WorldWideScience

Sample records for gribov-zwanziger horizon condition

  1. Loop calculations in the three dimensional Gribov-Zwanziger Lagrangian

    International Nuclear Information System (INIS)

    Gracey, J.A.

    2010-01-01

    The three dimensional Gribov-Zwanziger Lagrangian is analysed at one and two loops. Specifically, the two loop gap equation is evaluated and the Gribov mass is expressed in terms of the coupling constant. The one loop corrections to the propagators of all the fields are determined. It is shown that when the gap equation is satisfied the Faddeev-Popov ghost and both Bose and Grassmann localizing ghosts all enhance in the infrared limit at one loop. This verifies that the Kugo-Ojima confinement criterion holds to this order and we also show that both Grassmann ghosts are enhanced at two loops. For the Bose ghost we determine the full form of the propagator in the zero momentum limit for both the transverse and longitudinal pieces and confirm Zwanziger's recent general analysis for the low energy behaviour. We provide an alternative but equivalent version of the horizon condition expressing it as the vacuum expectation value of an operator involving only the localizing Bose ghost field. The one loop static potential is also determined. (orig.)

  2. Spontaneous symmetry breaking of the BRST symmetry in presence of the Gribov horizon: Renormalizability

    International Nuclear Information System (INIS)

    Capri, Marcio; Justo, Igor; Guimaraes, Marcelo; Sorella, Silvio; Dudal, David; Palhares, Leticia

    2013-01-01

    Full text: In recent years much attention has been devoted to the study of the issue of the Gribov copies and of its relevance for confinement in Yang-Mills theories. The existence of the Gribov copies is a general feature of the gauge-fixing quantization procedure, being related to the impossibility of finding a local gauge condition which picks up only one gauge configuration for each gauge orbit. As it has been shown by Gribov and Zwanziger, a partial solution of the Gribov problem in the Landau gauge can be achieved by restricting the domain of integration in the functional Euclidean integral to the first Gribov horizon. Among the various open aspects of the Gribov-Zwanziger framework, the issue of the BRST symmetry is a source of continuous investigations. In a recent work, we have been able to obtain an equivalent formulation of the Gribov-Zwanziger action which displays an exact BRST symmetry which turns out to be spontaneously broken by the restriction of the domain of integration to the Gribov horizon. In particular, the BRST operator retains the important property of being nilpotent. Moreover, it has also been shown that the Goldstone mode associated to the spontaneous breaking of the BRST symmetry is completely decoupled. The aim of the present work is that of fills up a gap not addressed in the previous work, namely, the renormalizability to all orders of the spontaneous symmetry breaking formulation of the Gribov-Zwanziger theory. As we shall see, the action obtained enjoys a large set of Ward identities which enables to prove that it is, in fact, multiplicatively renormalizable to all orders. (author)

  3. Ghost-gluon vertex in the presence of the Gribov horizon

    Science.gov (United States)

    Mintz, B. W.; Palhares, L. F.; Sorella, S. P.; Pereira, A. D.

    2018-02-01

    We consider Yang-Mills theories quantized in the Landau gauge in the presence of the Gribov horizon via the refined Gribov-Zwanziger (RGZ) framework. As the restriction of the gauge path integral to the Gribov region is taken into account, the resulting gauge field propagators display a nontrivial infrared behavior, being very close to the ones observed in lattice gauge field theory simulations. In this work, we explore a higher correlation function in the refined Gribov-Zwanziger theory: the ghost-gluon interaction vertex, at one-loop level. We show explicit compatibility with kinematical constraints, as required by the Ward identities of the theory, and obtain analytical expressions in the limit of vanishing gluon momentum. We find that the RGZ results are nontrivial in the infrared regime, being compatible with lattice Yang-Mills simulations in both SU(2) and SU(3), as well as with solutions from Schwinger-Dyson equations in different truncation schemes, Functional Renormalization Group analysis, and the renormalization group-improved Curci-Ferrari model.

  4. Effect of the Gribov horizon on the Polyakov loop and vice versa

    Energy Technology Data Exchange (ETDEWEB)

    Canfora, F.E. [Centro de Estudios Cientificos (CECS), Valdivia (Chile); Dudal, D. [KU Leuven Campus Kortrijk, KULAK, Department of Physics, Kortrijk (Belgium); Ghent University, Department of Physics and Astronomy, Gent (Belgium); Justo, I.F. [Ghent University, Department of Physics and Astronomy, Gent (Belgium); UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Instituto de Fisica, Maracana, Rio de Janeiro (Brazil); Pais, P. [Centro de Estudios Cientificos (CECS), Valdivia (Chile); Universite Libre de Bruxelles and International Solvay Institutes, Physique Theorique et Mathematique, Brussels (Belgium); Rosa, L. [Universita di Napoli Federico II, Dipartimento di Fisica, Monte S. Angelo (Italy); INFN, Sezione di Napoli, Monte S. Angelo (Italy); Vercauteren, D. [Duy Tan University, Institute of Research and Development, Da Nang (Viet Nam)

    2015-07-15

    We consider finite-temperature SU(2) gauge theory in the continuum formulation, which necessitates the choice of a gauge fixing. Choosing the Landau gauge, the existing gauge copies are taken into account by means of the Gribov-Zwanziger quantization scheme, which entails the introduction of a dynamical mass scale (Gribov mass) directly influencing the Green functions of the theory. Here, we determine simultaneously the Polyakov loop (vacuum expectation value) and Gribov mass in terms of temperature, by minimizing the vacuum energy w.r.t. the Polyakov-loop parameter and solving the Gribov gap equation. Inspired by the Casimir energy-style of computation, we illustrate the usage of Zeta function regularization in finite-temperature calculations. Our main result is that the Gribov mass directly feels the deconfinement transition, visible from a cusp occurring at the same temperature where the Polyakov loop becomes nonzero. In this exploratory work we mainly restrict ourselves to the original Gribov-Zwanziger quantization procedure in order to illustrate the approach and the potential direct link between the vacuum structure of the theory (dynamical mass scales) and (de)confinement. We also present a first look at the critical temperature obtained from the refined Gribov-Zwanziger approach. Finally, a particular problem for the pressure at low temperatures is reported. (orig.)

  5. Matter confinement in light of the Gribov horizon

    International Nuclear Information System (INIS)

    Palhares, Leticia F.

    2016-01-01

    The procedure of quantization of Landau-gauge Yang-Mills theories that takes into account the presence of Gribov copies has led to the construction of a scenario of gluon confinement via an infrared effective action, the (refined) Gribov-Zwanziger theory. Here we briefly review and discuss a possible extension of this picture to the matter sector of confining Yang-Mills theories. (paper)

  6. Locating the Gribov horizon

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fei; Qin, Si-Xue; Roberts, Craig D.; Rodríguez-Quintero, Jose

    2018-02-01

    We explore whether a tree-level expression for the gluon two-point function, supposed to express effects of an horizon term introduced to eliminate the Gribov ambiguity, is consistent with the propagator obtained in simulations of lattice-regularised quantum chromodynamics (QCD). In doing so, we insist that the gluon two-point function obey constraints that ensure a minimal level of consistency with parton-like behaviour at ultraviolet momenta. In consequence, we are led to a position which supports a conjecture that the gluon mass and horizon scale are equivalent emergent massscales, each with a value of roughly 0.5 GeV; and wherefrom it appears plausible that the dynamical generation of a running gluon mass may alone be sufficient to remove the Gribov ambiguity.

  7. Locating the Gribov horizon

    Science.gov (United States)

    Gao, Fei; Qin, Si-Xue; Roberts, Craig D.; Rodríguez-Quintero, Jose

    2018-02-01

    We explore whether a tree-level expression for the gluon two-point function, supposed to express effects of an horizon term introduced to eliminate the Gribov ambiguity, is consistent with the propagator obtained in simulations of lattice-regularized quantum chromodynamics (QCD). In doing so, we insist that the gluon two-point function obey constraints that ensure a minimal level of consistency with parton-like behavior on the ultraviolet domain. In consequence, we are led to a position which supports a conjecture that the gluon mass and horizon scale are equivalent emergent mass-scales, each with a value of roughly 0.5 GeV; and wherefrom it appears plausible that the dynamical generation of a running gluon mass may alone be sufficient to remove the Gribov ambiguity.

  8. Study of the maximal Abelian gauge in SU(2) Euclidean Yang-Mills theory in the presence of the Gribov horizon

    International Nuclear Information System (INIS)

    Capri, M. A. L.; Lemes, V. E. R.; Sobreiro, R. F.; Sorella, S. P.; Thibes, R.

    2006-01-01

    We pursue the study of SU(2) Euclidean Yang-Mills theory in the maximal Abelian gauge by taking into account the effects of the Gribov horizon. The Gribov approximation, previously introduced in [M. A. L. Capri, V. E. R. Lemes, R. F. Sobreiro, S. P. Sorella, and R. Thibes, Phys. Rev. D 72, 085021 (2005).], is improved through the introduction of the horizon function, which is constructed under the requirements of localizability and renormalizability. By following Zwanziger's treatment of the horizon function in the Landau gauge, we prove that, when cast in local form, the horizon term of the maximal Abelian gauge leads to a quantized theory which enjoys multiplicative renormalizability, a feature which is established to all orders by means of the algebraic renormalization. Furthermore, it turns out that the horizon term is compatible with the local residual U(1) Ward identity, typical of the maximal Abelian gauge, which is easily derived. As a consequence, the nonrenormalization theorem, Z g Z A 1/2 =1, relating the renormalization factors of the gauge coupling constant Z g and of the diagonal gluon field Z A , still holds in the presence of the Gribov horizon. Finally, we notice that a generalized dimension two gluon operator can be also introduced. It is BRST invariant on-shell, a property which ensures its multiplicative renormalizability. Its anomalous dimension is not an independent parameter of the theory, being obtained from the renormalization factors of the gauge coupling constant and of the diagonal antighost field

  9. Gribov horizon and i-particles: About a toy model and the construction of physical operators

    International Nuclear Information System (INIS)

    Baulieu, L.; Dudal, D.; Vandersickel, N.; Guimaraes, M. S.; Sorella, S. P.; Huber, M. Q.; Zwanziger, D.

    2010-01-01

    Restricting the functional integral to the Gribov region Ω leads to a deep modification of the behavior of Euclidean Yang-Mills theories in the infrared region. For example, a gluon propagator of the Gribov type, (k 2 /k 4 +γ 4 ), can be viewed as a propagating pair of unphysical modes, called here i-particles, with complex masses ±iγ 2 . From this viewpoint, gluons are unphysical and one can see them as being confined. We introduce a simple toy model describing how a suitable set of composite operators can be constructed out of i-particles whose correlation functions exhibit only real branch cuts, with associated positive spectral density. These composite operators can thus be called physical and are the toy analogy of glueballs in the Gribov-Zwanziger theory.

  10. Properties of Gribov region and horizon function in the SU(N) Maximal Abelian Gauge

    International Nuclear Information System (INIS)

    Capri, Marcio Andre Lopes; Gomez, A.J.; Guimaraes, M.S.; Lemes, Vitor Emanuel Rodino; Sorella, Silvio Paolo

    2011-01-01

    Full text: The problem of the Gribov copies deals with the impossibility of to choose a unique gauge condition in the quantization process in the Yang Mills theories. In the Landau gauge, several properties of the Gribov region are established, the implementation of the Gribov copies in the path integral is taking account by the introduction of the horizon function directly in the action giving rise to modifications in the ghost and gluon propagator in the infrared regime. However, is interesting to looking at other gauge choices for obtain additional information of the phenomena, and compare our results in the landau gauge. In this work we address the issue of the Gribov copies in SU(N),N ¿ 2, Euclidean Yang-Mills theories quantized in the maximal Abelian gauge. A few properties of the Gribov region in this gauge are established. Similarly to the case of SU(2), the Gribov region turns out to be convex, bounded along the off-diagonals directions in field space, and unbounded along the diagonal ones. The implementation of the restriction to the Gribov region in the functional integral is discussed through the introduction of the horizon function, whose construction will be outlined in detail. The influence of this restriction on the behavior of the gluon and ghost propagators of the theory is also investigated together with a set of dimension two condensates. (author)

  11. Study of Yang–Mills–Chern–Simons theory in presence of the Gribov horizon

    Energy Technology Data Exchange (ETDEWEB)

    Canfora, Fabrizio, E-mail: canfora@cecs.cl [Centro de Estudios Cientificos (CECs), Valdivia (Chile); Universidad Andres Bello, Av. Republica 440, Santiago (Chile); Gomez, Arturo, E-mail: arturo.gomez@proyectos.uai.cl [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar. (Chile); Sorella, Silvio Paolo, E-mail: sorella@uerj.br [UERJ, Universidade do Estado do Rio de Janeiro (UERJ), Instituto de Física Teórica, Rua São Francisco Xavier 524, 20550-013, Maracaná, Rio de Janeiro (Brazil); Vercauteren, David, E-mail: vercauteren.uerj@gmail.com [UERJ, Universidade do Estado do Rio de Janeiro (UERJ), Instituto de Física Teórica, Rua São Francisco Xavier 524, 20550-013, Maracaná, Rio de Janeiro (Brazil)

    2014-06-15

    The two-point gauge correlation function in Yang–Mills–Chern–Simons theory in three dimensional Euclidean space is analysed by taking into account the non-perturbative effects of the Gribov horizon. In this way, we are able to describe the confinement and de-confinement regimes, which naturally depend on the topological mass and on the gauge coupling constant of the theory. -- Highlights: •We implement the Gribov quantization to the Topologically massive Yang–Mills theory. •We find a modified propagator at strong coupling by the Gribov horizon. •The gauge propagator depends on the topological mass and the coupling constant. •By studying the gauge propagator we describe the confined–deconfined regimes.

  12. Study of Yang–Mills–Chern–Simons theory in presence of the Gribov horizon

    International Nuclear Information System (INIS)

    Canfora, Fabrizio; Gomez, Arturo; Sorella, Silvio Paolo; Vercauteren, David

    2014-01-01

    The two-point gauge correlation function in Yang–Mills–Chern–Simons theory in three dimensional Euclidean space is analysed by taking into account the non-perturbative effects of the Gribov horizon. In this way, we are able to describe the confinement and de-confinement regimes, which naturally depend on the topological mass and on the gauge coupling constant of the theory. -- Highlights: •We implement the Gribov quantization to the Topologically massive Yang–Mills theory. •We find a modified propagator at strong coupling by the Gribov horizon. •The gauge propagator depends on the topological mass and the coupling constant. •By studying the gauge propagator we describe the confined–deconfined regimes

  13. Origin of the Gribov ambiguity

    International Nuclear Information System (INIS)

    Takahashi, Y.; Kobayashi, M.

    1978-01-01

    It is pointed out that the Gribov ambiguity for the non-abelian transverse gauge field has the same origin as the Johnson-Sudarshan problem for the spin-3/2 field as well as the propagation problem discovered by Velo and Zwanziger. (Auth.)

  14. Field-dependent BRST–antiBRST transformations in Yang–Mills and Gribov–Zwanziger theories

    Directory of Open Access Journals (Sweden)

    Pavel Yu. Moshin

    2014-11-01

    Full Text Available We introduce the notion of finite BRST–antiBRST transformations, both global and field-dependent, with a doublet λa, a=1,2, of anticommuting Grassmann parameters and find explicit Jacobians corresponding to these changes of variables in Yang–Mills theories. It turns out that the finite transformations are quadratic in their parameters. At the same time, exactly as in the case of finite field-dependent BRST transformations for the Yang–Mills vacuum functional, special field-dependent BRST–antiBRST transformations, with sa-potential parameters λa=saΛ induced by a finite even-valued functional Λ and by the anticommuting generators sa of BRST–antiBRST transformations, amount to a precise change of the gauge-fixing functional. This proves the independence of the vacuum functional under such BRST–antiBRST transformations. We present the form of transformation parameters that generates a change of the gauge in the path integral and evaluate it explicitly for connecting two arbitrary Rξ-like gauges. For arbitrary differentiable gauges, the finite field-dependent BRST–antiBRST transformations are used to generalize the Gribov horizon functional h, given in the Landau gauge, and being an additive extension of the Yang–Mills action by the Gribov horizon functional in the Gribov–Zwanziger model. This generalization is achieved in a manner consistent with the study of gauge independence. We also discuss an extension of finite BRST–antiBRST transformations to the case of general gauge theories and present an ansatz for such transformations.

  15. The Gribov theory of quark confinement

    CERN Document Server

    2001-01-01

    V N Gribov, one of the founders of modern particle physics, shaped our understanding of QCD as the microscopic dynamics of hadrons. This volume collects his papers on quark confinement, showing the road he followed to arrive at the theory and formulating the theory itself. It begins with papers providing a beautiful physical explanation of asymptotic freedom based on the phenomenon of antiscreening and demonstrating the inconsistency of the standard perturbative treatment of the gluon fields (Gribov copies, Gribov horizon). It continues with papers presenting the Gribov theory according to whi

  16. Gribov's horizon and the ghost dressing function

    International Nuclear Information System (INIS)

    Boucaud, Ph.; Leroy, J. P.; Le Yaouanc, A.; Micheli, J.; Pene, O.; Rodriguez-Quintero, J.

    2009-01-01

    We study a relation recently derived by K. Kondo at zero momentum between the Zwanziger's horizon function, the ghost dressing function and Kugo's functions u and w. We agree with this result as far as bare quantities are considered. However, assuming the validity of the horizon gap equation, we argue that the solution w(0)=0 is not acceptable since it would lead to a vanishing renormalized ghost dressing function. On the contrary, when the cutoff goes to infinity, u(0)→∞, w(0)→-∞ such that u(0)+w(0)→-1. Furthermore w and u are not multiplicatively renormalizable. Relaxing the gap equation allows w(0)=0 with u(0)→-1. In both cases the bare ghost dressing function, F(0,Λ), goes logarithmically to infinity at infinite cutoff. We show that, although the lattice results provide bare results not so different from the F(0,Λ)=3 solution, this is an accident due to the fact that the lattice cutoffs lie in the range 1-3 GeV -1 . We show that the renormalized ghost dressing function should be finite and nonzero at zero momentum and can be reliably estimated on the lattice up to powers of the lattice spacing; from published data on a 80 4 lattice at β=5.7 we obtain F R (0,μ=1.5 GeV)≅2.2.

  17. The Gribov problem in the frame of stochastic quantization

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, C. (Rome-1 Univ. (Italy). Dipt. di Fisica)

    1990-09-01

    We review the Gribov problem in the Landau gauge, from the point of view of stochastic quantization, and briefly sketch a numerical investigation based on a minimization algorithm, with the purpose of collecting wide information about Gribov copies within the first Gribov horizon. (orig.).

  18. Yang–Mills–Chern–Simons system in the presence of a Gribov horizon with fundamental Higgs matter

    International Nuclear Information System (INIS)

    Gomez, Arturo J; Gonzalez, Sebastian; Sorella, Silvio Paolo

    2016-01-01

    In this work we study the behaviour of Yang–Mills–Chern–Simons theory coupled to a Higgs field in the fundamental representation by taking into account the effects of the presence of the Gribov horizon. By analyzing the infrared structure of the gauge field propagator, both confined and de-confined regions can be detected. The confined region corresponds to the appearance of complex poles in the propagators, while the de-confined one to the presence of real poles. One can move from one region to another by changing the parameters of the theory. (paper)

  19. Thermodynamics of a solvable quark model inspired by the Gribov-Zwanziger theory

    International Nuclear Information System (INIS)

    Mintz, B.W.; Guimaraes, M.S.

    2013-01-01

    Full text: In an attempt to solve the problem of spurious gauge copies in the path integral approach to gauge theories, V. N. Gribov proposed in 1978 a method to restrict the integration domain of the path integral to only one gauge field representative of each physical field configuration. As a result, the quadratic part of the gluon propagator is modified in the infrared, so that it acquires complex poles, i.e., complex m asses . This implies the absence of gluons in the physical spectrum, which is a necessary condition for confinement. An analogous reasoning may be applied to quark fields coupled to the gauge fields. As a consequence, the quark propagator also gets modified in the infrared, giving rise to unphysical propagators (i.e., with complex poles) at small momenta. Such a property is understood as a sign of both quark confinement and of the breaking of chiral symmetry in the vacuum. In this work, we study the thermodynamics of this model by exactly calculating the partition function using standard methods of finite-temperature quantum field theory. We find that the infrared behavior of the quark propagator leads to a highly nontrivial pressure as a function of the temperature, which is qualitatively close to the results from lattice QCD at finite temperature. (author)

  20. A modified Faddeev-Popov formula and the Gribov ambiguity

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, C. (Rome-1 Univ. (Italy). Dipt. di Fisica Istituto Nazionale di Fisica Nucleare, Rome (Italy) Consiglio Nazionale delle Ricerche, Rome (Italy)); Jona-Lasinio, G. (Rome-1 Univ. (Italy). Dipt. di Fisica Istituto Nazionale di Fisica Nucleare, Rome (Italy))

    1990-11-08

    We propose a new path integral formula for Yang-Mills theories, containing a gauge-fixing prescription expressed by a nonlocal gauge-fixing term, that takes into account the problem of Gribov copies. This formula is then elaborated in some natural approximation, leading to a more explicit expression. The latter implements Gribov's original idea of restricting the domain of integration in the FP formula to the first horizon and can be compared with similar expressions obtained within the stochastic quantization of gauge theories. (orig.).

  1. Degenerate gauge conditions, generalized Gribov's ambiguity and BRST symmetry

    International Nuclear Information System (INIS)

    Fabbrichesi, M.E.

    1987-01-01

    The BFS-BRST approach to gauge theories is considered. It is argued that the BRST-invariant boundary conditions ordinarily used do not maintain the necessary degeneracy in the gauge fixing. As a by-product of this discussion, the existence of a generalized Gribov-like ambiguity is suggested. This ambiguity is however shown to be just a particular BRST transformation

  2. Accessing the topological susceptibility via the Gribov horizon

    Science.gov (United States)

    Dudal, D.; Felix, C. P.; Guimaraes, M. S.; Sorella, S. P.

    2017-10-01

    The topological susceptibility, χ4 , following the work of Witten and Veneziano, plays a key role in identifying the relative magnitude of the η' mass, the so-called U (1 )A problem. A nonzero χ4 is caused by the Veneziano ghost, the occurrence of an unphysical massless pole in the correlation function of the topological current Kμ. In this paper, we investigate the topological susceptibility, χ4, in S U (3 ) and S U (2 ) Euclidean Yang-Mills theory using an appropriate Padé approximation tool and a nonperturbative gluon propagator, within a Becchi-Rouet-Stora-Tyutin invariant framework and by taking into account Gribov copies in a general linear covariant gauge.

  3. Generalized hedgehog ansatz and Gribov copies in regions with nontrivial topologies

    Science.gov (United States)

    Canfora, Fabrizio; Salgado-Rebolledo, Patricio

    2013-02-01

    In this paper the arising of Gribov copies both in Landau and Coulomb gauges in regions with nontrivial topologies but flat metric, (such as closed tubes S1×D2, or R×T2) will be analyzed. Using a novel generalization of the hedgehog ansatz beyond spherical symmetry, analytic examples of Gribov copies of the vacuum will be constructed. Using such ansatz, we will also construct the elliptic Gribov pendulum. The requirement of absence of Gribov copies of the vacuum satisfying the strong boundary conditions implies geometrical constraints on the shapes and sizes of the regions with nontrivial topologies.

  4. A non-perturbative study of matter field propagators in Euclidean Yang-Mills theory in linear covariant, Curci-Ferrari and maximal Abelian gauges

    Science.gov (United States)

    Capri, M. A. L.; Fiorentini, D.; Pereira, A. D.; Sorella, S. P.

    2017-08-01

    In this work, we study the propagators of matter fields within the framework of the refined Gribov-Zwanziger theory, which takes into account the effects of the Gribov copies in the gauge-fixing quantization procedure of Yang-Mills theory. In full analogy with the pure gluon sector of the refined Gribov-Zwanziger action, a non-local long-range term in the inverse of the Faddeev-Popov operator is added in the matter sector. Making use of the recent BRST-invariant formulation of the Gribov-Zwanziger framework achieved in Capri et al. (Phys Rev D 92(4):045039, 2015), (Phys Rev D 94(2):025035, 2016), (Phys Rev D 93(6):065019, 2016), (arXiv:1611.10077 [hep-th]), Pereira et al. (arXiv:1605.09747 [hep-th]),the propagators of scalar and quark fields in the adjoint and fundamental representations of the gauge group are worked out explicitly in the linear covariant, Curci-Ferrari and maximal Abelian gauges. Whenever lattice data are available, our results exhibit good qualitative agreement.

  5. A non-perturbative study of matter field propagators in Euclidean Yang-Mills theory in linear covariant, Curci-Ferrari and maximal Abelian gauges

    Energy Technology Data Exchange (ETDEWEB)

    Capri, M.A.L.; Fiorentini, D.; Sorella, S.P. [UERJ - Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil); Pereira, A.D. [UERJ - Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil); UFF - Universidade Federal Fluminense, Instituto de Fisica, Niteroi, RJ (Brazil)

    2017-08-15

    In this work, we study the propagators of matter fields within the framework of the refined Gribov-Zwanziger theory, which takes into account the effects of the Gribov copies in the gauge-fixing quantization procedure of Yang-Mills theory. In full analogy with the pure gluon sector of the refined Gribov-Zwanziger action, a non-local long-range term in the inverse of the Faddeev-Popov operator is added in the matter sector. Making use of the recent BRST-invariant formulation of the Gribov-Zwanziger framework achieved in Capri et al. (Phys Rev D 92(4):045039, 2015), (Phys Rev D 94(2):025035, 2016), (Phys Rev D 93(6):065019, 2016), (arXiv:1611.10077 [hepth]), Pereira et al. (arXiv:1605.09747 [hep-th]), the propagators of scalar and quark fields in the adjoint and fundamental representations of the gauge group are worked out explicitly in the linear covariant, Curci-Ferrari and maximal Abelian gauges. Whenever lattice data are available, our results exhibit good qualitative agreement. (orig.)

  6. Relativistic wave equations without the Velo-Zwanziger pathology

    International Nuclear Information System (INIS)

    Khalil, M.A.K.

    1976-06-01

    For particles described by relativistic wave equations of the form: (-iGAMMA x delta + m) psi(x) = 0 interacting with an external field B(x) it is known that the ''noncausal'' propagation characteristics are not present when (1) GAMMA 0 is diagonalizable and (2) B(x) = -eGAMMA/sub mu/A/sup mu/(x) (Amar--Dozzio). The ''noncausality''difficulties arise for the Rarita--Schwinger spin 3 / 2 equation, with nondiagonalizable GAMMA 0 , in minimal coupling (i.e., B(x) = -eGAMMA x A(x)) and the PDK spin 1 equation, with diagonalizable GAMMA 0 , in a quadrupole coupling (Velo--Zwanziger) where either (1) or (2) of the Amar--Dozzio (sufficient) conditions are violated. Some sufficient conditions are derived and explored where the Velo--Zwanziger ''noncausality'' pathology can be avoided, even though one, or the other, or both of the conditions (1) and (2) are violated. Examples with both reducible and irreducible wave equations are included

  7. Gribov ambiguity, perturbation theory, and confinement

    International Nuclear Information System (INIS)

    Greensite, J.P.

    1978-01-01

    The generating functional proposed for gauge theories by Bender, Eguchi, and Pagels (BEP) is shown to be equivalent to a truncated form of the functional integral, in which only one field configuration from each gauge-equivalent Gribov set contributes to the functional integration. The standard perturbation technique provides a method of realizing this truncation condition. It is shown that any gauge-covariant quantity (such as the quark N-point functions), evaluated by perturbating around a field configuration gauge-equivalent to A = 0, is related by a gauge transformation to the same quantity evaluated perturbatively around the trivial vacuum. It follows that, contrary to the conclusion of BEP, the existence of degeneracies in the Coulomb gauge-fixing condition (the Gribov ambiguity) is not directly related to the physics of confinement

  8. The Gribov problem and QCD dynamics

    International Nuclear Information System (INIS)

    Vandersickel, N.; Zwanziger, Daniel

    2012-01-01

    In 1967, Faddeev and Popov were able to quantize the Yang–Mills theory by introducing new particles called ghost through the introduction of a gauge. Ever since, this quantization has become a standard textbook item. Some years later, Gribov discovered that the gauge fixing was not complete, gauge copies called Gribov copies were still present and could affect the infrared region of quantities like the gauge dependent gluon and ghost propagator. This feature was often in the literature related to confinement. Some years later, the semi-classical approach of Gribov was generalized to all orders and the GZ action was born. Ever since, many related articles were published. This review tends to give a pedagogic review of the ideas of Gribov and the subsequent construction of the GZ action, including many other topics related to the Gribov region. It is shown how the GZ action can be viewed as a non-perturbative tool which has relations with other approaches toward confinement. Many different features related to the GZ action shall be discussed in detail, such as BRST breaking, the KO criterion, the propagators, etc. We shall also compare with the lattice data and other non-perturbative approaches, including stochastic quantization.

  9. Preliminary analysis of the phases of 4d SU(2) Higgs gauge systems with cutoff at the Gribov horizon

    International Nuclear Information System (INIS)

    Capri, Marcio A.L.; Gomez, Arthuro J.; Guimaraes, Marcelo S.; Justo, Igor F.; Sorella, Silvio P.; Vercauteren, David; Dudal, David

    2013-01-01

    Full text: We study the gauge propagators of a SU(2) 4d Yang-Mills theory in the presence of the Higgs field by taking into account non-perturbative effects related to the Gribov copies, which affect the gauge fixing procedure. Both fundamental and adjoint representation for the Higgs field are considered. An interesting feature of our results is the deep difference between the fundamental and adjoint representations. In synthesis, in the fundamental representation three regions are observed: the first, called the Higgs region, is the region in which the propagators are not affected by the Gribov problem, being of the Yukawa type; the second region is an intermediate region where the gauge propagator can be decomposed into the sum of two Yukawa terms, one of them being unphysical, due to the negativity of its residue; the third region is a region in which the propagators are of the Gribov type, exhibiting complex poles. As such, they correspond to the confined region. We underline that the propagators change smoothly when one goes from one region to another, a feature which is in agreement with lattice results. The adjoint representation has a more intricate scenario. For a finite vacuum expectation value of the Higgs field, ν, we always find a U(1) confined mode, meaning that the third component of the gauge field exhibits a Gribov type propagator, while the propagator of the o®-diagonal components varies smoothly from a confined to a Yukawa type propagator. The massless photon is recovered in the limiting case ν→ ∞, as suggested by lattice works. (author)

  10. Gribov gap equation at finite temperature

    International Nuclear Information System (INIS)

    Canfora, Fabrizio; Pais, Pablo; Salgado-Rebolledo, Patricio

    2014-01-01

    In this paper the Gribov gap equation at finite temperature is analyzed. The solutions of the gap equation (which depend explicitly on the temperature) determine the structure of the gluon propagator within the semi-classical Gribov approach. The present analysis is consistent with the standard confinement scenario for low temperatures, while for high enough temperatures, deconfinement takes place and a free gluon propagator is obtained. An intermediate regime in between the confined and free phases can be read off from the resulting gluon propagator, which appears to be closely related to partial deconfinement. (orig.)

  11. Gribov gap equation at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Canfora, Fabrizio; Pais, Pablo [Centro de Estudios Cientificos (CECS), Valdivia (Chile); Universidad Andres Bello, Santiago (Chile); Salgado-Rebolledo, Patricio [Centro de Estudios Cientificos (CECS), Valdivia (Chile); Universidad de Concepcion, Departamento de Fisica, Concepcion (Chile); Universite Libre de Bruxelles and International Solvay Insitutes, Physique Theorique et Mathematique, Bruxelles (Belgium)

    2014-05-15

    In this paper the Gribov gap equation at finite temperature is analyzed. The solutions of the gap equation (which depend explicitly on the temperature) determine the structure of the gluon propagator within the semi-classical Gribov approach. The present analysis is consistent with the standard confinement scenario for low temperatures, while for high enough temperatures, deconfinement takes place and a free gluon propagator is obtained. An intermediate regime in between the confined and free phases can be read off from the resulting gluon propagator, which appears to be closely related to partial deconfinement. (orig.)

  12. The Gribov problem in presence of background field for SU(2) Yang–Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Canfora, Fabrizio, E-mail: canfora@cecs.cl [Centro de Estudios Científicos (CECS), Casilla 1469, Valdivia (Chile); Hidalgo, Diego, E-mail: dhidalgo@cecs.cl [Centro de Estudios Científicos (CECS), Casilla 1469, Valdivia (Chile); Departamento de Física, Universidad de Concepción, Casilla 160, Concepción (Chile); Pais, Pablo, E-mail: pais@cecs.cl [Centro de Estudios Científicos (CECS), Casilla 1469, Valdivia (Chile); Physique Théorique et Mathématique, Univérsite de Bruxelles and International Solvay Institutes, Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium)

    2016-12-10

    The Gribov problem in the presence of a background field is analyzed: in particular, we study the Gribov copies equation in the Landau–De Witt gauge as well as the semi-classical Gribov gap equation. As background field, we choose the simplest non-trivial one which corresponds to a constant gauge potential with non-vanishing component along the Euclidean time direction. This kind of constant non-Abelian background fields is very relevant in relation with (the computation of) the Polyakov loop but it also appears when one considers the non-Abelian Schwinger effect. We show that the Gribov copies equation is affected directly by the presence of the background field, constructing an explicit example. The analysis of the Gribov gap equation shows that the larger the background field, the smaller the Gribov mass parameter. These results strongly suggest that the relevance of the Gribov copies (from the path integral point of view) decreases as the size of the background field increases.

  13. Gribov's reggeon calculus: its physical basis and implications

    International Nuclear Information System (INIS)

    Baker, M.; Ter-Martirosyan, K.A.

    1976-01-01

    The equations of Gribov's Reggeon calculus and the cutting rules of Abramovskii, Gribov and Kancheli are derived from the assumption that processes involving large virtual masses are damped. The discussion is carried out entirely in the s channel and no use is made of the details of any particular field theory. Both the mathematical development and the physical picture which evolves rest on the assumed multiperipheral origin of Regge behavior. (Auth.)

  14. Strong-coupling study of the Gribov ambiguity in lattice Landau gauge

    International Nuclear Information System (INIS)

    Maas, Axel; Pawlowski, Jan M.; Spielmann, Daniel; Sternbeck, Andre; Smekal, Lorenz von

    2010-01-01

    We study the strong-coupling limit β=0 of lattice SU(2) Landau gauge Yang-Mills theory. In this limit the lattice spacing is infinite, and thus all momenta in physical units are infinitesimally small. Hence, the infrared behavior can be assessed at sufficiently large lattice momenta. Our results show that at the lattice volumes used here, the Gribov ambiguity has an enormous effect on the ghost propagator in all dimensions. This underlines the severity of the Gribov problem and calls for refined studies also at finite β. In turn, the gluon propagator only mildly depends on the Gribov ambiguity. (orig.)

  15. Generalized Gribov-Lipatov Reciprocity and AdS/CFT

    International Nuclear Information System (INIS)

    Beccaria, M.; Macorini, G.; Forini, V.

    2010-01-01

    Planar □=4 SYM theory and QCD share the gluon sector, suggesting the investigation of Gribov-Lipatov reciprocity in the supersymmetric theory. Since the AdS/CFT correspondence links □=4 SYM and superstring dynamics on AdS 5 x S5, reciprocity is also expected to show up in the quantum corrected energies of certain classical string configurations dual to gauge theory twist-operators. We review recent results confirming this picture and revisiting the old idea of Gribov-Lipatov reciprocity as a modern theoretical tool useful for the study of open problems in AdS/CFT.

  16. The bare parameters of Gribov's Langrangian are understood and determined

    International Nuclear Information System (INIS)

    Bishari, M.

    1977-01-01

    In the context of the ''1/N Dual Unitarization'' scheme, an explicit dynamical study of the triple bare pomeron mechanism which governs the interaction term in Gribov's Lagrangian is presented. Together with the previously established bare pomeron slope and intercept, controlling respectively, the kinetic and mass terms in Gribov's Lagrangian, this work demonstrates the viability of the ''1/N Dual Unitarization'' approach for a field theory of interaction bare pomerons. (author)

  17. The Gribov problem in noncommutative QED

    Energy Technology Data Exchange (ETDEWEB)

    Canfora, Fabrizio [Centro de Estudios Científicos (CECS),Casilla 1469, Valdivia (Chile); Kurkov, Maxim A. [Dipartimento di Matematica, Università di Napoli Federico II,Monte S. Angelo, Via Cintia, 80126 Napoli (Italy); CMCC-Universidade Federal do ABC,Santo André, S.P. (Brazil); INFN, Sezione di Napoli,Monte S. Angelo, Via Cintia, 80126 Napoli (Italy); Rosa, Luigi; Vitale, Patrizia [Dipartimento di Fisica, Università di Napoli Federico II,Monte S. Angelo, Via Cintia, 80126 Napoli (Italy); INFN, Sezione di Napoli,Monte S. Angelo, Via Cintia, 80126 Napoli (Italy)

    2016-01-04

    It is shown that in the noncommutative version of QED (NCQED) Gribov copies induced by the noncommutativity of space-time appear in the Landau gauge. This is a genuine effect of noncommutative geometry which disappears when the noncommutative parameter vanishes.

  18. Evidence for the existence of Gribov copies in Landau gauge lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Marinari, E.; Ricci, R. (Rome-2 Univ. (Italy). Dipt. di Fisica INFN, Rome (Italy)); Parrinello, C. (New York Univ., NY (USA). Physics Dept.)

    1991-09-16

    We unambiguously show the existence of Gribov copies in a pure SU(3) gauge lattice model, with Wilson action. We show that the usual steepest-descent algorithms used for implementing the lattice Landau gauge lead to ambiguities, which are related to the existence of Gribov copies in the model. (orig.).

  19. On the elimination of infinitesimal Gribov ambiguities in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Pereira, Antonio D.; Sobreiro, Rodrigo F.

    2013-01-01

    An alternative method to account for the Gribov ambiguities in gauge theories is presented. It is shown that, to eliminate Gribov ambiguities, at infinitesimal level, it is required to break the BRST symmetry in a soft manner. This can be done by introducing a suitable extra constraint that eliminates the infinitesimal Gribov copies. It is shown that the present approach is consistent with the well established known cases in the literature, i.e., the Landau and maximal Abelian gauges. The method is valid for gauges depending exclusively on the gauge field and is restricted to classical level. However, occasionally, we deal with quantum aspects of the technique, which are used to improve the results. (orig.)

  20. Generalized Coulomb gauge without Gribov ambiguity

    Energy Technology Data Exchange (ETDEWEB)

    Fachin, S.; Parrinello, C. (New York Univ., NY (United States). Physics Dept.)

    1992-05-01

    We discuss a global gauge-fixing prescription that is free of the Gribov problem, preserves reflection positivity and contains as a limiting case the (maximal) Coulomb gauge. In such a formalism it is very easy to check that only color singlet states propagate in Euclidean time, for any value of [beta]. (orig.).

  1. Absence of the Gribov ambiguity in a special algebraic gauge

    Directory of Open Access Journals (Sweden)

    Raval Haresh

    2016-01-01

    Full Text Available The Gribov ambiguity exists in various gauges except algebraic gauges. However in general, algebraic gauges are not Lorentz invariant, which is their fundamental flaw. Here we discuss a quadratic gauge fixing, which is Lorentz invariant. We show that nontrivial copies can not occur in this gauge. We then provide an example of spherically symmetric gauge field configuration and prove that with a proper boundary condition on the configuration, this gauge removes the ambiguity on a compact manifold S3${{\\mathbb S}^3}$.

  2. Phenomenological structure functions and Gribov-Lipatov relation

    International Nuclear Information System (INIS)

    Choudhary, D.K.; Misra, A.K.

    1987-01-01

    An analysis of the Giribov-Lipatov relation using the phenomenological forms of the structure function F 2 ep is made. The analysis indicate breakdown of the relation at PETRA energies. Plausible reasons of the breakdown of Gribov-Lipatov relation are discussed together with its phenomenological form. 33 refs., 6 figures. (author)

  3. Analytical solution for the correlator with Gribov propagators

    Czech Academy of Sciences Publication Activity Database

    Šauli, Vladimír

    2016-01-01

    Roč. 14, č. 1 (2016), s. 570-578 E-ISSN 2391-5471 Institutional support: RVO:61389005 Keywords : confinement * Gribov propagator * Quantum Chromodynamics * dispersion relations * quantum field theory * Green's functions Subject RIV: BE - Theoretical Physics Impact factor: 0.745, year: 2016

  4. Pion-nucleon charge-exchange polarization by Gribov Reggeon calculus and the derivative rule

    International Nuclear Information System (INIS)

    Ardill, R.W.B.; Koehler, P.; Moriarty, K.J.M.

    1977-01-01

    The phenomenological consequences of the Gribov Reggeon calculus for the reaction πsup(-)+p→πdeg+n at 6 GeV/c are investigated and the polarization is obtained. The derivative rules is used to calculate the helicity flip amplitude. The results are very encouraging and would seem to indicate that the Gribov Reggeon calculus can be considered a more satisfactory approach to two-body phenomenology than the absorption model

  5. Gribov-Lipatov relation in perturbative QCD

    International Nuclear Information System (INIS)

    Pavlenko, O.P.; Snigipev, A.M.; Zinov'ev, G.M.

    1982-01-01

    It is shown that at small X the violation of the Gribov-Lipatov relation between the distribution Dsub(A)sup(B)(X, Qsup(2)) (where X is a fraction of parton longitudinal momentum, Q 2 is a square of momentum transfer) and fragmentation anti Dsub(A)sup(B)(X, Qsup(2)) functions depends on the order in which their X- and Q 2 -asymptotic behaviours are investigated

  6. WWNPQFT-2010 - Slides of the presentations

    International Nuclear Information System (INIS)

    Fried, H.M.; Huber, M.Q.; Grandou, T.; Bianchi, E.; Gracey, J.; Reys, V.; Jevicki, A.; Ferrante, D.; Bouakaz, K.; Spielmann, D.; Cucchieri, A.; Culetu, H.; Gelis, F.; Zwanziger, D.; Candelpergher, B.; Bender, C.

    2013-01-01

    This document is made up of the slides of the presentations. The object of this workshop is to consolidate and publicize new efforts in non-perturbative field theories. The main topics are quantum chromodynamics, Yang-Mills theory, effective locality, the Gribov-Zwanziger Lagrangian, and renormalization. A presentation is dedicated to the initial stages of high energy nucleus-nucleus collisions

  7. Remembering Gribov

    Science.gov (United States)

    Szent-Györgyi, Andrew

    It was always a pleasure to remember your husband Gribov, and how much it meant to spend time with him. Although I am not a physicist, it is clear what a great scientist Volodya was, innovative and deep. At the same time he was an extremely nice person. He was not only a great scientist, but a person who, apart from his great contributions to physics, was also able to clearly see what was right and what was wrong in life. His presence, his opinion about people and science was always a delightful experience. Albert was the only other person I have known well who also clearly knew what was right and what was wrong, and was willing to stand up for his principles. We are lucky to have known and lived with such great individuals. Note from Publisher: This article contains the abstract only.

  8. A preliminary study of the Gribov ambiguity in lattice SU(3) Coulomb gauge

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, C. (Physics Dept., New York Univ., NY (United States)); Petrarca, S. (Dipt. di Fisica, Rome-1 Univ. (Italy) INFN, Rome (Italy)); Vladikas, A. (Dipt. di Fisica, Rome-2 Univ. (Italy) INFN, Rome (Italy))

    1991-10-10

    We report on simulations of pure SU(3) gauge theory on a 10{sup 3}x20 lattice at {beta}=6.0 in the Coulomb gauge, from which the Gribov ambiguity appears to be maximal, in the sense that the gauge-fixing process is highly unstable with respect to variations of the starting configuration via random gauge transformations. We give a heuristic explanation of the larger number of Gribov copies in such a gauge with respect to the Landau gauge. (orig.).

  9. Experiencing Gribov copies in SU(3) lattice gauge theory

    International Nuclear Information System (INIS)

    Petrarca, S.

    1993-01-01

    Recent results obtained in collaboration with C. Parrinello, M.L. Paciello, B. Taglienti and A. Vladikas on the Gribov noise resulting from smeared correlators are presented. A brief discussion of the possible influence of this fluctuations on the measure of physical quantities like f B is reported. (orig.)

  10. Absence of the Gribov ambiguity in a quadratic gauge

    International Nuclear Information System (INIS)

    Raval, Haresh

    2016-01-01

    The Gribov ambiguity exists in various gauges. Algebraic gauges are likely to be ambiguity free. However, algebraic gauges are not Lorentz invariant, which is their fundamental flaw. In addition, they are not generally compatible with the boundary conditions on the gauge fields, which are needed to compactify the space i.e., the ambiguity continues to exist on a compact manifold. Here we discuss a quadratic gauge fixing, which is Lorentz invariant. We consider an example of a spherically symmetric gauge field configuration in which we prove that this Lorentz invariant gauge removes the ambiguity on a compact manifold S 3 , when a proper boundary condition on the gauge configuration is taken into account. Thus, we provide one example where the ambiguity is absent on a compact manifold in the algebraic gauge. We also show that the BRST invariance is preserved in this gauge. (orig.)

  11. Absence of the Gribov ambiguity in a quadratic gauge

    Energy Technology Data Exchange (ETDEWEB)

    Raval, Haresh [Indian Institute of Technology, Bombay, Department of Physics, Mumbai (India)

    2016-05-15

    The Gribov ambiguity exists in various gauges. Algebraic gauges are likely to be ambiguity free. However, algebraic gauges are not Lorentz invariant, which is their fundamental flaw. In addition, they are not generally compatible with the boundary conditions on the gauge fields, which are needed to compactify the space i.e., the ambiguity continues to exist on a compact manifold. Here we discuss a quadratic gauge fixing, which is Lorentz invariant. We consider an example of a spherically symmetric gauge field configuration in which we prove that this Lorentz invariant gauge removes the ambiguity on a compact manifold S{sup 3}, when a proper boundary condition on the gauge configuration is taken into account. Thus, we provide one example where the ambiguity is absent on a compact manifold in the algebraic gauge. We also show that the BRST invariance is preserved in this gauge. (orig.)

  12. Effective horizons, junction conditions and large-scale magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Giovannini, Massimo [CERN, Department of Physics, Theory Division, Geneva (Switzerland); INFN, Milan (Italy)

    2017-08-15

    The quantum mechanical generation of hypermagnetic and hyperelectric fields in four-dimensional conformally flat background geometries rests on the simultaneous continuity of the effective horizon and of the extrinsic curvature across the inflationary boundary. The junction conditions for the gauge fields are derived in general terms and corroborated by explicit examples with particular attention to the limit of a sudden (but nonetheless continuous) transition of the effective horizon. After reducing the dynamics to a pair of integral equations related by duality transformations, we compute the power spectra and deduce a novel class of logarithmic corrections which turn out to be, however, numerically insignificant and overwhelmed by the conductivity effects once the gauge modes reenter the effective horizon. In this perspective the magnetogenesis requirements and the role of the postinflationary conductivity are clarified and reappraised. As long as the total duration of the inflationary phase is nearly minimal, quasi-flat hypermagnetic power spectra are comparatively more common than in the case of vacuum initial data. (orig.)

  13. SU(3) lattice gauge fixing with overrelaxation and Gribov copies

    Energy Technology Data Exchange (ETDEWEB)

    Paciello, M.L.; Taglienti, B. (INFN La Sapienza, Rome (Italy)); Parrinello, C. (Physics Dept., New York Univ., NY (United States)); Petrarca, S. (Theory Div., CERN, Geneva (Switzerland)); Vladikas, A. (Dipt. di Fisica, Univ. Tor Vergata, Rome (Italy) INFN Tor Vergata, Rome (Italy))

    1992-02-06

    We report on the phenomenology of SU(3) lattice Landau gauge fixing as obtained by using an overrelaxation algorithm. An interesting result obtained using this very efficient algorithm is that distinct Gribov copies are generated by simply modifying the value {omega} of the overrelaxation parameter for a fixed starting configuration. By generating random gauge equivalent configurations, we study the variation of the number of copies with the lattice volume and gauge coupling. (orig.).

  14. Conditions for characterizing the structure of optimal strategies in infinite-horizon dynamic programs

    International Nuclear Information System (INIS)

    Porteus, E.

    1982-01-01

    The study of infinite-horizon nonstationary dynamic programs using the operator approach is continued. The point of view here differs slightly from that taken by others, in that Denardo's local income function is not used as a starting point. Infinite-horizon values are defined as limits of finite-horizon values, as the horizons get long. Two important conditions of an earlier paper are weakened, yet the optimality equations, the optimality criterion, and the existence of optimal ''structured'' strategies are still obtained

  15. Violation of Gribov-Lipatov reciprocity due to preconfinement

    International Nuclear Information System (INIS)

    Kawabe, Tetsuji

    1981-01-01

    On the basis of the preconfinement picture we study the hadronization of quark jets. Since this picture prepares in the final stage of QCD evolution the color singlet cluster for the adjacent q anti q pair distribution, the color of partons can be compensated in the hard region. We show that the resulting fragmentation function satisfies no longer the Gribov-Lipatov reciprocity derived in the case of the two-parton distribution. It is pointed out that the violation of the reciprocity is expected as the evidence of the realization of the preconfinement picture and the pattern of the violation is not inconsistent with data. (author)

  16. Ice limit of Coulomb gauge Yang-Mills theory

    International Nuclear Information System (INIS)

    Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; McMullan, D.

    2008-01-01

    In this paper we describe gauge invariant multiquark states generalizing the path integral framework developed by Parrinello, Jona-Lasinio, and Zwanziger to amend the Faddeev-Popov approach. This allows us to produce states such that, in a limit which we call the ice limit, fermions are dressed with glue exclusively from the fundamental modular region associated with Coulomb gauge. The limit can be taken analytically without difficulties, avoiding the Gribov problem. This is illustrated by an unambiguous construction of gauge invariant mesonic states for which we simulate the static quark-antiquark potential.

  17. arXiv Effective horizons, junction conditions and large-scale magnetism

    CERN Document Server

    Giovannini, Massimo

    2017-08-05

    The quantum mechanical generation of hypermagnetic and hyperlectric fields in four-dimensional conformally flat background geometries rests on the simultaneous continuity of the effective horizon and of the extrinsic curvature across the inflationary boundary. The junction conditions for the gauge fields are derived in general terms and corroborated by explicit examples with particular attention to the limit of a sudden (but nonetheless continuous) transition of the effective horizon. After reducing the dynamics to a pair of integral equations related by duality transformations, we compute the power spectra and deduce a novel class of logarithmic corrections which turn out to be, however, numerically insignificant and overwhelmed by the conductivity effects once the gauge modes reenter the effective horizon. In this perspective the magnetogenesis requirements and the role of the postinflationary conductivity are clarified and reappraised. As long as the total duration of the inflationary phase is nearly minim...

  18. Non-perturbative BRST quantization of Euclidean Yang-Mills theories in Curci-Ferrari gauges

    Science.gov (United States)

    Pereira, A. D.; Sobreiro, R. F.; Sorella, S. P.

    2016-10-01

    In this paper we address the issue of the non-perturbative quantization of Euclidean Yang-Mills theories in the Curci-Ferrari gauge. In particular, we construct a refined Gribov-Zwanziger action for this gauge, which takes into account the presence of gauge copies as well as the dynamical formation of dimension-two condensates. This action enjoys a non-perturbative BRST symmetry recently proposed in Capri et al. (Phys. Rev. D 92(4), 045039. doi: 10.1103/PhysRevD.92.045039 arXiv:1506.06995 [hep-th], 2015). Finally, we pay attention to the gluon propagator in different space-time dimensions.

  19. Non-perturbative BRST quantization of Euclidean Yang-Mills theories in Curci-Ferrari gauges

    International Nuclear Information System (INIS)

    Pereira, A.D.; Sobreiro, R.F.; Sorella, S.P.

    2016-01-01

    In this paper we address the issue of the non-perturbative quantization of Euclidean Yang-Mills theories in the Curci-Ferrari gauge. In particular, we construct a refined Gribov-Zwanziger action for this gauge, which takes into account the presence of gauge copies as well as the dynamical formation of dimension-two condensates. This action enjoys a non-perturbative BRST symmetry recently proposed in Capri et al. (Phys. Rev. D 92(4), 045039. doi:10.1103/PhysRevD.92.045039. arXiv:1506.06995 [hepth], 2015). Finally, we pay attention to the gluon propagator in different space-time dimensions. (orig.)

  20. Non-perturbative BRST quantization of Euclidean Yang-Mills theories in Curci-Ferrari gauges

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.D. [UFF, Universidade Federal Fluminense, Instituto de Fisica, Campus da Praia Vermelha, Niteroi, RJ (Brazil); Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam (Germany); UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil); Sobreiro, R.F. [UFF, Universidade Federal Fluminense, Instituto de Fisica, Campus da Praia Vermelha, Niteroi, RJ (Brazil); Sorella, S.P. [UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil)

    2016-10-15

    In this paper we address the issue of the non-perturbative quantization of Euclidean Yang-Mills theories in the Curci-Ferrari gauge. In particular, we construct a refined Gribov-Zwanziger action for this gauge, which takes into account the presence of gauge copies as well as the dynamical formation of dimension-two condensates. This action enjoys a non-perturbative BRST symmetry recently proposed in Capri et al. (Phys. Rev. D 92(4), 045039. doi:10.1103/PhysRevD.92.045039. arXiv:1506.06995 [hepth], 2015). Finally, we pay attention to the gluon propagator in different space-time dimensions. (orig.)

  1. Isolated Horizon, Killing Horizon and Event Horizon

    OpenAIRE

    Date, G.

    2001-01-01

    We consider space-times which in addition to admitting an isolated horizon also admit Killing horizons with or without an event horizon. We show that an isolated horizon is a Killing horizon provided either (1) it admits a stationary neighbourhood or (2) it admits a neighbourhood with two independent, commuting Killing vectors. A Killing horizon is always an isolated horizon. For the case when an event horizon is definable, all conceivable relative locations of isolated horizon and event hori...

  2. On the stochastic quantization of gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Jona-Lasinio, G.; Parrinello, C.

    1988-11-03

    The non-gradient stochastic quantization scheme for gauge theories proposed by Zwanziger is analyzed in the semiclassical limit. Using ideas from the theory of small random perturbations of dynamical systems we derive a lower bound for the equilibrium distribution in a neighbourhood of a stable critical point of the drift. In this approach the calculation of the equilibrium distribution is reduced to the problem of finding a minimum for the large fluctuation functional associated to the Langevin equation. Our estimate follows from a simple upper bound for this minimum; in addition to the Yang-Mills action a gauge-fixing term which tends to suppress Gribov copies appears.

