at the CRS4 (Pula
Price-based Energy Control for V2G Networks in the Industrial Smart Grid
Directory of Open Access Journals (Sweden)
Rong Yu
2015-08-01
Full Text Available The energy crisis and global warming call for a new industrial revolution in production and distribution of renewable energy. Distributed power generation will be well developed in the new smart electricity distribution grid, in which robust power distribution will be the key technology. In this paper, we present a new vehicle-to-grid (V2G network for energy transfer, in which distributed renewable energy helps the power grid balance demand and supply. Plug-in hybrid electric vehicles (PHEVs will act as transporters of electricity for distributed renewable energy dispatching. We formulate and analyze the V2G network within the theoretical framework of complex network. We also employ the generalized synchronization method to study the dynamic behavior of V2G networks. Furthermore, we develop a new price-based energy control method to stimulate the PHEV's behavior of charging and discharging. Simulation results indicate that the V2G network can achieve synchronization and each region is able to balance energy supply and demand through price-based control.
Power Loss Analysis for Wind Power Grid Integration Based on Weibull Distribution
Directory of Open Access Journals (Sweden)
Ahmed Al Ameri
2017-04-01
Full Text Available The growth of electrical demand increases the need of renewable energy sources, such as wind energy, to meet that need. Electrical power losses are an important factor when wind farm location and size are selected. The capitalized cost of constant power losses during the life of a wind farm will continue to high levels. During the operation period, a method to determine if the losses meet the requirements of the design is significantly needed. This article presents a Simulink simulation of wind farm integration into the grid; the aim is to achieve a better understanding of wind variation impact on grid losses. The real power losses are set as a function of the annual variation, considering a Weibull distribution. An analytical method has been used to select the size and placement of a wind farm, taking into account active power loss reduction. It proposes a fast linear model estimation to find the optimal capacity of a wind farm based on DC power flow and graph theory. The results show that the analytical approach is capable of predicting the optimal size and location of wind turbines. Furthermore, it revealed that the annual variation of wind speed could have a strong effect on real power loss calculations. In addition to helping to improve utility efficiency, the proposed method can develop specific designs to speeding up integration of wind farms into grids.
International Nuclear Information System (INIS)
Bhattacharyya, Subhes C.; Palit, Debajit
2016-01-01
With 1.2 billion people still lacking electricity access by 2013, electricity access remains a major global challenge. Although mini-grid based electrification has received attention in recent times, their full exploitation requires policy support covering a range of areas. Distilling the experience from a five year research project, OASYS South Asia, this paper presents the summary of research findings and shares the experience from four demonstration activities. It suggests that cost-effective universal electricity service remains a challenge and reaching the universal electrification target by 2030 will remain a challenge for the less developed countries. The financial, organisational and governance weaknesses hinder successful implementation of projects in many countries. The paper then provides 10 policy recommendations to promote mini-grids as a complementary route to grid extension to promote electricity access for successful outcomes. - Highlights: •The academic and action research activities undertaken through OASYS South Asia Project are reported. •Evidence produced through a multi-dimensional participatory framework supplemented by four demonstration projects. •Funding and regulatory challenges militate against universal electrification objectives by 2030. •Innovative business approaches linking local mini-grids and livelihood opportunities exist. •Enabling policies are suggested to exploit such options.
DEFF Research Database (Denmark)
Iskhakov, Fedor; Jørgensen, Thomas H.; Rust, John
2017-01-01
We present a fast and accurate computational method for solving and estimating a class of dynamic programming models with discrete and continuous choice variables. The solution method we develop for structural estimation extends the endogenous grid-point method (EGM) to discrete-continuous (DC) p...
Multilevel Methods for Elliptic Problems with Highly Varying Coefficients on Nonaligned Coarse Grids
Energy Technology Data Exchange (ETDEWEB)
Scheichl, Robert [Univ. of Bath (United Kingdom). Dept. of Mathematical Sciences; Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zikatanov, Ludmil T. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mathematics
2012-06-21
We generalize the analysis of classical multigrid and two-level overlapping Schwarz methods for 2nd order elliptic boundary value problems to problems with large discontinuities in the coefficients that are not resolved by the coarse grids or the subdomain partition. The theoretical results provide a recipe for designing hierarchies of standard piecewise linear coarse spaces such that the multigrid convergence rate and the condition number of the Schwarz preconditioned system do not depend on the coefficient variation or on any mesh parameters. One assumption we have to make is that the coarse grids are sufficiently fine in the vicinity of cross points or where regions with large diffusion coefficients are separated by a narrow region where the coefficient is small. We do not need to align them with possible discontinuities in the coefficients. The proofs make use of novel stable splittings based on weighted quasi-interpolants and weighted Poincaré-type inequalities. Finally, numerical experiments are included that illustrate the sharpness of the theoretical bounds and the necessity of the technical assumptions.
DEFF Research Database (Denmark)
Kolmogorov, Dmitry
turbine computations, collocated grid-based SIMPLE-like algorithms are developed for computations on block-structured grids with nonconformal interfaces. A technique to enhance both the convergence speed and the solution accuracy of the SIMPLE-like algorithms is presented. The erroneous behavior, which...... versions of the SIMPLE algorithm. The new technique is implemented in an existing conservative 2nd order finite-volume scheme flow solver (EllipSys), which is extended to cope with grids with nonconformal interfaces. The behavior of the discrete Navier-Stokes equations is discussed in detail...... Block LU relaxation scheme is shown to possess several optimal conditions, which enables to preserve high efficiency of the multigrid solver on both conformal and nonconformal grids. The developments are done using a parallel MPI algorithm, which can handle multiple numbers of interfaces with multiple...
Theory Study and Application of the BP-ANN Method for Power Grid Short-Term Load Forecasting
Institute of Scientific and Technical Information of China (English)
Xia Hua; Gang Zhang; Jiawei Yang; Zhengyuan Li
2015-01-01
Aiming at the low accuracy problem of power system short⁃term load forecasting by traditional methods, a back⁃propagation artifi⁃cial neural network (BP⁃ANN) based method for short⁃term load forecasting is presented in this paper. The forecast points are re⁃lated to prophase adjacent data as well as the periodical long⁃term historical load data. Then the short⁃term load forecasting model of Shanxi Power Grid (China) based on BP⁃ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP⁃ANN method is simple and with higher precision and practicality.
Khoromskaia, Venera; Khoromskij, Boris N.
2014-12-01
Our recent method for low-rank tensor representation of sums of the arbitrarily positioned electrostatic potentials discretized on a 3D Cartesian grid reduces the 3D tensor summation to operations involving only 1D vectors however retaining the linear complexity scaling in the number of potentials. Here, we introduce and study a novel tensor approach for fast and accurate assembled summation of a large number of lattice-allocated potentials represented on 3D N × N × N grid with the computational requirements only weakly dependent on the number of summed potentials. It is based on the assembled low-rank canonical tensor representations of the collected potentials using pointwise sums of shifted canonical vectors representing the single generating function, say the Newton kernel. For a sum of electrostatic potentials over L × L × L lattice embedded in a box the required storage scales linearly in the 1D grid-size, O(N) , while the numerical cost is estimated by O(NL) . For periodic boundary conditions, the storage demand remains proportional to the 1D grid-size of a unit cell, n = N / L, while the numerical cost reduces to O(N) , that outperforms the FFT-based Ewald-type summation algorithms of complexity O(N3 log N) . The complexity in the grid parameter N can be reduced even to the logarithmic scale O(log N) by using data-sparse representation of canonical N-vectors via the quantics tensor approximation. For justification, we prove an upper bound on the quantics ranks for the canonical vectors in the overall lattice sum. The presented approach is beneficial in applications which require further functional calculus with the lattice potential, say, scalar product with a function, integration or differentiation, which can be performed easily in tensor arithmetics on large 3D grids with 1D cost. Numerical tests illustrate the performance of the tensor summation method and confirm the estimated bounds on the tensor ranks.
Zhao, Yu; Shi, Chen-Xiao; Kwon, Ki-Chul; Piao, Yan-Ling; Piao, Mei-Lan; Kim, Nam
2018-03-01
We propose a fast calculation method for a computer-generated hologram (CGH) of real objects that uses a point cloud gridding method. The depth information of the scene is acquired using a depth camera and the point cloud model is reconstructed virtually. Because each point of the point cloud is distributed precisely to the exact coordinates of each layer, each point of the point cloud can be classified into grids according to its depth. A diffraction calculation is performed on the grids using a fast Fourier transform (FFT) to obtain a CGH. The computational complexity is reduced dramatically in comparison with conventional methods. The feasibility of the proposed method was confirmed by numerical and optical experiments.
State-space-based harmonic stability analysis for paralleled grid-connected inverters
DEFF Research Database (Denmark)
Wang, Yanbo; Wang, Xiongfei; Chen, Zhe
2016-01-01
This paper addresses a state-space-based harmonic stability analysis of paralleled grid-connected inverters system. A small signal model of individual inverter is developed, where LCL filter, the equivalent delay of control system, and current controller are modeled. Then, the overall small signal...... model of paralleled grid-connected inverters is built. Finally, the state space-based stability analysis approach is developed to explain the harmonic resonance phenomenon. The eigenvalue traces associated with time delay and coupled grid impedance are obtained, which accounts for how the unstable...... inverter produces the harmonic resonance and leads to the instability of whole paralleled system. The proposed approach reveals the contributions of the grid impedance as well as the coupled effect on other grid-connected inverters under different grid conditions. Simulation and experimental results...
Adaptive Finite Volume Method for the Shallow Water Equations on Triangular Grids
Directory of Open Access Journals (Sweden)
Sudi Mungkasi
2016-01-01
Full Text Available This paper presents a numerical entropy production (NEP scheme for two-dimensional shallow water equations on unstructured triangular grids. We implement NEP as the error indicator for adaptive mesh refinement or coarsening in solving the shallow water equations using a finite volume method. Numerical simulations show that NEP is successful to be a refinement/coarsening indicator in the adaptive mesh finite volume method, as the method refines the mesh or grids around nonsmooth regions and coarsens them around smooth regions.
SQoS based Planning using 4-regular Grid for Optical Fiber Metworks
DEFF Research Database (Denmark)
Riaz, Muhammad Tahir; Pedersen, Jens Myrup; Madsen, Ole Brun
optical fiber based network infrastructures. In the first step of SQoS based planning, this paper describes how 4-regular Grid structures can be implemented in the physical level of optical fiber network infrastructures. A systematic approach for implementing the Grid structure is presented. We used...
SQoS based Planning using 4-regular Grid for Optical Fiber Networks
DEFF Research Database (Denmark)
Riaz, Muhammad Tahir; Pedersen, Jens Myrup; Madsen, Ole Brun
2005-01-01
optical fiber based network infrastructures. In the first step of SQoS based planning, this paper describes how 4-regular Grid structures can be implemented in the physical level of optical fiber network infrastructures. A systematic approach for implementing the Grid structure is presented. We used...
Optimal scheduling of micro grids based on single objective programming
Chen, Yue
2018-04-01
Faced with the growing demand for electricity and the shortage of fossil fuels, how to optimally optimize the micro-grid has become an important research topic to maximize the economic, technological and environmental benefits of the micro-grid. This paper considers the role of the battery and the micro-grid and power grid to allow the exchange of power not exceeding 150kW preconditions, the main study of the economy to load for the goal is to minimize the electricity cost (abandonment of wind), to establish an optimization model, and to solve the problem by genetic algorithm. The optimal scheduling scheme is obtained and the utilization of renewable energy and the impact of the battery involved in regulation are analyzed.
Grid-based Continual Analysis of Molecular Interior for Drug Discovery, QSAR and QSPR.
Potemkin, Andrey V; Grishina, Maria A; Potemkin, Vladimir A
2017-01-01
In 1979, R.D.Cramer and M.Milne made a first realization of 3D comparison of molecules by aligning them in space and by mapping their molecular fields to a 3D grid. Further, this approach was developed as the DYLOMMS (Dynamic Lattice- Oriented Molecular Modelling System) approach. In 1984, H.Wold and S.Wold proposed the use of partial least squares (PLS) analysis, instead of principal component analysis, to correlate the field values with biological activities. Then, in 1988, the method which was called CoMFA (Comparative Molecular Field Analysis) was introduced and the appropriate software became commercially available. Since 1988, a lot of 3D QSAR methods, algorithms and their modifications are introduced for solving of virtual drug discovery problems (e.g., CoMSIA, CoMMA, HINT, HASL, GOLPE, GRID, PARM, Raptor, BiS, CiS, ConGO,). All the methods can be divided into two groups (classes):1. Methods studying the exterior of molecules; 2) Methods studying the interior of molecules. A series of grid-based computational technologies for Continual Molecular Interior analysis (CoMIn) are invented in the current paper. The grid-based analysis is fulfilled by means of a lattice construction analogously to many other grid-based methods. The further continual elucidation of molecular structure is performed in various ways. (i) In terms of intermolecular interactions potentials. This can be represented as a superposition of Coulomb, Van der Waals interactions and hydrogen bonds. All the potentials are well known continual functions and their values can be determined in all lattice points for a molecule. (ii) In the terms of quantum functions such as electron density distribution, Laplacian and Hamiltonian of electron density distribution, potential energy distribution, the highest occupied and the lowest unoccupied molecular orbitals distribution and their superposition. To reduce time of calculations using quantum methods based on the first principles, an original quantum
Utility-based Reinforcement Learning for Reactive Grids
Perez , Julien; Germain-Renaud , Cécile; Kégl , Balázs; Loomis , C.
2008-01-01
International audience; Large scale production grids are an important case for autonomic computing. They follow a mutualization paradigm: decision-making (human or automatic) is distributed and largely independent, and, at the same time, it must implement the highlevel goals of the grid management. This paper deals with the scheduling problem with two partially conflicting goals: fairshare and Quality of Service (QoS). Fair sharing is a wellknown issue motivated by return on investment for pa...
Project Scheduling Heuristics-Based Standard PSO for Task-Resource Assignment in Heterogeneous Grid
Chen, Ruey-Maw; Wang, Chuin-Mu
2011-01-01
The task scheduling problem has been widely studied for assigning resources to tasks in heterogeneous grid environment. Effective task scheduling is an important issue for the performance of grid computing. Meanwhile, the task scheduling problem is an NP-complete problem. Hence, this investigation introduces a named “standard“ particle swarm optimization (PSO) metaheuristic approach to efficiently solve the task scheduling problems in grid. Meanwhile, two promising heuristics based on multimo...
MICROARRAY IMAGE GRIDDING USING GRID LINE REFINEMENT TECHNIQUE
Directory of Open Access Journals (Sweden)
V.G. Biju
2015-05-01
Full Text Available An important stage in microarray image analysis is gridding. Microarray image gridding is done to locate sub arrays in a microarray image and find co-ordinates of spots within each sub array. For accurate identification of spots, most of the proposed gridding methods require human intervention. In this paper a fully automatic gridding method which enhances spot intensity in the preprocessing step as per a histogram based threshold method is used. The gridding step finds co-ordinates of spots from horizontal and vertical profile of the image. To correct errors due to the grid line placement, a grid line refinement technique is proposed. The algorithm is applied on different image databases and results are compared based on spot detection accuracy and time. An average spot detection accuracy of 95.06% depicts the proposed method’s flexibility and accuracy in finding the spot co-ordinates for different database images.
A threshold auto-adjustment algorithm of feature points extraction based on grid
Yao, Zili; Li, Jun; Dong, Gaojie
2018-02-01
When dealing with high-resolution digital images, detection of feature points is usually the very first important step. Valid feature points depend on the threshold. If the threshold is too low, plenty of feature points will be detected, and they may be aggregated in the rich texture regions, which consequently not only affects the speed of feature description, but also aggravates the burden of following processing; if the threshold is set high, the feature points in poor texture area will lack. To solve these problems, this paper proposes a threshold auto-adjustment method of feature extraction based on grid. By dividing the image into numbers of grid, threshold is set in every local grid for extracting the feature points. When the number of feature points does not meet the threshold requirement, the threshold will be adjusted automatically to change the final number of feature points The experimental results show that feature points produced by our method is more uniform and representative, which avoids the aggregation of feature points and greatly reduces the complexity of following work.
Energy Technology Data Exchange (ETDEWEB)
Maliassov, S.Y. [Texas A& M Univ., College Station, TX (United States)
1996-12-31
An approach to the construction of an iterative method for solving systems of linear algebraic equations arising from nonconforming finite element discretizations with nonmatching grids for second order elliptic boundary value problems with anisotropic coefficients is considered. The technique suggested is based on decomposition of the original domain into nonoverlapping subdomains. The elliptic problem is presented in the macro-hybrid form with Lagrange multipliers at the interfaces between subdomains. A block diagonal preconditioner is proposed which is spectrally equivalent to the original saddle point matrix and has the optimal order of arithmetical complexity. The preconditioner includes blocks for preconditioning subdomain and interface problems. It is shown that constants of spectral equivalence axe independent of values of coefficients and mesh step size.
Applying GRID Technologies to XML Based OLAP Cube Construction
Niemi, Tapio Petteri; Nummenmaa, J; Thanisch, P
2002-01-01
On-Line Analytical Processing (OLAP) is a powerful method for analysing large data warehouse data. Typically, the data for an OLAP database is collected from a set of data repositories such as e.g. operational databases. This data set is often huge, and it may not be known in advance what data is required and when to perform the desired data analysis tasks. Sometimes it may happen that some parts of the data are only needed occasionally. Therefore, storing all data to the OLAP database and keeping this database constantly up-to-date is not only a highly demanding task but it also may be overkill in practice. This suggests that in some applications it would be more feasible to form the OLAP cubes only when they are actually needed. However, the OLAP cube construction can be a slow process. Thus, we present a system that applies Grid technologies to distribute the computation. As the data sources may well be heterogeneous, we propose an XML language for data collection. The user's definition for a OLAP new cube...
Newton-Krylov-Schwarz methods in unstructured grid Euler flow
Energy Technology Data Exchange (ETDEWEB)
Keyes, D.E. [Old Dominion Univ., Norfolk, VA (United States)
1996-12-31
Newton-Krylov methods and Krylov-Schwarz (domain decomposition) methods have begun to become established in computational fluid dynamics (CFD) over the past decade. The former employ a Krylov method inside of Newton`s method in a Jacobian-free manner, through directional differencing. The latter employ an overlapping Schwarz domain decomposition to derive a preconditioner for the Krylov accelerator that relies primarily on local information, for data-parallel concurrency. They may be composed as Newton-Krylov-Schwarz (NKS) methods, which seem particularly well suited for solving nonlinear elliptic systems in high-latency, distributed-memory environments. We give a brief description of this family of algorithms, with an emphasis on domain decomposition iterative aspects. We then describe numerical simulations with Newton-Krylov-Schwarz methods on an aerodynamic application emphasizing comparisons with a standard defect-correction approach and subdomain preconditioner consistency.
Geospatial Information Service System Based on GeoSOT Grid & Encoding
Directory of Open Access Journals (Sweden)
LI Shizhong
2016-12-01
Full Text Available With the rapid development of the space and earth observation technology, it is important to establish a multi-source, multi-scale and unified cross-platform reference for global data. In practice, the production and maintenance of geospatial data are scattered in different units, and the standard of the data grid varies between departments and systems. All these bring out the disunity of standards among different historical periods or orgnizations. Aiming at geospatial information security library for the national high resolution earth observation, there are some demands for global display, associated retrieval and template applications and other integrated services for geospatial data. Based on GeoSOT grid and encoding theory system, "geospatial information security library information of globally unified grid encoding management" data subdivision organization solutions have been proposed; system-level analyses, researches and designs have been carried out. The experimental results show that the data organization and management method based on GeoSOT can significantly improve the overall efficiency of the geospatial information security service system.
Evaluation of a Positive Youth Development Program Based on the Repertory Grid Test
Directory of Open Access Journals (Sweden)
Daniel T. L. Shek
2012-01-01
Full Text Available The repertory grid test, based on personal construct psychology, was used to evaluate the effectiveness of Project P.A.T.H.S. (Positive Adolescent Training through Holistic Social Programmes in Hong Kong. One hundred and four program participants (n=104 were randomly invited to complete a repertory grid based on personal construct theory in order to provide both quantitative and qualitative data for measuring self-identity changes after joining the program. Findings generally showed that the participants perceived that they understood themselves better and had stronger resilience after joining the program. Participants also saw themselves as closer to their ideal selves and other positive role figures (but farther away from a loser after joining the program. This study provides additional support for the effectiveness of the Tier 1 Program of Project P.A.T.H.S. in the Chinese context. This study also shows that the repertory grid test is a useful evaluation method to measure self-identity changes in participants in positive youth development programs.
A HYBRID SOLAR WIND MODEL OF THE CESE+HLL METHOD WITH A YIN-YANG OVERSET GRID AND AN AMR GRID
International Nuclear Information System (INIS)
Feng Xueshang; Zhang Shaohua; Xiang Changqing; Yang Liping; Jiang Chaowei; Wu, S. T.
2011-01-01
A hybrid three-dimensional (3D) MHD model for solar wind study is proposed in the present paper with combined grid systems and solvers. The computational domain from the Sun to Earth space is decomposed into the near-Sun and off-Sun domains, which are respectively constructed with a Yin-Yang overset grid system and a Cartesian adaptive mesh refinement (AMR) grid system and coupled with a domain connection interface in the overlapping region between the near-Sun and off-Sun domains. The space-time conservation element and solution element method is used in the near-Sun domain, while the Harten-Lax-Leer method is employed in the off-Sun domain. The Yin-Yang overset grid can avoid well-known singularity and polar grid convergence problems and its body-fitting property helps achieve high-quality resolution near the solar surface. The block structured AMR Cartesian grid can automatically capture far-field plasma flow features, such as heliospheric current sheets and shock waves, and at the same time, it can save significant computational resources compared to the uniformly structured Cartesian grid. A numerical study of the solar wind structure for Carrington rotation 2069 shows that the newly developed hybrid MHD solar wind model successfully produces many realistic features of the background solar wind, in both the solar corona and interplanetary space, by comparisons with multiple solar and interplanetary observations.
Jahandari, H.; Farquharson, C. G.
2017-11-01
Unstructured grids enable representing arbitrary structures more accurately and with fewer cells compared to regular structured grids. These grids also allow more efficient refinements compared to rectilinear meshes. In this study, tetrahedral grids are used for the inversion of magnetotelluric (MT) data, which allows for the direct inclusion of topography in the model, for constraining an inversion using a wireframe-based geological model and for local refinement at the observation stations. A minimum-structure method with an iterative model-space Gauss-Newton algorithm for optimization is used. An iterative solver is employed for solving the normal system of equations at each Gauss-Newton step and the sensitivity matrix-vector products that are required by this solver are calculated using pseudo-forward problems. This method alleviates the need to explicitly form the Hessian or Jacobian matrices which significantly reduces the required computation memory. Forward problems are formulated using an edge-based finite-element approach and a sparse direct solver is used for the solutions. This solver allows saving and re-using the factorization of matrices for similar pseudo-forward problems within a Gauss-Newton iteration which greatly minimizes the computation time. Two examples are presented to show the capability of the algorithm: the first example uses a benchmark model while the second example represents a realistic geological setting with topography and a sulphide deposit. The data that are inverted are the full-tensor impedance and the magnetic transfer function vector. The inversions sufficiently recovered the models and reproduced the data, which shows the effectiveness of unstructured grids for complex and realistic MT inversion scenarios. The first example is also used to demonstrate the computational efficiency of the presented model-space method by comparison with its data-space counterpart.
A novel grid-based mesoscopic model for evacuation dynamics
Shi, Meng; Lee, Eric Wai Ming; Ma, Yi
2018-05-01
This study presents a novel grid-based mesoscopic model for evacuation dynamics. In this model, the evacuation space is discretised into larger cells than those used in microscopic models. This approach directly computes the dynamic changes crowd densities in cells over the course of an evacuation. The density flow is driven by the density-speed correlation. The computation is faster than in traditional cellular automata evacuation models which determine density by computing the movements of each pedestrian. To demonstrate the feasibility of this model, we apply it to a series of practical scenarios and conduct a parameter sensitivity study of the effect of changes in time step δ. The simulation results show that within the valid range of δ, changing δ has only a minor impact on the simulation. The model also makes it possible to directly acquire key information such as bottleneck areas from a time-varied dynamic density map, even when a relatively large time step is adopted. We use the commercial software AnyLogic to evaluate the model. The result shows that the mesoscopic model is more efficient than the microscopic model and provides more in-situ details (e.g., pedestrian movement pattern) than the macroscopic models.
Theodolite Polar measurements system and definition of the grid-lines method
Directory of Open Access Journals (Sweden)
Andréa de Seixas
2004-12-01
Full Text Available The requirements of construction quality, mainly in the car and airplane industries, accelerate the development of new 3D-Measurement Systems and Measurement Processes that make possible the automatic object recording and it’s post-processing on the basis, for example, on deformations. The geometrical reconstruction of objects or surface requires a minimal number of points, which abstracts and will be fulfill through interpolation its exact form and quality of the object in each case. The applications of the laser for the active signalization of a point object in combination with the directional measurement make possible in such way the determination of objects or surfaces, including also, places where the use of artificial targets is dangerous or impossible. This work describes the development of such measurement system based on two measurement robots or a reflector-free measuring tachymeter. The system is capable of reaching the intersections points of a grid-line that is defined in an appropriate coordinate system. The aim of this paper is to present the development of measurement methods that can reconstruct unknown three-dimensional and not signalized objects. The existing deformation-measurement, based on Pointer Theodolite and a Video Theodolite Measurement System and the other reflector-free Tachymeter Measurement System in context with the problematic analysis of deformation will be presented. The grid-lines Methods appear a solution and stand as new alternative for the geometrical reconstruction of the object surfaces. Its definition and preparations in a suitable coordinate system are discussed in detail.
Irregular grid methods for pricing high-dimensional American options
Berridge, S.J.
2004-01-01
This thesis proposes and studies numerical methods for pricing high-dimensional American options; important examples being basket options, Bermudan swaptions and real options. Four new methods are presented and analysed, both in terms of their application to various test problems, and in terms of
DEFF Research Database (Denmark)
Kolmogorov, Dmitry; Sørensen, Niels N.; Shen, Wen Zhong
2013-01-01
An Optimized Schwarz method using Robin boundary conditions for relaxation scheme is presented in the frame of Multigrid method on discontinuous grids. At each iteration the relaxation scheme is performed in two steps: one step with Dirichlet and another step with Robin boundary conditions at inn...
Franck-Condon Factors for Diatomics: Insights and Analysis Using the Fourier Grid Hamiltonian Method
Ghosh, Supriya; Dixit, Mayank Kumar; Bhattacharyya, S. P.; Tembe, B. L.
2013-01-01
Franck-Condon factors (FCFs) play a crucial role in determining the intensities of the vibrational bands in electronic transitions. In this article, a relatively simple method to calculate the FCFs is illustrated. An algorithm for the Fourier Grid Hamiltonian (FGH) method for computing the vibrational wave functions and the corresponding energy…
Directory of Open Access Journals (Sweden)
Huiru Zhao
2016-01-01
Full Text Available As an efficient way to deal with the global climate change and energy shortage problems, a strong, self-healing, compatible, economic and integrative smart gird is under construction in China, which is supported by large amounts of investments and advanced technologies. To promote the construction, operation and sustainable development of Strong Smart Grid (SSG, a novel hybrid framework for evaluating the performance of SSG is proposed from the perspective of sustainability. Based on a literature review, experts’ opinions and the technical characteristics of SSG, the evaluation model involves four sustainability criteria defined as economy, society, environment and technology aspects associated with 12 sub-criteria. Considering the ambiguity and vagueness of the subjective judgments on sub-criteria, fuzzy TOPSIS method is employed to evaluate the performance of SSG. In addition, different from previous research, this paper adopts the stochastic Analytical Hierarchy Process (AHP method to upgrade the traditional Technique for Order Preference by Similarity to Ideal Solution (TOPSIS by addressing the fuzzy and stochastic factors within weights calculation. Finally, four regional smart grids in China are ranked by employing the proposed framework. The results show that the sub-criteria affiliated with environment obtain much more attention than that of economy from experts group. Moreover, the sensitivity analysis indicates the ranking list remains stable no matter how sub-criteria weights are changed, which verifies the robustness and effectiveness of the proposed model and evaluation results. This study provides a comprehensive and effective method for performance evaluation of SSG and also innovates the weights calculation for traditional TOPSIS.
