WorldWideScience

Sample records for grey-white matter differentiation

  1. Whole genome grey and white matter DNA methylation profiles in dorsolateral prefrontal cortex.

    Science.gov (United States)

    Sanchez-Mut, Jose Vicente; Heyn, Holger; Vidal, Enrique; Delgado-Morales, Raúl; Moran, Sebastian; Sayols, Sergi; Sandoval, Juan; Ferrer, Isidre; Esteller, Manel; Gräff, Johannes

    2017-06-01

    The brain's neocortex is anatomically organized into grey and white matter, which are mainly composed by neuronal and glial cells, respectively. The neocortex can be further divided in different Brodmann areas according to their cytoarchitectural organization, which are associated with distinct cortical functions. There is increasing evidence that brain development and function are governed by epigenetic processes, yet their contribution to the functional organization of the neocortex remains incompletely understood. Herein, we determined the DNA methylation patterns of grey and white matter of dorsolateral prefrontal cortex (Brodmann area 9), an important region for higher cognitive skills that is particularly affected in various neurological diseases. For avoiding interindividual differences, we analyzed white and grey matter from the same donor using whole genome bisulfite sequencing, and for validating their biological significance, we used Infinium HumanMethylation450 BeadChip and pyrosequencing in ten and twenty independent samples, respectively. The combination of these analysis indicated robust grey-white matter differences in DNA methylation. What is more, cell type-specific markers were enriched among the most differentially methylated genes. Interestingly, we also found an outstanding number of grey-white matter differentially methylated genes that have previously been associated with Alzheimer's, Parkinson's, and Huntington's disease, as well as Multiple and Amyotrophic lateral sclerosis. The data presented here thus constitute an important resource for future studies not only to gain insight into brain regional as well as grey and white matter differences, but also to unmask epigenetic alterations that might underlie neurological and neurodegenerative diseases. © 2017 Wiley Periodicals, Inc.

  2. Contrast between white and grey matter: MRI appearance with ageing

    International Nuclear Information System (INIS)

    Magnaldi, S.; Ukmar, M.; Vasciaveo, A.; Longo, R.; Pozzi-Mucelli, R.S.

    1993-01-01

    MRI contrast between white and grey matter appears to be higher in young normal subjects than in older patients. The aim of the present study was to investigate the possible relationships between these changes in contrast and ageing. It consisted of two parts. In the first part we retrospectively evaluated 140 MRI brain examinations of healthy subjects, 20 per decade (age range 20-90 years), in whom the contrast was subjectively scored. In the second part we prospectively measured the actual T1, spin density (SD) and T2 values of white and grey matter in another 22 healthy subjects (age range 20-80 years). In the first group of subjects a progressive decrease in white/grey matter contrast was observed with ageing. In the second group of subjects the T1, SD and T2 values of white matter were always shorter than those of grey matter. There is a close relation among T1, SD and T2 values of white and grey matter with ageing. We suggest that there is a progressive loss of white/grey matter contrast with ageing. Such a phenomenon is possibly due to an increased water content in the white matter and the progressive neuronal loss in the grey matter that occurs with age. (orig.)

  3. Characterizing the contrast of white matter and grey matter in high-resolution phase difference enhanced imaging of human brain at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li [Fudan University, Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Shanghai (China); Shandong University, Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-cerebral Vascular Diseases, Jinan, Shandong (China); Wang, Shanshan; Yao, Bin; Li, Lili; Guo, Lingfei; Zhang, Xinjuan; Wang, Guangbin [Shandong University, Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-cerebral Vascular Diseases, Jinan, Shandong (China); Xu, Xiaofei [Erasmus University Rotterdam, Laboratory of Experimental Tumor Immunology, Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Rotterdam (Netherlands); Zhao, Lianxin [Shandong University, Department of Radiology, Qilu Hospital, Jinan, Shandong (China); Chen, Weibo; Chan, Queenie [Philips Healthcare, Shanghai (China)

    2015-04-01

    The purpose of this study was to address the feasibility of characterizing the contrast both between and within grey matter and white matter using the phase difference enhanced (PADRE) technique. PADRE imaging was performed in 33 healthy volunteers. Vessel enhancement (VE), tissue enhancement (TE), and PADRE images were reconstructed from source images and were evaluated with regard to differentiation of grey-to-white matter interface, the stria of Gennari, and the two layers, internal sagittal stratum (ISS) and external sagittal stratum (ESS), of optic radiation. White matter regions showed decreased signal intensity compared to grey matter regions. Discrimination was sharper between white matter and cortical grey matter in TE images than in PADRE images, but was poorly displayed in VE images. The stria of Gennari was observed on all three image sets. Low-signal-intensity bands displayed in VE images representing the optic radiation were delineated as two layers of different signal intensities in TE and PADRE images. Statistically significant differences in phase shifts were found between frontal grey and white matter, as well as between ISS and ESS (p < 0.01). The PADRE technique is capable of identifying grey-to-white matter interface, the stria of Gennari, and ISS and ESS, with improved contrast in PADRE and TE images compared to VE images. (orig.)

  4. Characterizing the contrast of white matter and grey matter in high-resolution phase difference enhanced imaging of human brain at 3.0 T

    International Nuclear Information System (INIS)

    Yang, Li; Wang, Shanshan; Yao, Bin; Li, Lili; Guo, Lingfei; Zhang, Xinjuan; Wang, Guangbin; Xu, Xiaofei; Zhao, Lianxin; Chen, Weibo; Chan, Queenie

    2015-01-01

    The purpose of this study was to address the feasibility of characterizing the contrast both between and within grey matter and white matter using the phase difference enhanced (PADRE) technique. PADRE imaging was performed in 33 healthy volunteers. Vessel enhancement (VE), tissue enhancement (TE), and PADRE images were reconstructed from source images and were evaluated with regard to differentiation of grey-to-white matter interface, the stria of Gennari, and the two layers, internal sagittal stratum (ISS) and external sagittal stratum (ESS), of optic radiation. White matter regions showed decreased signal intensity compared to grey matter regions. Discrimination was sharper between white matter and cortical grey matter in TE images than in PADRE images, but was poorly displayed in VE images. The stria of Gennari was observed on all three image sets. Low-signal-intensity bands displayed in VE images representing the optic radiation were delineated as two layers of different signal intensities in TE and PADRE images. Statistically significant differences in phase shifts were found between frontal grey and white matter, as well as between ISS and ESS (p < 0.01). The PADRE technique is capable of identifying grey-to-white matter interface, the stria of Gennari, and ISS and ESS, with improved contrast in PADRE and TE images compared to VE images. (orig.)

  5. MRI of laminar heterotopic grey matter

    International Nuclear Information System (INIS)

    Vahldiek, G.; Terwey, B.; Hanefeld, F.; Sperner, J.

    1990-01-01

    In one baby and 2 infants who presented with psychomotor retardation and epilepsy laminar heterotopic grey matter was demonstrated via magnetic resonance imaging. Laminar heterotopia is a rare migrational disorder with bilateral symmetric ribbons of grey matter within the centrum semiovale, separated from ventricular walls and from obviously normal-sized cortex by broad layers of white matter. The heterotopic grey matter has a signal intensity which is isointense compared with that of normal cortex irrespective of image weighting. On account of this signal behaviour differentiation against other white matter diseases is easy. The knowledge of these pathognomonic findings facilitates correct diagnosis, especially during the first and the second year of life, when signal intensities of white and grey matter differ from normal findings because of the occasionally delayed myelination process. Therefore, further diagnostic procedures can be avoided and early counseling of parents is possible. (orig.) [de

  6. Longitudinal grey and white matter changes in frontotemporal dementia and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Lars Frings

    Full Text Available Behavioural variant frontotemporal dementia (bvFTD and Alzheimer's disease (AD dementia are characterised by progressive brain atrophy. Longitudinal MRI volumetry may help to characterise ongoing structural degeneration and support the differential diagnosis of dementia subtypes. Automated, observer-independent atlas-based MRI volumetry was applied to analyse 102 MRI data sets from 15 bvFTD, 14 AD, and 10 healthy elderly control participants with consecutive scans over at least 12 months. Anatomically defined targets were chosen a priori as brain structures of interest. Groups were compared regarding volumes at clinic presentation and annual change rates. Baseline volumes, especially of grey matter compartments, were significantly reduced in bvFTD and AD patients. Grey matter volumes of the caudate and the gyrus rectus were significantly smaller in bvFTD than AD. The bvFTD group could be separated from AD on the basis of caudate volume with high accuracy (79% cases correct. Annual volume decline was markedly larger in bvFTD and AD than controls, predominantly in white matter of temporal structures. Decline in grey matter volume of the lateral orbitofrontal gyrus separated bvFTD from AD and controls. Automated longitudinal MRI volumetry discriminates bvFTD from AD. In particular, greater reduction of orbitofrontal grey matter and temporal white matter structures after 12 months is indicative of bvFTD.

  7. Comparison of grey matter volume and thickness for analysing cortical changes in chronic schizophrenia: a matter of surface area, grey/white matter intensity contrast, and curvature.

    Science.gov (United States)

    Kong, Li; Herold, Christina J; Zöllner, Frank; Salat, David H; Lässer, Marc M; Schmid, Lena A; Fellhauer, Iven; Thomann, Philipp A; Essig, Marco; Schad, Lothar R; Erickson, Kirk I; Schröder, Johannes

    2015-02-28

    Grey matter volume and cortical thickness are the two most widely used measures for detecting grey matter morphometric changes in various diseases such as schizophrenia. However, these two measures only share partial overlapping regions in identifying morphometric changes. Few studies have investigated the contributions of the potential factors to the differences of grey matter volume and cortical thickness. To investigate this question, 3T magnetic resonance images from 22 patients with schizophrenia and 20 well-matched healthy controls were chosen for analyses. Grey matter volume and cortical thickness were measured by VBM and Freesurfer. Grey matter volume results were then rendered onto the surface template of Freesurfer to compare the differences from cortical thickness in anatomical locations. Discrepancy regions of the grey matter volume and thickness where grey matter volume significantly decreased but without corresponding evidence of cortical thinning involved the rostral middle frontal, precentral, lateral occipital and superior frontal gyri. Subsequent region-of-interest analysis demonstrated that changes in surface area, grey/white matter intensity contrast and curvature accounted for the discrepancies. Our results suggest that the differences between grey matter volume and thickness could be jointly driven by surface area, grey/white matter intensity contrast and curvature. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Quantitative ultrasonography of the periventricular white and grey matter of the developing brain.

    Science.gov (United States)

    Mullaart, R A; Thijssen, J M; Rotteveel, J J; Valckx, F M; van Geemen, A J

    1999-05-01

    This study addresses the value of operator-independent computer processing of ultrasonograms of the developing brain. With this aim, routine cranial ultrasonograms obtained from 39 term and preterm infants without clinical or sonographic evidence of brain damage were analyzed by five observers. The procedure, respectively, included: 1. the definition of four regions of interest (ROI), one white matter and one grey matter area on each side of the brain; 2. digitization of the sonogram data within these ROIs; 3. correction for the equipment settings, using data from a tissue-mimicking phantom as a reference; and 4. calculation of four sonogram characteristics (i.e., mean echo level, MEAN, signal-to-noise ratio, SNR, and axial and lateral correlation, CORAX and CORLAT, of the echo level co-occurrence matrix). Significant differences between both sides of the brain or a significant influence of ROI size were not found. The interobserver spread was considerable, but less than the intersubject spread. Two sonogram characteristics seemed strongly correlated in white and grey matter (CORAX and CORLAT) and another only in white matter (SNR with CORAX and CORLAT). MEAN seemed not to be correlated with any other characteristic. Furthermore, it was found that maturation equally decreases white and grey matter MEAN and, thus, hardly affects the ratio between the two. An effect on the other sonogram characteristics was only found in the white matter (i.e., an increase of SNR and a decrease of CORAX and CORLAT). Except for MEAN, the grey matter sonogram characteristics seem hardly affected by maturation. In view of these findings, we conclude that quantitative ultrasonography reveals white and grey matter maturation and, furthermore, provides a conceptional-age-independent reference (MEAN white:grey matter ratio) that might be found to facilitate the detection of pathologic brain alterations.