  3. Three theorems on near horizon extremal vanishing horizon geometries

    Directory of Open Access Journals (Sweden)

    S. Sadeghian

    2016-02-01

    Full Text Available EVH black holes are Extremal black holes with Vanishing Horizon area, where vanishing of horizon area is a result of having a vanishing one-cycle on the horizon. We prove three theorems regarding near horizon geometry of EVH black hole solutions to generic Einstein gravity theories in diverse dimensions. These generic gravity theories are Einstein–Maxwell-dilaton-Λ theories, and gauged or ungauged supergravity theories with U(1 Maxwell fields. Our three theorems are: (1 The near horizon geometry of any EVH black hole has a three dimensional maximally symmetric subspace. (2 If the energy momentum tensor of the theory satisfies strong energy condition either this 3d part is an AdS3, or the solution is a direct product of a locally 3d flat space and a d−3 dimensional part. (3 These results extend to the near horizon geometry of near-EVH black holes, for which the AdS3 part is replaced with BTZ geometry.

  4. Convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation and rate constants: Case study of the spin-boson model

    Science.gov (United States)

    Xu, Meng; Yan, Yaming; Liu, Yanying; Shi, Qiang

    2018-04-01

    The Nakajima-Zwanzig generalized master equation provides a formally exact framework to simulate quantum dynamics in condensed phases. Yet, the exact memory kernel is hard to obtain and calculations based on perturbative expansions are often employed. By using the spin-boson model as an example, we assess the convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation. The exact memory kernels are calculated by combining the hierarchical equation of motion approach and the Dyson expansion of the exact memory kernel. High order expansions of the memory kernels are obtained by extending our previous work to calculate perturbative expansions of open system quantum dynamics [M. Xu et al., J. Chem. Phys. 146, 064102 (2017)]. It is found that the high order expansions do not necessarily converge in certain parameter regimes where the exact kernel show a long memory time, especially in cases of slow bath, weak system-bath coupling, and low temperature. Effectiveness of the Padé and Landau-Zener resummation approaches is tested, and the convergence of higher order rate constants beyond Fermi's golden rule is investigated.

  5. Near horizon structure of extremal vanishing horizon black holes

    Directory of Open Access Journals (Sweden)

    S. Sadeghian

    2015-11-01

    Full Text Available We study the near horizon structure of Extremal Vanishing Horizon (EVH black holes, extremal black holes with vanishing horizon area with a vanishing one-cycle on the horizon. We construct the most general near horizon EVH and near-EVH ansatz for the metric and other fields, like dilaton and gauge fields which may be present in the theory. We prove that (1 the near horizon EVH geometry for generic gravity theory in generic dimension has a three dimensional maximally symmetric subspace; (2 if the matter fields of the theory satisfy strong energy condition either this 3d part is AdS3, or the solution is a direct product of a locally 3d flat space and a d−3 dimensional part; (3 these results extend to the near horizon geometry of near-EVH black holes, for which the AdS3 part is replaced with BTZ geometry. We present some specific near horizon EVH geometries in 3, 4 and 5 dimensions for which there is a classification. We also briefly discuss implications of these generic results for generic (gauged supergravity theories and also for the thermodynamics of near-EVH black holes and the EVH/CFT proposal.

  6. Necessary and Sufficient Conditions for Pareto Optimality in Infinite Horizon Cooperative Differential Games

    NARCIS (Netherlands)

    Reddy, P.V.; Engwerda, J.C.

    2011-01-01

    In this article we derive necessary and sufficient conditions for the existence of Pareto optimal solutions for infinite horizon cooperative differential games. We consider games defined by non autonomous and discounted autonomous systems. The obtained results are used to analyze the regular

  7. Neighborhoods of isolated horizons and their stationarity

    International Nuclear Information System (INIS)

    Lewandowski, Jerzy; Pawłowski, Tomasz

    2014-01-01

    A distinguished (invariant) Bondi-like coordinate system is defined in the spacetime neighborhood of a non-expanding horizon of arbitrary dimension via geometry invariants of the horizon. With its use, the radial expansion of a spacetime metric about the horizon is provided and the free data needed to specify it up to a given order are determined in spacetime dimension 4. For the case of an electro-vacuum horizon in four-dimensional spacetime, the necessary and sufficient conditions for the existence of a Killing field at its neighborhood are identified as differential conditions for the horizon data and data for the null surface transversal to the horizon. (paper)

  8. Gribov ambiguity in asymptotically AdS three-dimensional gravity

    International Nuclear Information System (INIS)

    Anabalon, Andres; Canfora, Fabrizio; Giacomini, Alex; Oliva, Julio

    2011-01-01

    In this paper the zero modes of the de Donder gauge Faddeev-Popov operator for three-dimensional gravity with negative cosmological constant are analyzed. It is found that the AdS 3 vacuum produces (infinitely many) normalizable smooth zero modes of the Faddeev-Popov operator. On the other hand, it is found that the Banados-Teitelboim-Zanelli black hole (including the zero mass black hole) does not generate zero modes. This differs from the usual Gribov problem in QCD where, close to the maximally symmetric vacuum, the Faddeev-Popov determinant is positive definite while 'far enough' from the vacuum it can vanish. This suggests that the zero mass Banados-Teitelboim-Zanelli black hole could be a suitable ground state of three-dimensional gravity with negative cosmological constant. Because of the kinematic origin of this result, it also applies for other covariant gravity theories in three dimensions with AdS 3 as maximally symmetric solution, such as new massive gravity and topologically massive gravity. The relevance of these results for supersymmetry breaking is pointed out.

  9. Status of the Gribov-Pontecorvo Solution to the Solar Neutrino Problem

    CERN Document Server

    Berezinsky, Veniamin Sergeevich; Peña-Garay, C

    2001-01-01

    We discuss the status of the Gribov--Pontecorvo (GP) solution to the solar neutrino problem. This solution naturally appears in bimaximal neutrino mixing and reduces the solar and atmospheric neutrino problems to vacuum oscillations of three active neutrinos. The GP solution predicts an energy-independent suppression of the solar neutrino flux. It is disfavoured by the rate of the Homestake detector, but its statistical significance greatly improves, when the chlorine rate and the boron neutrino flux are slightly rescaled, and when the Super-Kamiokande neutrino spectrum is included in the analysis. Our results show that rescaling of the chlorine signal by only 10% is sufficient for the GP solution to exist, if the boron--neutrino flux is taken 10 -- 20% lower than the SSM prediction. The regions allowed for the GP solution in the parameter space are found and observational signatures of this solution are discussed.

  10. Hawking radiation from the cosmological horizon in a FRW universe

    International Nuclear Information System (INIS)

    Hu Yapeng

    2011-01-01

    It is well known that there is a Hawking radiation from the cosmological horizon of the de Sitter spacetime, and the de Sitter spacetime can be a special case of a FRW universe. Therefore, there may be a corresponding Hawking radiation in a FRW universe. Indeed, there have been several clues showing that there is a Hawking radiation from the apparent horizon of a FRW universe. In our Letter, however, we find that the Hawking radiation may come from the cosmological horizon. Moreover, we also find that the Hawking radiation from the apparent horizon of a FRW universe in some previous works can be a special case in our result, and the condition is that the variation rate of cosmological horizon r . H is zero. Note that, this condition is also consistent with the underlying integrable condition in these works from the apparent horizon.

  11. Generalized Robertson-Walker Space-Time Admitting Evolving Null Horizons Related to a Black Hole Event Horizon.

    Science.gov (United States)

    Duggal, K L

    2016-01-01

    A new technique is used to study a family of time-dependent null horizons, called " Evolving Null Horizons " (ENHs), of generalized Robertson-Walker (GRW) space-time [Formula: see text] such that the metric [Formula: see text] satisfies a kinematic condition. This work is different from our early papers on the same issue where we used (1 + n )-splitting space-time but only some special subcases of GRW space-time have this formalism. Also, in contrast to previous work, we have proved that each member of ENHs is totally umbilical in [Formula: see text]. Finally, we show that there exists an ENH which is always a null horizon evolving into a black hole event horizon and suggest some open problems.

  12. Tropospheric radiowave propagation beyond the horizon

    CERN Document Server

    Du Castel, François

    1966-01-01

    Tropospheric Radiowave Propagation Beyond the Horizon deals with developments concerning the tropospheric propagation of ultra-short radio waves beyond the horizon, with emphasis on the relationship between the theoretical and the experimental. Topics covered include the general conditions of propagation in the troposphere; general characteristics of propagation beyond the horizon; and attenuation in propagation. This volume is comprised of six chapters and begins with a brief historical look at the various stages that have brought the technique of transhorizon links to its state of developmen

  13. Horizon Entropy from Quantum Gravity Condensates.

    Science.gov (United States)

    Oriti, Daniele; Pranzetti, Daniele; Sindoni, Lorenzo

    2016-05-27

    We construct condensate states encoding the continuum spherically symmetric quantum geometry of a horizon in full quantum gravity, i.e., without any classical symmetry reduction, in the group field theory formalism. Tracing over the bulk degrees of freedom, we show how the resulting reduced density matrix manifestly exhibits a holographic behavior. We derive a complete orthonormal basis of eigenstates for the reduced density matrix of the horizon and use it to compute the horizon entanglement entropy. By imposing consistency with the horizon boundary conditions and semiclassical thermodynamical properties, we recover the Bekenstein-Hawking entropy formula for any value of the Immirzi parameter. Our analysis supports the equivalence between the von Neumann (entanglement) entropy interpretation and the Boltzmann (statistical) one.

  14. Receding Horizon H∞ Control for Input-Delayed Systems

    Directory of Open Access Journals (Sweden)

    Han Woong Yoo

    2012-01-01

    Full Text Available We propose the receding horizon H∞ control (RHHC for input-delayed systems. A new cost function for a finite horizon dynamic game problem is first introduced, which includes two terminal weighting terms parameterized by a positive definite matrix, called a terminal weighing matrix. Secondly, the RHHC is obtained from the solution to the finite dynamic game problem. Thirdly, we propose an LMI condition under which the saddle point value satisfies the nonincreasing monotonicity. Finally, we show the asymptotic stability and H∞ boundedness of the closed-loop system controlled by the proposed RHHC. The proposed RHHC has a guaranteed H∞ performance bound for nonzero external disturbances and the quadratic cost can be improved by adjusting the prediction horizon length for nonzero initial condition and zero disturbance, which is not the case for existing memoryless state-feedback controllers. It is shown through a numerical example that the proposed RHHC is stabilizing and satisfies the infinite horizon H∞ performance bound. Furthermore, the performance in terms of the quadratic cost is shown to be improved by adjusting the prediction horizon length when there exists no external disturbance with nonzero initial condition.

  15. Inclusive gluon production in the dipole approach: Abramovskii-Gribov-Kancheli (AGK) cutting rules

    International Nuclear Information System (INIS)

    Levin, Eugene; Prygarin, Alex

    2008-01-01

    We consider single gluon production in the dipole model and reproduce the result of Kovchegov and Tuchin for the adjoint (gluonic) dipole structure of the inclusive cross section. We show the validity of the adjoint dipole structure to any order of evolution by deriving and solving the nonlinear evolution for the nondiagonal cross section of a dipole scattering off the target. The form of the solution to this equation restores the dipole interpretation for nondiagonal cross sections that appear in gluon production. Using this formalism, we analyze the single inclusive production cross section in terms of the contributions of different multiplicities, and we derive the Abramovskii-Gribov-Kancheli (AGK) cutting rules for two-Pomeron exchange. The cutting rules, which were found in this formalism, fully reproduce the original AGK rules for the total cross section. However, for the case of gluon production, the AGK rules are violated already for one-gluon emission from the vertex

  16. The pedogeochemical segregation a few horizons in soils from glass houses

    Science.gov (United States)

    Bulgariu, Dumitru; Rusu, Constantin; Filipov, Feodor; Buzgar, Nicolae; Bulgariu, Laura

    2010-05-01

    Our studies have focused the apparition and manifestation conditions of pedogeochemical segregation phenomena in case of soils from Copou - Iaşi, Bacău and Bârlad (Romania) glass house, and the effects of this on the pedogeochemical and agrochemical characteristics of soils from glass houses cultivated with vegetables. The utilization of intensive cultivation technologies of vegetables in glass houses determined the degradation of morphological, physical and chemical characteristics of soils, by rapid evolution of salted processes (salinization and / or sodization), compaction, carbonatation, eluviation-illuviation, frangipane formation, stagnogleization, gleization etc. Under these conditions, at depth of 30-40 cm is formed a compact and impenetrable horizon - Ahok(x) horizon. In function of exploitation conditions and by the chemical-mineralogical characteristics of soils from glasshouses, the Ahok horizons can have frangipane properties, expressed more or less. These horizons determined a geochemical segregation of soils from glass houses: (i) superior horizons, above Ahok(x) horizon evolve in weak oxidative conditions, weak alkaline pH, higher salinity, humidity and temperature; (ii) inferior horizons, below Ahok(x) horizon evolve in weak reducing conditions weak acid pH, lower salinity, humidity and temperature. Concomitant with the development of Ahok(x) horizons, the rapid degradation of the properties of soils from glasshouses is observed. The aspects about the formation of frangipane horizon in soils from glasshouses are not yet sufficiently know. Whatever of the formation processes, the frangipane horizons determined a sever segregation in pedogeochemical evolution of soils from glass houses, with very important consequences on the agrochemical quality of these soils. The segregation effects are manifested in the differential dynamics of pedogeochemical processes from superior horizons (situated above the segregation horizon), in comparison with the

  17. The spatial relation between the event horizon and trapping horizon

    International Nuclear Information System (INIS)

    Nielsen, Alex B

    2010-01-01

    The relation between event horizons and trapping horizons is investigated in a number of different situations with emphasis on their role in thermodynamics. A notion of constant change is introduced that in certain situations allows the location of the event horizon to be found locally. When the black hole is accreting matter the difference in area between the two different horizons can be many orders of magnitude larger than the Planck area. When the black hole is evaporating, the difference is small on the Planck scale. A model is introduced that shows how trapping horizons can be expected to appear outside the event horizon before the black hole starts to evaporate. Finally, a modified definition is introduced to invariantly define the location of the trapping horizon under a conformal transformation. In this case the trapping horizon is not always a marginally outer trapped surface.

  18. Aspects of confinement in QCD from lattice simulations

    International Nuclear Information System (INIS)

    Spielmann, Daniel

    2011-01-01

    We study confinement in quantum chromodynamics via numerical simulations in the framework of lattice gauge theory. In Landau gauge, the mechanism of confinement is related to the infrared behavior of the ghost and gluon propagators via the Gribov-Zwanziger and Kugo- Ojima scenarios. These scenarios entail a scaling behavior. Functional methods in the continuum allow both for this behavior and for decoupling solutions, while lattice simulations in three and four dimensions yield only the latter. A possible explanation for this mismatch is based on limitations of standard lattice gauge fixing methods. Hence, we investigate a number of alternative gauge fixing algorithms in pure SU(2) gauge theory in two, three and four dimensions. We find that stochastic quantization yields an infrared behavior of the propagators in agreement with the results of standard procedures, even though the Faddeev-Popov operator spectrum indicates some different properties. In the strong-coupling limit, our results challenge the standard picture. In particular, we find in a non-perturbative completion of Landau gauge an enormous effect of the Gribov ambiguity. It entails that no subset of infrared solutions can be excluded yet. Moreover, we study the gluon propagator with free boundary conditions. On large lattices, the results mostly show the standard behavior. We also examine non-periodic gauge transformations. Furthermore, we analyze two topics related to the phase diagram of QCD. First, we explore the sign problem for fermions on the lattice by simulating the three-dimensional Thirring model with a complex Langevin equation. The algorithm succeeds in yielding a 'Silver Blaze' behavior of observables, but it does not reliably describe the onset to a phase with non-zero density. Second, we determine properties of the deconfinement phase transition of pure SU(2) gauge theory in 2+1 dimensions, like the critical temperature, by means of the gluon propagator in Landau gauge. (orig.)

  19. Aspects of confinement in QCD from lattice simulations

    Energy Technology Data Exchange (ETDEWEB)

    Spielmann, Daniel

    2011-01-12

    We study confinement in quantum chromodynamics via numerical simulations in the framework of lattice gauge theory. In Landau gauge, the mechanism of confinement is related to the infrared behavior of the ghost and gluon propagators via the Gribov-Zwanziger and Kugo- Ojima scenarios. These scenarios entail a scaling behavior. Functional methods in the continuum allow both for this behavior and for decoupling solutions, while lattice simulations in three and four dimensions yield only the latter. A possible explanation for this mismatch is based on limitations of standard lattice gauge fixing methods. Hence, we investigate a number of alternative gauge fixing algorithms in pure SU(2) gauge theory in two, three and four dimensions. We find that stochastic quantization yields an infrared behavior of the propagators in agreement with the results of standard procedures, even though the Faddeev-Popov operator spectrum indicates some different properties. In the strong-coupling limit, our results challenge the standard picture. In particular, we find in a non-perturbative completion of Landau gauge an enormous effect of the Gribov ambiguity. It entails that no subset of infrared solutions can be excluded yet. Moreover, we study the gluon propagator with free boundary conditions. On large lattices, the results mostly show the standard behavior. We also examine non-periodic gauge transformations. Furthermore, we analyze two topics related to the phase diagram of QCD. First, we explore the sign problem for fermions on the lattice by simulating the three-dimensional Thirring model with a complex Langevin equation. The algorithm succeeds in yielding a 'Silver Blaze' behavior of observables, but it does not reliably describe the onset to a phase with non-zero density. Second, we determine properties of the deconfinement phase transition of pure SU(2) gauge theory in 2+1 dimensions, like the critical temperature, by means of the gluon propagator in Landau gauge. (orig.)

  20. Infinite-horizon optimal control problems in economics

    International Nuclear Information System (INIS)

    Aseev, Sergei M; Besov, Konstantin O; Kryazhimskii, Arkadii V

    2012-01-01

    This paper extends optimal control theory to a class of infinite-horizon problems that arise in studying models of optimal dynamic allocation of economic resources. In a typical problem of this sort the initial state is fixed, no constraints are imposed on the behaviour of the admissible trajectories at large times, and the objective functional is given by a discounted improper integral. We develop the method of finite-horizon approximations in a broad context and use it to derive complete versions of the Pontryagin maximum principle for such problems. We provide sufficient conditions for the normality of infinite-horizon optimal control problems and for the validity of the 'standard' limit transversality conditions with time going to infinity. As a meaningful example, we consider a new two-sector model of optimal economic growth subject to a random jump in prices. Bibliography: 53 titles.

  1. Infinite-horizon optimal control problems in economics

    Energy Technology Data Exchange (ETDEWEB)

    Aseev, Sergei M; Besov, Konstantin O; Kryazhimskii, Arkadii V

    2012-04-30

    This paper extends optimal control theory to a class of infinite-horizon problems that arise in studying models of optimal dynamic allocation of economic resources. In a typical problem of this sort the initial state is fixed, no constraints are imposed on the behaviour of the admissible trajectories at large times, and the objective functional is given by a discounted improper integral. We develop the method of finite-horizon approximations in a broad context and use it to derive complete versions of the Pontryagin maximum principle for such problems. We provide sufficient conditions for the normality of infinite-horizon optimal control problems and for the validity of the 'standard' limit transversality conditions with time going to infinity. As a meaningful example, we consider a new two-sector model of optimal economic growth subject to a random jump in prices. Bibliography: 53 titles.

  2. Super-horizon primordial black holes

    International Nuclear Information System (INIS)

    Harada, Tomohiro; Carr, B.J.

    2005-01-01

    We discuss a new class of solutions to the Einstein equations which describe a primordial black hole (PBH) in a flat Friedmann background. Such solutions arise if a Schwarzschild black hole is patched onto a Friedmann background via a transition region. They are possible providing the black hole event horizon is larger than the cosmological apparent horizon. Such solutions have a number of strange features. In particular, one has to define the black hole and cosmological horizons carefully and one then finds that the mass contained within the black hole event horizon decreases when the black hole is larger than the Friedmann cosmological apparent horizon, although its area always increases. These solutions involve two distinct future null infinities and are interpreted as the conversion of a white hole into a black hole. Although such solutions may not form from gravitational collapse in the same way as standard PBHs, there is nothing unphysical about them, since all energy and causality conditions are satisfied. Their conformal diagram is a natural amalgamation of the Kruskal diagram for the extended Schwarzschild solution and the conformal diagram for a black hole in a flat Friedmann background. In this paper, such solutions are obtained numerically for a spherically symmetric universe containing a massless scalar field, but it is likely that they exist for more general matter fields and less symmetric systems

  3. Necessary and Sufficient Conditions for Pareto Optimality in Infinite Horizon Cooperative Differential Games - Replaced by CentER DP 2011-041

    NARCIS (Netherlands)

    Reddy, P.V.; Engwerda, J.C.

    2010-01-01

    In this article we derive necessary and sufficient conditions for the existence of Pareto optimal solutions for an N player cooperative infinite horizon differential game. Firstly, we write the problem of finding Pareto candidates as solving N constrained optimal control subproblems. We derive some

  4. Topology of Event Horizon

    OpenAIRE

    Siino, Masaru

    1997-01-01

    The topologies of event horizons are investigated. Considering the existence of the endpoint of the event horizon, it cannot be differentiable. Then there are the new possibilities of the topology of the event horizon though they are excluded in smooth event horizons. The relation between the topology of the event horizon and the endpoint of it is revealed. A torus event horizon is caused by two-dimensional endpoints. One-dimensional endpoints provide the coalescence of spherical event horizo...

  5. Horizon measures

    KAUST Repository

    Zhang, Eugene

    2016-11-28

    In this paper we seek to answer the following question: where do contour lines and visible contour lines (silhouette) tend to occur in a 3D surface. Our study leads to two novel shape descriptors, the horizon measure and the visible horizon measure, which we apply to the visualization of 3D shapes including archeological artifacts. In addition to introducing the shape descriptors, we also provide a closed-form formula for the horizon measure based on classical spherical geometry. To compute the visible horizon measure, which depends on the exact computation of the surface visibility function, we instead of provide an image-based approach which can process a model with high complexity within a few minutes.

  6. Non-Markovian closure models for large eddy simulations using the Mori-Zwanzig formalism

    Science.gov (United States)

    Parish, Eric J.; Duraisamy, Karthik

    2017-01-01

    This work uses the Mori-Zwanzig (M-Z) formalism, a concept originating from nonequilibrium statistical mechanics, as a basis for the development of coarse-grained models of turbulence. The mechanics of the generalized Langevin equation (GLE) are considered, and insight gained from the orthogonal dynamics equation is used as a starting point for model development. A class of subgrid models is considered which represent nonlocal behavior via a finite memory approximation [Stinis, arXiv:1211.4285 (2012)], the length of which is determined using a heuristic that is related to the spectral radius of the Jacobian of the resolved variables. The resulting models are intimately tied to the underlying numerical resolution and are capable of approximating non-Markovian effects. Numerical experiments on the Burgers equation demonstrate that the M-Z-based models can accurately predict the temporal evolution of the total kinetic energy and the total dissipation rate at varying mesh resolutions. The trajectory of each resolved mode in phase space is accurately predicted for cases where the coarse graining is moderate. Large eddy simulations (LESs) of homogeneous isotropic turbulence and the Taylor-Green Vortex show that the M-Z-based models are able to provide excellent predictions, accurately capturing the subgrid contribution to energy transfer. Last, LESs of fully developed channel flow demonstrate the applicability of M-Z-based models to nondecaying problems. It is notable that the form of the closure is not imposed by the modeler, but is rather derived from the mathematics of the coarse graining, highlighting the potential of M-Z-based techniques to define LES closures.

  7. Instability of enclosed horizons

    Science.gov (United States)

    Kay, Bernard S.

    2015-03-01

    We point out that there are solutions to the scalar wave equation on dimensional Minkowski space with finite energy tails which, if they reflect off a uniformly accelerated mirror due to (say) Dirichlet boundary conditions on it, develop an infinite stress-energy tensor on the mirror's Rindler horizon. We also show that, in the presence of an image mirror in the opposite Rindler wedge, suitable compactly supported arbitrarily small initial data on a suitable initial surface will develop an arbitrarily large stress-energy scalar near where the two horizons cross. Also, while there is a regular Hartle-Hawking-Israel-like state for the quantum theory between these two mirrors, there are coherent states built on it for which there are similar singularities in the expectation value of the renormalized stress-energy tensor. We conjecture that in other situations with analogous enclosed horizons such as a (maximally extended) Schwarzschild black hole in equilibrium in a (stationary spherical) box or the (maximally extended) Schwarzschild-AdS spacetime, there will be similar stress-energy singularities and almost-singularities—leading to instability of the horizons when gravity is switched on and matter and gravity perturbations are allowed for. All this suggests it is incorrect to picture a black hole in equilibrium in a box or a Schwarzschild-AdS black hole as extending beyond the past and future horizons of a single Schwarzschild (/Schwarzschild-AdS) wedge. It would thus provide new evidence for 't Hooft's brick wall model while seeming to invalidate the picture in Maldacena's ` Eternal black holes in AdS'. It would thereby also support the validity of the author's matter-gravity entanglement hypothesis and of the paper ` Brick walls and AdS/CFT' by the author and Ortíz.

  8. Horizon geometry for Kerr black holes with synchronized hair

    Science.gov (United States)

    Delgado, Jorge F. M.; Herdeiro, Carlos A. R.; Radu, Eugen

    2018-06-01

    We study the horizon geometry of Kerr black holes (BHs) with scalar synchronized hair [1], a family of solutions of the Einstein-Klein-Gordon system that continuously connects to vacuum Kerr BHs. We identify the region in parameter space wherein a global isometric embedding in Euclidean 3-space, E3, is possible for the horizon geometry of the hairy BHs. For the Kerr case, such embedding is possible iff the horizon dimensionless spin jH (which equals the total dimensionless spin, j ), the sphericity s and the horizon linear velocity vH are smaller than critical values, j(S ),s(S ),vH(S ), respectively. For the hairy BHs, we find that jHcondition for being embeddable; vHcondition for being embeddable; whereas s condition for being embeddable in E3. Thus, the latter quantity provides the most faithful diagnosis for the existence of an E3 embedding within the whole family of solutions. We also observe that sufficiently hairy BHs are always embeddable, even if j —which for hairy BHs (unlike Kerr BHs) differs from jH—is larger than unity.

  9. Parity horizons in shape dynamics

    International Nuclear Information System (INIS)

    Herczeg, Gabriel

    2016-01-01

    I introduce the notion of a parity horizon, and show that many simple solutions of shape dynamics possess them. I show that the event horizons of the known asymptotically flat black hole solutions of shape dynamics are parity horizons and that this notion of parity implies that these horizons possess a notion of CPT invariance that can in some cases be extended to the solution as a whole. I present three new solutions of shape dynamics with parity horizons and find that not only do event horizons become parity horizons in shape dynamics, but observer-dependent horizons and Cauchy horizons do as well. The fact that Cauchy horizons become (singular) parity horizons suggests a general chronology protection mechanism in shape dynamics that prevents the formation of closed timelike curves. (paper)

  10. CFT/gravity correspondence on the isolated horizon

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Amit, E-mail: amit.ghosh@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, 700064 Kolkata (India); Pranzetti, Daniele, E-mail: daniele.pranzetti@gravity.fau.de [Institute for Quantum Gravity, University of Erlangen-Nürnberg (FAU), Staudtstrasse 7/B2, 91058 Erlangen (Germany)

    2014-12-15

    A quantum isolated horizon can be modelled by an SU(2) Chern–Simons theory on a punctured 2-sphere. We show how a local 2-dimensional conformal symmetry arises at each puncture inducing an infinite set of new observables localised at the horizon which satisfy a Kac–Moody algebra. By means of the isolated horizon boundary conditions, we represent the gravitational flux degrees of freedom in terms of the zero modes of the Kac–Moody algebra defined on the boundary of a punctured disk. In this way, our construction encodes a precise notion of CFT/gravity correspondence. The higher modes in the algebra represent new nongeometric charges which can be represented in terms of free matter field degrees of freedom. When computing the CFT partition function of the system, these new states induce an extra degeneracy factor, representing the density of horizon states at a given energy level, which reproduces the Bekenstein's holographic bound for an imaginary Immirzi parameter. This allows us to recover the Bekenstein–Hawking entropy formula without the large quantum gravity corrections associated with the number of punctures.

  11. Mechanics of apparent horizons

    International Nuclear Information System (INIS)

    Collins, W.

    1992-01-01

    An equation for the variation in the surface area of an apparent horizon is derived which has the same form as the thermodynamic relation TdS=dQ. For a stationary vacuum black hole, the expression corresponding to a temperature equals the temperature of the event horizon. Also, if the black hole is perturbed infinitesimally by weak matter and gravitational fields, the area variation of the apparent horizon asymptotically approaches the Hartle-Hawking result for the event horizon. These results support the idea that a local version of black-hole thermodynamics in nonstationary systems can be constructed for apparent horizons

  12. Black hole event horizons — Teleology and predictivity

    Science.gov (United States)

    Bhattacharya, Swastik; Shankaranarayanan, S.

    2017-11-01

    General Relativity predicts the existence of black holes. Access to the complete spacetime manifold is required to describe the black hole. This feature necessitates that black hole dynamics is specified by future or teleological boundary condition. Here, we demonstrate that the statistical mechanical description of black holes, the raison d’être behind the existence of black hole thermodynamics, requires teleological boundary condition. Within the fluid-gravity paradigm — Einstein’s equations when projected on spacetime horizons resemble Navier-Stokes equation of a fluid — we show that the specific heat and the coefficient of bulk viscosity of the horizon fluid are negative only if the teleological boundary condition is taken into account. We argue that in a quantum theory of gravity, the future boundary condition plays a crucial role. We briefly discuss the possible implications of this at late stages of black hole evaporation.

  13. Microbiomes structure and diversity in different horizons of full soil profiles

    Science.gov (United States)

    Chernov, Timofey; Tkhakakhova, Azida; Zhelezova, Alena; Semenov, Mikhail; Kutovaya, Olga

    2017-04-01

    Topsoil is a most common object for soil metagenomic studies; sometimes soil profile is being formally split in layers by depth. However, Russian Soil Science School formulated the idea of soil profile as a complex of soil horizons, which can differ in their properties and genesis. In this research we analyzed 57 genetic soil horizons of 8 different soils from European part of Russia: Albeluvisol, Greyzemic Phaeozem, three Chermozems (different land use - till, fallow, wind-protecting tree line), Rhodic Cambisol, Haplic Kastanozem and Salic Solonetz (WRB classification). Sampling was performed from all genetic horizons in each soil profile starting from topsoil until subsoil. Total DNA was extracted and 16S rRNA sequencing was provided together with chemical analysis of soil (pH measurement, C and N contents, etc.). Structure and diversity of prokaryotic community are significantly different in those soil horizons, which chemical properties and processes of origin are contrasting with nearest horizons: Na-enriched horizon of Solonetz, eluvial horizon of Albeluvisol, plough pan of Agrochernozem. Actinobacteria were abundant in top horizons of soils in warm and dry climate, while Acidobacteria had the highest frequency in soils of moist and cold regions. Concerning Archaea, Thaumarchaeota prevailed in all studied soils. Their rate was higher in microbiomes of upper horizons of steppe soils and it was reducing with depth down the profile. Prokaryotic communities in Chernozems were clustered by soil horizons types: microbiomes of A (organic topsoil) and B (mineral) horizons formed non-overlapping clusters by principal component analysis, cluster formed by prokaryotic communities of transitional soil horizons (AB) take place between clusters of A and B horizons. Moreover, prokaryotic communities of A horizons differ from each other strongly, while microbiomes of B horizons formed a narrow small cluster. It must be explaned by more diverse conditions in upper A horizons

  14. Geometric properties of static Einstein-Maxwell dilaton horizons with a Liouville potential

    International Nuclear Information System (INIS)

    Abdolrahimi, Shohreh; Shoom, Andrey A.

    2011-01-01

    We study nondegenerate and degenerate (extremal) Killing horizons of arbitrary geometry and topology within the Einstein-Maxwell-dilaton model with a Liouville potential (the EMdL model) in d-dimensional (d≥4) static space-times. Using Israel's description of a static space-time, we construct the EMdL equations and the space-time curvature invariants: the Ricci scalar, the square of the Ricci tensor, and the Kretschmann scalar. Assuming that space-time metric functions and the model fields are real analytic functions in the vicinity of a space-time horizon, we study the behavior of the space-time metric and the fields near the horizon and derive relations between the space-time curvature invariants calculated on the horizon and geometric invariants of the horizon surface. The derived relations generalize similar relations known for horizons of static four- and five-dimensional vacuum and four-dimensional electrovacuum space-times. Our analysis shows that all the extremal horizon surfaces are Einstein spaces. We present the necessary conditions for the existence of static extremal horizons within the EMdL model.

  15. Revisiting event horizon finders

    International Nuclear Information System (INIS)

    Cohen, Michael I; Pfeiffer, Harald P; Scheel, Mark A

    2009-01-01

    Event horizons are the defining physical features of black hole spacetimes, and are of considerable interest in studying black hole dynamics. Here, we reconsider three techniques to find event horizons in numerical spacetimes: integrating geodesics, integrating a surface, and integrating a level-set of surfaces over a volume. We implement the first two techniques and find that straightforward integration of geodesics backward in time is most robust. We find that the exponential rate of approach of a null surface towards the event horizon of a spinning black hole equals the surface gravity of the black hole. In head-on mergers we are able to track quasi-normal ringing of the merged black hole through seven oscillations, covering a dynamic range of about 10 5 . Both at late times (when the final black hole has settled down) and at early times (before the merger), the apparent horizon is found to be an excellent approximation of the event horizon. In the head-on binary black hole merger, only some of the future null generators of the horizon are found to start from past null infinity; the others approach the event horizons of the individual black holes at times far before merger.

  16. No-horizon theorem for spacetimes with spacelike G{sub 1} isometry groups

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Sergio M C V [Department of Physics, Yale University, New Haven, CT 06511 (United States)

    2003-12-21

    We consider four-dimensional spacetimes (M, g) which obey the Einstein equations G = T and admit a global spacelike G{sub 1} = R isometry group. By means of dimensional reduction and local analysis on the reduced (2 + 1) spacetime, we obtain a sufficient condition on T which guarantees that (M, g) cannot contain apparent horizons. Given any (3 + 1) spacetime with spacelike translational isometry, the no-horizon condition can be readily tested without the need for dimensional reduction. This provides thus a useful and encompassing apparent horizon test for G{sub 1}-symmetric spacetimes. We argue that this adds further evidence towards the validity of the hoop conjecture and signals possible (albeit arguably unlikely) violations of strong cosmic censorship.

  17. 78 FR 54298 - Horizons ETFs Management (USA) LLC and Horizons ETF Trust; Notice of Application

    Science.gov (United States)

    2013-09-03

    ... ETFs Management (USA) LLC and Horizons ETF Trust; Notice of Application August 27, 2013. AGENCY... Management (USA) LLC (``Horizons'') and Horizons ETF Trust (the ``Trust''). Summary of Application... of the Trust will be the Horizons Active Global Dividend ETF (the ``Initial Fund''), which will seek...

  18. Horizon scanning for environmental foresight: a review of issues and approaches

    Science.gov (United States)

    David N. Bengston

    2013-01-01

    Natural resource management organizations carry out a range of activities to examine possible future conditions and trends as part of their planning process, but the distinct approach of formal horizon scanning is often a missing component of strategic thinking and strategy development in these organizations. Horizon scanning is a process for finding and interpreting...

  19. HORIZON SENSING

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Stolarczyk

    2003-03-18

    With the aid of a DOE grant (No. DE-FC26-01NT41050), Stolar Research Corporation (Stolar) developed the Horizon Sensor (HS) to distinguish between the different layers of a coal seam. Mounted on mining machine cutter drums, HS units can detect or sense the horizon between the coal seam and the roof and floor rock, providing the opportunity to accurately mine the section of the seam most desired. HS also enables accurate cutting of minimum height if that is the operator's objective. Often when cutting is done out-of-seam, the head-positioning function facilitates a fixed mining height to minimize dilution. With this technology, miners can still be at a remote location, yet cut only the clean coal, resulting in a much more efficient overall process. The objectives of this project were to demonstrate the feasibility of horizon sensing on mining machines and demonstrate that Horizon Sensing can allow coal to be cut cleaner and more efficiently. Stolar's primary goal was to develop the Horizon Sensor (HS) into an enabling technology for full or partial automation or ''agile mining''. This technical innovation (R&D 100 Award Winner) is quickly demonstrating improvements in productivity and miner safety at several prominent coal mines in the United States. In addition, the HS system can enable the cutting of cleaner coal. Stolar has driven the HS program on the philosophy that cutting cleaner coal means burning cleaner coal. The sensor, located inches from the cutting bits, is based upon the physics principles of a Resonant Microstrip Patch Antenna (RMPA). When it is in proximity of the rock-coal interface, the RMPA impedance varies depending on the thickness of uncut coal. The impedance is measured by the computer-controlled electronics and then sent by radio waves to the mining machine. The worker at the machine can read the data via a Graphical User Interface, displaying a color-coded image of the coal being cut, and direct the machine

  20. What happens at the horizon(s) of an extreme black hole?

    International Nuclear Information System (INIS)

    Murata, Keiju; Reall, Harvey S; Tanahashi, Norihiro

    2013-01-01

    A massless scalar field exhibits an instability at the event horizon of an extreme black hole. We study numerically the nonlinear evolution of this instability for spherically symmetric perturbations of an extreme Reissner–Nordstrom (RN) black hole. We find that generically the endpoint of the instability is a non-extreme RN solution. However, there exist fine-tuned initial perturbations for which the instability never decays. In this case, the perturbed spacetime describes a time-dependent extreme black hole. Such solutions settle down to extreme RN outside, but not on, the event horizon. The event horizon remains smooth but certain observers who cross it at late time experience large gradients there. Our results indicate that these dynamical extreme black holes admit a C 1 extension across an inner (Cauchy) horizon. (paper)

  1. Spacetimes foliated by Killing horizons

    International Nuclear Information System (INIS)

    Pawlowski, Tomasz; Lewandowski, Jerzy; Jezierski, Jacek

    2004-01-01

    It seems to be expected that a horizon of a quasi-local type, such as a Killing or an isolated horizon, by analogy with a globally defined event horizon, should be unique in some open neighbourhood in the spacetime, provided the vacuum Einstein or the Einstein-Maxwell equations are satisfied. The aim of our paper is to verify whether that intuition is correct. If one can extend a so-called Kundt metric, in such a way that its null, shear-free surfaces have spherical spacetime sections, the resulting spacetime is foliated by so-called non-expanding horizons. The obstacle is Kundt's constraint induced at the surfaces by the Einstein or the Einstein-Maxwell equations, and the requirement that a solution be globally defined on the sphere. We derived a transformation (reflection) that creates a solution to Kundt's constraint out of data defining an extremal isolated horizon. Using that transformation, we derived a class of exact solutions to the Einstein or Einstein-Maxwell equations of very special properties. Each spacetime we construct is foliated by a family of the Killing horizons. Moreover, it admits another, transversal Killing horizon. The intrinsic and extrinsic geometries of the transversal Killing horizon coincide with the one defined on the event horizon of the extremal Kerr-Newman solution. However, the Killing horizon in our example admits yet another Killing vector tangent to and null at it. The geometries of the leaves are given by the reflection

  2. Implication of Negative Temperature in the Inner Horizon of Reissner-Nordström Black Hole

    Directory of Open Access Journals (Sweden)

    Yuant Tiandho

    2017-12-01

    Full Text Available This paper reconsiders the properties of Hawking radiation in the inner horizon of a Reissner-Nordström black hole. Through the correlation between temperature and surface gravity, it is concluded that the temperature of the inner horizon is always negative and that of the outer horizon is always positive. Since negative temperature is hotter than any positive temperature, it is predicted that particle radiation from the inner horizon will move toward the outer horizon. However, unlike temperature, entropy in both horizons remains positive. Following the definition of negative temperature in the inner horizon, it is assured that the entropy of a black hole within a closed system can never decrease. By analyzing the conditions of an extremal black hole, the third law of black hole thermodynamics can be extended to multi-horizon black holes.

  3. Cosmological and black hole apparent horizons

    CERN Document Server

    Faraoni, Valerio

    2015-01-01

    This book overviews the extensive literature on apparent cosmological and black hole horizons. In theoretical gravity, dynamical situations such as gravitational collapse, black hole evaporation, and black holes interacting with non-trivial environments, as well as the attempts to model gravitational waves occurring in highly dynamical astrophysical processes, require that the concept of event horizon be generalized. Inequivalent notions of horizon abound in the technical literature and are discussed in this manuscript. The book begins with a quick review of basic material in the first one and a half chapters, establishing a unified notation. Chapter 2 reminds the reader of the basic tools used in the analysis of horizons and reviews the various definitions of horizons appearing in the literature. Cosmological horizons are the playground in which one should take baby steps in understanding horizon physics. Chapter 3 analyzes cosmological horizons, their proposed thermodynamics, and several coordinate systems....

  4. Conformal Killing horizons and their thermodynamics

    Science.gov (United States)

    Nielsen, Alex B.; Shoom, Andrey A.

    2018-05-01

    Certain dynamical black hole solutions can be mapped to static spacetimes by conformal metric transformations. This mapping provides a physical link between the conformal Killing horizon of the dynamical black hole and the Killing horizon of the static spacetime. Using the Vaidya spacetime as an example, we show how this conformal relation can be used to derive thermodynamic properties of such dynamical black holes. Although these horizons are defined quasi-locally and can be located by local experiments, they are distinct from other popular notions of quasi-local horizons such as apparent horizons. Thus in the dynamical Vaidya spacetime describing constant accretion of null dust, the conformal Killing horizon, which is null by construction, is the natural horizon to describe the black hole.

  5. Spacetimes containing slowly evolving horizons

    International Nuclear Information System (INIS)

    Kavanagh, William; Booth, Ivan

    2006-01-01

    Slowly evolving horizons are trapping horizons that are ''almost'' isolated horizons. This paper reviews their definition and discusses several spacetimes containing such structures. These include certain Vaidya and Tolman-Bondi solutions as well as (perturbatively) tidally distorted black holes. Taking into account the mass scales and orders of magnitude that arise in these calculations, we conjecture that slowly evolving horizons are the norm rather than the exception in astrophysical processes that involve stellar-scale black holes

  6. Some aspects of a unified approach to gauge, dual and Gribov theories

    International Nuclear Information System (INIS)

    Veneziano, G.

    1976-01-01

    Quantum chromodynamics (QCD) with Nsub(c) colours and Nsub(f) flavours is considered. Large N expansions for this theory are discussed and their advantages are pointed out, especially in relation to the possibility of unifying gauge, dual and Gribov theories of strong interactions. First it is recalled how the 1/Nsub(c) expansion of 't Hooft can be related to a dual loop expansion with a fixed coupling constant. The necessity for quarkless (purely gluonic) bound states to appear and their importance in maintaining confinement at higher orders in 1/Nsub(c) is pointed out. It is shown how non-orientable dual loops are reinterpreted in QCD and how a paradox appears when Nsub(f) is such that asymptotic freedom is lost. Some recent results of Cornwall and Tiktopoulos are analyzed in leading order in 1/Nsub(c). Then a 1/N expansion is introduced at rho equivalent to Nsub(f)/Nsub(c) fixed and it is shown how it is related to the hadronic topological expansion (TE). This allows an unambiguous definition of reggeon field theory concepts such as the bare pomeron and diffractive dissociation in QCD. The parameter rho is related to the clustering of hadronic final states into resonances. Decreasing rho corresponds to increasing cluster over gap size. Renormalization of the dual coupling constant as a function of rho is discussed and an apparent paradox is resolved. Some new light on the problem of f extinction in the TE is also shed. Finally, the approach is compared to other schemes trying to relate different aspects of hadron physics. (Auth.)

  7. Examples of plasma horizons

    International Nuclear Information System (INIS)

    Hanni, R.S.

    1975-01-01

    The concept of the plasma horizon, defined as the boundary of the region in which an infinitely thin plasma can be supported against Coulomb attraction by a magnetic field, shows that the argument of selective accretion does not rule out the existence of charged black holes embedded in a conducting plasma. A detailed account of the covariant definition of plasma horizon is given and some examples of plasma horizons are presented. 7 references

  8. Flying by Ear: Blind Flight with a Music-Based Artificial Horizon

    Science.gov (United States)

    Simpson, Brian D.; Brungart, Douglas S.; Dallman, Ronald C.; Yasky, Richard J., Jr.; Romigh, Griffin

    2008-01-01

    Two experiments were conducted in actual flight operations to evaluate an audio artificial horizon display that imposed aircraft attitude information on pilot-selected music. The first experiment examined a pilot's ability to identify, with vision obscured, a change in aircraft roll or pitch, with and without the audio artificial horizon display. The results suggest that the audio horizon display improves the accuracy of attitude identification overall, but differentially affects response time across conditions. In the second experiment, subject pilots performed recoveries from displaced aircraft attitudes using either standard visual instruments, or, with vision obscured, the audio artificial horizon display. The results suggest that subjects were able to maneuver the aircraft to within its safety envelope. Overall, pilots were able to benefit from the display, suggesting that such a display could help to improve overall safety in general aviation.

  9. Stringy horizons

    Energy Technology Data Exchange (ETDEWEB)

    Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem 91904 (Israel); Itzhaki, Nissan [Physics Department, Tel-Aviv University,Ramat-Aviv, 69978 (Israel); Kutasov, David [EFI and Department of Physics, University of Chicago,5640 S. Ellis Av., Chicago, IL 60637 (United States)

    2015-06-11

    We argue that classical (α{sup ′}) effects qualitatively modify the structure of Euclidean black hole horizons in string theory. While low energy modes experience the geometry familiar from general relativity, high energy ones see a rather different geometry, in which the Euclidean horizon can be penetrated by an amount that grows with the radial momentum of the probe. We discuss this in the exactly solvable SL(2,ℝ)/U(1) black hole, where it is a manifestation of the black hole/Sine-Liouville duality.

  10. Coordinated control of micro-grid based on distributed moving horizon control.

    Science.gov (United States)

    Ma, Miaomiao; Shao, Liyang; Liu, Xiangjie

    2018-05-01

    This paper proposed the distributed moving horizon coordinated control scheme for the power balance and economic dispatch problems of micro-grid based on distributed generation. We design the power coordinated controller for each subsystem via moving horizon control by minimizing a suitable objective function. The objective function of distributed moving horizon coordinated controller is chosen based on the principle that wind power subsystem has the priority to generate electricity while photovoltaic power generation coordinates with wind power subsystem and the battery is only activated to meet the load demand when necessary. The simulation results illustrate that the proposed distributed moving horizon coordinated controller can allocate the output power of two generation subsystems reasonably under varying environment conditions, which not only can satisfy the load demand but also limit excessive fluctuations of output power to protect the power generation equipment. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Instantons and Gribov copies in the maximally Abelian gauge

    International Nuclear Information System (INIS)

    Bruckmann, F.; Heinzl, T.; Wipf, A.; Tok, T.

    2000-01-01

    We calculate the Faddeev-Popov operator corresponding to the maximally Abelian gauge for gauge group SU(N). Specializing to SU(2) we look for explicit zero modes of this operator. Within an illuminating toy model (Yang-Mills mechanics) the problem can be completely solved and understood. In the field theory case we are able to find an analytic expression for a normalizable zero mode in the background of a single 't Hooft instanton. Accordingly, such an instanton corresponds to a horizon configuration in the maximally Abelian gauge. Possible physical implications are discussed

  12. Entropy of black holes with multiple horizons

    Science.gov (United States)

    He, Yun; Ma, Meng-Sen; Zhao, Ren

    2018-05-01

    We examine the entropy of black holes in de Sitter space and black holes surrounded by quintessence. These black holes have multiple horizons, including at least the black hole event horizon and a horizon outside it (cosmological horizon for de Sitter black holes and "quintessence horizon" for the black holes surrounded by quintessence). Based on the consideration that the two horizons are not independent each other, we conjecture that the total entropy of these black holes should not be simply the sum of entropies of the two horizons, but should have an extra term coming from the correlations between the two horizons. Different from our previous works, in this paper we consider the cosmological constant as the variable and employ an effective method to derive the explicit form of the entropy. We also try to discuss the thermodynamic stabilities of these black holes according to the entropy and the effective temperature.

  13. Event and Apparent Horizon Finders for 3 + 1 Numerical Relativity.

    Science.gov (United States)

    Thornburg, Jonathan

    2007-01-01

    Event and apparent horizons are key diagnostics for the presence and properties of black holes. In this article I review numerical algorithms and codes for finding event and apparent horizons in numerically-computed spacetimes, focusing on calculations done using the 3 + 1 ADM formalism. The event horizon of an asymptotically-flat spacetime is the boundary between those events from which a future-pointing null geodesic can reach future null infinity and those events from which no such geodesic exists. The event horizon is a (continuous) null surface in spacetime. The event horizon is defined nonlocally in time : it is a global property of the entire spacetime and must be found in a separate post-processing phase after all (or at least the nonstationary part) of spacetime has been numerically computed. There are three basic algorithms for finding event horizons, based on integrating null geodesics forwards in time, integrating null geodesics backwards in time, and integrating null surfaces backwards in time. The last of these is generally the most efficient and accurate. In contrast to an event horizon, an apparent horizon is defined locally in time in a spacelike slice and depends only on data in that slice, so it can be (and usually is) found during the numerical computation of a spacetime. A marginally outer trapped surface (MOTS) in a slice is a smooth closed 2-surface whose future-pointing outgoing null geodesics have zero expansion Θ. An apparent horizon is then defined as a MOTS not contained in any other MOTS. The MOTS condition is a nonlinear elliptic partial differential equation (PDE) for the surface shape, containing the ADM 3-metric, its spatial derivatives, and the extrinsic curvature as coefficients. Most "apparent horizon" finders actually find MOTSs. There are a large number of apparent horizon finding algorithms, with differing trade-offs between speed, robustness, accuracy, and ease of programming. In axisymmetry, shooting algorithms work well

  14. Variable horizon in a peridynamic medium.

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart Andrew; Littlewood, David John; Seleson, Pablo

    2014-10-01

    A notion of material homogeneity is proposed for peridynamic bodies with vari- able horizon but constant bulk properties. A relation is derived that scales the force state according to the position-dependent horizon while keeping the bulk properties un- changed. Using this scaling relation, if the horizon depends on position, artifacts called ghost forces may arise in a body under homogeneous deformation. These artifacts de- pend on the second derivative of horizon and can be reduced by use of a modified equilibrium equation using a new quantity called the partial stress . Bodies with piece- wise constant horizon can be modeled without ghost forces by using a technique called a splice between the regions. As a limiting case of zero horizon, both partial stress and splice techniques can be used to achieve local-nonlocal coupling. Computational examples, including dynamic fracture in a one-dimensional model with local-nonlocal coupling, illustrate the methods.

  15. Black hole versus cosmological horizon entropy

    International Nuclear Information System (INIS)

    Davis, Tamara M; Davies, P C W; Lineweaver, Charles H

    2003-01-01

    The generalized second law of thermodynamics states that entropy always increases when all event horizons are attributed with an entropy proportional to their area. We test the generalized second law by investigating the change in entropy when dust, radiation and black holes cross a cosmological event horizon. We generalize for flat, open and closed Friedmann-Robertson-Walker universes by using numerical calculations to determine the cosmological horizon evolution. In most cases, the loss of entropy from within the cosmological horizon is more than balanced by an increase in cosmological event horizon entropy, maintaining the validity of the generalized second law of thermodynamics. However, an intriguing set of open universe models shows an apparent entropy decrease when black holes disappear over the cosmological event horizon. We anticipate that this apparent violation of the generalized second law will disappear when solutions are available for black holes embedded in arbitrary backgrounds

  16. Pareto optimality in infinite horizon linear quadratic differential games

    NARCIS (Netherlands)

    Reddy, P.V.; Engwerda, J.C.

    2013-01-01

    In this article we derive conditions for the existence of Pareto optimal solutions for linear quadratic infinite horizon cooperative differential games. First, we present a necessary and sufficient characterization for Pareto optimality which translates to solving a set of constrained optimal

  17. Horizon Detection In The Visible Spectrum

    Science.gov (United States)

    2016-09-01

    processing units, to the software-based models in [7] and [8]. B. DEFINING THE HORIZON The horizon, according to the Oxford English Dictionary , is “the...Ed. Dordrecht, Holland: D. Reidel Publishing Company, 1978. [10] “horizon,” Oxford English Dictionary Online, 2016.[Online]. Available: http

  18. Electrodynamics of the event horizon

    International Nuclear Information System (INIS)

    Punsly, B.; Coroniti, F.V.

    1989-01-01

    This paper is an investigation of the electrodynamics of the event horizon of a Kerr black hole. It is demonstrated that the event horizon behaves quite generally as an asymptotic vacuum infinity for axisymmetric, charge-neutral, accreting electromagnetic sources. This is in contrast with the general notion that the event horizon can be treated as an imperfect conductive membrane with a surface impedance of 4π/c. The conductive-membrane model has been incorporated into the more sophisticated membrane paradigm of Thorne, Price, and Macdonald by supplementing the model with the full equations of general relativity. In certain situations (in particular those of astrophysical interest), the conductive-membrane interpretation forms the appropriate set of pictures and images in the membrane paradigm. In this paper we reevaluate the specific gedanken experiments that were originally used to motivate the paradigm. We find that great care must be exercised if the detailed interaction of a black hole's external gravitational field with a magnetized plasma is modeled by the electrodynamics of the conductive horizon membrane. For ingoing flows of plasma or electromagnetic waves (when the hole is passively accepting information), the interpretation of the horizon as a vacuum infinity is equivalent to an imperfect conductor with a surface impedance of 4π/c (the impedance of the vacuum). In situations when an imperfect conductor should radiate information (such as a Faraday wheel) the event horizon cannot, since it is an infinity. The event horizon does not behave quite generally as an imperfect conductor, but has electrodynamic properties unique to itself

  19. New Horizons in Gravity: The Trace Anomaly, Dark Energy and Condensate Stars

    CERN Document Server

    Mottola, Emil

    2010-01-01

    General Relativity receives quantum corrections relevant at macroscopic distance scales and near event horizons. These arise from the conformal scalar degrees of freedom in the extended effective field theory of gravity generated by the trace anomaly of massless quantum fields in curved space. The origin of these conformal scalar degrees of freedom as massless poles in two-particle intermediate states of anomalous amplitudes in flat space is exposed. At event horizons the conformal anomaly scalar degrees of freedom can have macroscopically large effects on the geometry, potentially removing the classical event horizon of black hole and cosmological spacetimes, replacing them with a quantum boundary layer where the effective value of the gravitational vacuum energy density can change. In the effective theory, the cosmological term becomes a dynamical condensate, whose value depends upon boundary conditions near the horizon. In the conformal phase where the anomaly induced fluctutations dominate, and the conden...