Power Grid Construction Project Portfolio Optimization Based on Bi-level programming model
Zhao, Erdong; Li, Shangqi
2017-08-01
As the main body of power grid operation, county-level power supply enterprises undertake an important emission to guarantee the security of power grid operation and safeguard social power using order. The optimization of grid construction projects has been a key issue of power supply capacity and service level of grid enterprises. According to the actual situation of power grid construction project optimization of county-level power enterprises, on the basis of qualitative analysis of the projects, this paper builds a Bi-level programming model based on quantitative analysis. The upper layer of the model is the target restriction of the optimal portfolio; the lower layer of the model is enterprises’ financial restrictions on the size of the enterprise project portfolio. Finally, using a real example to illustrate operation proceeding and the optimization result of the model. Through qualitative analysis and quantitative analysis, the bi-level programming model improves the accuracy and normative standardization of power grid enterprises projects.
OPNET/Simulink Based Testbed for Disturbance Detection in the Smart Grid
Energy Technology Data Exchange (ETDEWEB)
Sadi, Mohammad A. H. [University of Memphis; Dasgupta, Dipankar [ORNL; Ali, Mohammad Hassan [University of Memphis; Abercrombie, Robert K [ORNL
2015-01-01
The important backbone of the smart grid is the cyber/information infrastructure, which is primarily used to communicate with different grid components. A smart grid is a complex cyber physical system containing a numerous and variety number of sources, devices, controllers and loads. Therefore, the smart grid is vulnerable to grid related disturbances. For such dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and Opnet based co-simulated platform to carry out a cyber-intrusion in cyber network for modern power systems and the smart grid. The IEEE 30 bus power system model is used to demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack. Different disturbance situations in the considered test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.
A Grid storage accounting system based on DGAS and HLRmon
International Nuclear Information System (INIS)
Cristofori, A; Fattibene, E; Veronesi, P; Gaido, L; Guarise, A
2012-01-01
Accounting in a production-level Grid infrastructure is of paramount importance in order to measure the utilization of the available resources. While several CPU accounting systems are deployed within the European Grid Infrastructure (EGI), storage accounting systems, stable enough to be adopted in a production environment are not yet available. As a consequence, there is a growing interest in storage accounting and work on this is being carried out in the Open Grid Forum (OGF) where a Usage Record (UR) definition suitable for storage resources has been proposed for standardization. In this paper we present a storage accounting system which is composed of three parts: a sensor layer, a data repository with a transport layer (Distributed Grid Accounting System - DGAS) and a web portal providing graphical and tabular reports (HLRmon). The sensor layer is responsible for the creation of URs according to the schema (described in this paper) that is currently being discussed within OGF. DGAS is one of the CPU accounting systems used within EGI, in particular by the Italian Grid Infrastructure (IGI) and some other National Grid Initiatives (NGIs) and projects. DGAS architecture is evolving in order to collect Usage Records for different types of resources. This improvement allows DGAS to be used as a ‘general’ data repository and transport layer. HLRmon is the web portal acting as an interface to DGAS. It has been improved to retrieve storage accounting data from the DGAS repository and create reports in an easy way. This is very useful not only for the Grid users and administrators but also for the stakeholders.
Control strategy based on SPWM switching patterns for grid connected photovoltaic inverter
Hassaine, L.; Mraoui, A.
2017-02-01
Generally, for lower installation of photovoltaic systems connected to the grid, pulse width modulation (PWM) is a widely used technique for controlling the voltage source inverters injects currents into the grid. The current injected must be sinusoidal with reduced harmonic distortion. In this paper, a digital implementation of a control strategy based on PWM switching patterns for an inverter for photovoltaic system connected to the grid is presented. This strategy synchronize a sinusoidal inverter output current with a grid voltage The digital implementation of the proposed PWM switching pattern when is compared with the conventional one exhibit the advantage: Simplicity, reduction of the memory requirements and power calculation for the control
Towards Agent-Based Model Specification in Smart Grid: A Cognitive Agent-based Computing Approach
Akram, Waseem; Niazi, Muaz A.; Iantovics, Laszlo Barna
2017-01-01
A smart grid can be considered as a complex network where each node represents a generation unit or a consumer. Whereas links can be used to represent transmission lines. One way to study complex systems is by using the agent-based modeling (ABM) paradigm. An ABM is a way of representing a complex system of autonomous agents interacting with each other. Previously, a number of studies have been presented in the smart grid domain making use of the ABM paradigm. However, to the best of our know...
Directory of Open Access Journals (Sweden)
Dan Wang
2016-04-01
Full Text Available In recent years, the increasing penetration level of wind energy into power systems has brought new issues and challenges. One of the main concerns is the issue of dynamic response capability during outer disturbance conditions, especially the fault-tolerance capability during asymmetrical faults. In order to improve the fault-tolerance and dynamic response capability under asymmetrical grid fault conditions, an optimal integrated control scheme for the grid-side voltage-source converter (VSC of direct-driven permanent magnet synchronous generator (PMSG-based wind turbine systems is proposed in this paper. The optimal control strategy includes a main controller and an additional controller. In the main controller, a double-loop controller based on differential flatness-based theory is designed for grid-side VSC. Two parts are involved in the design process of the flatness-based controller: the reference trajectories generation of flatness output and the implementation of the controller. In the additional control aspect, an auxiliary second harmonic compensation control loop based on an improved calculation method for grid-side instantaneous transmission power is designed by the quasi proportional resonant (Quasi-PR control principle, which is able to simultaneously restrain the second harmonic components in active power and reactive power injected into the grid without the respective calculation for current control references. Moreover, to reduce the DC-link overvoltage during grid faults, the mathematical model of DC-link voltage is analyzed and a feedforward modified control factor is added to the traditional DC voltage control loop in grid-side VSC. The effectiveness of the optimal control scheme is verified in PSCAD/EMTDC simulation software.
Directory of Open Access Journals (Sweden)
Lipi Chhaya
2017-01-01
Full Text Available The existing power grid is going through a massive transformation. Smart grid technology is a radical approach for improvisation in prevailing power grid. Integration of electrical and communication infrastructure is inevitable for the deployment of Smart grid network. Smart grid technology is characterized by full duplex communication, automatic metering infrastructure, renewable energy integration, distribution automation and complete monitoring and control of entire power grid. Wireless sensor networks (WSNs are small micro electrical mechanical systems that are deployed to collect and communicate the data from surroundings. WSNs can be used for monitoring and control of smart grid assets. Security of wireless sensor based communication network is a major concern for researchers and developers. The limited processing capabilities of wireless sensor networks make them more vulnerable to cyber-attacks. The countermeasures against cyber-attacks must be less complex with an ability to offer confidentiality, data readiness and integrity. The address oriented design and development approach for usual communication network requires a paradigm shift to design data oriented WSN architecture. WSN security is an inevitable part of smart grid cyber security. This paper is expected to serve as a comprehensive assessment and analysis of communication standards, cyber security issues and solutions for WSN based smart grid infrastructure.
Method to predetermine current/power flow change in a dc grid
DEFF Research Database (Denmark)
2017-01-01
occurs at one of the AC/DC converters; establishing a generalized droop feedback gain matrix G; controlling current/power flow within DC grid towards predefined setpoints, by use of control law. The invention presents an analytical approach to derive the generalized feedback gain allowing......The invention relates to a method for controlling current/power flow within a power transmission system, comprising two or more interconnected converter stations. The method comprises the steps of: providing a DC admittance matrix given from the DC grid; providing a current distribution matrix...... for a number of, such as for all possible AC/DC converter outages; providing a DC bus voltage vector for the DC grid; the DC bus voltage vector being a vector containing the values of the voltage change at the AC/DC converters, measured at the AC/DC converters, before, during and after a forced current change...
Sjogreen, Bjoern; Yee, H. C.
2007-01-01
Flows containing steady or nearly steady strong shocks in parts of the flow field, and unsteady turbulence with shocklets on other parts of the flow field are difficult to capture accurately and efficiently employing the same numerical scheme even under the multiblock grid or adaptive grid refinement framework. On one hand, sixth-order or higher shock-capturing methods are appropriate for unsteady turbulence with shocklets. On the other hand, lower order shock-capturing methods are more effective for strong steady shocks in terms of convergence. In order to minimize the shortcomings of low order and high order shock-capturing schemes for the subject flows,a multi- block overlapping grid with different orders of accuracy on different blocks is proposed. Test cases to illustrate the performance of the new solver are included.
Stability Analysis and Active Damping for LLCL-filter-Based Grid-Connected Inverters
DEFF Research Database (Denmark)
Huang, Min; Wang, Xiongfei; Loh, Poh Chiang
2015-01-01
to use either passive or active damping methods. This paper analyzes the stability of the LLCL-filter based grid-connected inverter and identifies a critical resonant frequency for the LLCL-filter when sampling and transport delays are considered. In a high resonant frequency region the active damping...... is not required but in a low resonant frequency region the active damping is necessary. The basic LLCL resonance damping properties of different feedback states based on a notch filter concept are also studied. Then an active damping method which is using the capacitor current feedback for LLCL......-filter is introduced. Based on this active damping method, a design procedure for the controller is given. Last, both simulation and experimental results are provided to validate the theoretical analysis of this paper....
Design, Evaluation and Implementation of an Islanding Detection Method for a Micro-grid
Directory of Open Access Journals (Sweden)
Taiying Zheng
2018-02-01
Full Text Available Correct and fast detection of a micro-grid (MG islanding is essential to the MG since operation, control, and protection of the MG depend on its operating mode i.e., an interconnected mode or islanding mode. This study describes the design, evaluation and implementation of an islanding detection method for an MG, which includes a natural gas-fired generator, a doubly fed induction generator type wind generator, a photovoltaic generator, and some associated local loads. The proposed method is based on the instantaneous active and reactive powers at the point of common coupling (PCC of the MG. During the islanding mode, the instantaneous active and reactive powers at the PCC are constants, which depend on the voltage of the PCC and the impedance of the dedicated line. The performance of the proposed method is verified under various scenarios including islanding conditions for the different outputs of the MG, and fault conditions by varying the position, type, inception angle and resistance of the fault, using the PSCAD/EMTDC simulator. This paper also concludes by implementing proposed method into a TMS320C6701 digital signal processor. The results indicate that the proposed method successfully detects islanding for the MG in islanding conditions, and remains stable in fault conditions.
Cellular Automaton Modeling of Dendritic Growth Using a Multi-grid Method
International Nuclear Information System (INIS)
Natsume, Y; Ohsasa, K
2015-01-01
A two-dimensional cellular automaton model with a multi-grid method was developed to simulate dendritic growth. In the present model, we used a triple-grid system for temperature, solute concentration and solid fraction fields as a new approach of the multi-grid method. In order to evaluate the validity of the present model, we carried out simulations of single dendritic growth, secondary dendrite arm growth, multi-columnar dendritic growth and multi-equiaxed dendritic growth. From the results of the grid dependency from the simulation of single dendritic growth, we confirmed that the larger grid can be used in the simulation and that the computational time can be reduced dramatically. In the simulation of secondary dendrite arm growth, the results from the present model were in good agreement with the experimental data and the simulated results from a phase-field model. Thus, the present model can quantitatively simulate dendritic growth. From the simulated results of multi-columnar and multi-equiaxed dendrites, we confirmed that the present model can perform simulations under practical solidification conditions. (paper)
Branch-Based Centralized Data Collection for Smart Grids Using Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Kwangsoo Kim
2015-05-01
Full Text Available A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.
Branch-based centralized data collection for smart grids using wireless sensor networks.
Kim, Kwangsoo; Jin, Seong-il
2015-05-21
A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.
Application of synchronous grid-connected controller in the wind-solar-storage micro grid
Li, Hua; Ren, Yongfeng; Li, Le; Luo, Zhenpeng
2016-01-01
Recently, there has been an increasing interest in using distributed generators (DG) not only to inject power into the grid, but also to enhance the power quality. In this study, a space voltage pulse width modulation (SVPWM) control method is proposed for a synchronous grid-connected controller in a wind-solar-storage micro grid. This method is based on the appropriate topology of the synchronous controller. The wind-solar-storage micro grid is controlled to reconnect to the grid synchronous...
Directory of Open Access Journals (Sweden)
Shuyu Dai
2018-04-01
Full Text Available In recent years, the construction of China’s power grid has experienced rapid development, and its scale has leaped into the first place in the world. Accurate and effective prediction of power grid investment can not only help pool funds and rationally arrange investment in power grid construction, but also reduce capital costs and economic risks, which plays a crucial role in promoting power grid investment planning and construction process. In order to forecast the power grid investment of China accurately, firstly on the basis of analyzing the influencing factors of power grid investment, the influencing factors system for China’s power grid investment forecasting is constructed in this article. The method of grey relational analysis is used for screening the main influencing factors as the prediction model input. Then, a novel power grid investment prediction model based on DE-GWO-SVM (support vector machine optimized by differential evolution and grey wolf optimization algorithm is proposed. Next, two cases are taken for empirical analysis to prove that the DE-GWO-SVM model has strong generalization capacity and has achieved a good prediction effect for power grid investment forecasting in China. Finally, the DE-GWO-SVM model is adopted to forecast power grid investment in China from 2018 to 2022.
Directory of Open Access Journals (Sweden)
T. Ajith Bosco Raj
2014-01-01
Full Text Available The main objective of this work is to study the behaviour of the solar PV systems and model the efficient Grid-connected solar power system. The DC-DC MPPT circuit using chaotic pulse width modulation has been designed to track maximum power from solar PV module. The conversion efficiency of the proposed MPPT system is increased when CPWM is used as a control scheme. This paper also proposes a simplified multilevel (seven level inverter for a grid-connected photovoltaic system. The primary goal of these systems is to increase the energy injected to the grid by keeping track of the maximum power point of the panel, by reducing the switching frequency, and by providing high reliability. The maximum power has been tracked experimentally. It is compared with parallel boost converter. Also this model is based on mathematical equations and is described through an equivalent circuit including a PV source with MPPT, a diode, a series resistor, a shunt resistor, and dual boost converter with active snubber circuit. This model can extract PV power and boost by using dual boost converter with active snubber. By using this method the overall system efficiency is improved thereby reducing the switching losses and cost.
A non-hybrid method for the PDF equations of turbulent flows on unstructured grids
International Nuclear Information System (INIS)
Bakosi, J.; Franzese, P.; Boybeyi, Z.
2008-01-01
In probability density function (PDF) methods of turbulent flows, the joint PDF of several flow variables is computed by numerically integrating a system of stochastic differential equations for Lagrangian particles. A set of parallel algorithms is proposed to provide an efficient solution of the PDF transport equation modeling the joint PDF of turbulent velocity, frequency and concentration of a passive scalar in geometrically complex configurations. In the vicinity of walls the flow is resolved by an elliptic relaxation technique down to the viscous sublayer, explicitly modeling the high anisotropy and inhomogeneity of the low-Reynolds-number wall region without damping or wall-functions. An unstructured Eulerian grid is employed to extract Eulerian statistics, to solve for quantities represented at fixed locations of the domain (i.e., the mean pressure and the elliptic relaxation tensor) and to track particles. All three aspects regarding the grid make use of the finite element method employing the simplest linear shapefunctions. To model the small-scale mixing of the transported scalar, the interaction by exchange with the conditional mean (IECM) model is adopted. An adaptive algorithm to compute the velocity-conditioned scalar mean is proposed that homogenizes the statistical error over the sample space with no assumption on the shape of the underlying velocity PDF. Compared to other hybrid particle-in-cell approaches for the PDF equations, the current methodology is consistent without the need for consistency conditions. The algorithm is tested by computing the dispersion of passive scalars released from concentrated sources in two different turbulent flows: the fully developed turbulent channel flow and a street canyon (or cavity) flow. Algorithmic details on estimating conditional and unconditional statistics, particle tracking and particle-number control are presented in detail. Relevant aspects of performance and parallelism on cache-based shared memory
Task-and-role-based access-control model for computational grid
Institute of Scientific and Technical Information of China (English)
LONG Tao; HONG Fan; WU Chi; SUN Ling-li
2007-01-01
Access control in a grid environment is a challenging issue because the heterogeneous nature and independent administration of geographically dispersed resources in grid require access control to use fine-grained policies. We established a task-and-role-based access-control model for computational grid (CG-TRBAC model), integrating the concepts of role-based access control (RBAC) and task-based access control (TBAC). In this model, condition restrictions are defined and concepts specifically tailored to Workflow Management System are simplified or omitted so that role assignment and security administration fit computational grid better than traditional models; permissions are mutable with the task status and system variables, and can be dynamically controlled. The CG-TRBAC model is proved flexible and extendible. It can implement different control policies. It embodies the security principle of least privilege and executes active dynamic authorization. A task attribute can be extended to satisfy different requirements in a real grid system.
Developing a Grid-based search and categorization tool
Haya, Glenn; Vigen, Jens
2003-01-01
Grid technology has the potential to improve the accessibility of digital libraries. The participants in Project GRACE (Grid Search And Categorization Engine) are in the process of developing a search engine that will allow users to search through heterogeneous resources stored in geographically distributed digital collections. What differentiates this project from current search tools is that GRACE will be run on the European Data Grid, a large distributed network, and will not have a single centralized index as current web search engines do. In some cases, the distributed approach offers advantages over the centralized approach since it is more scalable, can be used on otherwise inaccessible material, and can provide advanced search options customized for each data source.
Ultra low power temperature compensation method for palladium nanowire grid
Ing. Erik Puik; J.F. van der Bent; C.J.M. van Rijn
2010-01-01
From Science direct: One of the nanowires was covered with a 2-Hydroxyethyl methacrylate based compound to prevent hydrogen from reaching the wire. The compound was dried by a UV source and tested in chamber for comparison with previous measurements. The results shows that temperature effects can
HLRmon: a role-based grid accounting report web tool
International Nuclear Information System (INIS)
Pra, S D; Fattibene, E; Misurelli, G; Pescarmona, F; Gaido, L
2008-01-01
Both Grid users and Grid operators need ways to get CPU usage statistics about jobs executed in a given time period at various different levels, depending on their specific Grid's role and rights. While a Grid user is interested in reports about its own jobs and should not get access to other's data, Site or Virtual Organization (VO) or Regional Operation Centre (ROC) manager would also like to see how resources are used through the Grid in a per Site or per VO basis, or both. The whole set of different reports turns out to be quite large, and various existing tools made to create them tend to better satisfy a single user's category, eventually despite of another. HLRmon results from our efforts to generate suitable reports for all existing categories and has been designed to serve them within a unified layout. Thanks to its ability to authenticate clients through certificate and related authorization rights, it can a-priori restrict the selectable items range offered to the web user, so that sensitive information can only be provided to specifically enabled people. Information are gathered by HLRmon from a Home Location Register (HLR) which stores complete accounting data in a per job basis. Depending on the kind of reports that are to be generated, it directly queries the HLR server using an ad-hoc Distributed Grid Accounting System (DGAS) query tool (tipically user's level detail info), or a local RDBMS table with daily aggregate information in a per Day, Site, VO basis, thus saving connection delay time and needless load on the HLR server
Linear, Transﬁnite and Weighted Method for Interpolation from Grid Lines Applied to OCT Images
DEFF Research Database (Denmark)
Lindberg, Anne-Sofie Wessel; Jørgensen, Thomas Martini; Dahl, Vedrana Andersen
2018-01-01
of a square grid, but are unknown inside each square. To view these values as an image, intensities need to be interpolated at regularly spaced pixel positions. In this paper we evaluate three methods for interpolation from grid lines: linear, transfinite and weighted. The linear method does not preserve...... and the stability of the linear method further away. An important parameter influencing the performance of the interpolation methods is the upsampling rate. We perform an extensive evaluation of the three interpolation methods across a range of upsampling rates. Our statistical analysis shows significant difference...... in the performance of the three methods. We find that the transfinite interpolation works well for small upsampling rates and the proposed weighted interpolation method performs very well for all upsampling rates typically used in practice. On the basis of these findings we propose an approach for combining two OCT...
DEFF Research Database (Denmark)
Blaabjerg, Frede; Vilathgamuwa, D. M.; Loh, Poh Chiang
2009-01-01
Distributed generation (DG) systems are usually connected to the grid using power electronic converters. Power delivered from such DG sources depends on factors like energy availability and load demand. The converters used in power conversion do not operate with their full capacity all the time......-stage buck-boost inverter, recently proposed Z-source inverter (ZSI) is a good candidate for future DG systems. This paper presents a controller design for a ZSI-based DG system to improve power quality of distribution systems. The proposed control method is tested with simulation results obtained using...
Real-Time Pricing-Based Scheduling Strategy in Smart Grids: A Hierarchical Game Approach
Directory of Open Access Journals (Sweden)
Jie Yang
2014-01-01
Full Text Available This paper proposes a scheduling strategy based on real-time pricing in smart grids. A hierarchical game is employed to analyze the decision-making process of generators and consumers. We prove the existence and uniqueness of Nash equilibrium and utilize a backward induction method to obtain the generation and consumption strategies. Then, we propose two dynamic algorithms for the generators and consumers to search for the equilibrium in a distributed fashion. Simulation results demonstrate that the proposed scheduling strategy can match supply with demand and shift load away from peak time.
Slat Noise Predictions Using Higher-Order Finite-Difference Methods on Overset Grids
Housman, Jeffrey A.; Kiris, Cetin
2016-01-01
Computational aeroacoustic simulations using the structured overset grid approach and higher-order finite difference methods within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for slat noise predictions. The simulations are part of a collaborative study comparing noise generation mechanisms between a conventional slat and a Krueger leading edge flap. Simulation results are compared with experimental data acquired during an aeroacoustic test in the NASA Langley Quiet Flow Facility. Details of the structured overset grid, numerical discretization, and turbulence model are provided.
Numerical comparison of robustness of some reduction methods in rough grids
Hou, Jiangyong
2014-04-09
In this article, we present three nonsymmetric mixed hybrid RT 1 2 methods and compare with some recently developed reduction methods which are suitable for the single-phase Darcy flow problem with full anisotropic and highly heterogeneous permeability on general quadrilateral grids. The methods reviewed are multipoint flux approximation (MPFA), multipoint flux mixed finite element method, mixed-finite element with broken RT 1 2 method, MPFA-type mimetic finite difference method, and symmetric mixed-hybrid finite element method. The numerical experiments of these methods on different distorted meshes are compared, as well as their differences in performance of fluxes are discussed. © 2014 Wiley Periodicals, Inc.
Photodissociation of NaH using time-dependent Fourier grid method
Indian Academy of Sciences (India)
We have solved the time dependent Schrödinger equation by using the Chebyshev polynomial scheme and Fourier grid Hamiltonian method to calculate the dissociation cross section of NaH molecule by 1-photon absorption from the 1+ state to the 1 state. We have found that the results differ signiﬁcantly from an ...
A New Method of On-line Grid Impedance Estimation for PV Inverter
DEFF Research Database (Denmark)
Teodorescu, Remus; Asiminoaei, Lucian; Blaabjerg, Frede
2004-01-01
for on-line measuring the grid impedance is presented. The presented method requires no extra hardware being accommodated by typical PV inverters, sensors and CPU, to provide a fast and low cost approach of on-line impedance measurement. By injecting a non-characteristic harmonic current and measuring...
Energy Technology Data Exchange (ETDEWEB)
Zhang Xianping; Guo Jindong; Xu Honghua [Inst. of Electrical Engineering, Chinese Academy of Sciences, BJ (China)
2008-07-01
Grid-connected voltage source converter (VSC) is important for variable speed turbines with doubly fed induction generator (DFIG), and bad performance of current loop of VSC may cause VSC inject much low and high order harmonics into grid. Therefore, design of current controller of VSC is very important. PI regulator is often used to regulate current error in dq rotating coordinate to obtain zero steady error. However, it is complex to design PI parameters, and researchers need many trial-and-error steps. Therefore, a novel and simple design method of PI regulator for grid-connected VSC, which is based internal model control (IMC), has been presented in this paper. The parameters of PI regulator can be expressed directly with certain L-type line filter parameters and the desired closed-loop bandwidth. At last, The simulation has been done and result shows that the method in this paper is easy and useful to regulate PI parameters. (orig.)
The Evaluation Method of the Lightning Strike on Transmission Lines Aiming at Power Grid Reliability
Wen, Jianfeng; Wu, Jianwei; Huang, Liandong; Geng, Yinan; Yu, zhanqing
2018-01-01
Lightning protection of power system focuses on reducing the flashover rate, only distinguishing by the voltage level, without considering the functional differences between the transmission lines, and being lack of analysis the effect on the reliability of power grid. This will lead lightning protection design of general transmission lines is surplus but insufficient for key lines. In order to solve this problem, the analysis method of lightning striking on transmission lines for power grid reliability is given. Full wave process theory is used to analyze the lightning back striking; the leader propagation model is used to describe the process of shielding failure of transmission lines. The index of power grid reliability is introduced and the effect of transmission line fault on the reliability of power system is discussed in detail.
Impedance Analysis of SOGI-FLL-Based Grid Synchronization
DEFF Research Database (Denmark)
Yi, Hao; Wang, Xiongfei; Blaabjerg, Frede
2017-01-01
The latest research has pointed out that the Phase-Locked Loop (PLL) plays an important role in shaping the impedance of grid-connected converters, yet most of the works so far merely focus on the synchronous reference-frame PLL. Alternatively, this letter presents the impedance analysis...
Optimal economic dispatch of FC-CHP based heat and power micro-grids
International Nuclear Information System (INIS)
Nazari-Heris, Morteza; Abapour, Saeed; Mohammadi-Ivatloo, Behnam
2017-01-01
Highlights: • The multi objective economic/environmental heat and power MG dispatch is solved. • The heat and power MG include FC, CHP, boiler, storage system, and heat buffer tank. • Multi objective scheduling of heat and power MG is solved using ε-constraint method. • DR program is employed in the stochastic programming of heat and power MG dispatch. • The uncertainties for load demand and price signals are taken into account. - Abstract: Micro-grids (MGs) are introduced as a solution for distributed energy resource (DER) units and energy storage systems (ESSs) to participate in providing the required electricity demand of controllable and non-controllable loads. In this paper, the authors study the short-term scheduling of grid-connected industrial heat and power MG which contains a fuel cell (FC) unit, combined heat and power (CHP) generation units, power-only unit, boiler, battery storage system, and heat buffer tank. The paper is aimed to solve the multi-objective MG dispatch problem containing cost and emission minimization with the considerations of demand response program and uncertainties. A probabilistic framework based on a scenario method, which is considered for load demand and price signals, is employed to overcome the uncertainties in the optimal energy management of the MG. In order to reduce operational cost, time-of-use rates of demand response programs have been modeled, and the effects of such programs on the load profile have been discussed. To solve the multi-objective optimization problem, the ε-constraint method is used and a fuzzy satisfying approach has been employed to select the best compromise solution. Three cases are studied in this research to confirm the performance of the proposed method: islanded mode, grid-connected mode, and the impact of time of the use-demand response program on MG scheduling.