  9. Relaxation time measurements of white and grey matter in multiple sclerosis patients

    International Nuclear Information System (INIS)

    Rinck, P.A.; Appel, B.; Moens, E.; Academisch Ziekenhuis Middelheim, Antwerp

    1987-01-01

    In a patient population of some 450 with definite, probable, and possible multiple sclerosis referred to us for MRI, some 40 suffering from definite MS were chosen randomly for relaxation time measurements of plaque-free grey and white matter. T 1 values could not be used for diagnostic purposes owing to their broad standard deviation. Overall white matter T 2 was slightly higher in MS patients than in a non-MS population (94 ms versus 89 ms). Because these changes are not visible in MR images, relaxation time measurements may prove valuable for differential diagnosis. (orig.) [de

  10. Magnetisation transfer measurements of the subcortical grey and white matter in Parkinson's disease with and without dementia and in progressive supranuclear palsy

    International Nuclear Information System (INIS)

    Hanyu, H.; Asano, T.; Sakurai, H.; Takasaki, M.; Shindo, H.; Abe, K.

    2001-01-01

    We measured the magnetisation transfer ratio (MTR) in the subcortical grey and white matter of 11 patients with idiopathic Parkinson's disease (PD) without dementia, six with PD with dementia (PDD), six with progressive supranuclear palsy (PSP), and 12 elderly control subjects to assess regional differences in structural brain damage. There were no significant differences in MTR in any region between PD and controls. However, patients with PDD had significantly lower MTR in the subcortical white matter, including the frontal white matter and the genu of the corpus callosum than the controls, whereas PSP had significantly lower MTR in the subcortical grey matter, including the putamen, globus pallidus and thalamus, in addition to the subcortical white matter. This suggests that regional patterns of structural brain damage can be detected using the magnetisation transfer technique. Measurement of MTR in the subcortical grey and white matter may be useful in differential diagnosis. (orig.)

  11. Magnetization transfer changes of grey and white matter in Parkinson's disease

    International Nuclear Information System (INIS)

    Tambasco, N.; Mancini, M.L.; Paciaroni, M.; Gallai, V.; Pelliccioli, G.P.; Chiarini, P.; Leone, F.; Montanari, G.E.

    2003-01-01

    Since the attempt to evidence structural brain damage in Parkinson's disease (PD) by conventional magnetic resonance imaging (MRI) is usually disappointing, we have investigated whether the magnetization transfer ratio (MTR) can reflect changes in grey and white matter of PD patients. MTR was quantified in 44 regions of interest (ROIs) in both grey and white matter of 11 non-demented PD patients, ranging from 2 to 4 on the Hoehn and Yahr Scale, and eight age-matched healthy subjects. MTR differences between patients and controls were found in the supratentorial white matter and in the brainstem. In particular, lower MTR values were found in the paraventricular white matter of PD patients (p < 0.05) while no differences were observed in corpus callosum, frontal, parietal, occipital lobes or centrum semiovalis. Lower MTR values were found in substantia nigra (p < 0.001), red nucleus (p < 0.05) and pons (p < 0.05) of the patient group. No differences were discovered in basal ganglia and thalamus. These findings suggest that MTR measurements in the paraventricular white matter and brainstem may help to recognize a marker for probable PD. (orig.)

  12. Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporal dementia continuum.

    Directory of Open Access Journals (Sweden)

    Patricia Lillo

    Full Text Available There is increasing evidence that amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD lie on a clinical, pathological and genetic continuum with patients of one disease exhibiting features of the other. Nevertheless, to date, the underlying grey matter and white matter changes across the ALS-FTD disease continuum have not been explored. In this study fifty-three participants with ALS (n = 10, ALS-FTD (n = 10 and behavioural variant FTD (bvFTD; n = 15 as well as controls (n = 18, underwent detailed clinical assessment plus structural imaging using voxel-based morphometry (VBM and diffusion tensor imaging (DTI analysis of magnetic resonance brain imaging to examine grey and white matter differences and commonalities across the continuum. Importantly, patient groups were matched for age, education, gender and disease duration. VBM and DTI results showed that changes in the ALS group were confined mainly to the motor cortex and anterior cingulate as well as their underlying white matter tracts. ALS-FTD and bvFTD showed widespread grey matter and white matter changes involving frontal and temporal lobes. Extensive prefrontal cortex changes emerged as a marker for bvFTD compared to other subtypes, while ALS-FTD could be distinguished from ALS by additional temporal lobe grey and white matter changes. Finally, ALS could be mainly distinguished from the other two groups by corticospinal tract degeneration. The present study shows for the first time that FTD and ALS overlap in anterior cingulate, motor cortex and related white matter tract changes across the whole continuum. Nevertheless, frontal and temporal atrophy as well as corticospinal tract degeneration emerged as marker for subtype classification, which will inform future diagnosis and target disease management across the continuum.

  13. Insight on AV-45 binding in white and grey matter from histogram analysis: a study on early Alzheimer's disease patients and healthy subjects

    Science.gov (United States)

    Nemmi, Federico; Saint-Aubert, Laure; Adel, Djilali; Salabert, Anne-Sophie; Pariente, Jérémie; Barbeau, Emmanuel; Payoux, Pierre; Péran, Patrice

    2014-01-01

    Purpose AV-45 amyloid biomarker is known to show uptake in white matter in patients with Alzheimer’s disease (AD) but also in healthy population. This binding; thought to be of a non-specific lipophilic nature has not yet been investigated. The aim of this study was to determine the differential pattern of AV-45 binding in healthy and pathological populations in white matter. Methods We recruited 24 patients presenting with AD at early stage and 17 matched, healthy subjects. We used an optimized PET-MRI registration method and an approach based on intensity histogram using several indexes. We compared the results of the intensity histogram analyses with a more canonical approach based on target-to-cerebellum Standard Uptake Value (SUVr) in white and grey matters using MANOVA and discriminant analyses. A cluster analysis on white and grey matter histograms was also performed. Results White matter histogram analysis revealed significant differences between AD and healthy subjects, which were not revealed by SUVr analysis. However, white matter histograms was not decisive to discriminate groups, and indexes based on grey matter only showed better discriminative power than SUVr. The cluster analysis divided our sample in two clusters, showing different uptakes in grey but also in white matter. Conclusion These results demonstrate that AV-45 binding in white matter conveys subtle information not detectable using SUVr approach. Although it is not better than standard SUVr to discriminate AD patients from healthy subjects, this information could reveal white matter modifications. PMID:24573658

  14. Insight on AV-45 binding in white and grey matter from histogram analysis: a study on early Alzheimer's disease patients and healthy subjects

    International Nuclear Information System (INIS)

    Nemmi, Federico; Saint-Aubert, Laure; Peran, Patrice; Adel, Djilali; Salabert, Anne-Sophie; Payoux, Pierre; Pariente, Jeremie; Barbeau, Emmanuel J.

    2014-01-01

    AV-45 amyloid biomarker is known to show uptake in white matter in patients with Alzheimer's disease (AD), but also in the healthy population. This binding, thought to be of a non-specific lipophilic nature, has not yet been investigated. The aim of this study was to determine the differential pattern of AV-45 binding in white matter in healthy and pathological populations. We recruited 24 patients presenting with AD at an early stage and 17 matched, healthy subjects. We used an optimized positron emission tomography-magnetic resonance imaging (PET-MRI) registration method and an approach based on an intensity histogram using several indices. We compared the results of the intensity histogram analyses with a more canonical approach based on target-to-cerebellum Standard Uptake Value (SUVr) in white and grey matter using MANOVA and discriminant analyses. A cluster analysis on white and grey matter histograms was also performed. White matter histogram analysis revealed significant differences between AD and healthy subjects, which were not revealed by SUVr analysis. However, white matter histograms were not decisive to discriminate groups, and indices based on grey matter only showed better discriminative power than SUVr. The cluster analysis divided our sample into two clusters, showing different uptakes in grey, but also in white matter. These results demonstrate that AV-45 binding in white matter conveys subtle information not detectable using the SUVr approach. Although it is not more efficient than standard SUVr in discriminating AD patients from healthy subjects, this information could reveal white matter modifications. (orig.)

  15. The effect of lifelong bilingualism on regional grey and white matter volume.

    Science.gov (United States)

    Olsen, Rosanna K; Pangelinan, Melissa M; Bogulski, Cari; Chakravarty, M Mallar; Luk, Gigi; Grady, Cheryl L; Bialystok, Ellen

    2015-07-01

    Lifelong bilingualism is associated with the delayed diagnosis of dementia, suggesting bilingual experience is relevant to brain health in aging. While the effects of bilingualism on cognitive functions across the lifespan are well documented, less is known about the neural substrates underlying differential behaviour. It is clear that bilingualism affects brain regions that mediate language abilities and that these regions are at least partially overlapping with those that exhibit age-related decline. Moreover, the behavioural advantages observed in bilingualism are generally found in executive function performance, suggesting that the frontal lobes may also be sensitive to bilingualism, which exhibit volume reductions with age. The current study investigated structural differences in the brain of lifelong bilingual older adults (n=14, mean age=70.4) compared with older monolinguals (n=14, mean age=70.6). We employed two analytic approaches: 1) we examined global differences in grey and white matter volumes; and, 2) we examined local differences in volume and cortical thickness of specific regions of interest previously implicated in bilingual/monolingual comparisons (temporal pole) or in aging (entorhinal cortex and hippocampus). We expected bilinguals would exhibit greater volume of the frontal lobe and temporal lobe (grey and white matter), given the importance of these regions in executive and language functions, respectively. We further hypothesized that regions in the medial temporal lobe, which demonstrate early changes in aging and exhibit neural pathology in dementia, would be more preserved in the bilingual group. As predicted, bilinguals exhibit greater frontal lobe white matter compared with monolinguals. Moreover, increasing age was related to decreasing temporal pole cortical thickness in the monolingual group, but no such relationship was observed for bilinguals. Finally, Stroop task performance was positively correlated with frontal lobe white

  16. Analysis of the brain proton magnetic resonance spectroscopy - differences between normal grey and white matter

    International Nuclear Information System (INIS)

    Krukowski, P.; Podgorski, P.; Guzinski, M.; Szewczyk, P.; Sasiadek, M.