  20. Geometric properties of magnetized black hole event horizons and ergosurfaces

    International Nuclear Information System (INIS)

    Esteban, E P

    2009-01-01

    In this paper we focus in the geometric properties of the magnetized Kerr-Newman metric. Three applications are considered. First, the event horizon surface area is calculated and from there we derive the first law of thermodynamics for magnetized black holes. We have obtained analytical expressions for the surface gravity, angular velocity, electric potential, and magnetic moment at the magnetized Kerr-Newman black hole event horizon. An approximate expression for the surface area of the magnetized black hole ergosurface was also obtained. Second, we study the magnetized Kerr-Newman black hole's circumferences. We found that for small values of the angular momentum the event horizon has a prolate spheroid shape. Increasing the value of the angular momentum will change the event horizon shape from a prolate ellipsoid to an oblate spheroid. For small values of the angular momentum and charge the ergosurface shape is an oblate spheroid. Increasing these two parameters will change the ergosurface shape from a oblate spheroid to a prolate spheroid. Third, analytical expressions for the magnetized Kerr-Newman event horizon and ergosurface Gaussian curvatures were obtained although not explicitly shown. Instead a graphical analysis was carried out to visualize regions where Gaussian curvatures take negative or positive values. We found that the Gaussian curvature at the event horizon poles has negative values and do not satisfy Pelavas condition. Therefore, these regions can not be embedded in E 3 . However, the magnetized Kerr-Newman ergosurface can be embedded in E 3 regardless the negative Gaussian curvature values in some regions of the ergosurface.

  1. Aspects of confinement in a functional approach to coulomb gauge QCD

    International Nuclear Information System (INIS)

    Lichtenegger, K. G.

    2010-01-01

    The topic of this thesis are aspects of the confinement phenomenon in Coulomb gauge Quantum Chromodynamics.First we investigated the quark gap equation with an infrared-divergent Coulomb gluon propagator D00. As an extension to studies performed so far, some forms of an infrared-divergent spatial quark-gluon vertex have been tested, but the results remain inconclusive. There is, however, considerable evidence that some infrared dressing is required in order to obtain quantitatively reliable results. The numerical studies performed in this thesis indicate that neither the vertex form derived from the approximate Abelian Ward-Takahashi identity nor a globally divergent vertex is fit for this purpose.In addition, finite-temperature studies of pure gauge theory have been performed: On the one hand the Gribov-Zwanziger approach has been extended to the deconfined phase of Yang-Mills theory. The resulting equation has been solved numerically, which yields the Gribov mass. From this, the free energy, the interaction measure and the bulk viscosity have been determined. On the other hand, the asymptotic infrared behaviour of Dyson-Schwinger equations in Coulomb gauge have been analyzed. They yield a more than linearly rising potential for three spatial dimensions. A result which has yet to be understood.Apart from the two main topics, this thesis contains a pedagogic presentation of some peculiarities of non-Abelian gauge theories and several smaller conjectures and findings: This includes a proposal to systematize the set of gauges by introduction of an approriate metric, a discussion of the role of interpolating gauges and the use of to non-integrable potentials as well as a general expression for the number of components in the tensor decomposition of arbitrary Green functions. (author) [de

  2. Fiber-optical analog of the event horizon.

    Science.gov (United States)

    Philbin, Thomas G; Kuklewicz, Chris; Robertson, Scott; Hill, Stephen; König, Friedrich; Leonhardt, Ulf

    2008-03-07

    The physics at the event horizon resembles the behavior of waves in moving media. Horizons are formed where the local speed of the medium exceeds the wave velocity. We used ultrashort pulses in microstructured optical fibers to demonstrate the formation of an artificial event horizon in optics. We observed a classical optical effect: the blue-shifting of light at a white-hole horizon. We also showed by theoretical calculations that such a system is capable of probing the quantum effects of horizons, in particular Hawking radiation.

  3. Optimal investment horizons

    Science.gov (United States)

    Simonsen, I.; Jensen, M. H.; Johansen, A.

    2002-06-01

    In stochastic finance, one traditionally considers the return as a competitive measure of an asset, i.e., the profit generated by that asset after some fixed time span Δt, say one week or one year. This measures how well (or how bad) the asset performs over that given period of time. It has been established that the distribution of returns exhibits ``fat tails'' indicating that large returns occur more frequently than what is expected from standard Gaussian stochastic processes [1-3]. Instead of estimating this ``fat tail'' distribution of returns, we propose here an alternative approach, which is outlined by addressing the following question: What is the smallest time interval needed for an asset to cross a fixed return level of say 10%? For a particular asset, we refer to this time as the investment horizon and the corresponding distribution as the investment horizon distribution. This latter distribution complements that of returns and provides new and possibly crucial information for portfolio design and risk-management, as well as for pricing of more exotic options. By considering historical financial data, exemplified by the Dow Jones Industrial Average, we obtain a novel set of probability distributions for the investment horizons which can be used to estimate the optimal investment horizon for a stock or a future contract.

  4. VMware horizon view essentials

    CERN Document Server

    von Oven, Peter

    2014-01-01

    If you are a desktop administrator or an end user of a computing project team looking to speed up to the latest VMware Horizon View solution, then this book is perfect for you. It is your ideal companion to deploy a solution to centrally manage and virtualize your desktop estate using Horizon View 6.0.

  5. RG flow and thermodynamics of causal horizons in higher-derivative AdS gravity

    International Nuclear Information System (INIS)

    Banerjee, Shamik; Bhattacharyya, Arpan

    2016-01-01

    In http://arxiv.org/abs/1508.01343 [hep-th], one of the authors proposed that in AdS/CFT the gravity dual of the boundary c-theorem is the second law of thermodynamics satisfied by causal horizons in AdS and this was verified for Einstein gravity in the bulk. In this paper we verify this for higher derivative theories. We pick up theories for which an entropy expression satisfying the second law exists and show that the entropy density evaluated on the causal horizon in a RG flow geometry is a holographic c-function. We also prove that given a theory of gravity described by a local covariant action in the bulk a sufficient condition to ensure holographic c-theorem is that the second law of causal horizon thermodynamics be satisfied by the theory. This allows us to explicitly construct holographic c-function in a theory where there is curvature coupling between gravity and matter and standard null energy condition cannot be defined although second law is known to hold. Based on the duality between c-theorem and the second law of causal horizon thermodynamics proposed in http://arxiv.org/abs/1508.01343 [hep-th] and the supporting calculations of this paper we conjecture that every Unitary higher derivative theory of gravity in AdS satisfies the second law of causal horizon thermodynamics. If this is not true then c-theorem will be violated in a unitary Lorentz invariant field theory.

  6. Entropy of black holes with multiple horizons

    Directory of Open Access Journals (Sweden)

    Yun He

    2018-05-01

    Full Text Available We examine the entropy of black holes in de Sitter space and black holes surrounded by quintessence. These black holes have multiple horizons, including at least the black hole event horizon and a horizon outside it (cosmological horizon for de Sitter black holes and “quintessence horizon” for the black holes surrounded by quintessence. Based on the consideration that the two horizons are not independent each other, we conjecture that the total entropy of these black holes should not be simply the sum of entropies of the two horizons, but should have an extra term coming from the correlations between the two horizons. Different from our previous works, in this paper we consider the cosmological constant as the variable and employ an effective method to derive the explicit form of the entropy. We also try to discuss the thermodynamic stabilities of these black holes according to the entropy and the effective temperature.

  7. Cartan invariants and event horizon detection

    Science.gov (United States)

    Brooks, D.; Chavy-Waddy, P. C.; Coley, A. A.; Forget, A.; Gregoris, D.; MacCallum, M. A. H.; McNutt, D. D.

    2018-04-01

    We show that it is possible to locate the event horizon of a black hole (in arbitrary dimensions) by the zeros of certain Cartan invariants. This approach accounts for the recent results on the detection of stationary horizons using scalar polynomial curvature invariants, and improves upon them since the proposed method is computationally less expensive. As an application, we produce Cartan invariants that locate the event horizons for various exact four-dimensional and five-dimensional stationary, asymptotically flat (or (anti) de Sitter), black hole solutions and compare the Cartan invariants with the corresponding scalar curvature invariants that detect the event horizon.

  8. Stability of black holes based on horizon thermodynamics

    Directory of Open Access Journals (Sweden)

    Meng-Sen Ma

    2015-12-01

    Full Text Available On the basis of horizon thermodynamics we study the thermodynamic stability of black holes constructed in general relativity and Gauss–Bonnet gravity. In the framework of horizon thermodynamics there are only five thermodynamic variables E, P, V, T, S. It is not necessary to consider concrete matter fields, which may contribute to the pressure of black hole thermodynamic system. In non-vacuum cases, we can derive the equation of state, P=P(V,T. According to the requirements of stable equilibrium in conventional thermodynamics, we start from these thermodynamic variables to calculate the heat capacity at constant pressure and Gibbs free energy and analyze the local and global thermodynamic stability of black holes. It is shown that P>0 is the necessary condition for black holes in general relativity to be thermodynamically stable, however this condition cannot be satisfied by many black holes in general relativity. For black hole in Gauss–Bonnet gravity negative pressure can be feasible, but only local stable black hole exists in this case.

  9. Holography beyond the horizon and cosmic censorship

    International Nuclear Information System (INIS)

    Levi, Thomas S.; Ross, Simon F.

    2003-01-01

    We investigate the description of the region behind the event horizon in rotating black holes in the AdS conformal field theory correspondence, using the rotating Banados-Teitelboim-Zanelli black hole as a concrete example. We extend a technique introduced by Kraus, Ooguri, and Shenker, based on analytically continuing amplitudes defined in a Euclidean space, to include rotation. In the rotating case, boundary amplitudes again have two different bulk descriptions, involving either integration only over the regions outside the black holes' event horizon, or integration over this region and the region between the event horizon and the Cauchy horizon (inner horizon). We argue that generally, the holographic map will relate the field theory to the region bounded by the Cauchy horizons in spacetime. We also argue that these results suggest that the holographic description of black holes will satisfy strong cosmic censorship

  10. Rogue events in the group velocity horizon.

    Science.gov (United States)

    Demircan, Ayhan; Amiranashvili, Shalva; Brée, Carsten; Mahnke, Christoph; Mitschke, Fedor; Steinmeyer, Günter

    2012-01-01

    The concept of rogue waves arises from a mysterious and potentially calamitous phenomenon of oceanic surfaces. There is mounting evidence that they are actually commonplace in a variety of different physical settings. A set of defining criteria has been advanced; this set is of great generality and therefore applicable to a wide class of systems. The question arises naturally whether there are generic mechanisms responsible for extreme events in different systems. Here we argue that under suitable circumstances nonlinear interaction between weak and strong waves results in intermittent giant waves with all the signatures of rogue waves. To obtain these circumstances only a few basic conditions must be met. Then reflection of waves at the so-called group-velocity horizon occurs. The connection between rogue waves and event horizons, seemingly unrelated physical phenomena, is identified as a feature common in many different physical systems.

  11. Event and Apparent Horizon Finders for 3+1 Numerical Relativity

    Directory of Open Access Journals (Sweden)

    Thornburg Jonathan

    2007-06-01

    Full Text Available Event and apparent horizons are key diagnostics for the presence and properties of black holes. In this article I review numerical algorithms and codes for finding event and apparent horizons in numerically-computed spacetimes, focusing on calculations done using the 3+1 ADM formalism. The event horizon of an asymptotically-flat spacetime is the boundary between those events from which a future-pointing null geodesic can reach future null infinity and those events from which no such geodesic exists. The event horizon is a (continuous null surface in spacetime. The event horizon is defined nonlocally in time: it is a global property of the entire spacetime and must be found in a separate post-processing phase after all (or at least the nonstationary part of spacetime has been numerically computed.There are three basic algorithms for finding event horizons, based on integrating null geodesics forwards in time, integrating null geodesics backwards in time, and integrating null surfaces backwards in time. The last of these is generally the most efficient and accurate.In contrast to an event horizon, an apparent horizon is defined locally in time in a spacelike slice and depends only on data in that slice, so it can be (and usually is found during the numerical computation of a spacetime. A marginally outer trapped surface (MOTS in a slice is a smooth closed 2-surface whose future-pointing outgoing null geodesics have zero expansion Theta. An apparent horizon is then defined as a MOTS not contained in any other MOTS. The MOTS condition is a nonlinear elliptic partial differential equation (PDE for the surface shape, containing the ADM 3-metric, its spatial derivatives, and the extrinsic curvature as coefficients. Most “apparent horizon” finders actually find MOTSs.There are a large number of apparent horizon finding algorithms, with differing trade-offs between speed, robustness, accuracy, and ease of programming. In axisymmetry, shooting

  12. Evidence for the adiabatic invariance of the black hole horizon area

    OpenAIRE

    Mayo, Avraham E.

    1998-01-01

    Some examples in support of the conjecture that the horizon area of a near equilibrium black hole is an adiabatic invariant are described. These clarify somewhat the conditions under which the conjecture would be true.

  13. Event horizon image within black hole shadow

    OpenAIRE

    Dokuchaev, V. I.; Nazarova, N. O.

    2018-01-01

    The external border of the black hole shadow is washed out by radiation from matter plunging into black hole and approaching the event horizon. This effect will crucially influence the results of future observations by the Event Horizon Telescope. We show that gravitational lensing of the luminous matter plunging into black hole provides the event horizon visualization within black hole shadow. The lensed image of the event horizon is formed by the last highly red-shifted photons emitted by t...

  14. TU-C-HORIZONS-01: The Expanding Horizons Travel Grant Program: ePosters and Discussion

    International Nuclear Information System (INIS)

    Siewerdsen, J; Jeraj, R

    2016-01-01

    The Expanding Horizons travel grant program provides opportunity for students and trainees to broaden the scope of scientific meetings they attend and gain insight from research outside traditional domains of medical physics. Through participation in such conferences, early-career researchers are introduced to new topics with relevance to medical physics research as a means to expand the scientific horizons of our discipline. This year, 21 Expanding Horizons travel grants were awarded, granting travel to 17 conferences, including: Radiomics, the World Molecular Imaging Society (WMIS), the 3D Printing Conference and Expo, the GPU Technology Conference, the SIAM Imaging Science Conference, the Human Brain Mapping Conference, the OSA Conference on Clinical and Translational Biophotonics, the Society for Neuroscience, the AACR Conference on Tumor Microenvironment, and the Conference on Knowledge Discovery and Data Mining. The Expanding Horizons electronic poster session gives a venue for AAPM conference attendees to meet and discuss with awardees, learn the hot topics and emerging research areas presented at these conferences, and understand the relevance to future medical physics research.

  15. TU-C-HORIZONS-01: The Expanding Horizons Travel Grant Program: ePosters and Discussion

    Energy Technology Data Exchange (ETDEWEB)

    Siewerdsen, J [Johns Hopkins University, Baltimore, MD (United States); Jeraj, R [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    The Expanding Horizons travel grant program provides opportunity for students and trainees to broaden the scope of scientific meetings they attend and gain insight from research outside traditional domains of medical physics. Through participation in such conferences, early-career researchers are introduced to new topics with relevance to medical physics research as a means to expand the scientific horizons of our discipline. This year, 21 Expanding Horizons travel grants were awarded, granting travel to 17 conferences, including: Radiomics, the World Molecular Imaging Society (WMIS), the 3D Printing Conference and Expo, the GPU Technology Conference, the SIAM Imaging Science Conference, the Human Brain Mapping Conference, the OSA Conference on Clinical and Translational Biophotonics, the Society for Neuroscience, the AACR Conference on Tumor Microenvironment, and the Conference on Knowledge Discovery and Data Mining. The Expanding Horizons electronic poster session gives a venue for AAPM conference attendees to meet and discuss with awardees, learn the hot topics and emerging research areas presented at these conferences, and understand the relevance to future medical physics research.

  16. Cauchy horizons in Gowdy spacetimes

    International Nuclear Information System (INIS)

    Chrusciel, Piotr T; Lake, Kayll

    2004-01-01

    We analyse exhaustively the structure of non-degenerate Cauchy horizons in Gowdy spacetimes, and we establish existence of a large class of non-polarized Gowdy spacetimes with such horizons. Our results here, together with the deep new results of Ringstroem, establish strong cosmic censorship in (toroidal) Gowdy spacetimes

  17. Horizon shells and BMS-like soldering transformations

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Matthias [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); O’Loughlin, Martin [University of Nova Gorica,Vipavska 13, 5000 Nova Gorica (Slovenia)

    2016-03-07

    We revisit the theory of null shells in general relativity, with a particular emphasis on null shells placed at horizons of black holes. We study in detail the considerable freedom that is available in the case that one solders two metrics together across null hypersurfaces (such as Killing horizons) for which the induced metric is invariant under translations along the null generators. In this case the group of soldering transformations turns out to be infinite dimensional, and these solderings create non-trivial horizon shells containing both massless matter and impulsive gravitational wave components. We also rephrase this result in the language of Carrollian symmetry groups. To illustrate this phenomenon we discuss in detail the example of shells on the horizon of the Schwarzschild black hole (with equal interior and exterior mass), uncovering a rich classical structure at the horizon and deriving an explicit expression for the general horizon shell energy-momentum tensor. In the special case of BMS-like soldering supertranslations we find a conserved shell-energy that is strikingly similar to the standard expression for asymptotic BMS supertranslation charges, suggesting a direct relation between the physical properties of these horizon shells and the recently proposed BMS supertranslation hair of a black hole.

  18. Infinite Horizon Discrete Time Control Problems for Bounded Processes

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available We establish Pontryagin Maximum Principles in the strong form for infinite horizon optimal control problems for bounded processes, for systems governed by difference equations. Results due to Ioffe and Tihomirov are among the tools used to prove our theorems. We write necessary conditions with weakened hypotheses of concavity and without invertibility, and we provide new results on the adjoint variable. We show links between bounded problems and nonbounded ones. We also give sufficient conditions of optimality.

  19. Yang-Mills theory in Coulomb gauge; Yang-Mills-theorie in Coulombeichung

    Energy Technology Data Exchange (ETDEWEB)

    Feuchter, C.

    2006-07-01

    In this thesis we study the Yang-Mills vacuum structure by using the functional Schroedinger picture in Coulomb gauge. In particular we discuss the scenario of colour confinement, which was originally formulated by Gribov. After a short introduction, we recall some basic aspects of Yang-Mills theories, its canonical quantization in the Weyl gauge and the functional Schroedinger picture. We then consider the minimal Coulomb gauge and the Gribov problem of the gauge theory. The gauge fixing of the Coulomb gauge is done by using the Faddeev-Popov method, which enables the resolution of the Gauss law - the constraint on physical states. In the third chapter, we variationally solve the stationary Yang-Mills Schroedinger equation in Coulomb gauge for the vacuum state. Therefor we use a vacuum wave functional, which is strongly peaked at the Gribov horizon. The vacuum energy functional is calculated and minimized resulting in a set of coupled Schwinger-Dyson equations for the gluon energy, the ghost and Coulomb form factors and the curvature in gauge orbit space. Using the angular approximation these integral equations have been solved analytically in both the infrared and the ultraviolet regime. The asymptotic analytic solutions in the infrared and ultraviolet regime are reasonably well reproduced by the full numerical solutions of the coupled Schwinger-Dyson equations. In the fourth chapter, we investigate the dependence of the Yang-Mills wave functional in Coulomb gauge on the Faddeev-Popov determinant. (orig.)

  20. Connecting horizon pixels and interior voxels of a black hole

    International Nuclear Information System (INIS)

    Nicolini, Piero; Singleton, Douglas

    2014-01-01

    In this paper we discuss to what extent one can infer details of the interior structure of a black hole based on its horizon. Recalling that black hole thermal properties are connected to the non-classical nature of gravity, we circumvent the restrictions of the no-hair theorem by postulating that the black hole interior is singularity free due to violations of the usual energy conditions. Further these conditions allow one to establish a one-to-one, holographic projection between Planckian areal “bits” on the horizon and “voxels”, representing the gravitational degrees of freedom in the black hole interior. We illustrate the repercussions of this idea by discussing an example of the black hole interior consisting of a de Sitter core postulated to arise from the local graviton quantum vacuum energy. It is shown that the black hole entropy can emerge as the statistical entropy of a gas of voxels

  1. Dynamical symmetry enhancement near IIA horizons

    International Nuclear Information System (INIS)

    Gran, University; Gutowski, J.; Kayani, University; Papadopoulos, G.

    2015-01-01

    We show that smooth type IIA Killing horizons with compact spatial sections preserve an even number of supersymmetries, and that the symmetry algebra of horizons with non-trivial fluxes includes an sl(2,ℝ) subalgebra. This confirms the conjecture of http://dx.doi.org/10.1007/JHEP11(2013)104 for type IIA horizons. As an intermediate step in the proof, we also demonstrate new Lichnerowicz type theorems for spin bundle connections whose holonomy is contained in a general linear group.

  2. Cosmological horizons and reconstruction of quantum field theories

    International Nuclear Information System (INIS)

    Dappiaggi, C.; Pinamonti, N.

    2007-12-01

    As a starting point for this manuscript, we remark how the cosmological horizon of a certain class of Friedmann-Robertson-Walker backgrounds shares some non trivial geometric properties with null infinity in an asymptotically flat spacetime. Such a feature is generalized to a larger class of expanding spacetimes M admitting a geodesically complete cosmological horizon J - common to all co-moving observers. This property is later exploited in order to recast, in a cosmological background, some recent results for a linear scalar quantum field theory in spacetimes asymptotically flat at null infinity. Under suitable hypotheses on M - valid for de Sitter spacetime and some other FRW spacetimes obtained by perturbing deSitter space - the algebra of observables for a Klein-Gordon field is mapped into a subalgebra of the algebra of observables W(J - ) constructed on the cosmological horizon. There is exactly one pure quasifree state λ on W(J - ) which fulfills a suitable energy positivity condition with respect to a generator related with the cosmological time displacements. Furthermore λ induces a preferred physically meaningful quantum state λ M for the quantum theory in the bulk. If M admits a timelike Killing generator preserving J - , then the associated self-adjoint generator in the GNS representation of λ M has positive spectrum (i.e. energy). Moreover λ M turns out to be invariant under every symmetry of the bulk metric which preserves the cosmological horizon. In the case of an expanding de Sitter spacetime, λ M coincides with the Euclidean (Bunch-Davies) vacuum state, hence being Hadamard in this case. Remarks on the validity of the Hadamard property for λ M in more general spacetimes are presented. (orig.)

  3. Summary and status of the Horizons ephemeris system

    Science.gov (United States)

    Giorgini, J.

    2011-10-01

    Since 1996, the Horizons system has provided searchable access to JPL ephemerides for all known solar system bodies, several dozen spacecraft, planetary system barycenters, and some libration points. Responding to 18 400 000 requests from 300 000 unique addresses, the system has recently averaged 420 000 ephemeris requests per month. Horizons is accessed and automated using three interfaces: interactive telnet, web-browser form, and e-mail command-file. Asteroid and comet ephemerides are numerically integrated from JPL's database of initial conditions. This small-body database is updated hourly by a separate process as new measurements and discoveries are reported by the Minor Planet Center and automatically incorporated into new JPL orbit solutions. Ephemerides for other objects are derived by interpolating previously developed solutions whose trajectories have been represented in a file. For asteroids and comets, such files may be dynamically created and transferred to users, effectively recording integrator output. These small-body SPK files may then be interpolated by user software to reproduce the trajectory without duplicating the numerically integrated n-body dynamical model or PPN equations of motion. Other Horizons output is numerical and in the form of plain-text observer, vector, osculating element, or close-approach tables, typically expected be read by other software as input. About one hundred quantities can be requested in various time-scales and coordinate systems. For JPL small-body solutions, this includes statistical uncertainties derived from measurement covariance and state transition matrices. With the exception of some natural satellites, Horizons is consistent with DE405/DE406, the IAU 1976 constants, ITRF93, and IAU2009 rotational models.

  4. Horizons of hermeneutics: Intercultural hermeneutics in a globalizing world

    NARCIS (Netherlands)

    J. de Mul (Jos)

    2011-01-01

    textabstractStarting from the often-used metaphor of the "horizon of experience" this article discusses three different types of intercultural hermeneutics, which respectively conceive hermeneutic interpretation as a widening of horizons, a fusion of horizons, and a dissemination of horizons. It is

  5. Hawking radiation from quasilocal dynamical horizons

    Indian Academy of Sciences (India)

    2016-01-06

    Jan 6, 2016 ... Abstract. In completely local settings, we establish that a dynamically evolving spherically symmetric black hole horizon can be assigned a Hawking temperature and with the emission of flux, radius of the horizon shrinks.

  6. Across-horizon scattering and information transfer

    Science.gov (United States)

    Emelyanov, V. A.; Klinkhamer, F. R.

    2018-06-01

    We address the question whether or not two electrically charged elementary particles can Coulomb scatter if one of these particles is inside the Schwarzschild black-hole horizon and the other outside. It can be shown that the quantum process is consistent with the local energy–momentum conservation law. This result implies that across-horizon scattering is a physical effect, relevant to astrophysical black holes. We propose a Gedankenexperiment which uses the quantum scattering process to transfer information from inside the black-hole horizon to outside.

  7. Applications of the leading-order Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations to the combined HERA data on deep inelastic scattering

    International Nuclear Information System (INIS)

    Block, Martin M.; Durand, Loyal; Ha, Phuoc; McKay, Douglas W.

    2011-01-01

    We recently derived explicit solutions of the leading-order Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations for the Q 2 evolution of the singlet structure function F s (x,Q 2 ) and the gluon distribution G(x,Q 2 ) using very efficient Laplace transform techniques. We apply our results here to a study of the HERA data on deep inelastic ep scattering as recently combined by the H1 and ZEUS groups. We use initial distributions F 2 γp (x,Q 0 2 ) and G(x,Q 0 2 ) determined for x s (x,Q 0 2 ) from F 2 γp (x,Q 0 2 ) using small nonsinglet quark distributions taken from either the CTEQ6L or the MSTW2008LO analyses, evolve F s and G to arbitrary Q 2 , and then convert the results to individual quark distributions. Finally, we show directly from a study of systematic trends in a comparison of the evolved F 2 γp (x,Q 2 ) with the HERA data that the assumption of leading-order DGLAP evolution is inconsistent with those data.

  8. Mastering VMware Horizon 6

    CERN Document Server

    Oven, Peter von

    2015-01-01

    If you are working as a desktop admin, part of a EUC team, an architect, or a consultant on a desktop virtualization project and you are looking to use VMware's Horizon solution, this book is for you. This book will demonstrate the new capabilities of Horizon 6. You should have experience in desktop management using Windows and Microsoft Office, and be familiar with Active Directory, SQL, Windows Remote Desktop Session Hosting, and VMware vSphere infrastructure (ESXi and vCenter Server) technology.

  9. Horizon 2020 in sight

    CERN Multimedia

    Joannah Caborn Wengler

    2012-01-01

    Every tenth member of the CERN personnel participates in an EU-funded project – a strong indication of CERN’s successful relations with the European Commission (EC), coordinated by the CERN EU projects office. The EC director in charge of preparing “Horizon 2020”, the new EU funding programme for research and innovation (2014-2020), will be giving a presentation at CERN on 8 May. He will reveal more about what the new programme has in store.   “It’s a very interesting time in the development of Horizon 2020, which is focusing the attention of all research communities in Europe,” explains Svetlomir Stavrev, head of the EU projects office. “After a long public consultation and drafting process, the Horizon 2020 proposal documents are now being reviewed by the European Parliament and Council.” CERN already participated in the consultation, making good use of the opportunity to contribute to the shaping of wh...

  10. Implementing VMware Horizon View 5.2

    CERN Document Server

    Ventresco, Jason

    2013-01-01

    A step-by-step tutorial covering all components of the View Horizon suite in detail, to ensure that you can utilize all features of the platform, and discover all of the possible ways that it can be used within your own environment.If you are a newcomer in system administration, and you wish to implement a small to midsized Horizon View environment, then this book is for you. It will also benefit individuals who wish to administrate and manage Horizon View more efficiently or are studying for the VCP5-DT.

  11. Classification of Near-Horizon Geometries of Extremal Black Holes

    Directory of Open Access Journals (Sweden)

    Hari K. Kunduri

    2013-09-01

    Full Text Available Any spacetime containing a degenerate Killing horizon, such as an extremal black hole, possesses a well-defined notion of a near-horizon geometry. We review such near-horizon geometry solutions in a variety of dimensions and theories in a unified manner. We discuss various general results including horizon topology and near-horizon symmetry enhancement. We also discuss the status of the classification of near-horizon geometries in theories ranging from vacuum gravity to Einstein–Maxwell theory and supergravity theories. Finally, we discuss applications to the classification of extremal black holes and various related topics. Several new results are presented and open problems are highlighted throughout.

  12. Classification of Near-Horizon Geometries of Extremal Black Holes.

    Science.gov (United States)

    Kunduri, Hari K; Lucietti, James

    2013-01-01

    Any spacetime containing a degenerate Killing horizon, such as an extremal black hole, possesses a well-defined notion of a near-horizon geometry. We review such near-horizon geometry solutions in a variety of dimensions and theories in a unified manner. We discuss various general results including horizon topology and near-horizon symmetry enhancement. We also discuss the status of the classification of near-horizon geometries in theories ranging from vacuum gravity to Einstein-Maxwell theory and supergravity theories. Finally, we discuss applications to the classification of extremal black holes and various related topics. Several new results are presented and open problems are highlighted throughout.

  13. Addressing the long time horizon for managing used nuclear fuel

    International Nuclear Information System (INIS)

    Hodge, R.A.

    2006-01-01

    The time horizon that must be considered in developing an approach to managing used nuclear fuel extends many thousands of years. Such a time horizon is without precedent in environmental, economic, social, technical and public policy terms. As a first step in addressing this issue, the Nuclear Waste Management Organization convened a team of 33 individuals to undertake a formal scenarios exercise. Such an exercise is a way of framing potential futures that might occur. There is no intent to predict the future. This exercise represents the first time that the scenarios technique has been used for such a long time horizon. The approach involved identifying two principle axes of potential change: (1) social - political - environmental well-being; and (2) magnitude of the used nuclear fuel challenge. Using this organizing template, four scenarios were developed reaching out 25 years, and an additional twelve were developed at 175 years branching out from the original four. In addition, a series of sixteen possible 'end-points' were identified to span conditions 500 years out and for 10,000 years a large number of 'what- ifs' were developed. The scenarios, end-points, and what- ifs were then used to identify a number of criteria that could be used for testing proposed management options and their capacity to deal with future conditions. This paper describes this work and the role that it has played in the deliberations of the Nuclear Waste Management Organization. (author)

  14. Moving Horizon Estimation and Control

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp

    successful and applied methodology beyond PID-control for control of industrial processes. The main contribution of this thesis is introduction and definition of the extended linear quadratic optimal control problem for solution of numerical problems arising in moving horizon estimation and control...... problems. Chapter 1 motivates moving horizon estimation and control as a paradigm for control of industrial processes. It introduces the extended linear quadratic control problem and discusses its central role in moving horizon estimation and control. Introduction, application and efficient solution....... It provides an algorithm for computation of the maximal output admissible set for linear model predictive control. Appendix D provides results concerning linear regression. Appendix E discuss prediction error methods for identification of linear models tailored for model predictive control....

  15. Does horizon entropy satisfy a quantum null energy conjecture?

    Science.gov (United States)

    Fu, Zicao; Marolf, Donald

    2016-12-01

    A modern version of the idea that the area of event horizons gives 4G times an entropy is the Hubeny-Rangamani causal holographic information (CHI) proposal for holographic field theories. Given a region R of a holographic QFTs, CHI computes A/4G on a certain cut of an event horizon in the gravitational dual. The result is naturally interpreted as a coarse-grained entropy for the QFT. CHI is known to be finitely greater than the fine-grained Hubeny-Rangamani-Takayanagi (HRT) entropy when \\partial R lies on a Killing horizon of the QFT spacetime, and in this context satisfies other non-trivial properties expected of an entropy. Here we present evidence that it also satisfies the quantum null energy condition (QNEC), which bounds the second derivative of the entropy of a quantum field theory on one side of a non-expanding null surface by the flux of stress-energy across the surface. In particular, we show CHI to satisfy the QNEC in 1  +  1 holographic CFTs when evaluated in states dual to conical defects in AdS3. This surprising result further supports the idea that CHI defines a useful notion of coarse-grained holographic entropy, and suggests unprecedented bounds on the rate at which bulk horizon generators emerge from a caustic. To supplement our motivation, we include an appendix deriving a corresponding coarse-grained generalized second law for 1  +  1 holographic CFTs perturbatively coupled to dilaton gravity.

  16. Anoxia pre-dates Frasnian–Famennian boundary mass extinction horizon in the Great Basin, USA

    Science.gov (United States)

    Bratton, John F.; Berry, William B.N.; Morrow, Jared R.

    1999-01-01

    Major and trace metal results from three Great Basin stratigraphic sections with strong conodont biostratigraphy identify a distinct anoxic interval that precedes, but ends approximately 100 kyr before, the Frasnian–Famennian (F–F, mid-Late Devonian) boundary mass extinction horizon. This horizon corresponds to the final and most severe step of a more protracted extinction period. These results are inconsistent with data reported by others from the upper Kellwasser horizon in Europe, which show anoxia persisting up to the F–F boundary in most sections. Conditions returned to fully oxygenated prior to the F–F boundary in the study area. These data indicate that the worst part of the F–F extinction was not related directly to oceanic anoxia in this region and potentially globally.

  17. Stretched horizons, quasiparticles, and quasinormal modes

    International Nuclear Information System (INIS)

    Iizuka, Norihiro; Kabat, Daniel; Lifschytz, Gilad; Lowe, David A.

    2003-01-01

    We propose that stretched horizons can be described in terms of a gas of noninteracting quasiparticles. The quasiparticles are unstable, with a lifetime set by the imaginary part of the lowest quasinormal mode frequency. If the horizon arises from an AdS-CFT style duality the quasiparticles are also the effective low-energy degrees of freedom of the finite-temperature CFT. We analyze a large class of models including Schwarzschild black holes, nonextremal Dp-branes, the rotating BTZ black hole and de Sitter space, and we comment on degenerate horizons. The quasiparticle description makes manifest the relationship between entropy and area

  18. Cosmological horizons and reconstruction of quantum field theories

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, C.; Pinamonti, N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Trento Univ., Povo (Italy). Istituto Nazionale di Alta Matematica ' ' F. Severi' ' - GNFM; Moretti, V. [Trento Univ. (Italy). Dipt. di Matematica]|[Istituto Nazionale di Fisica Nucleare - Gruppo Collegato di Trento, Povo (Italy)

    2007-12-15

    As a starting point for this manuscript, we remark how the cosmological horizon of a certain class of Friedmann-Robertson-Walker backgrounds shares some non trivial geometric properties with null infinity in an asymptotically flat spacetime. Such a feature is generalized to a larger class of expanding spacetimes M admitting a geodesically complete cosmological horizon J{sup -} common to all co-moving observers. This property is later exploited in order to recast, in a cosmological background, some recent results for a linear scalar quantum field theory in spacetimes asymptotically flat at null infinity. Under suitable hypotheses on M - valid for de Sitter spacetime and some other FRW spacetimes obtained by perturbing deSitter space - the algebra of observables for a Klein-Gordon field is mapped into a subalgebra of the algebra of observables W(J{sup -}) constructed on the cosmological horizon. There is exactly one pure quasifree state {lambda} on W(J{sup -}) which fulfills a suitable energy positivity condition with respect to a generator related with the cosmological time displacements. Furthermore {lambda} induces a preferred physically meaningful quantum state {lambda}{sub M} for the quantum theory in the bulk. If M admits a timelike Killing generator preserving J{sup -}, then the associated self-adjoint generator in the GNS representation of {lambda}{sub M} has positive spectrum (i.e. energy). Moreover {lambda}{sub M} turns out to be invariant under every symmetry of the bulk metric which preserves the cosmological horizon. In the case of an expanding de Sitter spacetime, {lambda}{sub M} coincides with the Euclidean (Bunch-Davies) vacuum state, hence being Hadamard in this case. Remarks on the validity of the Hadamard property for {lambda}{sub M} in more general spacetimes are presented. (orig.)

  19. Dynamical Formation of Horizons in Recoiling D Branes

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V; Ellis, John

    2000-01-01

    A toy calculation of string/D-particle interactions within a world-sheet approach indicates that quantum recoil effects - reflecting the gravitational back-reaction on space-time foam due to the propagation of energetic particles - induces the appearance of a microscopic event horizon, or `bubble', inside which stable matter can exist. The scattering event causes this horizon to expand, but we expect quantum effects to cause it to contract again, in a `bounce' solution. Within such `bubbles', massless matter propagates with an effective velocity that is less than the velocity of light in vacuo, which may lead to observable violations of Lorentz symmetry that may be tested experimentally. The conformal invariance conditions in the interior geometry of the bubbles select preferentially three for the number of the spatial dimensions, corresponding to a consistent formulation of the interaction of D3 branes with recoiling D particles, which are allowed to fluctuate independently only on the D3-brane hypersurface.

  20. The Finite-Horizon Singular H∞ Control Problem With Dynamic Measurement Feedback

    NARCIS (Netherlands)

    Stoorvogel, A.A.; Trentelman, H.L.

    1993-01-01

    This paper is concerned with the finite-horizon version of the H∞ problem with measurement feedback. Given a finite-dimensional linear, time-varying system, together with a positive real number γ, we obtain necessary and sufficient conditions for the existence of a possibly time-varying dynamic

  1. Nonlinear optics of fibre event horizons.

    Science.gov (United States)

    Webb, Karen E; Erkintalo, Miro; Xu, Yiqing; Broderick, Neil G R; Dudley, John M; Genty, Goëry; Murdoch, Stuart G

    2014-09-17

    The nonlinear interaction of light in an optical fibre can mimic the physics at an event horizon. This analogue arises when a weak probe wave is unable to pass through an intense soliton, despite propagating at a different velocity. To date, these dynamics have been described in the time domain in terms of a soliton-induced refractive index barrier that modifies the velocity of the probe. Here we complete the physical description of fibre-optic event horizons by presenting a full frequency-domain description in terms of cascaded four-wave mixing between discrete single-frequency fields, and experimentally demonstrate signature frequency shifts using continuous wave lasers. Our description is confirmed by the remarkable agreement with experiments performed in the continuum limit, reached using ultrafast lasers. We anticipate that clarifying the description of fibre event horizons will significantly impact on the description of horizon dynamics and soliton interactions in photonics and other systems.

  2. Black holes or firewalls: A theory of horizons

    Science.gov (United States)

    Nomura, Yasunori; Varela, Jaime; Weinberg, Sean J.

    2013-10-01

    We present a quantum theory of black hole (and other) horizons, in which the standard assumptions of complementarity are preserved without contradicting information theoretic considerations. After the scrambling time, the quantum mechanical structure of a black hole becomes that of an eternal black hole at the microscopic level. In particular, the stretched horizon degrees of freedom and the states entangled with them can be mapped into the near-horizon modes in the two exterior regions of an eternal black hole, whose mass is taken to be that of the evolving black hole at each moment. Salient features arising from this picture include (i) the number of degrees of freedom needed to describe a black hole is eA/2lP2, where A is the area of the horizon; (ii) black hole states having smooth horizons, however, span only an eA/4lP2-dimensional subspace of the relevant eA/2lP2-dimensional Hilbert space; (iii) internal dynamics of the horizon is such that an infalling observer finds a smooth horizon with a probability of 1 if a state stays in this subspace. We identify the structure of local operators responsible for describing semiclassical physics in the exterior and interior spacetime regions and show that this structure avoids the arguments for firewalls—the horizon can keep being smooth throughout the evolution. We discuss the fate of infalling observers under various circumstances, especially when the observers manipulate degrees of freedom before entering the horizon, and we find that an observer can never see a firewall by making a measurement on early Hawking radiation. We also consider the presented framework from the viewpoint of an infalling reference frame and argue that Minkowski-like vacua are not unique. In particular, the number of true Minkowski vacua is infinite, although the label discriminating these vacua cannot be accessed in usual nongravitational quantum field theory. An application of the framework to de Sitter horizons is also discussed.

  3. Controls and occurance of interflow over a restrictive argillic horizon in a low gradient hillslope.

    Energy Technology Data Exchange (ETDEWEB)

    Greco, James, L. III

    2008-02-01

    Interflow (throughflow or lateral flow), is shallow lateral subsurface flow that moves over a horizon that restricts percolation. Interflow is important for a number of reasons. First, rapid saturated interflow through macropores can travel to streams and alluvial aquifers with high celerity. Also, experimental studies have shown that interflow can be an important source of baseflow and stormflow. Because interflow travels through a biologically active region of soil with roots and relatively high OM content, the final outcome is the potential contamination of surface water bodies from subsurface water. Many of the soils in the southeastern US are characterized by an argillic, or clay horizon, that largely parallels the soil surface at depths ranging from a few centimeters to hundreds of centimeters. The degree to which these argillic horizons alter subsurface movement of infiltrated water is not well known. This research investigates how often and under what conditions a relatively deep (20-150+cm) argillic horizon on low slope (2-12%) hillsides causes interflow to occur.

  4. Cemented Horizons and Hardpans in the Coastal Tablelands of Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    João Bosco Vasconcellos Gomes

    Full Text Available ABSTRACT Horizons with varying degrees of cementation are a common feature of the soils from the coastal tablelands of Northeastern Brazil. In most cases, these horizons are represented by the following subsurface horizons: fragipan, duripan, ortstein, and placic. The aims of this study were to analyze differences regarding the development and the degree of expression of cementation in soils from the coastal tablelands of Northeastern Brazil: Planossolo Háplico (p-SX, Espodossolo Humilúvico (p-EK, Espodossolo Ferrihumilúvico (p-ESK, and Argissolo Acinzentado (p-PAC pedons. The pedons studied displayed features related to drainage impediments. The cemented horizons from p-SX and p-EK had the same designation (Btgm, displaying a duric character that coincided with gleization features and are under podzolized horizons. In the p-ESK, the podzolization process is of such magnitude that it leads to the cementation of its own spodic horizons, which were both of the ortstein type (Bhsx and Bsm. In the p-PAC cementation is observed in two placic horizons and in the Btx/Bt horizon, as well as in the upper parts of the Bt/Btx horizon. Analysis of the micrographies from the cemented horizons showed predominance of a low porosity matrix. Such porosity is relatively greater in the horizons of “x” subscript than in the horizons with duric character. The Fe segregation lines were notable in the cemented horizons from p-EK and p-PAC, which corroborates the presence of placic horizons in such pedons. The preponderance of kaolinite in the clay fraction was widely verified in all the cemented horizons analyzed. Water immersion tests were the criteria adopted to define the duric character of the Btgm horizons from p-SX and p-EK, and in the Bsm horizon from the p-ESK. These tests were also used to confirm field morphology. In most cases, the maximum values of Fe, Al, and Si, determined by different extractions, occurred in positions overlaying the cemented

  5. VMware Horizon Workspace essentials

    CERN Document Server

    von Oven, Peter; Lindberg, Joel

    2014-01-01

    This book uses a step-by-step approach to teach you how to design, deploy, and manage a Horizon Workspace based on real world experience. Written in an easy-to-follow style, this book explains the terminology in a clear and concise manner. Each feature is explained starting at a high level and then drilling down into the technical detail, using diagrams and screenshots.This book is perfect for IT administrators who want to deploy a solution to centrally manage access to corporate applications, data, and virtual desktops using Horizon Workspace. You need to have some experience in delivering BY

  6. On infrared problems of effective Lagrangians of massive spin 2 fields coupled to gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Canfora, Fabrizio, E-mail: canfora@cecs.cl [Centro de Estudios Científicos (CECs), Casilla 1469, Valdivia (Chile); Giacomini, Alex, E-mail: alexgiacomini@uach.cl [Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia (Chile); Zerwekh, Alfonso R., E-mail: alfonso.zerwekh@usm.cl [Departamento de Física and Centro Científico-Tecnológico de Valparaíso, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso (Chile)

    2016-12-15

    In this paper we analyze the interactions of massive spin-2 particles charged under both Abelian and non-Abelian group using the Porrati–Rahman Lagrangian. This theory is valid up to an intrinsic cutoff scale. Phenomenologically a theory valid up to a cutoff scale is sensible as all known higher spin particles are non-fundamental and it is shown that indeed this action can be used to estimate some relevant cross section. Such action necessarily includes Stückelberg field and therefore it is necessary to fix the corresponding gauge symmetry. We show that this theory, when the Stückelberg symmetry is gauge-fixed, possesses a non-trivial infrared problem. A gauge fixing ambiguity arises which is akin to the Gribov problem in QCD in the Abelian case as well. In some cases (such as when the space–time is the four-dimensional torus) the vacuum copies can be found analytically. A similar phenomenon also appears in the case of Proca fields. A very interesting feature of these copies is that they arise only for “large enough” gauge potentials. This opens the possibility to avoid the appearance of such gauge fixing ambiguities by using a Gribov–Zwanziger like approach.

  7. The influence of time horizon on results of cost-effectiveness analyses.

    Science.gov (United States)

    Kim, David D; Wilkinson, Colby L; Pope, Elle F; Chambers, James D; Cohen, Joshua T; Neumann, Peter J

    2017-12-01

    Debates persist on the appropriate time horizon from a payer's perspective and how the time horizon in cost-effectiveness analysis (CEA) influences the value assessment. We systematically reviewed the Tufts Medical Center CEA Registry and identified US-based studies that used a payer perspective from 2005-2014. We classified the identified CEAs as short-term (time horizon ≤ 5 years) and long-term (> 5 years), and examined associations between study characteristics and the specified time horizon. We also developed case studies with selected interventions to further explore the relationship between time horizon and projected costs, benefits, and incremental cost-effectiveness ratios (ICER). Among 782 identified studies that met our inclusion criteria, 552 studies (71%) utilized a long-term time horizon while 198 studies (25%) used a short-term horizon. Among studies that employed multiple time horizons, the extension of the time horizon yielded more favorable ICERs in 19 cases and less favorable ICERs in 4 cases. Case studies showed the use of a longer time horizon also yielded more favorable ICERs. The assumed time horizon in CEAs can substantially influence the value assessment of medical interventions. To capture all consequences, we encourage the use of time horizons that extend sufficiently into the future.

  8. Weakly Isolated horizons: first order actions and gauge symmetries

    Science.gov (United States)

    Corichi, Alejandro; Reyes, Juan D.; Vukašinac, Tatjana

    2017-04-01

    The notion of Isolated Horizons has played an important role in gravitational physics, being useful from the characterization of the endpoint of black hole mergers to (quantum) black hole entropy. With an eye towards a canonical formulation we consider general relativity in terms of connection and vierbein variables and their corresponding first order actions. We focus on two main issues: (i) The role of the internal gauge freedom that exists, in the consistent formulations of the action principle, and (ii) the role that a 3  +  1 canonical decomposition has in the allowed internal gauge freedom. More concretely, we clarify in detail how the requirement of having well posed variational principles compatible with general weakly isolated horizons (WIHs) as internal boundaries does lead to a partial gauge fixing in the first order descriptions used previously in the literature. We consider the standard Hilbert-Palatini action together with the Holst extension (needed for a consistent 3  +  1 decomposition), with and without boundary terms at the horizon. We show in detail that, for the complete configuration space—with no gauge fixing—, while the Palatini action is differentiable without additional surface terms at the inner WIH boundary, the more general Holst action is not. The introduction of a surface term at the horizon—that renders the action for asymptotically flat configurations differentiable—does make the Holst action differentiable, but only if one restricts the configuration space and partially reduces the internal Lorentz gauge. For the second issue at hand, we show that upon performing a 3  +  1 decomposition and imposing the time gauge, there is a further gauge reduction of the Hamiltonian theory in terms of Ashtekar-Barbero variables to a U(1)-gauge theory on the horizon. We also extend our analysis to the more restricted boundary conditions of (strongly) isolated horizons as inner boundary. We show that even when the

  9. Weakly Isolated horizons: first order actions and gauge symmetries

    International Nuclear Information System (INIS)

    Corichi, Alejandro; Reyes, Juan D; Vukašinac, Tatjana

    2017-01-01

    The notion of Isolated Horizons has played an important role in gravitational physics, being useful from the characterization of the endpoint of black hole mergers to (quantum) black hole entropy. With an eye towards a canonical formulation we consider general relativity in terms of connection and vierbein variables and their corresponding first order actions. We focus on two main issues: (i) The role of the internal gauge freedom that exists, in the consistent formulations of the action principle, and (ii) the role that a 3  +  1 canonical decomposition has in the allowed internal gauge freedom. More concretely, we clarify in detail how the requirement of having well posed variational principles compatible with general weakly isolated horizons (WIHs) as internal boundaries does lead to a partial gauge fixing in the first order descriptions used previously in the literature. We consider the standard Hilbert–Palatini action together with the Holst extension (needed for a consistent 3  +  1 decomposition), with and without boundary terms at the horizon. We show in detail that, for the complete configuration space—with no gauge fixing—, while the Palatini action is differentiable without additional surface terms at the inner WIH boundary, the more general Holst action is not. The introduction of a surface term at the horizon—that renders the action for asymptotically flat configurations differentiable—does make the Holst action differentiable, but only if one restricts the configuration space and partially reduces the internal Lorentz gauge. For the second issue at hand, we show that upon performing a 3  +  1 decomposition and imposing the time gauge, there is a further gauge reduction of the Hamiltonian theory in terms of Ashtekar–Barbero variables to a U (1)-gauge theory on the horizon. We also extend our analysis to the more restricted boundary conditions of (strongly) isolated horizons as inner boundary. We show that even when

  10. Cosmological event horizons, thermodynamics, and particle creation

    International Nuclear Information System (INIS)

    Gibbons, G.W.; Hawking, S.W.

    1977-01-01

    It is shown that the close connection between event horizons and thermodynamics which has been found in the case of black holes can be extended to cosmological models with a repulsive cosmological constant. An observer in these models will have an event horizon whose area can be interpreted as the entropy or lack of information of the observer about the regions which he cannot see. Associated with the event horizon is a surface gravity kappa which enters a classical ''first law of event horizons'' in a manner similar to that in which temperature occurs in the first law of thermodynamics. It is shown that this similarity is more than an analogy: An observer with a particle detector will indeed observe a background of thermal radiation coming apparently from the cosmological event horizon. If the observer absorbs some of this radiation, he will gain energy and entropy at the expense of the region beyond his ken and the event horizon will shrink. The derivation of these results involves abandoning the idea that particles should be defined in an observer-independent manner. They also suggest that one has to use something like the Everett-Wheeler interpretation of quantum mechanics because the back reaction and hence the spacetime metric itself appear to be observer-dependent, if one assumes, as seems reasonable, that the detection of a particle is accompanied by a change in the gravitational field

  11. Horizon quantum mechanics of rotating black holes

    Energy Technology Data Exchange (ETDEWEB)

    Casadio, Roberto [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); I.N.F.N., Sezione di Bologna, I.S. FLAG, Bologna (Italy); Giugno, Andrea [Ludwig-Maximilians-Universitaet, Arnold Sommerfeld Center, Munich (Germany); Giusti, Andrea [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); I.N.F.N., Sezione di Bologna, I.S. FLAG, Bologna (Italy); Ludwig-Maximilians-Universitaet, Arnold Sommerfeld Center, Munich (Germany); Micu, Octavian [Institute of Space Science, Bucharest, P.O. Box MG-23, Bucharest-Magurele (Romania)

    2017-05-15

    The horizon quantum mechanics is an approach that was previously introduced in order to analyze the gravitational radius of spherically symmetric systems and compute the probability that a given quantum state is a black hole. In this work, we first extend the formalism to general space-times with asymptotic (ADM) mass and angular momentum. We then apply the extended horizon quantum mechanics to a harmonic model of rotating corpuscular black holes. We find that simple configurations of this model naturally suppress the appearance of the inner horizon and seem to disfavor extremal (macroscopic) geometries. (orig.)

  12. Bootstrap, universality and horizons

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chi-Ming [Center for Theoretical Physics and Department of Physics,University of California, Berkeley, CA 94704 (United States); Lin, Ying-Hsuan [Jefferson Physical Laboratory, Harvard University,Cambridge, MA 02138 (United States)

    2016-10-13

    We present a closed form expression for the semiclassical OPE coefficients that are universal for all 2D CFTs with a “weak” light spectrum, by taking the semiclassical limit of the fusion kernel. We match this with a properly regularized and normalized bulk action evaluated on a geometry with three conical defects, analytically continued in the deficit angles beyond the range for which a metric with positive signature exists. The analytically continued geometry has a codimension-one coordinate singularity surrounding the heaviest conical defect. This singularity becomes a horizon after Wick rotating to Lorentzian signature, suggesting a connection between universality and the existence of a horizon.

  13. Hamiltonian formulation of QCD in the Schwinger gauge

    International Nuclear Information System (INIS)

    Schutte, D.

    1989-01-01

    The structure of the Hamiltonian related to a regularized non-Abelian gauge field theory is discussed in the light of different choices for gauge-invariant wave functionals (loop space, Coulomb, axial, Schwinger gauge). Arguments are given for the suggestion that the Schwinger gauge offers a specially suited framework for the computation of bound-state (hadron) properties. The most important reasons are the manifest rotation invariance, the lack of a Gribov horizon (giving standard many-body techniques a better chance), and the fact that a regularization analogous to the lattice regularization is easily implementable. Some details of the Schwinger-gauge Hamiltonian theory are discussed

  14. Redshift of a photon emitted along the black hole horizon

    Energy Technology Data Exchange (ETDEWEB)

    Toporensky, A.V. [Lomonosov Moscow State University, Sternberg Astronomical Institute, Moscow (Russian Federation); Kazan Federal University, Kazan (Russian Federation); Zaslavskii, O.B. [Kazan Federal University, Kazan (Russian Federation); Kharkov V.N. Karazin National University, Department of Physics and Technology, Kharkov (Ukraine)

    2017-03-15

    In this work we derive some general features of the redshift measured by radially moving observers in the black hole background. Let observer 1 cross the black hole horizon emitting a photon, while observer 2 crossing the same horizon later receives it. We show that if (i) the horizon is the outer one (event horizon) and (ii) it is nonextremal, the received frequency is redshifted. This generalizes recent results in the literature. For the inner horizon (like in the Reissner-Nordstroem metric) the frequency is blueshifted. If the horizon is extremal, the frequency does not change. We derive explicit formulas describing the frequency shift in generalized Kruskal- and Lemaitre-like coordinates. (orig.)

  15. Pricing Liquidity Risk with Heterogeneous Investment Horizons

    NARCIS (Netherlands)

    Beber, Alessandro; Driessen, Joost; Neuberger, A.; Tuijp, P

    We develop an asset pricing model with stochastic transaction costs and investors with heterogeneous horizons. Depending on their horizon, investors hold different sets of assets in equilibrium. This generates segmentation and spillover effects for expected returns, where the liquidity (risk)

  16. Reflection, radiation, and interference near the black hole horizon

    International Nuclear Information System (INIS)

    Kuchiev, M.Yu.

    2004-01-01

    The event horizon of black holes is capable of reflection: there is a finite probability for any particle that approaches the horizon to bounce back. The albedo of the horizon depends on the black hole temperature and the energy of the incoming particle. The reflection shares its physical origins with the Hawking process of radiation; both of them arise as consequences of the mixing of the incoming and outgoing waves that takes place due to quantum processes on the event horizon

  17. Plasmonic Horizon in Gold Nanosponges.

    Science.gov (United States)

    Vidal, Cynthia; Sivun, Dmitry; Ziegler, Johannes; Wang, Dong; Schaaf, Peter; Hrelescu, Calin; Klar, Thomas A

    2018-02-14

    An electromagnetic wave impinging on a gold nanosponge coherently excites many electromagnetic hot-spots inside the nanosponge, yielding a polarization-dependent scattering spectrum. In contrast, a hole, recombining with an electron, can locally excite plasmonic hot-spots only within a horizon given by the lifetime of localized plasmons and the speed carrying the information that a plasmon has been created. This horizon is about 57 nm, decreasing with increasing size of the nanosponge. Consequently, photoluminescence from large gold nanosponges appears unpolarized.