Kamhawi, Hilmi N.
2012-01-01
This report documents the work performed from March 2010 to March 2012. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling Language (AML) as a framework and supporting the configuration design and parametric CFD grid generation. This report will focus on describing the work in the area of parametric CFD grid generation using novel concepts for defining the interaction between the mesh topology and the geometry in such a way as to separate the mesh topology from the geometric topology while maintaining the link between the mesh topology and the actual geometry.
Mini-Grids for the Base of the Pyramid Market: A Critical Review
Directory of Open Access Journals (Sweden)
Subhes C. Bhattacharyya
2018-04-01
Full Text Available The lack of access to electricity of more than 1.1 billion people around the world remains a major developmental challenge and Goal 7 of the Sustainable Development Goals (SDG as well as Sustainable Energy for All (SE4ALL have set a target of universal electrification by 2030. Various studies have identified mini-grid-based electrification as a possible solution. There is a growing body of literature available now that has explored the feasibility, practical application and policy interventions required to support mini-grids. Through a review of available literature, this paper explores whether mini-grids can be a solution for the base of the pyramid (BoP market and the challenges faced in deploying mini-grids in such markets. Interventions to support the mini-grid deployment are also discussed. The paper finds that the mini-grids are targeting the BoP market but the business is not attractive in profitability terms and requires financial support. Lack of regulatory clarity and non-coordinated policies affect the financial viability of projects, which requires careful support. Mini-grid electrification has hardly been embedded in rural development agenda and hence they have not contributed significantly to livelihood generation. Careful realignment of policies, regulatory frameworks and support systems can better support mini-grid deployment in developing countries.
A Direct Maximum Power Point Tracking Method for Single-Phase Grid Connected PV Inverters
DEFF Research Database (Denmark)
EL Aamri, Faicel; Maker, Hattab; Sera, Dezso
2018-01-01
in dynamic conditions, especially in low irradiance when the measurement of signals becomes more sensitive to noise. The proposed MPPT is designed for single-phase single-stage grid-connected PV inverters, and is based on estimating the instantaneous PV power and voltage ripples, using second...
The Grid Method in Estimating the Path Length of a Moving Animal
Reddingius, J.; Schilstra, A.J.; Thomas, G.
1983-01-01
(1) The length of a path covered by a moving animal may be estimated by counting the number of times the animal crosses any line of a grid and applying a conversion factor. (2) Some factors are based on the expected distance through a randomly crossed square; another on the expected crossings of a
Alfieri, Luisa
2015-12-01
Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.
Stability analysis and active damping for LLCL-filter based grid-connected inverters
DEFF Research Database (Denmark)
Huang, Min; Blaabjerg, Frede; Loh, Poh Chiang
2014-01-01
A higher order passive power filter (LLCL-filter) for the grid-tied inverter is becoming attractive for the industrial applications due to the possibility to reduce the cost of the copper and the magnetic material. To avoid the well-known stability problems of the LLCL-filter it is requested to use...... either passive or active damping methods. This paper analyzes the stability when damping is required and when damping is not necessary considering sampling and transport delay. Basic LLCL resonance damping properties of different feedback states are also studied. Then an active damping method which...... is using the capacitor current feedback for LLCL-filter is introduced. Based on this method, a design procedure for the control method is given. Last, both simulation and experimental results are provided to validate the theoretical analysis of this paper....
DEFF Research Database (Denmark)
Yao, Jun; Li, Qing; Chen, Zhe
2013-01-01
in the multiple synchronous rotating reference frames. In order to counteract the adverse effects of the voltage harmonics upon the DFIG, the SGSC generates series compensation control voltages to keep the stator voltage sinusoidal and symmetrical, which allows the use of the conventional vector control strategy......This paper presents a coordinated control method for a doubly-fed induction generator (DFIG)-based wind-power generation system with a series grid-side converter (SGSC) under distorted grid voltage conditions. The detailed mathematical models of the DFIG system with SGSC are developed...
dSPACE based adaptive neuro-fuzzy controller of grid interactive inverter
International Nuclear Information System (INIS)
Altin, Necmi; Sefa, İbrahim
2012-01-01
Highlights: ► We propose a dSPACE based neuro-fuzzy controlled grid interactive inverter. ► The membership functions and rule base of fuzzy logic controller by using ANFIS. ► A LCL output filter is designed. ► A high performance controller is designed. - Abstract: In this study, design, simulation and implementation of a dSPACE based grid interactive voltage source inverter are proposed. This inverter has adaptive neuro-fuzzy controller and capable of importing electrical energy, generated from renewable energy sources such as the wind, the solar and the fuel cells to the grid. A line frequency transformer and a LCL filter are used at the output of the grid interactive inverter which is designed as current controlled to decrease the susceptibility to phase errors. Membership functions and rule base of the fuzzy logic controller, which control the inverter output current, are determined by using artificial neural networks. Both simulation and experimental results show that, the grid interactive inverter operates synchronously with the grid. The inverter output current which is imported to the grid is in sinusoidal waveform and the harmonic level of it meets the international standards (4.3 < 5.0%). In addition, simulation and experimental results of the neuro-fuzzy and the PI controlled inverter are given together and compared in detail. Simulation and experimental results show that the proposed inverter has faster response to the reference variations and lower steady state error than PI controller.
Performance of R-GMA based grid job monitoring system for CMS data production
Byrom, Robert; Fisher, Steve M; Grandi, Claudio; Hobson, Peter R; Kyberd, Paul; MacEvoy, Barry; Nebrensky, Jindrich Josef; Tallini, Hugh; Traylen, Stephen
2004-01-01
High Energy Physics experiments, such as the Compact Muon Solenoid (CMS) at the CERN laboratory in Geneva, have large-scale data processing requirements, with stored data accumulating at a rate of 1 Gbyte/s. This load comfortably exceeds any previous processing requirements and we believe it may be most efficiently satisfied through Grid computing. Management of large Monte Carlo productions (~3000 jobs) or data analyses and the quality assurance of the results requires careful monitoring and bookkeeping, and an important requirement when using the Grid is the ability to monitor transparently the large number of jobs that are being executed simultaneously at multiple remote sites. R-GMA is a monitoring and information management service for distributed resources based on the Grid Monitoring Architecture of the Global Grid Forum. We have previously developed a system allowing us to test its performance under a heavy load while using few real Grid resources. We present the latest results on this system and comp...
Energy Technology Data Exchange (ETDEWEB)
Mashhour, Elahe; Moghaddas-Tafreshi, S.M. [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyd Khandan, P.O. Box 16315-1355, Shariati, Tehran (Iran)
2010-04-15
This paper develops a multiperiod optimization model for an interconnected micro grid with hierarchical control that participates in wholesale energy market to maximize its benefit (i.e. revenues-costs). In addition to the operational constraints of distributed energy resources (DER) including both inter-temporal and non-inter-temporal types, the adequacy and steady-state security constraints of micro grid and its power losses are incorporated in the optimization model. In the presented model, DER are integrated into low voltage grid considering both technical and economical aspects. This integration as a micro grid can participate in wholesale energy market as an entity with dual role including producer and consumer based on the direction of exchanged power. The developed model is evaluated by testing on a micro grid considering different cases and the results are analyzed. (author)
Development and verification of remote research environment based on 'Fusion research grid'
International Nuclear Information System (INIS)
Iba, Katsuyuki; Ozeki, Takahisa; Totsuka, Toshiyuki; Suzuki, Yoshio; Oshima, Takayuki; Sakata, Shinya; Sato, Minoru; Suzuki, Mitsuhiro; Hamamatsu, Kiyotaka; Kiyono, Kimihiro
2008-01-01
'Fusion research grid' is a concept that unites scientists and let them collaborate effectively against their difference in time zone and location in a nuclear fusion research. Fundamental technologies of 'Fusion research grid' have been developed at JAEA in the VizGrid project under the e-Japan project at the Ministry of Education, Culture, Sports, Science and Technology (MEXT). We are conscious of needs to create new systems that assist researchers with their research activities because remote collaborations have been increasing in international projects. Therefore we have developed prototype remote research environments for experiments, diagnostics, analyses and communications based on 'Fusion research grid'. All users can access these environments from anywhere because 'Fusion research grid' does not require a closed network like Super SINET to maintain security. The prototype systems were verified in experiments at JT-60U and their availability was confirmed
Adaptive moving grid methods for two-phase flow in porous media
Dong, Hao
2014-08-01
In this paper, we present an application of the moving mesh method for approximating numerical solutions of the two-phase flow model in porous media. The numerical schemes combine a mixed finite element method and a finite volume method, which can handle the nonlinearities of the governing equations in an efficient way. The adaptive moving grid method is then used to distribute more grid points near the sharp interfaces, which enables us to obtain accurate numerical solutions with fewer computational resources. The numerical experiments indicate that the proposed moving mesh strategy could be an effective way to approximate two-phase flows in porous media. © 2013 Elsevier B.V. All rights reserved.
Grid Based Integration Technologies of Virtual Measurement System
International Nuclear Information System (INIS)
Zhang, D P; He, L S; Yang, H
2006-01-01
This paper presents a novel integrated architecture of measurement system for the new requirements of measurement collaboration, measurement resource interconnection and transparent access etc in the wide-area and across organization in the context of a grid. The complexity of integration on a grid arises from the scale, dynamism, autonomy, and distribution of the measurement resources. The main argument of this paper is that these complexities should be made transparent to the collaborative measurement, via flexible reconfigurable mechanisms and dynamic virtualization services. The paper is started by discussing the integration-oriented measurement architecture which provides collaborative measurement services to distributed measurement resources and then the measurement mechanisms are discussed which implements the transparent access and collaboration of measurement resources by providing protocols, measurement schedule and global data driven model
DEFF Research Database (Denmark)
Guan, Yajuan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.
2015-01-01
In this paper, a hierarchical control system based on a novel autonomous current sharing controller for grid-connected microgrids (MGs) is presented. A three-level hierarchical control system is implemented to guarantee the power sharing performance among voltage controlled parallel inverters......, while providing the required active and reactive power to the utility grid. A communication link is used to transmit the control signal from the tertiary and secondary control levels to the primary control. Simulation results from a MG based on two grid-connected parallel inverters are shown in order...
Directory of Open Access Journals (Sweden)
Jungtaek Seo
2012-08-01
Full Text Available Smart meters are one of the key components of intelligent power grids. Wireless mesh networks based on smart meters could provide customer-oriented information on electricity use to the operational control systems, which monitor power grid status and estimate electric power demand. Using this information, an operational control system could regulate devices within the smart grid in order to provide electricity in a cost-efficient manner. Ensuring the availability of the smart meter mesh network is therefore a critical factor in securing the soundness of an intelligent power system. Wormhole attacks can be one of the most difficult-to-address threats to the availability of mesh networks, and although many methods to nullify wormhole attacks have been tried, these have been limited by high computational resource requirements and unnecessary overhead, as well as by the lack of ability of such methods to respond to attacks. In this paper, an effective defense mechanism that both detects and responds to wormhole attacks is proposed. In the proposed system, each device maintains information on its neighbors, allowing each node to identify replayed packets. The effectiveness and efficiency of the proposed method is analyzed in light of additional computational message and memory complexities.
Directory of Open Access Journals (Sweden)
Changchun Cai
2017-11-01
Full Text Available Microgrids can significantly improve the utilization of distributed generation (DG and the reliability of the power supply. However, in the grid-tied operational mode, the interaction between the microgrid and the distribution network cannot be ignored. The paper proposes an equivalent modeling method for the microgrid under grid-tied mode based on a characteristic model. It can simplify the microgrid model in the numerical simulation of the distribution network. The proposed equivalent model can present the dynamic response of a microgrid but not miss any of its primary characteristics. The characteristic model is represented by a low-order time-varying differential equation with the same characteristics of the original microgrid system. During the modeling process, the voltage and the power exchanged between the microgrid and distribution network are collected as the training data for the identification of model parameters. A recursive damped least squares algorithm (RDLS is used for the parameter identification. A microgrid system containing different DGs is built to test the proposed modeling method in DIgSILENT, and the results show that the proposed dynamic equivalent modeling method is effective and the characteristic model can present the dynamic behaviors of the detailed model of a microgrid.
Sparse grid-based polynomial chaos expansion for aerodynamics of an airfoil with uncertainties
Directory of Open Access Journals (Sweden)
Xiaojing WU
2018-05-01
Full Text Available The uncertainties can generate fluctuations with aerodynamic characteristics. Uncertainty Quantification (UQ is applied to compute its impact on the aerodynamic characteristics. In addition, the contribution of each uncertainty to aerodynamic characteristics should be computed by uncertainty sensitivity analysis. Non-Intrusive Polynomial Chaos (NIPC has been successfully applied to uncertainty quantification and uncertainty sensitivity analysis. However, the non-intrusive polynomial chaos method becomes inefficient as the number of random variables adopted to describe uncertainties increases. This deficiency becomes significant in stochastic aerodynamic analysis considering the geometric uncertainty because the description of geometric uncertainty generally needs many parameters. To solve the deficiency, a Sparse Grid-based Polynomial Chaos (SGPC expansion is used to do uncertainty quantification and sensitivity analysis for stochastic aerodynamic analysis considering geometric and operational uncertainties. It is proved that the method is more efficient than non-intrusive polynomial chaos and Monte Carlo Simulation (MSC method for the stochastic aerodynamic analysis. By uncertainty quantification, it can be learnt that the flow characteristics of shock wave and boundary layer separation are sensitive to the geometric uncertainty in transonic region. The uncertainty sensitivity analysis reveals the individual and coupled effects among the uncertainty parameters. Keywords: Non-intrusive polynomial chaos, Sparse grid, Stochastic aerodynamic analysis, Uncertainty sensitivity analysis, Uncertainty quantification
High-Capacity Hydrogen-Based Green-Energy Storage Solutions For The Grid Balancing
D'Errico, F.; Screnci, A.
One of the current main challenges in green-power storage and smart grids is the lack of effective solutions for accommodating the unbalance between renewable energy sources, that offer intermittent electricity supply, and a variable electricity demand. Energy management systems have to be foreseen for the near future, while they still represent a major challenge. Integrating intermittent renewable energy sources, by safe and cost-effective energy storage systems based on solid state hydrogen is today achievable thanks to recently some technology breakthroughs. Optimized solid storage method made of magnesium-based hydrides guarantees a very rapid absorption and desorption kinetics. Coupled with electrolyzer technology, high-capacity storage of green-hydrogen is therefore practicable. Besides these aspects, magnesium has been emerging as environmentally friend energy storage method to sustain integration, monitoring and control of large quantity of GWh from high capacity renewable generation in the EU.
Active Distribution Grid Management based on Robust AC Optimal Power Flow
DEFF Research Database (Denmark)
Soares, Tiago; Bessa, Richard J.; Pinson, Pierre
2017-01-01
Further integration of distributed renewable energy sources in distribution systems requires a paradigm change in grid management by the distribution system operators (DSO). DSOs are currently moving to an operational planning approach based on activating flexibility from distributed energy resou...
Indonesia - Green Prosperity: Community-Based Off-Grid Renewable Energy Grant Portfolio
Millennium Challenge Corporation — Taken as a whole, this evaluation aims, to the extent possible, to validate the program logic underlying the portfolio of community-based off-grid renewable energy...
Grid Based Technologies for in silico Screening and Drug Design.
Potemkin, Vladimir; Grishina, Maria
2018-03-08
Various techniques for rational drug design are presented in the paper. The methods are based on a substitution of antipharmacophore atoms of the molecules of training dataset by new atoms and/or group of atoms increasing the atomic bioactivity increments obtained at a SAR study. Furthermore, a design methodology based on the genetic algorithm DesPot for discrete optimization and generation of new drug candidate structures is described. Additionally, wide spectra of SAR approaches (3D/4D QSAR interior and exterior-based methods - BiS, CiS, ConGO, CoMIn, high-quality docking method - ReDock) using MERA force field and/or AlteQ quantum chemical method for correct prognosis of bioactivity and bioactive probability is described. The design methods are implemented now at www.chemosophia.com web-site for online computational services. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
A sharp interface Cartesian grid method for viscous simulation of shocked particle-laden flows
Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.
2017-09-01
A Cartesian grid-based sharp interface method is presented for viscous simulations of shocked particle-laden flows. The moving solid-fluid interfaces are represented using level sets. A moving least-squares reconstruction is developed to apply the no-slip boundary condition at solid-fluid interfaces and to supply viscous stresses to the fluid. The algorithms developed in this paper are benchmarked against similarity solutions for the boundary layer over a fixed flat plate and against numerical solutions for moving interface problems such as shock-induced lift-off of a cylinder in a channel. The framework is extended to 3D and applied to calculate low Reynolds number steady supersonic flow over a sphere. Viscous simulation of the interaction of a particle cloud with an incident planar shock is demonstrated; the average drag on the particles and the vorticity field in the cloud are compared to the inviscid case to elucidate the effects of viscosity on momentum transfer between the particle and fluid phases. The methods developed will be useful for obtaining accurate momentum and heat transfer closure models for macro-scale shocked particulate flow applications such as blast waves and dust explosions.
Models and methods for assessing the value of HVDC and MVDC technologies in modern power grids
Energy Technology Data Exchange (ETDEWEB)
Makarov, Yuri V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elizondo, Marcelo A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); O' Brien, James G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Qiuhua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kirkham, Harold [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Zhenyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chinthavali, Madhu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Suman, Debnath [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mohan, Nihal [Mid-Continent Independent System Operator (MISO), St. Paul, MN (United States); Hess, Warren [Mid-Continent Independent System Operator (MISO), St. Paul, MN (United States); Duebner, David [Mid-Continent Independent System Operator (MISO), St. Paul, MN (United States); Orser, David [Mid-Continent Independent System Operator (MISO), St. Paul, MN (United States); Brown, Hilary [Mid-Continent Independent System Operator (MISO), St. Paul, MN (United States); Osborn, Dale [Mid-Continent Independent System Operator (MISO), St. Paul, MN (United States); Feltes, James [Siemens, Knoxville, TN (United States); Kurthakoti Chandrashekhara, Divya [Siemens, Knoxville, TN (United States); Zhu, Wenchun [Siemens, Knoxville, TN (United States)
2017-07-31
This report reflects the results of U.S. Department of Energy’s (DOE) Grid Modernization project 0074 “Models and methods for assessing the value of HVDC [high-voltage direct current] and MTDC [multi-terminal direct current] technologies in modern power grids.” The work was done by the Pacific Northwest National Laboratory (PNNL) and Oak Ridge National Laboratory (ORNL) in cooperation with Mid-Continent Independent System Operator (MISO) and Siemens. The main motivation of this study was to show the benefit of using direct current (DC) systems larger than those in existence today as they overlap with the alternating current (AC) systems. Proper use of their flexibility in terms of active/reactive power control and fast response can provide much-needed services to the grid at the same time as moving large blocks of energy to take advantage of cost diversity. Ultimately, the project’s success will enable decision-makers and investors to make well-informed decisions regarding this use of DC systems. This project showed the technical feasibility of HVDC macrogrid for frequency control and congestion relief in addition to bulk power transfers. Industry-established models for commonly used technologies were employed, along with high-fidelity models for recently developed HVDC converter technologies; like the modular multilevel converters (MMCs), a voltage source converters (VSC). Models for General Electric Positive Sequence Load Flow (GE PSLF) and Siemens Power System Simulator (PSS/E), widely used analysis programs, were for the first time adapted to include at the same time both Western Electricity Coordinating Council (WECC) and Eastern Interconnection (EI), the two largest North American interconnections. The high-fidelity models and their control were developed in detail for MMC system and extended to HVDC systems in point-to-point and in three-node multi-terminal configurations. Using a continental-level mixed AC-DC grid model, and using a HVDC macrogrid
Energy Technology Data Exchange (ETDEWEB)
Feltes, Christian
2012-07-01
and negative sequence components as well as other selected frequency components. The implemented method can be utilized to enhance the power quality within the grid during voltage imbalances or increased harmonic levels. Furthermore, special control algorithms have been developed in this thesis, allowing the optimal voltage support during grid faults by an intelligent distribution of the reactive current injection across both converter sides even for extremely deep voltage sags. In this way it can be ensured that wind turbines inject a defined fault current, which is required for selective fault detection and tripping of the faulty elements. Another important topic in this dissertation is the development of a new coordinated control concept for DFIG based wind farms connected to VSC-HVDC. This method allows FRT during onshore grid faults without the need for a DC chopper within the HVDC link. The introduced algorithm uses the wind farm side HVDC converter to apply a controlled voltage drop in the wind farm grid with suppression of the DC components in the DFIG currents. With this method the wind farm output power can be reduced rapidly and the HVDC is protected against overvoltages in the DC circuit. At the same time the controlled suppression of the DC current components reduces the stress to the power electronics and the drive train of the wind turbines.
A Systematic Method to Synthesize New Transformerless Full-bridge Grid-tied Inverters
DEFF Research Database (Denmark)
Wang, Hongliang; Burton, Sarah; Liu, Yan-Fei
2014-01-01
Many inverter topologies have been proposed to eliminate the leakage current of transformerless Full Bridge Grid-Tied photovoltaic (PV) inverters. These include implementations such as the H5, H6, and HERIC topologies, among others. In this paper, a new full bridge topology synthesis method, called...... the MN synthesis method, is proposed. The MN method introduces two criteria that can be used to synthesize all of the possible topologies, including the existing topologies as well as new simplified topologies. This method concludes that there are only 15 simplified topologies available. Most simplified...... topologies from MN method have been verified by existing papers and patents....
Simulation of single grid-based phase-contrast x-ray imaging (g-PCXI)
Energy Technology Data Exchange (ETDEWEB)
Lim, H.W.; Lee, H.W. [Department of Radiation Convergence Engineering, iTOMO Group, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493 (Korea, Republic of); Cho, H.S., E-mail: hscho1@yonsei.ac.kr [Department of Radiation Convergence Engineering, iTOMO Group, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493 (Korea, Republic of); Je, U.K.; Park, C.K.; Kim, K.S.; Kim, G.A.; Park, S.Y.; Lee, D.Y.; Park, Y.O.; Woo, T.H. [Department of Radiation Convergence Engineering, iTOMO Group, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493 (Korea, Republic of); Lee, S.H.; Chung, W.H.; Kim, J.W.; Kim, J.G. [R& D Center, JPI Healthcare Co., Ltd., Ansan 425-833 (Korea, Republic of)
2017-04-01
Single grid-based phase-contrast x-ray imaging (g-PCXI) technique, which was recently proposed by Wen et al. to retrieve absorption, scattering, and phase-gradient images from the raw image of the examined object, seems a practical method for phase-contrast imaging with great simplicity and minimal requirements on the setup alignment. In this work, we developed a useful simulation platform for g-PCXI and performed a simulation to demonstrate its viability. We also established a table-top setup for g-PCXI which consists of a focused-linear grid (200-lines/in strip density), an x-ray tube (100-μm focal spot size), and a flat-panel detector (48-μm pixel size) and performed a preliminary experiment with some samples to show the performance of the simulation platform. We successfully obtained phase-contrast x-ray images of much enhanced contrast from both the simulation and experiment and the simulated contract seemed similar to the experimental contrast, which shows the performance of the developed simulation platform. We expect that the simulation platform will be useful for designing an optimal g-PCXI system. - Highlights: • It is proposed for the single grid-based phase-contrast x-ray imaging (g-PCXI) technique. • We implemented for a numerical simulation code. • The preliminary experiment with several samples to compare is performed. • It is expected to be useful to design an optimal g-PCXI system.
CSP electricity cost evolution and grid parities based on the IEA roadmaps
International Nuclear Information System (INIS)
Hernández-Moro, J.; Martínez-Duart, J.M.
2012-01-01
The main object of this paper consists in the development of a mathematical closed-form expression for the evaluation, in the period 2010–2050, of the levelized costs of energy (LCOE) of concentrating solar power (CSP) electricity. For this purpose, the LCOE is calculated using a life-cycle cost method, based on the net present value, the discounted cash flow technique and the technology learning curve approach. By this procedure, the LCOE corresponding to CSP electricity is calculated as a function of ten independent variables. Among these parameters, special attention has been put on the evaluation of the available solar resource, the analysis of the IEA predicted values for the cumulative installed capacity, the initial (2010) cost of the system, the discount and learning rates, etc. One significant contribution of our work is that the predicted evolution of the LCOEs strongly depend, not only on the particular values of the cumulative installed capacity function in the targeted years, but mainly on the specific curved time-paths which are followed by this function. The results obtained in this work are shown both graphically and numerically. Finally, the implications that the results could have in energy planning policies and grid parity calculations are discussed. - Highlights: ► A mathematical closed expression has been developed for calculating the evolution of CSP electricity costs. ► Our technique for the prediction of CSP electricity costs and grid parities is based on IEA Roadmaps. ► The time-table (2010–2050) of cumulative installed CSP capacity is key to electricity cost predictions. ► CSP grid parities can occur within next decade for sites with proper solar resources.
A grid-based tropospheric product for China using a GNSS network
Zhang, Hongxing; Yuan, Yunbin; Li, Wei; Zhang, Baocheng; Ou, Jikun
2017-11-01
Tropospheric delay accounts for one source of error in global navigation satellite systems (GNSS). To better characterize the tropospheric delays in the temporal and spatial domain and facilitate the safety-critical use of GNSS across China, a method is proposed to generate a grid-based tropospheric product (GTP) using the GNSS network with an empirical tropospheric model, known as IGGtrop. The prototype system generates the GTPs in post-processing and real-time modes and is based on the undifferenced and uncombined precise point positioning (UU-PPP) technique. GTPs are constructed for a grid form (2.0{°}× 2.5{°} latitude-longitude) over China with a time resolution of 5 min. The real-time GTP messages are encoded in a self-defined RTCM3 format and broadcast to users using NTRIP (networked transport of RTCM via internet protocol), which enables efficient and safe transmission to real-time users. Our approach for GTP generation consists of three sequential steps. In the first step, GNSS-derived zenith tropospheric delays (ZTDs) for a network of GNSS stations are estimated using UU-PPP. In the second step, vertical adjustments for the GNSS-derived ZTDs are applied to address the height differences between the GNSS stations and grid points. The ZTD height corrections are provided by the IGGtrop model. Finally, an inverse distance weighting method is used to interpolate the GNSS-derived ZTDs from the surrounding GNSS stations to the location of the grid point. A total of 210 global positioning system (GPS) stations from the crustal movement observation network of China are used to generate the GTPs in both post-processing and real-time modes. The accuracies of the GTPs are assessed against with ERA-Interim-derived ZTDs and the GPS-derived ZTDs at 12 test GPS stations, respectively. The results show that the post-processing and real-time GTPs can provide the ZTDs with accuracies of 1.4 and 1.8 cm, respectively. We also apply the GTPs in real-time kinematic GPS PPP
Method for controlling power flow between an electrochemical cell and a power grid
International Nuclear Information System (INIS)
Coleman, A. K.