    2010-01-01

    Background: The proton magnetic resonance spectroscopy (HMRS) is a non-invasive diagnostic method that allows for an assessment of the metabolite concentration in tissues. The sources of the strongest resonance signals within the brain are N-acetylaspartate (NAA), creatine (Cr), choline (Cho), myoinositol (mI) and water. The aim of our study was to analyse the ratios of metabolite signals within the brain in HMRS in the healthy population, to define the differences between the grey and white matter spectra. Material/Methods: We studied prospectively 90 subjects aged from 8 to 80 years (mean 43.3 years, SD=17.9), without neurological symptoms or abnormalities in magnetic resonance imaging. In all patients, brain HMRS with Signa HDx 1.5 T MR unit (GE Healthcare) was performed with PRESS sequence, using a single voxel method, at TE of 35 ms and TR of 1500 ms. Spectroscopic evaluation involved voxels placed in the white matter of parietal lobe (PWM) and the grey matter of posterior cingulate gyrus (PGM). On the basis of the intensity of NAA, Cr, Cho, mI and water signals, the proportions of these signals were calculated, as well as the ratio of the analyzed metabolite signal to the sum of signals of NAA, Cho, Cr and mI (%Met) in the PGM and PWM voxels. We compared the proportions in the same patients in PGM and PWM voxels. Results: There has been a statistically significant difference between the proportions of a majority of the metabolite ratios evaluated in PGM and PWM, indicating the higher concentration of NAA, Cr and mI in grey matter, and higher concentration of Cho in white matter. Conclusions: HMRS spectra of the brain grey and white matter differ significantly. The concentrations of NAA, Cr and mI are higher in grey matter, while of choline - in the white matter. (authors)

  17. Insight on AV-45 binding in white and grey matter from histogram analysis: a study on early Alzheimer's disease patients and healthy subjects

    Energy Technology Data Exchange (ETDEWEB)

    Nemmi, Federico; Saint-Aubert, Laure; Peran, Patrice [Inserm, Imagerie Cerebrale et Handicaps Neurologiques UMR 825, Centre Hospitalier Universitaire de Toulouse (France); Universite de Toulouse, UPS, Imagerie Cerebrale et Handicaps Neurologiques UMR 825, Centre Hospitalier Universitaire de Toulouse, Toulouse (France); Adel, Djilali; Salabert, Anne-Sophie; Payoux, Pierre [Inserm, Imagerie Cerebrale et Handicaps Neurologiques UMR 825, Centre Hospitalier Universitaire de Toulouse (France); Universite de Toulouse, UPS, Imagerie Cerebrale et Handicaps Neurologiques UMR 825, Centre Hospitalier Universitaire de Toulouse, Toulouse (France); Centre Hospitalier Universitaire de Toulouse, Service de Medecine Nucleaire, Pole Imagerie, Toulouse (France); Pariente, Jeremie [Inserm, Imagerie Cerebrale et Handicaps Neurologiques UMR 825, Centre Hospitalier Universitaire de Toulouse (France); Universite de Toulouse, UPS, Imagerie Cerebrale et Handicaps Neurologiques UMR 825, Centre Hospitalier Universitaire de Toulouse, Toulouse (France); Centre Hospitalier Universitaire de Toulouse, Service de Neurologie, Pole Neurosciences, Toulouse (France); Barbeau, Emmanuel J. [Centre Hospitalier Universitaire de Toulouse, Service de Neurologie, Pole Neurosciences, Toulouse (France); Universite de Toulouse, UPS, Centre de Recherche Cerveau et Cognition, CNRS, CerCo, Toulouse (France)

    2014-07-15

    AV-45 amyloid biomarker is known to show uptake in white matter in patients with Alzheimer's disease (AD), but also in the healthy population. This binding, thought to be of a non-specific lipophilic nature, has not yet been investigated. The aim of this study was to determine the differential pattern of AV-45 binding in white matter in healthy and pathological populations. We recruited 24 patients presenting with AD at an early stage and 17 matched, healthy subjects. We used an optimized positron emission tomography-magnetic resonance imaging (PET-MRI) registration method and an approach based on an intensity histogram using several indices. We compared the results of the intensity histogram analyses with a more canonical approach based on target-to-cerebellum Standard Uptake Value (SUVr) in white and grey matter using MANOVA and discriminant analyses. A cluster analysis on white and grey matter histograms was also performed. White matter histogram analysis revealed significant differences between AD and healthy subjects, which were not revealed by SUVr analysis. However, white matter histograms were not decisive to discriminate groups, and indices based on grey matter only showed better discriminative power than SUVr. The cluster analysis divided our sample into two clusters, showing different uptakes in grey, but also in white matter. These results demonstrate that AV-45 binding in white matter conveys subtle information not detectable using the SUVr approach. Although it is not more efficient than standard SUVr in discriminating AD patients from healthy subjects, this information could reveal white matter modifications. (orig.)

  18. Quantifying Cerebellum Grey Matter and White Matter Perfusion Using Pulsed Arterial Spin Labeling

    Science.gov (United States)

    Li, Xiufeng; Sarkar, Subhendra N.; Purdy, David E.; Briggs, Richard W.

    2014-01-01

    To facilitate quantification of cerebellum cerebral blood flow (CBF), studies were performed to systematically optimize arterial spin labeling (ASL) parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM) and white matter (WM), and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values. PMID:24949416

  19. Quantifying Cerebellum Grey Matter and White Matter Perfusion Using Pulsed Arterial Spin Labeling

    Directory of Open Access Journals (Sweden)

    Xiufeng Li

    2014-01-01

    Full Text Available To facilitate quantification of cerebellum cerebral blood flow (CBF, studies were performed to systematically optimize arterial spin labeling (ASL parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM and white matter (WM, and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values.

  20. Quantifying cerebellum grey matter and white matter perfusion using pulsed arterial spin labeling.

    Science.gov (United States)

    Li, Xiufeng; Sarkar, Subhendra N; Purdy, David E; Briggs, Richard W

    2014-01-01

    To facilitate quantification of cerebellum cerebral blood flow (CBF), studies were performed to systematically optimize arterial spin labeling (ASL) parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM) and white matter (WM), and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values.

  1. Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Thomas P. DeRamus

    2015-01-01

    Full Text Available Autism spectrum disorders (ASD are characterized by impairments in social communication and restrictive, repetitive behaviors. While behavioral symptoms are well-documented, investigations into the neurobiological underpinnings of ASD have not resulted in firm biomarkers. Variability in findings across structural neuroimaging studies has contributed to difficulty in reliably characterizing the brain morphology of individuals with ASD. These inconsistencies may also arise from the heterogeneity of ASD, and wider age-range of participants included in MRI studies and in previous meta-analyses. To address this, the current study used coordinate-based anatomical likelihood estimation (ALE analysis of 21 voxel-based morphometry (VBM studies examining high-functioning individuals with ASD, resulting in a meta-analysis of 1055 participants (506 ASD, and 549 typically developing individuals. Results consisted of grey, white, and global differences in cortical matter between the groups. Modeled anatomical maps consisting of concentration, thickness, and volume metrics of grey and white matter revealed clusters suggesting age-related decreases in grey and white matter in parietal and inferior temporal regions of the brain in ASD, and age-related increases in grey matter in frontal and anterior-temporal regions. White matter alterations included fiber tracts thought to play key roles in information processing and sensory integration. Many current theories of pathobiology ASD suggest that the brains of individuals with ASD may have less-functional long-range (anterior-to-posterior connections. Our findings of decreased cortical matter in parietal–temporal and occipital regions, and thickening in frontal cortices in older adults with ASD may entail altered cortical anatomy, and neurodevelopmental adaptations.

  2. The prognostic value of multivoxel magnetic resonance spectroscopy determined metabolite levels in white and grey matter brain tissue for adverse outcome in term newborns following perinatal asphyxia

    Energy Technology Data Exchange (ETDEWEB)

    Doormaal, Pieter Jan van [University Medical Center Groningen and University of Groningen, Department of Pediatrics, Division of Neonatology, Groningen (Netherlands); Meander Medical Center Amersfoort, Department of Radiology, PO Box 1502, Amersfoort (Netherlands); Meiners, Linda C.; Sijens, Paul E. [University Medical Center Groningen and University of Groningen, Department of Radiology, Groningen (Netherlands); Horst, Hendrik J. ter; Veere, Christa N. van der [University Medical Center Groningen and University of Groningen, Department of Pediatrics, Division of Neonatology, Groningen (Netherlands)

    2012-04-15

    Magnetic resonance spectroscopy can identify brain metabolic changes in perinatal asphyxia by providing ratios of metabolites, such as choline (Cho), creatine (Cr), N-acetyl aspartate (NAA) and lactate (Lact) [Cho/Cr, Lact/NAA, etc.]. The purpose of this study was to quantify the separate white and grey matter metabolites in a slab cranial to the ventricles and relate these to the outcome. A standard 2D-chemical shift imaging protocol was used for measuring a transverse volume of interest located cranial to the ventricles allowing for direct comparison of the metabolites in white and grey matter brain tissue in 24 term asphyxiated newborns aged 3 to 16 days. Cho, NAA and Lact showed significant differences between four subgroups of asphyxiated infants with more and less favourable outcomes. High levels of Cho and Lact in the grey matter differentiated non-survivors from survivors (P = 0.003 and P = 0.017, respectively). In perinatal asphyxia the levels of Cho, NAA and Lact in both white and grey matter brain tissue are affected. The levels of Cho and Lact measured in the grey matter are the most indicative of survival. It is therefore advised to include grey matter brain tissue in the region of interest examined by multivoxel MR spectroscopy. (orig.)

  3. The prognostic value of multivoxel magnetic resonance spectroscopy determined metabolite levels in white and grey matter brain tissue for adverse outcome in term newborns following perinatal asphyxia

    International Nuclear Information System (INIS)

    Doormaal, Pieter Jan van; Meiners, Linda C.; Sijens, Paul E.; Horst, Hendrik J. ter; Veere, Christa N. van der

    2012-01-01

    Magnetic resonance spectroscopy can identify brain metabolic changes in perinatal asphyxia by providing ratios of metabolites, such as choline (Cho), creatine (Cr), N-acetyl aspartate (NAA) and lactate (Lact) [Cho/Cr, Lact/NAA, etc.]. The purpose of this study was to quantify the separate white and grey matter metabolites in a slab cranial to the ventricles and relate these to the outcome. A standard 2D-chemical shift imaging protocol was used for measuring a transverse volume of interest located cranial to the ventricles allowing for direct comparison of the metabolites in white and grey matter brain tissue in 24 term asphyxiated newborns aged 3 to 16 days. Cho, NAA and Lact showed significant differences between four subgroups of asphyxiated infants with more and less favourable outcomes. High levels of Cho and Lact in the grey matter differentiated non-survivors from survivors (P = 0.003 and P = 0.017, respectively). In perinatal asphyxia the levels of Cho, NAA and Lact in both white and grey matter brain tissue are affected. The levels of Cho and Lact measured in the grey matter are the most indicative of survival. It is therefore advised to include grey matter brain tissue in the region of interest examined by multivoxel MR spectroscopy. (orig.)