  18. Effects of pipeline construction on chernozemic and solonetzic A and B horizons in Central Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Landsburg, S. (NOVA Corp. of Alberta, Calgary, AB (Canada))

    1989-05-01

    The effects of pipeline construction on agricultural soil quality ratings were evaluated for the A and B horizons of Orthic Dark Brown Chernozem and Dark Brown Solonetz soils at three sites in Central Alberta 1 wk after construction. At each site, samples of the Ap horizon from the spoil side, trench, and work side portions of a pipeline right-of-way were compared to a sample of the Ap horizon from an adjacent area unaffected by pipeline construction. Spoil material below replaced topsoil on the trench was compared to a sample of an undisturbed B horizon. Regardless of soil type or land use, construction had no effect on the Ap horizon on the work side. This was due to optimum weather conditions during construction; low rainfall resulted in lack of soil ruting and minimal soil mixing. For both soil types under cultivation, construction increased soluble salt concentrations in the Ap horizons on the spoil side due to mixing of topsoil and spoil materials. There were few effects on the Ap horizon on the spoil side in pasture land, due to trench only topsoil stripping and easy spoil removal from a well-developed sod layer. Both the Ap and spoil from the trench in the Dark Brown Solonetz had increased salt concentrations, while there were few changes in the Dark Brown Chernozem. Mixing of topsoil and spoil material, and bringing salt-enriched material to the spoil surface are thought to be reponsible for the effects due to construction were reflected in the Ap horizon of the trench and spoil side by changes in pH, electrical conductivity, soluble salts and bulk density. Even with the increases in the soil properties monitored, the results indicated that regardless of soil type or land use, pipeline construction did not significantly affect the agricultural soil quality of the A and B horizons. 12 refs., 3 figs., 2 tabs.

  19. Quantum-corrected geometry of horizon vicinity

    Energy Technology Data Exchange (ETDEWEB)

    Park, I.Y. [Department of Applied Mathematics, Philander Smith College, Little Rock, AR (United States)

    2017-12-15

    We study the deformation of the horizon-vicinity geometry caused by quantum gravitational effects. Departure from the semi-classical picture is noted, and the fact that the matter part of the action comes at a higher order in Newton's constant than does the Einstein-Hilbert term is crucial for the departure. The analysis leads to a Firewall-type energy measured by an infalling observer for which quantum generation of the cosmological constant is critical. The analysis seems to suggest that the Firewall should be a part of such deformation and that the information be stored both in the horizon-vicinity and asymptotic boundary region. We also examine the behavior near the cosmological horizon. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Quantum-corrected geometry of horizon vicinity

    International Nuclear Information System (INIS)

    Park, I.Y.

    2017-01-01

    We study the deformation of the horizon-vicinity geometry caused by quantum gravitational effects. Departure from the semi-classical picture is noted, and the fact that the matter part of the action comes at a higher order in Newton's constant than does the Einstein-Hilbert term is crucial for the departure. The analysis leads to a Firewall-type energy measured by an infalling observer for which quantum generation of the cosmological constant is critical. The analysis seems to suggest that the Firewall should be a part of such deformation and that the information be stored both in the horizon-vicinity and asymptotic boundary region. We also examine the behavior near the cosmological horizon. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. QFT holography near the horizon of Schwarzschild-like spacetimes

    OpenAIRE

    Moretti, Valter; Pinamonti, Nicola

    2003-01-01

    It is argued that free QFT can be defined on the event horizon of a Schwarzschild-like spacetime and that this theory is unitarily and algebraically equivalent to QFT in the bulk (near the horizon). Under that unitary equivalence the bulk hidden SL(2,R) symmetry found in a previous work becomes manifest on the event horizon, it being induced by a group of horizon diffeomorphisms. The class of generators of that group can be enlarged to include a full Virasoro algebra of fields which are defin...

  2. Asymptotic symmetries of Rindler space at the horizon and null infinity

    International Nuclear Information System (INIS)

    Chung, Hyeyoun

    2010-01-01

    We investigate the asymptotic symmetries of Rindler space at null infinity and at the event horizon using both systematic and ad hoc methods. We find that the approaches that yield infinite-dimensional asymptotic symmetry algebras in the case of anti-de Sitter and flat spaces only give a finite-dimensional algebra for Rindler space at null infinity. We calculate the charges corresponding to these symmetries and confirm that they are finite, conserved, and integrable, and that the algebra of charges gives a representation of the asymptotic symmetry algebra. We also use relaxed boundary conditions to find infinite-dimensional asymptotic symmetry algebras for Rindler space at null infinity and at the event horizon. We compute the charges corresponding to these symmetries and confirm that they are finite and integrable. We also determine sufficient conditions for the charges to be conserved on-shell, and for the charge algebra to give a representation of the asymptotic symmetry algebra. In all cases, we find that the central extension of the charge algebra is trivial.

  3. Hydrological classification of orthic A horizons in Weatherley, South ...

    African Journals Online (AJOL)

    Orthic A horizons carry little interpretive, especially hydrological, value. This paper aims to elucidate the hydrological interpretation of orthic A horizons. Measured water contents in the orthic A horizons of 28 profiles in the Weatherley catchment of South Africa were used to classify the topsoils into wetness classes. The very ...

  4. Models for moisture estimation in different horizons of yellow argisol using TDR

    Directory of Open Access Journals (Sweden)

    Karla Silva Santos Alvares de Almeida

    2017-08-01

    Full Text Available The determination of soil moisture is very important because it is the property with the most influence on the dielectric constant of the medium. Time-domain reflectometry (TDR is an indirect technique used to estimate the water content of the soil (? based on its dielectric constant (Ka. Like any other technique, it has advantages and disadvantages. Among the major disadvantages is the need for calibration, which requires consideration of the soil characteristics. This study aimed to perform the calibration of a TDR100 device to estimate the volumetric water content of four horizons of a Yellow Argisol. Calibration was performed under laboratory conditions using disturbed soil samples contained in PVC columns. The three rods of the handcrafted probes were vertically installed in the soil columns. Weight measurements with digital scales and daily readings of the dielectric constant with the TDR device were taken. For all soil horizons evaluated, the best fits between the dielectric constant and the volumetric water content were related to the cubic polynomial model. The Ledieu model overestimated by approximately 68 % the volumetric water content in the A and AB horizons, and underestimating by 69 % in Bt2, in relation to volumetric water content obtained by gravimetry. The underestimation by linear, Topp, Roth, and Malicki models ranged from 50 % to 85 % for all horizons.

  5. Competition, Time Horizon and Corporate Social Performance

    NARCIS (Netherlands)

    Graafland, J.J.; Smid, H.

    2013-01-01

    Abstract: This paper develops and tests a conceptual framework on the relationships between competition, time horizon and corporate social performance (CSP). We hypothesize that more intense competition discourages CSP by lowering the time horizon of companies. We test the hypothesis on a sample of

  6. Maximal indecomposable past sets and event horizons

    International Nuclear Information System (INIS)

    Krolak, A.

    1984-01-01

    The existence of maximal indecomposable past sets MIPs is demonstrated using the Kuratowski-Zorn lemma. A criterion for the existence of an absolute event horizon in space-time is given in terms of MIPs and a relation to black hole event horizon is shown. (author)

  7. Cosmological horizons as new examples of the membrane paradigm

    International Nuclear Information System (INIS)

    Wang, Tower

    2015-01-01

    In this paper we aim to provide new examples of the application and the generality of the membrane paradigm. The membrane paradigm is a formalism for studying the event horizon of black holes. After analyzing it with some technical details and realizing it in the Reissner–Nordström black hole, we apply the paradigm to cosmological horizons, first to the pure de Sitter horizon, and then to the trapping horizon of the Friedmann–Lemaître–Robertson–Walker Universe. In the latter case, the cosmological stretched horizon is oblique, thus the running of the renormalization parameter is nonzero in the timelike direction and gives a correction to the membrane pressure. In this paradigm, the cosmological equations come from continuity equations of the membrane fluid and the bulk fluid respectively. (paper)

  8. The absence of horizon in black-hole formation

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Pei-Ming, E-mail: pmho@phys.ntu.edu.tw

    2016-08-15

    With the back-reaction of Hawking radiation taken into consideration, the work of Kawai, Matsuo and Yokokura [1] has shown that, under a few assumptions, the collapse of matter does not lead to event horizon nor apparent horizon. In this paper, we relax their assumptions and elaborate on the space-time geometry of a generic collapsing body with spherical symmetry. The geometry outside the collapsing sphere is found to be approximated by the geometry outside the white-hole horizon, hence the collapsing matter remains outside the Schwarzschild radius. As particles in Hawking radiation are created in the vicinity of the collapsing matter, the information loss paradox is alleviated. Assuming that the collapsing body evaporates within finite time, there is no event horizon.

  9. The absence of horizon in black-hole formation

    Directory of Open Access Journals (Sweden)

    Pei-Ming Ho

    2016-08-01

    Full Text Available With the back-reaction of Hawking radiation taken into consideration, the work of Kawai, Matsuo and Yokokura [1] has shown that, under a few assumptions, the collapse of matter does not lead to event horizon nor apparent horizon. In this paper, we relax their assumptions and elaborate on the space-time geometry of a generic collapsing body with spherical symmetry. The geometry outside the collapsing sphere is found to be approximated by the geometry outside the white-hole horizon, hence the collapsing matter remains outside the Schwarzschild radius. As particles in Hawking radiation are created in the vicinity of the collapsing matter, the information loss paradox is alleviated. Assuming that the collapsing body evaporates within finite time, there is no event horizon.

  10. The absence of horizon in black-hole formation

    International Nuclear Information System (INIS)

    Ho, Pei-Ming

    2016-01-01

    With the back-reaction of Hawking radiation taken into consideration, the work of Kawai, Matsuo and Yokokura [1] has shown that, under a few assumptions, the collapse of matter does not lead to event horizon nor apparent horizon. In this paper, we relax their assumptions and elaborate on the space-time geometry of a generic collapsing body with spherical symmetry. The geometry outside the collapsing sphere is found to be approximated by the geometry outside the white-hole horizon, hence the collapsing matter remains outside the Schwarzschild radius. As particles in Hawking radiation are created in the vicinity of the collapsing matter, the information loss paradox is alleviated. Assuming that the collapsing body evaporates within finite time, there is no event horizon.

  11. Beyond the veil: Inner horizon instability and holography

    International Nuclear Information System (INIS)

    Balasubramanian, Vijay; Levi, Thomas S.

    2004-01-01

    We show that scalar perturbations of the eternal, rotating Banados-Teitelboim-Zanelli (BTZ) black hole should lead to an instability of the inner (Cauchy) horizon, preserving strong cosmic censorship. Because of backscattering from the geometry, plane-wave modes have a divergent stress tensor at the event horizon, but suitable wave packets avoid this difficulty, and are dominated at late times by quasinormal behavior. The wave packets have cuts in the complexified coordinate plane that are controlled by requirements of continuity, single-valuedness, and positive energy. Due to a focusing effect, regular wave packets nevertheless have a divergent stress energy at the inner horizon, signaling an instability. We propose that this instability, which is localized behind the event horizon, is detected holographically as a breakdown in the semiclassical computation of dual conformal field theory (CFT) expectation values in which the analytic behavior of wave packets in the complexified coordinate plane plays an integral role. In the dual field theory, this is interpreted as an encoding of physics behind the horizon in the entanglement between otherwise independent CFTs

  12. Signature for the absence of an event horizon

    International Nuclear Information System (INIS)

    Barbieri, James; Chapline, George

    2012-01-01

    One of the most celebrated predictions of general relativity is that compact astrophysical objects with masses greater than a few solar masses are surrounded by an event horizon where time stands still and communication from the interior to the exterior is cutoff. Despite profound theoretical reasons for doubting whether an event horizon is physically possible, no definitive test as to whether event horizons really exist has yet been proposed. In this Letter we propose an experimental signature for the non-existence of event horizons. In particular we point out that a sharp dip in the spectrum of π 0 decay gamma rays below 70 MeV coming from compact objects with masses exceeding a few solar masses would be definitive evidence that these objects have a physical surface and there is no event horizon. Observation of such gamma rays would also for the first time open an experimental window on physical processes at energies near to the Planck scale. The prospects for seeing the 70 MeV feature in the near future are briefly discussed.

  13. Hawking radiation of an apparent horizon in a FRW universe

    International Nuclear Information System (INIS)

    Cai Ronggen; Cao Liming; Hu Yapeng

    2009-01-01

    Hawking radiation is an important quantum phenomenon of a black hole, which is closely related to the existence of an event horizon of a black hole. The cosmological event horizon of de Sitter space is also of Hawking radiation with a thermal spectrum. By use of the tunneling approach, we show that there is indeed a Hawking radiation with temperature, T=1/(2πr-tilde A , for a locally defined apparent horizon of a Friedmann-Robertson-Walker universe with any spatial curvature, where r-tilde A is the apparent horizon radius. Thus we fill in the gap existing in the literature investigating the relation between the first law of thermodynamics and Friedmann equations; there the apparent horizon is assumed to have such a temperature without any proof. In addition, we stress the implication of the Hawking temperature associated with the apparent horizon.

  14. Black hole entropy, universality, and horizon constraints

    International Nuclear Information System (INIS)

    Carlip, Steven

    2006-01-01

    To ask a question about a black hole in quantum gravity, one must restrict initial or boundary data to ensure that a black hole is actually present. For two-dimensional dilaton gravity, and probably a much wider class of theories, I show that the imposition of a 'stretched horizon' constraint modifies the algebra of symmetries at the horizon, allowing the use of conformal field theory techniques to determine the asymptotic density of states. The result reproduces the Bekenstein-Hawking entropy without any need for detailed assumptions about the microscopic theory. Horizon symmetries may thus offer an answer to the problem of universality of black hole entropy

  15. Black hole entropy, universality, and horizon constraints

    Energy Technology Data Exchange (ETDEWEB)

    Carlip, Steven [Department of Physics, University of California, Davis, CA 95616 (United States)

    2006-03-01

    To ask a question about a black hole in quantum gravity, one must restrict initial or boundary data to ensure that a black hole is actually present. For two-dimensional dilaton gravity, and probably a much wider class of theories, I show that the imposition of a 'stretched horizon' constraint modifies the algebra of symmetries at the horizon, allowing the use of conformal field theory techniques to determine the asymptotic density of states. The result reproduces the Bekenstein-Hawking entropy without any need for detailed assumptions about the microscopic theory. Horizon symmetries may thus offer an answer to the problem of universality of black hole entropy.

  16. Preferential Flow Paths Allow Deposition of Mobile Organic Carbon Deep into Soil B Horizons

    Science.gov (United States)

    Marin-Spiotta, E.; Chadwick, O.; Kramer, M. G.

    2009-12-01

    Most of our understanding of soil carbon (C) dynamics derives from the top 10 to 20 cm, although globally the majority of the bulk soil C pool is found below those depths. Mineral associated C in deep soil is more stable than that held in surface horizons, and its long-term persistence may contribute to sequestration of anthropogenic C. Carbon can enter deep soil horizons in multiple ways: through biologically-mediated or abiotic physical mixing, illuviation, root inputs, or through a physical disturbance that would cause the burial of an originally shallow organic horizon. In this study, we investigated the role of dissolved organic matter (DOM) in the transport and stabilization of soil C in tropical rainforest volcanic soils, where high rainfall, a highly productive forest, and dominance of highly reactive, non-crystalline minerals contribute to large soil C stocks at depth with long mean residence times. DOM plays an important role in many biological and chemical processes in soils, including nutrient transfer within and across ecosystems. Carbon storage in these soils is linked to movement of both DOC and particulate organic C along infiltration pathways. Climate and soil mineralogical properties create the right conditions for C to be pumped from the organic horizons where microbial activity is highest, to deep mineral horizons, where the potential for stabilization is greatest. High rainfall preserves hydrated short-range order minerals that are subject to strong shrinkage during occasional drought periods. The resulting cracks in subsurface B horizons become pathways for DOM complexed with Fe and Al moving in soil solution during subsequent wet periods. Preferential flow of these organically rich solutes and/or colloids moves C to depth where C, Fe and Al are preferentially deposited on near-vertical crack surfaces and along near-horizonal flow surfaces at horizon boundaries. Long-term deposition forms discontinuous Fe- and OM-cemented lamella that serve to

  17. The NMC Horizon Report: 2015 Museum Edition

    Science.gov (United States)

    Johnson, L.; Adams Becker, S.; Estrada, V.; Freeman, A.

    2015-01-01

    The internationally recognized series of "Horizon Reports" is part of the New Media Consortium's Horizon Project, a comprehensive research venture established in 2002 that identifies and describes emerging technologies likely to have a large impact over the coming years on a variety of sectors around the globe. This "2015 Horizon…

  18. Fermions tunneling from apparent horizon of FRW universe

    International Nuclear Information System (INIS)

    Li Ran; Ren Jirong; Shi Dunfu

    2009-01-01

    In the paper [R.-G. Cai, L.-M. Cao, Y.-P. Hu, (arXiv: 0809.1554)], the scalar particles' Hawking radiation from the apparent horizon of Friedmann-Robertson-Walker (FRW) universe was investigated by using the tunneling formalism. They obtained the Hawking temperature associated with the apparent horizon, which was extensively applied in investigating the relationship between the first law of thermodynamics and Friedmann equations. In this Letter, we calculate fermions' Hawking radiation from the apparent horizon of FRW universe via tunneling formalism. Applying WKB approximation to the general covariant Dirac equation in FRW spacetime background, the radiation spectrum and Hawking temperature of apparent horizon are correctly recovered, which supports the arguments presented in the paper [R.-G. Cai, L.-M. Cao, Y.-P. Hu, (arXiv: 0809.1554)

  19. Falling through the black hole horizon

    International Nuclear Information System (INIS)

    Brustein, Ram; Medved, A.J.M.

    2015-01-01

    We consider the fate of a small classical object, a “stick”, as it falls through the horizon of a large black hole (BH). Classically, the equivalence principle dictates that the stick is affected by small tidal forces, and Hawking’s quantum-mechanical model of BH evaporation makes essentially the same prediction. If, on the other hand, the BH horizon is surrounded by a “firewall”, the stick will be consumed as it falls through. We have recently extended Hawking’s model by taking into account the quantum fluctuations of the geometry and the classical back-reaction of the emitted particles. Here, we calculate the strain exerted on the falling stick for our model. The strain depends on the near-horizon state of the Hawking pairs. We find that, after the Page time when the state of the pairs deviates significantly from maximal entanglement (as required by unitarity), the induced strain in our semiclassical model is still parametrically small. This is because the number of the disentangled pairs is parametrically smaller than the BH entropy. A firewall does, however, appear if the number of disentangled pairs near the horizon is of order of the BH entropy, as implicitly assumed in previous discussions in the literature.

  20. Hamiltonian approach to 1 + 1 dimensional Yang-Mills theory in Coulomb gauge

    International Nuclear Information System (INIS)

    Reinhardt, H.; Schleifenbaum, W.

    2009-01-01

    We study the Hamiltonian approach to 1 + 1 dimensional Yang-Mills theory in Coulomb gauge, considering both the pure Coulomb gauge and the gauge where in addition the remaining constant gauge field is restricted to the Cartan algebra. We evaluate the corresponding Faddeev-Popov determinants, resolve Gauss' law and derive the Hamiltonians, which differ in both gauges due to additional zero modes of the Faddeev-Popov kernel in the pure Coulomb gauge. By Gauss' law the zero modes of the Faddeev-Popov kernel constrain the physical wave functionals to zero colour charge states. We solve the Schroedinger equation in the pure Coulomb gauge and determine the vacuum wave functional. The gluon and ghost propagators and the static colour Coulomb potential are calculated in the first Gribov region as well as in the fundamental modular region, and Gribov copy effects are studied. We explicitly demonstrate that the Dyson-Schwinger equations do not specify the Gribov region while the propagators and vertices do depend on the Gribov region chosen. In this sense, the Dyson-Schwinger equations alone do not provide the full non-abelian quantum gauge theory, but subsidiary conditions must be required. Implications of Gribov copy effects for lattice calculations of the infrared behaviour of gauge-fixed propagators are discussed. We compute the ghost-gluon vertex and provide a sensible truncation of Dyson-Schwinger equations. Approximations of the variational approach to the 3 + 1 dimensional theory are checked by comparison to the 1 + 1 dimensional case

  1. Deepwater Horizon Seafood Safety Response - Deepwater Horizon Oil Spill Seafood Safety Response

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the aftermath of the Deepwater Horizon oil spill in 2010, there was concern about the risk to human health through consumption of contaminated seafood from the...

  2. Membrane viewpoint on black holes: Dynamical electromagnetic fields near the horizon

    International Nuclear Information System (INIS)

    Macdonald, D.A.; Suen, W.

    1985-01-01

    This paper is part of a series of papers with the aim of developing a complete self-consistent formalism for the treatment of electromagnetic and gravitational fields in the neighborhood of a black-hole horizon. In this membrane formalism, the horizon is treated as a closed two-dimensional membrane lying in a curved three-dimensional space, and endowed with familiar physical properties such as entropy and temperature, surface pressure and viscosity, and electrical conductivity, charge, and current. This paper develops the concept of the ''stretched horizon,'' which will be vital for both the electromagnetic and gravitational aspects of the formalism, and it presents several model problems illustrating the interaction of dynamical electromagnetic fields with stationary black-hole horizons: The field of a test charge in various states of motion outside the Schwarzschild horizon is analyzed in the near-horizon limit, where the spatial curvature may be ignored and the metric may be approximated by that of Rindler. This analysis elucidates the influence of the horizon on the shapes and motions of electric and magnetic field lines when external agents move the field lines in arbitrary manners. It also illustrates how the field lines interact with the horizon's charge and current to produce an exchange of energy and momentum between the external agent and the horizon. A numerical calculation of the dynamical relaxation of a magnetic field threading a Schwarzschild black hole is also presented, illustrating the ''cleaning'' of a complicated field structure by a black-hole horizon, and elucidating the constraints on the location of the stretched horizon

  3. Subjective Life Horizon and Portfolio Choice

    OpenAIRE

    Spaenjers , Christophe; Spira, Sven Michael

    2013-01-01

    Using data from a U.S. household survey, we examine the empirical relation between subjective life horizon (i.e., the self-reported expectation of remaining life span) and portfolio choice. We find that equity portfolio shares are higher for investors with longer horizons, ceteris paribus, in line with theoretical predictions. This result is robust to controlling for optimism and health status, accounting for the endogeneity of equity market participation, or instrumenting subjective life hor...

  4. Null infinity and extremal horizons in AdS-CFT

    International Nuclear Information System (INIS)

    Hickling, Andrew; Wiseman, Toby; Lucietti, James

    2015-01-01

    We consider AdS gravity duals to CFT on background spacetimes with a null infinity. Null infinity on the conformal boundary may extend to an extremal horizon in the bulk. For example it does so for Poincaré–AdS, although does not for planar Schwarzschild–AdS. If null infinity does extend into an extremal horizon in the bulk, we show that the bulk near-horizon geometry is determined by the geometry of the boundary null infinity. Hence the ‘infra-red’ geometry of the bulk is fixed by the large scale behaviour of the CFT spacetime. In addition the boundary stress tensor must have a particular decay at null infinity. As an application, we argue that for CFT on asymptotically flat backgrounds, any static bulk dual containing an extremal horizon extending from the boundary null infinity, must have the near-horizon geometry of Poincaré–AdS. We also discuss a class of boundary null infinity that cannot extend to a bulk extremal horizon, although we give evidence that they can extend to an analogous null surface in the bulk which possesses an associated scale-invariant ‘near-geometry’. (paper)

  5. On the membrane paradigm and spontaneous breaking of horizon BMS symmetries

    International Nuclear Information System (INIS)

    Eling, Christopher; Oz, Yaron

    2016-01-01

    We consider a BMS-type symmetry action on isolated horizons in asymptotically flat spacetimes. From the viewpoint of the non-relativistic field theory on a horizon membrane, supertranslations shift the field theory spatial momentum. The latter is related by a Ward identity to the particle number symmetry current and is spontaneously broken. The corresponding Goldstone boson shifts the horizon angular momentum and can be detected quantum mechanically. Similarly, area preserving superrotations are spontaneously broken on the horizon membrane and we identify the corresponding gapless modes. In asymptotically AdS spacetimes we study the BMS-type symmetry action on the horizon in a holographic superfluid dual. We identify the horizon supertranslation Goldstone boson as the holographic superfluid Goldstone mode.

  6. Wider horizons, wiser choices: horizon scanning for public health protection and improvement.

    Science.gov (United States)

    Urquhart, Graham J; Saunders, Patrick

    2017-06-01

    Systematic continuous thinking about the future helps organizations, professions and communities to both prepare for, and shape, the future. This becomes ever more critical given the accelerating rate at which new data emerge, and in some cases uncertainties around their reliability and interpretation. Businesses with the capability to filter and analyse vast volumes of data to create knowledge and insights requiring action have a competitive advantage. Similarly Government and the public sector, including public health can be more effective and efficient through the early identification of emerging issues (both threats and opportunities). Horizon scanning approaches, and the use of resulting intelligence related to health protection and improvement were reviewed. Public health horizon scanning systems have to date focussed on health technologies and infectious diseases. While these have been successful there is a major gap in terms of non-infectious hazards and health improvement. Any system to meet this need must recognize the changed environment for delivering front line public health services and the critical role of local authorities and the local democratic process. This presents opportunities and challenges and this paper explores those dynamics describing an existing environment and health horizon scanning system which could readily and rapidly be re-engineered to provide a national service. © The Author 2016. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Universality of P−V criticality in horizon thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Devin; Kubizňák, David [Perimeter Institute,31 Caroline St. N., Waterloo, Ontario, N2L 2Y5 (Canada); Department of Physics and Astronomy, University of Waterloo,Waterloo, Ontario, N2L 3G1 (Canada); Mann, Robert B. [Department of Physics and Astronomy, University of Waterloo,Waterloo, Ontario, N2L 3G1 (Canada)

    2017-01-11

    We study P−V criticality of black holes in Lovelock gravities in the context of horizon thermodynamics. The corresponding first law of horizon thermodynamics emerges as one of the Einstein-Lovelock equations and assumes the universal (independent of matter content) form δE=TδS−PδV, where P is identified with the total pressure of all matter in the spacetime (including a cosmological constant Λ if present). We compare this approach to recent advances in extended phase space thermodynamics of asymptotically AdS black holes where the ‘standard’ first law of black hole thermodynamics is extended to include a pressure-volume term, where the pressure is entirely due to the (variable) cosmological constant. We show that both approaches are quite different in interpretation. Provided there is sufficient non-linearity in the gravitational sector, we find that horizon thermodynamics admits the same interesting black hole phase behaviour seen in the extended case, such as a Hawking-Page transition, Van der Waals like behaviour, and the presence of a triple point. We also formulate the Smarr formula in horizon thermodynamics and discuss the interpretation of the quantity E appearing in the horizon first law.

  8. Universality of P−V criticality in horizon thermodynamics

    International Nuclear Information System (INIS)

    Hansen, Devin; Kubizňák, David; Mann, Robert B.

    2017-01-01

    We study P−V criticality of black holes in Lovelock gravities in the context of horizon thermodynamics. The corresponding first law of horizon thermodynamics emerges as one of the Einstein-Lovelock equations and assumes the universal (independent of matter content) form δE=TδS−PδV, where P is identified with the total pressure of all matter in the spacetime (including a cosmological constant Λ if present). We compare this approach to recent advances in extended phase space thermodynamics of asymptotically AdS black holes where the ‘standard’ first law of black hole thermodynamics is extended to include a pressure-volume term, where the pressure is entirely due to the (variable) cosmological constant. We show that both approaches are quite different in interpretation. Provided there is sufficient non-linearity in the gravitational sector, we find that horizon thermodynamics admits the same interesting black hole phase behaviour seen in the extended case, such as a Hawking-Page transition, Van der Waals like behaviour, and the presence of a triple point. We also formulate the Smarr formula in horizon thermodynamics and discuss the interpretation of the quantity E appearing in the horizon first law.

  9. Horizon thermodynamics in fourth-order gravity

    Directory of Open Access Journals (Sweden)

    Meng-Sen Ma

    2017-03-01

    Full Text Available In the framework of horizon thermodynamics, the field equations of Einstein gravity and some other second-order gravities can be rewritten as the thermodynamic identity: dE=TdS−PdV. However, in order to construct the horizon thermodynamics in higher-order gravity, we have to simplify the field equations firstly. In this paper, we study the fourth-order gravity and convert it to second-order gravity via a so-called “Legendre transformation” at the cost of introducing two other fields besides the metric field. With this simplified theory, we implement the conventional procedure in the construction of the horizon thermodynamics in 3 and 4 dimensional spacetime. We find that the field equations in the fourth-order gravity can also be written as the thermodynamic identity. Moreover, we can use this approach to derive the same black hole mass as that by other methods.

  10. Thermal and nonthermal particle production without event horizons

    International Nuclear Information System (INIS)

    Sanchez, N.

    1979-01-01

    Usually, particle production in accelerated frames is discussed in connection with the presence of event horizons and with a planckian spectrum. Accelerated frames without event horizons, where particle production takes place with thermal as well as nonthermal distributions, are constructed. (Auth.)

  11. Hawking spectrum for a fiber-optical analog of the event horizon

    Science.gov (United States)

    Bermudez, David; Leonhardt, Ulf

    2016-05-01

    Hawking radiation has been regarded as a more general phenomenon than in gravitational physics, in particular in laboratory analogs of the event horizon. Here we consider the fiber-optical analog of the event horizon, where intense light pulses in fibers establish horizons for probe light. Then, we calculate the Hawking spectrum in an experimentally realizable system. We found that the Hawking radiation is peaked around group-velocity horizons in which the speed of the pulse matches the group velocity of the probe light. The radiation nearly vanishes at the phase horizon where the speed of the pulse matches the phase velocity of light.

  12. Computing the non-Markovian coarse-grained interactions derived from the Mori-Zwanzig formalism in molecular systems: Application to polymer melts

    Science.gov (United States)

    Li, Zhen; Lee, Hee Sun; Darve, Eric; Karniadakis, George Em

    2017-01-01

    Memory effects are often introduced during coarse-graining of a complex dynamical system. In particular, a generalized Langevin equation (GLE) for the coarse-grained (CG) system arises in the context of Mori-Zwanzig formalism. Upon a pairwise decomposition, GLE can be reformulated into its pairwise version, i.e., non-Markovian dissipative particle dynamics (DPD). GLE models the dynamics of a single coarse particle, while DPD considers the dynamics of many interacting CG particles, with both CG systems governed by non-Markovian interactions. We compare two different methods for the practical implementation of the non-Markovian interactions in GLE and DPD systems. More specifically, a direct evaluation of the non-Markovian (NM) terms is performed in LE-NM and DPD-NM models, which requires the storage of historical information that significantly increases computational complexity. Alternatively, we use a few auxiliary variables in LE-AUX and DPD-AUX models to replace the non-Markovian dynamics with a Markovian dynamics in a higher dimensional space, leading to a much reduced memory footprint and computational cost. In our numerical benchmarks, the GLE and non-Markovian DPD models are constructed from molecular dynamics (MD) simulations of star-polymer melts. Results show that a Markovian dynamics with auxiliary variables successfully generates equivalent non-Markovian dynamics consistent with the reference MD system, while maintaining a tractable computational cost. Also, transient subdiffusion of the star-polymers observed in the MD system can be reproduced by the coarse-grained models. The non-interacting particle models, LE-NM/AUX, are computationally much cheaper than the interacting particle models, DPD-NM/AUX. However, the pairwise models with momentum conservation are more appropriate for correctly reproducing the long-time hydrodynamics characterised by an algebraic decay in the velocity autocorrelation function.

  13. On Long Memory Origins and Forecast Horizons

    DEFF Research Database (Denmark)

    Vera-Valdés, J. Eduardo

    Most long memory forecasting studies assume that the memory is generated by the fractional difference operator. We argue that the most cited theoretical arguments for the presence of long memory do not imply the fractional difference operator, and assess the performance of the autoregressive...... fractionally integrated moving average (ARFIMA) model when forecasting series with long memory generated by nonfractional processes. We find that high-order autoregressive (AR) models produce similar or superior forecast performance than ARFIMA models at short horizons. Nonetheless, as the forecast horizon...... increases, the ARFIMA models tend to dominate in forecast performance. Hence, ARFIMA models are well suited for forecasts of long memory processes regardless of the long memory generating mechanism, particularly for medium and long forecast horizons. Additionally, we analyse the forecasting performance...

  14. Deepwater Horizon - Baseline Dataset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2010, the Deepwater Horizon oil spill occurred in the Gulf of Mexico and the Natural Resources Damage Assessment (NRDA) was initiated to determine the extent of...

  15. The two event horizons - an apparent contribution of vacuum to gravitation

    International Nuclear Information System (INIS)

    Dinculescu, A.

    1994-01-01

    Our possibilities of investigation are limited by two horizons: a local one - the black hole horizon R 0 , and the global one - the cosmic horizon R u . Till now, only the first horizon has been taken into consideration as a measure of the curvature of space near a massive body. It is argued that in order to satisfy Mach's principle when characterizing matter in a point relative to a center of mass, one has to take into consideration both event horizons. Accordingly, a local cosmological term Λ * =(R 0 R u ) -1 is defined as a combination of the above horizons in a given point. The corresponding non-dimensional coefficient ξ=Λ * R 2 is an indicator of the position of a mass point between the two event horizons. When taking into account as a contribution of vacuum energy to the gravitational field it restores the low of conservation of energy in an expanding universe, and explains the dynamics of galaxies and clusters of galaxies without resorting to the 'dark matter' hypothesis. (Author) 3 Tabs., 38 Refs

  16. Proposed cuts to Horizon 2020 are short-sighted

    CERN Multimedia

    2015-01-01

    When the latest incarnation of Europe’s framework programme for science funding, Horizon 2020, was announced, it was to great acclaim. Horizon 2020 builds on the already considerable success of its forerunners, which have made international research at the European level a reality and have contributed greatly to European competitiveness on the world stage.   We at CERN have benefited considerably, through projects that have enabled us to build on CERN’s core competencies to develop science at the grass-roots level across the continent. Horizon 2020 is more ambitious and more streamlined than its predecessors, and, funded at the level of €70 billion over seven years, it is potentially transformative. All of which makes the Commission’s plan to raid the Horizon 2020 budget to the tune of €2.7 billion rather incomprehensible. Keen to stimulate Europe’s economies, Commission President Jean-Claude Juncker has proposed a €21 billio...

  17. VMware Horizon View 6 desktop virtualization cookbook

    CERN Document Server

    Ventresco, Jason

    2014-01-01

    If you want a more detailed explanation concerning the implementation of several different core features of VMware Horizon View, this is the book for you. Whether you are new to VMware Horizon View or an existing user, this book will provide you with the knowledge you need to successfully deploy several core features and get introduced to the latest features of version 6.0 as well.

  18. Planning horizon affects prophylactic decision-making and epidemic dynamics.

    Science.gov (United States)

    Nardin, Luis G; Miller, Craig R; Ridenhour, Benjamin J; Krone, Stephen M; Joyce, Paul; Baumgaertner, Bert O

    2016-01-01

    The spread of infectious diseases can be impacted by human behavior, and behavioral decisions often depend implicitly on a planning horizon-the time in the future over which options are weighed. We investigate the effects of planning horizons on epidemic dynamics. We developed an epidemiological agent-based model (along with an ODE analog) to explore the decision-making of self-interested individuals on adopting prophylactic behavior. The decision-making process incorporates prophylaxis efficacy and disease prevalence with the individuals' payoffs and planning horizon. Our results show that for short and long planning horizons individuals do not consider engaging in prophylactic behavior. In contrast, individuals adopt prophylactic behavior when considering intermediate planning horizons. Such adoption, however, is not always monotonically associated with the prevalence of the disease, depending on the perceived protection efficacy and the disease parameters. Adoption of prophylactic behavior reduces the epidemic peak size while prolonging the epidemic and potentially generates secondary waves of infection. These effects can be made stronger by increasing the behavioral decision frequency or distorting an individual's perceived risk of infection.

  19. Entropy bound of horizons for accelerating, rotating and charged Plebanski–Demianski black hole

    International Nuclear Information System (INIS)

    Debnath, Ujjal

    2016-01-01

    We first review the accelerating, rotating and charged Plebanski–Demianski (PD) black hole, which includes the Kerr–Newman rotating black hole and the Taub-NUT spacetime. The main feature of this black hole is that it has 4 horizons like event horizon, Cauchy horizon and two accelerating horizons. In the non-extremal case, the surface area, entropy, surface gravity, temperature, angular velocity, Komar energy and irreducible mass on the event horizon and Cauchy horizon are presented for PD black hole. The entropy product, temperature product, Komar energy product and irreducible mass product have been found for event horizon and Cauchy horizon. Also their sums are found for both horizons. All these relations are dependent on the mass of the PD black hole and other parameters. So all the products are not universal for PD black hole. The entropy and area bounds for two horizons have been investigated. Also we found the Christodoulou–Ruffini mass for extremal PD black hole. Finally, using first law of thermodynamics, we also found the Smarr relation for PD black hole.

  20. Entropy bound of horizons for accelerating, rotating and charged Plebanski–Demianski black hole

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, Ujjal, E-mail: ujjaldebnath@yahoo.com

    2016-09-15

    We first review the accelerating, rotating and charged Plebanski–Demianski (PD) black hole, which includes the Kerr–Newman rotating black hole and the Taub-NUT spacetime. The main feature of this black hole is that it has 4 horizons like event horizon, Cauchy horizon and two accelerating horizons. In the non-extremal case, the surface area, entropy, surface gravity, temperature, angular velocity, Komar energy and irreducible mass on the event horizon and Cauchy horizon are presented for PD black hole. The entropy product, temperature product, Komar energy product and irreducible mass product have been found for event horizon and Cauchy horizon. Also their sums are found for both horizons. All these relations are dependent on the mass of the PD black hole and other parameters. So all the products are not universal for PD black hole. The entropy and area bounds for two horizons have been investigated. Also we found the Christodoulou–Ruffini mass for extremal PD black hole. Finally, using first law of thermodynamics, we also found the Smarr relation for PD black hole.

  1. Backward Stochastic H2/H∞ Control: Infinite Horizon Case

    Directory of Open Access Journals (Sweden)

    Zhen Wu

    2014-01-01

    Full Text Available The mixed H2/H∞ control problem is studied for systems governed by infinite horizon backward stochastic differential equations (BSDEs with exogenous disturbance signal. A necessary and sufficient condition for the existence of a unique solution to the H2/H∞ control problem is derived. The equivalent feedback solution is also discussed. Contrary to deterministic or stochastic forward case, the feedback solution is no longer feedback of the current state; rather, it is feedback of the entire history of the state.

  2. Conference Offers Girls Opportunity to Expand Career Horizons

    Science.gov (United States)

    Offers Girls Opportunity to Expand Career Horizons For more information contact: e:mail: Public Affairs Golden, Colo., Feb. 11, 1997 -- Expanding Your Horizons, a conference for girls grades 6 - 9 and Employed Women, Girls Incorporated of Metro Denver, King Soopers, McDonalds, the TCI Adult Program and the

  3. Gravitational pressure, apparent horizon and thermodynamics of FLRW universe in the teleparallel gravity

    Science.gov (United States)

    da Rocha-Neto, J. F.; Morais, B. R.

    2018-04-01

    In the context of the teleparallel equivalent of general relativity the concept of gravitational pressure and gravitational energy-momentum arisen in a natural way. In the case of a Friedmann-Lemaitre-Robertson-Walker space FLRW we obtain the total energy contained inside the apparent horizon and the radial pressure over the apparent horizon area. We use these definitions to written a thermodynamics relation TAdSA = dEA+PAdVA at the apparent horizon, where EA is the total energy inside the apparent horizon, VA is the areal volume of the apparent horizon, PA is the radial pressure over the apparent horizon area, SA is the entropy which can be assumed as one quarter of the apparent horizon area only for a non stationary apparent horizon. We identify TA as the temperature at the surface of the apparent horizon. We shown that for all expanding accelerated FLRW model of universe the radial pressure is positive.

  4. The Event Horizon of The Schwarzschild Black Hole in Noncommutative Spaces

    OpenAIRE

    Nasseri, Forough

    2005-01-01

    The event horizon of Schwarzschild black hole is obtained in noncommutative spaces up to the second order of perturbative calculations. Because this type of black hole is non-rotating, to the first order there is no any effect on the event horizon due to the noncommutativity of space. A lower limit for the noncommutativity parameter is also obtained. As a result, the event horizon in noncommutative spaces is less than the event horizon in commutative spaces.

  5. On crossing the Cauchy horizon of a Reissner-Nordstroem black-hole

    International Nuclear Information System (INIS)

    Chandrasekhar, S.; Hartle, J.B.

    1982-01-01

    The behaviour, on the Cauchy horizon, of a flux of gravitational and/or electromagnetic radiation crossing the event horizon of a Reissner-Nordstroem black-hole is investigated as a problem in the theory of one-dimensional potential-scattering. It is shown that the flux of radiation received by an observer crossing the Cauchy horizon, along a radial time-like geodesic, diverges for all physically perturbations crossing the event horizon, even including those with compact support. (author)

  6. British Petroleum's Deepwater Horizon Accident and the Thinking, Engaged Workforce - 13265

    International Nuclear Information System (INIS)

    Rigot, William L.

    2013-01-01

    On April 20, 2010, hydrocarbons escaped from the Macondo well into Transocean's Deepwater Horizon, resulting in fire and multiple explosions. 11 people on the rig died. The billion dollar Deepwater Horizon sank. 4.9 M gallons of product flowed from the well for 87 days creating an environmental nightmare for communities bordering on the Gulf of Mexico. BP established a $20 B reserve to pay for damages. Investigations and legal culpability continue to this day. In September 2010, the Institute for Nuclear Power Operators (INPO) issued Significant Operating Experience Report (SOER) 10-2, Engaged, Thinking Organizations. The industry had experienced 11 events, 9 in US commercial nuclear utilities, and 2 international, that had disturbing trends. The underlying causes highlighted by INPO were inadequate recognition of risk, weaknesses in application of significant operating experience, tolerance of equipment and personnel problems, and a significant drift in standards. While the noted INPO problems and the Deepwater Horizon event appear to have nothing in common, they do exhibit similarities in a drift away from expected behavior on the part of front line workers and their supervisors. At the same time, hidden hazards are accumulating in the environment leading to error intolerant conditions. Without a good understanding of this concept, many organizations tend to focus on the person who 'touched it last', while missing the deeper organizational factors that led that individual to think that what they were doing was correct. An understanding of this failure model is important in reconstruction of events and crafting effective corrective actions. It is much more important, however, for leaders in high hazard industries to recognize when they are approaching error intolerant conditions and take steps immediately to add safety margin. (authors)

  7. Euclidean scalar Green's functions near the black hole and black brane horizons

    International Nuclear Information System (INIS)

    Haba, Z

    2009-01-01

    We discuss approximations of the Riemannian geometry near the horizon. If a (D + 1)-dimensional manifold N has a bifurcate Killing horizon then we approximate N by a product of the two-dimensional Rindler space R 2 and a (D - 1)-dimensional Riemannian manifold M. We obtain approximate formulae for scalar Green's functions. We study the behavior of the Green's functions near the horizon and their dimensional reduction. We show that if M is compact then the Green's function near the horizon can be approximated by the Green's function of the two-dimensional quantum field theory. The correction term is exponentially small away from the horizon. We extend the results to black brane solutions of supergravity in 10 and 11 dimensions. The near-horizon geometry can be approximated by N=AdS p xS q . We discuss the Euclidean Green's functions on N and their behavior near the horizon.

  8. The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in interior alaska

    Science.gov (United States)

    O'Donnell, J. A.; Romanovsky, V.E.; Harden, J.W.; McGuire, A.D.

    2009-01-01

    Organic soil horizons function as important controls on the thermal state of near-surface soil and permafrost in high-latitude ecosystems. The thermal conductivity of organic horizons is typically lower than mineral soils and is closely linked to moisture content, bulk density, and water phase. In this study, we examined the relationship between thermal conductivity and soil moisture for different moss and organic horizon types in black spruce ecosystems of interior Alaska. We sampled organic horizons from feather moss-dominated and Sphagnum-dominated stands and divided horizons into live moss and fibrous and amorphous organic matter. Thermal conductivity measurements were made across a range of moisture contents using the transient line heat source method. Our findings indicate a strong positive and linear relationship between thawed thermal conductivity (Kt) and volumetric water content. We observed similar regression parameters (?? or slope) across moss types and organic horizons types and small differences in ??0 (y intercept) across organic horizon types. Live Sphagnum spp. had a higher range of Kt than did live feather moss because of the field capacity (laboratory based) of live Sphagnum spp. In northern regions, the thermal properties of organic soil horizons play a critical role in mediating the effects of climate warming on permafrost conditions. Findings from this study could improve model parameterization of thermal properties in organic horizons and enhance our understanding of future permafrost and ecosystem dynamics. ?? 2009 by Lippincott Williams & Wilkins, Inc.

  9. Measuring Item Fill-Rate Performance in a Finite Horizon

    OpenAIRE

    Douglas J. Thomas

    2005-01-01

    The standard treatment of fill rate relies on stationary and serially independent demand over an infinite horizon. Even if demand is stationary, managers are held accountable for performance over a finite horizon. In a finite horizon, the fill rate is a random variable. Studying the distribution is relevant because a vendor may be subject to financial penalty if she fails to achieve her target fill rate over a specified finite period. It is known that for a zero lead time, base-stock model, t...

  10. Structure of diagnostics horizons and humus classification

    Directory of Open Access Journals (Sweden)

    Zanella A

    2008-03-01

    Full Text Available The classification of the main humus forms is generally based on the morpho-genetic characters of the A and OH diagnostic horizons. This is the case in the new European key of classification presented in Freiburg on September 2004 (Eurosoil Congress. Among the morpho-genetic characters, the soil structure covers a very important role. In this work, the structure of the diagnostic A and OH horizons has been analysed in terms of aggregation force, diameter and composition of the soil lumps (peds. In order to study the aggregation force, two disaggregating tools have been conceived and used. The diameter of the lumps has been measured by sieving the soil samples with standardised webs. Observing the samples thanks to a binocular magnifying 10X and 50X, the organic or/and mineral composition of the soil aggregates has been determined, data being investigated with ANOVA and Factorial Analysis. The article examines the argument from two points of view: crashing tools for estimating the soil structure (part 1 and the dimensions of the peds given in European key of humus forms classification (part 2. The categories of soil peds diameter and composition seem to be linked to the main humus forms. For instance, aggregates having a diamater larger than 1 mm and well amalgamate organo-mineral composition are more present in the A horizons of the Mull forms than in which of the other forms; contrary to the OH horizon of the Moder or Mor, the OH horizon of the Amphi forms shows an important percent of small organic lumps. Some propositions have been given in order to improve the European key of humus forms classification.

  11. Horizon Scanning for Pharmaceuticals

    DEFF Research Database (Denmark)

    Lepage-Nefkens, Isabelle; Douw, Karla; Mantjes, GertJan

    for a joint horizon scanning system (HSS).  We propose to create a central “horizon scanning unit” to perform the joint HS activities (a newly established unit, an existing HS unit, or a third party commissioned and financed by the collaborating countries). The unit will be responsible for the identification...... and filtration of new and emerging pharmaceutical products. It will maintain and update the HS database, organise company pipeline meetings, and disseminate the HSS’s outputs.  The HS unit works closely together with the designated national HS experts in each collaborating country. The national HS experts...... will collect country-specific information, liaise between the central HS unit and country-specific clinical and other experts, coordinate the national prioritization process (to select products for early assessment), and communicate the output of the HSS to national decision makers.  The outputs of the joint...

  12. Near-horizon symmetries of extremal black holes

    International Nuclear Information System (INIS)

    Kunduri, Hari K; Lucietti, James; Reall, Harvey S

    2007-01-01

    Recent work has demonstrated an attractor mechanism for extremal rotating black holes subject to the assumption of a near-horizon SO(2, 1) symmetry. We prove the existence of this symmetry for any extremal black hole with the same number of rotational symmetries as known four- and five-dimensional solutions (including black rings). The result is valid for a general two-derivative theory of gravity coupled to Abelian vectors and uncharged scalars, allowing for a non-trivial scalar potential. We prove that it remains valid in the presence of higher-derivative corrections. We show that SO(2, 1)-symmetric near-horizon solutions can be analytically continued to give SU(2)-symmetric black hole solutions. For example, the near-horizon limit of an extremal 5D Myers-Perry black hole is related by analytic continuation to a non-extremal cohomogeneity-1 Myers-Perry solution

  13. Does the black hole shadow probe the event horizon geometry?

    Science.gov (United States)

    Cunha, Pedro V. P.; Herdeiro, Carlos A. R.; Rodriguez, Maria J.

    2018-04-01

    There is an exciting prospect of obtaining the shadow of astrophysical black holes (BHs) in the near future with the Event Horizon Telescope. As a matter of principle, this justifies asking how much one can learn about the BH horizon itself from such a measurement. Since the shadow is determined by a set of special photon orbits, rather than horizon properties, it is possible that different horizon geometries yield similar shadows. One may then ask how sensitive is the shadow to details of the horizon geometry? As a case study, we consider the double Schwarzschild BH and analyze the impact on the lensing and shadows of the conical singularity that holds the two BHs in equilibrium—herein taken to be a strut along the symmetry axis in between the two BHs. Whereas the conical singularity induces a discontinuity of the scattering angle of photons, clearly visible in the lensing patterns along the direction of the strut's location, it produces no observable effect on the shadows, whose edges remain everywhere smooth. The latter feature is illustrated by examples including both equal and unequal mass BHs. This smoothness contrasts with the intrinsic geometry of the (spatial sections of the) horizon of these BHs, which is not smooth, and provides a sharp example on how BH shadows are insensitive to some horizon geometry details. This observation, moreover, suggests that for the study of their shadows, this static double BH system may be an informative proxy for a dynamical binary.

  14. Curvature invariant characterization of event horizons of four-dimensional black holes conformal to stationary black holes

    Science.gov (United States)

    McNutt, David D.

    2017-11-01

    We introduce three approaches to generate curvature invariants that transform covariantly under a conformal transformation of a four-dimensional spacetime. For any black hole conformally related to a stationary black hole, we show how a set of conformally covariant invariants can be combined to produce a conformally covariant invariant that detects the event horizon of the conformally related black hole. As an application we consider the rotating dynamical black holes conformally related to the Kerr-Newman-Unti-Tamburino-(anti)-de Sitter spacetimes and construct an invariant that detects the conformal Killing horizon along with a second invariant that detects the conformal stationary limit surface. In addition, we present necessary conditions for a dynamical black hole to be conformally related to a stationary black hole and apply these conditions to the ingoing Kerr-Vaidya and Vaidya black hole solutions to determine if they are conformally related to stationary black holes for particular choices of the mass function. While two of the three approaches cannot be generalized to higher dimensions, we discuss the existence of a conformally covariant invariant that will detect the event horizon for any higher dimensional black hole conformally related to a stationary black hole which admits at least two conformally covariant invariants, including all vacuum spacetimes.

  15. Fractal markets: Liquidity and investors on different time horizons

    Science.gov (United States)

    Li, Da-Ye; Nishimura, Yusaku; Men, Ming

    2014-08-01

    In this paper, we propose a new agent-based model to study the source of liquidity and the “emergent” phenomenon in financial market with fractal structure. The model rests on fractal market hypothesis and agents with different time horizons of investments. What is interesting is that though the agent-based model reveals that the interaction between these heterogeneous agents affects the stability and liquidity of the financial market the real world market lacks detailed data to bring it to light since it is difficult to identify and distinguish the investors with different time horizons in the empirical approach. results show that in a relatively short period of time fractal market provides liquidity from investors with different horizons and the market gains stability when the market structure changes from uniformity to diversification. In the real world the fractal structure with the finite of horizons can only stabilize the market within limits. With the finite maximum horizons, the greater diversity of the investors and the fractal structure will not necessarily bring more stability to the market which might come with greater fluctuation in large time scale.

  16. Signalling, entanglement and quantum evolution beyond Cauchy horizons

    International Nuclear Information System (INIS)

    Yurtsever, Ulvi; Hockney, George

    2005-01-01

    Consider a bipartite entangled system, half of which falls through the event horizon of an evaporating black hole, while the other half remains coherently accessible to experiments in the exterior region. Beyond complete evaporation, the evolution of the quantum state past the Cauchy horizon cannot remain unitary, raising the questions: how can this evolution be described as a quantum map, and how is causality preserved? What are the possible effects of such non-standard quantum evolution maps on the behaviour of the entangled laboratory partner? More generally, the laws of quantum evolution under extreme conditions in remote regions (not just in evaporating black-hole interiors, but possibly near other naked singularities and regions of extreme spacetime structure) remain untested by observation, and might conceivably be non-unitary or even nonlinear, raising the same questions about the evolution of entangled states. The answers to these questions are subtle, and are linked in unexpected ways to the fundamental laws of quantum mechanics. We show that terrestrial experiments can be designed to probe and constrain exactly how the laws of quantum evolution might be altered, either by black-hole evaporation, or by other extreme processes in remote regions possibly governed by unknown physics

  17. A redefinition of Hawking temperature on the event horizon: Thermodynamical equilibrium

    International Nuclear Information System (INIS)

    Saha, Subhajit; Chakraborty, Subenoy

    2012-01-01

    In this Letter we have used the recently introduced redefined Hawking temperature on the event horizon and investigated whether the generalized second law of thermodynamics (GSLT) and thermodynamic equilibrium holds for both the event and the apparent horizons. Here we have considered FRW universe and examined the GSLT and thermodynamic equilibrium with three examples. Finally, we have concluded that from the thermodynamic viewpoint, the universe bounded by the event horizon is more realistic than that by the apparent horizon at least for some examples.