1981-01-01
A method is disclosed for controlling a force-commutated inverter coupled between an electrochemical cell and a power grid for adjusting the magnitude and direction of the electrical energy flowing therebetween. Both the real power component and the reactive power component of ac electrical energy flow can be independently VARied through the switching waveform presented to the intermediately coupled inverter. A VAR error signal is derived from a comparison of a var command signal with a signal proportional to the actual reactive power circulating between the inverter and the power grid. This signal is presented to a voltage controller which essentially varies only the effective magnitude of the fundamental voltage waveform out of the inverter , thereby leaving the real power component substantially unaffected. In a similar manner, a power error signal is derived by a comparison of a power command signal with a signal proportional to the actual real power flowing between the electrochemical cell and the power grid. This signal is presented to a phase controller which varies only the phase of the fundamental component of the voltage waveform out of the inverter relative to that of the power grid and changes only the real power in proportion thereto, thus leaving the reactive power component substantially unaffected
Quantitative Analysis Method of Output Loss due to Restriction for Grid-connected PV Systems
Ueda, Yuzuru; Oozeki, Takashi; Kurokawa, Kosuke; Itou, Takamitsu; Kitamura, Kiyoyuki; Miyamoto, Yusuke; Yokota, Masaharu; Sugihara, Hiroyuki
Voltage of power distribution line will be increased due to reverse power flow from grid-connected PV systems. In the case of high density grid connection, amount of voltage increasing will be higher than the stand-alone grid connection system. To prevent the over voltage of power distribution line, PV system's output will be restricted if the voltage of power distribution line is close to the upper limit of the control range. Because of this interaction, amount of output loss will be larger in high density case. This research developed a quantitative analysis method for PV systems output and losses to clarify the behavior of grid connected PV systems. All the measured data are classified into the loss factors using 1 minute average of 1 second data instead of typical 1 hour average. Operation point on the I-V curve is estimated to quantify the loss due to the output restriction using module temperature, array output voltage, array output current and solar irradiance. As a result, loss due to output restriction is successfully quantified and behavior of output restriction is clarified.
Directory of Open Access Journals (Sweden)
Jun Yang
2015-03-01
Full Text Available In power systems, although the inertia energy in power sources can partly cover power unbalances caused by load disturbance or renewable energy fluctuation, it is still hard to maintain the frequency deviation within acceptable ranges. However, with the vehicle-to-grid (V2G technique, electric vehicles (EVs can act as mobile energy storage units, which could be a solution for load frequency control (LFC in an isolated grid. In this paper, a LFC model of an isolated micro-grid with EVs, distributed generations and their constraints is developed. In addition, a controller based on multivariable generalized predictive control (MGPC theory is proposed for LFC in the isolated micro-grid, where EVs and diesel generator (DG are coordinated to achieve a satisfied performance on load frequency. A benchmark isolated micro-grid with EVs, DG, and wind farm is modeled in the Matlab/Simulink environment to demonstrate the effectiveness of the proposed method. Simulation results demonstrate that with MGPC, the energy stored in EVs can be managed intelligently according to LFC requirement. This improves the system frequency stability with complex operation situations including the random renewable energy resource and the continuous load disturbances.
Agent based approach for engineering and control of micro-grids
International Nuclear Information System (INIS)
Basso, Gillian
2013-01-01
Energy management is, nowadays, a subject of uttermost importance. Indeed, we are facing growing concerns such as petroleum reserve depletion, earth global warming or power quality (e.g. avoiding blackouts during peak times). Smart grids is an attempt to solve such problems, by adding to power grids bidirectional communications and ICT capabilities in order to provide an intelligent autonomic management for the grid. This thesis focuses on the management of micro-grids thanks to multi-agent systems (MAS). Micro-grids are low-power networks, composed of small and decentralized energy producers (possibly renewable) and consumers. These networks can be connected to the main grid or islanded, this make them more complex. Due to their complexity and their geographical distribution, smart grids and micro-grids can not be easily managed by a centralized system. Distributed artificial intelligences especially MAS appear to be a solution to resolve problems related to smart grids. Firstly we defined an approach implementing feedback loops. These feedback loops exist in complex systems which can be defined with several abstraction levels. Two levels are interacting. The micro-level contains a set of agents owning behaviours that can be combined. The result of the combination impact the state of the system. The macro-level processes these influences to define a new state of the system which will impact the agents behaviours at the micro-level. This feedback loop separates behaviours on several levels. This approach is used to defined a demand and supply matching problem in micro-grid. This problem afford to manage a set of goals which currently are independently processed. Finally, an application is developed using MAS that ensures grid stability thanks to storage systems. This application was thought to be integrated to the approach detailed above. Secondly, a grid simulator id developed. This simulator allows dynamic control of devices. It is based on three main principles
Smart Energy Management and Control for Fuel Cell Based Micro-Grid Connected Neighborhoods
Energy Technology Data Exchange (ETDEWEB)
Dr. Mohammad S. Alam
2006-03-15
Fuel cell power generation promises to be an efficient, pollution-free, reliable power source in both large scale and small scale, remote applications. DOE formed the Solid State Energy Conversion Alliance with the intention of breaking one of the last barriers remaining for cost effective fuel cell power generation. The Alliance’s goal is to produce a core solid-state fuel cell module at a cost of no more than $400 per kilowatt and ready for commercial application by 2010. With their inherently high, 60-70% conversion efficiencies, significantly reduced carbon dioxide emissions, and negligible emissions of other pollutants, fuel cells will be the obvious choice for a broad variety of commercial and residential applications when their cost effectiveness is improved. In a research program funded by the Department of Energy, the research team has been investigating smart fuel cell-operated residential micro-grid communities. This research has focused on using smart control systems in conjunction with fuel cell power plants, with the goal to reduce energy consumption, reduce demand peaks and still meet the energy requirements of any household in a micro-grid community environment. In Phases I and II, a SEMaC was developed and extended to a micro-grid community. In addition, an optimal configuration was determined for a single fuel cell power plant supplying power to a ten-home micro-grid community. In Phase III, the plan is to expand this work to fuel cell based micro-grid connected neighborhoods (mini-grid). The economic implications of hydrogen cogeneration will be investigated. These efforts are consistent with DOE’s mission to decentralize domestic electric power generation and to accelerate the onset of the hydrogen economy. A major challenge facing the routine implementation and use of a fuel cell based mini-grid is the varying electrical demand of the individual micro-grids, and, therefore, analyzing these issues is vital. Efforts are needed to determine
Intelligent Control of Micro Grid: A Big Data-Based Control Center
Liu, Lu; Wang, Yanping; Liu, Li; Wang, Zhiseng
2018-01-01
In this paper, a structure of micro grid system with big data-based control center is introduced. Energy data from distributed generation, storage and load are analized through the control center, and from the results new trends will be predicted and applied as a feedback to optimize the control. Therefore, each step proceeded in micro grid can be adjusted and orgnized in a form of comprehensive management. A framework of real-time data collection, data processing and data analysis will be proposed by employing big data technology. Consequently, a integrated distributed generation and a optimized energy storage and transmission process can be implemented in the micro grid system.
DEFF Research Database (Denmark)
Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede
2014-01-01
This paper investigates the effect of grid impedance variation on harmonic resonant current controllers for gridconnected voltage source converters by means of impedance-based analysis. It reveals that the negative harmonic resistances tend to be derived from harmonic resonant controllers...... in the closed-loop output admittance of converter. Such negative resistances may interact with the grid impedance resulting in steady state error or unstable harmonic compensation. To deal with this problem, a design guideline for harmonic resonant controllers under a wide range of grid impedance is proposed...
Directory of Open Access Journals (Sweden)
Qingzhu Wan
2016-12-01
Full Text Available With the proportion of air conditioners increasing gradually, they can provide a certain amount of frequency-controlled reserves for a micro-grid. Optimizing utilization of air conditioners and considering load response characteristics and customer comfort, the frequency adjustment model is a quadratic function model between the trigger temperature of the air conditioner compressor, and frequency variation is provided, which can be used to regulate the trigger temperature of the air conditioner when the micro-grid frequency rises and falls. This frequency adjustment model combines a primary frequency modulation method and a secondary frequency modulation method of the energy storage system, in order to optimize the frequency of a micro-grid. The simulation results show that the frequency modulation strategy for air conditioners can effectively improve the frequency modulation ability of air conditioners and frequency modulation effects of a micro-grid in coordination with an energy storage system.
Grid-enabled SEE++, A Grid-Based Medical Decision Support System for Eye Muscle Surgery Conference
Schreiner, W.; Buchberger, M.; Kaltofen, T.
2006-01-01
JKU/RISC currently develops in cooperation with Upper Austrian Research (UAR) the SEE-GRID software system. SEE-GRID is based on the SEE++ software for the biomechanical 3D simulation of the human eye and its muscles. SEE++ simulates the common eye muscle surgery techniques in a graphic interactive way that is familiar to an experienced surgeon. SEE++ is world-wide the most advanced software for this purpose; it is used by various hospitals and medical doctors for surgery training and planning, SEE++ deals with the support of diagnosis and treatment of strabismus, which is the common name given to usually persistent or regularly occuring misalignment of the eyes. Strabismus is a visual defect in which eyes point in different directions. A person suffering from it may see double images due to misaligned eyes. SEE++ is able to simulate the result of the Hess-Lancaster test, from which the pathological reason of strabismus can be estimated. The outcome of such an examination is two gaze patterns of blue points a...
Multi-hop localization algorithm based on grid-scanning for wireless sensor networks.
Wan, Jiangwen; Guo, Xiaolei; Yu, Ning; Wu, Yinfeng; Feng, Renjian
2011-01-01
For large-scale wireless sensor networks (WSNs) with a minority of anchor nodes, multi-hop localization is a popular scheme for determining the geographical positions of the normal nodes. However, in practice existing multi-hop localization methods suffer from various kinds of problems, such as poor adaptability to irregular topology, high computational complexity, low positioning accuracy, etc. To address these issues in this paper, we propose a novel Multi-hop Localization algorithm based on Grid-Scanning (MLGS). First, the factors that influence the multi-hop distance estimation are studied and a more realistic multi-hop localization model is constructed. Then, the feasible regions of the normal nodes are determined according to the intersection of bounding square rings. Finally, a verifiably good approximation scheme based on grid-scanning is developed to estimate the coordinates of the normal nodes. Additionally, the positioning accuracy of the normal nodes can be improved through neighbors' collaboration. Extensive simulations are performed in isotropic and anisotropic networks. The comparisons with some typical algorithms of node localization confirm the effectiveness and efficiency of our algorithm.
The research on multi-projection correction based on color coding grid array
Yang, Fan; Han, Cheng; Bai, Baoxing; Zhang, Chao; Zhao, Yunxiu
2017-10-01
There are many disadvantages such as lower timeliness, greater manual intervention in multi-channel projection system, in order to solve the above problems, this paper proposes a multi-projector correction technology based on color coding grid array. Firstly, a color structured light stripe is generated by using the De Bruijn sequences, then meshing the feature information of the color structured light stripe image. We put the meshing colored grid intersection as the center of the circle, and build a white solid circle as the feature sample set of projected images. It makes the constructed feature sample set not only has the perceptual localization, but also has good noise immunity. Secondly, we establish the subpixel geometric mapping relationship between the projection screen and the individual projectors by using the structure of light encoding and decoding based on the color array, and the geometrical mapping relation is used to solve the homography matrix of each projector. Lastly the brightness inconsistency of the multi-channel projection overlap area is seriously interfered, it leads to the corrected image doesn't fit well with the observer's visual needs, and we obtain the projection display image of visual consistency by using the luminance fusion correction algorithm. The experimental results show that this method not only effectively solved the problem of distortion of multi-projection screen and the issue of luminance interference in overlapping region, but also improved the calibration efficient of multi-channel projective system and reduced the maintenance cost of intelligent multi-projection system.
Action research to improve methods of delivery and feedback in an Access Grid Room environment
McArthur, Lynne C.; Klass, Lara; Eberhard, Andrew; Stacey, Andrew
2011-12-01
This article describes a qualitative study which was undertaken to improve the delivery methods and feedback opportunity in honours mathematics lectures which are delivered through Access Grid Rooms. Access Grid Rooms are facilities that provide two-way video and audio interactivity across multiple sites, with the inclusion of smart boards. The principal aim was to improve the student learning experience, given the new environment. The specific aspects of the course delivery that the study focused on included presentation of materials and provision of opportunities for interaction between the students and between students and lecturers. The practical considerations in the delivery of distance learning are well documented in the literature, and similar problems arise in the Access Grid Room environment; in particular, those of limited access to face-to-face interaction and the reduction in peer support. The nature of the Access Grid Room classes implies that students studying the same course can be physically situated in different cities, and possibly in different countries. When studying, it is important that students have opportunity to discuss new concepts with others; particularly their peers and their lecturer. The Access Grid Room environment also presents new challenges for the lecturer, who must learn new skills in the delivery of materials. The unique nature of Access Grid Room technology offers unprecedented opportunity for effective course delivery and positive outcomes for students, and was developed in response to a need to be able to interact with complex data, other students and the instructor, in real-time, at a distance and from multiple sites. This is a relatively new technology and as yet there has been little or no studies specifically addressing the use and misuse of the technology. The study found that the correct placement of cameras and the use of printed material and smart boards were all crucial to the student experience. In addition, the
Research and design of smart grid monitoring control via terminal based on iOS system
Fu, Wei; Gong, Li; Chen, Heli; Pan, Guangji
2017-06-01
Aiming at a series of problems existing in current smart grid monitoring Control Terminal, such as high costs, poor portability, simple monitoring system, poor software extensions, low system reliability when transmitting information, single man-machine interface, poor security, etc., smart grid remote monitoring system based on the iOS system has been designed. The system interacts with smart grid server so that it can acquire grid data through WiFi/3G/4G networks, and monitor each grid line running status, as well as power plant equipment operating conditions. When it occurs an exception in the power plant, incident information can be sent to the user iOS terminal equipment timely, which will provide troubleshooting information to help the grid staff to make the right decisions in a timely manner, to avoid further accidents. Field tests have shown the system realizes the integrated grid monitoring functions, low maintenance cost, friendly interface, high security and reliability, and it possesses certain applicable value.
Model atmospheres for M (sub)dwarf stars. 1: The base model grid
Allard, France; Hauschildt, Peter H.
1995-01-01
We have calculated a grid of more than 700 model atmospheres valid for a wide range of parameters encompassing the coolest known M dwarfs, M subdwarfs, and brown dwarf candidates: 1500 less than or equal to T(sub eff) less than or equal to 4000 K, 3.5 less than or equal to log g less than or equal to 5.5, and -4.0 less than or equal to (M/H) less than or equal to +0.5. Our equation of state includes 105 molecules and up to 27 ionization stages of 39 elements. In the calculations of the base grid of model atmospheres presented here, we include over 300 molecular bands of four molecules (TiO, VO, CaH, FeH) in the JOLA approximation, the water opacity of Ludwig (1971), collision-induced opacities, b-f and f-f atomic processes, as well as about 2 million spectral lines selected from a list with more than 42 million atomic and 24 million molecular (H2, CH, NH, OH, MgH, SiH, C2, CN, CO, SiO) lines. High-resolution synthetic spectra are obtained using an opacity sampling method. The model atmospheres and spectra are calculated with the generalized stellar atmosphere code PHOENIX, assuming LTE, plane-parallel geometry, energy (radiative plus convective) conservation, and hydrostatic equilibrium. The model spectra give close agreement with observations of M dwarfs across a wide spectral range from the blue to the near-IR, with one notable exception: the fit to the water bands. We discuss several practical applications of our model grid, e.g., broadband colors derived from the synthetic spectra. In light of current efforts to identify genuine brown dwarfs, we also show how low-resolution spectra of cool dwarfs vary with surface gravity, and how the high-regulation line profile of the Li I resonance doublet depends on the Li abundance.
International Nuclear Information System (INIS)
Mereghetti, Paolo; Martinez, Michael; Wade, Rebecca C
2014-01-01
Brownian dynamics (BD) simulations can be used to study very large molecular systems, such as models of the intracellular environment, using atomic-detail structures. Such simulations require strategies to contain the computational costs, especially for the computation of interaction forces and energies. A common approach is to compute interaction forces between macromolecules by precomputing their interaction potentials on three-dimensional discretized grids. For long-range interactions, such as electrostatics, grid-based methods are subject to finite size errors. We describe here the implementation of a Debye-Hückel correction to the grid-based electrostatic potential used in the SDA BD simulation software that was applied to simulate solutions of bovine serum albumin and of hen egg white lysozyme. We found that the inclusion of the long-range electrostatic correction increased the accuracy of both the protein-protein interaction profiles and the protein diffusion coefficients at low ionic strength. An advantage of this method is the low additional computational cost required to treat long-range electrostatic interactions in large biomacromolecular systems. Moreover, the implementation described here for BD simulations of protein solutions can also be applied in implicit solvent molecular dynamics simulations that make use of gridded interaction potentials
Micro grid control strategy of DFIG unit based on improved DC grid connected topology
Zongze, Xia; Fei, Xia; Zhixiong, Yang
2017-05-01
Aiming to the application of the DFIG connected to DC-Microgrids, an improved topology for the DFIG connected to DC-Microgrids is taken into account in this thesis. The stator side loses the support of voltage and frequency of AC point of common coupling bus. A novel control method suitable to the stator side converter (SSC) and the rotor side converter (RSC) of the topology is proposed. The independent control of stator voltage and frequency, the decoupled control of power and variable speed constant frequency of DFIG are achieved in the doubly-fed induction generator connected to DC-Microgrids. which can enhance the capacity of active power transmission of DFIG during the voltage variation.
Air Pollution Monitoring and Mining Based on Sensor Grid in London
Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John
2008-01-01
In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We pr...
Liu, Jia; Liu, Longli; Xue, Yong; Dong, Jing; Hu, Yingcui; Hill, Richard; Guang, Jie; Li, Chi
2017-01-01
Workflow for remote sensing quantitative retrieval is the ;bridge; between Grid services and Grid-enabled application of remote sensing quantitative retrieval. Workflow averts low-level implementation details of the Grid and hence enables users to focus on higher levels of application. The workflow for remote sensing quantitative retrieval plays an important role in remote sensing Grid and Cloud computing services, which can support the modelling, construction and implementation of large-scale complicated applications of remote sensing science. The validation of workflow is important in order to support the large-scale sophisticated scientific computation processes with enhanced performance and to minimize potential waste of time and resources. To research the semantic correctness of user-defined workflows, in this paper, we propose a workflow validation method based on tacit knowledge research in the remote sensing domain. We first discuss the remote sensing model and metadata. Through detailed analysis, we then discuss the method of extracting the domain tacit knowledge and expressing the knowledge with ontology. Additionally, we construct the domain ontology with Protégé. Through our experimental study, we verify the validity of this method in two ways, namely data source consistency error validation and parameters matching error validation.
Baranov, Alexander
2016-01-01
The LHCb Grid access if based on the LHCbDirac system. It provides access to data and computational resources to researchers with different geographical locations. The Grid has a hierarchical topology with multiple sites distributed over the world. The sites differ from each other by their number of CPUs, amount of disk storage and connection bandwidth. These parameters are essential for the Grid work. Moreover, job scheduling and data distribution strategy have a great impact on the grid performance. However, it is hard to choose an appropriate algorithm and strategies as they need a lot of time to be tested on the real grid. In this study, we describe the LHCb Grid simulator. The simulator reproduces the LHCb Grid structure with its sites and their number of CPUs, amount of disk storage and bandwidth connection. We demonstrate how well the simulator reproduces the grid work, show its advantages and limitations. We show how well the simulator reproduces job scheduling and network anomalies, consider methods ...
Wang, X. Y.; Dou, J. M.; Shen, H.; Li, J.; Yang, G. S.; Fan, R. Q.; Shen, Q.
2018-03-01
With the continuous strengthening of power grids, the network structure is becoming more and more complicated. An open and regional data modeling is used to complete the calculation of the protection fixed value based on the local region. At the same time, a high precision, quasi real-time boundary fusion technique is needed to seamlessly integrate the various regions so as to constitute an integrated fault computing platform which can conduct transient stability analysis of covering the whole network with high accuracy and multiple modes, deal with the impact results of non-single fault, interlocking fault and build “the first line of defense” of the power grid. The boundary fusion algorithm in this paper is an automatic fusion algorithm based on the boundary accurate coupling of the networking power grid partition, which takes the actual operation mode for qualification, complete the boundary coupling algorithm of various weak coupling partition based on open-loop mode, improving the fusion efficiency, truly reflecting its transient stability level, and effectively solving the problems of too much data, too many difficulties of partition fusion, and no effective fusion due to mutually exclusive conditions. In this paper, the basic principle of fusion process is introduced firstly, and then the method of boundary fusion customization is introduced by scene description. Finally, an example is given to illustrate the specific algorithm on how it effectively implements the boundary fusion after grid partition and to verify the accuracy and efficiency of the algorithm.
A Combined Two-Method MPPT Control Scheme for Grid-Connected Photovoltaic Systems
DEFF Research Database (Denmark)
Dorofte, Christinel; Borup, Uffe; Blaabjerg, Frede
2005-01-01
In order to increase the output efficiency of a grid-connected photovoltaic (PV) system it is important to have an efficient Maximum Power Point Tracker (MPPT). In the case of low irradiation, the Perturb and Observe (PO) and Incremental Conductance (IC) methods have a poor efficiency, because...... of the poor resolution in the acquired signals, when a fixed point implementation is done. A cost-effective two-method MPPT control scheme is proposed in this paper to track the maximum power point (MPP) at both low and high irradiation, by combining a Constant Voltage (CV) method and modified PO algorithm...
Jinchao Li; Lin Chen; Yuwei Xiang; Jinying Li; Dong Peng
2018-01-01
Electric grid investment demand analysis is significant to reasonably arranging construction funds for the electric grid and reduce costs. This paper used the panel data of electric grid investment from 23 provinces of China between 2004 and 2016 as samples to analyze the influence between electric grid investment demand and GDP, population scale, social electricity consumption, installed electrical capacity, and peak load based on co-integration tests. We find that GDP and peak load have pos...
Operational flash flood forecasting platform based on grid technology
Thierion, V.; Ayral, P.-A.; Angelini, V.; Sauvagnargues-Lesage, S.; Nativi, S.; Payrastre, O.
2009-04-01
Flash flood events of south of France such as the 8th and 9th September 2002 in the Grand Delta territory caused important economic and human damages. Further to this catastrophic hydrological situation, a reform of flood warning services have been initiated (set in 2006). Thus, this political reform has transformed the 52 existing flood warning services (SAC) in 22 flood forecasting services (SPC), in assigning them territories more hydrological consistent and new effective hydrological forecasting mission. Furthermore, national central service (SCHAPI) has been created to ease this transformation and support local services in their new objectives. New functioning requirements have been identified: - SPC and SCHAPI carry the responsibility to clearly disseminate to public organisms, civil protection actors and population, crucial hydrologic information to better anticipate potential dramatic flood event, - a new effective hydrological forecasting mission to these flood forecasting services seems essential particularly for the flash floods phenomenon. Thus, models improvement and optimization was one of the most critical requirements. Initially dedicated to support forecaster in their monitoring mission, thanks to measuring stations and rainfall radar images analysis, hydrological models have to become more efficient in their capacity to anticipate hydrological situation. Understanding natural phenomenon occuring during flash floods mainly leads present hydrological research. Rather than trying to explain such complex processes, the presented research try to manage the well-known need of computational power and data storage capacities of these services. Since few years, Grid technology appears as a technological revolution in high performance computing (HPC) allowing large-scale resource sharing, computational power using and supporting collaboration across networks. Nowadays, EGEE (Enabling Grids for E-science in Europe) project represents the most important
Developing Information Power Grid Based Algorithms and Software
Dongarra, Jack
1998-01-01
This was an exploratory study to enhance our understanding of problems involved in developing large scale applications in a heterogeneous distributed environment. It is likely that the large scale applications of the future will be built by coupling specialized computational modules together. For example, efforts now exist to couple ocean and atmospheric prediction codes to simulate a more complete climate system. These two applications differ in many respects. They have different grids, the data is in different unit systems and the algorithms for inte,-rating in time are different. In addition the code for each application is likely to have been developed on different architectures and tend to have poor performance when run on an architecture for which the code was not designed, if it runs at all. Architectural differences may also induce differences in data representation which effect precision and convergence criteria as well as data transfer issues. In order to couple such dissimilar codes some form of translation must be present. This translation should be able to handle interpolation from one grid to another as well as construction of the correct data field in the correct units from available data. Even if a code is to be developed from scratch, a modular approach will likely be followed in that standard scientific packages will be used to do the more mundane tasks such as linear algebra or Fourier transform operations. This approach allows the developers to concentrate on their science rather than becoming experts in linear algebra or signal processing. Problems associated with this development approach include difficulties associated with data extraction and translation from one module to another, module performance on different nodal architectures, and others. In addition to these data and software issues there exists operational issues such as platform stability and resource management.
Energy Technology Data Exchange (ETDEWEB)
Schmidtner, Theo [LEW Verteilnetz GmbH, Augsburg (Germany)
2012-07-01
With the penetration of the grids with renewable energy sources, approaches for planning based on standardized customer behavior run to their limits. In addition to the energy supply based on profiles at the network nodes, additional power requirements must be considered (photovoltaic power, micro-CHP, controlled hot water preparation, E-Mobility memory, etc.). The consequence of this is, that the grid requirements are to determine for each grid node individually. These tasks could be accompolished by probabilistic methods. This methodology is emerging over discrete process by the following results. Unlike discrete methods, not only the possible operation points of a subnetwork are determined, but also the probability of occurrence will be calculated. (orig.)
Croatia's rural areas - renewable energy based electricity generation for isolated grids
Directory of Open Access Journals (Sweden)
Protic Sonja Maria
2014-01-01
Full Text Available Several Western Balkan states face the consequences of the Yugoslavian war, which left hometowns with dilapidated electricity grid connections, a high average age of power plant capacities and low integration of renewable energy sources, grid bottlenecks and a lack of competition. In order to supply all households with electricity, UNDP Croatia did a research on decentralized supply systems based on renewable energy sources. Decentralized supply systems offer cheaper electricity connections and provide faster support to rural development. This paper proposes a developed methodology to financially compare isolated grid solutions that primarily use renewable energies to an extension of the public electricity network to small regions in Croatia. Isolated grid supply proves to be very often a preferable option. Furthermore, it points out the lack of a reliable evaluation of non-monetizable aspects and promotes a new interdisciplinary approach.
Grid connection of active stall wind farms using a VSC based DC transmission system
DEFF Research Database (Denmark)
Iov, F.; Sørensen, Poul Ejnar; Hansen, A.D.
2005-01-01
Currently, there is an increasing trend to connect large MW wind farms to the transmission system. Requirements that focus on the influence of the farms on the grid stability and power quality, and on the control capabilities of wind farms have already been established. The main trends of modern...... wind turbines/farms are clearly the variable speed operation and a grid connection through a power electronic interface, especially using doubly fed induction generators. Using power electronics the control capabilities of these wind turbines/farms are extended and thus the grid requirements...... are fulfilled. However, the traditional squirrel-cage generators based wind turbines/wind farms directly connected to the grid have less control capabilities. These wind turbines/farms cannot regulate their production and contribute to power system stability. A DC transmission system for connection...
Modeling and Control of VSC based DC Connection for Active Stall Wind Farms to Grid
DEFF Research Database (Denmark)
Iov, Florin; Sorensen, Poul; Hansen, Anca-Daniela
2005-01-01
Currently, there is an increasing trend to connect large MW wind farms to the transmission system. Therefore the power system becomes more vulnerable and dependent on the wind energy production. At the same time requirements that focus on the influence of the farms on the grid stability and power...... quality, and on the control capabilities of wind farms have already been established. The main trends of modem wind turbines/farms are clearly the variable speed operation and a grid connection through a power electronic interface, especially using doubly-fed induction generators. Using power electronics...... the control capabilities of these wind turbines/farms are extended and thus the grid requirements are fulfilled. However, the traditional squirrel-cage generators based wind turbines/wind farms directly connected to the grid does not have such control capabilities. They produce maximum possible power...