  4. Spatial patterns of whole brain grey and white matter injury in patients with occult spastic diplegic cerebral palsy.

    Science.gov (United States)

    Mu, Xuetao; Nie, Binbin; Wang, Hong; Duan, Shaofeng; Zhang, Zan; Dai, Guanghui; Ma, Qiaozhi; Shan, Baoci; Ma, Lin

    2014-01-01

    Spastic diplegic cerebral palsy (SDCP) is a common type of cerebral palsy (CP), which presents as a group of motor-impairment syndromes. Previous conventional MRI studies have reported abnormal structural changes in SDCP, such as periventricular leucomalacia. However, there are roughly 27.8% SDCP patients presenting normal appearance in conventional MRI, which were considered as occult SDCP. In this study, sixteen patients with occult SDCP and 16 age- and sex-matched healthy control subjects were collected and the data were acquired on a 3T MR system. We applied voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis to investigate whole brain grey and white matter injury in occult SDCP. By using VBM method, the grey matter volume reduction was revealed in the bilateral basal ganglia regions, thalamus, insula, and left cerebral peduncle, whereas the white matter atrophy was found to be located in the posterior part of corpus callosum and right posterior corona radiata in the occult SDCP patients. By using TBSS, reduced fractional anisotropy (FA) values were detected in multiple white matter regions, including bilateral white matter tracts in prefrontal lobe, temporal lobe, internal and external capsule, corpus callosum, cingulum, thalamus, brainstem and cerebellum. Additionally, several regions of white matter tracts injury were found to be significantly correlated with motor dysfunction. These results collectively revealed the spatial patterns of whole brain grey and white matter injury in occult SDCP.

  5. Chemical shift magnetic resonance spectroscopy of cingulate grey matter in patients with minimal hepatic encephalopathy

    International Nuclear Information System (INIS)

    Mechtcheriakov, Sergei; Kugener, Andre; Mattedi, Michael; Hinterhuber, Hartmann; Marksteiner, Josef; Schocke, Michael; Graziadei, Ivo W.; Vogel, Wolfgang

    2005-01-01

    Minimal hepatic encephalopathy (MHE) is frequently diagnosed in patients with liver cirrhosis who do not show overt clinical cirrhosis-associated neurological deficits. This condition manifests primarily with visuo-motor and attention deficits. We studied the association between visuo-motor deficits and magnetic resonance spectroscopic parameters in cingulate grey matter and white matter of centrum semiovale in patients with liver cirrhosis. The data revealed an increase in the glutamate-glutamine/creatine ratio and a decrease in choline/creatine and inositol/creatine ratios in patients with liver cirrhosis. The analysis of the data showed that cirrhosis-associated deterioration of the visuo-motor function significantly correlates with a decrease in the choline/creatine ratio and an increase in N-acetylaspartate/choline in cingulate grey matter but not in the neighbouring white matter. Furthermore, the increase in the glutamate-glutamine/creatine ratio correlated significantly with the increase in the N-acetylaspartate/creatine ratio. These data suggest an association between altered choline, glutamate-glutamine and NAA metabolism in cingulate grey matter and symptoms of MHE, and underline the importance of differentiation between grey and white matter in magnetic resonance spectroscopic studies on patients with cirrhosis-associated brain dysfunction. (orig.)

  6. Identification of regions of normal grey matter and white matter from pathologic glioblastoma and necrosis in frozen sections using Raman imaging.

    Science.gov (United States)

    Kast, Rachel; Auner, Gregory; Yurgelevic, Sally; Broadbent, Brandy; Raghunathan, Aditya; Poisson, Laila M; Mikkelsen, Tom; Rosenblum, Mark L; Kalkanis, Steven N

    2015-11-01

    In neurosurgical applications, a tool capable of distinguishing grey matter, white matter, and areas of tumor and/or necrosis in near-real time could greatly aid in tumor resection decision making. Raman spectroscopy is a non-destructive spectroscopic technique which provides molecular information about the tissue under examination based on the vibrational properties of the constituent molecules. With careful measurement and data processing, a spatial step and repeat acquisition of Raman spectra can be used to create Raman images. Forty frozen brain tissue sections were imaged in their entirety using a 300-µm-square measurement grid, and two or more regions of interest within each tissue were also imaged using a 25 µm-square step size. Molecular correlates for histologic features of interest were identified within the Raman spectra, and novel imaging algorithms were developed to compare molecular features across multiple tissues. In previous work, the relative concentration of individual biomolecules was imaged. Here, the relative concentrations of 1004, 1300:1344, and 1660 cm(-1), which correspond primarily to protein and lipid content, were simultaneously imaged across all tissues. This provided simple interpretation of boundaries between grey matter, white matter, and diseased tissue, and corresponded with findings from adjacent hematoxylin and eosin-stained sections. This novel, yet simple, multi-channel imaging technique allows clinically-relevant resolution with straightforward molecular interpretation of Raman images not possible by imaging any single peak. This method can be applied to either surgical or laboratory tools for rapid, non-destructive imaging of grey and white matter.

  7. Partial volume correction and image segmentation for accurate measurement of standardized uptake value of grey matter in the brain.

    Science.gov (United States)

    Bural, Gonca; Torigian, Drew; Basu, Sandip; Houseni, Mohamed; Zhuge, Ying; Rubello, Domenico; Udupa, Jayaram; Alavi, Abass

    2015-12-01

    Our aim was to explore a novel quantitative method [based upon an MRI-based image segmentation that allows actual calculation of grey matter, white matter and cerebrospinal fluid (CSF) volumes] for overcoming the difficulties associated with conventional techniques for measuring actual metabolic activity of the grey matter. We included four patients with normal brain MRI and fluorine-18 fluorodeoxyglucose (F-FDG)-PET scans (two women and two men; mean age 46±14 years) in this analysis. The time interval between the two scans was 0-180 days. We calculated the volumes of grey matter, white matter and CSF by using a novel segmentation technique applied to the MRI images. We measured the mean standardized uptake value (SUV) representing the whole metabolic activity of the brain from the F-FDG-PET images. We also calculated the white matter SUV from the upper transaxial slices (centrum semiovale) of the F-FDG-PET images. The whole brain volume was calculated by summing up the volumes of the white matter, grey matter and CSF. The global cerebral metabolic activity was calculated by multiplying the mean SUV with total brain volume. The whole brain white matter metabolic activity was calculated by multiplying the mean SUV for the white matter by the white matter volume. The global cerebral metabolic activity only reflects those of the grey matter and the white matter, whereas that of the CSF is zero. We subtracted the global white matter metabolic activity from that of the whole brain, resulting in the global grey matter metabolism alone. We then divided the grey matter global metabolic activity by grey matter volume to accurately calculate the SUV for the grey matter alone. The brain volumes ranged between 1546 and 1924 ml. The mean SUV for total brain was 4.8-7. Total metabolic burden of the brain ranged from 5565 to 9617. The mean SUV for white matter was 2.8-4.1. On the basis of these measurements we generated the grey matter SUV, which ranged from 8.1 to 11.3. The

  8. Spinal cord grey matter segmentation challenge.

    Science.gov (United States)

    Prados, Ferran; Ashburner, John; Blaiotta, Claudia; Brosch, Tom; Carballido-Gamio, Julio; Cardoso, Manuel Jorge; Conrad, Benjamin N; Datta, Esha; Dávid, Gergely; Leener, Benjamin De; Dupont, Sara M; Freund, Patrick; Wheeler-Kingshott, Claudia A M Gandini; Grussu, Francesco; Henry, Roland; Landman, Bennett A; Ljungberg, Emil; Lyttle, Bailey; Ourselin, Sebastien; Papinutto, Nico; Saporito, Salvatore; Schlaeger, Regina; Smith, Seth A; Summers, Paul; Tam, Roger; Yiannakas, Marios C; Zhu, Alyssa; Cohen-Adad, Julien

    2017-05-15

    An important image processing step in spinal cord magnetic resonance imaging is the ability to reliably and accurately segment grey and white matter for tissue specific analysis. There are several semi- or fully-automated segmentation methods for cervical cord cross-sectional area measurement with an excellent performance close or equal to the manual segmentation. However, grey matter segmentation is still challenging due to small cross-sectional size and shape, and active research is being conducted by several groups around the world in this field. Therefore a grey matter spinal cord segmentation challenge was organised to test different capabilities of various methods using the same multi-centre and multi-vendor dataset acquired with distinct 3D gradient-echo sequences. This challenge aimed to characterize the state-of-the-art in the field as well as identifying new opportunities for future improvements. Six different spinal cord grey matter segmentation methods developed independently by various research groups across the world and their performance were compared to manual segmentation outcomes, the present gold-standard. All algorithms provided good overall results for detecting the grey matter butterfly, albeit with variable performance in certain quality-of-segmentation metrics. The data have been made publicly available and the challenge web site remains open to new submissions. No modifications were introduced to any of the presented methods as a result of this challenge for the purposes of this publication. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Whole-brain grey matter density predicts balance stability irrespective of age and protects older adults from falling.

    Science.gov (United States)

    Boisgontier, Matthieu P; Cheval, Boris; van Ruitenbeek, Peter; Levin, Oron; Renaud, Olivier; Chanal, Julien; Swinnen, Stephan P

    2016-03-01

    Functional and structural imaging studies have demonstrated the involvement of the brain in balance control. Nevertheless, how decisive grey matter density and white matter microstructural organisation are in predicting balance stability, and especially when linked to the effects of ageing, remains unclear. Standing balance was tested on a platform moving at different frequencies and amplitudes in 30 young and 30 older adults, with eyes open and with eyes closed. Centre of pressure variance was used as an indicator of balance instability. The mean density of grey matter and mean white matter microstructural organisation were measured using voxel-based morphometry and diffusion tensor imaging, respectively. Mixed-effects models were built to analyse the extent to which age, grey matter density, and white matter microstructural organisation predicted balance instability. Results showed that both grey matter density and age independently predicted balance instability. These predictions were reinforced when the level of difficulty of the conditions increased. Furthermore, grey matter predicted balance instability beyond age and at least as consistently as age across conditions. In other words, for balance stability, the level of whole-brain grey matter density is at least as decisive as being young or old. Finally, brain grey matter appeared to be protective against falls in older adults as age increased the probability of losing balance in older adults with low, but not moderate or high grey matter density. No such results were observed for white matter microstructural organisation, thereby reinforcing the specificity of our grey matter findings. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Grey and white matter correlates of recent and remote autobiographical memory retrieval--insights from the dementias.

    Directory of Open Access Journals (Sweden)

    Muireann Irish

    Full Text Available The capacity to remember self-referential past events relies on the integrity of a distributed neural network. Controversy exists, however, regarding the involvement of specific brain structures for the retrieval of recently experienced versus more distant events. Here, we explored how characteristic patterns of atrophy in neurodegenerative disorders differentially disrupt remote versus recent autobiographical memory. Eleven behavioural-variant frontotemporal dementia, 10 semantic dementia, 15 Alzheimer's disease patients and 14 healthy older Controls completed the Autobiographical Interview. All patient groups displayed significant remote memory impairments relative to Controls. Similarly, recent period retrieval was significantly compromised in behavioural-variant frontotemporal dementia and Alzheimer's disease, yet semantic dementia patients scored in line with Controls. Voxel-based morphometry and diffusion tensor imaging analyses, for all participants combined, were conducted to investigate grey and white matter correlates of remote and recent autobiographical memory retrieval. Neural correlates common to both recent and remote time periods were identified, including the hippocampus, medial prefrontal, and frontopolar cortices, and the forceps minor and left hippocampal portion of the cingulum bundle. Regions exclusively implicated in each time period were also identified. The integrity of the anterior temporal cortices was related to the retrieval of remote memories, whereas the posterior cingulate cortex emerged as a structure significantly associated with recent autobiographical memory retrieval. This study represents the first investigation of the grey and white matter correlates of remote and recent autobiographical memory retrieval in neurodegenerative disorders. Our findings demonstrate the importance of core brain structures, including the medial prefrontal cortex and hippocampus, irrespective of time period, and point towards the

  11. Spatio-temporal progression of grey and white matter damage following contusion injury in rat spinal cord.

    Directory of Open Access Journals (Sweden)

    C Joakim Ek

    Full Text Available Cellular mechanisms of secondary damage progression following spinal cord injury remain unclear. We have studied the extent of tissue damage from 15 min to 10 weeks after injury using morphological and biochemical estimates of lesion volume and surviving grey and white matter. This has been achieved by semi-quantitative immunocytochemical methods for a range of cellular markers, quantitative counts of white matter axonal profiles in semi-thin sections and semi-quantitative Western blot analysis, together with behavioural tests (BBB scores, ledged beam, random rung horizontal ladder and DigiGait analysis. We have developed a new computer-controlled electronic impactor based on a linear motor that allows specification of the precise nature, extent and timing of the impact. Initial (15 min lesion volumes showed very low variance (1.92+/-0.23 mm3, mean+/-SD, n=5. Although substantial tissue clearance continued for weeks after injury, loss of grey matter was rapid and complete by 24 hours, whereas loss of white matter extended up to one week. No change was found between one and 10 weeks after injury for almost all morphological and biochemical estimates of lesion size or behavioural methods. These results suggest that previously reported apparent ongoing injury progression is likely to be due, to a large extent, to clearance of tissue damaged by the primary impact rather than continuing cell death. The low variance of the impactor and the comprehensive assessment methods described in this paper provide an improved basis on which the effects of potential treatment regimes for spinal cord injury can be assessed.