  18. On the topology of stationary black hole event horizons in higher dimensions

    International Nuclear Information System (INIS)

    Helfgott, Craig; Oz, Yaron; Yanay, Yariv

    2006-01-01

    In four dimensions the topology of the event horizon of an asymptotically flat stationary black hole is uniquely determined to be the two-sphere S 2 . We consider the topology of event horizons in higher dimensions. First, we reconsider Hawking's theorem and show that the integrated Ricci scalar curvature with respect to the induced metric on the event horizon is positive also in higher dimensions. Using this and Thurston's geometric types classification of three-manifolds, we find that the only possible geometric types of event horizons in five dimensions are S 3 and S 2 x S 1 . In six dimensions we use the requirement that the horizon is cobordant to a four-sphere (topological censorship), Friedman's classification of topological four-manifolds and Donaldson's results on smooth four-manifolds, and show that simply connected event horizons are homeomorphic to S 4 or S 2 x S 2 . We show that the non-simply connected event horizons S 3 x S 1 and S 2 x Σ g and event horizons with finite non-abelian first homotopy group whose universal cover is S 4 , are possible. Finally, we discuss the classification in dimensions higher than six

  19. Gravitational black hole hair from event horizon supertranslations

    Energy Technology Data Exchange (ETDEWEB)

    Averin, Artem [Arnold-Sommerfeld-Center for Theoretical Physics,Ludwig-Maximilians-Universität, 80333 München (Germany); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut,80805 München (Germany); Dvali, Gia [Arnold-Sommerfeld-Center for Theoretical Physics,Ludwig-Maximilians-Universität, 80333 München (Germany); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut,80805 München (Germany); Center for Cosmology and Particle Physics, Department of Physics, New York University,4 Washington Place, New York, NY 10003 (United States); Gomez, Cesar [Instituto de Física Teórica UAM-CSIC, C-XVI, Universidad Autónoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Lüst, Dieter [Arnold-Sommerfeld-Center for Theoretical Physics,Ludwig-Maximilians-Universität, 80333 München (Germany); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut,80805 München (Germany)

    2016-06-16

    We discuss BMS supertranslations both at null-infinity BMS{sup −} and on the horizon BMS{sup H} for the case of the Schwarzschild black hole. We show that both kinds of supertranslations lead to infinetly many gapless physical excitations. On this basis we construct a quotient algebra A≡BMS{sup H}/BMS{sup −} using suited superpositions of both kinds of transformations which cannot be compensated by an ordinary BMS-supertranslation and therefore are intrinsically due to the presence of an event horizon. We show that transformations in A are physical and generate gapless excitations on the horizon that can account for the gravitational hair as well as for the black hole entropy. We identify the physics of these modes as associated with Bogolioubov-Goldstone modes due to quantum criticality. Classically the number of these gapless modes is infinite. However, we show that due to quantum criticality the actual amount of information-carriers becomes finite and consistent with Bekenstein entropy. Although we only consider the case of Schwarzschild geometry, the arguments are extendable to arbitrary space-times containing event horizons.

  20. Gravitational black hole hair from event horizon supertranslations

    International Nuclear Information System (INIS)

    Averin, Artem; Dvali, Gia; Gomez, Cesar; Lüst, Dieter

    2016-01-01

    We discuss BMS supertranslations both at null-infinity BMS"− and on the horizon BMS"H for the case of the Schwarzschild black hole. We show that both kinds of supertranslations lead to infinetly many gapless physical excitations. On this basis we construct a quotient algebra A≡BMS"H/BMS"− using suited superpositions of both kinds of transformations which cannot be compensated by an ordinary BMS-supertranslation and therefore are intrinsically due to the presence of an event horizon. We show that transformations in A are physical and generate gapless excitations on the horizon that can account for the gravitational hair as well as for the black hole entropy. We identify the physics of these modes as associated with Bogolioubov-Goldstone modes due to quantum criticality. Classically the number of these gapless modes is infinite. However, we show that due to quantum criticality the actual amount of information-carriers becomes finite and consistent with Bekenstein entropy. Although we only consider the case of Schwarzschild geometry, the arguments are extendable to arbitrary space-times containing event horizons.

  1. Quantum correlations through event horizons: Fermionic versus bosonic entanglement

    International Nuclear Information System (INIS)

    Martin-Martinez, Eduardo; Leon, Juan

    2010-01-01

    We disclose the behavior of quantum and classical correlations among all the different spatial-temporal regions of a space-time with an event horizon, comparing fermionic with bosonic fields. We show the emergence of conservation laws for entanglement and classical correlations, pointing out the crucial role that statistics plays in the information exchange (and more specifically, the entanglement tradeoff) across horizons. The results obtained here could shed new light on the problem of information behavior in noninertial frames and in the presence of horizons, giving better insight into the black-hole information paradox.

  2. Is thermodynamics of the universe bounded by event horizon a Bekenstein system?

    International Nuclear Information System (INIS)

    Chakraborty, Subenoy

    2012-01-01

    In this brief communication, we have studied the validity of the first law of thermodynamics for the universe bounded by event horizon with two examples. The key point is the appropriate choice of the temperature on the event horizon. Finally, we have concluded that universe bounded by the event horizon may be a Bekenstein system and Einstein's equations and the first law of thermodynamics on the event horizons are equivalent.

  3. Is thermodynamics of the universe bounded by event horizon a Bekenstein system?

    OpenAIRE

    Chakraborty, Subenoy

    2012-01-01

    In this brief communication, we have studied the validity of the first law of thermodynamics for the universe bounded by event horizon with two examples. The key point is the appropriate choice of the temperature on the event horizon. Finally, we have concluded that universe bounded by the event horizon may be a Bekenstein system and the Einstein's equations and the first law of thermodynamics on the event horizons are equivalent.

  4. Lovelock black holes with maximally symmetric horizons

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Hideki; Willison, Steven; Ray, Sourya, E-mail: hideki@cecs.cl, E-mail: willison@cecs.cl, E-mail: ray@cecs.cl [Centro de Estudios CientIficos (CECs), Casilla 1469, Valdivia (Chile)

    2011-08-21

    We investigate some properties of n( {>=} 4)-dimensional spacetimes having symmetries corresponding to the isometries of an (n - 2)-dimensional maximally symmetric space in Lovelock gravity under the null or dominant energy condition. The well-posedness of the generalized Misner-Sharp quasi-local mass proposed in the past study is shown. Using this quasi-local mass, we clarify the basic properties of the dynamical black holes defined by a future outer trapping horizon under certain assumptions on the Lovelock coupling constants. The C{sup 2} vacuum solutions are classified into four types: (i) Schwarzschild-Tangherlini-type solution; (ii) Nariai-type solution; (iii) special degenerate vacuum solution; and (iv) exceptional vacuum solution. The conditions for the realization of the last two solutions are clarified. The Schwarzschild-Tangherlini-type solution is studied in detail. We prove the first law of black-hole thermodynamics and present the expressions for the heat capacity and the free energy.

  5. A global string with an event horizon

    International Nuclear Information System (INIS)

    Harari, D.; Polychronakos, A.P.

    1990-01-01

    An idealized infinite straight global string in flat space-time has a logarithmically divergent energy per unit length. With gravity included, the standard field theoretical model for a straight global string has been shown to give rise to a repulsive gravitational field, and to develop a curvature singularity at a finite proper distance off the string core. Here we point out that alternative (although probably unrealistic) equations of state for the core of the global string produce a non-singular cylindrically symmetric metric with an event horizon at a finite proper distance off the core, such that timelike observers beyond the horizon are bound to move away from the string. The same geometric structure applies to the standard field theoretical model for a vortex in (2+1)-dimensional gravity. Thermal effects in a quantum field theory around the string due to the presence of the horizon are also calculated. (orig.)

  6. Radiation from quantum weakly dynamical horizons in loop quantum gravity.

    Science.gov (United States)

    Pranzetti, Daniele

    2012-07-06

    We provide a statistical mechanical analysis of quantum horizons near equilibrium in the grand canonical ensemble. By matching the description of the nonequilibrium phase in terms of weakly dynamical horizons with a local statistical framework, we implement loop quantum gravity dynamics near the boundary. The resulting radiation process provides a quantum gravity description of the horizon evaporation. For large black holes, the spectrum we derive presents a discrete structure which could be potentially observable.

  7. Thermodynamics of the Apparent Horizon in FRW Universe with Massive Gravity

    International Nuclear Information System (INIS)

    Li Hui; Zhang Yi

    2013-01-01

    Applying Clausius relation with energy-supply defined by the unified first law of thermodynamics formalism to the apparent horizon of a massive gravity model in cosmology proposed lately, the corrected entropic formula of the apparent horizon is obtained with the help of the modified Friedmann equations. This entropy-area relation, together with the identified Misner-Sharp internal energy, verifies the first law of thermodynamics for the apparent horizon with a volume change term for consistency. On the other hand, by means of the corrected entropy-area formula and the Clausius relation δQ = T d S, where the heat Bow δQ is the energy-supply of pure matter projecting on the vector ξ tangent to the apparent horizon and should be looked on as the amount of energy crossing the apparent horizon during the time interval dt and the temperature of the apparent horizon for energy crossing during the same interval is 1/(2πr A ), the modified Friedmann equations governing the dynamical evolution of the universe are reproduced with the known energy density and pressure of massive graviton. The integration constant is found to correspond to a cosmological term which could be absorbed into the energy density of matter. Having established the correspondence of massive cosmology with the unified first law of thermodynamics on the apparent horizon, the validity of the generalized second law of thermodynamics is also discussed by assuming the thermal equilibrium between the apparent horizon and the matter field bounded by the apparent horizon. It is found that, in the limit H c → 0, which recovers the Minkowski reference metric solution in the fiat case, the generalized second law of thermodynamics holds if α 3 + 4α 4 3 = α 4 = 0, the generalized second law of thermodynamics could be violated. (general)

  8. Quantum statistical entropy corresponding to cosmic horizon in five-dimensional spacetime

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The generalized uncertainty relation is introduced to calculate the quantum statis-tical entropy corresponding to cosmic horizon. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is no divergent logarithmic term in the original brick-wall method. And it is obtained that the quantum statistical en-tropy corresponding to cosmic horizon is proportional to the area of the horizon. Further it is shown that the entropy corresponding to cosmic horizon is the entropy of quantum state on the surface of horizon. The black hole’s entropy is the intrinsic property of the black hole. The entropy is a quantum effect. In our calculation, by using the quantum statistical method, we obtain the partition function of Bose field and Fermi field on the background of five-dimensional spacetime. We provide a way to study the quantum statistical entropy corresponding to cosmic horizon in the higher-dimensional spacetime.

  9. Black-hole horizons in modified spacetime structures arising from canonical quantum gravity

    International Nuclear Information System (INIS)

    Bojowald, Martin; Paily, George M; Reyes, Juan D; Tibrewala, Rakesh

    2011-01-01

    Several properties of canonical quantum gravity modify spacetime structures, sometimes to the degree that no effective line elements exist to describe the geometry. An analysis of solutions, for instance in the context of black holes, then requires new insights. In this paper, standard definitions of horizons in spherical symmetry are first reformulated canonically, and then evaluated for solutions of equations and constraints modified by inverse-triad corrections of loop quantum gravity. When possible, a spacetime analysis is performed which reveals a mass threshold for black holes and small changes to Hawking radiation. For more general conclusions, canonical perturbation theory is developed to second order to include back-reaction from matter. The results shed light on the questions of whether renormalization of Newton's constant or other modifications of horizon conditions should be taken into account in computations of black-hole entropy in loop quantum gravity.

  10. Towards what Horizon is EU headed by 2020?

    Directory of Open Access Journals (Sweden)

    Maria Mirona Murea

    2013-12-01

    Full Text Available Horizon 2020, is a legislative package that succeeds the current FP7, with a proposed budget of EURO 70.9 billion and it has been seen as a response measure to the economic and financial crisis, by creatig the possibilities to invest in future jobs and growth, while addressing EU citizens about their safety, livelihoods and environment. Reliying on a three pillar structure, the funding model focuses on providing the participants similar funding rates according to the undertaken activities, while taking into consideration stakeholders’ preferences for reimbursement. Horizon 2020 is open to any project that is based on competitive initiatives; however, each country’s experience and economic development will influence its’ participation to the “Horizon 2020” funding program.

  11. Parametric Covariance Model for Horizon-Based Optical Navigation

    Science.gov (United States)

    Hikes, Jacob; Liounis, Andrew J.; Christian, John A.

    2016-01-01

    This Note presents an entirely parametric version of the covariance for horizon-based optical navigation measurements. The covariance can be written as a function of only the spacecraft position, two sensor design parameters, the illumination direction, the size of the observed planet, the size of the lit arc to be used, and the total number of observed horizon points. As a result, one may now more clearly understand the sensitivity of horizon-based optical navigation performance as a function of these key design parameters, which is insight that was obscured in previous (and nonparametric) versions of the covariance. Finally, the new parametric covariance is shown to agree with both the nonparametric analytic covariance and results from a Monte Carlo analysis.

  12. Nitrogen isotope ratios in surface and sub-surface soil horizons

    International Nuclear Information System (INIS)

    Rennie, D.A.; Paul, E.A.

    1975-01-01

    Nitrogen isotope analysis of surface soils and soil-derived nitrate for selected chernozemic and luvisolic soils showed mean delta 15 N values of 11.7 and 11.3, respectively. Isotope enrichment of the total N reached a maximum in the lower B horizon. Sub-soil parent material samples from the one deep profile included in the study indicated a delta 15 N value (NO 3 -N) of 1/3 that of the Ap horizon, at a depth of 180 cm. The delta 15 N of sub-surface soil horizons containing residual fertilizer N were low (-2.2) compared to the surface horizon (9.9). The data reported from this preliminary survey suggest that the natural variations in 15 N abundance between different soils and horizons of the same soil reflect the cumulative effects of soil genesis and soil management. More detailed knowledge and understanding of biological and other processes which control N isotope concentrations in these soils must be obtained before the data reported can be interpreted. (author)

  13. High-dimensional covariance forecasting for short intra-day horizons

    NARCIS (Netherlands)

    Oomen, R.C.A.

    2010-01-01

    Asset return covariances at intra-day horizons are known to tend towards zero due to market microstructure effects. Thus, traders who simply scale their daily covariance forecast to match their trading horizon are likely to over-estimate the actual experienced asset dependence. In this paper, some

  14. Genesis of petroduric and petrocalcic horizons in Latinamerica volcanic soils

    Science.gov (United States)

    Quantin, Paul

    2010-05-01

    Introduction. In Latinamerica, from Mexico to Chile, there are indurated volcanic soils horizons, named 'tepetate' in Mexico or cangahua in the Andes Mountains. Apart from original volcanic tuffs, these horizons were produced by pedogenesis: either through a former weathering of volcanic ash layers into fragic and later to petrocalcic horizons; or after a former soil formation through a second process of transformation from clayey volcanic soils to silicified petroduric horizons. This oral presentation will briefly deal with the formation of petroduric horizons in Mexico and petrocalcic horizon in Ecuador. Petroduric horizon genesis in Mexico. A soil climato-toposequence, near to Veracruz (Rossignol & Quantin, 1997), shows downwards an evolution from a ferralic Nitisol to a petroduric Durisol. A Durisol profile comports these successive horizons: at the top A and Eg, then columnar Btg-sim, laminar Bt-sim , prismatic Bsim, plinthite Cg, over andesite lava flow. Among its main features are especially recorded: clay mineralogy, microscopy and HRTEM. These data show: an increase in cristobalite at the expenses of 0.7 nm halloysite in Egsiltans, laminar Bt-sim, around or inside the columns or prisms of Btg-sim and Bsimhorizons. HRTEM (Elsass & al 2000) on ultra thin sections reveals an 'epigenesis' of clay sheets by amorphous silica, to form successively A-opal, Ct-opal and microcrystalline cristobalite. From these data and some groundwater chemical analyses, a scenario of duripan formation from a past clayey Nitisol is inferred: clay eluviation-illuviation process? alternate redoximorphy? clay degradation, Al leaching and Si accumulation, to form successively A-opal, Ct-opal and cristobalite. Petrocalcic horizon genesis in Ecuador. A soil climato-toposequence on pyroclastic flows, near to Bolivar in Ecuador (Quantin & Zebrowski, 1997), shows downwards the evolution from fragic-eutric-vitric Cambisols to petrocalcic-vitric Phaeozems, at the piedmont under semi

  15. Turnpike phenomenon and infinite horizon optimal control

    CERN Document Server

    Zaslavski, Alexander J

    2014-01-01

    This book is devoted to the study of the turnpike phenomenon and describes the existence of solutions for a large variety of infinite horizon optimal control classes of problems.  Chapter 1 provides introductory material on turnpike properties. Chapter 2 studies the turnpike phenomenon for discrete-time optimal control problems. The turnpike properties of autonomous problems with extended-value intergrands are studied in Chapter 3. Chapter 4 focuses on large classes of infinite horizon optimal control problems without convexity (concavity) assumptions. In Chapter 5, the turnpike results for a class of dynamic discrete-time two-player zero-sum game are proven. This thorough exposition will be very useful  for mathematicians working in the fields of optimal control, the calculus of variations, applied functional analysis, and infinite horizon optimization. It may also be used as a primary text in a graduate course in optimal control or as supplementary text for a variety of courses in other disciplines. Resea...

  16. Black hole and cosmos with multiple horizons and multiple singularities in vector-tensor theories

    Science.gov (United States)

    Gao, Changjun; Lu, Youjun; Yu, Shuang; Shen, You-Gen

    2018-05-01

    A stationary and spherically symmetric black hole (e.g., Reissner-Nordström black hole or Kerr-Newman black hole) has, at most, one singularity and two horizons. One horizon is the outer event horizon and the other is the inner Cauchy horizon. Can we construct static and spherically symmetric black hole solutions with N horizons and M singularities? The de Sitter cosmos has only one apparent horizon. Can we construct cosmos solutions with N horizons? In this article, we present the static and spherically symmetric black hole and cosmos solutions with N horizons and M singularities in the vector-tensor theories. Following these motivations, we also construct the black hole solutions with a firewall. The deviation of these black hole solutions from the usual ones can be potentially tested by future measurements of gravitational waves or the black hole continuum spectrum.

  17. Hair-brane ideas on the horizon

    International Nuclear Information System (INIS)

    Martinec, Emil J.; Niehoff, Ben E.

    2015-01-01

    We continue an examination of the microstate geometries program begun in arXiv:1409.6017, focussing on the role of branes that wrap the cycles which degenerate when a throat in the geometry deepens and a horizon forms. An associated quiver quantum mechanical model of minimally wrapped branes exhibits a non-negligible fraction of the gravitational entropy, which scales correctly as a function of the charges. The results suggest a picture of AdS_3/CFT_2 duality wherein the long string that accounts for BTZ black hole entropy in the CFT description, can also be seen to inhabit the horizon of BPS black holes on the gravity side.

  18. Hair-brane ideas on the horizon

    Energy Technology Data Exchange (ETDEWEB)

    Martinec, Emil J. [Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637-1433 (United States); Niehoff, Ben E. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge,Centre for Mathematical Sciences,Wilberforce Rd., Cambridge, CB3 0WA (United Kingdom)

    2015-11-27

    We continue an examination of the microstate geometries program begun in arXiv:1409.6017, focussing on the role of branes that wrap the cycles which degenerate when a throat in the geometry deepens and a horizon forms. An associated quiver quantum mechanical model of minimally wrapped branes exhibits a non-negligible fraction of the gravitational entropy, which scales correctly as a function of the charges. The results suggest a picture of AdS{sub 3}/CFT{sub 2} duality wherein the long string that accounts for BTZ black hole entropy in the CFT description, can also be seen to inhabit the horizon of BPS black holes on the gravity side.

  19. Eocene volcanism and the origin of horizon A

    Science.gov (United States)

    Gibson, T.G.; Towe, K.M.

    1971-01-01

    A series of closely time-equivalent deposits that correlate with seismic reflector horizon A exists along the coast of eastern North America. These sediments of Late-Early to Early-Middle Eocene age contain an authigenic mineral suite indicative of the alteration of volcanic glass. A volcanic origin for these siliceous deposits onshore is consistent with a volcanic origin for the cherts of horizon A offshore.

  20. Horizon thermodynamics and gravitational field equations in Horava-Lifshitz gravity

    International Nuclear Information System (INIS)

    Cai Ronggen; Ohta, Nobuyoshi

    2010-01-01

    We explore the relationship between the first law of thermodynamics and gravitational field equation at a static, spherically symmetric black hole horizon in Horava-Lifshitz theory with/without detailed balance. It turns out that as in the cases of Einstein gravity and Lovelock gravity, the gravitational field equation can be cast to a form of the first law of thermodynamics at the black hole horizon. This way we obtain the expressions for entropy and mass in terms of black hole horizon, consistent with those from other approaches. We also define a generalized Misner-Sharp energy for static, spherically symmetric spacetimes in Horava-Lifshitz theory. The generalized Misner-Sharp energy is conserved in the case without matter field, and its variation gives the first law of black hole thermodynamics at the black hole horizon.

  1. Robust Consumption-Investment Problem on Infinite Horizon

    Energy Technology Data Exchange (ETDEWEB)

    Zawisza, Dariusz, E-mail: dariusz.zawisza@im.uj.edu.pl [Jagiellonian University in Krakow, Institute of Mathematics, Faculty of Mathematics and Computer Science (Poland)

    2015-12-15

    In our paper we consider an infinite horizon consumption-investment problem under a model misspecification in a general stochastic factor model. We formulate the problem as a stochastic game and finally characterize the saddle point and the value function of that game using an ODE of semilinear type, for which we provide a proof of an existence and uniqueness theorem for its solution. Such equation is interested on its own right, since it generalizes many other equations arising in various infinite horizon optimization problems.

  2. Neighborhoods of Cauchy horizons in cosmological spacetimes with one killing field

    International Nuclear Information System (INIS)

    Moncrief, V.

    1982-01-01

    In this paper we show how to construct an infinite dimensional family of analytic, vacuum spacetimes which each have (i) T 3 x R topology, (ii) a smooth, compact Cauchy horizon, and (iii) a single Killing vector field which is spacelike in the globally hyperbolic region, null on the horizon and timelike in the (acausal) extension. The key idea is to use the horizons themselves as initial data surfaces and to prove the local existence of solutions using a version of the Cauchy-Kowalewski theorem. Factoring by the action of analytic, horizon preserving diffeomorphisms we define a ''space of extendible vacuum spacetimes'' of the given symmetry type and show (modulo certain smoothness estimates which we do not attempt to derive) that this space defines a Lagrangian submanifold of the usual phase space for Einstein's equations. We also study the linear perturbations of a class of the extendible spacetimes and show that the generic such perturbation blows up near the background solution's Cauchy horizon. This result, though limited by the linearity of the approximation, conforms to the usual picture of unstable Cauchy horizons demanded by the strong cosmic censorship conjecture

  3. Quantum horizon fluctuations of an evaporating black hole

    International Nuclear Information System (INIS)

    Roura, Albert

    2007-01-01

    The quantum fluctuations of a black hole spacetime are studied within a low-energy effective field theory approach to quantum gravity. Our approach accounts for both intrinsic metric fluctuations and those induced by matter fields interacting with the gravitational field. Here we will concentrate on spherically symmetric fluctuations of the black hole horizon. Our results suggest that for a sufficiently massive evaporating black hole, fluctuations can accumulate over time and become significant well before reaching Planckian scales. In addition, we provide the sketch of a proof that the symmetrized two-point function of the stress-tensor operator smeared over a null hypersurface is actually divergent and discuss the implications for the analysis of horizon fluctuations. Finally, a natural way to probe quantum metric fluctuations near the horizon is briefly described

  4. Thermodynamics of event horizons in (2+1)-dimensional gravity

    International Nuclear Information System (INIS)

    Reznik, B.

    1992-01-01

    Although gravity in 2+1 dimensions is very different in nature from gravity in 3+1 dimensions, it is shown that the laws of thermodynamics for event horizons can be manifested also for (2+1)-dimensional gravity. The validity of the classical laws of horizon mechanics is verified in general and exemplified for the (2+1)-dimensional analogues of Reissner-Nordstroem and Schwarzschild--de Sitter spacetimes. We find that the entropy is given by 1/4L, where L is the length of the horizon. A consequence of having consistent thermodynamics is that the second law fixes the sign of Newton's constant to be positive

  5. Stringy horizons II

    Energy Technology Data Exchange (ETDEWEB)

    Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem 91904 (Israel); Itzhaki, Nissan [Physics Department, Tel-Aviv University,Ramat-Aviv, 69978 (Israel); Kutasov, David [EFI and Department of Physics, University of Chicago,5640 S. Ellis Av., Chicago, IL 60637 (United States)

    2016-10-28

    We show that the spectrum of normalizable states on a Euclidean SL(2, R)/U(1) black hole exhibits a duality between oscillator states and wound strings. This duality generalizes the identification between a normalizable mode of dilaton gravity on the cigar and a mode of the tachyon with winding number one around the Euclidean time circle, which plays an important role in the FZZ correspondence. It implies that normalizable states on a large Euclidean black hole have support at widely separated scales. In particular, localized states that are extended over the cap of the cigar (the Euclidian analog of the black hole atmosphere) have a component that is localized near the tip of the cigar (the analog of the stretched horizon). As a consequence of this duality, the states exhibit a transition as a function of radial excitation level. From the perspective of a low energy probe, low lying states are naturally thought of as oscillator states in the black hole atmosphere, while at large excitation level they are naturally described as wound strings. As the excitation level increases, the size of the states first decreases and then increases. This behavior is expected to be a general feature of black hole horizons in string theory.

  6. Quantization of horizon entropy and the thermodynamics of spacetime

    International Nuclear Information System (INIS)

    Skakala, Jozef

    2014-01-01

    This is a review of my work published in the papers of Skakala (JHEP 1201:144, 2012; JHEP 1206:094, 2012) and Chirenti et al. (Phys. Rev. D 86:124008, 2012; Phys. Rev.D 87:044034, 2013). It offers a more detailed discussion of the results than the accounts in those papers, and it links my results to some conclusions recently reached by other authors. It also offers some new arguments supporting the conclusions in the cited articles. The fundamental idea of this work is that the semiclassical quantization of the black hole entropy, as suggested by Bekenstein (Phys. Rev. D 7:2333-2346, 1973), holds (at least) generically for the spacetime horizons. We support this conclusion by two separate arguments: (1) we generalize Bekenstein’s lower bound on the horizon area transition to a much wider class of horizons than only the black-hole horizon, and (2) we obtain the same entropy spectra via the asymptotic quasi-normal frequencies of some particular spherically symmetric multi horizon spacetimes (in the way proposed by Maggiore (Phys. Rev. Lett. 100:141301, 2008)). The main result of this paper supports the conclusions derived by Kothawalla et al. (Phys. Rev. D 78:104018, 2008) and Kwon and Nam (Class. Quant. Grav. 28:035007, 2011), on the basis of different arguments. (author)

  7. Properties of global monopoles with an event horizon

    OpenAIRE

    Tamaki, T; Sakai, N

    2004-01-01

    We investigate the properties of global monopoles with an event horizon. We find that there is an unstable circular orbit even if a particle does not have an angular momentum when the core mass is negative. We also obtain the asymptotic form of solutions when the event horizon is much larger than the core radius of the monopole, and discuss if they could be a model of galactic halos.

  8. Supertranslations and Superrotations at the Black Hole Horizon.

    Science.gov (United States)

    Donnay, Laura; Giribet, Gaston; González, Hernán A; Pino, Miguel

    2016-03-04

    We show that the asymptotic symmetries close to nonextremal black hole horizons are generated by an extension of supertranslations. This group is generated by a semidirect sum of Virasoro and Abelian currents. The charges associated with the asymptotic Killing symmetries satisfy the same algebra. When considering the special case of a stationary black hole, the zero mode charges correspond to the angular momentum and the entropy at the horizon.

  9. New Horizons Pluto Flyby Guest Operations

    Science.gov (United States)

    Simon, M.; Turney, D.; Fisher, S.; Carr, S. S.

    2015-12-01

    On July 14, 2015, after 9.5 years of cruise, NASA's New Horizons spacecraft flew past the Pluto system to gather first images humankind had ever seen on Pluto and its five moons. While much has been discovered about the Pluto system since New Horizons launch in 2006, the system has never been imaged at high resolution and anticipation of the "First Light" of the Pluto system had been anticipated by planetary enthusiasts for decades. The Johns Hopkins Applied Physics Laboratory (APL), which built and operates New Horizons, was the focal point for gathering three distinct groups: science and engineering team members; media and public affairs representatives; and invited public, including VIP's. Guest operations activities were focused on providing information primarily to the invited public and VIP's. High level objectives for the Guest Operations team was set to entertain and inform the general public, offer media reaction shots, and to deconflict activities for the guests from media activities wherever possible. Over 2000 people arrived at APL in the days surrounding closest approach for guest, science or media operations tracks. Reaction and coverage of the Guest Operations events was universally positive and global in impact: iconic pictures of the auditorium waving flags during the moment of closest approach were published in media outlets on every continent. Media relations activities ensured coverage in all key media publications targeted for release, such as the New York Times, Science, Le Monde, and Nature. Social and traditional media coverage of the events spanned the globe. Guest operations activities are designed to ensure that a guest has a memorable experience and leaves with a lifelong memory of the mission and their partnership in the activity. Results, lessons learned, and other data from the New Horizons guest operations activity will be presented and analyzed.

  10. Vacuum non-expanding horizons and shear-free null geodesic congruences

    International Nuclear Information System (INIS)

    Adamo, T M; Newman, E T

    2009-01-01

    We investigate the geometry of a particular class of null surfaces in spacetime called vacuum non-expanding horizons (NEHs). Using the spin-coefficient equation, we provide a complete description of the horizon geometry, as well as fixing a canonical choice of null tetrad and coordinates on a NEH. By looking for particular classes of null geodesic congruences which live exterior to NEHs but have the special property that their shear vanishes at the intersection with the horizon, a good cut formalism for NEHs is developed which closely mirrors asymptotic theory. In particular, we show that such null geodesic congruences are generated by arbitrary choice of a complex worldline in a complex four-dimensional space, each such choice induces a CR structure on the horizon, and a particular worldline (and hence CR structure) may be chosen by transforming to a privileged tetrad frame.

  11. Killing Horizons as Equipotential Hypersurfaces

    OpenAIRE

    Smolić, Ivica

    2012-01-01

    In this note we present a new proof that Killing horizons are equipotential hypersurfaces for the electric and the magnetic scalar potential, that makes no use of gravitational field equations or the assumption about the existence of bifurcation surface.

  12. Portfolio management under sudden changes in volatility and heterogeneous investment horizons

    Science.gov (United States)

    Fernandez, Viviana; Lucey, Brian M.

    2007-03-01

    We analyze the implications for portfolio management of accounting for conditional heteroskedasticity and sudden changes in volatility, based on a sample of weekly data of the Dow Jones Country Titans, the CBT-municipal bond, spot and futures prices of commodities for the period 1992-2005. To that end, we first proceed to utilize the ICSS algorithm to detect long-term volatility shifts, and incorporate that information into PGARCH models fitted to the returns series. At the next stage, we simulate returns series and compute a wavelet-based value at risk, which takes into consideration the investor's time horizon. We repeat the same procedure for artificial data generated from semi-parametric estimates of the distribution functions of returns, which account for fat tails. Our estimation results show that neglecting GARCH effects and volatility shifts may lead to an overestimation of financial risk at different time horizons. In addition, we conclude that investors benefit from holding commodities as their low or even negative correlation with stock and bond indices contribute to portfolio diversification.

  13. Killing horizons as equipotential hypersurfaces

    International Nuclear Information System (INIS)

    Smolić, Ivica

    2012-01-01

    In this note we present a new proof that Killing horizons are equipotential hypersurfaces for the electric and the magnetic scalar potential, which makes no use of gravitational field equations or the assumption about the existence of a bifurcation surface. (note)

  14. Isolated and Dynamical Horizons and Their Applications

    Directory of Open Access Journals (Sweden)

    Ashtekar Abhay

    2004-12-01

    Full Text Available Over the past three decades, black holes have played an important role in quantum gravity, mathematical physics, numerical relativity and gravitational wave phenomenology. However, conceptual settings and mathematical models used to discuss them have varied considerably from one area to another. Over the last five years a new, quasi-local framework was introduced to analyze diverse facets of black holes in a unified manner. In this framework, evolving black holes are modelled by dynamical horizons and black holes in equilibrium by isolated horizons. We review basic properties of these horizons and summarize applications to mathematical physics, numerical relativity, and quantum gravity. This paradigm has led to significant generalizations of several results in black hole physics. Specifically, it has introduced a more physical setting for black hole thermodynamics and for black hole entropy calculations in quantum gravity, suggested a phenomenological model for hairy black holes, provided novel techniques to extract physics from numerical simulations, and led to new laws governing the dynamics of black holes in exact general relativity.

  15. Earth, Meet Pluto: The New Horizons Education and Communications Partnership

    Science.gov (United States)

    Buckley, M.

    2015-12-01

    The unique partnership between the NASA New Horizons education/communications and public affairs programs tapped into the excitement of visiting an unexplored planet in a new region of the solar system - resulting in unprecedented public participation in and coverage of a planetary mission. With a range of hands-on learning experiences, Web materials and online , the program provided opportunities for students, educators, museums, science centers, the media, Web surfers and other members of the public to ride along on the first mission to Pluto and the Kuiper Belt. The programs leveraged resources, materials and expertise to address a wide range of traditional and nontraditional audiences while providing consistent messages and information on this historic NASA endeavor. The E/C program included a variety of formal lesson plans and learning materials — based on New Horizons science and engineering goals, and aligned with National Research Council's National Science Education Standards — that continue to help students in grades K-12 learn more about science, technology, engineering and mathematics. College students designed and built an actual flight instrument on New Horizons and held internships with the spacecraft integration and test team. New Horizons E/C programs went well beyond the classroom, from a chance for people to send their names to Pluto on board the New Horizons spacecraft before launch, to opportunities for the public to access milestone events and the first-ever close-up views of Pluto in places such as museums, science centers and libraries, TV and the Web — as well as thousands who attended interactive "Plutopalooza" road shows across the country. Teamed with E/C was the public affairs strategy to communicate New Horizons news and messages to media, mission stakeholders, the scientific community and the public. These messages include various aspects of New Horizons, including the progress of the mission and key milestones and achievements

  16. Over-the-horizon, connected home/office (OCHO): situation management of environmental, medical, and security conditions at remote premises via broadband wireless access

    Science.gov (United States)

    Hortos, William S.

    2010-04-01

    Broadband wireless access standards, together with advances in the development of commercial sensing and actuator devices, enable the feasibility of a consumer service for a multi-sensor system that monitors the conditions within a residence or office: the environment/infrastructure, patient-occupant health, and physical security. The proposed service is a broadband reimplementation and combination of existing services to allow on-demand reports on and management of the conditions by remote subscribers. The flow of on-demand reports to subscribers and to specialists contracted to mitigate out-of-tolerance conditions is the foreground process. Service subscribers for an over-the-horizon connected home/office (OCHO) monitoring system are the occupant of the premises and agencies, contracted by the service provider, to mitigate or resolve any observed out-of-tolerance condition(s) at the premises. Collectively, these parties are the foreground users of the OCHO system; the implemented wireless standards allow the foreground users to be mobile as they request situation reports on demand from the subsystems on remote conditions that comprise OCHO via wireless devices. An OCHO subscriber, i.e., a foreground user, may select the level of detail found in on-demand reports, i.e., the amount of information displayed in the report of monitored conditions at the premises. This is one context of system operations. While foreground reports are sent only periodically to subscribers, the information generated by the monitored conditions at the premises is continuous and is transferred to a background configuration of servers on which databases reside. These databases are each used, generally, in non-real time, for the assessment and management of situations defined by attributes like those being monitored in the foreground by OCHO. This is the second context of system operations. Context awareness and management of conditions at the premises by a second group of analysts and

  17. Tunneling from the past horizon

    Science.gov (United States)

    Kang, Subeom; Yeom, Dong-han

    2018-04-01

    We investigate a tunneling and emission process of a thin-shell from a Schwarzschild black hole, where the shell was initially located beyond the Einstein-Rosen bridge and finally appears at the right side of the Penrose diagram. In order to obtain such a solution, we should assume that the areal radius of the black hole horizon increases after the tunneling. Hence, there is a parameter range such that the tunneling rate is exponentially enhanced, rather than suppressed. We may have two interpretations regarding this. First, such a tunneling process from the past horizon is improbable by physical reasons; second, such a tunneling is possible in principle, but in order to obtain a stable Einstein-Rosen bridge, one needs to restrict the parameter spaces. If such a process is allowed, this can be a nonperturbative contribution to Einstein-Rosen bridges as well as eternal black holes.

  18. Nearly extremal apparent horizons in simulations of merging black holes

    Science.gov (United States)

    Lovelace, Geoffrey; Scheel, Mark; Owen, Robert; Giesler, Matthew; Katebi, Reza; Szilagyi, Bela; Chu, Tony; Demos, Nicholas; Hemberger, Daniel; Kidder, Lawrence; Pfeiffer, Harald; Afshari, Nousha; SXS Collaboration

    2015-04-01

    The spin S of a Kerr black hole is bounded by the surface area A of its apparent horizon: 8 πS A and e0 > 1 , but these surfaces are always surrounded by apparent horizons with 8 πS < A and e0 < 1 .

  19. Losing Information Outside the Horizon

    Directory of Open Access Journals (Sweden)

    Samir D. Mathur

    2015-06-01

    Full Text Available Suppose we allow a system to fall freely from infinity to a point near (but not beyond the horizon of a black hole. We note that in a sense the information in the system is already lost to an observer at infinity. Once the system is too close to the horizon it does not have enough energy to send its information back because the information carrying quanta would get redshifted to a point where they get confused with Hawking radiation. If one attempts to turn the infalling system around and bring it back to infinity for observation then it will experience Unruh radiation from the required acceleration. This radiation can excite the bits in the system carrying the information, thus reducing the fidelity of this information. We find the radius where the information is essentially lost in this way, noting that this radius depends on the energy gap (and coupling of the system. We look for some universality by using the highly degenerate BPS ground states of a quantum gravity theory (string theory as our information storage device. For such systems one finds that the critical distance to the horizon set by Unruh radiation is the geometric mean of the black hole radius and the radius of the extremal hole with quantum numbers of the BPS bound state. Overall, the results suggest that information in gravity theories should be regarded not as a quantity contained in a system, but in terms of how much of this information is accessible to another observer.

  20. Isolated, slowly evolving, and dynamical trapping horizons: Geometry and mechanics from surface deformations

    International Nuclear Information System (INIS)

    Booth, Ivan; Fairhurst, Stephen

    2007-01-01

    We study the geometry and dynamics of both isolated and dynamical trapping horizons by considering the allowed variations of their foliating two-surfaces. This provides a common framework that may be used to consider both their possible evolutions and their deformations as well as derive the well-known flux laws. Using this framework, we unify much of what is already known about these objects as well as derive some new results. In particular we characterize and study the ''almost isolated'' trapping horizons known as slowly evolving horizons. It is for these horizons that a dynamical first law holds and this is analogous and closely related to the Hawking-Hartle formula for event horizons

  1. British Petroleum's Deepwater Horizon Accident and the Thinking, Engaged Workforce - 13265

    Energy Technology Data Exchange (ETDEWEB)

    Rigot, William L. [Fluor Corporation, Technical Support Services (United States)

    2013-07-01

    On April 20, 2010, hydrocarbons escaped from the Macondo well into Transocean's Deepwater Horizon, resulting in fire and multiple explosions. 11 people on the rig died. The billion dollar Deepwater Horizon sank. 4.9 M gallons of product flowed from the well for 87 days creating an environmental nightmare for communities bordering on the Gulf of Mexico. BP established a $20 B reserve to pay for damages. Investigations and legal culpability continue to this day. In September 2010, the Institute for Nuclear Power Operators (INPO) issued Significant Operating Experience Report (SOER) 10-2, Engaged, Thinking Organizations. The industry had experienced 11 events, 9 in US commercial nuclear utilities, and 2 international, that had disturbing trends. The underlying causes highlighted by INPO were inadequate recognition of risk, weaknesses in application of significant operating experience, tolerance of equipment and personnel problems, and a significant drift in standards. While the noted INPO problems and the Deepwater Horizon event appear to have nothing in common, they do exhibit similarities in a drift away from expected behavior on the part of front line workers and their supervisors. At the same time, hidden hazards are accumulating in the environment leading to error intolerant conditions. Without a good understanding of this concept, many organizations tend to focus on the person who 'touched it last', while missing the deeper organizational factors that led that individual to think that what they were doing was correct. An understanding of this failure model is important in reconstruction of events and crafting effective corrective actions. It is much more important, however, for leaders in high hazard industries to recognize when they are approaching error intolerant conditions and take steps immediately to add safety margin. (authors)

  2. Static Isolated Horizons: SU(2 Invariant Phase Space, Quantization, and Black Hole Entropy

    Directory of Open Access Journals (Sweden)

    Alejandro Perez

    2011-03-01

    Full Text Available We study the classical field theoretical formulation of static generic isolated horizons in a manifestly SU(2 invariant formulation. We show that the usual classical description requires revision in the non-static case due to the breaking of diffeomorphism invariance at the horizon leading to the non-conservation of the usual pre-symplectic structure. We argue how this difficulty could be avoided by a simple enlargement of the field content at the horizon that restores diffeomorphism invariance. Restricting our attention to static isolated horizons we study the effective theories describing the boundary degrees of freedom. A quantization of the horizon degrees of freedom is proposed. By defining a statistical mechanical ensemble where only the area aH of the horizon is fixed macroscopically—states with fluctuations away from spherical symmetry are allowed—we show that it is possible to obtain agreement with the Hawkings area law (S = aH /(4l 2p without fixing the Immirzi parameter to any particular value: consistency with the area law only imposes a relationship between the Immirzi parameter and the level of the Chern-Simons theory involved in the effective description of the horizon degrees of freedom.

  3. Approximate Receding Horizon Approach for Markov Decision Processes: Average Award Case

    National Research Council Canada - National Science Library

    Chang, Hyeong S; Marcus, Steven I

    2002-01-01

    ...) with countable state space, finite action space, and bounded rewards that uses an approximate solution of a fixed finite-horizon sub-MDP of a given infinite-horizon MDP to create a stationary policy...

  4. Nitrate retention capacity of milldam-impacted legacy sediments and relict A horizon soils

    Directory of Open Access Journals (Sweden)

    J. N. Weitzman

    2017-05-01

    Full Text Available While eutrophication is often attributed to contemporary nutrient pollution, there is growing evidence that past practices, like the accumulation of legacy sediment behind historic milldams, are also important. Given their prevalence, there is a critical need to understand how N flows through, and is retained in, legacy sediments to improve predictions and management of N transport from uplands to streams in the context of climatic variability and land-use change. Our goal was to determine how nitrate (NO3− is cycled through the soil of a legacy-sediment-strewn stream before and after soil drying. We extracted 10.16 cm radius intact soil columns that extended 30 cm into each of the three significant soil horizons at Big Spring Run (BSR in Lancaster, Pennsylvania: surface legacy sediment characterized by a newly developing mineral A horizon soil, mid-layer legacy sediment consisting of mineral B horizon soil and a dark, organic-rich, buried relict A horizon soil. Columns were first preincubated at field capacity and then isotopically labeled nitrate (15NO3− was added and allowed to drain to estimate retention. The columns were then air-dried and subsequently rewet with N-free water and allowed to drain to quantify the drought-induced loss of 15NO3− from the different horizons. We found the highest initial 15N retention in the mid-layer legacy sediment (17 ± 4 % and buried relict A soil (14 ± 3 % horizons, with significantly lower retention in the surface legacy sediment (6 ± 1 % horizon. As expected, rewetting dry soil resulted in 15N losses in all horizons, with the greatest losses in the buried relict A horizon soil, followed by the mid-layer legacy sediment and surface legacy sediment horizons. The 15N remaining in the soil following the post-drought leaching was highest in the mid-layer legacy sediment, intermediate in the surface legacy sediment, and lowest in the buried relict A horizon soil. Fluctuations

  5. Nitrate retention capacity of milldam-impacted legacy sediments and relict A horizon soils

    Science.gov (United States)

    Weitzman, Julie N.; Kaye, Jason P.

    2017-05-01

    While eutrophication is often attributed to contemporary nutrient pollution, there is growing evidence that past practices, like the accumulation of legacy sediment behind historic milldams, are also important. Given their prevalence, there is a critical need to understand how N flows through, and is retained in, legacy sediments to improve predictions and management of N transport from uplands to streams in the context of climatic variability and land-use change. Our goal was to determine how nitrate (NO3-) is cycled through the soil of a legacy-sediment-strewn stream before and after soil drying. We extracted 10.16 cm radius intact soil columns that extended 30 cm into each of the three significant soil horizons at Big Spring Run (BSR) in Lancaster, Pennsylvania: surface legacy sediment characterized by a newly developing mineral A horizon soil, mid-layer legacy sediment consisting of mineral B horizon soil and a dark, organic-rich, buried relict A horizon soil. Columns were first preincubated at field capacity and then isotopically labeled nitrate (15NO3-) was added and allowed to drain to estimate retention. The columns were then air-dried and subsequently rewet with N-free water and allowed to drain to quantify the drought-induced loss of 15NO3- from the different horizons. We found the highest initial 15N retention in the mid-layer legacy sediment (17 ± 4 %) and buried relict A soil (14 ± 3 %) horizons, with significantly lower retention in the surface legacy sediment (6 ± 1 %) horizon. As expected, rewetting dry soil resulted in 15N losses in all horizons, with the greatest losses in the buried relict A horizon soil, followed by the mid-layer legacy sediment and surface legacy sediment horizons. The 15N remaining in the soil following the post-drought leaching was highest in the mid-layer legacy sediment, intermediate in the surface legacy sediment, and lowest in the buried relict A horizon soil. Fluctuations in the water table at BSR which affect

  6. Horizon effects with surface waves on moving water

    Energy Technology Data Exchange (ETDEWEB)

    Rousseaux, Germain; Maissa, Philippe; Mathis, Christian; Coullet, Pierre [Universite de Nice-Sophia Antipolis, Laboratoire J-A Dieudonne, UMR CNRS-UNS 6621, Parc Valrose, 06108 Nice Cedex 02 (France); Philbin, Thomas G; Leonhardt, Ulf, E-mail: Germain.Rousseaux@unice.f [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)

    2010-09-15

    Surface waves on a stationary flow of water are considered in a linear model that includes the surface tension of the fluid. The resulting gravity-capillary waves experience a rich array of horizon effects when propagating against the flow. In some cases, three horizons (points where the group velocity of the wave reverses) exist for waves with a single laboratory frequency. Some of these effects are familiar in fluid mechanics under the name of wave blocking, but other aspects, in particular waves with negative co-moving frequency and the Hawking effect, were overlooked until surface waves were investigated as examples of analogue gravity (Schuetzhold R and Unruh W G 2002 Phys. Rev. D 66 044019). A comprehensive presentation of the various horizon effects for gravity-capillary waves is given, with emphasis on the deep water/ short wavelength case kh>>1, where many analytical results can be derived. A similarity of the state space of the waves to that of a thermodynamic system is pointed out.

  7. Quantum black holes: the event horizon as a fuzzy sphere

    International Nuclear Information System (INIS)

    Dolan, Brian P.

    2005-01-01

    Modeling the event horizon of a black hole by a fuzzy sphere leads us to modify some suggestions in the literature concerning black hole mass spectra. We derive a formula for the mass spectrum of quantum black holes in terms of four integers which define the area, angular momentum, electric and magnetic charge of the black hole. Although the event horizon becomes a commutative sphere in the classical limit a vestige of the quantum theory still persists in that the event horizon stereographically projects onto the non-commutative plane. We also suggest how the classical bounds on extremal black holes might be modified in the quantum theory. (author)

  8. Apparent violation of the principle of equivalence and Killing horizons

    International Nuclear Information System (INIS)

    Zimmerman, R.L.; Farhoosh, H.; Oregon Univ., Eugene

    1980-01-01

    By means of the principle of equivalence it is deduced that the qualitative behavior of the Schwarzschild horizon about a uniformly accelerating particle. This result is confirmed for an exact solution of a uniformly accelerating object in the limit of small accelerations. For large accelerations the Schwarzschild horizon appears to violate the qualitative behavior established via the principle of equivalence. When similar arguments are extended to an observable such as the red shift between two observers, there is no departure from the results expected from the principle of equivalence. The resolution of the paradox is brought about by a compensating effect due to the Rindler horizon. (author)

  9. Start of new Research and Innovation Programme, Horizon 2020

    CERN Multimedia

    2013-01-01

    The overall EU budget for 2014-2020 was approved on 20 November, with €79 billion allocated for the Horizon 2020 Research and Innovation programme.   The first calls and final work programmes in Horizon 2020 will be published on 11 December 2013 and the programme will officially start on 1 January 2014. In preparation for the next major programme, the CERN EU Projects Office has launched a redesigned website to keep you informed and to alert you to opportunities in Horizon 2020: cerneu.web.cern.ch. Organised by Euresearch, the Swiss launch event will take place from 14 to 17 January 2014. This four-day conference will offer the possibility to discover the new European Framework Programme for Research and Innovation. The event is open for registration: www.launch-h2020.ch.

  10. Horizons of cosmology

    CERN Document Server

    Silk, Joseph

    2011-01-01

    Horizons of Cosmology: Exploring Worlds Seen and Unseen is the fourth title published in the Templeton Science and Religion Series, in which scientists from a wide range of fields distill their experience and knowledge into brief tours of their respective specialties. In this volume, highly esteemed astrophysicist Joseph Silk explores the vast mysteries and speculations of the field of cosmology in a way that balances an accessible style for the general reader and enough technical detail for advanced students and professionals. Indeed, while the p

  11. How the change in horizon area drives black hole evaporation

    International Nuclear Information System (INIS)

    Massar, S.; Parentani, R.

    2000-01-01

    We rephrase the derivation of black hole radiation so as to take into account, at the level of transition amplitudes, the change of the geometry induced by the emission process. This enlarged description reveals that the dynamical variables which govern the emission are the horizon area and its conjugate time variable. Their conjugation is established through the boundary term at the horizon which must be added to the canonical action of general relativity in order to obtain a well defined action principle when the area varies. These coordinates have already been used by Teitelboim and collaborators to compute the partition function of a black hole. We use them to show that the probability to emit a particle is given by e -ΔA/4 , where ΔA is the decrease in horizon area induced by the emission. This expression improves Hawking result which is governed by a temperature (given by the surface gravity) in that the specific heat of the black hole is no longer neglected. The present derivation of quantum black hole radiation is based on the same principles which are used to derive the first law of classical black hole thermodynamics. Moreover, it also applies to quantum processes associated with cosmological or acceleration horizons. These two results indicate that not only black holes but all event horizons possess an entropy which governs processes according to quantum statistical thermodynamics

  12. How to write a competitive proposal for Horizon 2020 a research manager's handbook

    CERN Document Server

    McCarthy, Sean

    2013-01-01

    Chapter 1: An Overview of Horizon 2020 ; Chapter 2: How the Research Priorities were Selected (How to Lobby) ; Chapter 3: The Research Priorities in Horizon 2020 ; Chapter 4: How Proposals are Evaluated ; Chapter 5: How to Write the ‘Impact’ of the project ; Chapter 6: The One Page Proposal ; Chapter 7: How to Streamline Proposal Writing ; Chapter 8: How to Find the Best Partners ; Chapter 9: How to Write the ‘Implementation' of the project ; Chapter 10: Legal and Financial Rules in Horizon 2020 ; Chapter 11: What is your Strategy for Horizon 2020?

  13. New Horizons in Education, 2000.

    Science.gov (United States)

    Ho, Kwok Keung, Ed.

    2000-01-01

    This document contains the May and November 2000 issues of "New Horizons in Education," with articles in English and Chinese. The May issue includes the following articles: "A Key to Successful Environmental Education: Teacher Trainees' Attitude, Behaviour, and Knowledge" (Kevin Chung Wai Lui, Eric Po Keung Tsang, Sing Lai…

  14. Gravitational lensing and ghost images in the regular Bardeen no-horizon spacetimes

    International Nuclear Information System (INIS)

    Schee, Jan; Stuchlík, Zdeněk

    2015-01-01

    We study deflection of light rays and gravitational lensing in the regular Bardeen no-horizon spacetimes. Flatness of these spacetimes in the central region implies existence of interesting optical effects related to photons crossing the gravitational field of the no-horizon spacetimes with low impact parameters. These effects occur due to existence of a critical impact parameter giving maximal deflection of light rays in the Bardeen no-horizon spacetimes. We give the critical impact parameter in dependence on the specific charge of the spacetimes, and discuss 'ghost' direct and indirect images of Keplerian discs, generated by photons with low impact parameters. The ghost direct images can occur only for large inclination angles of distant observers, while ghost indirect images can occur also for small inclination angles. We determine the range of the frequency shift of photons generating the ghost images and determine distribution of the frequency shift across these images. We compare them to those of the standard direct images of the Keplerian discs. The difference of the ranges of the frequency shift on the ghost and direct images could serve as a quantitative measure of the Bardeen no-horizon spacetimes. The regions of the Keplerian discs giving the ghost images are determined in dependence on the specific charge of the no-horizon spacetimes. For comparison we construct direct and indirect (ordinary and ghost) images of Keplerian discs around Reissner-Nördström naked singularities demonstrating a clear qualitative difference to the ghost direct images in the regular Bardeen no-horizon spacetimes. The optical effects related to the low impact parameter photons thus give clear signature of the regular Bardeen no-horizon spacetimes, as no similar phenomena could occur in the black hole or naked singularity spacetimes. Similar direct ghost images have to occur in any regular no-horizon spacetimes having nearly flat central region

  15. Output-feedback control of combined sewer networks through receding horizon control with moving horizon estimation

    Science.gov (United States)

    Joseph-Duran, Bernat; Ocampo-Martinez, Carlos; Cembrano, Gabriela

    2015-10-01

    An output-feedback control strategy for pollution mitigation in combined sewer networks is presented. The proposed strategy provides means to apply model-based predictive control to large-scale sewer networks, in-spite of the lack of measurements at most of the network sewers. In previous works, the authors presented a hybrid linear control-oriented model for sewer networks together with the formulation of Optimal Control Problems (OCP) and State Estimation Problems (SEP). By iteratively solving these problems, preliminary Receding Horizon Control with Moving Horizon Estimation (RHC/MHE) results, based on flow measurements, were also obtained. In this work, the RHC/MHE algorithm has been extended to take into account both flow and water level measurements and the resulting control loop has been extensively simulated to assess the system performance according different measurement availability scenarios and rain events. All simulations have been carried out using a detailed physically based model of a real case-study network as virtual reality.

  16. Black Hole Horizons and Thermodynamics: A Quantum Approach

    Directory of Open Access Journals (Sweden)

    Nicola Pinamonti

    2010-07-01

    Full Text Available We focus on quantization of the metric of a black hole restricted to the Killing horizon with universal radius r0. After imposing spherical symmetry and after restriction to the Killing horizon, the metric is quantized employing the chiral currents formalism. Two "components of the metric" are indeed quantized: The former behaves as an affine scalar field under changes of coordinates, the latter is instead a proper scalar field. The action of the symplectic group on both fields is realized in terms of certain horizon diffeomorphisms. Depending on the choice of the vacuum state, such a representation is unitary. If the reference state of the scalar field is a coherent state rather than a vacuum, spontaneous breaking of conformal symmetry arises and the state contains a Bose-Einstein condensate. In this case the order parameter fixes the actual size of the black hole with respect to r0. Both the constructed state together with the one associated with the affine scalar are thermal states (KMS with respect to Schwarzschild Killing time when restricted to half horizon. The value of the order parameter fixes the temperature at the Hawking value as well. As a result, it is found that the quantum energy and entropy densities coincide with the black hole mass and entropy, provided the universal parameter r0 is suitably chosen, not depending on the size of the actual black hole in particular.