Modelling and Control of VSC based DC Connection for Active Stall Wind Farms to Grid
DEFF Research Database (Denmark)
Iov, Florin; Sørensen, Poul; Hansen, Anca Daniela
2006-01-01
Currently, there is an increasing trend to connect large MW wind farms to the transmission system. Therefore the power system becomes more vulnerable and dependent on the wind energy production. At the same time requirements that focus on the influence of the farms on the grid stability and power...... quality, and on the control capabilities of wind farms have already been established. The main trends of modern wind turbines/farms are clearly the variable speed operation and a grid connection through a power electronic interface, especially using doubly-fed induction generators. Using power electronics...... the control capabilities of these wind turbines/farms are extended and thus the grid requirements are fulfilled. However, the traditional squirrel-cage generators based wind turbines/wind farms directly connected to the grid does not have such control capabilities. They produce maximum possible power...
H∞ Robust Current Control for DFIG Based Wind Turbine subject to Grid Voltage Distortions
DEFF Research Database (Denmark)
Wang, Yun; Wu, Qiuwei; Gong, Wenming
2016-01-01
This paper proposes an H∞ robust current controller for doubly fed induction generator (DFIG) based wind turbines (WTs) subject to grid voltage distortions. The controller is to mitigate the impact of the grid voltage distortions on rotor currents with DFIG parameter perturbation. The grid voltage...... distortions considered include asymmetric voltage dips and grid background harmonics. An uncertain DFIG model is developed with uncertain factors originating from distorted stator voltage, and changed generator parameters due to the flux saturation effect, the skin effect, etc. Weighting functions...... are designed to efficiently track the unbalanced current components and the 5th and 7th background harmonics. The robust stability (RS) and robust performance (RP) of the proposed controller are verified by the structured singular value µ. The performance of the H∞ robust current controller was demonstrated...
Agent-based Decentralization of Applications in Distributed Smart Grid Systems
DEFF Research Database (Denmark)
Kienesberger, Georg; Xypolytou, Evangelia; Marchgraber, Jurgen
2015-01-01
systems (DMACS) and aims to give an overview on the different requirements and challenges on the way from current centralized control systems to DMACS. Therefore, different ICT scenarios and MAS topologies are employed to discuss the decentralization of three exemplary smart grid applications: voltage......Smart grid technology promises to prepare today’s power systems for the challenges of the future by extensive integration of information and communication technology (ICT). One key aspect is the control paradigm which will have to be shifted from completely centralized control systems to more...... dezentralized concepts in order to adapt to the distributed nature of smart grids. Multi-agent systems (MAS) are a very promising approach for designing distributed, decentralized systems, naturally also in the field of smart grids. This work introduces the notion of decentralized multi-agent-based control...
Active Power Quality Improvement Strategy for Grid-connected Microgrid Based on Hierarchical Control
DEFF Research Database (Denmark)
Wei, Feng; Sun, Kai; Guan, Yajuan
2018-01-01
proposes an active, unbalanced, and harmonic GCC suppression strategy based on hierarchical theory. The voltage error between the bus of the DCGC-MG and the grid’s PCC was transformed to the dq frame. On the basis of the grid, an additional compensator, which consists of multiple resonant voltage......When connected to a distorted grid utility, droop-controlled grid-connected microgrids (DCGC-MG) exhibit low equivalent impedance. The harmonic and unbalanced voltage at the point of common coupling (PCC) deteriorates the power quality of the grid-connected current (GCC) of DCGC-MG. This work...... regulators, was then added to the original secondary control to generate the negative fundamental and unbalanced harmonic voltage reference. Proportional integral and multiple resonant controllers were adopted as voltage controller at the original primary level to improve the voltage tracking performance...
The grid-scan. A novel method for a less biased broadband SED modeling
Energy Technology Data Exchange (ETDEWEB)
Doert, Marlene [Ruhr-Universitaet Bochum (Germany); Paneque, David [Max-Planck-Institut fuer Physik, Muenchen (Germany)
2016-07-01
We present a novel strategy for the modeling of blazar SEDs in the scope of current emission models: the grid-scan modeling. With an unbiased and uniform scan of the multi-dimensional parameter space of current emission models, e.g. the SSC model, and an a posteriori evaluation of the model-to-data agreement, independent sets of equally good model representations can be found. This variety of models generally includes different valid physical scenarios, which offer a more complete picture than single ''best'' solutions found by minimizers or the often-practised ''eyeball-fit''. Additionally, the grid-scan also allows to quantify how well the individual model parameters get constrained by any given experimental data set. The method will be introduced using the example of multi-wavelength spectral measurements of the blazar Markarian 501.
AVQS: Attack Route-Based Vulnerability Quantification Scheme for Smart Grid
Directory of Open Access Journals (Sweden)
Jongbin Ko
2014-01-01
Full Text Available A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification.
AVQS: attack route-based vulnerability quantification scheme for smart grid.
Ko, Jongbin; Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik
2014-01-01
A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification.
Presenting automatic demand control (ADC) as a new frequency control method in smart grids
Energy Technology Data Exchange (ETDEWEB)
Ameli, Mohammad Taghi; Ameli, Ali; Maleki, Hamed [Power and Water Univ. of Technology, Tehran (Iran, Islamic Republic of); Mobarhani, Alireza [Amir Kabir Univ. of Technology, Tehran (Iran, Islamic Republic of)
2011-07-01
Electric power is the most important part of human energy consumption, and since it has a low storage coefficient it is of particular importance to establish a balance in demand and generation in order to modify and optimize consumption patterns. The expression ''Smart Grid'' can be used to describe technologies which are applied for the automation and optimization of the generation, transmission and distribution network management. This technology requires the integration of information and communication technology in electrical network operation. This paper will study how the Smart Grid capabilites can be used to manage and optimize power network consumption, as well as how the consumers collaboration process using an AGC (Automatic Generation Control) system acts to provide secondary frequency control through consumed load shedding. Reestablishing the balance between demand and generation in critical network operation is also investigated. In other words, utilizing the above method, a new system, ADC (Automatic Demand Control), is offered for use alongside the AGC system in Smart Grids to restore the frequency value to its nominal value. This can lead to a more competitive electricity market and reduce the system storage while maintaining adequate security and network reliability. One of the benefits of the proposed methods described in this paper, in addition to restoring the frequency value to its nominal value, is lower costs and a more economic network operation through reducing fuel and CO2 emission by managing and controlling the amount of the consumed load in the Smart Grid. Also consumers are given the capability to have a specific timetable to economize on their energy requirements which will also reduce the load peak and the network losses. (orig.)
Directory of Open Access Journals (Sweden)
Geert Deconinck
2015-12-01
Full Text Available The charging of electric vehicles (EVs impacts the distribution grid, and its cost depends on the price of electricity when charging. An aggregator that is responsible for a large fleet of EVs can use a market-based control algorithm to coordinate the charging of these vehicles, in order to minimize the costs. In such an optimization, the operational parameters of the distribution grid, to which the EVs are connected, are not considered. This can lead to violations of the technical constraints of the grid (e.g., under-voltage, phase unbalances; for example, because many vehicles start charging simultaneously when the price is low. An optimization that simultaneously takes the economic and technical aspects into account is complex, because it has to combine time-driven control at the market level with event-driven control at the operational level. Different case studies investigate under which circumstances the market-based control, which coordinates EV charging, conflicts with the operational constraints of the distribution grid. Especially in weak grids, phase unbalance and voltage issues arise with a high share of EVs. A low-level voltage droop controller at the charging point of the EV can be used to avoid many grid constraint violations, by reducing the charge power if the local voltage is too low. While this action implies a deviation from the cost-optimal operating point, it is shown that this has a very limited impact on the business case of an aggregator, and is able to comply with the technical distribution grid constraints, even in weak distribution grids with many EVs.
DEFF Research Database (Denmark)
Göksu, Ömer; Teodorescu, Remus; Bak, Claus Leth
2014-01-01
In recent grid codes for wind power integration, wind turbines are required to stay connected during grid faults even when the grid voltage drops down to zero; and also to inject reactive current in proportion to the voltage drop. However, a physical fact, instability of grid-connected converters...... during current injection to very low (close to zero) voltage faults, has been omitted, i.e., failed to be noticed in the previous wind power studies and grid code revisions. In this paper, the instability of grid side converters of wind turbines defined as loss of synchronism (LOS), where the wind...... turbines lose synchronism with the grid fundamental frequency (e.g., 50 Hz) during very deep voltage sags, is explored with its theory, analyzed and a novel stability solution based on PLL frequency is proposed; and both are verified with power system simulations and by experiments on a grid...
Gerya, T.; Duretz, T.; May, D. A.
2012-04-01
We present new 2D adaptive mesh refinement (AMR) algorithm based on stress-conservative finite-differences formulated for non-uniform rectangular staggered grid. The refinement approach is based on a repetitive cell splitting organized via a quad-tree construction (every parent cell is split into 4 daughter cells of equal size). Irrespective of the level of resolution every cell has 5 staggered nodes (2 horizontal velocities, 2 vertical velocities and 1 pressure) for which respective governing equations, boundary conditions and interpolation equations are formulated. The connectivity of the grid is achieved via cross-indexing of grid cells and basic nodal points located in their corners: four corner nodes are indexed for every cell and up to 4 surrounding cells are indexed for every node. The accuracy of the approach depends critically on the formulation of the stencil used at the "hanging" velocity nodes located at the boundaries between different levels of resolution. Most accurate results are obtained for the scheme based on the volume flux balance across the resolution boundary combined with stress-based interpolation of velocity orthogonal to the boundary. We tested this new approach with a number of 2D variable viscosity analytical solutions. Our tests demonstrate that the adaptive staggered grid formulation has convergence properties similar to those obtained in case of a standard, non-adaptive staggered grid formulation. This convergence is also achieved when resolution boundary crosses sharp viscosity contrast interfaces. The convergence rates measured are found to be insensitive to scenarios when the transition in grid resolution crosses sharp viscosity contrast interfaces. We compared various grid refinement strategies based on distribution of different field variables such as viscosity, density and velocity. According to these tests the refinement allows for significant (0.5-1 order of magnitude) increase in the computational accuracy at the same
Yang, Xiaohuan; Huang, Yaohuan; Dong, Pinliang; Jiang, Dong; Liu, Honghui
2009-01-01
The spatial distribution of population is closely related to land use and land cover (LULC) patterns on both regional and global scales. Population can be redistributed onto geo-referenced square grids according to this relation. In the past decades, various approaches to monitoring LULC using remote sensing and Geographic Information Systems (GIS) have been developed, which makes it possible for efficient updating of geo-referenced population data. A Spatial Population Updating System (SPUS) is developed for updating the gridded population database of China based on remote sensing, GIS and spatial database technologies, with a spatial resolution of 1 km by 1 km. The SPUS can process standard Moderate Resolution Imaging Spectroradiometer (MODIS L1B) data integrated with a Pattern Decomposition Method (PDM) and an LULC-Conversion Model to obtain patterns of land use and land cover, and provide input parameters for a Population Spatialization Model (PSM). The PSM embedded in SPUS is used for generating 1 km by 1 km gridded population data in each population distribution region based on natural and socio-economic variables. Validation results from finer township-level census data of Yishui County suggest that the gridded population database produced by the SPUS is reliable. PMID:22399959
Directory of Open Access Journals (Sweden)
Xiaohuan Yang
2009-02-01
Full Text Available The spatial distribution of population is closely related to land use and land cover (LULC patterns on both regional and global scales. Population can be redistributed onto geo-referenced square grids according to this relation. In the past decades, various approaches to monitoring LULC using remote sensing and Geographic Information Systems (GIS have been developed, which makes it possible for efficient updating of geo-referenced population data. A Spatial Population Updating System (SPUS is developed for updating the gridded population database of China based on remote sensing, GIS and spatial database technologies, with a spatial resolution of 1 km by 1 km. The SPUS can process standard Moderate Resolution Imaging Spectroradiometer (MODIS L1B data integrated with a Pattern Decomposition Method (PDM and an LULC-Conversion Model to obtain patterns of land use and land cover, and provide input parameters for a Population Spatialization Model (PSM. The PSM embedded in SPUS is used for generating 1 km by 1 km gridded population data in each population distribution region based on natural and socio-economic variables. Validation results from finer township-level census data of Yishui County suggest that the gridded population database produced by the SPUS is reliable.
A Method for a Multi-Platform Approach to Generate Gridded Surface Evaporation
Badger, A.; Livneh, B.; Small, E. E.; Abolafia-Rosenzweig, R.
2017-12-01
Evapotranspiration is an integral component of the surface water balance. While there are many estimates of evapotranspiration, there are fewer estimates that partition evapotranspiration into evaporation and transpiration components. This study aims to generate a CONUS-scale, observationally-based soil evaporation dataset by using the time difference of surface soil moisture by Soil Moisture Active Passive (SMAP) satellite with adjustments for transpiration and a bottom flux out of the surface layer. In concert with SMAP, the Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite, North American Land Data Assimilation Systems (NLDAS) and the Hydrus-1D model are used to fully analyze the surface water balance. A biome specific estimate of the total terrestrial ET is calculated through a variation of the Penman-Monteith equation with NLDAS forcing and NLDAS Noah Model output for meteorological variables. A root density restriction and SMAP-based soil moisture restriction are applied to obtain terrestrial transpiration estimates. By forcing Hydrus-1D with NLDAS meteorology and our terrestrial transpiration estimates, an estimate of the flux between the soil surface and root zone layers (qbot) will dictate the proportion of water that is available for soil evaporation. After constraining transpiration and the bottom flux from the surface layer, we estimate soil evaporation as the residual of the surface water balance. Application of this method at Fluxnet sites shows soil evaporation estimates of approximately 03 mm/day and less than ET estimates. Expanding this methodology to produce a gridded product for CONUS, and eventually a global-scale product, will enable a better understanding of water balance processes and contribute a dataset to validate land-surface model's surface flux processes.
A decentralized control method for direct smart grid control of refrigeration systems
DEFF Research Database (Denmark)
Shafiei, Seyed Ehsan; Izadi-Zamanabadi, Roozbeh; Rasmussen, Henrik
2013-01-01
. No model information is required in this method. The temperature limits/constraints are respected. A novel adaptive saturation filter is also proposed to increase the system flexibility in storing and delivering the energy. The proposed control strategy is applied to a simulation benchmark that fairly......A decentralized control method is proposed to govern the electrical power consumption of supermarket refrigeration systems (SRS) for demand-side management in the smart grid. The control structure is designed in a supervisory level to provide desired set-points for distributed level controllers...
AMP: a science-driven web-based application for the TeraGrid
Woitaszek, M.; Metcalfe, T.; Shorrock, I.
The Asteroseismic Modeling Portal (AMP) provides a web-based interface for astronomers to run and view simulations that derive the properties of Sun-like stars from observations of their pulsation frequencies. In this paper, we describe the architecture and implementation of AMP, highlighting the lightweight design principles and tools used to produce a functional fully-custom web-based science application in less than a year. Targeted as a TeraGrid science gateway, AMP's architecture and implementation are intended to simplify its orchestration of TeraGrid computational resources. AMP's web-based interface was developed as a traditional standalone database-backed web application using the Python-based Django web development framework, allowing us to leverage the Django framework's capabilities while cleanly separating the user interface development from the grid interface development. We have found this combination of tools flexible and effective for rapid gateway development and deployment.
Zhang, G.; Lu, D.; Ye, M.; Gunzburger, M.
2011-12-01
Markov Chain Monte Carlo (MCMC) methods have been widely used in many fields of uncertainty analysis to estimate the posterior distributions of parameters and credible intervals of predictions in the Bayesian framework. However, in practice, MCMC may be computationally unaffordable due to slow convergence and the excessive number of forward model executions required, especially when the forward model is expensive to compute. Both disadvantages arise from the curse of dimensionality, i.e., the posterior distribution is usually a multivariate function of parameters. Recently, sparse grid method has been demonstrated to be an effective technique for coping with high-dimensional interpolation or integration problems. Thus, in order to accelerate the forward model and avoid the slow convergence of MCMC, we propose a new method for uncertainty analysis based on sparse grid interpolation and quasi-Monte Carlo sampling. First, we construct a polynomial approximation of the forward model in the parameter space by using the sparse grid interpolation. This approximation then defines an accurate surrogate posterior distribution that can be evaluated repeatedly at minimal computational cost. Second, instead of using MCMC, a quasi-Monte Carlo method is applied to draw samples in the parameter space. Then, the desired probability density function of each prediction is approximated by accumulating the posterior density values of all the samples according to the prediction values. Our method has the following advantages: (1) the polynomial approximation of the forward model on the sparse grid provides a very efficient evaluation of the surrogate posterior distribution; (2) the quasi-Monte Carlo method retains the same accuracy in approximating the PDF of predictions but avoids all disadvantages of MCMC. The proposed method is applied to a controlled numerical experiment of groundwater flow modeling. The results show that our method attains the same accuracy much more efficiently
Resource management and scheduling policy based on grid for AIoT
Zou, Yiqin; Quan, Li
2017-07-01
This paper has a research on resource management and scheduling policy based on grid technology for Agricultural Internet of Things (AIoT). Facing the situation of a variety of complex and heterogeneous agricultural resources in AIoT, it is difficult to represent them in a unified way. But from an abstract perspective, there are some common models which can express their characteristics and features. Based on this, we proposed a high-level model called Agricultural Resource Hierarchy Model (ARHM), which can be used for modeling various resources. It introduces the agricultural resource modeling method based on this model. Compared with traditional application-oriented three-layer model, ARHM can hide the differences of different applications and make all applications have a unified interface layer and be implemented without distinction. Furthermore, it proposes a Web Service Resource Framework (WSRF)-based resource management method and the encapsulation structure for it. Finally, it focuses on the discussion of multi-agent-based AG resource scheduler, which is a collaborative service provider pattern in multiple agricultural production domains.
Raju, R. Srinivasa; Ramesh, K.
2018-05-01
The purpose of this work is to study the grid independence of finite element method on MHD Casson fluid flow past a vertically inclined plate filled in a porous medium in presence of chemical reaction, heat absorption, an external magnetic field and slip effect has been investigated. For this study of grid independence, a mathematical model is developed and analyzed by using appropriate mathematical technique, called finite element method. Grid study discussed with the help of numerical values of velocity, temperature and concentration profiles in tabular form. avourable comparisons with previously published work on various special cases of the problem are obtained.
A New Family of Multilevel Grid Connected Inverters Based on Packed U Cell Topology.
Pakdel, Majid; Jalilzadeh, Saeid
2017-09-29
In this paper a novel packed U cell (PUC) based multilevel grid connected inverter is proposed. Unlike the U cell arrangement which consists of two power switches and one capacitor, in the proposed converter topology a lower DC power supply from renewable energy resources such as photovoltaic arrays (PV) is used as a base power source. The proposed topology offers higher efficiency and lower cost using a small number of power switches and a lower DC power source which is supplied from renewable energy resources. Other capacitor voltages are extracted from the base lower DC power source using isolated DC-DC power converters. The operation principle of proposed transformerless multilevel grid connected inverter is analyzed theoretically. Operation of the proposed multilevel grid connected inverter is verified through simulation studies. An experimental prototype using STM32F407 discovery controller board is performed to verify the simulation results.
Directory of Open Access Journals (Sweden)
Ying Zhang
2015-02-01
Full Text Available A method combining rotor actuator disk model and embedded grid technique is presented in this paper, aimed at predicting the flow fields and aerodynamic characteristics of tilt rotor aircraft in conversion mode more efficiently and effectively. In this method, rotor’s influence is considered in terms of the momentum it impacts to the fluid around it; transformation matrixes among different coordinate systems are deduced to extend actuator method’s utility to conversion mode flow fields’ calculation. Meanwhile, an embedded grid system is designed, in which grids generated around fuselage and actuator disk are regarded as background grid and minor grid respectively, and a new method is presented for ‘donor searching’ and ‘hole cutting’ during grid assembling. Based on the above methods, flow fields of tilt rotor aircraft in conversion mode are simulated, with three-dimensional Navier–Stokes equations discretized by a second-order upwind finite-volume scheme and an implicit lower–upper symmetric Gauss–Seidel (LU-SGS time-stepping scheme. Numerical results demonstrate that the proposed CFD method is very effective in simulating the conversion mode flow fields of tilt rotor aircraft.
Directory of Open Access Journals (Sweden)
Alberto Sendin
2015-11-01
Full Text Available Powerline communications (PLC-based smart meter deployments are now a reality in many regions of the world. Although PLC elements are generally incorporated in smart meters and data concentrators, the underlying PLC network allows the integration of other smart grid services directly over it. The remote control capabilities that automation programs need and are today deployed over their medium voltage (MV grid, can be extended to the low voltage (LV grid through these existing PLC networks. This paper demonstrates the capabilities of narrowband high data rate (NB HDR PLC technologies deployed over LV grids for smart metering purposes to support internet protocol internet protocol (IP communications in the LV grid. The paper demonstrates these possibilities with the presentation of the simulation and laboratory results of IP communications over international telecommunication union: ITU-T G.9904 PLC technology, and the definition of a PLC Network Management System based on a simple network management protocol (SNMP management information base (MIB definition and applicable use cases.
A multi-agent based distributed energy management scheme for smart grid applications
International Nuclear Information System (INIS)
Radhakrishnan, Bharat Menon; Srinivasan, Dipti
2016-01-01
A multi-agent system based distributed EMS (energy management system) is proposed in this paper to perform optimal energy allocation and management for grids comprising of renewables, storage and distributed generation. The reliable and efficient operation of smart grids is slackened due to the presence of intermittent renewables. As the load demand and renewables are uncertain throughout the day, an energy management system is essential to ensure grid stability and achieve reductions in operation costs and CO_2 emissions. The main objectives of the proposed algorithm is to maintain power balance in the system and to ensure long cycle life for storage units by controlling their SOC (state of charge). The proposed EMS scheme is tested and validated on a practical test system, which replicates a small-scale smart grid with a variety of distributed sources, storage devices, loads, power electronic converters, and SCADA (supervisory control and data acquisition) system. This system is also connected to the utility grid and the power exchange is controlled with the help of a battery system through a fuzzy based decision-making framework. The proposed algorithm is also extensively verified and tested using a series of sensitivity analyses and benchmarking with existing algorithms. - Highlights: • An agent-based decentralized algorithm is proposed to perform energy management. • The multi-agent system approach eliminates the possibility of single point failures. • Adaptive fuzzy systems make the decision making more reliable, flexible and robust. • The algorithm is extensively tested and validated using sensitivity and verification analyses.
An improved control method of power electronic converters in low voltage micro-grid
DEFF Research Database (Denmark)
Xiaofeng, Sun; Qingqiu, Lv; Yanjun, Tian
2011-01-01
control of the voltage and frequency deviation added to power references could achieve secondary regulation of the voltage and frequency. In this paper, the authors take the steady and transient transition of grid connecting and disconnecting of the micro-grid as an example, and demonstrate......With the increasing acceptance, micro-grid, combined with distributed generation (DG), may be operated in two modes: grid-connected mode and island mode. In grid connected mode, energy management is the control objective. While in island mode, the control of Voltage and frequency will take...... the place. The conventional droop control can perform the energy management in grid-connected mode, but may not so effective when micro-grid transferring between grid-connected mode and island mode. The paper analysis the micro-grid in different modes (Conventional droop control, Voltage reference...
Design of Current-Controller with PR-regulator for LCL-Filter Based Grid-Connected Converter
DEFF Research Database (Denmark)
Zeng, Guohong; Rasmussen, Tonny Wederberg
2010-01-01
In the application of LCL-filter based converters, the structure and parameters of current-controller is very important for the system stability and output current quality. This paper presents a filter-capacitor current feedback control scheme for grid-connected converter. The controller...... is consisted of a proportional-resonance regulator and a proportional regulator. Unlike the existing control strategy with unit capacitor current feedback, the proposed method applies the proportional regulator to the feedback path, which can decouple these two regulators, and simplify the tuning process...... of the control strategy and the proposed current controller design method are verified by the simulation results of a 50kVA grid-connected inverter....
Modular Multilevel Converters Based Variable Speed Wind Turbines for Grid Faults
DEFF Research Database (Denmark)
Deng, Fujin; Liu, Dong; Wang, Yanbo
2016-01-01
in the dc-link of the power converter to improve system performance, but also ensure the grid-side current balancing to increase the generated power of the wind turbine under the unbalanced grid fault, in comparison with the conventional VSWT based on BTB three-level NPC converters. The simulation studies......The modular multilevel converter (MMC) becomes attractive in the medium- and high-power application with high modularity. In this paper, the MMC is proposed to be applied in the variable speed wind turbine (VSWT) based on the full-scale back-to-back (BTB) power converter, where the generator...
A Simplified Control Method for Tie-Line Power of DC Micro-Grid
Yanbo Che; Jinhuan Zhou; Tingjun Lin; Wenxun Li; Jianmei Xu
2018-01-01
Compared with the AC micro-grid, the DC micro-grid has low energy loss and no issues of frequency stability, which makes it more accessible for distributed energy. Thus, the DC micro-grid has good potential for development. A variety of renewable energy is included in the DC micro-grid, which is easily affected by the environment, causing fluctuation of the DC voltage. For grid-connected DC micro-grid with droop control strategy, the tie-line power is affected by fluctuations in the DC voltag...
DEFF Research Database (Denmark)
Rodríguez, P.; Luna, A.; Muñoz-Aguilar, R. S.
2012-01-01
synchronization method for three-phase three-wire networks, namely dual second-order generalized integrator (SOGI) frequency-locked loop. The method is based on two adaptive filters, implemented by using a SOGI on the stationary αβ reference frame, and it is able to perform an excellent estimation......Grid synchronization algorithms are of great importance in the control of grid-connected power converters, as fast and accurate detection of the grid voltage parameters is crucial in order to implement stable control strategies under generic grid conditions. This paper presents a new grid...
Energy Technology Data Exchange (ETDEWEB)
Richard C. Martineau; Ray A. Berry
2003-04-01
A new semi-implicit pressure-based Computational Fluid Dynamics (CFD) scheme for simulating a wide range of transient and steady, inviscid and viscous compressible flow on unstructured finite elements is presented here. This new CFD scheme, termed the PCICEFEM (Pressure-Corrected ICE-Finite Element Method) scheme, is composed of three computational phases, an explicit predictor, an elliptic pressure Poisson solution, and a semiimplicit pressure-correction of the flow variables. The PCICE-FEM scheme is capable of second-order temporal accuracy by incorporating a combination of a time-weighted form of the two-step Taylor-Galerkin Finite Element Method scheme as an explicit predictor for the balance of momentum equations and the finite element form of a time-weighted trapezoid rule method for the semi-implicit form of the governing hydrodynamic equations. Second-order spatial accuracy is accomplished by linear unstructured finite element discretization. The PCICE-FEM scheme employs Flux-Corrected Transport as a high-resolution filter for shock capturing. The scheme is capable of simulating flows from the nearly incompressible to the high supersonic flow regimes. The PCICE-FEM scheme represents an advancement in mass-momentum coupled, pressurebased schemes. The governing hydrodynamic equations for this scheme are the conservative form of the balance of momentum equations (Navier-Stokes), mass conservation equation, and total energy equation. An operator splitting process is performed along explicit and implicit operators of the semi-implicit governing equations to render the PCICE-FEM scheme in the class of predictor-corrector schemes. The complete set of semi-implicit governing equations in the PCICE-FEM scheme are cast in this form, an explicit predictor phase and a semi-implicit pressure-correction phase with the elliptic pressure Poisson solution coupling the predictor-corrector phases. The result of this predictor-corrector formulation is that the pressure Poisson
DEFF Research Database (Denmark)
Li, Zipeng; Jiang, Aiting; Shen, Pan
2016-01-01
, this paper presents a systematic design method for the LCL-LC filtered grid-connected photovoltaic (PV) system. With this method, controller parameters and the active damping feedback coefficient are easily obtained by specifying the system stability and dynamic performance indices, and it is more convenient......-frequency harmonics attenuation ability, but the resonant problem affects the system stability remarkably. In this paper, active damping based on the capacitor voltage feedback is proposed using the concept of the equivalent virtual impedance in parallel with the capacitor. With the consideration of system delay...... to optimize the system performance according to the predefined satisfactory region. Finally, the simulation results are presented to validate the proposed design method and control scheme....