  12. Cortical grey matter and subcortical white matter brain microstructural changes in schizophrenia are localised and age independent: a case-control diffusion tensor imaging study.

    Science.gov (United States)

    Chiapponi, Chiara; Piras, Fabrizio; Piras, Federica; Fagioli, Sabrina; Caltagirone, Carlo; Spalletta, Gianfranco

    2013-01-01

    It is still unknown whether the structural brain impairments that characterize schizophrenia (SZ) worsen during the lifetime. Here, we aimed to describe age-related microstructural brain changes in cortical grey matter and subcortical white matter of patients affected by SZ. In this diffusion tensor imaging study, we included 69 patients diagnosed with SZ and 69 healthy control (HC) subjects, age and gender matched. We carried out analyses of covariance, with diagnosis as fixed factor and brain diffusion-related parameters as dependent variables, and controlled for the effect of education. White matter fractional anisotropy decreased in the entire age range spanned (18-65 years) in both SZ and HC and was significantly lower in younger patients with SZ, with no interaction (age by diagnosis) effect in fiber tracts including corpus callosum, corona radiata, thalamic radiations and external capsule. Also, grey matter mean diffusivity increased in the entire age range in both SZ and HC and was significantly higher in younger patients, with no age by diagnosis interaction in the left frontal operculum cortex, left insula and left planum polare and in the right temporal pole and right intracalcarine cortex. In individuals with SZ we found that localized brain cortical and white matter subcortical microstructural impairments appear early in life but do not worsen in the 18-65 year age range.

  13. Cortical grey matter and subcortical white matter brain microstructural changes in schizophrenia are localised and age independent: a case-control diffusion tensor imaging study.

    Directory of Open Access Journals (Sweden)

    Chiara Chiapponi

    Full Text Available It is still unknown whether the structural brain impairments that characterize schizophrenia (SZ worsen during the lifetime. Here, we aimed to describe age-related microstructural brain changes in cortical grey matter and subcortical white matter of patients affected by SZ. In this diffusion tensor imaging study, we included 69 patients diagnosed with SZ and 69 healthy control (HC subjects, age and gender matched. We carried out analyses of covariance, with diagnosis as fixed factor and brain diffusion-related parameters as dependent variables, and controlled for the effect of education. White matter fractional anisotropy decreased in the entire age range spanned (18-65 years in both SZ and HC and was significantly lower in younger patients with SZ, with no interaction (age by diagnosis effect in fiber tracts including corpus callosum, corona radiata, thalamic radiations and external capsule. Also, grey matter mean diffusivity increased in the entire age range in both SZ and HC and was significantly higher in younger patients, with no age by diagnosis interaction in the left frontal operculum cortex, left insula and left planum polare and in the right temporal pole and right intracalcarine cortex. In individuals with SZ we found that localized brain cortical and white matter subcortical microstructural impairments appear early in life but do not worsen in the 18-65 year age range.

  14. Neuropsychiatric symptoms and diagnosis of grey matter heterotopia

    African Journals Online (AJOL)

    An MRI scan of the brain is the special investigation of choice for the correct diagnosis of GMH. The pathognomonic finding is that of heterotopic grey matter abnormally located within areas of white matter. Defective foetal neuronal migration between the third and fifth month of pregnancy can lead to GMH, which can present ...

  15. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron.

    Science.gov (United States)

    Haider, Lukas; Simeonidou, Constantina; Steinberger, Günther; Hametner, Simon; Grigoriadis, Nikolaos; Deretzi, Georgia; Kovacs, Gabor G; Kutzelnigg, Alexandra; Lassmann, Hans; Frischer, Josa M

    2014-12-01

    In multiple sclerosis (MS), diffuse degenerative processes in the deep grey matter have been associated with clinical disabilities. We performed a systematic study in MS deep grey matter with a focus on the incidence and topographical distribution of lesions in relation to white matter and cortex in a total sample of 75 MS autopsy patients and 12 controls. In addition, detailed analyses of inflammation, acute axonal injury, iron deposition and oxidative stress were performed. MS deep grey matter was affected by two different processes: the formation of focal demyelinating lesions and diffuse neurodegeneration. Deep grey matter demyelination was most prominent in the caudate nucleus and hypothalamus and could already be seen in early MS stages. Lesions developed on the background of inflammation. Deep grey matter inflammation was intermediate between low inflammatory cortical lesions and active white matter lesions. Demyelination and neurodegeneration were associated with oxidative injury. Iron was stored primarily within oligodendrocytes and myelin fibres and released upon demyelination. In addition to focal demyelinated plaques, the MS deep grey matter also showed diffuse and global neurodegeneration. This was reflected by a global reduction of neuronal density, the presence of acutely injured axons, and the accumulation of oxidised phospholipids and DNA in neurons, oligodendrocytes and axons. Neurodegeneration was associated with T cell infiltration, expression of inducible nitric oxide synthase in microglia and profound accumulation of iron. Thus, both focal lesions as well as diffuse neurodegeneration in the deep grey matter appeared to contribute to the neurological disabilities of MS patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. The clinical impact of cerebellar grey matter pathology in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Alfredo Damasceno

    Full Text Available BACKGROUND: The cerebellum is an important site for cortical demyelination in multiple sclerosis, but the functional significance of this finding is not fully understood. OBJECTIVE: To evaluate the clinical and cognitive impact of cerebellar grey-matter pathology in multiple sclerosis patients. METHODS: Forty-two relapsing-remitting multiple sclerosis patients and 30 controls underwent clinical assessment including the Multiple Sclerosis Functional Composite, Expanded Disability Status Scale (EDSS and cerebellar functional system (FS score, and cognitive evaluation, including the Paced Auditory Serial Addition Test (PASAT and the Symbol-Digit Modalities Test (SDMT. Magnetic resonance imaging was performed with a 3T scanner and variables of interest were: brain white-matter and cortical lesion load, cerebellar intracortical and leukocortical lesion volumes, and brain cortical and cerebellar white-matter and grey-matter volumes. RESULTS: After multivariate analysis high burden of cerebellar intracortical lesions was the only predictor for the EDSS (p<0.001, cerebellar FS (p = 0.002, arm function (p = 0.049, and for leg function (p<0.001. Patients with high burden of cerebellar leukocortical lesions had lower PASAT scores (p = 0.013, while patients with greater volumes of cerebellar intracortical lesions had worse SDMT scores (p = 0.015. CONCLUSIONS: Cerebellar grey-matter pathology is widely present and contributes to clinical dysfunction in relapsing-remitting multiple sclerosis patients, independently of brain grey-matter damage.

  17. Grey and white matter changes in children with monocular amblyopia: voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Li, Qian; Jiang, Qinying; Guo, Mingxia; Li, Qingji; Cai, Chunquan; Yin, Xiaohui

    2013-04-01

    To investigate the potential morphological alterations of grey and white matter in monocular amblyopic children using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI). A total of 20 monocular amblyopic children and 20 age-matched controls were recruited. Whole-brain MRI scans were performed after a series of ophthalmologic exams. The imaging data were processed and two-sample t-tests were employed to identify group differences in grey matter volume (GMV), white matter volume (WMV) and fractional anisotropy (FA). After image screening, there were 12 amblyopic participants and 15 normal controls qualified for the VBM analyses. For DTI analysis, 14 amblyopes and 14 controls were included. Compared to the normal controls, reduced GMVs were observed in the left inferior occipital gyrus, the bilateral parahippocampal gyrus and the left supramarginal/postcentral gyrus in the monocular amblyopic group, with the lingual gyrus presenting augmented GMV. Meanwhile, WMVs reduced in the left calcarine, the bilateral inferior frontal and the right precuneus areas, and growth in the WMVs was seen in the right cuneus, right middle occipital and left orbital frontal areas. Diminished FA values in optic radiation and increased FA in the left middle occipital area and right precuneus were detected in amblyopic patients. In monocular amblyopia, cortices related to spatial vision underwent volume loss, which provided neuroanatomical evidence of stereoscopic defects. Additionally, white matter development was also hindered due to visual defects in amblyopes. Growth in the GMVs, WMVs and FA in the occipital lobe and precuneus may reflect a compensation effect by the unaffected eye in monocular amblyopia.

  18. Unusual MRI findings in grey matter heteropia

    International Nuclear Information System (INIS)

    Soto Ares, G.; Hamon-Kerautret, M.; Leclerc, X.; Pruvo, J.P.; Houlette, C.; Godefroy, O.

    1998-01-01

    We report unusual MRI patterns in patients with grey matter heterotopia. Standard T1- and T2-weighted spin-echo and inversion-recovery sequences were used in 22 patients presenting with seizures or developmental delay. The images were reviewed for signal change surrounding white matter and for atypical size, morphology or topography. We found 10 cases of subependymal heterotopias 11 of focal subcortical heterotopia and of diffuse subcortical heterotopia. On clinical or MRI grounds, 8 cases were considered unusual: 2 of the subependymal type, 2 of focal subcortical heterotopia with white matter abnormalities, 2 of focal subcortical heterotopia with no clinicoradiological correlation 1 of extensive hemispheric subcortical heterotopia and 1 of diffuse subcortical heterotopia confined to the frontal lobe. The classical classification of heterotopia enables easy radiological diagnosis even in cases with unusual patterns. In some cases, heterogeneity and high signal in surrounding white matter can be found. Cortical dysplasia is the most frequent associated malformation. (orig.)