  17. Priority Questions and Horizon Scanning for Conservation: A Comparative Study

    Science.gov (United States)

    Kark, Salit; Sutherland, William J.; Shanas, Uri; Klass, Keren; Achisar, Hila; Dayan, Tamar; Gavrieli, Yael; Justo-Hanani, Ronit; Mandelik, Yael; Orion, Nir; Pargament, David; Portman, Michelle; Reisman-Berman, Orna; Safriel, Uriel N.; Schaffer, Gad; Steiner, Noa; Tauber, Israel; Levin, Noam

    2016-01-01

    Several projects aimed at identifying priority issues for conservation with high relevance to policy have recently been completed in several countries. Two major types of projects have been undertaken, aimed at identifying (i) policy-relevant questions most imperative to conservation and (ii) horizon scanning topics, defined as emerging issues that are expected to have substantial implications for biodiversity conservation and policy in the future. Here, we provide the first overview of the outcomes of biodiversity and conservation-oriented projects recently completed around the world using this framework. We also include the results of the first questions and horizon scanning project completed for a Mediterranean country. Overall, the outcomes of the different projects undertaken (at the global scale, in the UK, US, Canada, Switzerland and in Israel) were strongly correlated in terms of the proportion of questions and/or horizon scanning topics selected when comparing different topic areas. However, some major differences were found across regions. There was large variation among regions in the percentage of proactive (i.e. action and response oriented) versus descriptive (non-response oriented) priority questions and in the emphasis given to socio-political issues. Substantial differences were also found when comparing outcomes of priority questions versus horizon scanning projects undertaken for the same region. For example, issues related to climate change, human demography and marine ecosystems received higher priority as horizon scanning topics, while ecosystem services were more emphasized as current priority questions. We suggest that future initiatives aimed at identifying priority conservation questions and horizon scanning topics should allow simultaneous identification of both current and future priority issues, as presented here for the first time. We propose that further emphasis on social-political issues should be explicitly integrated into future

  18. Stochastic Dynamics of Clay Translocation and Formation of Argillic Horizons

    Science.gov (United States)

    Calabrese, S.; Richter, D. D., Jr.; Porporato, A. M.

    2017-12-01

    The formation of argillic horizons in vertical soil profiles is mainly attributed to lessivage, namely the transport of clay from an upper E horizon to a deeper illuviated horizon. Because of the long timescales involved in this phenomenon, quantitative modeling is useful to explore the role of clay lessivage on soil formation and sub-surface clay accumulation. The limitations of detailed models of colloidal transport to short timescales make it necessary to resort to simple models. Here, we present a parsimonious model of clay transport in which lessivage is interpreted stochastically. Clay particles approach the soil surface at a speed equal to the erosion rate and are intermittently transported to deeper soil layers when percolation events occur or removed by erosion. Along with the evolution of clay particles trajectories, the model predicts the vertical clay profile, the depth of the B horizon, and the mean time to erosion. Dimensional analysis reveals the two dimensionless parameters governing the dynamics, leading to a new classification of soil types based on erosion rates and intensity of lessivage.

  19. The role of event horizons in quantum gravity

    International Nuclear Information System (INIS)

    Schiffer, M.

    1990-01-01

    We extend Bekenstein's result for the minimum variation of the black hole event horizon due to the absorption of an extended (classical) particle to the deSitter Universe. These classical equations are the bulk for the argument based on correspondence principle: for large energies the classical and quantum results are in correspondence with each other. The outcome of this reasoning could not be more fruitful: it leads to the quantization of the event horizon area (either B.H. or cosmological) in units of Planck's length square. Consequence are discussed. (author)

  20. New view about black holes. [Tachyon--bradyon transformation at horizon

    Energy Technology Data Exchange (ETDEWEB)

    De Sabbata, V; Pavsic, M; Recami, E

    1977-01-01

    For a Schwarzschild black-hole, as reference frame is chosen the frame sigma at rest with respect to the Schwarzschild metric. In this locally non-inertial frame, a freely falling body is shown to reach the speed of light on the horizon and then to travel faster than light inside the horizon. The usual Szekeres--Kruskal (SK) coordinates represent themselves frames that (with respect to the frames sigma) travel at subluminal speed outside, at luminal speed on, and at superluminal speed inside the horizon (so that SK frames always describe any free falling body as a standard, slower-than-light object). Finally, black-holes are shown to be possible sources of tachyons.

  1. Behaviour of scalar perturbations of a Reissner-Nordstroem black hole inside the event horizon

    International Nuclear Information System (INIS)

    McNamara, J.M.

    1978-01-01

    This paper considers general scalar perturbations of a Reissner-Nordstrom black hole and examines the qualitative behaviour of these perturbations in the region between and on the inner and outer horizons. Initial data are specified in terms of the ingoing radiation crossing the outer (event) horizon. The only essential restriction on these data is that the radiation should not die away too slowly on this horizon. The resultant perturbations are shown to be bounded and continuous. In particular, these properties hold for perturbations on the inner horizon. For certain types of scalar field (including the zero rest mass scalar field) perturbations vanish at the cross-over point on the inner horizon. (author)

  2. Near-Horizon Geodesics for Astrophysical and Idealised Black Holes: Coordinate Velocity and Coordinate Acceleration

    Directory of Open Access Journals (Sweden)

    Petarpa Boonserm

    2018-05-01

    Full Text Available Geodesics (by definition have an intrinsic 4-acceleration zero. However, when expressed in terms of coordinates, the coordinate acceleration d 2 x i / d t 2 can very easily be non-zero, and the coordinate velocity d x i / d t can behave unexpectedly. The situation becomes extremely delicate in the near-horizon limit—for both astrophysical and idealised black holes—where an inappropriate choice of coordinates can quite easily lead to significant confusion. We shall carefully explore the relative merits of horizon-penetrating versus horizon-non-penetrating coordinates, arguing that in the near-horizon limit the coordinate acceleration d 2 x i / d t 2 is best interpreted in terms of horizon-penetrating coordinates.

  3. « To see beyond the horizon of mere selfishness » : l’horizon moral dans les romans de George Eliot

    OpenAIRE

    Toussaint, Benjamine

    2015-01-01

    In spite of her apostasy, George Eliot still believed in the moral and spiritual values of Christianity and it is hardly surprising she should have used the metaphor of the horizon to refer to this ideal notion of the essence of Christianity since the horizon is both unreachable and yet always visible, showing the direction one ought to follow. Her characters’ moral odyssey is about learning to see beyond the limits of their own self-centered experience; however, as Lydgate underlines in Midd...

  4. Unified first law and the thermodynamics of the apparent horizon in the FRW universe

    International Nuclear Information System (INIS)

    Cai Ronggen; Cao Liming

    2007-01-01

    In this paper we revisit the relation between the Friedmann equations and the first law of thermodynamics. We find that the unified first law first proposed by Hayward to treat the outertrapping horizon of a dynamical black hole can be used to the apparent horizon (a kind of inner trapping horizon in the context of the FRW cosmology) of the FRW universe. We discuss three kinds of gravity theorties: Einstein theory, Lovelock thoery, and scalar-tensor theory. In Einstein theory, the first law of thermodynamics is always satisfied on the apparent horizon. In Lovelock theory, treating the higher derivative terms as an effective energy-momentum tensor, we find that this method can give the same entropy formula for the apparent horizon as that of black hole horizon. This implies that the Clausius relation holds for the Lovelock theory. In scalar-tensor gravity, we find, by using the same procedure, the Clausius relation no longer holds. This indicates that the apparent horizon of the FRW universe in the scalar-tensor gravity corresponds to a system of nonequilibrium thermodynamics. We show this point by using the method developed recently by Eling et al. for dealing with the f(R) gravity

  5. Topology and geometry of six-dimensional (1, 0) supergravity black hole horizons

    International Nuclear Information System (INIS)

    Akyol, M; Papadopoulos, G

    2012-01-01

    We show that the supersymmetric near horizon black hole geometries of six-dimensional supergravity coupled to any number of scalar and tensor multiplets are either locally AdS 3 x Σ 3 , where Σ 3 is a homology 3-sphere, or R 1,1 )xS 4 , where S 4 is a 4-manifold whose geometry depends on the hypermultiplet scalars. In both cases, we find that the tensorini multiplet scalars are constant and the associated 3-form field strengths vanish. We also demonstrate that the AdS 3 x Σ 3 horizons preserve two, four and eight supersymmetries. For horizons with four supersymmetries, Σ 3 is in addition a non-trivial circle fibration over a topological 2-sphere. The near horizon geometries preserving eight supersymmetries are locally isometric to either AdS 3 x S 3 or R 1, 1 x T 4 . Moreover, we show that the R 1,1 xS horizons preserve one, two and four supersymmetries and the geometry of S is Riemann, Kaehler and hyper-Kaehler, respectively. (paper)

  6. Horizon Wavefunction of Generalized Uncertainty Principle Black Holes

    Directory of Open Access Journals (Sweden)

    Luciano Manfredi

    2016-01-01

    Full Text Available We study the Horizon Wavefunction (HWF description of a Generalized Uncertainty Principle inspired metric that admits sub-Planckian black holes, where the black hole mass m is replaced by M=m1+β/2MPl2/m2. Considering the case of a wave-packet shaped by a Gaussian distribution, we compute the HWF and the probability PBH that the source is a (quantum black hole, that is, that it lies within its horizon radius. The case β0, where a minimum in PBH is encountered, thus meaning that every particle has some probability of decaying to a black hole. Furthermore, for sufficiently large β we find that every particle is a quantum black hole, in agreement with the intuitive effect of increasing β, which creates larger M and RH terms. This is likely due to a “dimensional reduction” feature of the model, where the black hole characteristics for sub-Planckian black holes mimic those in (1+1 dimensions and the horizon size grows as RH~M-1.

  7. How Do Large Companies Manage Their Investments Across the Three Horizons?

    Directory of Open Access Journals (Sweden)

    Peter Carbone

    2012-04-01

    Full Text Available Technical entrepreneurship continues to be important to a technology company’s health and growth, even after it has successfully delivered its first product. It is essential to help the company deal with competitive forces and to renew its revenue stream. However, as the company grows, its entrepreneurial capability often becomes handicapped both by company culture as well as external pressures. The company must achieve the right mix of investment and level of attention across three time horizons of growth: immediate, imminent, and future. This balancing act requires a commitment to a strategic growth goal, appropriate tools, and leaders that can manage significant degrees of uniqueness in the resources that address each of these time horizons. This article discusses some of the horizon-management challenges faced by top management teams of large companies and overviews some mechanisms and processes that have worked effectively. Large companies must overcome internal teams’ divergent values and culture as well as significant external, short-term pressures being applied by their existing base of customers and markets. Discipline at the entry point to Horizon 3 (exploratory phase and then a rapid transition to Horizon 1 (current operations is the priority of any successful growth company.

  8. TIME HORIZON AND UNCOVERED INTEREST PARITY IN EMERGING ECONOMIES

    Directory of Open Access Journals (Sweden)

    Norlida Hanim Mohd Salleh

    2011-07-01

    Full Text Available The aim of this study is to re-examine the well-known empirical puzzle of uncovered interest parity (UIP for emerging market economies with different prediction time horizons. The empirical results obtained using dynamic panel and time series techniques for monthly data from January 1995 to December 2009 eventually show that the panel data estimates are more powerful than those obtained by applying individual time series estimations and the significant contribution of the exchange rate prediction horizons in determining the status of UIP. This finding reveals that at the longer time horizon, the model has better econometric specification and thus more predictive power for exchange rate movements compared to the shorter time period. The findings can also be a signalling of well-integrated currency markets and a reliable guide to international investors as well as for the orderly conduct of monetary authorities.

  9. On the near horizon rotating black hole geometries with NUT charges

    Energy Technology Data Exchange (ETDEWEB)

    Galajinsky, Anton; Orekhov, Kirill [Tomsk Polytechnic University, Laboratory of Mathematical Physics, Tomsk (Russian Federation)

    2016-09-15

    The near horizon geometries are usually constructed by implementing a specific limit to a given extreme black hole configuration. Their salient feature is that the isometry group includes the conformal subgroup SO(2, 1). In this work, we turn the logic around and use the conformal invariants for constructing Ricci-flat metrics in d = 4 and d = 5 where the vacuum Einstein equations reduce to a coupled set of ordinary differential equations. In four dimensions the analysis can be carried out in full generality and the resulting metric describes the d = 4 near horizon Kerr-NUT black hole. In five dimensions we choose a specific ansatz whose structure is similar to the d = 5 near horizon Myers-Perry black hole. A Ricci-flat metric involving five arbitrary parameters is constructed. A particular member of this family, which is characterized by three parameters, seems to be a natural candidate to describe the d = 5 near horizon Myers- Perry black hole with a NUT charge. (orig.)

  10. On the near horizon rotating black hole geometries with NUT charges

    International Nuclear Information System (INIS)

    Galajinsky, Anton; Orekhov, Kirill

    2016-01-01

    The near horizon geometries are usually constructed by implementing a specific limit to a given extreme black hole configuration. Their salient feature is that the isometry group includes the conformal subgroup SO(2, 1). In this work, we turn the logic around and use the conformal invariants for constructing Ricci-flat metrics in d = 4 and d = 5 where the vacuum Einstein equations reduce to a coupled set of ordinary differential equations. In four dimensions the analysis can be carried out in full generality and the resulting metric describes the d = 4 near horizon Kerr-NUT black hole. In five dimensions we choose a specific ansatz whose structure is similar to the d = 5 near horizon Myers-Perry black hole. A Ricci-flat metric involving five arbitrary parameters is constructed. A particular member of this family, which is characterized by three parameters, seems to be a natural candidate to describe the d = 5 near horizon Myers- Perry black hole with a NUT charge. (orig.)

  11. Evaluating information in multiple horizon forecasts. The DOE's energy price forecasts

    International Nuclear Information System (INIS)

    Sanders, Dwight R.; Manfredo, Mark R.; Boris, Keith

    2009-01-01

    The United States Department of Energy's (DOE) quarterly price forecasts for energy commodities are examined to determine the incremental information provided at the one-through four-quarter forecast horizons. A direct test for determining information content at alternative forecast horizons, developed by Vuchelen and Gutierrez [Vuchelen, J. and Gutierrez, M.-I. 'A Direct Test of the Information Content of the OECD Growth Forecasts.' International Journal of Forecasting. 21(2005):103-117.], is used. The results suggest that the DOE's price forecasts for crude oil, gasoline, and diesel fuel do indeed provide incremental information out to three-quarters ahead, while natural gas and electricity forecasts are informative out to the four-quarter horizon. In contrast, the DOE's coal price forecasts at two-, three-, and four-quarters ahead provide no incremental information beyond that provided for the one-quarter horizon. Recommendations of how to use these results for making forecast adjustments is also provided. (author)

  12. Stochastic climate theory

    NARCIS (Netherlands)

    Gottwald, G.A.; Crommelin, D.T.; Franzke, C.L.E.; Franzke, C.L.E.; O'Kane, T.J.

    2017-01-01

    In this chapter we review stochastic modelling methods in climate science. First we provide a conceptual framework for stochastic modelling of deterministic dynamical systems based on the Mori-Zwanzig formalism. The Mori-Zwanzig equations contain a Markov term, a memory term and a term suggestive of

  13. Determining effective forecast horizons for multi-purpose reservoirs with short- and long-term operating objectives

    Science.gov (United States)

    Luchner, Jakob; Anghileri, Daniela; Castelletti, Andrea

    2017-04-01

    Real-time control of multi-purpose reservoirs can benefit significantly from hydro-meteorological forecast products. Because of their reliability, the most used forecasts range on time scales from hours to few days and are suitable for short-term operation targets such as flood control. In recent years, hydro-meteorological forecasts have become more accurate and reliable on longer time scales, which are more relevant to long-term reservoir operation targets such as water supply. While the forecast quality of such products has been studied extensively, the forecast value, i.e. the operational effectiveness of using forecasts to support water management, has been only relatively explored. It is comparatively easy to identify the most effective forecasting information needed to design reservoir operation rules for flood control but it is not straightforward to identify which forecast variable and lead time is needed to define effective hedging rules for operational targets with slow dynamics such as water supply. The task is even more complex when multiple targets, with diverse slow and fast dynamics, are considered at the same time. In these cases, the relative importance of different pieces of information, e.g. magnitude and timing of peak flow rate and accumulated inflow on different time lags, may vary depending on the season or the hydrological conditions. In this work, we analyze the relationship between operational forecast value and streamflow forecast horizon for different multi-purpose reservoir trade-offs. We use the Information Selection and Assessment (ISA) framework to identify the most effective forecast variables and horizons for informing multi-objective reservoir operation over short- and long-term temporal scales. The ISA framework is an automatic iterative procedure to discriminate the information with the highest potential to improve multi-objective reservoir operating performance. Forecast variables and horizons are selected using a feature

  14. Event horizon and scalar potential

    International Nuclear Information System (INIS)

    Duruisseau, J.P.; Tonnelat, M.A.

    1977-01-01

    The introduction of a scalar potential with a more general scheme than General Relativity eliminates the event horizon. Among possible solutions, the Schwarzschild one represents a singular case. A study of the geodesic properties of the matching with an approximated interior solution are given. A new definition of the gravitational mass and chi function is deduced. (author)

  15. Expanding Your Horizons Conference in Geneva

    CERN Multimedia

    Chromek-Burckhart, Doris

    2011-01-01

    CERN and its experiments participated in Expanding Your Horizons (EYH) in Science and Mathematics conference in Geneva on 12th November. EYH nurture girls' interest in science and math courses to encourage them to consider careers in science, technology, engineering, and math.

  16. Modeling of the development of humus horizons in soils of Crimea

    Science.gov (United States)

    Ergina, E. I.

    2017-01-01

    Current approaches to the simulation of pedogenesis processes in time are considered. Models for the formation of humus horizon on parent rocks of different genesis in Crimea are presented. Formation rates of humus horizons have been determined, which allows developing the remediation strategies for mining dumps of mineral deposits in Crimea.

  17. Aligned electromagnetic excitations of a black hole and their impact on its quantum horizon

    Energy Technology Data Exchange (ETDEWEB)

    Burinskii, Alexander [Gravity Research Group, NSI, Russian Academy of Sciences, B. Tulskaya 52, Moscow 115191 (Russian Federation)], E-mail: bur@ibrae.ac.ru; Elizalde, Emilio [Instituto de Ciencias del Espacio (CSIC) and Institut d' Estudis Espacials de Catalunya (IEEC/CSIC), Campus UAB, Facultat de Ciencies, Torre C5-Parell-2a planta, 08193 Bellaterra, Barcelona (Spain)], E-mail: elizalde@ieec.uab.es; Hildebrandt, Sergi R. [Instituto de Astrofisica de Canarias, C/Via Lactea s/n, La Laguna, Tenerife 38200 (Spain)], E-mail: srh@iac.es; Magli, Giulio [Dipartimento di Matematica del Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy)], E-mail: magli@mate.polimi.it

    2009-02-02

    We show that elementary aligned electromagnetic excitations of black holes, as coming from exact Kerr-Schild solutions, represent light-like beams pulses which have a very strong back reaction on the metric and change the topology of the horizon. Based on York's proposal, that elementary deformations of the BH horizon are related with elementary vacuum fluctuations, we analyze deformations of the horizon caused by the beam-like vacuum fluctuations and obtain a very specific feature of the topological deformations of the horizon. In particular, we show how the beams pierce the horizon, forming a multitude of micro-holes in it. A conjecture is taken into consideration, that these specific excitations are connected with the conformal-analytic properties of the Kerr geometry and are at the base of the emission mechanism.

  18. Horizons and non-local time evolution of quantum mechanical systems

    International Nuclear Information System (INIS)

    Casadio, Roberto

    2015-01-01

    According to general relativity, trapping surfaces and horizons are classical causal structures that arise in systems with sharply defined energy and corresponding gravitational radius. The latter concept can be extended to a quantum mechanical matter state simply by means of the spectral decomposition, which allows one to define an associated ''horizon wave-function''. Since this auxiliary wave-function contains crucial information about the causal structure of space-time, a new proposal is formulated for the time evolution of quantum systems in order to account for the fundamental classical property that outer observers cannot receive signals from inside a horizon. The simple case of a massive free particle at rest is used throughout the paper as a toy model to illustrate the main ideas. (orig.)

  19. Seeking for toroidal event horizons from initially stationary BH configurations

    International Nuclear Information System (INIS)

    Ponce, Marcelo; Lousto, Carlos; Zlochower, Yosef

    2011-01-01

    We construct and evolve non-rotating vacuum initial data with a ring singularity, based on a simple extension of the standard Brill-Lindquist multiple BH initial data, and search for event horizons with spatial slices that are toroidal when the ring radius is sufficiently large. While evolutions of the ring singularity are not numerically feasible for large radii, we find some evidence, based on configurations of multiple BHs arranged in a ring, that this configuration leads to singular limit where the horizon width has zero size, possibly indicating the presence of a naked singularity, when the radius of the ring is sufficiently large. This is in agreement with previous studies that have found that there is no apparent horizon surrounding the ring singularity when the ring's radius is larger than about twice its mass.

  20. Horizons in Matter:. Black Hole Hair Versus Null Big Bang

    Science.gov (United States)

    Bronnikov, K. A.; Zaslavskii, Oleg B.

    It is shown that only particular kinds of matter (in terms of the "radial" pressure-to-density ratio w) can coexist with Killing horizons in black hole or cosmological space-times. Thus, for arbitrary (not necessarily spherically symmetric) static black holes, admissible are vacuum matter (w = -1, i.e. the cosmological constant or its generalization with the same value of w) and matter with certain values of w between 0 and -1, in particular a gas of disordered cosmic strings (w = -1/3). If the cosmological evolution starts from a horizon (the so-called null big bang scenarios), this horizon can coexist with vacuum matter and certain kinds of phantom matter with w ≤ -3. It is concluded that normal matter in such scenarios is entirely created from vacuum.

  1. Agriculture’s Ethical Horizon, book review

    Science.gov (United States)

    Roughly 6.5 billion people inhabit the earth, but over 1 billion people regularly go hungry. This food shortfall poses an ethical dilemma for agriculture, and Agriculture's Ethical Horizon grapples with this dilemma. It argues that agricultural productivity has been the quintessential value of agr...

  2. Near-Optimal Tracking Control of Mobile Robots Via Receding-Horizon Dual Heuristic Programming.

    Science.gov (United States)

    Lian, Chuanqiang; Xu, Xin; Chen, Hong; He, Haibo

    2016-11-01

    Trajectory tracking control of wheeled mobile robots (WMRs) has been an important research topic in control theory and robotics. Although various tracking control methods with stability have been developed for WMRs, it is still difficult to design optimal or near-optimal tracking controller under uncertainties and disturbances. In this paper, a near-optimal tracking control method is presented for WMRs based on receding-horizon dual heuristic programming (RHDHP). In the proposed method, a backstepping kinematic controller is designed to generate desired velocity profiles and the receding horizon strategy is used to decompose the infinite-horizon optimal control problem into a series of finite-horizon optimal control problems. In each horizon, a closed-loop tracking control policy is successively updated using a class of approximate dynamic programming algorithms called finite-horizon dual heuristic programming (DHP). The convergence property of the proposed method is analyzed and it is shown that the tracking control system based on RHDHP is asymptotically stable by using the Lyapunov approach. Simulation results on three tracking control problems demonstrate that the proposed method has improved control performance when compared with conventional model predictive control (MPC) and DHP. It is also illustrated that the proposed method has lower computational burden than conventional MPC, which is very beneficial for real-time tracking control.

  3. Effective first law of thermodynamics of black holes with two horizons

    International Nuclear Information System (INIS)

    Yi-Huan, Wei

    2009-01-01

    For a black hole with two horizons, the effective entropy is assumed to be a linear combination of the two entropies of the outer and inner horizons. In terms of the effective thermodynamic quantities the effective Bekenstein–Smarr formula and the effective first law of thermodynamics are derived. (geophysics, astronomy and astrophysics)

  4. Factors influencing organic-horizon carbon pools in mixed-species stands of central Maine, USA

    Science.gov (United States)

    Joshua J. Puhlick; Shawn Fraver; Ivan J. Fernandez; Aaron R. Weiskittel; Laura S. Kenefic; Randy Kolka; Marie-Cecile Gruselle

    2016-01-01

    The overall goal of this study was to evaluate the correlation of multiple abiotic and biotic factors with organic-horizon (O-horizon) carbon (C) content on the Penobscot Experimental Forest in central Maine, USA. O-horizon samples were collected and their associated depths were recorded from stands managed with a range of silvicultural and harvesting treatments (i.e...

  5. 76 FR 55427 - Horizon Technology Finance Corporation, et al.; Notice of Application

    Science.gov (United States)

    2011-09-07

    .... Applicants: Horizon Technology Finance Corporation (the ``Company''), Horizon Technology Finance Management... Technology Finance Corporation, et al.; Notice of Application August 31, 2011. AGENCY: Securities and... Blass, Branch Chief, at (202) 551-6821 (Division of Investment Management, Office of Investment Company...

  6. E(7) symmetric area of the black hole horizon

    International Nuclear Information System (INIS)

    Kallosh, R.; Kol, B.

    1996-01-01

    Extreme black holes with 1/8 of unbroken N=8 supersymmetry are characterized by the nonvanishing area of the horizon. The central charge matrix has four generic eigenvalues. The area is proportional to the square root of the invariant quartic form of E 7(7) . It vanishes in all cases when 1/4 or 1/2 of supersymmetry is unbroken. The supergravity nonrenormalization theorem for the area of the horizon in the N=8 case protects the unique U-duality invariant. copyright 1996 The American Physical Society

  7. The Horizon Is An Imaginary Line

    DEFF Research Database (Denmark)

    Gill, Bani; Mahendru, Radha

    The Horizon Is An Imaginary Line (THIAI) is a semi-fictional illustrated account of a young Somali woman's encounters as a refugee in India. Through Maryam, we reflect on the lived experiences of alienation and marginalization as an 'outsider' on the fringes of an increasingly bordered world...

  8. Discussion on event horizon and quantum ergosphere of evaporating black holes in a tunnelling framework

    International Nuclear Information System (INIS)

    Zhang Jingyi; Zhao Zheng

    2011-01-01

    In this paper, with the Parikh-Wilczek tunnelling framework the positions of the event horizon of the Vaidya black hole and the Vaidya-Bonner black hole are calculated, respectively. We find that the event horizon and the apparent horizon of these two black holes correspond, respectively, to the two turning points of the Hawking radiation tunnelling barrier. That is, the quantum ergosphere coincides with the tunnelling barrier. Our calculation also implies that the Hawking radiation comes from the apparent horizon.

  9. VMware Horizon Mirage essentials

    CERN Document Server

    Von Oven, Peter

    2013-01-01

    This book provides a practical, step-by-step approach to teach you how to build a successful infrastructure.This book is perfect for desktop administrators who want to deploy a solution to centrally manage their endpoint images across their entire estate using VMware Horizon Mirage. You need to have some experience in desktop image management using Microsoft Windows operating systems and Windows applications, as well as be familiar with Active Directory, SQL, IIS, and general server infrastructure relating to supporting end users.

  10. Expanding Your Horizon 2015

    CERN Multimedia

    Kaltenhauser, Kristin

    2015-01-01

    Expanding your horizons is a bi-annual “Science Day” for girls aged 11 to 14, held at the University of Geneva on 14 November. The girls had the opportunity to take part in hands-on workshops held by local professional women in the field of science, mathematics, engineering and technology. For the fourth time, CERN was part of this event, offering three workshops as well as a booth at the Discovery Fair, including Higgnite, an interactive visualization of the Higgs Field.

  11. Double logarithms, ln2(1/x), and the NLO Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution for the nonsinglet component of the nucleon spin structure function g1

    International Nuclear Information System (INIS)

    Ziaja, Beata

    2002-01-01

    Theoretical predictions show that at low values of Bjorken x the spin structure function g 1 is influenced by large logarithmic corrections ln 2 (1/x), which may be predominant in this region. These corrections are also partially contained in the next leading order (NLO) part of the standard Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution. Here we calculate the nonsinglet component of the nucleon structure function, g 1 NS =g 1 p -g 1 n , and its first moment, using a unified evolution equation. This equation incorporates the terms describing the NLO DGLAP evolution and the terms contributing to the ln 2 (1/x) resummation. In order to avoid double counting in the overlapping regions of the phase space, a unique way of including the NLO terms into the unified evolution equation is proposed. The scheme-independent results obtained from this unified evolution are compared to the NLO fit to experimental data, GRSV2000. An analysis of the first moments of g 1 NS shows that the unified evolution including the ln 2 (1/x) resummation goes beyond the NLO DGLAP analysis. Corrections generated by double logarithms at low x influence the Q 2 dependence of the first moments strongly

  12. Black Hole Entropy from Bondi-Metzner-Sachs Symmetry at the Horizon.

    Science.gov (United States)

    Carlip, S

    2018-03-09

    Near the horizon, the obvious symmetries of a black hole spacetime-the horizon-preserving diffeomorphisms-are enhanced to a larger symmetry group with a three-dimensional Bondi-Metzner-Sachs algebra. Using dimensional reduction and covariant phase space techniques, I investigate this augmented symmetry and show that it is strong enough to determine the black hole entropy in any dimension.

  13. The case for increasing returns (2: the methods of planning horizons

    Directory of Open Access Journals (Sweden)

    Frederic B. Jennings Jr.

    2016-05-01

    Full Text Available In neoclassical economics, substitution assumptions support equilibrium models in closed systems shunning interdependence. On these grounds an array of frames show outcomes as stable, efficient, unique and determinate. Heterodox economists say equilibrium models sidestep practical knowledge and the rich reality of economic behavior. Rigor or realism, mainstream or radical, ecological, institutional, socio-cultural: economics invites a wide diversity of assumptions, once short-term models of substitution are opened to question. The answers are blurred by applications; there is clarity in a simplicity shielded from mundane detail. This paper addresses the methodological impact of planning horizons, increasing returns and complementarity, and their proper representation in economic constructions. Horizonal economics can be construed as extending orthodox standards into a realm of time, but for its subtler ramifications. Increasing returns make our relations complementary and not substitutional, loosening the tight deductions from mainstream models of choice. The horizonal extension of our received theory of price applies time to cost and demand curves, showing Marshallian scissors (supply and demand cut outward and downward with expanded horizons. Static conceptions appear in horizonal groups, suggesting complete theories of price should specify agents’ horizons, with no further radical impact: the trouble emerges with increasing returns and complementarity. Horizons stem from unbounded causality; if all we do ripples outward forever in nature and society, the relevant field of inquiry for economics is interdependent: this is the case for bounded rationality as an analytical limit to economic conceptions. In turn, interdependence suggests a use of network constructs to frame complex systemic cascades, and networks open a door to complementarity and increasing returns in transport and information exchange. The gaping maw of increasing returns and

  14. Near-horizon brane-scan revived

    International Nuclear Information System (INIS)

    Duff, M.J.

    2009-01-01

    In 1987 two versions of the brane-scan of D-dimensional super p-branes were put forward. The first pinpointed those (p,D) slots consistent with kappa-symmetric Green-Schwarz type actions; the second generalized the membrane at the end of the universe idea to all those superconformal groups describing p-branes on the boundary of AdS p+2 xS D-p-2 . Although the second version predicted D3- and M5-branes in addition to those of the first, it came unstuck because the 1/2 BPS solitonic branes failed to exhibit the required symmetry enhancement in the near-horizon limit, except in the non-dilatonic cases (p=2,D=11), (p=3,D=10) and (p=5,D=11). Just recently, however, it has been argued that the fundamental D=10 heterotic string does indeed display a near-horizon enhancement to OSp(8|2) as predicted by the brane-scan, provided α' corrections are taken into account. If this logic could be extended to the other strings and branes, it would resolve this 21-year-old paradox and provide a wealth of new AdS/CFT dualities, which we tabulate

  15. Action at the Horizon: Chandra/EHT Observations of Sgr A*

    Science.gov (United States)

    Neilsen, Joseph

    2017-09-01

    In April 2017, the Event Horizon Telescope will observe Sgr A* with imaging quality sufficient to resolve the shadow of the black hole, while providing a close-up view of accretion at the horizon. As Sgr A* is a well-known source of X-ray flares, coordinated Chandra/EHT observations offer an incredible opportunity: a chance to observe structures (e.g., hotspots) near the event horizon while tracking their high-energy variability. In anticipation of a follow-up campaign in 2018, we are requesting 4x33 ks Chandra observations of Sgr A* to be coordinated with EHT. This campaign will double our chances of simultaneous flares. We will search for flares and hotspots, provide priors for EHT image reconstruction, and track any activity associated with the closest approach of the massive star S0-2.

  16. NHEG mechanics: laws of near horizon extremal geometry (thermo)dynamics

    International Nuclear Information System (INIS)

    Hajian, K.; Seraj, A.; Sheikh-Jabbari, M.M.

    2014-01-01

    Near Horizon Extremal Geometries (NHEG) are solutions to gravity theories with SL(2,ℝ)×U(1) N (for some N) symmetry, are smooth geometries and have no event horizon, unlike black holes. Following the ideas by R. M. Wald, we derive laws of NHEG dynamics, the analogs of laws of black hole dynamics for the NHEG. Despite the absence of horizon in the NHEG, one may associate an entropy to the NHEG, as a Noether-Wald conserved charge. We work out “entropy” and “entropy perturbation” laws, which are respectively universal relations between conserved Noether charges corresponding to the NHEG and a system probing the NHEG. Our entropy law is closely related to Sen’s entropy function. We also discuss whether the laws of NHEG dynamics can be obtained from the laws of black hole thermodynamics in the extremal limit

  17. Regional Variability of Cd, Hg, Pb and C Concentrations in Different Horizons of Swedish Forest Soils

    International Nuclear Information System (INIS)

    Alriksson, A.

    2001-01-01

    Contents of cadmium (Cd), mercury (Hg), lead (Pb) and carbon(C) in the O, B and C horizons of podzolized forest soils in Sweden were surveyed. Concentrations and storage of Cd, Hg and Pb in the O and B horizons were high in southern Sweden and gradually decreased towards the north, though with considerable local variability. This pattern reflects the influence of anthropogenic emissions of these metals, as well as the effects of soil-forming processes. Parent till material, as represented by the C horizon concentration of the respective metal, accounted for little of the variation in metal concentration in the O horizon. For Cd and Pb, the correlations were not significant or slightly negative (R 2 = 0.12 and 0.09 respectively) depending on region, while for Hg the correlation was not significant or slightly positive (R 2 = 0.03 and 0.08). Furthermore, parent till material accounted for more of the variation in metal concentrations in the B horizons in the northern part of Sweden than in the middle and southernmost parts, where the concentration of total carbon had more influence. The correlation between the metal concentrations in the B and C horizon was strongest for Pb (R 2 = 0.63 and 0.36 in the two northernmost regions), lower for Cd (R 2 = 0.19 and 0.16) and not significant for Hg. For all soil horizons, total C concentration accounted for much of the variation in Hg concentration in particular (O-horizon R 2 = 0.15-0.69, B horizon R 2 = 0.36-0.50, C horizon R 2 = 0.23-0.50 and ns in one region). Ratios of metal concentrations between the B and C horizons were highest for Hg(maximum value of 30), indicating a relatively larger addition or retention of Hg compared to Cd and Pb (maximum value of 10)in the B horizon. This study indicate that factors other than parent material account for the large scale variation in O horizon concentrations of metals but patterns correspond well with those of atmospheric deposition of heavy metals and acidifying substances

  18. Holographic stress-energy tensor near the Cauchy horizon inside a rotating black hole

    Science.gov (United States)

    Ishibashi, Akihiro; Maeda, Kengo; Mefford, Eric

    2017-07-01

    We investigate a stress-energy tensor for a conformal field theory (CFT) at strong coupling inside a small five-dimensional rotating Myers-Perry black hole with equal angular momenta by using the holographic method. As a gravitational dual, we perturbatively construct a black droplet solution by applying the "derivative expansion" method, generalizing the work of Haddad [Classical Quantum Gravity 29, 245001 (2012), 10.1088/0264-9381/29/24/245001] and analytically compute the holographic stress-energy tensor for our solution. We find that the stress-energy tensor is finite at both the future and past outer (event) horizons and that the energy density is negative just outside the event horizons due to the Hawking effect. Furthermore, we apply the holographic method to the question of quantum instability of the Cauchy horizon since, by construction, our black droplet solution also admits a Cauchy horizon inside. We analytically show that the null-null component of the holographic stress-energy tensor negatively diverges at the Cauchy horizon, suggesting that a singularity appears there, in favor of strong cosmic censorship.

  19. Astrometry of 2014MU69 for New Horizons encounter

    Science.gov (United States)

    Buie, Marc

    2017-08-01

    We propose 12 orbits of time to make high-precision astrometric measurments of the New Horizons extendedmission target, (486958) 2014MU69. These observations are in direct support of the navigation of New Horizonsleading up to its encounter in Jan 2019. These visits represent an optimized plan for improved orbit estimates that willcomplete as the target becomes directly observable by New Horizons. This astrometry is a key element leadingup to a close investigation of a Cold-Classical Kuiper Belt Object, one of the most primitive members of our solarsystem.

  20. Horizon strings and interior states of a black hole

    Directory of Open Access Journals (Sweden)

    K.P. Yogendran

    2015-11-01

    Full Text Available We provide an explicit construction of classical strings that have endpoints on the horizons of the 2D Lorentzian black hole. We argue that this is a dual description of geodesics that are localized around the horizon which are the Lorentzian counterparts of the winding strings of the Euclidean black hole (the cigar geometry. Identifying these with the states of the black hole, we can expect that issues of black hole information loss can be posed sharply in terms of a fully quantizable string theory.

  1. Cauchy horizon stability and mass inflation with a cosmological constant

    International Nuclear Information System (INIS)

    Costa, João L; Girão, Pedro M; Natário, José; Silva, Jorge Drumond

    2015-01-01

    Motivated by the strong cosmic censorship conjecture, we consider the Einstein- Maxwell-scalar field system with a cosmological constant Λ (of any sign), under spherical symmetry, for characteristic initial conditions, with outgoing data prescribed by a (complete) subextremal Reissner-Nordstrom black hole event horizon. We study the structure of the future maximal (globally hyperbolic) development, analyze the mass inflation scenarios, identifying, in particular, large choices of parameters for which the Hawking mass remains bounded, and study the existence of regular extensions. We also discuss why our results, although valid for all signs of Λ, only provide evidence for the failure of strong cosmic censorship in the case of a positive cosmological constant. (paper)

  2. Deepwater Horizon Seafood Safety Oracle Database (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2010, the Deepwater Horizon oil spill occurred in the Gulf of Mexico. In response to this spill, the National Marine Fisheries Service initiated a data collection...

  3. A new simple parameterization of daily clear-sky global solar radiation including horizon effects

    International Nuclear Information System (INIS)

    Lopez, Gabriel; Javier Batlles, F.; Tovar-Pescador, Joaquin

    2007-01-01

    Estimation of clear-sky global solar radiation is usually an important previous stage for calculating global solar radiation under all sky conditions. This is, for instance, a common procedure to derive incoming solar radiation from remote sensing or by using digital elevation models. In this work, we present a new model to calculate daily values of clear-sky global solar irradiation. The main goal is the simple parameterization in terms of atmospheric temperature and relative humidity, Angstroem's turbidity coefficient, ground albedo and site elevation, including a factor to take into account horizon obstructions. This allows us to obtain estimates even though a free horizon is not present as is the case of mountainous locations. Comparisons of calculated daily values with measured data show that this model is able to provide a good level of accurate estimates using either daily or mean monthly values of the input parameters. This new model has also been shown to improve daily estimates against those obtained using the clear-sky model from the European Solar Radiation Atlas and other accurate parameterized daily irradiation models. The introduction of Angstroem's turbidity coefficient and ground albedo should allow us to use the increasing worldwide aerosol information available and to consider those sites affected by snow covers in an easy and fast way. In addition, the proposed model is intended to be a useful tool to select clear-sky conditions

  4. Infinite horizon optimal impulsive control with applications to Internet congestion control

    Science.gov (United States)

    Avrachenkov, Konstantin; Habachi, Oussama; Piunovskiy, Alexey; Zhang, Yi

    2015-04-01

    We investigate infinite-horizon deterministic optimal control problems with both gradual and impulsive controls, where any finitely many impulses are allowed simultaneously. Both discounted and long-run time-average criteria are considered. We establish very general and at the same time natural conditions, under which the dynamic programming approach results in an optimal feedback policy. The established theoretical results are applied to the Internet congestion control, and by solving analytically and nontrivially the underlying optimal control problems, we obtain a simple threshold-based active queue management scheme, which takes into account the main parameters of the transmission control protocols, and improves the fairness among the connections in a given network.

  5. Identifying Disruptive Technologies in Design: Horizon Scanning in the Early Stages of Design

    DEFF Research Database (Denmark)

    Ernstsen, Sidsel Katrine; Thuesen, Christian; Larsen, Laurids Rolighed

    Technology development is accelerating, driving disruption. Design is seen as key differentiator in creating innovative offerings but few design methods consider future technologies explicitly. In this article, we explore how a foresight method, namely horizon scanning, may be applied in a design...... context to anticipate disruption of construction. By means of a 3-step horizon scan, we identify 133 potentially disruptive technologies from across industries. We find that when preparing for disruption, design may benefit from the future-oriented and technology-focused features of horizon scanning....

  6. New Worlds, New Horizons in Astronomy and Astrophysics

    National Research Council Canada - National Science Library

    2010-01-01

    .... Based on a broad and comprehensive survey of scientific opportunities, infrastructure, and organization in a national and international context, New Worlds, New Horizons in Astronomy and Astrophysic...

  7. A nuclear reactor power controller using a receding horizon control method

    International Nuclear Information System (INIS)

    Na, Man Gyun; Sim, Young Rok

    2001-01-01

    A receding horizon control method is applied to design a fully automatic controller for thermal power in a reactor core. The basic concept of the receding horizon control is to solve an optimization problem for a finite future at current time and to implement as the current control input the first optimal control input among the solutions of the finite time steps. The procedure is then repeated at each subsequent instant. The receding horizon controller is designed so that the difference between the output and the desired output is minimized and the variation of the control rod position is small. The nonlinear PWR plant model (nonlinear point kinetics equation with six delayed neutron groups and the lumped thermal-hydraulic balance equations) was used to verify the proposed controller of reactor power. And a controller design model used for designing the receding horizon controller was obtained by applying a parameter estimation algorithm. From numerical simulation results, the performances of this controller for the 5%/min ramp increase or decrease of a desired load and its 10% step increase or decrease which are design requirements are proved to be excellent

  8. Evolution of the cosmological horizons in a universe with countably infinitely many state equations

    Energy Technology Data Exchange (ETDEWEB)

    Margalef-Bentabol, Berta; Cepa, Jordi [Departamento de Astrofísica, Universidad de la Laguna, E-38205 La Laguna, Tenerife (Spain); Margalef-Bentabol, Juan, E-mail: bmb@cca.iac.es, E-mail: juanmargalef@estumail.ucm.es, E-mail: jcn@iac.es [Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2013-02-01

    This paper is the second of two papers devoted to the study of the evolution of the cosmological horizons (particle and event horizons). Specifically, in this paper we consider a general accelerated universe with countably infinitely many constant state equations, and we obtain simple expressions in terms of their respective recession velocities that generalize the previous results for one and two state equations. We also provide a qualitative study of the values of the horizons and their velocities at the origin of the universe and at the far future, and we prove that these values only depend on one dominant state equation. Finally, we compare both horizons and determine when one is larger than the other.

  9. Deep Water Horizon (HB1006, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monitor and measure the biological, chemical, and physical environment in the area of the oil spill from the deep water horizon oil rig in the Gulf of Mexico. A wide...

  10. A general thermodynamical description of the event horizon in the FRW universe

    International Nuclear Information System (INIS)

    Tu, Fei-Quan; Chen, Yi-Xin

    2016-01-01

    The Friedmann equation in the Friedmann-Robertson-Walker (FRW) universe with any spatial curvature is derived from the first law of thermodynamics on the event horizon. The key idea is to redefine a Hawking temperature on the event horizon. Furthermore, we obtain the evolution equations of the universe including the quantum correction and explore the evolution of the universe in f(R) gravity. In addition, we also investigate the generalized second law of thermodynamics in Einstein gravity and f(R) gravity. This perspective also implies that the first law of thermodynamics on the event horizon has a general description in respect of the evolution of the FRW universe. (orig.)

  11. New Horizons Reconnaissance of the Pluto-Charon System and the Kuiper Belt

    CERN Document Server

    Russell, C. T

    2009-01-01

    The New Horizons mission provides the first in situ reconnaissance of the Pluto-Charon System and the Kuiper belt, arguably the last frontier of solar system exploration. This book describes the mission, its objectives, expected results, and instruments in articles written by the scientists and engineers most closely involved. The New Horizons mission is expected to return unique observations and discoveries, which will revolutionize our understanding of the formation of the solar system. This volume is aimed at researchers and graduate students active in planetary science and space exploration, and all other potential users of data obtained by the instruments on board the New Horizons mission.

  12. Horizon structure of rotating Bardeen black hole and particle acceleration

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.; Amir, Muhammed

    2015-01-01

    We investigate the horizon structure and ergosphere in a rotating Bardeen regular black hole, which has an additional parameter (g) due to the magnetic charge, apart from the mass (M) and the rotation parameter (a). Interestingly, for each value of the parameter g, there exists a critical rotation parameter (a = a E ), which corresponds to an extremal black hole with degenerate horizons, while for a < a E it describes a non-extremal black hole with two horizons, and no black hole for a > a E . We find that the extremal value a E is also influenced by the parameter g, and so is the ergosphere. While the value of a E remarkably decreases when compared with the Kerr black hole, the ergosphere becomes thicker with the increase in g.We also study the collision of two equal mass particles near the horizon of this black hole, and explicitly show the effect of the parameter g. The center-of-mass energy (E CM ) not only depend on the rotation parameter a, but also on the parameter g. It is demonstrated that the E CM could be arbitrarily high in the extremal cases when one of the colliding particles has a critical angular momentum, thereby suggesting that the rotating Bardeen regular black hole can act as a particle accelerator. (orig.)

  13. Event Horizon Telescope observations as probes for quantum structure of astrophysical black holes

    Science.gov (United States)

    Giddings, Steven B.; Psaltis, Dimitrios

    2018-04-01

    The need for a consistent quantum evolution for black holes has led to proposals that their semiclassical description is modified not just near the singularity, but at horizon or larger scales. If such modifications extend beyond the horizon, they influence regions accessible to distant observation. Natural candidates for these modifications behave like metric fluctuations, with characteristic length scales and timescales set by the horizon radius. We investigate the possibility of using the Event Horizon Telescope to observe these effects, if they have a strength sufficient to make quantum evolution consistent with unitarity, without introducing new scales. We find that such quantum fluctuations can introduce a strong time dependence for the shape and size of the shadow that a black hole casts on its surrounding emission. For the black hole in the center of the Milky Way, detecting the rapid time variability of its shadow will require nonimaging timing techniques. However, for the much larger black hole in the center of the M87 galaxy, a variable black-hole shadow, if present with these parameters, would be readily observable in the individual snapshots that will be obtained by the Event Horizon Telescope.

  14. Changes in diversity, biomass and abundance of soil macrofauna, Parrotio-Carpinetum forest at organic and semi-organic horizons

    Directory of Open Access Journals (Sweden)

    Masomeh Izadi

    2016-07-01

    Full Text Available Present study evaluates diversity, abundance and biomass of soil macrofauna in organic and semi-organic horizons in Parrotia persica-Carpinus betulus forest in Shast kola area. Totally 70 sample points were randomly selected from organic and semi-organic horizons then sampling was done by a rectangle 100 cm2 area. Soil macrofauna were separated from soil samples by hand sorting and using Berlese funnel then dried at 60°C for 72h and weighted in 0.001 gr. With using taxonomic classification key, thirteen macrofauna orders were identified. Most of abundance of soil macrofauna in both soil horizons were allocated to Millipedes order. Changes in diversity, abundance and biomass of macrofauna in both soil horizons were calculated. The results showed Shannon diversity index, Simpson evenness and Margalef richness indices in semi-organic horizon were more than organic horizon. Abundance and biomass of macrofauna in semi-organic horizon were more than organic horizon.

  15. A deep organic horizon, evidence of inter-stadium Wurm II-III in forest of Fontainebleau

    International Nuclear Information System (INIS)

    Robin, A.M.; Barthelemy, L.

    1996-01-01

    A black horizon with 33 % organic matter and certainly of pedologic origin, at 4 m depth and cryo-perturbed or displaced, was found to be 29-30,000 years old by 14 C dating. The pollen spectrum indicated vegetation representative of his period. The 4 m of overlying sediment are a repetition of different layers, submitted to pedogenic processes. Clayey-sandy horizons were sometimes markedly cryo-perturbed and/or displaced or truncated. The pollen diagram as a whole showed a cycle of sterile horizons and horizons bearing the same vegetation. (authors). 9 refs., 2 figs., 1 tab

  16. Scalar hairy black holes and scalarons in the isolated horizons formalism

    International Nuclear Information System (INIS)

    Corichi, Alejandro; Nucamendi, Ulises; Salgado, Marcelo

    2006-01-01

    The Isolated Horizons (IH) formalism, together with a simple phenomenological model for colored black holes has been used to predict nontrivial formulas that relate the ADM mass of the solitons and hairy Black Holes of Gravity-Matter system on the one hand, and several horizon properties of the black holes in the other. In this article, the IH formalism is tested numerically for spherically symmetric solutions to an Einstein-Higgs system where hairy black holes were recently found to exist. It is shown that the mass formulas still hold and that, by appropriately extending the current model, one can account for the behavior of the horizon properties of these new solutions. An empirical formula that approximates the ADM mass of hairy solutions is put forward, and some of its properties are analyzed

  17. Cool horizons lead to information loss

    Science.gov (United States)

    Chowdhury, Borun D.

    2013-10-01

    There are two evidences for information loss during black hole evaporation: (i) a pure state evolves to a mixed state and (ii) the map from the initial state to final state is non-invertible. Any proposed resolution of the information paradox must address both these issues. The firewall argument focuses only on the first and this leads to order one deviations from the Unruh vacuum for maximally entangled black holes. The nature of the argument does not extend to black holes in pure states. It was shown by Avery, Puhm and the author that requiring the initial state to final state map to be invertible mandates structure at the horizon even for pure states. The proof works if black holes can be formed in generic states and in this paper we show that this is indeed the case. We also demonstrate how models proposed by Susskind, Papadodimas et al. and Maldacena et al. end up making the initial to final state map non-invertible and thus make the horizon "cool" at the cost of unitarity.

  18. THE EVENT HORIZON OF SAGITTARIUS A*

    International Nuclear Information System (INIS)

    Broderick, Avery E.; Loeb, Abraham; Narayan, Ramesh

    2009-01-01

    Black hole event horizons, causally separating the external universe from compact regions of spacetime, are one of the most exotic predictions of general relativity. Until recently, their compact size has prevented efforts to study them directly. Here we show that recent millimeter and infrared observations of Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, all but require the existence of a horizon. Specifically, we show that these observations limit the luminosity of any putative visible compact emitting region to below 0.4% of Sgr A*'s accretion luminosity. Equivalently, this requires the efficiency of converting the gravitational binding energy liberated during accretion into radiation and kinetic outflows to be greater than 99.6%, considerably larger than those implicated in Sgr A*, and therefore inconsistent with the existence of such a visible region. Finally, since we are able to frame this argument entirely in terms of observable quantities, our results apply to all geometric theories of gravity that admit stationary solutions, including the commonly discussed f(R) class of theories.

  19. THE EVENT HORIZON OF SAGITTARIUS A*

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Avery E [Canadian Institute for Theoretical Astrophysics, 60 St. George St., Toronto, ON M5S 3H8 (Canada); Loeb, Abraham; Narayan, Ramesh [Institute for Theory and Computation, Harvard University, Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2009-08-20

    Black hole event horizons, causally separating the external universe from compact regions of spacetime, are one of the most exotic predictions of general relativity. Until recently, their compact size has prevented efforts to study them directly. Here we show that recent millimeter and infrared observations of Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, all but require the existence of a horizon. Specifically, we show that these observations limit the luminosity of any putative visible compact emitting region to below 0.4% of Sgr A*'s accretion luminosity. Equivalently, this requires the efficiency of converting the gravitational binding energy liberated during accretion into radiation and kinetic outflows to be greater than 99.6%, considerably larger than those implicated in Sgr A*, and therefore inconsistent with the existence of such a visible region. Finally, since we are able to frame this argument entirely in terms of observable quantities, our results apply to all geometric theories of gravity that admit stationary solutions, including the commonly discussed f(R) class of theories.

  20. Smooth horizons and quantum ripples

    Energy Technology Data Exchange (ETDEWEB)

    Golovnev, Alexey [Saint Petersburg State University, High Energy Physics Department, Saint-Petersburg (Russian Federation)

    2015-05-15

    Black holes are unique objects which allow for meaningful theoretical studies of strong gravity and even quantum gravity effects. An infalling and a distant observer would have very different views on the structure of the world. However, a careful analysis has shown that it entails no genuine contradictions for physics, and the paradigm of observer complementarity has been coined. Recently this picture was put into doubt. In particular, it was argued that in old black holes a firewall must form in order to protect the basic principles of quantum mechanics. This AMPS paradox has already been discussed in a vast number of papers with different attitudes and conclusions. Here we want to argue that a possible source of confusion is the neglect of quantum gravity effects. Contrary to widespread perception, it does not necessarily mean that effective field theory is inapplicable in rather smooth neighbourhoods of large black hole horizons. The real offender might be an attempt to consistently use it over the huge distances from the near-horizon zone of old black holes to the early radiation. We give simple estimates to support this viewpoint and show how the Page time and (somewhat more speculative) scrambling time do appear. (orig.)

  1. Smooth horizons and quantum ripples

    International Nuclear Information System (INIS)

    Golovnev, Alexey

    2015-01-01

    Black holes are unique objects which allow for meaningful theoretical studies of strong gravity and even quantum gravity effects. An infalling and a distant observer would have very different views on the structure of the world. However, a careful analysis has shown that it entails no genuine contradictions for physics, and the paradigm of observer complementarity has been coined. Recently this picture was put into doubt. In particular, it was argued that in old black holes a firewall must form in order to protect the basic principles of quantum mechanics. This AMPS paradox has already been discussed in a vast number of papers with different attitudes and conclusions. Here we want to argue that a possible source of confusion is the neglect of quantum gravity effects. Contrary to widespread perception, it does not necessarily mean that effective field theory is inapplicable in rather smooth neighbourhoods of large black hole horizons. The real offender might be an attempt to consistently use it over the huge distances from the near-horizon zone of old black holes to the early radiation. We give simple estimates to support this viewpoint and show how the Page time and (somewhat more speculative) scrambling time do appear. (orig.)