Energy Technology Data Exchange (ETDEWEB)
Bai, Huaiyong; Wang, Zhimin; Zhang, Luyu; Chen, Jinxiang; Zhang, Guohui, E-mail: guohuizhang@pku.edu.cn
2016-12-21
A method for measuring the electron drift velocity in working gas is proposed. Based on the cathode and the anode signal waveforms of the Frisch-grid ionization chamber, the electron drift velocity is extracted. With this method, the electron drift velocities in Ar + 10% CH{sub 4}, Ar + 3.5% CO{sub 2} and Kr + 2.7% CO{sub 2} gases have been measured and the results are compared with the existing measurements and the simulating results. Using this method, the electron drift velocity can be monitored throughout the experiment of charged particle without bothering the measurement of other parameters, such as the energy and orientation.
An adaptive multi-agent-based approach to smart grids control and optimization
Energy Technology Data Exchange (ETDEWEB)
Carvalho, Marco [Florida Institute of Technology, Melbourne, FL (United States); Perez, Carlos; Granados, Adrian [Institute for Human and Machine Cognition, Ocala, FL (United States)
2012-03-15
In this paper, we describe a reinforcement learning-based approach to power management in smart grids. The scenarios we consider are smart grid settings where renewable power sources (e.g. Photovoltaic panels) have unpredictable variations in power output due, for example, to weather or cloud transient effects. Our approach builds on a multi-agent system (MAS)-based infrastructure for the monitoring and coordination of smart grid environments with renewable power sources and configurable energy storage devices (battery banks). Software agents are responsible for tracking and reporting power flow variations at different points in the grid, and to optimally coordinate the engagement of battery banks (i.e. charge/idle/discharge modes) to maintain energy requirements to end-users. Agents are able to share information and coordinate control actions through a parallel communications infrastructure, and are also capable of learning, from experience, how to improve their response strategies for different operational conditions. In this paper we describe our approach and address some of the challenges associated with the communications infrastructure for distributed coordination. We also present some preliminary results of our first simulations using the GridLAB-D simulation environment, created by the US Department of Energy (DoE) at Pacific Northwest National Laboratory (PNNL). (orig.)
Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids
Nielsen, Eric J.; Diskin, Boris; Yamaleev, Nail K.
2009-01-01
An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.
Errami, Y.; Obbadi, A.; Sahnoun, S.; Benhmida, M.; Ouassaid, M.; Maaroufi, M.
2016-07-01
This paper presents nonlinear backstepping control for Wind Power Generation System (WPGS) based Permanent Magnet Synchronous Generator (PMSG) and connected to utility grid. The block diagram of the WPGS with PMSG and the grid side back-to-back converter is established with the dq frame of axes. This control scheme emphasises the regulation of the dc-link voltage and the control of the power factor at changing wind speed. Besides, in the proposed control strategy of WPGS, Maximum Power Point Tracking (MPPT) technique and pitch control are provided. The stability of the regulators is assured by employing Lyapunov analysis. The proposed control strategy for the system has been validated by MATLAB simulations under varying wind velocity and the grid fault condition. In addition, a comparison of simulation results based on the proposed Backstepping strategy and conventional Vector Control is provided.
A methodology toward manufacturing grid-based virtual enterprise operation platform
Tan, Wenan; Xu, Yicheng; Xu, Wei; Xu, Lida; Zhao, Xianhua; Wang, Li; Fu, Liuliu
2010-08-01
Virtual enterprises (VEs) have become one of main types of organisations in the manufacturing sector through which the consortium companies organise their manufacturing activities. To be competitive, a VE relies on the complementary core competences among members through resource sharing and agile manufacturing capacity. Manufacturing grid (M-Grid) is a platform in which the production resources can be shared. In this article, an M-Grid-based VE operation platform (MGVEOP) is presented as it enables the sharing of production resources among geographically distributed enterprises. The performance management system of the MGVEOP is based on the balanced scorecard and has the capacity of self-learning. The study shows that a MGVEOP can make a semi-automated process possible for a VE, and the proposed MGVEOP is efficient and agile.
A Data Transmission Algorithm Based on Dynamic Grid Division for Coal Goaf Temperature Monitoring
Directory of Open Access Journals (Sweden)
Qingsong Hu
2014-01-01
Full Text Available WSN (wireless sensor network is a perfect tool of temperature monitoring in coal goaf. Based on the three-zone theory of goaf, the GtmWSN model is proposed, and its dynamic features are analyzed. Accordingly, a data transmission scheme, named DTDGD, is worked out. Firstly, sink nodes conduct dynamic grid division on the GtmWSN according to virtual semicircle. Secondly, each node will confirm to which grid it belongs based on grid number. Finally, data will be delivered to sink nodes with greedy forward and hole avoidance. Simulation results and field data showed that the GtmWSN and DTDGD satisfied the lifetime need of goaf temperature monitoring.
DEFF Research Database (Denmark)
Hashemi Toghroljerdi, Seyedmostafa; Østergaard, Jacob; Yang, Guangya
2014-01-01
In this paper a new method is proposed to determine the minimum energy storage required to be installed at different locations of a low voltage (LV) grid in order to prevent the overvoltage due to high residential photovoltaic (PV) penetration. The method is based on the voltage sensitivity...... with different occurrence probabilities without involving the time-series studies problems. The proposed method is capable of modeling output power of PV panels with different orientations as well as different electric vehicle (EV) charging patterns....
Control of Solar Power Plants Connected Grid with Simple Calculation Method on Residential Homes
Kananda, Kiki; Nazir, Refdinal
2017-12-01
One of the most compatible renewable energy in all regions to apply is solar energy. Solar power plants can be built connected to existing or stand-alone power grids. In assisting the residential electricity in which there is a power grid, then a small scale solar energy power plants is very appropriate. However, the general constraint of solar energy power plants is still low in terms of efficiency. Therefore, this study will explain how to control the power of solar power plants more optimally, which is expected to reactive power to zero to raise efficiency. This is a continuation of previous research using Newton Rapshon control method. In this study we introduce a simple method by using ordinary mathematical calculations of solar-related equations. In this model, 10 PV modules type of ND T060M1 with a 60 Wp capacity are used. The calculations performed using MATLAB Simulink provide excellent value. For PCC voltage values obtained a stable quantity of approximately 220 V. At a maximum irradiation condition of 1000 W / m2, the reactive power value of Q solar generating system maximum 20.48 Var and maximum active power of 417.5 W. In the condition of lower irradiation, value of reactive power Q almost close to zero 0.77Var. This simple mathematical method can provide excellent quality control power values.
Grid refinement for aeroacoustics in the lattice Boltzmann method: A directional splitting approach
Gendre, Félix; Ricot, Denis; Fritz, Guillaume; Sagaut, Pierre
2017-08-01
This study focuses on grid refinement techniques for the direct simulation of aeroacoustics, when using weakly compressible lattice Boltzmann models, such as the D3Q19 athermal velocity set. When it comes to direct noise computation, very small errors on the density or pressure field may have great negative consequences. Even strong acoustic density fluctuations have indeed a clearly lower amplitude than the hydrodynamic ones. This work deals with such very weak spurious fluctuations that emerge when a vortical structure crosses a refinement interface, which may contaminate the resulting aeroacoustic field. We show through an extensive literature review that, within the framework described above, this issue has never been addressed before. To tackle this problem, we develop an alternative algorithm and compare its behavior to a classical one, which fits our in-house vertex-centered data structure. Our main idea relies on a directional splitting of the continuous discrete velocity Boltzmann equation, followed by an integration over specific characteristics. This method can be seen as a specific coupling between finite difference and lattice Boltzmann, locally on the interface between the two grids. The method is assessed considering two cases: an acoustic pulse and a convected vortex. We show how very small errors on the density field arise and propagate throughout the domain when a vortical flow crosses the refinement interface. We also show that an increased free stream Mach number (but still within the weakly compressible regime) strongly deteriorates the situation, although the magnitude of the errors may remain negligible for purely aerodynamic studies. A drastically reduced level of error for the near-field spurious noise is obtained with our approach, especially for under-resolved simulations, a situation that is crucial for industrial applications. Thus, the vortex case is proved useful for aeroacoustic validations of any grid refinement algorithm.
A controller design method for 3 phase 4 wire grid connected VSI ...
Indian Academy of Sciences (India)
and grid connected VSI with LCL filter is a higher order system. ... as LCL filter is used as an interface between VSI and electric grid to meet ... chronous reference frame (SRF) theory where independent control of active and reactive power.
Interaction Admittance Based Modeling of Multi-Paralleled Grid-Connected Inverter with LCL-Filter
DEFF Research Database (Denmark)
Lu, Minghui; Blaabjerg, Frede; Wang, Xiongfei
2016-01-01
This paper investigates the mutual interaction and stability issues of multi-parallel LCL-filtered inverters. The stability and power quality of multiple grid-tied inverters are gaining more and more research attention as the penetration of renewables increases. In this paper, interactions...... and coupling effects among the multi-paralleled inverters and power grid are explicitly revealed. An Interaction Admittance concept is introduced to express and model the interaction through the physical admittances of the network. Compared to the existing modeling methods, the proposed analysis provides...
International Nuclear Information System (INIS)
Jin, J; Kong, V; Zhang, H
2016-01-01
Purpose: Three dimensional (3D) Grid Therapy using MLC-based inverse-planning has been proposed to achieve the features of both conformal radiotherapy and spatially fractionated radiotherapy, which may deliver very high dose in a single fraction to portions of a large tumor with relatively low normal tissue dose. However, the technique requires relatively long delivery time. This study aims to develop a collimator-based 3D grid therapy technique. Here we report the development of the technique in a small animal radiation research platform. Methods: Similar as in the MLC-based technique, 9 non-coplanar beams in special channeling directions were used for the 3D grid therapy technique. Two specially designed grid collimators were fabricated, and one of them was selectively used to match the corresponding gantry/couch angles so that the grid opening of all 9 beams are met in the 3D space in the target. A stack of EBT3 films were used as 3D dosimetry to demonstrate the 3D grid-like dose distribution in the target. Three 1-mm beams were delivered to the stack of films in the area outside the target for alignment when all the films were scanned to reconstruct the 3D dosimtric image. Results: 3D film dosimetry showed a lattice-like dose distribution in the 3D target as well as in the axial, sagittal and coronal planes. The dose outside the target also showed a grid like dose distribution, and the average dose gradually decreased with the distance to the target. The peak to valley ratio was approximately 5:1. The delivery time was 7 minutes for 18 Gy peak dose, comparing to 6 minutes to deliver a 18-Gy 3D conformal plan. Conclusion: We have demonstrated the feasibility of the collimator-based 3D grid therapy technique which can significantly reduce delivery time comparing to MLC-based inverse planning technique.
Energy Technology Data Exchange (ETDEWEB)
Jin, J; Kong, V; Zhang, H [Georgia Regents University, Augusta, GA (Georgia)
2016-06-15
Purpose: Three dimensional (3D) Grid Therapy using MLC-based inverse-planning has been proposed to achieve the features of both conformal radiotherapy and spatially fractionated radiotherapy, which may deliver very high dose in a single fraction to portions of a large tumor with relatively low normal tissue dose. However, the technique requires relatively long delivery time. This study aims to develop a collimator-based 3D grid therapy technique. Here we report the development of the technique in a small animal radiation research platform. Methods: Similar as in the MLC-based technique, 9 non-coplanar beams in special channeling directions were used for the 3D grid therapy technique. Two specially designed grid collimators were fabricated, and one of them was selectively used to match the corresponding gantry/couch angles so that the grid opening of all 9 beams are met in the 3D space in the target. A stack of EBT3 films were used as 3D dosimetry to demonstrate the 3D grid-like dose distribution in the target. Three 1-mm beams were delivered to the stack of films in the area outside the target for alignment when all the films were scanned to reconstruct the 3D dosimtric image. Results: 3D film dosimetry showed a lattice-like dose distribution in the 3D target as well as in the axial, sagittal and coronal planes. The dose outside the target also showed a grid like dose distribution, and the average dose gradually decreased with the distance to the target. The peak to valley ratio was approximately 5:1. The delivery time was 7 minutes for 18 Gy peak dose, comparing to 6 minutes to deliver a 18-Gy 3D conformal plan. Conclusion: We have demonstrated the feasibility of the collimator-based 3D grid therapy technique which can significantly reduce delivery time comparing to MLC-based inverse planning technique.
Ziebarth, John P.; Meyer, Doug
1992-01-01
The coordination is examined of necessary resources, facilities, and special personnel to provide technical integration activities in the area of computational fluid dynamics applied to propulsion technology. Involved is the coordination of CFD activities between government, industry, and universities. Current geometry modeling, grid generation, and graphical methods are established to use in the analysis of CFD design methodologies.
Interior point algorithm-based power flow optimisation of a combined AC and DC multi-terminal grid
Directory of Open Access Journals (Sweden)
Farhan Beg
2015-01-01
Full Text Available The high cost of power electronic equipment, lower reliability and poor power handling capacity of the semiconductor devices had stalled the deployment of systems based on DC (multi-terminal direct current system (MTDC networks. The introduction of voltage source converters (VSCs for transmission has renewed the interest in the development of large interconnected grids based on both alternate current (AC and DC transmission networks. Such a grid platform also realises the added advantage of integrating the renewable energy sources into the grid. Thus a grid based on DC MTDC network is a possible solution to improve energy security and check the increasing supply demand gap. An optimal power solution for combined AC and DC grids obtained by the solution of the interior point algorithm is proposed in this study. Multi-terminal HVDC grids lie at the heart of various suggested transmission capacity increases. A significant difference is observed when MTDC grids are solved for power flows in place of conventional AC grids. This study deals with the power flow problem of a combined MTDC and an AC grid. The AC side is modelled with the full power flow equations and the VSCs are modelled using a connecting line, two generators and an AC node. The VSC and the DC losses are also considered. The optimisation focuses on several different goals. Three different scenarios are presented in an arbitrary grid network with ten AC nodes and five converter stations.
Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids.
Directory of Open Access Journals (Sweden)
Liping Zhang
Full Text Available In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham-Yahalom logic.
Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids.
Zhang, Liping; Tang, Shanyu; Luo, He
2016-01-01
In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham-Yahalom logic.
An adaptive-gridding solution method for the 2D unsteady Euler equations
J. Wackers (Jeroen)
2003-01-01
textabstractAdaptive grid refinement is a technique to speed up the numerical solution of partial differential equations by starting these calculations on a coarse basic grid and refining this grid only there where the solution requires this, e.g. in areas with large gradients. This technique has
Jakeman, J. D.; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.
International Nuclear Information System (INIS)
Jakeman, J.D.; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation
Commutative discrete filtering on unstructured grids based on least-squares techniques
International Nuclear Information System (INIS)
Haselbacher, Andreas; Vasilyev, Oleg V.
2003-01-01
The present work is concerned with the development of commutative discrete filters for unstructured grids and contains two main contributions. First, building on the work of Marsden et al. [J. Comp. Phys. 175 (2002) 584], a new commutative discrete filter based on least-squares techniques is constructed. Second, a new analysis of the discrete commutation error is carried out. The analysis indicates that the discrete commutation error is not only dependent on the number of vanishing moments of the filter weights, but also on the order of accuracy of the discrete gradient operator. The results of the analysis are confirmed by grid-refinement studies
Modelling security properties in a grid-based operating system with anti-goals
Arenas, A.; Aziz, Benjamin; Bicarregui, J.; Matthews, B.; Yang, E.
2008-01-01
In this paper, we discuss the use of formal requirements-engineering techniques in capturing security requirements for a Grid-based operating system. We use KAOS goal model to represent two security goals for Grid systems, namely authorisation and single-sign on authentication. We apply goal-refinement to derive security requirements for these two security goals and we develop a model of antigoals and show how system vulnerabilities and threats to the security goals can arise from such anti-m...
Air Pollution Monitoring and Mining Based on Sensor Grid in London
Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John
2008-01-01
In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a two-layer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm. PMID:27879895
Air Pollution Monitoring and Mining Based on Sensor Grid in London
Directory of Open Access Journals (Sweden)
John Hassard
2008-06-01
Full Text Available In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a twolayer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm.
Implementation of fuzzy-sliding mode based control of a grid connected photovoltaic system.
Menadi, Abdelkrim; Abdeddaim, Sabrina; Ghamri, Ahmed; Betka, Achour
2015-09-01
The present work describes an optimal operation of a small scale photovoltaic system connected to a micro-grid, based on both sliding mode and fuzzy logic control. Real time implementation is done through a dSPACE 1104 single board, controlling a boost chopper on the PV array side and a voltage source inverter (VSI) on the grid side. The sliding mode controller tracks permanently the maximum power of the PV array regardless of atmospheric condition variations, while The fuzzy logic controller (FLC) regulates the DC-link voltage, and ensures via current control of the VSI a quasi-total transit of the extracted PV power to the grid under a unity power factor operation. Simulation results, carried out via Matlab-Simulink package were approved through experiment, showing the effectiveness of the proposed control techniques. Copyright © 2015. Published by Elsevier Ltd.
Air Pollution Monitoring and Mining Based on Sensor Grid in London.
Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John
2008-06-01
In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a twolayer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm.
ANALYSIS AND VALIDATION OF GRID DEM GENERATION BASED ON GAUSSIAN MARKOV RANDOM FIELD
Directory of Open Access Journals (Sweden)
F. J. Aguilar
2016-06-01
Full Text Available Digital Elevation Models (DEMs are considered as one of the most relevant geospatial data to carry out land-cover and land-use classification. This work deals with the application of a mathematical framework based on a Gaussian Markov Random Field (GMRF to interpolate grid DEMs from scattered elevation data. The performance of the GMRF interpolation model was tested on a set of LiDAR data (0.87 points/m2 provided by the Spanish Government (PNOA Programme over a complex working area mainly covered by greenhouses in Almería, Spain. The original LiDAR data was decimated by randomly removing different fractions of the original points (from 10% to up to 99% of points removed. In every case, the remaining points (scattered observed points were used to obtain a 1 m grid spacing GMRF-interpolated Digital Surface Model (DSM whose accuracy was assessed by means of the set of previously extracted checkpoints. The GMRF accuracy results were compared with those provided by the widely known Triangulation with Linear Interpolation (TLI. Finally, the GMRF method was applied to a real-world case consisting of filling the LiDAR-derived DSM gaps after manually filtering out non-ground points to obtain a Digital Terrain Model (DTM. Regarding accuracy, both GMRF and TLI produced visually pleasing and similar results in terms of vertical accuracy. As an added bonus, the GMRF mathematical framework makes possible to both retrieve the estimated uncertainty for every interpolated elevation point (the DEM uncertainty and include break lines or terrain discontinuities between adjacent cells to produce higher quality DTMs.
Directory of Open Access Journals (Sweden)
Imtiaz Parvez
2016-08-01
Full Text Available In smart cities, advanced metering infrastructure (AMI of the smart grid facilitates automated metering, control and monitoring of power distribution by employing a wireless network. Due to this wireless nature of communication, there exist potential threats to the data privacy in AMI. Decoding the energy consumption reading, injecting false data/command signals and jamming the networks are some hazardous measures against this technology. Since a smart meter possesses limited memory and computational capability, AMI demands a light, but robust security scheme. In this paper, we propose a localization-based key management system for meter data encryption. Data are encrypted by the key associated with the coordinate of the meter and a random key index. The encryption keys are managed and distributed by a trusted third party (TTP. Localization of the meter is proposed by a method based on received signal strength (RSS using the maximum likelihood estimator (MLE. The received packets are decrypted at the control center with the key mapped with the key index and the meter’s coordinates. Additionally, we propose the k-nearest neighbors (kNN algorithm for node/meter authentication, capitalizing further on data transmission security. Finally, we evaluate the security strength of a data packet numerically for our method.
Low-voltage ride-through of a droop-based three-phase four-wire grid-connected microgrid
DEFF Research Database (Denmark)
Sadeghkhani, Iman; Golshan, Mohamad Esmail Hamedani; Mehrizi-Sani, Ali
2018-01-01
system operations during abnormal grid conditions. The objective of this paper is to propose an LVRT scheme that improves the power quality of the entire microgrid. The developed method is implemented as the controller of the interface voltage-sourced converter (VSC) of a distributed energy resource...... control of each phase and does not require calculation of symmetrical components. Moreover, it can be employed in the VSC control systems with various reference frames and is effective for droop-based grid-connected microgrids with both single-phase and three-phase four-wire configurations. The proposed......The ability of riding through the grid disturbances can increase the integration of microgrids into the distribution system. Consequently, a grid-connected microgrid should provide ancillary services such as low voltage ride-through (LVRT) capability and reactive power support to sustain the power...
DEFF Research Database (Denmark)
Bai, Haofeng; Wang, Xiongfei; Blaabjerg, Frede
2017-01-01
Harmonic instability is threatening the operation of renewable energy based power plants where multiple gridconnected VSIs are connected in parallel. To analyze and improve the stability of the grid-connected VSIs, the real part of the output admittance of the VSIs is first investigated......-connected VSIs can improve the stability of the renewable power plant....
CSIR Research Space (South Africa)
Ogbodo, EU
2017-09-01
Full Text Available The cognitive radio-based sensor network (CRSN) is envisioned as a strong driver in the development of modern power system smart grids (SGs). This can address the spectrum limitation in the sensor nodes due to interference cause by other wireless...
A game theory strategy to integrate distributed agent-based functions in smart grids
Nguyen, P.H.; Kling, W.L.; Ribeiro, P.F.
2013-01-01
The increasing incorporation of renewable energy sources and the emergence of new forms and patterns of electricity consumption are contributing to the upsurge in the complexity of power grids. A bottom-up-agent-based approach is able to handle the new environment, such that the system reliability
Lyapunov-Based Control Scheme for Single-Phase Grid-Connected PV Central Inverters
Meza, C.; Biel, D.; Jeltsema, D.; Scherpen, J. M. A.
A Lyapunov-based control scheme for single-phase single-stage grid-connected photovoltaic central inverters is presented. Besides rendering the closed-loop system globally stable, the designed controller is able to deal with the system uncertainty that depends on the solar irradiance. A laboratory
DEFF Research Database (Denmark)
Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang
2014-01-01
consisting in LCL filters and cables. Both grid and converter current controls are analyzed. The frequency region, within which the system may be destabilized, is identified by means of the impedance-based stability analysis and frequency-domain passivity theory. A proportional derivative control strategy...
Arogyasree: An Enhanced Grid-Based Approach to Mobile Telemedicine
Directory of Open Access Journals (Sweden)
Sriram Kailasam
2010-01-01
Full Text Available A typical telemedicine system involves a small set of hospitals providing remote healthcare services to a small section of the society using dedicated nodal centers. However, in developing nations like India where majority live in rural areas that lack specialist care, we envision the need for much larger Internet-based telemedicine systems that would enable a large pool of doctors and hospitals to collectively provide healthcare services to entire populations. We propose a scalable, Internet-based P2P architecture for telemedicine integrating multiple hospitals, mobile medical specialists, and rural mobile units. This system, based on the store and forward model, features a distributed context-aware scheduler for providing timely and location-aware telemedicine services. Other features like zone-based overlay structure and persistent object space abstraction make the system efficient and easy to use. Lastly, the system uses the existing internet infrastructure and supports mobility at doctor and patient ends.
Optimal RTP Based Power Scheduling for Residential Load in Smart Grid
Joshi, Hemant I.; Pandya, Vivek J.
2015-12-01
To match supply and demand, shifting of load from peak period to off-peak period is one of the effective solutions. Presently flat rate tariff is used in major part of the world. This type of tariff doesn't give incentives to the customers if they use electrical energy during off-peak period. If real time pricing (RTP) tariff is used, consumers can be encouraged to use energy during off-peak period. Due to advancement in information and communication technology, two-way communications is possible between consumers and utility. To implement this technique in smart grid, home energy controller (HEC), smart meters, home area network (HAN) and communication link between consumers and utility are required. HEC interacts automatically by running an algorithm to find optimal energy consumption schedule for each consumer. However, all the consumers are not allowed to shift their load simultaneously during off-peak period to avoid rebound peak condition. Peak to average ratio (PAR) is considered while carrying out minimization problem. Linear programming problem (LPP) method is used for minimization. The simulation results of this work show the effectiveness of the minimization method adopted. The hardware work is in progress and the program based on the method described here will be made to solve real problem.
Witantyo; Setyawan, David
2018-03-01
In a lead acid battery industry, grid casting is a process that has high defect and thickness variation level. DMAIC (Define-Measure-Analyse-Improve-Control) method and its tools will be used to improve the casting process. In the Define stage, it is used project charter and SIPOC (Supplier Input Process Output Customer) method to map the existent problem. In the Measure stage, it is conducted a data retrieval related to the types of defect and the amount of it, also the grid thickness variation that happened. And then the retrieved data is processed and analyzed by using 5 Why’s and FMEA method. In the Analyze stage, it is conducted a grid observation that experience fragile and crack type of defect by using microscope showing the amount of oxide Pb inclusion in the grid. Analysis that is used in grid casting process shows the difference of temperature that is too high between the metal fluid and mold temperature, also the corking process that doesn’t have standard. The Improve stage is conducted a fixing process which generates the reduction of grid variation thickness level and defect/unit level from 9,184% to 0,492%. In Control stage, it is conducted a new working standard determination and already fixed control process.
A Subdivision Method to Unify the Existing Latitude and Longitude Grids
Directory of Open Access Journals (Sweden)
Chengqi Cheng
2016-09-01
Full Text Available As research on large regions of earth progresses, many geographical subdivision grids have been established for various spatial applications by different industries and disciplines. However, there is no clear relationship between the different grids and no consistent spatial reference grid that allows for information exchange and comprehensive application. Sharing and exchange of data across departments and applications are still at a bottleneck. It would represent a significant step forward to build a new grid model that is inclusive of or compatible with most of the existing geodesic grids and that could support consolidation and exchange within existing data services. This study designs a new geographical coordinate global subdividing grid with one dimension integer coding on a 2n tree (GeoSOT that has 2n coordinate subdivision characteristics (global longitude and latitude subdivision and can form integer hierarchies at degree, minute, and second levels. This grid has the multi-dimensional quadtree hierarchical characteristics of a digital earth grid, but also provides good consistency with applied grids, such as those used in mapping, meteorology, oceanography and national geographical, and three-dimensional digital earth grids. No other existing grid codes possess these characteristics.
International Nuclear Information System (INIS)
Du, Z C; Lv, C F; Hong, M S
2006-01-01
A new error modelling and identification method based on the cross grid encoder is proposed in this paper. Generally, there are 21 error components in the geometric error of the 3 axis NC machine tools. However according our theoretical analysis, the squareness error among different guide ways affects not only the translation error component, but also the rotational ones. Therefore, a revised synthetic error model is developed. And the mapping relationship between the error component and radial motion error of round workpiece manufactured on the NC machine tools are deduced. This mapping relationship shows that the radial error of circular motion is the comprehensive function result of all the error components of link, worktable, sliding table and main spindle block. Aiming to overcome the solution singularity shortcoming of traditional error component identification method, a new multi-step identification method of error component by using the Cross Grid Encoder measurement technology is proposed based on the kinematic error model of NC machine tool. Firstly, the 12 translational error components of the NC machine tool are measured and identified by using the least square method (LSM) when the NC machine tools go linear motion in the three orthogonal planes: XOY plane, XOZ plane and YOZ plane. Secondly, the circular error tracks are measured when the NC machine tools go circular motion in the same above orthogonal planes by using the cross grid encoder Heidenhain KGM 182. Therefore 9 rotational errors can be identified by using LSM. Finally the experimental validation of the above modelling theory and identification method is carried out in the 3 axis CNC vertical machining centre Cincinnati 750 Arrow. The entire 21 error components have been successfully measured out by the above method. Research shows the multi-step modelling and identification method is very suitable for 'on machine measurement'
Nuclear reactor fuel element assembly spacer grid and method of making
International Nuclear Information System (INIS)
Chetter, J.