  19. Brain grey matter volume alterations in late-life depression.

    Science.gov (United States)

    Du, Mingying; Liu, Jia; Chen, Ziqi; Huang, Xiaoqi; Li, Jing; Kuang, Weihong; Yang, Yanchun; Zhang, Wei; Zhou, Dong; Bi, Feng; Kendrick, Keith M; Gong, Qiyong

    2014-11-01

    Voxel-based morphometry (VBM) studies have demonstrated that grey matter abnormalities are involved in the pathophysiology of late-life depression (LLD), but the findings are inconsistent and have not been quantitatively reviewed. The aim of the present study was to conduct a meta-analysis that integrated the reported VBM studies, to determine consistent grey matter alterations in individuals with LLD. A systematic search was conducted to identify VBM studies that compared patients with LLD and healthy controls. We performed a meta-analysis using the effect size signed differential mapping method to quantitatively estimate regional grey matter abnormalities in patients with LLD. We included 9 studies with 11 data sets comprising 292 patients with LLD and 278 healthy controls in our meta-analysis. The pooled and subgroup meta-analyses showed robust grey matter reductions in the right lentiform nucleus extending into the parahippocampus, the hippocampus and the amygdala, the bilateral medial frontal gyrus and the right subcallosal gyrus as well as a grey matter increase in the right lingual gyrus. Meta-regression analyses showed that mean age and the percentage of female patients with LLD were not significantly related to grey matter changes. The analysis techniques, patient characteristics and clinical variables of the studies included were heterogeneous, and most participants were medicated. The present meta-analysis is, to our knowledge, the first to overcome previous inconsistencies in the VBM studies of LLD and provide robust evidence for grey matter alterations within fronto-striatal-limbic networks, thereby implicating them in the pathophysiology of LLD. The mean age and the percentage of female patients with LLD did not appear to have a measurable impact on grey matter changes, although we cannot rule out the contributory effects of medication.

  20. Characterising the grey matter correlates of leukoaraiosis in cerebral small vessel disease

    Directory of Open Access Journals (Sweden)

    Christian Lambert

    2015-01-01

    We demonstrate that SVD severity is associated with regional cortical thinning. Furthermore a quantitative measure of SVD severity (WMH volume can be predicted from grey matter measures, supporting an association between white and grey matter damage. The pattern of cortical thinning and volumetric decline is distinctive for SVD severity compared to ageing. These results, taken together, suggest that there is a phenotypic pattern of atrophy associated with SVD severity.

  1. White matter volume changes in people who develop psychosis.

    Science.gov (United States)

    Walterfang, Mark; McGuire, Philip K; Yung, Alison R; Phillips, Lisa J; Velakoulis, Dennis; Wood, Stephen J; Suckling, John; Bullmore, Edward T; Brewer, Warrick; Soulsby, Bridget; Desmond, Patricia; McGorry, Patrick D; Pantelis, Christos

    2008-09-01

    Grey matter changes have been described in individuals who are pre- and peri-psychotic, but it is unclear if these changes are accompanied by changes in white matter structures. To determine whether changes in white matter occur prior to and with the transition to psychosis in individuals who are pre-psychotic who had previously demonstrated grey matter reductions in frontotemporal regions. We used magnetic resonance imaging (MRI) to examine regional white matter volume in 75 people with prodromal symptoms. A subset of the original group (n=21) were rescanned at 12-18 months to determine white matter volume changes. Participants were retrospectively categorised according to whether they had or had not developed psychosis at follow-up. Comparison of the baseline MRI data from these two subgroups revealed that individuals who later developed psychosis had larger volumes of white matter in the frontal lobe, particularly in the left hemisphere. Longitudinal comparison of data in individuals who developed psychosis revealed a reduction in white matter volume in the region of the left fronto-occipital fasciculus. Participants who had not developed psychosis showed no reductions in white matter volume but increases in a region subjacent to the right inferior parietal lobule. The reduction in volume of white matter near the left fronto-occipital fasciculus may reflect a change in this tract in association with the onset of frank psychosis.

  2. White matter damage is related to ataxia severity in SCA3.

    Science.gov (United States)

    Kang, J-S; Klein, J C; Baudrexel, S; Deichmann, R; Nolte, D; Hilker, R

    2014-02-01

    Spinocerebellar ataxia type 3 (SCA3) is the most frequent inherited cerebellar ataxia in Europe, the US and Japan, leading to disability and death through motor complications. Although the affected protein ataxin-3 is found ubiquitously in the brain, grey matter atrophy is predominant in the cerebellum and the brainstem. White matter pathology is generally less severe and thought to occur in the brainstem, spinal cord, and cerebellar white matter. Here, we investigated both grey and white matter pathology in a group of 12 SCA3 patients and matched controls. We used voxel-based morphometry for analysis of tissue loss, and tract-based spatial statistics (TBSS) on diffusion magnetic resonance imaging to investigate microstructural pathology. We analysed correlations between microstructural properties of the brain and ataxia severity, as measured by the Scale for the Assessment and Rating of Ataxia (SARA) score. SCA3 patients exhibited significant loss of both grey and white matter in the cerebellar hemispheres, brainstem including pons and in lateral thalamus. On between-group analysis, TBSS detected widespread microstructural white matter pathology in the cerebellum, brainstem, and bilaterally in thalamus and the cerebral hemispheres. Furthermore, fractional anisotropy in a white matter network comprising frontal, thalamic, brainstem and left cerebellar white matter strongly and negatively correlated with SARA ataxia scores. Tractography identified the thalamic white matter thus implicated as belonging to ventrolateral thalamus. Disruption of white matter integrity in patients suffering from SCA3 is more widespread than previously thought. Moreover, our data provide evidence that microstructural white matter changes in SCA3 are strongly related to the clinical severity of ataxia symptoms.

  3. Quantitative comparison of cortical and deep grey matter in pathological subtypes of unilateral cerebral palsy.

    Science.gov (United States)

    Scheck, Simon M; Pannek, Kerstin; Fiori, Simona; Boyd, Roslyn N; Rose, Stephen E

    2014-10-01

    The aim of this study was to quantify grey matter changes in children with unilateral cerebral palsy (UCP), differentiating between cortical or deep grey matter (CDGM) lesions, periventricular white matter (PWM) lesions, and unilateral and bilateral lesions. In a cross-sectional study we obtained high resolution structural magnetic resonance images from 72 children (41 males, 31 females, mean age 10y 9mo [SD 3y 1mo], range 5y 1mo-17y 1mo) with UCP (33 left, 39 right hemiplegia; Manual Ability Classification System level I n=29, II n=43; Gross Motor Function Classification System level I n=46, II n=26), and 19 children with typical development (CTD; eight males, 11 females, mean age 11y 2mo [SD 2y 7mo], range 7y 8mo-16y 4mo). Images were classified by lesion type and analyzed using voxel-based morphometry (VBM) and subcortical volumetric analysis. Deep grey matter volumes were not significantly different between children with CDGM and PWM lesions, with the thalamus, putamen, and globus pallidus being reduced unilaterally in both groups compared with CTD (p≤0.001). Children with CDGM lesions additionally showed widespread cortical changes involving all lobes using VBM (p<0.01). Children with bilateral lesions had reduced thalamus and putamen volumes bilaterally (p<0.001). The thalamic volume was reduced bilaterally in children with unilateral lesions (p=0.004). Lesions to the PWM cause secondary changes to the deep grey matter structures similar to primary changes seen in CDGM lesions. Despite having a unilateral phenotype, grey matter changes are observed bilaterally, even in children with unilateral lesions. © 2014 Mac Keith Press.

  4. Longitudinal changes in microstructural white matter metrics in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Chantel D. Mayo

    2017-01-01

    Conclusion: The current results indicate that sensitivity to white matter microstructure is a promising avenue for AD biomarker research. Additional longitudinal studies on both white and grey matter are warranted to further evaluate potential clinical utility.

  5. Effects of total saponins from Trillium tschonoskii rhizome on grey and white matter injury evaluated by quantitative multiparametric MRI in a rat model of ischemic stroke.

    Science.gov (United States)

    Li, Manzhong; Ouyang, Junyao; Zhang, Yi; Cheng, Brian Chi Yan; Zhan, Yu; Yang, Le; Zou, Haiyan; Zhao, Hui

    2018-04-06

    Trillium tschonoskii rhizome (TTR), a medicinal herb, has been traditionally used to treat traumatic brain injury and headache in China. Although the potential neuroprotective efficacy of TTR has gained increasing interest, the pharmacological mechanism remains unclear. Steroid saponins are the main bioactive components of the herb. To investigate the protective and repair-promoting effects of the total saponins from TTR (TSTT) on grey and white matter damages in a rat model of middle cerebral artery occlusion (MCAO) using magnetic resonance imaging (MRI) assay. Ischemic stroke was induced by MCAO. TSTT and Ginaton (positive control) were administered orally to rats 6h after stroke and daily thereafter. After 15 days of treatment, the survival rate of each group was calculated. We then conducted neurological deficit scores and beam walking test to access the neurological function after ischemic stroke. Subsequently, T2-weighted imaging (T2WI) and T2 relaxometry mapping were performed to measure infarct volume and grey and white matter integrity, respectively. Moreover, diffusion tensor imaging (DTI) was carried out to evaluate the grey and white matter microstructural damage. Additionally, arterial spin labelling (ASL) - cerebral blood flow (CBF) and magnetic resonance angiography (MRA) images provided dynamic information about vascular hemodynamic dysfunction after ischemic stroke. Finally, haematoxylin and eosin (HE) staining was carried out to evaluate the stroke-induced pathological changes in the brain. The survival rate and neurological behavioural outcomes (Bederson scores and beam walking tests) were markedly ameliorated by TSTT (65mg/kg) treatment within 15 days after ischemic stroke. Moreover, T2WI and T2 relaxometry mapping showed that TSTT (65mg/kg) significantly reduced infarct volume and attenuated grey and white matter injury, respectively, which was confirmed by histopathological evaluation of brain tissue. The results obtained from DTI showed that

  6. Diffuse alterations in grey and white matter associated with cognitive impairment in Shwachman–Diamond syndrome: Evidence from a multimodal approach

    Directory of Open Access Journals (Sweden)

    Sandra Perobelli

    2015-01-01

    Cognitive impairment in Shwachman–Diamond syndrome subjects is associated with diffuse brain anomalies in the grey matter (verbal skills with BA44 and BA20 in the right hemisphere; perceptual skills with BA5, 37, 20, 21, 42 in the left hemisphere and white matter connectivity (verbal skills with alterations in the fronto-occipital fasciculus and with the inferior-longitudinal fasciculus; perceptual skills with the arcuate fasciculus, limbic and ponto-cerebellar fasciculus; memory skills with the arcuate fasciculus; executive functions with the anterior cingulated and arcuate fasciculus.

  7. Atlas-free surface reconstruction of the cortical grey-white interface in infants.

    Directory of Open Access Journals (Sweden)

    François Leroy

    Full Text Available BACKGROUND: The segmentation of the cortical interface between grey and white matter in magnetic resonance images (MRI is highly challenging during the first post-natal year. First, the heterogeneous brain maturation creates important intensity fluctuations across regions. Second, the cortical ribbon is highly folded creating complex shapes. Finally, the low tissue contrast and partial volume effects hamper cortex edge detection in parts of the brain. METHODS AND FINDINGS: We present an atlas-free method for segmenting the grey-white matter interface of infant brains in T2-weighted (T2w images. We used a broad characterization of tissue using features based not only on local contrast but also on geometric properties. Furthermore, inaccuracies in localization were reduced by the convergence of two evolving surfaces located on each side of the inner cortical surface. Our method has been applied to eleven brains of one- to four-month-old infants. Both quantitative validations against manual segmentations and sulcal landmarks demonstrated good performance for infants younger than two months old. Inaccuracies in surface reconstruction increased with age in specific brain regions where the tissue contrast decreased with maturation, such as in the central region. CONCLUSIONS: We presented a new segmentation method which achieved good to very good performance at the grey-white matter interface depending on the infant age. This method should reduce manual intervention and could be applied to pathological brains since it does not require any brain atlas.