  2. New and emerging technologies for the treatment of inherited retinal diseases: a horizon scanning review.

    Science.gov (United States)

    Smith, J; Ward, D; Michaelides, M; Moore, A T; Simpson, S

    2015-09-01

    The horizon scanning review aimed to identify new and emerging technologies in development that have the potential to slow or stop disease progression and/or reverse sight loss in people with inherited retinal diseases (IRDs). Potential treatments were identified using recognized horizon scanning methods. These included a combination of online searches using predetermined search terms, suggestions from clinical experts and patient and carer focus groups, and contact with commercial developers. Twenty-nine relevant technologies were identified. These included 9 gene therapeutic approaches, 10 medical devices, 5 pharmacological agents, and 5 regenerative and cell therapies. A further 11 technologies were identified in very early phases of development (typically phase I or pre-clinical) and were included in the final report to give a complete picture of developments 'on the horizon'. Clinical experts and patient and carer focus groups provided helpful information and insights, such as the availability of specialised services for patients, the potential impacts of individual technologies on people with IRDs and their families, and helped to identify additional relevant technologies. This engagement ensured that important areas of innovation were not missed. Most of the health technologies identified are still at an early stage of development and it is difficult to estimate when treatments might be available. Further, well designed trials that generate data on efficacy, applicability, acceptability, and costs of the technologies, as well as the long-term impacts for various conditions are required before these can be considered for adoption into routine clinical practice.

  3. New perspectives for European climate services: HORIZON2020

    Science.gov (United States)

    Bruning, Claus; Tilche, Andrea

    2014-05-01

    The developing of new end-to-end climate services was one of the core priorities of 7th Framework for Research and Technological Development of the European Commission and will become one of the key strategic priorities of Societal Challenge 5 of HORIZON2020 (the new EU Framework Programme for Research and Innovation 2014-2020). Results should increase the competitiveness of European businesses, and the ability of regional and national authorities to make effective decisions in climate-sensitive sectors. In parallel, the production of new tailored climate information should strengthen the resilience of the European society to climate change. In this perspective the strategy to support and foster the underpinning science for climate services in HORIZON2020 will be presented.

  4. Pricing Liquidity Risk with Heterogeneous Investment Horizons

    NARCIS (Netherlands)

    Beber, A.; Driessen, J.; Tuijp, P.F.A.

    2012-01-01

    We develop a new asset pricing model with stochastic transaction costs and investors with heterogenous horizons. Short-term investors hold only liquid assets in equilibrium. This generates segmentation effects in the pricing of liquid versus illiquid assets. Specifically, the liquidity (risk) premia

  5. Stabilising the Integrity of Snake Venom mRNA Stored under Tropical Field Conditions Expands Research Horizons.

    Directory of Open Access Journals (Sweden)

    Gareth Whiteley

    2016-06-01

    Full Text Available Snake venoms contain many proteinaceous toxins that can cause severe pathology and mortality in snakebite victims. Interestingly, mRNA encoding such toxins can be recovered directly from venom, although yields are low and quality is unknown. It also remains unclear whether such RNA contains information about toxin isoforms and whether it is representative of mRNA recovered from conventional sources, such as the venom gland. Answering these questions will address the feasibility of using venom-derived RNA for future research relevant to biomedical and antivenom applications.Venom was extracted from several species of snake, including both members of the Viperidae and Elapidae, and either lyophilized or immediately added to TRIzol reagent. TRIzol-treated venom was incubated at a range of temperatures (4-37°C for a range of durations (0-48 hours, followed by subsequent RNA isolation and assessments of RNA quantity and quality. Subsequently, full-length toxin transcripts were targeted for PCR amplification and Sanger sequencing. TRIzol-treated venom yielded total RNA of greater quantity and quality than lyophilized venom, and with quality comparable to venom gland-derived RNA. Full-length sequences from multiple Viperidae and Elapidae toxin families were successfully PCR amplified from TRIzol-treated venom RNA. We demonstrated that venom can be stored in TRIzol for 48 hours at 4-19°C, and 8 hours at 37°C, at minimal cost to RNA quality, and found that venom RNA encoded multiple toxin isoforms that seemed homologous (98-99% identity to those found in the venom gland.The non-invasive experimental modifications we propose will facilitate the future investigation of venom composition by using venom as an alternative source to venom gland tissue for RNA-based studies, thus obviating the undesirable need to sacrifice snakes for such research purposes. In addition, they expand research horizons to rare, endangered or protected snake species and provide

  6. Near-horizon solutions for D3-branes ending on 5-branes

    International Nuclear Information System (INIS)

    Aharony, Ofer; Berdichevsky, Leon; Berkooz, Micha; Shamir, Itamar

    2011-01-01

    We construct the type IIB supergravity solutions describing D3-branes ending on 5-branes, in the near-horizon limit of the D3-branes. Our solutions are holographically dual to the four dimensional (4D) N=4 SU(N) supersymmetric-Yang-Mills (SYM) theory on a half line, at large N and large 't Hooft coupling, with various boundary conditions that preserve half of the supersymmetry. The solutions are limiting cases of the general solutions with the same symmetries constructed in 2007 by D'Hoker, Estes and Gutperle. The classification of our solutions matches exactly with the general classification of boundary conditions for D3-branes ending on 5-branes by Gaiotto and Witten. We use the gravity duals to compute the one-point functions of some chiral operators in the N=4 SYM theory on a half line at strong coupling, and we find that they do not match with the expectation values of the same operators with the same boundary conditions at small 't Hooft coupling. Our solutions may also be interpreted as the gravity duals of 4D N=4 SYM on AdS 4 , with various boundary conditions.

  7. Information loss problem and a ‘black hole’ model with a closed apparent horizon

    International Nuclear Information System (INIS)

    Frolov, Valeri P.

    2014-01-01

    In a classical description the spacetime curvature inside a black hole infinitely grows. In the domain where it reaches the Planckian value and exceeds it the Einstein equations should be modified. In the absence of reliable theory of quantum gravity it is instructive to consider simplified models. We assume that a spacetime curvature is limited by some value (of the order of the Planckian one). We use modified Vaidya metric, proposed by Hayward, to describe the black hole evaporation process. In such a spacetime the curvature near r=0 remains finite, it does not have an event horizon and its apparent horizon is closed. If the initial mass of such a ‘black hole’ is much larger than the Planckian one its properties (as seen by an external observer) are practically the same as properties of the ‘standard’ black hole with the event horizon. We study outgoing null rays in the vicinity of the outer apparent horizon and introduce a notion of a quasi-horizon. We demonstrate that particles, trapped inside a ‘black hole’ during the evaporation process, finally may return to external space after the evaporation is completed. We also demonstrate that such quanta would have very large blue-shift. The absence of the event horizon makes it possible restoration of the unitarity in evaporating black holes

  8. Anomalous current in periodic Lorentz gases with infinite horizon

    Energy Technology Data Exchange (ETDEWEB)

    Dolgopyat, Dmitrii I [University of Maryland, College Park (United States); Chernov, Nikolai I [University of Alabama at Birmingham, Birmingham, Alabama (United States)

    2009-08-31

    Electric current is studied in a two-dimensional periodic Lorentz gas in the presence of a weak homogeneous electric field. When the horizon is finite, that is, free flights between collisions are bounded, the resulting current J is proportional to the voltage difference E, that is, J=1/2 D*E+o(||E||), where D* is the diffusion matrix of a Lorentz particle moving freely without an electric field (see a mathematical proof). This formula agrees with Ohm's classical law and the Einstein relation. Here the more difficult model with an infinite horizon is investigated. It is found that infinite corridors between scatterers allow the particles (electrons) to move faster, resulting in an abnormal current (causing 'superconductivity'). More precisely, the current is now given by J=1/2 DE| log||E|| | + O(||E||), where D is the 'superdiffusion' matrix of a Lorentz particle moving freely without an electric field. This means that Ohm's law fails in this regime, but the Einstein relation (suitably interpreted) still holds. New results are also obtained for the infinite-horizon Lorentz gas without external fields, complementing recent studies by Szasz and Varju. Bibliography: 31 titles.

  9. Anomalous current in periodic Lorentz gases with infinite horizon

    International Nuclear Information System (INIS)

    Dolgopyat, Dmitrii I; Chernov, Nikolai I

    2009-01-01

    Electric current is studied in a two-dimensional periodic Lorentz gas in the presence of a weak homogeneous electric field. When the horizon is finite, that is, free flights between collisions are bounded, the resulting current J is proportional to the voltage difference E, that is, J=1/2 D*E+o(||E||), where D* is the diffusion matrix of a Lorentz particle moving freely without an electric field (see a mathematical proof). This formula agrees with Ohm's classical law and the Einstein relation. Here the more difficult model with an infinite horizon is investigated. It is found that infinite corridors between scatterers allow the particles (electrons) to move faster, resulting in an abnormal current (causing 'superconductivity'). More precisely, the current is now given by J=1/2 DE| log||E|| | + O(||E||), where D is the 'superdiffusion' matrix of a Lorentz particle moving freely without an electric field. This means that Ohm's law fails in this regime, but the Einstein relation (suitably interpreted) still holds. New results are also obtained for the infinite-horizon Lorentz gas without external fields, complementing recent studies by Szasz and Varju. Bibliography: 31 titles.

  10. Identifying Disruptive Technologies in Design: Horizon Scanning in the Early Stages of Design

    DEFF Research Database (Denmark)

    Ernstsen, Sidsel Katrine; Thuesen, Christian; Larsen, Laurids Rolighed

    context to anticipate disruption of construction. By means of a 3-step horizon scan, we identify 133 potentially disruptive technologies from across industries. We find that when preparing for disruption, design may benefit from the future-oriented and technology-focused features of horizon scanning....

  11. Short-horizon regulation for long-term investors

    NARCIS (Netherlands)

    Shi, Z.; Werker, B.J.M.

    2012-01-01

    We study the effects of imposing repeated short-horizon regulatory constraints on long-term investors. We show that Value-at-Risk and Expected Shortfall constraints, when imposed dynamically, lead to similar optimal portfolios and wealth distributions. We also show that, in utility terms, the costs

  12. Asymptotic symmetries on the Kerr-Newman horizon without the anomaly of diffeomorphism invariance

    International Nuclear Information System (INIS)

    Koga, Jun-ichirou

    2008-01-01

    We analyze asymptotic symmetries on the Killing horizon of the four-dimensional Kerr-Newman black hole. We first derive the asymptotic Killing vectors on the Killing horizon, which describe the asymptotic symmetries, and find that the general form of these asymptotic Killing vectors is the universal one possessed by arbitrary Killing horizons. We then construct the phase space associated with the asymptotic symmetries. It is shown that the phase space of an extreme black hole either has the size comparable with a non-extreme black hole, or is small enough to exclude degeneracy, depending on whether or not the global structure of a Killing horizon particular to an extreme black hole is respected. We also show that the classical central charge in the Poisson brackets algebra of these asymptotic symmetries vanishes, which implies that there is not an anomaly of diffeomorphism invariance. By taking into account other results in the literature, we argue that the vanishing central charge on a black hole horizon, in an effective theory, looks consistent with the thermal feature of a black hole. We furthermore argue that the vanishing central charge implies that there are sufficiently many classical configurations that constitute a single macroscopic state, while these configurations are distinguished physically

  13. Numerical Tests of the Cosmic Censorship Conjecture via Event-Horizon Finding

    Science.gov (United States)

    Okounkova, Maria; Ott, Christian; Scheel, Mark; Szilagyi, Bela

    2015-04-01

    We present the current state of our research on the possibility of naked singularity formation in gravitational collapse, numerically testing both the cosmic censorship conjecture and the hoop conjecture. The former of these posits that all singularities lie behind an event horizon, while the later conjectures that this is true if collapse occurs from an initial configuration with all circumferences C <= 4 πM . We reconsider the classical Shapiro & Teukolsky (1991) prolate spheroid naked singularity scenario. Using the exponentially error-convergent Spectral Einstein Code (SpEC) we simulate the collapse of collisionless matter and probe for apparent horizons. We propose a new method to probe for the existence of an event horizon by following characteristic from regions near the singularity, using methods commonly employed in Cauchy characteristic extraction. This research was partially supported by NSF under Award No. PHY-1404569.

  14. Joint horizon scanning: identifying common strategic choices and questions for knowledge

    OpenAIRE

    Victor van Rij

    2010-01-01

    Over the past decade, horizon scanning has been recognised as part of forward-looking government processes in a number of industrialised countries. It helps policy-makers in addressing the diversity of future societal and environmental challenges and in addressing the potential of emerging areas of science and technology in an integrated way. This paper discusses the usefulness of horizon scanning as an additional tool for future-oriented technology analysis activities, such as technology for...

  15. Fe-Ni-bearing serpentines from the saprolite horizon of Caribbean Ni-laterite deposits: new insights from thermodynamic calculations

    Science.gov (United States)

    Villanova-de-Benavent, Cristina; Domènech, Cristina; Tauler, Esperança; Galí, Salvador; Tassara, Santiago; Proenza, Joaquín A.

    2017-10-01

    Fe-Ni-bearing serpentine from the saprolite horizon is the main Ni ores in hydrous silicate-type Ni laterites and formed by chemical weathering of partially serpentinized ultramafic rocks under tropical conditions. During lateritization, Mg, Si, and Ni are leached from the surface and transported downwards. Fe2+ is oxidized to Fe3+ and fixed as insoluble Fe-oxyhydroxides (mostly goethite) that incorporate Ni. This Ni is later leached from goethite and incorporated in secondary serpentine and garnierite. As a result, a serpentine-dominated saprolite horizon forms over the ultramafic protolith, overlapped by a Fe-oxyhydroxide-dominated limonite horizon. The serpentine from the protolith (serpentine I) is of hydrothermal origin and yields similar Ni (0.10-0.62 wt.% NiO) and lower Fe (mostly 1.37-5.81 wt.% FeO) concentrations than the primary olivine. In contrast, Fe-Ni-bearing serpentine from the saprolite (serpentine II) shows significantly higher and variable Fe and Ni contents, typically ranging from 2.23 to 15.59 wt.% Fe2O3 and from 1.30 to 7.67 wt.% NiO, suggesting that serpentine get enriched in Fe and Ni under supergene conditions. This study presents detailed mineralogical, textural, and chemical data on this serpentine II, as well as new insights by thermodynamic calculations assuming ideal solution between Fe-, Ni- and Mg-pure serpentines. The aim is to assess if at atmospheric pressure and temperature Fe-Ni-bearing serpentine can be formed by precipitation. Results indicate that the formation of serpentine II under atmospheric pressure and temperature is thermodynamically supported, and pH, Eh, and the equilibrium constant of the reaction are the parameters that affect the results more significantly.

  16. Pedogenetic processes in anthrosols with pretic horizon (Amazonian Dark Earth in Central Amazon, Brazil.

    Directory of Open Access Journals (Sweden)

    Rodrigo S Macedo

    Full Text Available Anthrosols known as Amazonian Dark Earth (ADE have borne witness to the intensification of sedentary patterns and the demographic increase in Central Amazon. As a result, a recurring pattern has been observed of mounds with ADE arising from domestic activities and the disposal of waste. The objective of this research was to demonstrate the relationship of these anthropic activities with pedogenetic formation processes of ADE in the municipality of Iranduba, Brazil. Disturbed and undisturbed soil samples were taken from two areas of ADE (pretic horizon and from a non-anthropic pedon. Physical, chemical, micromorphological and SEM-EDS analyses were performed. The coarse material of the pretic horizons consisted predominantly of quartz, iron nodules, ceramics and charcoal fragments, and the fine material is organo-mineral. There was a direct relationship between the color of pretic horizons and the number of charcoal fragments. The thickness of the ADE results from the redistribution of charcoal at depth through bioturbation, transforming subsurface horizons into anthropic horizons. ADE presents granular microaggregates of geochemical and zoogenetic origin. Degradation of iron nodules is intensified in pretic horizons, promoting a reverse pedogenic process contributing to the xanthization process. Surprisingly the anthropic activities also favor clay dispersion and argilluviation; clay coatings on the ceramic fragments and in the pores demonstrate that this is a current process. Processes identified as contributing to ADE genesis included: i addition of organic residues and ceramic artifacts (cumulization with the use of fire; ii mechanical action of humans, roots and macrofauna (bioturbation; iii melanization of deeper horizons as a result of bioturbation; iv argilluviation and degradation of iron nodules. This study offers new support to archaeological research in respect to ADE formation processes in Central Amazon and confirmed the hypothesis

  17. Inner cauchy horizon of axisymmetric and stationary black holes with surrounding matter in einstein-maxwell theory.

    Science.gov (United States)

    Ansorg, Marcus; Hennig, Jörg

    2009-06-05

    We study the interior electrovacuum region of axisymmetric and stationary black holes with surrounding matter and find that there exists always a regular inner Cauchy horizon inside the black hole, provided the angular momentum J and charge Q of the black hole do not vanish simultaneously. In particular, we derive an explicit relation for the metric on the Cauchy horizon in terms of that on the event horizon. Moreover, our analysis reveals the remarkable universal relation (8piJ);{2}+(4piQ;{2});{2}=A;{+}A;{-}, where A+ and A- denote the areas of event and Cauchy horizon, respectively.

  18. The effect of sources on horizons that may develop when plane gravitational waves collide

    International Nuclear Information System (INIS)

    Chandrasekhar, Subrahmanyan; Xanthopoulos, B.C.

    1987-01-01

    Colliding plane gravitational waves that lead to the development of a horizon and a subsequent time-like singularity are coupled with an electromagnetic field, a perfect fluid, and null dust (consisting of massless particles). The coupling of the gravitational waves with an electromagnetic field does not affect, in any essential way, the development of the horizon or the time-like singularity if the polarizations of the colliding gravitational waves are not parallel. If the polarizations are parallel, the space-like singularity which occurs in the vacuum is transformed into a horizon followed by a three-dimensional time-like singularity by the merest presence of the electromagnetic field. The coupling of the gravitational waves with a perfect fluid and null dust affect the development of horizons and singularities in radically different ways: the perfect fluid affects the development decisively in all cases but qualitatively in the same way, while null dust prevents the development of horizons and allows only the development of space-like singularities. The contrasting behaviours of a perfect fluid and of null dust in the framework of general relativity is compared with the behaviours one may expect, under similar circumstances, in the framework of special relativity. (author)

  19. Is the Gravitational-Wave Ringdown a Probe of the Event Horizon?

    Science.gov (United States)

    Cardoso, Vitor; Franzin, Edgardo; Pani, Paolo

    2016-04-29

    It is commonly believed that the ringdown signal from a binary coalescence provides a conclusive proof for the formation of an event horizon after the merger. This expectation is based on the assumption that the ringdown waveform at intermediate times is dominated by the quasinormal modes of the final object. We point out that this assumption should be taken with great care, and that very compact objects with a light ring will display a similar ringdown stage, even when their quasinormal-mode spectrum is completely different from that of a black hole. In other words, universal ringdown waveforms indicate the presence of light rings, rather than of horizons. Only precision observations of the late-time ringdown signal, where the differences in the quasinormal-mode spectrum eventually show up, can be used to rule out exotic alternatives to black holes and to test quantum effects at the horizon scale.

  20. A Receding Horizon Controller for the Steam Generator Water Level

    International Nuclear Information System (INIS)

    Na, Man Gyun; Lee, Yoon Joon

    2003-01-01

    In this work, the receding horizon control method was used to control the water level of nuclear steam generators and applied to two linear models and also a nonlinear model of steam generators. A receding horizon control method is to solve an optimization problem for finite future steps at current time and to implement the first optimal control input as the current control input. The procedure is then repeated at each subsequent instant. The dynamics of steam generators is very different according to power levels. The receding horizon controller is designed by using a reduced linear steam generator model fixed over a certain power range and applied to a Westinghouse-type (U-tube recirculating type) nuclear steam generator. The proposed controller designed at a fixed power level shows good performance for any other power level within this power range. The steam generator shows actually nonlinear characteristics. Therefore, the proposed algorithm is implemented for a nonlinear model of the nuclear steam generator to verify its real performance and also shows good responses

  1. Air Sampling Data for BP Spill/Deepwater Horizon

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following...

  2. Waste Sampling Data for BP Spill/Deepwater Horizon

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following...

  3. Air Monitoring Data for BP Spill/Deepwater Horizon

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following...

  4. Water Sampling Data for BP Spill/Deepwater Horizon

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following...

  5. Sediment Sampling Data for BP Spill/Deepwater Horizon

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following...

  6. Sighting Horizons of Teaching in Higher Education

    Science.gov (United States)

    Barnett, Ronald; Guzmán-Valenzuela, Carolina

    2017-01-01

    This conceptual paper tackles the matter of teaching in higher education and proposes a concept of "horizons of teaching." It firstly offers an overview of the considerable empirical literature around teaching--especially conceptions of teaching, approaches to teaching and teaching practices--and goes on to pose some philosophical and…

  7. The NMC Horizon Report: 2013 Museum Edition

    Science.gov (United States)

    Johnson, L.; Adams Becker, S.; Freeman, A.

    2013-01-01

    The "NMC Horizon Report: 2013 Museum Edition," is a co-production with the Marcus Institute for Digital Education in the Arts (MIDEA), and examines six emerging technologies for their potential impact on and use in education and interpretation within the museum environment: BYOD (Bring Your Own Device), crowdsourcing, electronic…

  8. Rolling-horizon replenishment : Policies and performance analysis

    NARCIS (Netherlands)

    Lian, Z.; Liu, L.; Zhu, Stuart X.

    We consider a rolling-horizon (RH) replenishment modeling framework under which a buyer can update demand information and inventory status, modify order quantities committed previously, place an advanced order for a new period at the end of the RH, and move along in time seamlessly. We show that the

  9. Artificial horizon effects on motion sickness and performance.

    Science.gov (United States)

    Tal, Dror; Gonen, Adi; Wiener, Guy; Bar, Ronen; Gil, Amnon; Nachum, Zohar; Shupak, Avi

    2012-07-01

    To investigate whether the projection of Earth-referenced scenes during provocative motion can alleviate motion sickness severity and prevent motion sickness-induced degradation of performance. Exposure to unfamiliar motion patterns commonly results in motion sickness and decreased performance. Thirty subjects with moderate-to-severe motion sickness susceptibility were exposed to the recorded motion profile of a missile boat under moderate sea conditions in a 3-degrees-of-freedom ship motion simulator. During a 120-minute simulated voyage, the study participants were repeatedly put through a performance test battery and completed a motion sickness susceptibility questionnaire, while self-referenced and Earth-referenced visual scenes were projected inside the closed simulator cabin. A significant decrease was found in the maximal motion sickness severity score, from 9.83 ± 9.77 (mean ± standard deviation) to 7.23 ± 7.14 (p pitch, and heave movements of the simulator. Although there was a significant decrease in sickness severity, substantial symptoms still persisted. Decision making, vision, concentration, memory, simple reasoning, and psychomotor skills all deteriorated under the motion conditions. However, no significant differences between the projection conditions could be found in the scores of any of the performance tests. Visual information regarding the vessel's movement provided by an artificial horizon device might decrease motion sickness symptoms. However, although this device might be suitable for passive transportation, the continued deterioration in performance measures indicates that it provides no significant advantage for personnel engaged in the active operation of modern vessels.

  10. A theory of planning horizons (1: market design in a post-neoclassical world

    Directory of Open Access Journals (Sweden)

    Frederic B. Jennings, Jr.

    2012-05-01

    Full Text Available The neoclassical case supporting competitive frames and market solutions has failed to promote stable world-wide economic development. Other approaches in economics incorporate social culture, increasing returns, market power, ecological limits and complementarity, yielding broader applications for development theory. In this paper a theory of planning horizons is introduced to raise some meaningful questions about the traditional view with respect to its substitution, decreasing returns and independence assumptions. Suppositions of complementarity, increasing returns and interdependence suggest that competition is inefficient by upholding a myopic culture resistant to learning. Growth – though long believed to rise from markets and competitive values – may not derive from these sources. Instead, as civilizations advance, shifting from material wants to higher-order intangible output, they evolve from market tradeoffs (substitution and scarcity into realms of common need (complementarity and abundance. The policy implications of horizonal theory are explored, with respect to regulatory aims and economic concerns. Such an approach emphasizes strict constraints against entry barriers, ecological harm, market power abuse and ethical lapses. Social cohesion – not competition – is sought as a means to extend horizons and thereby increase efficiency, equity and ecological health. The overriding importance of horizon effects for regulatory assessment dominates other orthodox standards in economics and law. Reframing economics along horizonal lines suggests some meaningful insight on the proper design of economic systems.

  11. Evolution of the cosmological horizons in a concordance universe

    Energy Technology Data Exchange (ETDEWEB)

    Margalef-Bentabol, Berta; Cepa, Jordi [Departamento de Astrofísica, Universidad de la Laguna, E-38205 La Laguna, Tenerife (Spain); Margalef-Bentabol, Juan, E-mail: bmb@cca.iac.es, E-mail: juanmargalef@estumail.ucm.es, E-mail: jcn@iac.es [Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid (Spain)

    2012-12-01

    The particle and event horizons are widely known and studied concepts, but the study of their properties, in particular their evolution, have only been done so far considering a single state equation in a decelerating universe. This paper is the first of two where we study this problem from a general point of view. Specifically, this paper is devoted to the study of the evolution of these cosmological horizons in an accelerated universe with two state equations, cosmological constant and dust. We have obtained simple expressions in terms of their respective recession velocities that generalize the previous results for one state equation only. With the equations of state considered, it is proved that both velocities remain always positive.

  12. Hawking Radiation from Horizons of Reissner-Nordstroem de Sitter Black Hole with a Global Monopole via Anomalies

    International Nuclear Information System (INIS)

    Chen Shiwu; Liu Xiongwei; Lin Kai; Zeng Xiaoxiong; Yang Shuzheng

    2008-01-01

    Hawking radiation from cosmological horizon and event horizon of the Reissner-Nordstroem de Sitter black hole with a global monopole is studied via a new method that was propounded by Robinson and Wilzek and elaborated by Banerjee and Kulkarni. The results show that the gauge current and energy-momentum tensor fluxes, which required keeping gauge covariance and general coordinate invariance at the quantum level in the effective field theory, are exactly equivalent to those of Hawking radiation from the event horizon and the cosmological horizon, respectively

  13. VMware Horizon 6 desktop virtualization solutions

    CERN Document Server

    Cartwright, Ryan; Langone, Jason; Leibovici, Andre

    2014-01-01

    If you are a desktop architect, solution provider, end-user consultant, virtualization engineer, or anyone who wants to learn how to plan and design the implementation of a virtual desktop solution based on Horizon 6, then this book is for you. An understanding of VMware vSphere fundamentals coupled with experience in the installation or administration of a VMware environment would be a plus during reading.

  14. Thermal ambience of expanding event horizon in Minkowski space-time

    International Nuclear Information System (INIS)

    Gerlach, U.H.

    1983-01-01

    It is shown that in flat space-time the thermal ambience of accelerated observers is not associated exclusively with flat event horizons, but arises also with (observer-dependent) event horizons that are light cones. The quanta of this ambience are characterized by a generalized frequency which identifies the representation of the Lorentz group. Global and local model detectors capable of responding to quanta of any given generalized frequency are exhibited. The discussion of the thermal ambience is implemented in terms of a partial-wave analysis using a set of harmonics on the hyperboloid x 2 +y 2 +z 2 -t 2 = 1

  15. Horizon wave-function and the quantum cosmic censorship

    Directory of Open Access Journals (Sweden)

    Roberto Casadio

    2015-07-01

    Full Text Available We investigate the Cosmic Censorship Conjecture by means of the horizon wave-function (HWF formalism. We consider a charged massive particle whose quantum mechanical state is represented by a spherically symmetric Gaussian wave-function, and restrict our attention to the superextremal case (with charge-to-mass ratio α>1, which is the prototype of a naked singularity in the classical theory. We find that one can still obtain a normalisable HWF for α22, and the uncertainty in the location of the horizon blows up at α2=2, signalling that such an object is no more well-defined. This perhaps implies that a quantum Cosmic Censorship might be conjectured by stating that no black holes with charge-to-mass ratio greater than a critical value (of the order of 2 can exist.

  16. Sufficient condition for black-hole formation in spherical gravitational collapse

    International Nuclear Information System (INIS)

    Giambo, Roberto; Giannoni, Fabio; Magli, Giulio

    2002-01-01

    A sufficient condition for the validity of cosmic censorship in spherical gravitational collapse is formulated and proved. The condition relies on an attractive mathematical property of the apparent horizon, which holds if 'minimal' requirements of physical reasonableness are satisfied by the matter model. (letter to the editor)

  17. 75 FR 36773 - Pipeline Safety: Updating Facility Response Plans in Light of the Deepwater Horizon Oil Spill

    Science.gov (United States)

    2010-06-28

    ... have been, or are subsequently relocated to the Gulf to respond to the Deepwater Horizon event should.... PHMSA-2010-0175] Pipeline Safety: Updating Facility Response Plans in Light of the Deepwater Horizon Oil... 194. In light of the Deepwater Horizon oil spill in the Gulf of Mexico, which has resulted in the...

  18. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  19. Receding-horizon control for max-plus linear systems with discrete actions using optimistic planning

    NARCIS (Netherlands)

    Xu, J.; Busoniu, L; van den Boom, A.J.J.; De Schutter, B.H.K.; Cassandras, Christos G.; Giua, Alessandro; Li, Zhiwu

    2016-01-01

    This paper addresses the infinite-horizon optimal control problem for max-plus linear systems where the considered objective function is a sum of discounted stage costs over an infinite horizon. The minimization problem of the cost function is equivalently transformed into a maximization problem of

  20. Research Ship New Horizon Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship New Horizon Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  1. Sufficient condition for black-hole formation in spherical gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Giambo, Roberto [Dipartimento di Matematica e Fisica, Universita di Camerino (Italy); Giannoni, Fabio [Dipartimento di Matematica e Fisica, Universita di Camerino (Italy); Magli, Giulio [Dipartimento di Matematica, Politecnico di Milano (Italy)

    2002-01-21

    A sufficient condition for the validity of cosmic censorship in spherical gravitational collapse is formulated and proved. The condition relies on an attractive mathematical property of the apparent horizon, which holds if 'minimal' requirements of physical reasonableness are satisfied by the matter model. (letter to the editor)

  2. Accelerated detectors and worldsheet horizons in AdS/CFT

    Science.gov (United States)

    Chernicoff, Mariano; Paredes, Angel

    2011-03-01

    We use the AdS/CFT correspondence to discuss the response of an accelerated observer to the quantum vacuum fluctuations. In particular, we study heavy quarks probing a strongly coupled CFT by analysing strings moving in AdS. We propose that, in this context, a non-trivial detection rate is associated to the existence of a worldsheet horizon and we find an Unruh-like expression for the worldsheet temperature. Finally, by examining a rotating string in global AdS we find that there is a transition between string embeddings with and without worldsheet horizon. The dual picture corresponds to having non-trivial or trivial interaction with the quantum vacuum respectively. This is in qualitative agreement with results of Davies et al.

  3. Casimir effect and thermodynamics of horizon instabilities

    International Nuclear Information System (INIS)

    Hartnoll, Sean A.

    2004-01-01

    We propose a dual thermodynamic description of a classical instability of generalized black hole spacetimes. From a thermodynamic perspective, the instability is due to negative compressibility in regions where the Casimir pressure is large. The argument indicates how the correspondence between thermodynamic and classical instability for horizons may be extended to cases without translational invariance

  4. The Hydrologic Implications Of Unique Urban Soil Horizon Sequencing On The Functions Of Passive Green Infrastructure

    Science.gov (United States)

    Shuster, W.; Schifman, L. A.; Herrmann, D.

    2017-12-01

    Green infrastructure represents a broad set of site- to landscape-scale practices that can be flexibly implemented to increase sewershed retention capacity, and can thereby improve on the management of water quantity and quality. Although much green infrastructure presents as formal engineered designs, urbanized landscapes with highly-interspersed pervious surfaces (e.g., right-of-way, parks, lawns, vacant land) may offer ecosystem services as passive, infiltrative green infrastructure. Yet, infiltration and drainage processes are regulated by soil surface conditions, and then the layering of subsoil horizons, respectively. Drawing on a unique urban soil taxonomic and hydrologic dataset collected in 12 cities (each city representing a major soil order), we determined how urbanization processes altered the sequence of soil horizons (compared to pre-urbanized reference soil pedons) and modeled the hydrologic implications of these shifts in layering with an unsaturated zone code (HYDRUS2D). We found that the different layering sequences in urbanized soils render different types and extents of supporting (plant-available soil water), provisioning (productive vegetation), and regulating (runoff mitigation) ecosystem services.

  5. Energy and information near black hole horizons

    International Nuclear Information System (INIS)

    Freivogel, Ben

    2014-01-01

    The central challenge in trying to resolve the firewall paradox is to identify excitations in the near-horizon zone of a black hole that can carry information without injuring a freely falling observer. By analyzing the problem from the point of view of a freely falling observer, I arrive at a simple proposal for the degrees of freedom that carry information out of the black hole. An infalling observer experiences the information-carrying modes as ingoing, negative energy excitations of the quantum fields. In these states, freely falling observers who fall in from infinity do not encounter a firewall, but freely falling observers who begin their free fall from a location close to the horizon are ''frozen'' by a flux of negative energy. When the black hole is ''mined,'' the number of information-carrying modes increases, increasing the negative energy flux in the infalling frame without violating the equivalence principle. Finally, I point out a loophole in recent arguments that an infalling observer must detect a violation of unitarity, effective field theory, or free infall

  6. Isolated Horizons and Black Hole Entropy in Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Jacobo Diaz-Polo

    2012-08-01

    Full Text Available We review the black hole entropy calculation in the framework of Loop Quantum Gravity based on the quasi-local definition of a black hole encoded in the isolated horizon formalism. We show, by means of the covariant phase space framework, the appearance in the conserved symplectic structure of a boundary term corresponding to a Chern-Simons theory on the horizon and present its quantization both in the U(1 gauge fixed version and in the fully SU(2 invariant one. We then describe the boundary degrees of freedom counting techniques developed for an infinite value of the Chern-Simons level case and, less rigorously, for the case of a finite value. This allows us to perform a comparison between the U(1 and SU(2 approaches and provide a state of the art analysis of their common features and different implications for the entropy calculations. In particular, we comment on different points of view regarding the nature of the horizon degrees of freedom and the role played by the Barbero-Immirzi parameter. We conclude by presenting some of the most recent results concerning possible observational tests for theory.

  7. Symmetry enhancement of extremal horizons in D  =  5 supergravity

    Science.gov (United States)

    Kayani, U.

    2018-06-01

    We consider the near-horizon geometry of supersymmetric extremal black holes in un-gauged and gauged 5-dimensional supergravity, coupled to abelian vector multiplets. By analyzing the global properties of the Killing spinors, we prove that the near-horizon geometries undergo a supersymmetry enhancement. This follows from a set of generalized Lichnerowicz-type theorems we establish, together with an index theory argument. As a consequence, these solutions always admit a symmetry group.

  8. Can geodesics in extra dimensions solve the cosmological horizon problem?

    International Nuclear Information System (INIS)

    Chung, Daniel J. H.; Freese, Katherine

    2000-01-01

    We demonstrate a non-inflationary solution to the cosmological horizon problem in scenarios in which our observable universe is confined to three spatial dimensions (a three-brane) embedded in a higher dimensional space. A signal traveling along an extra-dimensional null geodesic may leave our three-brane, travel into the extra dimensions, and subsequently return to a different place on our three-brane in a shorter time than the time a signal confined to our three-brane would take. Hence, these geodesics may connect distant points which would otherwise be ''outside'' the four dimensional horizon (points not in causal contact with one another). (c) 2000 The American Physical Society

  9. Quasilocal energy, Komar charge and horizon for regular black holes

    International Nuclear Information System (INIS)

    Balart, Leonardo

    2010-01-01

    We study the Brown-York quasilocal energy for regular black holes. We also express the identity that relates the difference of the Brown-York quasilocal energy and the Komar charge at the horizon to the total energy of the spacetime for static and spherically symmetric black hole solutions in a convenient way which permits us to understand why this identity is not satisfied when we consider nonlinear electrodynamics. However, we give a relation between quantities evaluated at the horizon and at infinity when nonlinear electrodynamics is considered. Similar relations are obtained for more general static and spherically symmetric black hole solutions which include solutions of dilaton gravity theories.

  10. Highly damped quasinormal modes of generic single-horizon black holes

    Energy Technology Data Exchange (ETDEWEB)

    Daghigh, Ramin G [Physics Department, University of Winnipeg, Winnipeg, Manitoba R3B 2E9 (Canada); Kunstatter, Gabor [Winnipeg Institute for Theoretical Physics, Winnipeg, Manitoba (Canada)

    2005-10-07

    We calculate analytically the highly damped quasinormal mode spectra of generic single-horizon black holes using the rigorous WKB techniques of Andersson and Howls (2004 Class. Quantum Grav. 21 1623). We thereby provide a firm foundation for previous analysis, and point out some of their possible limitations. The numerical coefficient in the real part of the highly damped frequency is generically determined by the behaviour of coupling of the perturbation to the gravitational field near the origin, as expressed in tortoise coordinates. This fact makes it difficult to understand how the famous ln(3) could be related to the quantum gravitational microstates near the horizon.

  11. The finite horizon economic lot sizing problem in job shops : the multiple cycle approach

    NARCIS (Netherlands)

    Ouenniche, J.; Bertrand, J.W.M.

    2001-01-01

    This paper addresses the multi-product, finite horizon, static demand, sequencing, lot sizing and scheduling problem in a job shop environment where the planning horizon length is finite and fixed by management. The objective pursued is to minimize the sum of setup costs, and work-in-process and

  12. How Choice of Depth Horizon Influences the Estimated Spatial Patterns and Global Magnitude of Ocean Carbon Export Flux

    Science.gov (United States)

    Palevsky, Hilary I.; Doney, Scott C.

    2018-05-01

    Estimated rates and efficiency of ocean carbon export flux are sensitive to differences in the depth horizons used to define export, which often vary across methodological approaches. We evaluate sinking particulate organic carbon (POC) flux rates and efficiency (e-ratios) in a global earth system model, using a range of commonly used depth horizons: the seasonal mixed layer depth, the particle compensation depth, the base of the euphotic zone, a fixed depth horizon of 100 m, and the maximum annual mixed layer depth. Within this single dynamically consistent model framework, global POC flux rates vary by 30% and global e-ratios by 21% across different depth horizon choices. Zonal variability in POC flux and e-ratio also depends on the export depth horizon due to pronounced influence of deep winter mixing in subpolar regions. Efforts to reconcile conflicting estimates of export need to account for these systematic discrepancies created by differing depth horizon choices.

  13. Proton surface charge determination in Spodosol horizons with organically bound aluminum

    Science.gov (United States)

    Skyllberg, Ulf; Borggaard, Ole K.

    1998-05-01

    Net proton surface charge densities were determined in O, E, Bh, and Bs horizons of a sandy till, Spodosol from Denmark, by means of acid-base titration combined with ion adsorption in 0.005 M Ca(NO 3) 2 and independent permanent charge determination. The release of organic anions exceeded the adsorption of NO 3-, resulting in a desorption of anions in all horizons. Data were found to obey the law of balance between surface charges and adsorbed ions only when charges pertaining to Al and organic anions released during the titration experiments were accounted for, in addition to charges pertaining the potential determining ions (PDI) H + and OH - and the index ions Ca 2+ and NO 3-. It was furthermore shown that the point of zero net proton charge (PZNPC) in soils highly depends on the concentration of organically bound Al. Approaches previously used in soils, in which adsorbed Al n+ has been ignored (i.e., considered equivalent to nH + as a PDI), resulted in a PZNPC of 4.1 in the Bs horizon. If instead organically bound Al was accounted for as a counter-ion similar to 3/2Ca 2+, a PZNPC of 2.9 was obtained for the same Bs horizon. Based on PZNPC values estimated by the latter approach, combined with a weak-acid analog, it was shown that organic proton surface charges buffered pH with a similar intensity in the O, E, Bh, and Bs horizons of this study. Because the acidity of Al adsorbed to conjugate bases of soil organic acids is substantially weaker than the acidity of the corresponding protonated form of the organic acids, the point of zero net proton charge (PZNPC) will increase if the concentration of organically adsorbed Al increases at the expense of adsorbed H. This means that PZNPC values determined for soils with unknown concentrations of organically adsorbed Al are highly operational and not very meaningful as references.

  14. New black holes in D =5 minimal gauged supergravity: Deformed boundaries and frozen horizons

    Science.gov (United States)

    Blázquez-Salcedo, Jose Luis; Kunz, Jutta; Navarro-Lérida, Francisco; Radu, Eugen

    2018-04-01

    A new class of black hole solutions of the five-dimensional minimal gauged supergravity is presented. They are characterized by the mass, the electric charge, two equal magnitude angular momenta and the magnitude of the magnetic potential at infinity. These black holes possess a horizon of spherical topology; however, both the horizon and the sphere at infinity can be arbitrarily squashed, with nonextremal solutions interpolating between black strings and black branes. A particular set of extremal configurations corresponds to a new one-parameter family of supersymmetric black holes. While their conserved charges are determined by the squashing of the sphere at infinity, these supersymmetric solutions possess the same horizon geometry.

  15. Thermodynamic interpretation of the field equation of BTZ charged black hole near the horizon

    International Nuclear Information System (INIS)

    Larranaga, A.

    2008-01-01

    As is already known, a spacetime horizon acts like a boundary of a thermal system and we can associate with it notions such as temperature and entropy. Following the work of M. Akbar, in this paper we will show how it is possible to interpret the field equation of a charged BTZ black hole near the horizon as a thermodynamic identity dE=TdS+P r dA+ΦdQ$, where Φ is the electric potential and $Q$ is the electric charge of a BTZ black hole. These results indicate that the field equations for the charged BTZ black hole possess intrinsic thermodynamic properties near the horizon.

  16. Receding-horizon adaptive contyrol of aero-optical wavefronts

    NARCIS (Netherlands)

    Tesch, J.; Gibson, S.; Verhaegen, M.

    2013-01-01

    A new method for adaptive prediction and correction of wavefront errors in adaptive optics (AO) is introduced. The new method is based on receding-horizon control design and an adaptive lattice filter. Experimental results presented illustrate the capability of the new adaptive controller to predict

  17. Visions for Horizon 2020 from Copenhagen Research Forum

    DEFF Research Database (Denmark)

    Brenneche, Nicolaj Tofte; Højgaard, Liselotte

    2012-01-01

    In January 2012, the Copenhagen Research Forum (CRF) gathered 80 European scientists to discuss the societal chal-lenges to be addressed by Horizon 2020, the next framework programme for European research and innovation, and consider how research could contribute the best solutions. This EFP brie...

  18. Finite-Horizon $H_\\infty $ Consensus for Multiagent Systems With Redundant Channels via An Observer-Type Event-Triggered Scheme.

    Science.gov (United States)

    Xu, Wenying; Wang, Zidong; Ho, Daniel W C

    2018-05-01

    This paper is concerned with the finite-horizon consensus problem for a class of discrete time-varying multiagent systems with external disturbances and missing measurements. To improve the communication reliability, redundant channels are introduced and the corresponding protocol is constructed for the information transmission over redundant channels. An event-triggered scheme is adopted to determine whether the information of agents should be transmitted to their neighbors. Subsequently, an observer-type event-triggered control protocol is proposed based on the latest received neighbors' information. The purpose of the addressed problem is to design a time-varying controller based on the observed information to achieve the consensus performance in a finite horizon. By utilizing a constrained recursive Riccati difference equation approach, some sufficient conditions are obtained to guarantee the consensus performance, and the controller parameters are also designed. Finally, a numerical example is provided to demonstrate the desired reliability of redundant channels and the effectiveness of the event-triggered control protocol.

  19. Bidirectional soliton spectral tunneling effects in the regime of optical event horizon

    DEFF Research Database (Denmark)

    Gu, Jie; Guo, Hairun; Wang, Shaofei

    2015-01-01

    We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects.......We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects....

  20. A view of Wari research: paradigms and perspectives on the Middle Horizon

    OpenAIRE

    Schreiber, Katharina

    2014-01-01

    In this introductory article, the history of Wari studies is summarized in brief terms. The urban site of Huari is considered, including evidence for its occupation prior to the Middle Horizon, and spatial patterning of Middle Horizon architectural remains. While the hinterland around Huari has received some attention, there is still much to be learned about the heartland of the Wari polity. Most research devoted to Wari has occurred in the provincial regions, primarily at sites exhibiting di...

  1. Thermodynamics of interacting holographic dark energy with the apparent horizon as an IR cutoff

    International Nuclear Information System (INIS)

    Sheykhi, Ahmad

    2010-01-01

    As soon as an interaction between holographic dark energy and dark matter is taken into account, the identification of an IR cutoff with the Hubble radius H -1 , in a flat universe, can simultaneously drive accelerated expansion and solve the coincidence problem. Based on this, we demonstrate that in a non-flat universe the natural choice for the IR cutoff could be the apparent horizon radius, r-tilde A =1/√(H 2 +k/a 2 ). We show that any interaction of dark matter with holographic dark energy, whose infrared cutoff is set by the apparent horizon radius, implies an accelerated expansion and a constant ratio of the energy densities of both components thus solving the coincidence problem. We also verify that for a universe filled with dark energy and dark matter, the Friedmann equation can be written in the form of the modified first law of thermodynamics, dE = T h dS h + WdV, at the apparent horizon. In addition, the generalized second law of thermodynamics is fulfilled in a region enclosed by the apparent horizon. These results hold regardless of the specific form of dark energy and interaction term. Our study might reveal that in an accelerating universe with spatial curvature, the apparent horizon is a physical boundary from the thermodynamical point of view.

  2. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2001-01-01

    The purpose of Revision 00 of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada

  3. Logarithmic corrections to gravitational entropy and the null energy condition

    Energy Technology Data Exchange (ETDEWEB)

    Parikh, Maulik, E-mail: maulik.parikh@asu.edu; Svesko, Andrew

    2016-10-10

    Using a relation between the thermodynamics of local horizons and the null energy condition, we consider the effects of quantum corrections to the gravitational entropy. In particular, we find that the geometric form of the null energy condition is not affected by the inclusion of logarithmic corrections to the Bekenstein–Hawking entropy.

  4. Dividend taxation in an infinite-horizon general equilibrium model

    OpenAIRE

    Pham, Ngoc-Sang

    2017-01-01

    We consider an infinite-horizon general equilibrium model with heterogeneous agents and financial market imperfections. We investigate the role of dividend taxation on economic growth and asset price. The optimal dividend taxation is also studied.

  5. New Horizons: The Exploration of the Pluto System and The Kuiper Belt

    Science.gov (United States)

    Stern, S. A.

    2017-12-01

    New Horizons is NASA's mission to explore the Pluto system and the Kuiper Belt (KB). New Horizons launched on 19 January 2006. It made the first exploration of the Pluto system in July 2015 and is now on a five year long extended mission to explore the Kuiper Belt and objects in it. The spacecraft carries a sophisticated payload of imagers, spectrometers, and other scientific instruments that have been used to study Pluto, its five moons, Kuiper Belt Objects (KBOs), and the heliosphere. The flyby of the Pluto system by New Horizons revealed a complex planet and satellite system. Beyond providing rich geological, compositional, and atmospheric datasets, New Horizons demonstrated that Pluto has been surprisingly geologically and climatologically active throughout 4+ Gyr, and that it exhibits a surprisingly complex range of phenomenology and geologic expression that rivals Mars in its richness. I will describe the mission's objectives, the capabilities of the payload, the flyby of the planet, and some major and some recent scientific discoveries made to date. Chief among the results I will discuss will be the evidence for various kinds of internal/geological/atmospheric/volatile transport activity at Pluto. I will close by briefly also outlining the extended mission flyby of KBO 2014 MU69 on 1 Jan 2019 and the cruise science studies of dozens of KBOs being performed en route to and after that flyby.

  6. Black Hole Event Horizons and Advection-Dominated Accretion

    Science.gov (United States)

    McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)

    2002-01-01

    The work supported in part by this grant is part of a larger program on the detection of black hole event horizons, which is also partially supported by NASA grant GO0-1105A. This work has been carried out primarily in collaboration with Dr. M. Garcia and Prof. R. Narayan at the Harvard-Smithsonian Center for Astrophysics and with D. Barret and J. Hameury at Centre d'Etude Spoliate des Rayonnements, France. Our purpose is to confirm the existence of black-hole event horizons by comparing accreting black holes to secreting neutron stars in quiescent X-ray novae. Such a comparison is feasible because black holes and neutron stars are both present in similar environments in X-ray novae. Our second purpose is to assess the nature of accretion flows onto black holes at very low mass transfer rates. Observations of some XMM targets are still pending, whereas most of the Chandra observations have been completed. We anticipate further publications on this work in the future.

  7. Features of course definition system control for a mode of preliminary bringing to horizon

    Directory of Open Access Journals (Sweden)

    О.А. Сущенко

    2004-03-01

    Full Text Available  The features of course definition system consisting of   platform in gimbal suspension, tuned rotor gyroscopes and pendulous accelerometers for a mode of preliminary bringing to horizon are reviewed. The mathematical description of the mode of preliminary bringing to horizon is derived and the appropriate control moments are determined.

  8. Surface Water Sampling Data for BP Spill/Deepwater Horizon

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following...

  9. A new general purpose event horizon finder for 3D numerical spacetimes

    International Nuclear Information System (INIS)

    Diener, Peter

    2003-01-01

    I present a new general purpose event horizon finder for full 3D numerical spacetimes. It works by evolving a complete null surface backwards in time. The null surface is described as the zero-level set of a scalar function, which in principle is defined everywhere. This description of the surface allows the surface, trivially, to change topology, making this event horizon finder able to handle numerical spacetimes where two (or more) black holes merge into a single final black hole

  10. 75 FR 29397 - National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling

    Science.gov (United States)

    2010-05-26

    ... National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling By the authority vested in... Deepwater Horizon Oil Spill and Offshore Drilling (the ``Commission''). Sec. 2. Membership. (a) The... impact of, oil spills associated with offshore drilling, taking into consideration the environmental...

  11. Possible Evidence for an Event Horizon in Cyg XR-1

    Science.gov (United States)

    Dolan, Joseph F.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The X-ray emitting component in the Cyg XR-1/HDE226868 system is a leading candidate for identification as a stellar-mass sized black hole. The positive identification of a black hole as predicted by general relativity requires the detection of an event horizon surrounding the point singularity. One signature of such an event horizon would be the existence of dying pulse trains emitted by material spiraling into the event horizon from the last stable orbit around the black hole. We observed the Cyg XR-1 system at three different epochs in a 1400 - 3000 A bandpass with 0.1 ms time resolution using the Hubble Space Telescope's High Speed Photometer. Repeated excursions of the detected flux by more than three standard deviations above the mean are present in the UV flux with FWHM 1 - 10 ms. If any of these excursions are pulses of radiation produced in the system (and not just stochastic variability associated with the Poisson distribution of detected photon arrival times), then this short a timescale requires that the pulses originate in the accretion disk around Cyg XR-1. Two series of pulses with characteristics similar to those expected from dying pulse trains were detected in three hours of observation.

  12. Logarithmic corrections to gravitational entropy and the null energy condition

    Directory of Open Access Journals (Sweden)

    Maulik Parikh

    2016-10-01

    Full Text Available Using a relation between the thermodynamics of local horizons and the null energy condition, we consider the effects of quantum corrections to the gravitational entropy. In particular, we find that the geometric form of the null energy condition is not affected by the inclusion of logarithmic corrections to the Bekenstein–Hawking entropy.

  13. A self-tuning exact solution and the non-existence of horizons in 5d gravity-scalar system

    International Nuclear Information System (INIS)

    Zhu Chuan-Jie; Abdus Salam International Centre for Theoretical Physics, Trieste

    2000-05-01

    We present an exact thick domain wall solution with naked singularities to five dimensional gravity coupled with a scalar field with exponential potential. In our solution we found exactly the special coefficient of the exponent as coming from compactification of string theory with cosmological constant. We show that this solution is self-tuning when a 3-brane is included. In searching for a solution with horizon we found a similar exact solution with fine-tuned exponent coefficient with an integration constant. Failing to find a solution with horizon we prove the non-existence of horizons. These naked singularities actually can't be resolved by horizon. We also comment on the physical relevance of this solution. (author)

  14. Cauchy horizon stability in a collapsing spherical dust cloud: II. Energy bounds for test fields and odd-parity gravitational perturbations

    Science.gov (United States)

    Ortiz, Néstor; Sarbach, Olivier

    2018-01-01

    We analyze the stability of the Cauchy horizon associated with a globally naked, shell-focussing singularity arising from the complete gravitational collapse of a spherical dust cloud. In a previous work, we have studied the dynamics of spherical test scalar fields on such a background. In particular, we proved that such fields cannot develop any divergences which propagate along the Cauchy horizon. In the present work, we extend our analysis to the more general case of test fields without symmetries and to linearized gravitational perturbations with odd parity. To this purpose, we first consider test fields possessing a divergence-free stress-energy tensor satisfying the dominant energy condition, and we prove that a suitable energy norm is uniformly bounded in the domain of dependence of the initial slice. In particular, this result implies that free-falling observers co-moving with the dust particles measure a finite energy of the field, even as they cross the Cauchy horizon at points lying arbitrarily close to the central singularity. Next, for the case of Klein–Gordon fields, we derive point-wise bounds from our energy estimates which imply that the scalar field cannot diverge at the Cauchy horizon, except possibly at the central singular point. Finally, we analyze the behaviour of odd-parity, linear gravitational and dust perturbations of the collapsing spacetime. Similarly to the scalar field case, we prove that the relevant gauge-invariant combinations of the metric perturbations stay bounded away from the central singularity, implying that no divergences can propagate in the vacuum region. Our results are in accordance with previous numerical studies and analytic work in the self-similar case.

  15. On black hole horizon fluctuations

    International Nuclear Information System (INIS)

    Tuchin, K.L.