1975-01-01
A cellular fuel element assembly spacer grid is described which provides for resilient bracing of fuel pins in the cells of the grid by bow spring locating members projecting inside the cells of the grid to hold the fuel pins against opposed rigid stops also projecting inside the cells of the grid. The grid comprises two tiers each formed from intersecting strip members defining cells which are penetrated by the fuel pins and arranged parallel to one another but spaced apart. The bow spring locating members extend longitudinally between the two tiers and have end ferrules which are a sliding fit on locating members which extend longitudinally from the facing inner edges of the strip members forming the two tiers. The grid tiers are fabricated individually by heat bonding the intersecting strip members prior to assembling the tiers into the spacer grid. (U.S.)
International Nuclear Information System (INIS)
Dmitriy Y. Anistratov; Adrian Constantinescu; Loren Roberts; William Wieselquist
2007-01-01
This is a project in the field of fundamental research on numerical methods for solving the particle transport equation. Numerous practical problems require to use unstructured meshes, for example, detailed nuclear reactor assembly-level calculations, large-scale reactor core calculations, radiative hydrodynamics problems, where the mesh is determined by hydrodynamic processes, and well-logging problems in which the media structure has very complicated geometry. Currently this is an area of very active research in numerical transport theory. main issues in developing numerical methods for solving the transport equation are the accuracy of the numerical solution and effectiveness of iteration procedure. The problem in case of unstructured grids is that it is very difficult to derive an iteration algorithm that will be unconditionally stable
Y.J. Hassen (Yunus); B. Koren (Barry)
2008-01-01
textabstractIn this paper, an accurate method, using a novel immersed-boundary approach, is presented for numerically solving linear, scalar convection problems. As is standard in immersed-boundary methods, moving bodies are embedded in a fixed Cartesian grid. The essence of the present method is
A framework supporting the development of a Grid portal for analysis based on ROI.
Ichikawa, K; Date, S; Kaishima, T; Shimojo, S
2005-01-01
In our research on brain function analysis, users require two different simultaneous types of processing: interactive processing to a specific part of data and high-performance batch processing to an entire dataset. The difference between these two types of processing is in whether or not the analysis is for data in the region of interest (ROI). In this study, we propose a Grid portal that has a mechanism to freely assign computing resources to the users on a Grid environment according to the users' two different types of processing requirements. We constructed a Grid portal which integrates interactive processing and batch processing by the following two mechanisms. First, a job steering mechanism controls job execution based on user-tagged priority among organizations with heterogeneous computing resources. Interactive jobs are processed in preference to batch jobs by this mechanism. Second, a priority-based result delivery mechanism that administrates a rank of data significance. The portal ensures a turn-around time of interactive processing by the priority-based job controlling mechanism, and provides the users with quality of services (QoS) for interactive processing. The users can access the analysis results of interactive jobs in preference to the analysis results of batch jobs. The Grid portal has also achieved high-performance computation of MEG analysis with batch processing on the Grid environment. The priority-based job controlling mechanism has been realized to freely assign computing resources to the users' requirements. Furthermore the achievement of high-performance computation contributes greatly to the overall progress of brain science. The portal has thus made it possible for the users to flexibly include the large computational power in what they want to analyze.
Micro grids toward the smart grid
International Nuclear Information System (INIS)
Guerrero, J.
2011-01-01
Worldwide electrical grids are expecting to become smarter in the near future, with interest in Microgrids likely to grow. A microgrid can be defined as a part of the grid with elements of prime energy movers, power electronics converters, distributed energy storage systems and local loads, that can operate autonomously but also interacting with main grid. Thus, the ability of intelligent Microgrids to operate in island mode or connected to the grid will be a keypoint to cope with new functionalities and the integration of renewable energy resources. The functionalities expected for these small grids are: black start operation, frequency and voltage stability, active and reactive power flow control, active power filter capabilities, and storage energy management. In this presentation, a review of the main concepts related to flexible Microgrids will be introduced, with examples of real Microgrids. AC and DC Microgrids to integrate renewable and distributed energy resources will also be presented, as well as distributed energy storage systems, and standardization issues of these Microgrids. Finally, Microgrid hierarchical control will be analyzed looking at three different levels: i) a primary control based on the droop method, including an output impedance virtual loop; ii) a secondary control, which enables restoring any deviations produced by the primary control; and iii) a tertiary control to manage the power flow between the microgrid and the external electrical distribution system.
Directory of Open Access Journals (Sweden)
Jinchao Li
2018-01-01
Full Text Available Electric grid investment demand analysis is significant to reasonably arranging construction funds for the electric grid and reduce costs. This paper used the panel data of electric grid investment from 23 provinces of China between 2004 and 2016 as samples to analyze the influence between electric grid investment demand and GDP, population scale, social electricity consumption, installed electrical capacity, and peak load based on co-integration tests. We find that GDP and peak load have positive influences on electric grid investment demand, but the impact of population scale, social electricity consumption, and installed electrical capacity on electric grid investment is not remarkable. We divide different regions in China into the eastern region, central region, and western region to analyze influence factors of electric grid investment, finally obtaining key factors in the eastern, central, and western regions. In the end, according to the analysis of key factors, we make a prediction about China’s electric grid investment for 2020 in different scenarios. The results offer a certain understanding for the development trend of China’s electric grid investment and contribute to the future development of electric grid investment.
Directory of Open Access Journals (Sweden)
Saeed Ahmed
2017-01-01
Full Text Available The research in industry and academia on smart grids is predominantly focused on the regulation of generated power and management of its consumption. Because transmission of bulk-generated power to the consumer is immensely reliant on secure and efficient transmission grids, comprising huge electrical and mechanical assets spanning a vast geographic area, there is an impending need to focus on the transmission grids as well. Despite the challenges in wireless technologies for SGs, cognitive radio networks are considered promising for provisioning of communications services to SGs. In this paper, first, we present an IEEE 802.22 wireless regional area network cognitive radio-based network model for smart monitoring of transmission lines. Then, for a prolonged lifetime of battery finite monitoring network, we formulate the spectrum resource allocation problem as an energy efficiency maximization problem, which is a nonlinear integer programming problem. To solve this problem in an easier way, we propose an energy-efficient resource-assignment scheme based on the Hungarian method. Performance analysis shows that, compared to a pure opportunistic assignment scheme with a throughput maximization objective and compared to a random scheme, the proposed scheme results in an enhanced lifetime while consuming less battery energy without compromising throughput performance.
A derived heuristics based multi-objective optimization procedure for micro-grid scheduling
Li, Xin; Deb, Kalyanmoy; Fang, Yanjun
2017-06-01
With the availability of different types of power generators to be used in an electric micro-grid system, their operation scheduling as the load demand changes with time becomes an important task. Besides satisfying load balance constraints and the generator's rated power, several other practicalities, such as limited availability of grid power and restricted ramping of power output from generators, must all be considered during the operation scheduling process, which makes it difficult to decide whether the optimization results are accurate and satisfactory. In solving such complex practical problems, heuristics-based customized optimization algorithms are suggested. However, due to nonlinear and complex interactions of variables, it is difficult to come up with heuristics in such problems off-hand. In this article, a two-step strategy is proposed in which the first task deciphers important heuristics about the problem and the second task utilizes the derived heuristics to solve the original problem in a computationally fast manner. Specifically, the specific operation scheduling is considered from a two-objective (cost and emission) point of view. The first task develops basic and advanced level knowledge bases offline from a series of prior demand-wise optimization runs and then the second task utilizes them to modify optimized solutions in an application scenario. Results on island and grid connected modes and several pragmatic formulations of the micro-grid operation scheduling problem clearly indicate the merit of the proposed two-step procedure.
Model Penilaian Risiko Kebakaran Perkotaan dengan Sistem Pakar berbasis GIS Grid-Based
Directory of Open Access Journals (Sweden)
Sabrillah Taridala
2017-12-01
Full Text Available Abstrak Kota Kendari merupakan suatu kawasan perkotaan dengan luas wilayah terkecil dan jumlah penduduk terpadat di Provinsi Sulawesi Tenggara. Bencana kebakaran di Kota Kendari sering terjadi dan telah menimbulkan kerugian yang cukup banyak, hingga menelan korban jiwa. Penelitian ini bertujuan untuk melakukan penilaian terhadap tingkat risiko bencana kebakaran di Kota Kendari dengan menggunakan pendekatan Sistem Pakar (Expert System berbasis Sistem Informasi Geografis (SIG. Hasil penelitian menujukkan bahwa tingkat risiko kebakaran di Kota Kendari terklasifikasi dalam empat kelas, yaitu tingkat risiko kebakaran sangat tinggi sebanyak 206 grid, tingkat risiko kebakaran tinggi sebanyak 6.815 grid, tingkat risiko kebakaran rendah sebanyak 46.175 grid, dan tingkat risiko kebakaran sangat rendah sebanyak 54.640 grid. Tingkat risiko kebakaran sangat tinggi di Kota Kendari merupakan kawasan terbangun yang berpenduduk padat dengan dominasi jenis material bangunan kayu dan campuran, terletak pada daerah dengan morfologi berbukit, dan aksesibilitas hanya dilalui oleh jalan umum yang memiliki lebar jalur lalu lintas <4 meter. Wilayah dengan tingkat risiko sangat rendah merupakan kawasan non-terbangun yang didominasi oleh badan air (sungai dan rawa, hutan dan sebagian kawasan pertanian (kebun. Kawasan tersebut bermorfologi datar, berbukit dan bergunung. Abstract Kendari city is an urban area with the smallest area and the densest population in Southeast Sulawesi Province. Fire disaster in the city of Kendari often occurs and has caused considerable losses, to claim casualties. This study aims to assess the risk degree of fire disaster in Kendari City using Expert System Approach based on Geographic Information System (GIS. The results showed that the degrees of fire risk in Kendari City were classified into four classes, ie very high fire risk degree, 206 grid, high fire risk degree, 6,815 grid, low fire risk degree, 46.175 grid, and very low fire risk, as
Zero-Axis Virtual Synchronous Coordinate Based Current Control Strategy for Grid-Connected Inverter
Directory of Open Access Journals (Sweden)
Longyue Yang
2018-05-01
Full Text Available Unbalanced power has a great influence on the safe and stable operation of the distribution network system. The static power compensator, which is essentially a grid-connected inverter, is an effective solution to the three-phase power imbalance problem. In order to solve the tracking error problem of zero-sequence AC current signals, a novel control strategy based on zero-axis virtual synchronous coordinates is proposed in this paper. By configuring the operation of filter transmission matrices, a specific orthogonal signal is obtained for zero-axis reconstruction. In addition, a controller design scheme based on this method is proposed. Compared with the traditional zero-axis direct control, this control strategy is equivalent to adding a frequency tuning module by the orthogonal signal generator. The control gain of an open loop system can be equivalently promoted through linear transformation. With its clear mathematical meaning, zero- sequence current control can be controlled with only a first-order linear controller. Through reasonable parameter design, zero steady-state error, fast response and strong stability can be achieved. Finally, the performance of the proposed control strategy is verified by both simulations and experiments.
International Nuclear Information System (INIS)
Yasutaka Sakurai; Takashi Yabe; Tomomasa Ohkubo; Yoichi Ogata; Michitsugu Mori
2005-01-01
Generally, there are two coordinate systems in computation of fluid dynamics: curvilinear coordinate or Cartesian coordinate. The former is suitable for describing complex figure, but it cannot get high accuracy. On the other hand, the latter can easily increase the accuracy, but it needs a large number of grids to describe complex figure. In this paper, we propose a new grid generating method, the Soroban grid, which has large capability for treating complex figure and does not lose the accuracy. Coupling this grid generating method and the CIP method, we can get flexibility to describe complex figure without loosing (3rd order) accuracy. Since the Soroban grid is unstructured grid, we can not use the staggered grid and had better use the co-location grid. Although the fluid computation in the co-location grid is usually unstable, we succeeded in calculating the multi-phase flow that has large density difference applying the C-CUP method to this grid system. In this paper, we shall introduce this grid generating method and apply these methods to simulate the steam injector of power plant. (authors)
DEFF Research Database (Denmark)
Alsmadi, Yazan M.; Xu, Longya; Blaabjerg, Frede
2015-01-01
) capability of wind turbines during grid faults is one of the core requirements to ensure stability in the power grid during transients. The doubly-fed induction generators (DFIGs) offer several advantages when utilized in wind turbines, but discussions about their LVRT capabilities are limited. This paper...... presents a comprehensive study of the LVRT of grid-connected DFIG-based wind turbines. It provides a detailed investigation of the transient characteristics and the dynamic behavior of DFIGs during symmetrical and asymmetrical grid voltage sags. A detailed theoretical study supported by computer......Power generation and grid stability have become key issues in the last decade. The high penetration of large capacity wind generation into the electric power grid has led to serious concerns about their influence on the dynamic behavior of power systems. The Low-Voltage Ride-Through (LVRT...
Aerodynamic performance of a small vertical axis wind turbine using an overset grid method
Bangga, Galih; Solichin, Mochammad; Daman, Aida; Sa'adiyah, Devy; Dessoky, Amgad; Lutz, Thorsten
2017-08-01
The present paper aims to asses the aerodynamic performance of a small vertical axis wind turbine operating at a small wind speed of 5 m/s for 6 different tip speed ratios (λ=2-7). The turbine consists of two blades constructed using the NACA 0015 airfoil. The study is carried out using computational fluid dynamics (CFD) methods employing an overset grid approach. The (URANS) SST k - ω is used as the turbulence model. For the preliminary study, simulations of the NACA 0015 under static conditions for a broad range of angle of attack and a rotating two-bladed VAWT are carried out. The results are compared with available measurement data and a good agreement is obtained. The simulations demonstrate that the maximum power coefficient attained is 0.45 for λ=4. The aerodynamic loads hysteresis are presented showing that the dynamic stall effect decreases with λ.
A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains
Johansen, Hans; Colella, Phillip
1998-11-01
We present a numerical method for solving Poisson's equation, with variable coefficients and Dirichlet boundary conditions, on two-dimensional regions. The approach uses a finite-volume discretization, which embeds the domain in a regular Cartesian grid. We treat the solution as a cell-centered quantity, even when those centers are outside the domain. Cells that contain a portion of the domain boundary use conservative differencing of second-order accurate fluxes on each cell volume. The calculation of the boundary flux ensures that the conditioning of the matrix is relatively unaffected by small cell volumes. This allows us to use multigrid iterations with a simple point relaxation strategy. We have combined this with an adaptive mesh refinement (AMR) procedure. We provide evidence that the algorithm is second-order accurate on various exact solutions and compare the adaptive and nonadaptive calculations.
GSHR-Tree: a spatial index tree based on dynamic spatial slot and hash table in grid environments
Chen, Zhanlong; Wu, Xin-cai; Wu, Liang
2008-12-01
Computation Grids enable the coordinated sharing of large-scale distributed heterogeneous computing resources that can be used to solve computationally intensive problems in science, engineering, and commerce. Grid spatial applications are made possible by high-speed networks and a new generation of Grid middleware that resides between networks and traditional GIS applications. The integration of the multi-sources and heterogeneous spatial information and the management of the distributed spatial resources and the sharing and cooperative of the spatial data and Grid services are the key problems to resolve in the development of the Grid GIS. The performance of the spatial index mechanism is the key technology of the Grid GIS and spatial database affects the holistic performance of the GIS in Grid Environments. In order to improve the efficiency of parallel processing of a spatial mass data under the distributed parallel computing grid environment, this paper presents a new grid slot hash parallel spatial index GSHR-Tree structure established in the parallel spatial indexing mechanism. Based on the hash table and dynamic spatial slot, this paper has improved the structure of the classical parallel R tree index. The GSHR-Tree index makes full use of the good qualities of R-Tree and hash data structure. This paper has constructed a new parallel spatial index that can meet the needs of parallel grid computing about the magnanimous spatial data in the distributed network. This arithmetic splits space in to multi-slots by multiplying and reverting and maps these slots to sites in distributed and parallel system. Each sites constructs the spatial objects in its spatial slot into an R tree. On the basis of this tree structure, the index data was distributed among multiple nodes in the grid networks by using large node R-tree method. The unbalance during process can be quickly adjusted by means of a dynamical adjusting algorithm. This tree structure has considered the
A new solution-adaptive grid generation method for transonic airfoil flow calculations
Nakamura, S.; Holst, T. L.
1981-01-01
The clustering algorithm is controlled by a second-order, ordinary differential equation which uses the airfoil surface density gradient as a forcing function. The solution to this differential equation produces a surface grid distribution which is automatically clustered in regions with large gradients. The interior grid points are established from this surface distribution by using an interpolation scheme which is fast and retains the desirable properties of the original grid generated from the standard elliptic equation approach.
Adaptive Parameter Optimization of a Grid-based Conceptual Hydrological Model
Samaniego, L.; Kumar, R.; Attinger, S.
2007-12-01
). The main difference with the standard SA is the parameter search routine which uses adaptive heuristic rules to improve its efficiency. These rules are based on the relative behavior of the efficiency criteria. The efficiency of the model is evaluated with the Nash-Sutcliffe efficiency coefficient (NS) and the RMSE obtained for various short and long term runoff characteristics such as daily flows; semiannual high and low flow characteristics such as total drought duration frequency of high flows; and annual specific discharge at various gauging stations. Additionally, the parameter search was constrained with the 95% confidence bands of the runoff characteristics mentioned above. The proposed method was calibrated in the Upper Neckar River basin covering an area of approximately 4000~km2 during the period from 1961 to 1993. The spatial and temporal resolutions used were a grid size of (1000 × 1000)~m and 12~h intervals respectively. The results of the study indicate significant improvement in model performance (e.g. Nash-Sutcliffe of various runoff characteristics ~ 0.8) and a significant reduction in computational burden of at least 25%.
Walawender, Jakub; Kothe, Steffen; Trentmann, Jörg; Pfeifroth, Uwe; Cremer, Roswitha
2017-04-01
The purpose of this study is to create a 1 km2 gridded daily sunshine duration data record for Germany covering the period from 1983 to 2015 (33 years) based on satellite estimates of direct normalised surface solar radiation and in situ sunshine duration observations using a geostatistical approach. The CM SAF SARAH direct normalized irradiance (DNI) satellite climate data record and in situ observations of sunshine duration from 121 weather stations operated by DWD are used as input datasets. The selected period of 33 years is associated with the availability of satellite data. The number of ground stations is limited to 121 as there are only time series with less than 10% of missing observations over the selected period included to keep the long-term consistency of the output sunshine duration data record. In the first step, DNI data record is used to derive sunshine hours by applying WMO threshold of 120 W/m2 (SDU = DNI ≥ 120 W/m2) and weighting of sunny slots to correct the sunshine length between two instantaneous image data due to cloud movement. In the second step, linear regression between SDU and in situ sunshine duration is calculated to adjust the satellite product to the ground observations and the output regression coefficients are applied to create a regression grid. In the last step regression residuals are interpolated with ordinary kriging and added to the regression grid. A comprehensive accuracy assessment of the gridded sunshine duration data record is performed by calculating prediction errors (cross-validation routine). "R" is used for data processing. A short analysis of the spatial distribution and temporal variability of sunshine duration over Germany based on the created dataset will be presented. The gridded sunshine duration data are useful for applications in various climate-related studies, agriculture and solar energy potential calculations.
Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results
Humada, Ali M.; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M.; Ahmed, Mushtaq N.
2016-01-01
A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575
Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results.
Humada, Ali M; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M; Ahmed, Mushtaq N
2016-01-01
A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions.
Project Scheduling Heuristics-Based Standard PSO for Task-Resource Assignment in Heterogeneous Grid
Directory of Open Access Journals (Sweden)
Ruey-Maw Chen
2011-01-01
Full Text Available The task scheduling problem has been widely studied for assigning resources to tasks in heterogeneous grid environment. Effective task scheduling is an important issue for the performance of grid computing. Meanwhile, the task scheduling problem is an NP-complete problem. Hence, this investigation introduces a named “standard“ particle swarm optimization (PSO metaheuristic approach to efficiently solve the task scheduling problems in grid. Meanwhile, two promising heuristics based on multimode project scheduling are proposed to help in solving interesting scheduling problems. They are the best performance resource heuristic and the latest finish time heuristic. These two heuristics applied to the PSO scheme are for speeding up the search of the particle and improving the capability of finding a sound schedule. Moreover, both global communication topology and local ring communication topology are also investigated for efficient study of proposed scheme. Simulation results demonstrate that the proposed approach in this investigation can successfully solve the task-resource assignment problems in grid computing and similar scheduling problems.
Evaluation of Harmonic Content from a Tap Transformer Based Grid Connection System for Wind Power
Directory of Open Access Journals (Sweden)
S. Apelfröjd
2013-01-01
Full Text Available Simulations done in MATLAB/Simulink together with experiments conducted at the Ångströms laboratory are used to evaluate and discuss the total harmonic distortion (THD and total demand distortion (TDD of a tap transformer based grid connection system. The grid connection topology can be used with different turbine and generator topologies and is here applied on a vertical axis wind turbine (VAWT with a permanent magnet synchronous generator (PMSG and its operational scheme. The full variable-speed wind conversion system consists of a diode rectifier, DC link, IGBT inverter, LCL-filter, and tap transformer. The full variable-speed operation is enabled by the use of the different step-up ratios of the tap transformer. In the laboratory study, a full experimental setup of the system was used, a clone of the on-site PMSG driven by a motor was used, and the grid was replaced with a resistive load. With a resistive load, grid harmonics and possible unbalances are removed. The results show a TDD and THD below 5% for the full operating range and harmonic values within the limits set up by IEEE-519. Furthermore, a change in tap, going to a lower step-up ratio, results in a reduction in both THD and TDD for the same output power.
Modified SOGI based shunt active power filter to tackle various grid voltage abnormalities
Directory of Open Access Journals (Sweden)
Kalpeshkumar Patil
2017-10-01
Full Text Available Shunt Active Power Filters (SAPF have been effectively used to compensate the harmonics generated by the non-linear loads. The SAPF’s performance depends on the accurate generation of reference current, which is dependent greatly on the template of supply voltage. When the grid voltage (or its template is characterized by different abnormalities like presence of harmonics, imbalance, dc-offset etc., some of the conventional techniques of frequency estimation may fail to correctly estimate the frequency. This ultimately affects the reference current generation and hence, the SAPF operation, ultimately leading to high distortion of the grid currents. The paper presents modified dual second-order generalized integrator (MDSOGI based SAPF to ensure effective compensation of harmonics, even when the grid voltage is characterized by all the abnormalities mentioned above. It is highlighted with one case that when the sensed voltage is having dc-offset, DSOGI-SAPF results into the source current with THD, dc-offset and harmonic with values 5.82%, 0.8% and 4.5%, respectively. For the same case, the proposed technique yields grid current which is free of dc-offset and 2nd harmonic and has THD = 3.57%. The dynamic performance of the MDSOGI-SAPF is validated and its superior performance over DSOGI-SAPF is illustrated even with experimental results.
Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X
2012-11-09
Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.
Microgrid energy management in grid-connected and islanding modes based on SVC
International Nuclear Information System (INIS)
Gabbar, Hossam A.; Abdelsalam, Abdelazeem A.
2014-01-01
Highlights: • SVC is used to enhance the performance of a microgrid (MG). • MG performance is measured by some key performance indicators (KPIs). • KPIs comprise power loss, voltage deviation, power factor, THD and v/f deviation. • The microgrid is simulated in grid-connected and islanded modes. • Results show SVC stabilizes voltage, reduce losses and THD and enhance power factor. - Abstract: Microgrids are small scale energy grids that can provide adequate energy supply to cover regional demand by integrating renewable energy generation and storage technologies. This paper develops a high performance dynamic model of a microgrid system comprising a wind turbine, a PV, a fuel cell, a micro gas turbine generator, an energy storage, electric loads with variable load profile and flexible AC transmission system (FACTS) devices. The FACTS devices based on static VAR compensators have been employed as a supervisory controller. Key performance indicators such as microgrid power losses, buses voltage deviations, buses power factor, buses voltage total harmonic distortion and voltage-frequency deviation are used to evaluate the performance of this microgrid in grid-connected and islanding modes. The results obtained from the Matlab/Simulink environment show that the proposed microgrid design with SVC has the ability to meet its special requirements such as bus voltages stabilization, reduction of feeder losses, power factor enhancement and mitigation of total harmonic distortion using SVC in grid-connected and islanding modes
The overview of damping methods for three-phase grid-tied inverter with LLCL-filter
DEFF Research Database (Denmark)
Huang, Min; Blaabjerg, Frede; Loh, Poh Chiang
2014-01-01
Compared with LCL filter, an LLCL-filter is characterized with smaller size and lower cost for grid-connected inverters. But this high order filter may also have resonant problem which will affect the system stability. Many methods can be used to alleviate the resonant problem including active da...... and shows the advantages as well as disadvantages of these methods....
An Enhanced LVRT Scheme for DFIG-based WECSs under Both Balanced and Unbalanced Grid Voltage Sags
DEFF Research Database (Denmark)
Mohammadi, Jafar; Afsharnia, Saeed; Ebrahimzadeh, Esmaeil
2017-01-01
reactive power into the grid. The passive compensator is based on a three-phase stator damping resistor (SDR) located in series with the stator windings. The proposed scheme decreases the negative effects of grid voltage sags in the DFIG system including the rotor over-currents, electromagnetic torque...
DEFF Research Database (Denmark)
Golestan, Saeed; Monfared, Mohammad; D. Freijedo, Francisco
2012-01-01
One of the most important aspects for the proper operation of the single-phase grid-tied power-conditioning systems is the synchronization with the utility grid. Among various synchronization techniques, phase locked loop (PLL) based algorithms have found a lot of interest for the advantages...
Directory of Open Access Journals (Sweden)
G. Rohini
2016-01-01
Full Text Available This work aims at improving the dynamic performance of the available photovoltaic (PV system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results.
Rohini, G; Jamuna, V
This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results.
Is the Multigrid Method Fault Tolerant? The Two-Grid Case
Energy Technology Data Exchange (ETDEWEB)
Ainsworth, Mark [Brown Univ., Providence, RI (United States). Division of Applied Mathematics; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division; Glusa, Christian [Brown Univ., Providence, RI (United States). Division of Applied Mathematics
2016-06-30
The predicted reduced resiliency of next-generation high performance computers means that it will become necessary to take into account the effects of randomly occurring faults on numerical methods. Further, in the event of a hard fault occurring, a decision has to be made as to what remedial action should be taken in order to resume the execution of the algorithm. The action that is chosen can have a dramatic effect on the performance and characteristics of the scheme. Ideally, the resulting algorithm should be subjected to the same kind of mathematical analysis that was applied to the original, deterministic variant. The purpose of this work is to provide an analysis of the behaviour of the multigrid algorithm in the presence of faults. Multigrid is arguably the method of choice for the solution of large-scale linear algebra problems arising from discretization of partial differential equations and it is of considerable importance to anticipate its behaviour on an exascale machine. The analysis of resilience of algorithms is in its infancy and the current work is perhaps the first to provide a mathematical model for faults and analyse the behaviour of a state-of-the-art algorithm under the model. It is shown that the Two Grid Method fails to be resilient to faults. Attention is then turned to identifying the minimal necessary remedial action required to restore the rate of convergence to that enjoyed by the ideal fault-free method.