  8. Grey matter correlates of susceptibility to scams in community-dwelling older adults.

    Science.gov (United States)

    Duke Han, S; Boyle, Patricia A; Yu, Lei; Arfanakis, Konstantinos; James, Bryan D; Fleischman, Debra A; Bennett, David A

    2016-06-01

    Susceptibility to scams is a significant issue among older adults, even among those with intact cognition. Age-related changes in brain macrostructure may be associated with susceptibility to scams; however, this has yet to be explored. Based on previous work implicating frontal and temporal lobe functioning as important in decision making, we tested the hypothesis that susceptibility to scams is associated with smaller grey matter volume in frontal and temporal lobe regions in a large community-dwelling cohort of non-demented older adults. Participants (N = 327, mean age = 81.55, mean education = 15.30, 78.9 % female) completed a self-report measure used to assess susceptibility to scams and an MRI brain scan. Results indicated an inverse association between overall grey matter and susceptibility to scams in models adjusted for age, education, and sex; and in models further adjusted for cognitive function. No significant associations were observed for white matter, cerebrospinal fluid, or total brain volume. Models adjusted for age, education, and sex revealed seven clusters showing smaller grey matter in the right parahippocampal/hippocampal/fusiform, left middle temporal, left orbitofrontal, right ventromedial prefrontal, right middle temporal, right precuneus, and right dorsolateral prefrontal regions. In models further adjusted for cognitive function, results revealed three significant clusters showing smaller grey matter in the right parahippocampal/hippocampal/fusiform, right hippocampal, and right middle temporal regions. Lower grey matter concentration in specific brain regions may be associated with susceptibility to scams, even after adjusting for cognitive ability. Future research is needed to determine whether grey matter reductions in these regions may be a biomarker for susceptibility to scams in old age.

  9. Towards a Holistic Cortical Thickness Descriptor: Heat Kernel-Based Grey Matter Morphology Signatures.

    Science.gov (United States)

    Wang, Gang; Wang, Yalin

    2017-02-15

    In this paper, we propose a heat kernel based regional shape descriptor that may be capable of better exploiting volumetric morphological information than other available methods, thereby improving statistical power on brain magnetic resonance imaging (MRI) analysis. The mechanism of our analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral meshes. In order to capture profound brain grey matter shape changes, we first use the volumetric Laplace-Beltrami operator to determine the point pair correspondence between white-grey matter and CSF-grey matter boundary surfaces by computing the streamlines in a tetrahedral mesh. Secondly, we propose multi-scale grey matter morphology signatures to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the grey matter morphology signatures and generate the internal structure features. With the sparse linear discriminant analysis, we select a concise morphology feature set with improved classification accuracies. In our experiments, the proposed work outperformed the cortical thickness features computed by FreeSurfer software in the classification of Alzheimer's disease and its prodromal stage, i.e., mild cognitive impairment, on publicly available data from the Alzheimer's Disease Neuroimaging Initiative. The multi-scale and physics based volumetric structure feature may bring stronger statistical power than some traditional methods for MRI-based grey matter morphology analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Limbic grey matter changes in early Parkinson's disease.

    Science.gov (United States)

    Li, Xingfeng; Xing, Yue; Schwarz, Stefan T; Auer, Dorothee P

    2017-05-02

    The purpose of this study was to investigate local and network-related changes of limbic grey matter in early Parkinson's disease (PD) and their inter-relation with non-motor symptom severity. We applied voxel-based morphometric methods in 538 T1 MRI images retrieved from the Parkinson's Progression Markers Initiative website. Grey matter densities and cross-sectional estimates of age-related grey matter change were compared between subjects with early PD (n = 366) and age-matched healthy controls (n = 172) within a regression model, and associations of grey matter density with symptoms were investigated. Structural brain networks were obtained using covariance analysis seeded in regions showing grey matter abnormalities in PD subject group. Patients displayed focally reduced grey matter density in the right amygdala, which was present from the earliest stages of the disease without further advance in mild-moderate disease stages. Right amygdala grey matter density showed negative correlation with autonomic dysfunction and positive with cognitive performance in patients, but no significant interrelations were found with anxiety scores. Patients with PD also demonstrated right amygdala structural disconnection with less structural connectivity of the right amygdala with the cerebellum and thalamus but increased covariance with bilateral temporal cortices compared with controls. Age-related grey matter change was also increased in PD preferentially in the limbic system. In conclusion, detailed brain morphometry in a large group of early PD highlights predominant limbic grey matter deficits with stronger age associations compared with controls and associated altered structural connectivity pattern. This provides in vivo evidence for early limbic grey matter pathology and structural network changes that may reflect extranigral disease spread in PD. Hum Brain Mapp, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2017 The

  11. Voxel-wise grey matter asymmetry analysis in left- and right-handers.

    Science.gov (United States)

    Ocklenburg, Sebastian; Friedrich, Patrick; Güntürkün, Onur; Genç, Erhan

    2016-10-28

    Handedness is thought to originate in the brain, but identifying its structural correlates in the cortex has yielded surprisingly incoherent results. One idea proclaimed by several authors is that structural grey matter asymmetries might underlie handedness. While some authors have found significant associations with handedness in different brain areas (e.g. in the central sulcus and precentral sulcus), others have failed to identify such associations. One method used by many researchers to determine structural grey matter asymmetries is voxel based morphometry (VBM). However, it has recently been suggested that the standard VBM protocol might not be ideal to assess structural grey matter asymmetries, as it establishes accurate voxel-wise correspondence across individuals but not across both hemispheres. This could potentially lead to biased and incoherent results. Recently, a new toolbox specifically geared at assessing structural asymmetries and involving accurate voxel-wise correspondence across hemispheres has been published [F. Kurth, C. Gaser, E. Luders. A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM), Nat Protoc 10 (2015), 293-304]. Here, we used this new toolbox to re-assess grey matter asymmetry differences in left- vs. right-handers and linked them to quantitative measures of hand preference and hand skill. While we identified several significant left-right asymmetries in the overall sample, no difference between left- and right-handers reached significance after correction for multiple comparisons. These findings indicate that the structural brain correlates of handedness are unlikely to be rooted in macroscopic grey matter area differences that can be assessed with VBM. Future studies should focus on other potential structural correlates of handedness, e.g. structural white matter asymmetries. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Heterotopic grey matter: Ct vs. MRI

    International Nuclear Information System (INIS)

    Hosten, N.; Schoerner, W.

    1989-01-01

    Heterotopic grey matter is a rare cause of seizures. While lesions appear suspicious on CT because of equidensity to cortex, MR imaging can establish the diagnosis by demonstrating same signal intensity of heterotopia and grey matter on T 1 - and T 2 -weighted as well as inversion-recovery sequences. (orig.) [de

  13. The human cerebral cortex is neither one nor many: Neuronal distribution reveals two quantitatively different zones in the grey matter, three in the white matter, and explains local variations in cortical folding

    Directory of Open Access Journals (Sweden)

    Pedro F. M. Ribeiro

    2013-09-01

    Full Text Available The human prefrontal cortex has been considered different in several aspects and relatively enlarged compared to the rest of the cortical areas. Here we determine whether the white and gray matter of the prefrontal portion of the human cerebral cortex have similar or different cellular compositions relative to the rest of the cortical regions by applying the Isotropic Fractionator to analyze the distribution of neurons along the entire anteroposterior axis of the cortex, and its relationship with the degree of gyrification, number of neurons under the cortical surface, and other parameters. The prefrontal region shares with the remainder of the cerebral cortex (except for occipital cortex the same relationship between cortical volume and number of neurons. In contrast, both occipital and prefrontal areas vary from other cortical areas in their connectivity through the white matter, with a systematic reduction of cortical connectivity through the white matter and an increase of the mean axon caliber along the anteroposterior axis. These two parameters explain local differences in the distribution of neurons underneath the cortical surface. We also show that local variations in cortical folding are neither a function of local numbers of neurons nor of cortical thickness, but correlate with properties of the white matter, and are best explained by the folding of the white matter surface. Our results suggest that the human cerebral cortex is divided in two zones (occipital and non-occipital that differ in how neurons distributed across their grey matter volume and in three zones (prefrontal, occipital, and non-occipital that differ in how neurons are connected through the white matter. Thus, the human prefrontal cortex has the largest fraction of neuronal connectivity through the white matter and the smallest average axonal caliber in the white matter within the cortex, although its neuronal composition fits the pattern found for other, non

  14. White matter integrity as a predictor of response to treatment in first episode psychosis.

    Science.gov (United States)

    Reis Marques, Tiago; Taylor, Heather; Chaddock, Chris; Dell'acqua, Flavio; Handley, Rowena; Reinders, A A T Simone; Mondelli, Valeria; Bonaccorso, Stefania; Diforti, Marta; Simmons, Andrew; David, Anthony S; Murray, Robin M; Pariante, Carmine M; Kapur, Shitij; Dazzan, Paola

    2014-01-01

    The integrity of brain white matter connections is central to a patient's ability to respond to pharmacological interventions. This study tested this hypothesis using a specific measure of white matter integrity, and examining its relationship to treatment response using a prospective design in patients within their first episode of psychosis. Diffusion tensor imaging data were acquired in 63 patients with first episode psychosis and 52 healthy control subjects (baseline). Response was assessed after 12 weeks and patients were classified as responders or non-responders according to treatment outcome. At this second time-point, they also underwent a second diffusion tensor imaging scan. Tract-based spatial statistics were used to assess fractional anisotropy as a marker of white matter integrity. At baseline, non-responders showed lower fractional anisotropy than both responders and healthy control subjects (P psychosis. These data, together with earlier findings on cortical grey matter, suggest that grey and white matter integrity at the start of treatment is an important moderator of response to antipsychotics. These findings can inform patient stratification to anticipate care needs, and raise the possibility that antipsychotics may restore white matter integrity as part of the therapeutic response.

  15. Automated, quantitative measures of grey and white matter lesion burden correlates with motor and cognitive function in children with unilateral cerebral palsy.

    Science.gov (United States)

    Pagnozzi, Alex M; Dowson, Nicholas; Doecke, James; Fiori, Simona; Bradley, Andrew P; Boyd, Roslyn N; Rose, Stephen

    2016-01-01

    White and grey matter lesions are the most prevalent type of injury observable in the Magnetic Resonance Images (MRIs) of children with cerebral palsy (CP). Previous studies investigating the impact of lesions in children with CP have been qualitative, limited by the lack of automated segmentation approaches in this setting. As a result, the quantitative relationship between lesion burden has yet to be established. In this study, we perform automatic lesion segmentation on a large cohort of data (107 children with unilateral CP and 18 healthy children) with a new, validated method for segmenting both white matter (WM) and grey matter (GM) lesions. The method has better accuracy (94%) than the best current methods (73%), and only requires standard structural MRI sequences. Anatomical lesion burdens most predictive of clinical scores of motor, cognitive, visual and communicative function were identified using the Least Absolute Shrinkage and Selection operator (LASSO). The improved segmentations enabled identification of significant correlations between regional lesion burden and clinical performance, which conform to known structure-function relationships. Model performance was validated in an independent test set, with significant correlations observed for both WM and GM regional lesion burden with motor function (p < 0.008), and between WM and GM lesions alone with cognitive and visual function respectively (p < 0.008). The significant correlation of GM lesions with functional outcome highlights the serious implications GM lesions, in addition to WM lesions, have for prognosis, and the utility of structural MRI alone for quantifying lesion burden and planning therapy interventions.