    1999-01-01

    A study of the high angular momentum particles 'atmosphere' near the Schwarzschild black hole horizon suggested that strong gravitational interactions occur at invariant distance of the order of 3 √M [2]. We present a generalization of this result to the Kerr-Newman black hole case. It is shown that the larger charge and angular momentum black hole bears, the larger invariant distance at which strong gravitational interactions occur becomes. This invariant distance is of order 3 √((r + 2 )/((r + - r - ))). This implies that the Planckian structure of the Hawking radiation of extreme black holes is completely broken

  16. ‘Quantum hairs’ and entropy of the quantum isolated horizon from Chern–Simons theory

    International Nuclear Information System (INIS)

    Majhi, Abhishek; Majumdar, Parthasarathi

    2014-01-01

    We articulate the fact that the loop quantum gravity (LQG) description of the quantum macrostates of black hole horizons, modeled as quantum isolated horizons (QIHs), is completely characterized in terms of two independent integer-valued ‘quantum hairs’, viz, the coupling constant (k) of the quantum SU(2) Chern–Simons (CS) theory describing QIH dynamics, and the number of punctures (N) produced by the bulk spin network edges piercing the isolated horizon (which act as pointlike sources for the CS fields). We demonstrate that the microcanonical entropy of macroscopic (both parameters assuming very large values) QIHs can be obtained directly from the microstates of this CS theory using standard statistical mechanical methods, without having to additionally postulate the horizon as an ideal gas of punctures, or incorporate any additional classical or semiclassical input from general relativity vis-a-vis the functional dependence of the isolated horizon mass on its area, or indeed, without having to restrict to any special class of spins. Requiring the validity of the Bekenstein–Hawking area law relates these two parameters (as an equilibrium ‘equation of state’), and consequently allows the Barbero–Immirzi parameter to take any real and positive value depending on the value of k/N. The logarithmic correction to the area law obtained a decade ago by R Kaul and one of us (PM), ensues straightforwardly, with precisely the coefficient −3/2, making it a signature of the LQG approach to black hole entropy. (paper)

  17. 2017 NMC Technology Outlook for Nordic Schools A Horizon Project Regional Report

    DEFF Research Database (Denmark)

    2017-01-01

    research effort between the New Media Consortium (NMC) and the Norwegian Centre for ICT in Education to inform Nordic school leaders and decision-makers about significant developments in technologies supporting teaching, learning, and creative inquiry in primary and secondary education across Denmark......Adams Becker, S., Cummins, M., Freeman, A., and Rose, K. (2017). 2017 NMC Technology Outlook for Nordic Schools: A Horizon Project Regional Report. Austin, Texas: The New Media Consortium. The 2017 NMC Technology Outlook for Nordic Schools: A Horizon Project Regional Report reflects a collaborative...

  18. New insights into microbial responses to oil spills from the Deepwater Horizon incident

    Energy Technology Data Exchange (ETDEWEB)

    Mason, O.U.; Hazen, T.C.

    2011-06-15

    On April 20, 2010, a catastrophic eruption of methane caused the Deepwater Horizon exploratory drill rig drilling the Macondo Well in Mississippi Canyon Block 252 (MC252) to explode. The Deepwater Horizon oil spill was unprecendeted for several reasons: the volume of oil released; the spill duration; the well depth; the distance from the shore-line (77 km or about 50 miles); the type of oil (light crude); and the injection of dispersant directly at the wellhead. This study clearly demonstrated that there was a profound and significant response by certain members of the in situ microbial community in the deep-sea in the Gulf of Mexico. In particular putative hydrocarbon degrading Bacteria appeared to bloom in response to the Deepwater Horizon oil spill, even though the temperature at these depths is never >5 C. As the plume aged the shifts in the microbial community on a temporal scale suggested that different, yet metabolically important members of the community were able to respond to a myriad of plume constituents, e.g. shifting from propane/ethane to alkanes and finally to methane. Thus, the biodegradation of hydrocarbons in the plume by Bacteria was a highly significant process in the natural attenuation of many compounds released during the Deepwater Horizon oil spill.

  19. Introductory essay: new horizons in cross cultural management

    NARCIS (Netherlands)

    Zhu, Y.; Ulijn, J.M.

    2005-01-01

    In this special issue, we present a research forum on current issues in cross cultural management in New Zealand, Australia and the Asian-Pacific Region. Our theme is new horizons in cross cultural management, which is reflected in both topic and approach. Our topics are related to the Asia Pacific

  20. Circular geodesic of Bardeen and Ayon-Beato-Garcia regular black-hole and no-horizon spacetimes

    Science.gov (United States)

    Stuchlík, Zdeněk; Schee, Jan

    2015-12-01

    In this paper, we study circular geodesic motion of test particles and photons in the Bardeen and Ayon-Beato-Garcia (ABG) geometry describing spherically symmetric regular black-hole or no-horizon spacetimes. While the Bardeen geometry is not exact solution of Einstein's equations, the ABG spacetime is related to self-gravitating charged sources governed by Einstein's gravity and nonlinear electrodynamics. They both are characterized by the mass parameter m and the charge parameter g. We demonstrate that in similarity to the Reissner-Nordstrom (RN) naked singularity spacetimes an antigravity static sphere should exist in all the no-horizon Bardeen and ABG solutions that can be surrounded by a Keplerian accretion disc. However, contrary to the RN naked singularity spacetimes, the ABG no-horizon spacetimes with parameter g/m > 2 can contain also an additional inner Keplerian disc hidden under the static antigravity sphere. Properties of the geodesic structure are reflected by simple observationally relevant optical phenomena. We give silhouette of the regular black-hole and no-horizon spacetimes, and profiled spectral lines generated by Keplerian rings radiating at a fixed frequency and located in strong gravity region at or nearby the marginally stable circular geodesics. We demonstrate that the profiled spectral lines related to the regular black-holes are qualitatively similar to those of the Schwarzschild black-holes, giving only small quantitative differences. On the other hand, the regular no-horizon spacetimes give clear qualitative signatures of their presence while compared to the Schwarschild spacetimes. Moreover, it is possible to distinguish the Bardeen and ABG no-horizon spacetimes, if the inclination angle to the observer is known.

  1. Computing security strategies in finite horizon repeated Bayesian games

    KAUST Repository

    Lichun Li; Langbort, Cedric; Shamma, Jeff S.

    2017-01-01

    in the worst case. First, a security strategy that directly depends on both players' history actions is derived by refining the sequence form. Noticing that history action space grows exponentially with respect to the time horizon, this paper further presents a

  2. Horizons in 2+1-dimensional collapse of particles

    Indian Academy of Sciences (India)

    A simple, geometrical construction is given for three-dimensional spacetimes with negative cosmological constant that contain two particles colliding head-on. Depending on parameters like particle masses and distance, the combined geometry will be that of a particle, or of a black hole. In the black hole case the horizon is ...

  3. String-theoretic breakdown of effective field theory near black hole horizons

    Science.gov (United States)

    Dodelson, Matthew; Silverstein, Eva

    2017-09-01

    We investigate the validity of the equivalence principle near horizons in string theory, analyzing the breakdown of effective field theory caused by longitudinal string spreading effects. An experiment is set up where a detector is thrown into a black hole a long time after an early infalling string. Light cone gauge calculations, taken at face value, indicate a detectable level of root-mean-square longitudinal spreading of the initial string as measured by the late infaller. This results from the large relative boost between the string and detector in the near-horizon region, which develops automatically despite their modest initial energies outside the black hole and the weak curvature in the geometry. We subject this scenario to basic consistency checks, using these to obtain a relatively conservative criterion for its detectability. In a companion paper, we exhibit longitudinal nonlocality in well-defined gauge-invariant S-matrix calculations, obtaining results consistent with the predicted spreading albeit not in a direct analog of the black hole process. We discuss applications of this effect to the firewall paradox, and estimate the time and distance scales it predicts for new physics near black hole and cosmological horizons.

  4. Model to Estimate Monthly Time Horizons for Application of DEA in Selection of Stock Portfolio and for Maintenance of the Selected Portfolio

    Directory of Open Access Journals (Sweden)

    José Claudio Isaias

    2015-01-01

    Full Text Available In the selecting of stock portfolios, one type of analysis that has shown good results is Data Envelopment Analysis (DEA. It, however, has been shown to have gaps regarding its estimates of monthly time horizons of data collection for the selection of stock portfolios and of monthly time horizons for the maintenance of a selected portfolio. To better estimate these horizons, this study proposes a model of mathematical programming binary of minimization of square errors. This model is the paper’s main contribution. The model’s results are validated by simulating the estimated annual return indexes of a portfolio that uses both horizons estimated and of other portfolios that do not use these horizons. The simulation shows that portfolios with both horizons estimated have higher indexes, on average 6.99% per year. The hypothesis tests confirm the statistically significant superiority of the results of the proposed mathematical model’s indexes. The model’s indexes are also compared with portfolios that use just one of the horizons estimated; here the indexes of the dual-horizon portfolios outperform the single-horizon portfolios, though with a decrease in percentage of statistically significant superiority.

  5. 1.6 billion euros for nuclear research through the 'Horizon 2020' program

    International Nuclear Information System (INIS)

    Anon.

    2014-01-01

    The European Union Council has approved the budget for the future European program for research and innovation called 'Horizon 2020'. A global funding of 77 billion euros has been allocated to 'Horizon 2020' for the 2014 to 2020 years. The share for nuclear sciences will reach 1.6 billion euros and will break down as follows: 316 million euros for fundamental research on fission, 728 million euros for fundamental research on fusion (ITER not included) and 560 million euros for the research projects of the European Joint Research Center (JRC). (A.C.)

  6. The quantum null energy condition in curved space

    Science.gov (United States)

    Fu, Zicao; Koeller, Jason; Marolf, Donald

    2017-11-01

    The quantum null energy condition (QNEC) is a conjectured bound on components (Tkk = Tab ka k^b) of the stress tensor along a null vector k a at a point p in terms of a second k-derivative of the von Neumann entropy S on one side of a null congruence N through p generated by k a . The conjecture has been established for super-renormalizeable field theories at points p that lie on a bifurcate Killing horizon with null tangent k a and for large-N holographic theories on flat space. While the Koeller-Leichenauer holographic argument clearly yields an inequality for general ( p, k^a) , more conditions are generally required for this inequality to be a useful QNEC. For d≤slant 3 , for arbitrary backgroud metric we show that the QNEC is naturally finite and independent of renormalization scheme when the expansion θ of N at the point p vanishes. This is consistent with the original QNEC conjecture which required θ and the shear σab to satisfy θ \\vert _p= \\dotθ\\vert p =0 , σab\\vert _p=0 . But for d=4, 5 more conditions than even these are required. In particular, we also require the vanishing of additional derivatives and a dominant energy condition. In the above cases the holographic argument does indeed yield a finite QNEC, though for d≥slant6 we argue these properties to fail even for weakly isolated horizons (where all derivatives of θ, σab vanish) that also satisfy a dominant energy condition. On the positive side, a corrollary to our work is that, when coupled to Einstein-Hilbert gravity, d ≤slant 3 holographic theories at large N satisfy the generalized second law (GSL) of thermodynamics at leading order in Newton’s constant G. This is the first GSL proof which does not require the quantum fields to be perturbations to a Killing horizon.

  7. Imperialism in the Middle Horizon: a reprisal of the classic paradigm, Cuzco, Peru

    OpenAIRE

    Glowacki, Mary

    2014-01-01

    Traditionally, the Middle Horizon has been characterized by the presence or influence of Wari imperialism throughout ancient Peru. With lesser known areas of the Andes now being explored, this view is considered somewhat passé, monolithic, and lacking heuristic value. Although many Middle Horizon peoples may not have fallen under the rubric of direct Wari control, others certainly did, and it is this variability in degrees of administrative control across regions that is considered a classic ...

  8. Distribution load forecast with interactive correction of horizon loads

    International Nuclear Information System (INIS)

    Glamochanin, V.; Andonov, D.; Gagovski, I.

    1994-01-01

    This paper presents the interactive distribution load forecast application that performs the distribution load forecast with interactive correction of horizon loads. It consists of two major parts implemented in Fortran and Visual Basic. The Fortran part is used for the forecasts computations. It consists of two methods: Load Transfer Coupling Curve Fitting (LTCCF) and load Forecast Using Curve Shape Clustering (FUCSC). LTCCF is used to 'correct' the contaminated data because of load transfer among neighboring distribution areas. FUCSC uses curve shape clustering to forecast the distribution loads of small areas. The forecast for each small area is achieved by using the shape of corresponding cluster curve. The comparison of forecasted loads of the area with historical data will be used as a tool for the correction of the estimated horizon load. The Visual Basic part is used to provide flexible interactive user-friendly environment. (author). 5 refs., 3 figs

  9. Inflation with generalized initial conditions

    International Nuclear Information System (INIS)

    Albrecht, A.; Brandenberger, R.; Matzner, R.

    1987-01-01

    In many current models of the early Universe a scalar field phi which is only very weakly coupled to other quantum fields is used to generate inflation. In such models there are no forces which could thermalize the scalar field, and previous assumptions about its preinflation ''initial'' conditions must be abandoned. In this paper the onset of inflation is studied classically for more general initial conditions of the scalar field configuration. In particular, initial conditions with a nonvanishing spatial average of phi, with phi chosen at random in each initial horizon volume, and with random initial momenta are considered. We identify and discuss several mechanisms that can drive these more general initial conditions toward an inflationary state. The analysis is done in one spatial dimension

  10. Peering beyond the horizon with standard sirens and redshift drift

    Science.gov (United States)

    Jimenez, Raul; Raccanelli, Alvise; Verde, Licia; Matarrese, Sabino

    2018-04-01

    An interesting test on the nature of the Universe is to measure the global spatial curvature of the metric in a model independent way, at a level of |Ωk|limit of |Ωk|<10‑4 would yield stringent tests on several models of inflation. Further, improving the constraint by an order of magnitude would help in reducing "model confusion" in standard parameter estimation. Moreover, if the curvature is measured to be at the value of the amplitude of the CMB fluctuations, it would offer a powerful test on the inflationary paradigm and would indicate that our Universe must be significantly larger than the current horizon. On the contrary, in the context of standard inflation, measuring a value above CMB fluctuations will lead us to conclude that the Universe is not much larger than the current observed horizon; this can also be interpreted as the presence of large fluctuations outside the horizon. However, it has proven difficult, so far, to find observables that can achieve such level of accuracy, and, most of all, be model-independent. Here we propose a method that can in principle achieve that; this is done by making minimal assumptions and using distance probes that are cosmology-independent: gravitational waves, redshift drift and cosmic chronometers. We discuss what kind of observations are needed in principle to achieve the desired accuracy.

  11. Investment horizon heterogeneity and wavelet: Overview and further research directions

    Science.gov (United States)

    Chakrabarty, Anindya; De, Anupam; Gunasekaran, Angappa; Dubey, Rameshwar

    2015-07-01

    Wavelet based multi-scale analysis of financial time series has attracted much attention, lately, from both the academia and practitioners from all around the world. The unceasing metamorphosis of the discipline of finance from its humble beginning as applied economics to the more sophisticated depiction as applied physics and applied psychology has revolutionized the way we perceive the market and its complexities. One such complexity is the presence of heterogeneous horizon agents in the market. In this context, we have performed a generous review of different aspects of horizon heterogeneity that has been successfully elucidated through the synergy between wavelet theory and finance. The evolution of wavelet has been succinctly delineated to bestow necessary information to the readers who are new to this field. The migration of wavelet into finance and its subsequent branching into different sub-divisions have been sketched. The pertinent literature on the impact of horizon heterogeneity on risk, asset pricing and inter-dependencies of the financial time series are explored. The significant contributions are collated and classified in accordance to their purpose and approach so that potential researcher and practitioners, interested in this subject, can be benefited. Future research possibilities in the direction of "agency cost mitigation" and "synergy between econophysics and behavioral finance in stock market forecasting" are also suggested in the paper.

  12. Horizon of quantum black holes in various dimensions

    Directory of Open Access Journals (Sweden)

    Roberto Casadio

    2016-09-01

    Full Text Available We adapt the horizon wave-function formalism to describe massive static spherically symmetric sources in a general (1+D-dimensional space-time, for D>3 and including the D=1 case. We find that the probability PBH that such objects are (quantum black holes behaves similarly to the probability in the (3+1 framework for D>3. In fact, for D≥3, the probability increases towards unity as the mass grows above the relevant D-dimensional Planck scale mD. At fixed mass, however, PBH decreases with increasing D, so that a particle with mass m≃mD has just about 10% probability to be a black hole in D=5, and smaller for larger D. This result has a potentially strong impact on estimates of black hole production in colliders. In contrast, for D=1, we find the probability is comparably larger for smaller masses, but PBH3. For D=1 we instead find the uncertainty due to the horizon fluctuations has the same form as the usual Heisenberg contribution, and therefore no fundamental scale exists.

  13. Typical event horizons in AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Avery, Steven G.; Lowe, David A. [Department of Physics, Brown University,Providence, RI 02912 (United States)

    2016-01-14

    We consider the construction of local bulk operators in a black hole background dual to a pure state in conformal field theory. The properties of these operators in a microcanonical ensemble are studied. It has been argued in the literature that typical states in such an ensemble contain firewalls, or otherwise singular horizons. We argue this conclusion can be avoided with a proper definition of the interior operators.

  14. Typical event horizons in AdS/CFT

    Science.gov (United States)

    Avery, Steven G.; Lowe, David A.

    2016-01-01

    We consider the construction of local bulk operators in a black hole background dual to a pure state in conformal field theory. The properties of these operators in a microcanonical ensemble are studied. It has been argued in the literature that typical states in such an ensemble contain firewalls, or otherwise singular horizons. We argue this conclusion can be avoided with a proper definition of the interior operators.

  15. Singularities and horizons in the collisions of gravitational waves

    International Nuclear Information System (INIS)

    Yurtsever, U.H.

    1989-01-01

    This thesis presents a study of the dynamical, nonlinear interaction of colliding gravitational waves, as described by classical general relativity. In the work on the collisions of exactly-plane waves, it is shown that Killing horizons in any plane-symmetric spacetime are unstable against small plane-symmetric perturbations. It is thus concluded that the Killing-Cauchy horizons produced by the collisions of some exactly plane gravitational waves are nongeneric, and the generic initial data for the colliding plane waves always produce pure spacetime singularities without such horizons. This conclusion is later proved rigorously (using the full nonlinear theory rather than perturbation theory), in connection with an analysis of the asymptotic singularity structure of a general colliding plane-wave spacetime. This analysis also proves that asymptotically the singularities created by colliding plane waves are of inhomogeneous-Kasner type; the asymptotic Kasner axes and exponents of these singularities in general depend on the spatial coordinate that runs tangentially to the singularity in the non-plane-symmetric direction. In the work on collisions of almost-plane gravitational waves, first some general properties of single almost-plane gravitational-wave spacetimes are explored. It is shown that, by contrast with an exact plane wave, an almost-plane gravitational wave cannot have a propagation direction that is Killing; i.e., it must diffract and disperse as it propagates. It is also shown that an almost-plane wave cannot be precisely sandwiched between two null wave-fronts; i.e., it must leave behind tails in the spacetime region through which is passes

  16. The generalized second law of gravitational thermodynamics on the apparent and event horizons in FRW cosmology

    International Nuclear Information System (INIS)

    Karami, K; Ghaffari, S; Soltanzadeh, M M

    2010-01-01

    We investigate the validity of the generalized second law (GSL) of gravitational thermodynamics on the apparent and event horizons in a non-flat Friedmann-Robertson-Walker (FRW) universe containing dark energy interacting with dark matter. We show that for the dynamical apparent horizon, the GSL is always satisfied throughout the history of the universe for any spatial curvature and it is independent of the equation of state parameter of the interacting dark energy model. On the other hand, for the cosmological event horizon, the validity of the GSL depends on the equation of state parameter of the model.

  17. The generalized second law of gravitational thermodynamics on the apparent and event horizons in FRW cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K; Ghaffari, S; Soltanzadeh, M M, E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran St, Sanandaj (Iran, Islamic Republic of)

    2010-10-21

    We investigate the validity of the generalized second law (GSL) of gravitational thermodynamics on the apparent and event horizons in a non-flat Friedmann-Robertson-Walker (FRW) universe containing dark energy interacting with dark matter. We show that for the dynamical apparent horizon, the GSL is always satisfied throughout the history of the universe for any spatial curvature and it is independent of the equation of state parameter of the interacting dark energy model. On the other hand, for the cosmological event horizon, the validity of the GSL depends on the equation of state parameter of the model.

  18. Selective depletion of organic matter in mottled podzol horizons

    NARCIS (Netherlands)

    Buurman, P.; Schellekens, J.; Fritze, H.; Nierop, K.G.J.

    2007-01-01

    Abstract: Some well-drained podzols on quartz sands in the Netherlands and neighbouring Belgium and Germany show mottling in all horizons due to selective removal of organic matter. Phospholipid analysis and morphology of the mottles suggests that this removal is due to activity of fungi.

  19. Application of capital replacement models with finite planning horizons

    NARCIS (Netherlands)

    Scarf, P.A.; Christer, A.H.

    1997-01-01

    Capital replacement models with finite planning horizons can be used to model replacement policies in complex operational contexts. They may also be used to investigate the cost consequences of technological change. This paper reviews the application of these models in various such contexts. We also

  20. advancing the frontiers of pharmacy profession to new horizons

    African Journals Online (AJOL)

    Prof.Thoithi

    The practice of pharmacy has been changing over the years prompting pharmacists to explore new horizons. In many medical schools teaching of clinical pharmacology has been upgraded from the previous materia medica thus eroding the comparative advantage pharmacists previously enjoyed over their medical ...

  1. Attractor horizons in six-dimensional type IIB supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Astefanesei, Dumitru, E-mail: dumitru.astefanesei@ucv.cl [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Miskovic, Olivera, E-mail: olivera.miskovic@ucv.cl [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Olea, Rodrigo, E-mail: rodrigo.olea@unab.cl [Universidad Andres Bello, Departamento de Ciencias Fisicas, Republica 220, Santiago (Chile)

    2012-08-14

    We consider near horizon geometries of extremal black holes in six-dimensional type IIB supergravity. In particular, we use the entropy function formalism to compute the charges and thermodynamic entropy of these solutions. We also comment on the role of attractor mechanism in understanding the entropy of the Hopf T-dual solutions in type IIA supergravity.

  2. Peculiar lithological structure features of a productive horizon of the Shatlyk gas deposit

    International Nuclear Information System (INIS)

    Gergedava, Sh.K.; Sokolova, T.F.; Friman, Yu.T.

    1975-01-01

    Investigation results on the lithologic heterogeneity of the productive horizon in the Shatlyk gas field are cited. The work was performed by a set of commercial and geophysical procedures involving the method of spontaneous polarization potentials, side electrical sounding with five probes, cavernometry, microsounding, side logging and radiometry (neutron gamma method and gamma method). The structural peculiarity of the Shatlyk horizon was shown to possibly lead to non-uniform movement of seam waters during drilling and to flooding of wells

  3. Fractal Markets Hypothesis and the Global Financial Crisis: Scaling, Investment Horizons and Liquidity

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2012-01-01

    Roč. 15, č. 6 (2012), 1250065-1-1250065-13 ISSN 0219-5259 R&D Projects: GA ČR GA402/09/0965 Grant - others:GA UK(CZ) 118310; SVV(CZ) 265 504 Institutional support: RVO:67985556 Keywords : fractal markets hypothesis * scaling * fractality * investment horizons * efficient markets hypothesis Subject RIV: AH - Economics Impact factor: 0.647, year: 2012 http://library.utia.cas.cz/separaty/2012/E/kristoufek-fractal markets hypothesis and the global financial crisis scaling investment horizons and liquidity.pdf

  4. Stochastic Games for Continuous-Time Jump Processes Under Finite-Horizon Payoff Criterion

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qingda, E-mail: weiqd@hqu.edu.cn [Huaqiao University, School of Economics and Finance (China); Chen, Xian, E-mail: chenxian@amss.ac.cn [Peking University, School of Mathematical Sciences (China)

    2016-10-15

    In this paper we study two-person nonzero-sum games for continuous-time jump processes with the randomized history-dependent strategies under the finite-horizon payoff criterion. The state space is countable, and the transition rates and payoff functions are allowed to be unbounded from above and from below. Under the suitable conditions, we introduce a new topology for the set of all randomized Markov multi-strategies and establish its compactness and metrizability. Then by constructing the approximating sequences of the transition rates and payoff functions, we show that the optimal value function for each player is a unique solution to the corresponding optimality equation and obtain the existence of a randomized Markov Nash equilibrium. Furthermore, we illustrate the applications of our main results with a controlled birth and death system.

  5. Stochastic Games for Continuous-Time Jump Processes Under Finite-Horizon Payoff Criterion

    International Nuclear Information System (INIS)

    Wei, Qingda; Chen, Xian

    2016-01-01

    In this paper we study two-person nonzero-sum games for continuous-time jump processes with the randomized history-dependent strategies under the finite-horizon payoff criterion. The state space is countable, and the transition rates and payoff functions are allowed to be unbounded from above and from below. Under the suitable conditions, we introduce a new topology for the set of all randomized Markov multi-strategies and establish its compactness and metrizability. Then by constructing the approximating sequences of the transition rates and payoff functions, we show that the optimal value function for each player is a unique solution to the corresponding optimality equation and obtain the existence of a randomized Markov Nash equilibrium. Furthermore, we illustrate the applications of our main results with a controlled birth and death system.

  6. New characterization aspects of carbonate accumulation horizons in Chalky Champagne (NE of the Paris Basin, France)

    Science.gov (United States)

    Linoir, Damien; Thomachot-Schneider, Céline; Gommeaux, Maxime; Fronteau, Gilles; Barbin, Vincent

    2016-05-01

    The soil profiles of the Champagne area (NE of Paris Basin, France) occasionally show carbonate accumulation horizons (CAHs). From the top to the bottom, these soil profiles include a rendic leptosol horizon, a Quaternary cryoturbated paleosol (QCP), and a chalky substratum. The CAHs are located in the top part of the QCP. This study is aimed at highlighting the specific characteristics of CAHs compared to other soil profile horizons using geophysics, geochemistry, micromorphology, and mercury injection porosimetry. It is the first essential step for understanding the impact of CAHs on water transfers into the Champagne soil profiles. Our analyses show that Champagne CAHs are not systematically characterized by a typical induration unlike generally put forward in the regional literature. They are more porous and heterogeneous than their parent material (QCP). Carbonate accumulation horizons are also characterized by singular colorimetric parameters that are linked to their geochemical specific content, even if they bear a signature of the initial QCP before the pedogenic modification.

  7. What's on the horizon for macroecology?

    DEFF Research Database (Denmark)

    Beck, Jan; Ballesteros-Mejia, Liliana; Buchmann, Carsten M.

    2012-01-01

    employed as a main approach, but new developments are due to be utilized. Scanning the horizon of macroecology, we identified four challenges that will probably play a major role in the future. We support our claims by examples and bibliographic analyses. 1) Integrating the past into macroecological...... to be tapped and new, small-grain large-extent data need to be collected. 4) Although macroecology already lead to mainstreaming cutting-edge statistical analysis techniques, we find that more sophisticated methods are needed to account for the biases inherent to sampling at large scale. Bayesian methods may...

  8. Stringy horizons and UV/IR mixing

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Israel, Roy [Physics Department, Tel-Aviv University Israel,Ramat-Aviv, 69978 (Israel); Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem, 91904 (Israel); Itzhaki, Nissan; Liram, Lior [Physics Department, Tel-Aviv University Israel,Ramat-Aviv, 69978 (Israel)

    2015-11-24

    The target-space interpretation of the exact (in α{sup ′}) reflection coefficient for scattering from Euclidean black-hole horizons in classical string theory is studied. For concreteness, we focus on the solvable SL(2,ℝ){sub k}/U(1) black hole. It is shown that it exhibits a fascinating UV/IR mixing, dramatically modifying the late-time behavior of general relativity. We speculate that this might play an important role in the black-hole information puzzle, as well as in clarifying features related with the non-locality of Little String Theory.

  9. An uneventful horizon in two dimensions

    Science.gov (United States)

    Almheiri, Ahmed; Sully, James

    2014-02-01

    We investigate the possibility of firewalls in the Einstein-dilaton gravity model of CGHS. We use the results of the numerical simulation carried out by Ashtekar et al. to demonstrate that firewalls are absent and the horizon is drama free. We show that the lack of a firewall is consistent because the model does not satisfy one of the postulates of black hole complementarity. In particular, we elaborate on previous work showing that the Hawking radiation is not pure, and is completely entangled with a long-lived remnant beyond the last ray.

  10. An uneventful horizon in two dimensions

    International Nuclear Information System (INIS)

    Almheiri, Ahmed; Sully, James

    2014-01-01

    We investigate the possibility of firewalls in the Einstein-dilaton gravity model of CGHS. We use the results of the numerical simulation carried out by Ashtekar et al. to demonstrate that firewalls are absent and the horizon is drama free. We show that the lack of a firewall is consistent because the model does not satisfy one of the postulates of black hole complementarity. In particular, we elaborate on previous work showing that the Hawking radiation is not pure, and is completely entangled with a long-lived remnant beyond the last ray

  11. Seismic Characterization and Continuity Analysis of Gas Hydrate Horizons Near the Mallik Research Wells, Mackenzie Delta, Canada

    Science.gov (United States)

    Bellefleur, G.; Riedel, M.; Brent, T.

    2005-12-01

    Gas hydrate deposits in arctic environment generally lack the BSR signature diagnostic of their presence in marine seismic data. The absence of the BSR signature complicates the estimation of the resources within or below the permafrost and the determination of their potential impact on future energy supplies, geohazard and climate change. We present results from a detailed seismic characterization of three gas hydrate horizons (A, B and C) intersected below the permafrost in five wells of the Mallik gas hydrate field located in the Mackenzie delta (Northwest Territories, Canada). The detailed seismic characterization included attribute analyses, synthetic modeling and acoustic impedance inversion and allowed estimation of the lateral continuity of the three horizons in the vicinity of the wells. Vertical Seismic Profiling (VSP) data, 3D and 2D industry seismic data and the 5L/2L-38 geophysical logs (density, P-wave sonic velocity) were used for this study. Synthetic modeling using the sonic and density logs reveals that the base of the lower gas hydrate horizons B and C can be identified on the industry 3D and 2D seismic sections as prominent isolated reflections. The uppermost gas hydrate occurrence (horizon A) and potentially other additional smaller-scale layers are identified only on the higher-resolution VSP data. The 3D industry seismic data set processed to preserve the relative true-amplitudes was used for attribute calculations and acoustic impedance inversion. The attribute maps defined areas of continuous reflectivity for horizons B and C and structural features disrupting them. Results from impedance inversion indicate that such continuous reflectivity around the wells is most likely attributable to gas hydrates. The middle gas hydrate occurrence (horizon B) covers an area of approximately 25 000m2. Horizon C, which marks the base of gas hydrate occurrence zone, extends over a larger area of approximately 120 000m2.

  12. Selective depletion of organic matter in mottled podzol horizons

    NARCIS (Netherlands)

    Buurman, P.; Schellekens, J.F.P.; Fritze, H.; Nierop, K.G.J.

    2007-01-01

    Some well-drained podzols on quartz sands in the Netherlands and neighbouring Belgium and Germany show mottling in all horizons due to selective removal of organic matter. Phospholipid analysis and morphology of the mottles suggests that this removal is due to a combination of bacteria, fungi, and

  13. Dynamical and topological considerations in low and high mass diffractive dissociation

    International Nuclear Information System (INIS)

    Bishari, M.

    1978-01-01

    The topological structure of a given process completely specifies the 1/N dependence. However dynamics seems to be crucial in characterizing strongly interacting reactions, as illustrated in the study of elastic scattering, low mass diffraction and the triple pomeron mechanism. The ''1/N dual unitarization'' scheme is a viable framework for Gribov's Reggeon field theory, since it clarifies and determines the bare parameters of Gribov's Lagrangian. (author)

  14. Construction of Ramp or Shaft between XIth to XIIth Horizon in Trepça Mine in Stanterg

    OpenAIRE

    , M. Hetemi

    2016-01-01

    The purpose of this paper is to compare opening method of the exploitation Şonts in deep horizons of Trepca Stanterg lead and zinc mine and to evaluate on a conceptual basis if a shaft or a ramp is most suited for underground access requirements from horizon XI to XII which are located on above sea level 15.20m to -45.20m. Even the existing shaft is built until horizon XI there is high water in-şow on the depth, which would prevent continuation of the shaft construction. Underground access ca...

  15. Conformal symmetries of the Einstein-Hilbert action on horizons of stationary and axisymmetric black holes

    International Nuclear Information System (INIS)

    Mei Jianwei

    2012-01-01

    We suggest a way to study possible conformal symmetries on black hole horizons. We do this by carrying out a Kaluza-Klein-like reduction of the Einstein-Hilbert action along the ignorable coordinates of stationary and axisymmetric black holes. Rigid diffeomorphism invariance of the m-ignorable coordinates then becomes a global SL(m, R) gauge symmetry of the reduced action. Related to each non-vanishing angular velocity, there is a particular SL(2, R) subgroup, which can be extended to the Witt algebra on the black hole horizons. The classical Einstein-Hilbert action thus has k-copies of infinite-dimensional conformal symmetries on a given black hole horizon, with k being the number of non-vanishing angular velocities of the black hole. (paper)

  16. Theory of elementary excitations in unstable Bose-Einstein condensates and the instability of sonic horizons

    International Nuclear Information System (INIS)

    Leonhardt, U.; Kiss, T.; Oehberg, P.

    2003-01-01

    Like classical fluids, quantum gases may suffer from hydrodynamic instabilities. Our paper develops a quantum version of the classical stability analysis in fluids, the Bogoliubov theory of elementary excitations in unstable Bose-Einstein condensates. In unstable condensates the excitation modes have complex frequencies. We derive the normalization conditions for unstable modes such that they can serve in a mode decomposition of the noncondensed component. Furthermore, we develop approximative techniques to determine the spectrum and the mode functions. Finally, we apply our theory to sonic horizons - sonic black and white holes. For sonic white holes the spectrum of unstable modes turns out to be intrinsically discrete, whereas black holes may be stable

  17. Gravitational collapse of charged dust shell and maximal slicing condition

    International Nuclear Information System (INIS)

    Maeda, Keiichi

    1980-01-01

    The maximal slicing condition is a good time coordinate condition qualitatively when pursuing the gravitational collapse by the numerical calculation. The analytic solution of the gravitational collapse under the maximal slicing condition is given in the case of a spherical charged dust shell and the behavior of time slices with this coordinate condition is investigated. It is concluded that under the maximal slicing condition we can pursue the gravitational collapse until the radius of the shell decreases to about 0.7 x (the radius of the event horizon). (author)

  18. Robust receding horizon control for networked and distributed nonlinear systems

    CERN Document Server

    Li, Huiping

    2017-01-01

    This book offers a comprehensive, easy-to-understand overview of receding-horizon control for nonlinear networks. It presents novel general strategies that can simultaneously handle general nonlinear dynamics, system constraints, and disturbances arising in networked and large-scale systems and which can be widely applied. These receding-horizon-control-based strategies can achieve sub-optimal control performance while ensuring closed-loop stability: a feature attractive to engineers. The authors address the problems of networked and distributed control step-by-step, gradually increasing the level of challenge presented. The book first introduces the state-feedback control problems of nonlinear networked systems and then studies output feedback control problems. For large-scale nonlinear systems, disturbance is considered first, then communication delay separately, and lastly the simultaneous combination of delays and disturbances. Each chapter of this easy-to-follow book not only proposes and analyzes novel ...

  19. Estimating Exchange Rate Exposure over Various Return Horizons: Focusing on Major Countries in East Asia

    Directory of Open Access Journals (Sweden)

    Jeong Wook Lee

    2016-12-01

    Full Text Available In this paper, we estimate the exchange rate exposure, indicating the effect of exchange rate movements on firm values, for a sample of 1,400 firms in seven East Asian countries. The exposure estimates based on various exchange rate variables, return horizons and a control variable are compared. A key result from our analysis is that the long term effect of exchange rate movements on firm values is greater than the short term effect. And we find very similar results from using other exchange rate variables such as the U.S. dollar exchange rate, etc. Second, we add exchange rate volatility as a control variable and find that the extent of exposure is not much changed. Third, we examine the changes in exposure to exchange rate volatility with an increase in return horizon. Consequently the ratio of firms with significant exposures increases with the return horizons. Interestingly, the increase of exposure with the return horizons is faster for exposure to volatility than for exposure to exchange rate itself. Taken as a whole, our findings suggest that the so-called "exposure puzzle" may be a matter of the methodology used to measure exposure.

  20. Integrability of geodesics in near-horizon extremal geometries: Case of Myers-Perry black holes in arbitrary dimensions

    Science.gov (United States)

    Demirchian, Hovhannes; Nersessian, Armen; Sadeghian, Saeedeh; Sheikh-Jabbari, M. M.

    2018-05-01

    We investigate dynamics of probe particles moving in the near-horizon limit of extremal Myers-Perry black holes in arbitrary dimensions. Employing ellipsoidal coordinates we show that this problem is integrable and separable, extending the results of the odd dimensional case discussed by Hakobyan et al. [Phys. Lett. B 772, 586 (2017)., 10.1016/j.physletb.2017.07.028]. We find the general solution of the Hamilton-Jacobi equations for these systems and present explicit expressions for the Liouville integrals and discuss Killing tensors and the associated constants of motion. We analyze special cases of the background near-horizon geometry were the system possesses more constants of motion and is hence superintegrable. Finally, we consider a near-horizon extremal vanishing horizon case which happens for Myers-Perry black holes in odd dimensions and show that geodesic equations on this geometry are also separable and work out its integrals of motion.

  1. Pilgrim dark energy with apparent and event horizons in non-flat universe

    International Nuclear Information System (INIS)

    Sharif, M.; Jawad, Abdul

    2013-01-01

    Pilgrim dark energy is an interesting proposal which is based on the conjecture that phantom-like dark energy with strong enough repulsive force can prevent the formation of a black hole. We investigate this conjecture by assuming the apparent and event horizons in non-flat universe and we develop different cosmological parameters. We construct the corresponding equation of state parameter, which indicates that its present values lie in the phantom era of the universe for different ranges of μ (pilgrim dark energy parameter) as well as ξ 2 (interacting parameter). It is interesting to mention here that the pilgrim dark energy with event horizon yields a phantom region for all cases of ξ 2 with μ Λ - ω' Λ plane and explore the thawing as well as freezing region and ΛCDM limit for these models. The statefinders plane is also constructed, which shows the correspondence with different models such as quintessence and phantom dark energy, ΛCDM and Chaplygin gas. Finally, we investigate the validity of the generalized second law of thermodynamics with event horizon in a flat as well as non-flat universe. (orig.)

  2. The Thermodynamic Evolution of the Cosmological Event Horizon

    Science.gov (United States)

    Funkhouser, Scott

    2012-04-01

    By manipulating the integral expression for the proper radius R e of the cosmological event horizon (CEH) in a Friedmann-Robertson-Walker (FRW) universe we obtain an analytical expression for the change δR e in response to a uniform fluctuation δρ in the average cosmic background density ρ. We stipulate that the fluctuation arises within a vanishing interval of proper time, during which the CEH is approximately stationary, and evolves subsequently such that δρ/ ρ is constant. The respective variations 2 πR e δR e and δE e in the horizon entropy S e and enclosed energy E e should be therefore related through the cosmological Clausius relation. In that manner we find that the temperature T e of the CEH at an arbitrary time in a flat FRW universe is E e / S e , which recovers asymptotically the usual static de Sitter temperature. Furthermore it is proven that during radiation-dominance and in late times the CEH conforms to the fully dynamical First Law T e d S e = Pd V e -d E e , where V e is the enclosed volume and P is the average cosmic pressure.

  3. Modelling health and output at business cycle horizons for the USA.

    Science.gov (United States)

    Narayan, Paresh Kumar

    2010-07-01

    In this paper we employ a theoretical framework - a simple macro model augmented with health - that draws guidance from the Keynesian view of business cycles to examine the relative importance of permanent and transitory shocks in explaining variations in health expenditure and output at business cycle horizons for the USA. The variance decomposition analysis of shocks reveals that at business cycle horizons permanent shocks explain the bulk of the variations in output, while transitory shocks explain the bulk of the variations in health expenditures. We undertake a shock decomposition analysis for private health expenditures versus public health expenditures and interestingly find that while transitory shocks are more important for private sector expenditures, permanent shocks dominate public health expenditures. Copyright (c) 2009 John Wiley & Sons, Ltd.

  4. Cultural and Chronological Horizons and the Problem of the Early Sarmatian Culture Formation

    Directory of Open Access Journals (Sweden)

    Yablonsky Leonid Teodorovich

    2015-12-01

    Full Text Available On the materials of Eurasian early nomads’ archaeology we highlight the South Ural cultural and historical area (UCHA. Geographically it includes steppe regions of West Kazakhstan, Chelyabinsk and Orenburg regions, steppe and forest steppe zones of the Republic of Bashkortostan. There were similar cultural processes that led to the Early Sarmatian archaeological culture formation in the Early Iron Age. Under the cultural and chronological horizon we understand the geographic region that is significantly larger than UCHA. Practically it has no geographic boundaries. Specificity of the horizon is that at a certain chronological stage (phase artifacts and their complexes, signs of spiritual culture are widely distributed that will mark the horizon – the horizon markers such as well known Scythian triad. Global chronological scheme of the Southern Trans-Urals cultural and historical area can be represented as follows: “Sauromatian” cultural and chronological horizon – the second half of the 6th – the end of the 4th (3rd centuries B.C. – Phase “A” – the second half of the 6th – the middle of the 5th centuries B.C. – Phase “B” – the second half of the 5th – the third quarter of the 4th centuries B.C. – Phase “C” – the third quarter of the 4th – the 3rd century B.C. Typologically the burial grounds like Filippovka I and Perevolochan can be attributed to the Early-Sarmatian archaeological culture, i.e. to the time of the ethnic consciousness formation of suspected archaeological Early Sarmatians. In this period ordinary mounds and graves appear along with the elite ones. It is advisable to consider the sites of the “Sauromatian” and Early-Sarmatian cultures of the South Urals of the end of the 5th-3rd centuries B.C. as a single culture of the early nomads.

  5. Frequency shifting at fiber-optical event horizons: The effect of Raman deceleration

    International Nuclear Information System (INIS)

    Robertson, S.; Leonhardt, U.

    2010-01-01

    Pulses in fibers establish analogs of the event horizon [Philbin et al., Science 319, 1367 (2008)]. At a group-velocity horizon, the frequency of a probe wave is shifted. We present a theoretical model of this frequency shifting, taking into account the deceleration of the pulse caused by the Raman effect. The theory shows that the probe-wave spectrum is sensitive to details of the probe-pulse interaction. Our results indicate an additional loss mechanism in the experiment [Philbin et al., Science 319, 1367 (2008)] that has not been accounted for. Our analysis is also valid for more general cases of the interaction of dispersive waves with decelerated solitons.

  6. The cosmological model with a wormhole and Hawking temperature near apparent horizon

    Science.gov (United States)

    Kim, Sung-Won

    2018-05-01

    In this paper, a cosmological model with an isotropic form of the Morris-Thorne type wormhole was derived in a similar way to the McVittie solution to the black hole in the expanding universe. By solving Einstein's field equation with plausible matter distribution, we found the exact solution of the wormhole embedded in Friedmann-Lemaître-Robertson-Walker universe. We also found the apparent cosmological horizons from the redefined metric and analyzed the geometric natures, including causal and dynamic structures. The Hawking temperature for thermal radiation was obtained by the WKB approximation using the Hamilton-Jacobi equation and Hamilton's equation, near the apparent cosmological horizon.

  7. More about Birkhoff's invariant and Thorne's hoop conjecture for horizons

    Energy Technology Data Exchange (ETDEWEB)

    Cvetic, M [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Gibbons, G W; Pope, C N [DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, Cambridge CB3 OWA (United Kingdom)

    2011-10-07

    A recent precise formulation of the hoop conjecture in four spacetime dimensions is that the Birkhoff invariant {beta} (the least maximal length of any sweepout or foliation by circles) of an apparent horizon of energy E and area A should satisfy {beta} {<=} 4{pi}E. This conjecture together with the cosmic censorship or isoperimetric inequality implies that the length l of the shortest non-trivial closed geodesic satisfies l{sup 2} {<=} {pi}A. We have tested these conjectures on the horizons of all four-charged rotating black hole solutions of ungauged supergravity theories and found that they always hold. They continue to hold in the presence of a negative cosmological constant, and for multi-charged rotating solutions in gauged supergravity. Surprisingly, they also hold for the Ernst-Wild static black holes immersed in a magnetic field, which are asymptotic to the Melvin solution. In five spacetime dimensions we define {beta} as the least maximal area of all sweepouts of the horizon by two-dimensional tori, and find in all cases examined that {beta} (g) {<=} {l_brace}16 {pi}/ 3{r_brace} E, which we conjecture holds quiet generally for apparent horizons. In even spacetime dimensions D = 2N + 2, we find that for sweepouts by the product S{sup 1} x S{sup D-4}, {beta} is bounded from above by a certain dimension-dependent multiple of the energy E. We also find that l{sup D-2} is bounded from above by a certain dimension-dependent multiple of the horizon area A. Finally, we show that l{sup D-3} is bounded from above by a certain dimension-dependent multiple of the energy, for all Kerr-AdS black holes.

  8. Memory effects in single-molecule spectroscopy

    International Nuclear Information System (INIS)

    Schmitt, Daniel T.; Schulz, Michael; Reineker, Peter

    2007-01-01

    From the time series of LH2 optical single-molecule fluorescence excitation spectra of Rhodospirillum molischianum the memory function of the Mori-Zwanzig equation for the optical intensity is derived numerically. We show that the time dependence of the excited states is determined by at least three different non-Markovian stochastic processes with decay constants for the Mori-Zwanzig kernel on the order of 1-5min -1 . We suggest that this decay stems from the conformational motion of the protein scaffold of LH2

  9. Influences upon the lead isotopic composition of organic and mineral horizons in soil profiles from the National Soil Inventory of Scotland (2007–09)

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, John G., E-mail: J.G.Farmer@ed.ac.uk [School of GeoSciences, The University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF Scotland (United Kingdom); Graham, Margaret C. [School of GeoSciences, The University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF Scotland (United Kingdom); Eades, Lorna J. [School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ Scotland (United Kingdom); Lilly, Allan; Bacon, Jeffrey R. [James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH Scotland (United Kingdom)

    2016-02-15

    Some 644 individual soil horizons from 169 sites in Scotland were analyzed for Pb concentration and isotopic composition. There were three scenarios: (i) 36 sites where both top and bottom (i.e. lowest sampled) soil horizons were classified as organic in nature, (ii) 67 with an organic top but mineral bottom soil horizon, and (iii) 66 where both top and bottom soil horizons were mineral. Lead concentrations were greater in the top horizon relative to the bottom horizon in all but a few cases. The top horizon {sup 206}Pb/{sup 207}Pb ratio was lesser (outside analytical error) than the corresponding bottom horizon {sup 206}Pb/{sup 207}Pb ratio at (i) 64%, (ii) 94% and (iii) 73% of sites, and greater at only (i) 8%, (ii) 3% and (iii) 8% of sites. A plot of {sup 208}Pb/{sup 207}Pb vs. {sup 208}Pb/{sup 206}Pb ratios showed that the Pb in organic top (i, ii) and bottom (i) horizons was consistent with atmospherically deposited Pb of anthropogenic origin. The {sup 206}Pb/{sup 207}Pb ratio of the organic top horizon in (ii) was unrelated to the {sup 206}Pb/{sup 207}Pb ratio of the mineral bottom horizon as demonstrated by the geographical variation in the negative shift in the ratio, a result of differences in the mineral horizon values arising from the greater influence of radiogenic Pb in the north. In (iii), the lesser values of the {sup 206}Pb/{sup 207}Pb ratio for the mineral top horizon relative to the mineral bottom horizon were consistent with the presence of anthropogenic Pb, in addition to indigenous Pb, in the former. Mean anthropogenic Pb inventories of 1.5 and 4.5 g m{sup −2} were obtained for the northern and southern halves of Scotland, respectively, consistent with long-range atmospheric transport of anthropogenic Pb (mean {sup 206}Pb/{sup 207}Pb ratio ~ 1.16). For cultivated agricultural soils (Ap), this corresponded to about half of the total Pb inventory in the top 30 cm of the soil column. - Highlights: • Pb isotope ratios were determined for 644

  10. The Impact of Horizon 2020 on Innovation in Europe

    NARCIS (Netherlands)

    Veugelers, R.; Cincera, M.; Frietsch, R.; Rammer, C.; Schubert, T.; Pelle, A.; Renda, A.; Montalvo Corral, C.; Leijten, J.

    2015-01-01

    The EU’s stagnation on many innovation indicators led to a number of efforts to spur a turnaround. One of most visible projects has been the Horizon 2020 strategy, which devotes unprecedented levels of funding to the promotion of R&D and innovation. But does this strategy address the right issues to

  11. Canonical Ensemble Model for Black Hole Horizon of Schwarzschild ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we use the canonical ensemble model to discuss the radiation of a Schwarzschild–de Sitter black hole on the black hole horizon. Using this model, we calculate the probability distribution from function of the emission shell. And the statistical meaning which compare with the distribution function is ...

  12. The terminal Permian in European Russia: Vyaznikovian Horizon, Nedubrovo Member, and Permian-Triassic boundary

    Science.gov (United States)

    Lozovsky, V. R.; Balabanov, Yu. P.; Karasev, E. V.; Novikov, I. V.; Ponomarenko, A. G.; Yaroshenko, O. P.

    2016-07-01

    The comprehensive analysis of the data obtained on terrestrial vertebrata, ostracods, entomologic fauna, megaflora, and microflora in deposits of the Vyaznikovian Horizon and Nedubrovo Member, as well as the paleomagnetic data measured in enclosing rocks, confirms heterogeneity of these deposits. Accordingly, it is necessary to distinguish these two stratons in the terminal Permian of the East European Platform. The combined sequence of Triassic-Permian boundary deposits in the Moscow Syneclise, which is considered to be the most complete sequence in the East European Platform, is as follows (from bottom upward): Vyatkian deposits; Vyaznikovian Horizon, including Sokovka and Zhukovo members; Nedubrovo Member (Upper Permian); Astashikha and Ryabi members of the Vokhmian Horizon (Lower Triassic). None of the sequences of Permian-Triassic boundary deposits known in the area of study characterizes this sequence in full volume. In the north, the Triassic deposits are underlain by the Nedubrovo Member; in the south (the Klyazma River basin), the sections are underlain by the Vyaznikovian Horizon. The Permian-Triassic boundary adopted in the General Stratigraphic Scale of Russia for continental deposits of the East European platform (the lower boundary of the Astashikha Member) is more ancient than the one adopted in the International Stratigraphic Chart. The same geological situation is observed in the German Basin and other localities where Triassic continental deposits are developed. The ways of solving this problem are discussed in this article.

  13. Hawking radiation as tunneling from the event horizon of NUT-Kerr-Newman de Sitter black hole

    International Nuclear Information System (INIS)

    Hui-Ling, Li; Shu-Shenh, Yang; Qing-Quan, Jiang; De-Jiang, Qi

    2005-01-01

    Adopting the method of quantum radiation as tunneling, Hawking radiation as tunneling from the event horizon of NUT-Kerr-Newman de Sitter black hole is studied. The result indicates that the tunneling rate of the particle on the event horizon is related to the change of Bekenstein-Hawking entropy and the real spectrum is not strictly thermal at all

  14. Decentralized Receding Horizon Control and Coordination of Autonomous Vehicle Formations

    NARCIS (Netherlands)

    Keviczky, T.; Borelli, F.; Fregene, K.; Godbole, D.; Bals, G.J.

    2008-01-01

    This paper describes the application of a novel methodology for high-level control and coordination of autonomous vehicle teams and its demonstration on high-fidelity models of the organic air vehicle developed at Honeywell Laboratories. The scheme employs decentralized receding horizon controllers

  15. Horizons of radiating black holes in Einstein-Gauss-Bonnet gravity

    International Nuclear Information System (INIS)

    Ghosh, S. G.; Deshkar, D. W.

    2008-01-01

    A Vaidya-based model of a radiating black hole is studied in a 5-dimensional Einstein gravity with Gauss-Bonnet contribution of quadratic curvature terms. The structure and locations of the apparent and event horizons of the radiating black hole are determined

  16. Genesis of textural contrasts in subsurface soil horizons in the Northern Pantanal-Brazil

    Directory of Open Access Journals (Sweden)

    Alexandre Ferreira do Nascimento

    2013-10-01

    Full Text Available The Pantanal region can be characterized as a quaternary floodplain with predominant sedimentation in the form of alluvial fans. In the geomorphologic and sedimentary evolution, the avulsion process is inherent to this depositional system and its dynamics, together with surface water floods, influence soil sedimentation on this plain. The knowledge and differentiation of these two events can contribute to a better understanding of the variability of soil properties and distribution under the influence of these sedimentation processes. Therefore, this study investigated the genesis of soils in the Northern Pantanal with textural contrasts in deeper horizons and their relationship with the depositional system dynamics. We analyzed four soil profiles in the region of Barão de Melgaço, Mato Grosso State, Brazil (RPPN SESC Pantanal. Two profiles were sampled near the Rio Cuiabá (AP1 and AP4 and two near the Rio São Lourenço (AP10 and AP11. In AP11, the horizons contrast in particle size between the profile basis and the surface. In AP1, AP4 and AP10, the horizons overlaying the sand layer have similar particle size properties, mainly in terms of sand distribution. In the first case, floods (surface water seem to have originated the horizons and layers with contrasting texture. In the second case, avulsion is the most pronounced process. Therefore, the two modes can form soils with contrasting texture that are discriminable by soil morphology, based on the distinct features associated to the specific sedimentation processes.

  17. Promise Okekwe: Rising Star on the Nigerian Literary Horizon ...

    African Journals Online (AJOL)

    ... a young and upcoming talent on the Nigeria literary horizon. Okekwe was first published in 1992. A resilient and dynamic writer, she has continued to produce texts at a pace akin to Buchi Emecheta's. Her works reveal a remarkable understanding of the human mind. She thus aims at a reconstruction of the wider society.

  18. Optical geometry across the horizon

    International Nuclear Information System (INIS)

    Jonsson, Rickard

    2006-01-01

    In a recent paper (Jonsson and Westman 2006 Class. Quantum Grav. 23 61), a generalization of optical geometry, assuming a non-shearing reference congruence, is discussed. Here we illustrate that this formalism can be applied to (a finite four-volume) of any spherically symmetric spacetime. In particular we apply the formalism, using a non-static reference congruence, to do optical geometry across the horizon of a static black hole. While the resulting geometry in principle is time dependent, we can choose the reference congruence in such a manner that an embedding of the geometry always looks the same. Relative to the embedded geometry the reference points are then moving. We discuss the motion of photons, inertial forces and gyroscope precession in this framework

  19. Energy flux through the horizon in the black hole-domain wall systems

    International Nuclear Information System (INIS)

    Stojkovic, Dejan

    2004-01-01

    We study various configurations in which a domain wall (or cosmic string), described by the Nambu-Goto action, is embedded in a background space-time of a black hole in (3+1) and higher dimensional models. We calculate energy fluxes through the black hole horizon. In the simplest case, when a static domain wall enters the horizon of a static black hole perpendicularly, the energy flux is zero. In more complicated situations, where parameters which describe the domain wall surface are time and position dependent, the flux is non-vanishing is principle. These results are of importance in various conventional cosmological models which accommodate the existence of domain walls and strings and also in brane world scenarios. (author)

  20. Horizon ja Balti Spoon edukamate ettevõtete seas / Külli Koppelmaa

    Index Scriptorium Estoniae

    Koppelmaa, Külli, 1970-

    2003-01-01

    Eesti Päevalehe Eesti ettevõtete konkurentsivõime edetabelis jõudis Kehra firma Horizon Tselluloosi ja Paberi AS 77. kohale, piirkonna edendaja ja parima välisinvestori nominentide seas oli ka Kuusalu firma Balti Spoon