Directory of Open Access Journals (Sweden)
Eimecke Jörgen
2017-09-01
Full Text Available Multistage expert surveys like the Delphi method are proven concepts for technology forecasting that enable the prediction of content-related and temporal development in fields of innovation (e.g., [1, 2]. Advantages of these qualitative multistage methods are a simple and easy to understand concept while still delivering valid results [3]. Nevertheless, the literature also points out certain disadvantages especially in large-scale technology forecasts in particularly abstract fields of innovation [4]. The proposed approach highlights the usefulness of the repertory grid method as an alternative for technology forecasting and as a first step for preference measurement. The basic approach from Baier and Kohler [5] is modified in-so-far that an online survey reduces the cognitive burden for the experts and simplifies the data collection process. Advantages over alternative approaches through its simple structure and through combining qualitative and quantitative methods are shown and an adaption on an actual field of innovation – civil drones in Germany – is done. The measurement of a common terminology for all experts minimizes misunderstandings during the interview and the achievement of an inter-individual comparable level of abstraction is forced by the laddering technique [6] during the interview.
Wald, Ingo; Ize, Santiago
2015-07-28
Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.
SOGI-based capacitor voltage feedback active damping in LCL-filtered grid converters
DEFF Research Database (Denmark)
Xin, Zhen; Wang, Xiongfei; Loh, Poh Chiang
2015-01-01
The capacitor voltage feedback active damping control is an attractive way to suppress LCL-filter resonance especially for the systems where the capacitor voltage is used for grid synchronization, since no extra sensors are added. The derivative is the core of the capacitor voltage feedback active...... derivative is more suited for capacitor voltage feedback active damping control. Experimental results validate the effectiveness of the proposed method....
Game-Theory-Based Approach for Energy Routing in a Smart Grid Network
Directory of Open Access Journals (Sweden)
June S. Hong
2016-01-01
Full Text Available Small power plants and buildings with renewable power generation capability have recently been added to traditional central power plants. Through these facilities, prosumers appear to have a concurrent role in both energy production and consumption. Based on bidirectional power transfers by large numbers of prosumers, a smart microgrid has become an important factor in efficiently controlling the microgrids used in power markets and in conducting effective power trades among grids. In this paper, we present an approach utilizing the game theory for effective and efficient energy routing, which is a novel and challenging procedure for a smart microgrid network. First, we propose strategies for choosing the desired transaction price for both electricity surpluses and shortages to maximize profits through energy transactions. An optimization scheme is utilized to search for an energy route with minimum cost using the solving method used in a traditional transportation problem by treating the sale and purchase quantities as transportation supply and demand, respectively. To evaluate the effect of the proposed decision strategies, we simulated our mechanism, and the results proved that our mechanism yields results pursued by each strategy. Our proposed strategies will contribute to spreading a smart microgrid for enhancing the utilization of microgrids.
HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling.
Ross, C Wade; Prihodko, Lara; Anchang, Julius; Kumar, Sanath; Ji, Wenjie; Hanan, Niall P
2018-05-15
Hydrologic soil groups (HSGs) are a fundamental component of the USDA curve-number (CN) method for estimation of rainfall runoff; yet these data are not readily available in a format or spatial-resolution suitable for regional- and global-scale modeling applications. We developed a globally consistent, gridded dataset defining HSGs from soil texture, bedrock depth, and groundwater. The resulting data product-HYSOGs250m-represents runoff potential at 250 m spatial resolution. Our analysis indicates that the global distribution of soil is dominated by moderately high runoff potential, followed by moderately low, high, and low runoff potential. Low runoff potential, sandy soils are found primarily in parts of the Sahara and Arabian Deserts. High runoff potential soils occur predominantly within tropical and sub-tropical regions. No clear pattern could be discerned for moderately low runoff potential soils, as they occur in arid and humid environments and at both high and low elevations. Potential applications of this data include CN-based runoff modeling, flood risk assessment, and as a covariate for biogeographical analysis of vegetation distributions.
A comprehensive WSN-based approach to efficiently manage a Smart Grid.
Martinez-Sandoval, Ruben; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan; Flynn, David
2014-10-10
The Smart Grid (SG) is conceived as the evolution of the current electrical grid representing a big leap in terms of efficiency, reliability and flexibility compared to today's electrical network. To achieve this goal, the Wireless Sensor Networks (WSNs) are considered by the scientific/engineering community to be one of the most suitable technologies to apply SG technology to due to their low-cost, collaborative and long-standing nature. However, the SG has posed significant challenges to utility operators-mainly very harsh radio propagation conditions and the lack of appropriate systems to empower WSN devices-making most of the commercial widespread solutions inadequate. In this context, and as a main contribution, we have designed a comprehensive ad-hoc WSN-based solution for the Smart Grid (SENSED-SG) that focuses on specific implementations of the MAC, the network and the application layers to attain maximum performance and to successfully deal with any arising hurdles. Our approach has been exhaustively evaluated by computer simulations and mathematical analysis, as well as validation within real test-beds deployed in controlled environments. In particular, these test-beds cover two of the main scenarios found in a SG; on one hand, an indoor electrical substation environment, implemented in a High Voltage AC/DC laboratory, and, on the other hand, an outdoor case, deployed in the Transmission and Distribution segment of a power grid. The results obtained show that SENSED-SG performs better and is more suitable for the Smart Grid than the popular ZigBee WSN approach.
Geo-spatial Cognition on Human's Social Activity Space Based on Multi-scale Grids
Directory of Open Access Journals (Sweden)
ZHAI Weixin
2016-12-01
Full Text Available Widely applied location aware devices, including mobile phones and GPS receivers, have provided great convenience for collecting large volume individuals' geographical information. The researches on the human's society behavior space has attracts an increasingly number of researchers. In our research, based on location-based Flickr data From 2004 to May, 2014 in China, we choose five levels of spatial grids to form the multi-scale frame for investigate the correlation between the scale and the geo-spatial cognition on human's social activity space. The HT-index is selected as the fractal inspired by Alexander to estimate the maturity of the society activity on different scales. The results indicate that that the scale characteristics are related to the spatial cognition to a certain extent. It is favorable to use the spatial grid as a tool to control scales for geo-spatial cognition on human's social activity space.
Discrete Adjoint-Based Design for Unsteady Turbulent Flows On Dynamic Overset Unstructured Grids
Nielsen, Eric J.; Diskin, Boris
2012-01-01
A discrete adjoint-based design methodology for unsteady turbulent flows on three-dimensional dynamic overset unstructured grids is formulated, implemented, and verified. The methodology supports both compressible and incompressible flows and is amenable to massively parallel computing environments. The approach provides a general framework for performing highly efficient and discretely consistent sensitivity analysis for problems involving arbitrary combinations of overset unstructured grids which may be static, undergoing rigid or deforming motions, or any combination thereof. General parent-child motions are also accommodated, and the accuracy of the implementation is established using an independent verification based on a complex-variable approach. The methodology is used to demonstrate aerodynamic optimizations of a wind turbine geometry, a biologically-inspired flapping wing, and a complex helicopter configuration subject to trimming constraints. The objective function for each problem is successfully reduced and all specified constraints are satisfied.
Grid-based modeling for land use planning and environmental resource mapping.
Energy Technology Data Exchange (ETDEWEB)
Kuiper, J. A.
1999-08-04
Geographic Information System (GIS) technology is used by land managers and natural resource planners for examining resource distribution and conducting project planning, often by visually interpreting spatial data representing environmental or regulatory variables. Frequently, many variables influence the decision-making process, and modeling can improve results with even a small investment of time and effort. Presented are several grid-based GIS modeling projects, including: (1) land use optimization under environmental and regulatory constraints; (2) identification of suitable wetland mitigation sites; and (3) predictive mapping of prehistoric cultural resource sites. As different as the applications are, each follows a similar process of problem conceptualization, implementation of a practical grid-based GIS model, and evaluation of results.
Development of a Microcontroller-based Battery Charge Controller for an Off-grid Photovoltaic System
Rina, Z. S.; Amin, N. A. M.; Hashim, M. S. M.; Majid, M. S. A.; Rojan, M. A.; Zaman, I.
2017-08-01
A development of a microcontroller-based charge controller for a 12V battery has been explained in this paper. The system is designed based on a novel algorithm to couple existing solar photovoltaic (PV) charging and main grid supply charging power source. One of the main purposes of the hybrid charge controller is to supply a continuous charging power source to the battery. Furthermore, the hybrid charge controller was developed to shorten the battery charging time taken. The algorithm is programmed in an Arduino Uno R3 microcontroller that monitors the battery voltage and generates appropriate commands for the charging power source selection. The solar energy is utilized whenever the solar irradiation is high. The main grid supply will be only consumed whenever the solar irradiation is low. This system ensures continuous charging power supply and faster charging of the battery.
Energy efficiency analysis for flexible-grid OFDM-based optical networks
DEFF Research Database (Denmark)
Vizcaíno, Jorge López; Ye, Yabin; Tafur Monroy, Idelfonso
2012-01-01
As the Internet traffic grows, the energy efficiency gains more attention as a design factor for the planning and operation of telecommunication networks. This paper is devoted to the study of energy efficiency in optical transport networks, comparing the performance of an innovative flexible......-grid network based on Orthogonal Frequency Division Multiplexing (OFDM) with that of conventional fixed-grid Wavelength Division Multiplexing (WDM) networks with a Single Line Rate (SLR) and with a Mixed Line Rate (MLR) operation. The power consumption values of the network elements are introduced. Energy......-aware heuristic algorithms are proposed for the resource allocation both in static (offline) and dynamic (online) scenarios with time-varying demands for the Elastic-bandwidth OFDM-based network and the WDM networks (with SLR and MLR). The energy efficiency performance of the two network technologies under...
Brief analysis of Jiangsu grid security and stability based on multi-infeed DC index in power system
Zhang, Wenjia; Wang, Quanquan; Ge, Yi; Huang, Junhui; Chen, Zhengfang
2018-02-01
The impact of Multi-infeed HVDC has gradually increased to security and stability operating in Jiangsu power grid. In this paper, an appraisal method of Multi-infeed HVDC power grid security and stability is raised with Multi-Infeed Effective Short Circuit Ratio, Multi-Infeed Interaction Factor and Commutation Failure Immunity Index. These indices are adopted in security and stability simulating calculation of Jiangsu Multi-infeed HVDC system. The simulation results indicate that Jiangsu power grid is operating with a strong DC system. It has high level of power grid security and stability, and meet the safety running requirements. Jinpin-Suzhou DC system is located in the receiving end with huge capacity, which is easily leading to commutation failure of the transmission line. In order to resolve this problem, dynamic reactive power compensation can be applied in power grid near Jinpin-Suzhou DC system. Simulation result shows this method is feasible to commutation failure.
A high control bandwidth design method for aalborg inverter under weak grid condition
DEFF Research Database (Denmark)
Wu, Weimin; Zhou, Cong; Wang, Houqin
2017-01-01
Aalborg Inverter is a kind of high efficient Buck-Boost inverter. Since it may work in “Buck-Boost” mode, the control bandwidth should be high enough to ensure a good performance under any grid condition. However, during the “Boost” operation, the control bandwidth depends much on the grid...
A three-level support method for smooth switching of the micro-grid operation model
Zong, Yuanyang; Gong, Dongliang; Zhang, Jianzhou; Liu, Bin; Wang, Yun
2018-01-01
Smooth switching of micro-grid between the grid-connected operation mode and off-grid operation mode is one of the key technologies to ensure it runs flexible and efficiently. The basic control strategy and the switching principle of micro-grid are analyzed in this paper. The reasons for the fluctuations of the voltage and the frequency in the switching process are analyzed from views of power balance and control strategy, and the operation mode switching strategy has been improved targeted. From the three aspects of controller’s current inner loop reference signal, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level security strategy for smooth switching of micro-grid operation mode is proposed. From the three aspects of controller’s current inner loop reference signal tracking, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level strategy for smooth switching of micro-grid operation mode is proposed. At last, it is proved by simulation that the proposed control strategy can make the switching process smooth and stable, the fluctuation problem of the voltage and frequency has been effectively improved.
Enhanced Local Grid Voltage Support Method for High Penetration of Distributed Generators
DEFF Research Database (Denmark)
Demirok, Erhan; Sera, Dezso; Rodriguez, Pedro
2011-01-01
Grid voltage rise and thermal loading of network components are the most remarkable barriers to allow high number of distributed generator (DG) connections on the medium voltage (MV) and low voltage (LV) electricity networks. The other barriers such as grid power quality (harmonics, voltage...
Wind turbine rotor-tower interaction using an incompressible overset grid method
DEFF Research Database (Denmark)
Zahle, Frederik; Johansen, Jeppe; Sørensen, Niels N.
2007-01-01
In this paper 3D Navier-Stokes simulations of the flow over the NREL Phase VI turbine are presented. The computations are carried out using the structured grid, incompressible, finite volume flow solver EllipSys3D, which has been extended to include the use of overset grids. Computations are pres...
Hesford, Andrew J.; Waag, Robert C.
2010-10-01
The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased.
Álvaro, Roberto; González, Jairo; Fraile Ardanuy, José Jesús; Knapen, Luk; Janssens, Davy
2013-01-01
This paper describes the impact of electric mobility on the transmission grid in Flanders region (Belgium), using a micro-simulation activity based models. These models are used to provide temporal and spatial estimation of energy and power demanded by electric vehicles (EVs) in different mobility zones. The increment in the load demand due to electric mobility is added to the background load demand in these mobility areas and the effects over the transmission substations are analyzed. From t...
Applying an activity based model to explore the potential of electrical vehicles in the smart grid
De Ridder, Fjo; D'Hulst, Reinhilde; KNAPEN, Luk; JANSSENS, Davy
2013-01-01
We have explored to what extent charging electrical vehicles (EVs) can be exploited to stabilize smart grids. Firstly, we discuss the transition to a future with a lot of renewable energy resources. Next, a decentralized coordinated charging schedule for EVs is proposed, taking into account the comfort settings of the consumers and local and temporal flexibility. Based on the vehicle behavior information (trajectories, parking places and duration, etc.) the algorithm assures that all vehicles...
A high-order finite-volume method for hyperbolic conservation laws on locally-refined grids
Energy Technology Data Exchange (ETDEWEB)
McCorquodale, Peter; Colella, Phillip
2011-01-28
We present a fourth-order accurate finite-volume method for solving time-dependent hyperbolic systems of conservation laws on Cartesian grids with multiple levels of refinement. The underlying method is a generalization of that in [5] to nonlinear systems, and is based on using fourth-order accurate quadratures for computing fluxes on faces, combined with fourth-order accurate Runge?Kutta discretization in time. To interpolate boundary conditions at refinement boundaries, we interpolate in time in a manner consistent with the individual stages of the Runge-Kutta method, and interpolate in space by solving a least-squares problem over a neighborhood of each target cell for the coefficients of a cubic polynomial. The method also uses a variation on the extremum-preserving limiter in [8], as well as slope flattening and a fourth-order accurate artificial viscosity for strong shocks. We show that the resulting method is fourth-order accurate for smooth solutions, and is robust in the presence of complex combinations of shocks and smooth flows.
Liao, Qinzhuo; Zhang, Dongxiao; Tchelepi, Hamdi
2017-06-01
In numerical modeling of subsurface flow and transport problems, formation properties may not be deterministically characterized, which leads to uncertainty in simulation results. In this study, we propose a sparse grid collocation method, which adopts nested quadrature rules with delay and transformation to quantify the uncertainty of model solutions. We show that the nested Kronrod-Patterson-Hermite quadrature is more efficient than the unnested Gauss-Hermite quadrature. We compare the convergence rates of various quadrature rules including the domain truncation and domain mapping approaches. To further improve accuracy and efficiency, we present a delayed process in selecting quadrature nodes and a transformed process for approximating unsmooth or discontinuous solutions. The proposed method is tested by an analytical function and in one-dimensional single-phase and two-phase flow problems with different spatial variances and correlation lengths. An additional example is given to demonstrate its applicability to three-dimensional black-oil models. It is found from these examples that the proposed method provides a promising approach for obtaining satisfactory estimation of the solution statistics and is much more efficient than the Monte-Carlo simulations.
Kirubi, Charles Gathu
Community micro-grids have played a central role in increasing access to off-grid rural electrification (RE) in many regions of the developing world, notably South Asia. However, the promise of community micro-grids in sub-Sahara Africa remains largely unexplored. My study explores the potential and limits of community micro-grids as options for increasing access to off-grid RE in sub-Sahara Africa. Contextualized in five community micro-grids in rural Kenya, my study is framed through theories of collective action and combines qualitative and quantitative methods, including household surveys, electronic data logging and regression analysis. The main contribution of my research is demonstrating the circumstances under which community micro-grids can contribute to rural development and the conditions under which individuals are likely to initiate and participate in such projects collectively. With regard to rural development, I demonstrate that access to electricity enables the use of electric equipment and tools by small and micro-enterprises, resulting in significant improvement in productivity per worker (100--200% depending on the task at hand) and a corresponding growth in income levels in the order of 20--70%, depending on the product made. Access to electricity simultaneously enables and improves delivery of social and business services from a wide range of village-level infrastructure (e.g. schools, markets, water pumps) while improving the productivity of agricultural activities. Moreover, when local electricity users have an ability to charge and enforce cost-reflective tariffs and electricity consumption is closely linked to productive uses that generate incomes, cost recovery is feasible. By their nature---a new technology delivering highly valued services by the elites and other members, limited local experience and expertise, high capital costs---community micro-grids are good candidates for elite-domination. Even so, elite control does not necessarily
Zapata, M. A. Uh; Van Bang, D. Pham; Nguyen, K. D.
2016-05-01
This paper presents a parallel algorithm for the finite-volume discretisation of the Poisson equation on three-dimensional arbitrary geometries. The proposed method is formulated by using a 2D horizontal block domain decomposition and interprocessor data communication techniques with message passing interface. The horizontal unstructured-grid cells are reordered according to the neighbouring relations and decomposed into blocks using a load-balanced distribution to give all processors an equal amount of elements. In this algorithm, two parallel successive over-relaxation methods are presented: a multi-colour ordering technique for unstructured grids based on distributed memory and a block method using reordering index following similar ideas of the partitioning for structured grids. In all cases, the parallel algorithms are implemented with a combination of an acceleration iterative solver. This solver is based on a parabolic-diffusion equation introduced to obtain faster solutions of the linear systems arising from the discretisation. Numerical results are given to evaluate the performances of the methods showing speedups better than linear.
Pradhan, Aniruddhe; Akhavan, Rayhaneh
2017-11-01
Effect of collision model, subgrid-scale model and grid resolution in Large Eddy Simulation (LES) of wall-bounded turbulent flows with the Lattice Boltzmann Method (LBM) is investigated in turbulent channel flow. The Single Relaxation Time (SRT) collision model is found to be more accurate than Multi-Relaxation Time (MRT) collision model in well-resolved LES. Accurate LES requires grid resolutions of Δ+ LBM requires either grid-embedding in the near-wall region, with grid resolutions comparable to DNS, or a wall model. Results of LES with grid-embedding and wall models will be discussed.
International Nuclear Information System (INIS)
Sudret, Thierry; Belhomme, Regine; Nekrassov, Andrei; Chartres, Sophie; Chiappini, Florent; Drouineau, Mathilde; Hadjsaid, Nouredine; Leonard, Cedric; Bena, Michel; Buhagiar, Thierry; Lemaitre, Christian; Janssen, Tanguy; Guedou, Benjamin; Viana, Maria Sebastian; Malarange, Gilles; Hadjsaid, Nouredine; Petit, Marc; Lehec, Guillaume; Jahn, Rafael; Gehain, Etienne
2015-01-01
This publication proposes a set of four articles which give an overview of challenges and contributions of smart grid demonstrators for the French electricity system according to different perspectives and different stakeholders. These articles present the first lessons learned from these demonstrators in terms of technical and technological innovations, of business and regulation models, and of customer behaviour and acceptance. More precisely, the authors discuss economic assessments of smart grids with an overview of challenges, methods, progress status and existing smart grid programs in the World, comment the importance of the introduction of intelligence at hardware, software and market level, highlight the challenges and contributions of smart grids for the integration of decentralised production, and discuss how smart grid demonstrators impact providing-related professions and customer consumption practices
Parametric Grid Information in the DOE Knowledge Base: Data Preparation, Storage, and Access
International Nuclear Information System (INIS)
Hipp, James R.; Moore, Susan G.; Myers, Stephen C.; Schultz, Craig A.; Shepherd, Ellen; Young, Christopher J.
1999-01-01
The parametric grid capability of the Knowledge Base provides an efficient, robust way to store and access interpolatable information which is needed to monitor the Comprehensive Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational monitoring systems, we use a new approach which combines the error estimation of kriging with the speed and robustness of Natural Neighbor Interpolation (NNI). The method involves three basic steps: data preparation (DP), data storage (DS), and data access (DA). The goal of data preparation is to process a set of raw data points to produce a sufficient basis for accurate NNI of value and error estimates in the Data Access step. This basis includes a set of nodes and their connectedness, collectively known as a tessellation, and the corresponding values and errors that map to each node, which we call surfaces. In many cases, the raw data point distribution is not sufficiently dense to guarantee accurate error estimates from the NNI, so the original data set must be densified using a newly developed interpolation technique known as Modified Bayesian Kriging. Once appropriate kriging parameters have been determined by variogram analysis, the optimum basis for NNI is determined in a process they call mesh refinement, which involves iterative kriging, new node insertion, and Delauny triangle smoothing. The process terminates when an NNI basis has been calculated which will fir the kriged values within a specified tolerance. In the data storage step, the tessellations and surfaces are stored in the Knowledge Base, currently in a binary flatfile format but perhaps in the future in a spatially-indexed database. Finally, in the data access step, a client application makes a request for an interpolated value, which triggers a data fetch from the Knowledge Base through the libKBI interface, a walking triangle search for the containing triangle, and finally the NNI interpolation
Model predictive control of PMSG-based wind turbines for frequency regulation in an isolated grid
DEFF Research Database (Denmark)
Wang, Haixin; Yang, Junyou; Ma, Yiming
2017-01-01
This paper proposes a frequency regulation strategy applied to wind turbine generators (WTGs) in an isolated grid. In order to complement active power shortage caused by sudden load or wind speed change, an improved deloading method is proposed to solve inconsistent regulation capabilities...... in different speed regions and provide WTGs a certain capacity of power reserves. Considering the torque compensation may bring about power oscillation, speed reference of conventional pitch control system should be reset. Moreover, to suppress disturbances of load and wind speed as well as overcome dependence...... on system parameters, a model predictive controller (MPC) of wind farm is designed to generate torque compensation for each deloaded WTG. The key feature of this strategy is that each WTG reacts to grid disturbances in different ways, which depends on generator speeds. Hardware-in-the-loop simulation...
A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system
Energy Technology Data Exchange (ETDEWEB)
Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken [Department of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, Nakamachi (Japan)
2010-12-15
This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)
Zhou, Zheng; Ma, Kevin; Talini, Elisa; Documet, Jorge; Lee, Jasper; Liu, Brent
2007-03-01
A cross-continental Data Grid infrastructure has been developed at the Image Processing and Informatics (IPI) research laboratory as a fault-tolerant image data backup and disaster recovery solution for Enterprise PACS. The Data Grid stores multiple copies of the imaging studies as well as the metadata, such as patient and study information, in geographically distributed computers and storage devices involving three different continents: America, Asia and Europe. This effectively prevents loss of image data and accelerates data recovery in the case of disaster. However, the lack of centralized management system makes the administration of the current Data Grid difficult. Three major challenges exist in current Data Grid management: 1. No single user interface to access and administrate each geographically separate component; 2. No graphical user interface available, resulting in command-line-based administration; 3. No single sign-on access to the Data Grid; administrators have to log into every Grid component with different corresponding user names/passwords. In this paper we are presenting a prototype of a unique web-based access interface for both Data Grid administrators and users. The interface has been designed to be user-friendly; it provides necessary instruments to constantly monitor the current status of the Data Grid components and their contents from any locations, contributing to longer system up-time.
Copula-based modeling of stochastic wind power in Europe and implications for the Swiss power grid
International Nuclear Information System (INIS)
Hagspiel, Simeon; Papaemannouil, Antonis; Schmid, Matthias; Andersson, Göran
2012-01-01
Highlights: ► We model stochastic wind power using copula theory. ► Stochastic wind power is integrated in a European system adequacy evaluation. ► The Swiss power grid is put at risk by further integrating wind power in Europe. ► System elements located at or close to Swiss borders are affected the most. ► A criticality indicator allows prioritizing expansion plans on a probabilistic basis. -- Abstract: Large scale integration of wind energy poses new challenges to the European power system due to its stochastic nature and often remote location. In this paper a multivariate uncertainty analysis problem is formulated for the integration of stochastic wind energy in the European grid. By applying copula theory a synthetic set of data is generated from scarce wind speed reanalysis data in order to achieve the increased sample size for the subsequent Monte Carlo simulation. In the presented case study, European wind power samples are generated from the modeled stochastic process. Under the precondition of a modeled perfect market environment, wind power impacts dispatch decisions and therefore leads to alterations in power balances. Stochastic power balances are implemented in a detailed model of the European electricity network, based on the generated samples. Finally, a Monte Carlo method is used to determine power flows and contingencies in the system. An indicator is elaborated in order to analyze risk of overloading and to prioritize necessary grid reinforcements. Implications for the Swiss power grid are investigated in detail, revealing that the current system is significantly put at risk in certain areas by the further integration of wind power in Europe. It is the first time that the results of a probabilistic model for wind energy are further deployed within a power system analysis of the interconnected European grid. The method presented in this paper allows to account for stochastic wind energy in a load flow analysis and to evaluate
Novel grid-based optical Braille conversion: from scanning to wording
Yoosefi Babadi, Majid; Jafari, Shahram
2011-12-01
Grid-based optical Braille conversion (GOBCO) is explained in this article. The grid-fitting technique involves processing scanned images taken from old hard-copy Braille manuscripts, recognising and converting them into English ASCII text documents inside a computer. The resulted words are verified using the relevant dictionary to provide the final output. The algorithms employed in this article can be easily modified to be implemented on other visual pattern recognition systems and text extraction applications. This technique has several advantages including: simplicity of the algorithm, high speed of execution, ability to help visually impaired persons and blind people to work with fax machines and the like, and the ability to help sighted people with no prior knowledge of Braille to understand hard-copy Braille manuscripts.
Health risk assessment based on injection of upgraded biogas in natural gas grid
International Nuclear Information System (INIS)
Leroux, C.; Modelon, H.; Rousselle, C.; Zdanevitch, I.; Evanno, S.
2010-01-01
This document presents the opinion of the French Agency for Environmental and Occupational Health Safety (AFSSET). Results are based on a collective expertise conducted to assess health risks associated with the injection of biogas in the natural gas grid. The complete assessment is published and available on the web site of the Agency; only the major results are presented in this document. Following recommendations issued by AFSSET in 2008, a new study has been initiated to collect and analyze data on the composition of biogas from sewage sludge. The French National Institute for Industrial Environment and Risks (INERIS) is in charge of this project. The data will be used to assess the accidental risks (resulting from the upgrading of biogas, transport by pipeline and utilization for energy purposes) and health risks for users (resulting from the injection in the natural gas grid). (authors)