  16. Automated, quantitative measures of grey and white matter lesion burden correlates with motor and cognitive function in children with unilateral cerebral palsy

    Directory of Open Access Journals (Sweden)

    Alex M. Pagnozzi

    2016-01-01

    Full Text Available White and grey matter lesions are the most prevalent type of injury observable in the Magnetic Resonance Images (MRIs of children with cerebral palsy (CP. Previous studies investigating the impact of lesions in children with CP have been qualitative, limited by the lack of automated segmentation approaches in this setting. As a result, the quantitative relationship between lesion burden has yet to be established. In this study, we perform automatic lesion segmentation on a large cohort of data (107 children with unilateral CP and 18 healthy children with a new, validated method for segmenting both white matter (WM and grey matter (GM lesions. The method has better accuracy (94% than the best current methods (73%, and only requires standard structural MRI sequences. Anatomical lesion burdens most predictive of clinical scores of motor, cognitive, visual and communicative function were identified using the Least Absolute Shrinkage and Selection operator (LASSO. The improved segmentations enabled identification of significant correlations between regional lesion burden and clinical performance, which conform to known structure-function relationships. Model performance was validated in an independent test set, with significant correlations observed for both WM and GM regional lesion burden with motor function (p < 0.008, and between WM and GM lesions alone with cognitive and visual function respectively (p < 0.008. The significant correlation of GM lesions with functional outcome highlights the serious implications GM lesions, in addition to WM lesions, have for prognosis, and the utility of structural MRI alone for quantifying lesion burden and planning therapy interventions.

  17. Differential vulnerability of gray matter and white matter to intrauterine growth restriction in preterm infants at 12 months corrected age.

    Science.gov (United States)

    Padilla, Nelly; Junqué, Carme; Figueras, Francesc; Sanz-Cortes, Magdalena; Bargalló, Núria; Arranz, Angela; Donaire, Antonio; Figueras, Josep; Gratacos, Eduard

    2014-01-30

    Intrauterine growth restriction (IUGR) is associated with a high risk of abnormal neurodevelopment. Underlying neuroanatomical substrates are partially documented. We hypothesized that at 12 months preterm infants would evidence specific white-matter microstructure alterations and gray-matter differences induced by severe IUGR. Twenty preterm infants with IUGR (26-34 weeks of gestation) were compared with 20 term-born infants and 20 appropriate for gestational age preterm infants of similar gestational age. Preterm groups showed no evidence of brain abnormalities. At 12 months, infants were scanned sleeping naturally. Gray-matter volumes were studied with voxel-based morphometry. White-matter microstructure was examined using tract-based spatial statistics. The relationship between diffusivity indices in white matter, gray matter volumes, and perinatal data was also investigated. Gray-matter decrements attributable to IUGR comprised amygdala, basal ganglia, thalamus and insula bilaterally, left occipital and parietal lobes, and right perirolandic area. Gray-matter volumes positively correlated with birth weight exclusively. Preterm infants had reduced FA in the corpus callosum, and increased FA in the anterior corona radiata. Additionally, IUGR infants had increased FA in the forceps minor, internal and external capsules, uncinate and fronto-occipital white matter tracts. Increased axial diffusivity was observed in several white matter tracts. Fractional anisotropy positively correlated with birth weight and gestational age at birth. These data suggest that IUGR differentially affects gray and white matter development preferentially affecting gray matter. At 12 months IUGR is associated with a specific set of structural gray-matter decrements. White matter follows an unusual developmental pattern, and is apparently affected by IUGR and prematurity combined. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. White matter tract signatures of impaired social cognition in frontotemporal lobar degeneration

    Directory of Open Access Journals (Sweden)

    Laura E. Downey

    2015-01-01

    Full Text Available Impairments of social cognition are often leading features in frontotemporal lobar degeneration (FTLD and likely to reflect large-scale brain network disintegration. However, the neuroanatomical basis of impaired social cognition in FTLD and the role of white matter connections have not been defined. Here we assessed social cognition in a cohort of patients representing two core syndromes of FTLD, behavioural variant frontotemporal dementia (bvFTD; n = 29 and semantic variant primary progressive aphasia (svPPA; n = 15, relative to healthy older individuals (n = 37 using two components of the Awareness of Social Inference Test, canonical emotion identification and sarcasm identification. Diffusion tensor imaging (DTI was used to derive white matter tract correlates of social cognition performance and compared with the distribution of grey matter atrophy on voxel-based morphometry. The bvFTD and svPPA groups showed comparably severe deficits for identification of canonical emotions and sarcasm, and these deficits were correlated with distributed and overlapping white matter tract alterations particularly affecting frontotemporal connections in the right cerebral hemisphere. The most robust DTI associations were identified in white matter tracts linking cognitive and evaluative processing with emotional responses: anterior thalamic radiation, fornix (emotion identification and uncinate fasciculus (sarcasm identification. DTI associations of impaired social cognition were more consistent than corresponding grey matter associations. These findings delineate a brain network substrate for the social impairment that characterises FTLD syndromes. The findings further suggest that DTI can generate sensitive and functionally relevant indexes of white matter damage in FTLD, with potential to transcend conventional syndrome boundaries.

  19. Aortic stiffness is associated with white matter integrity in patients with type 1 diabetes

    International Nuclear Information System (INIS)

    Tjeerdema, Nathanja; Schinkel, Linda D. van; Westenberg, Jos J.; Elderen, Saskia G. van; Buchem, Mark A. van; Grond, Jeroen van der; Roos, Albert de; Smit, Johannes W.

    2014-01-01

    To assess the association between aortic pulse wave velocity (PWV) as a marker of arterial stiffness and diffusion tensor imaging of brain white matter integrity in patients with type 1 diabetes using advanced magnetic resonance imaging (MRI) technology. Forty-one patients with type 1 diabetes (23 men, mean age 44 ± 12 years, mean diabetes duration 24 ± 13 years) were included. Aortic PWV was assessed using through-plane velocity-encoded MRI. Brain diffusion tensor imaging (DTI) measurements were performed on 3-T MRI. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were calculated for white and grey matter integrity. Pearson correlation and multivariable linear regression analyses including cardiovascular risk factors as covariates were assessed. Multivariable linear regression analyses revealed that aortic PWV is independently associated with white matter integrity FA (β = -0.777, p = 0.008) in patients with type 1 diabetes. This effect was independent of age, gender, mean arterial pressure, body mass index, smoking, duration of diabetes and glycated haemoglobin levels. Aortic PWV was not significantly related to grey matter integrity. Our data suggest that aortic stiffness is independently associated with reduced white matter integrity in patients with type 1 diabetes. (orig.)

  20. Aortic stiffness is associated with white matter integrity in patients with type 1 diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Tjeerdema, Nathanja; Schinkel, Linda D. van [Leiden University Medical Center, Department of Endocrinology and General Internal Medicine (C7-Q), Albinusdreef 2, PO Box 9600, Leiden (Netherlands); Westenberg, Jos J.; Elderen, Saskia G. van; Buchem, Mark A. van; Grond, Jeroen van der; Roos, Albert de [Leiden University Medical Center, Department of Radiology, Leiden (Netherlands); Smit, Johannes W. [Leiden University Medical Center, Department of Endocrinology and General Internal Medicine (C7-Q), Albinusdreef 2, PO Box 9600, Leiden (Netherlands); University Medical Center Nijmegen, Department of General Internal Medicine, Nijmegen (Netherlands)

    2014-09-15

    To assess the association between aortic pulse wave velocity (PWV) as a marker of arterial stiffness and diffusion tensor imaging of brain white matter integrity in patients with type 1 diabetes using advanced magnetic resonance imaging (MRI) technology. Forty-one patients with type 1 diabetes (23 men, mean age 44 ± 12 years, mean diabetes duration 24 ± 13 years) were included. Aortic PWV was assessed using through-plane velocity-encoded MRI. Brain diffusion tensor imaging (DTI) measurements were performed on 3-T MRI. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were calculated for white and grey matter integrity. Pearson correlation and multivariable linear regression analyses including cardiovascular risk factors as covariates were assessed. Multivariable linear regression analyses revealed that aortic PWV is independently associated with white matter integrity FA (β = -0.777, p = 0.008) in patients with type 1 diabetes. This effect was independent of age, gender, mean arterial pressure, body mass index, smoking, duration of diabetes and glycated haemoglobin levels. Aortic PWV was not significantly related to grey matter integrity. Our data suggest that aortic stiffness is independently associated with reduced white matter integrity in patients with type 1 diabetes. (orig.)

  1. Three-dimensional textural analysis of brain images reveals distributed grey-matter abnormalities in schizophrenia

    International Nuclear Information System (INIS)

    Ganeshan, Balaji; Miles, Kenneth A.; Critchley, Hugo D.; Young, Rupert C.D.; Chatwin, Christopher R.; Gurling, Hugh M.D.

    2010-01-01

    Three-dimensional (3-D) selective- and relative-scale texture analysis (TA) was applied to structural magnetic resonance (MR) brain images to quantify the presence of grey-matter (GM) and white-matter (WM) textural abnormalities associated with schizophrenia. Brain TA comprised volume filtration using the Laplacian of Gaussian filter to highlight fine, medium and coarse textures within GM and WM, followed by texture quantification. Relative TA (e.g. ratio of fine to medium) was also computed. T1-weighted MR whole-brain images from 32 participants with diagnosis of schizophrenia (n = 10) and healthy controls (n = 22) were examined. Five patients possessed marker alleles (SZ8) associated with schizophrenia on chromosome 8 in the pericentriolar material 1 gene while the remaining five had not inherited any of the alleles (SZ0). Filtered fine GM texture (mean grey-level intensity; MGI) most significantly differentiated schizophrenic patients from controls (P = 0.0058; area under the receiver-operating characteristic curve = 0.809, sensitivity = 90%, specificity = 70%). WM measurements did not distinguish the two groups. Filtered GM and WM textures (MGI) correlated with total GM and WM volume respectively. Medium-to-coarse GM entropy distinguished SZ0 from controls (P = 0.0069) while measures from SZ8 were intermediate between the two. 3-D TA of brain MR enables detection of subtle distributed morphological features associated with schizophrenia, determined partly by susceptibility genes. (orig.)

  2. Three-dimensional textural analysis of brain images reveals distributed grey-matter abnormalities in schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Ganeshan, Balaji [University of Sussex, Falmer, Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton (United Kingdom); University of Sussex, Falmer, Department of Engineering and Design, Brighton (United Kingdom); Miles, Kenneth A.; Critchley, Hugo D. [University of Sussex, Falmer, Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton (United Kingdom); Young, Rupert C.D.; Chatwin, Christopher R. [University of Sussex, Falmer, Department of Engineering and Design, Brighton (United Kingdom); Gurling, Hugh M.D. [University College London, Department of Mental Health Sciences, London (United Kingdom)

    2010-04-15

    Three-dimensional (3-D) selective- and relative-scale texture analysis (TA) was applied to structural magnetic resonance (MR) brain images to quantify the presence of grey-matter (GM) and white-matter (WM) textural abnormalities associated with schizophrenia. Brain TA comprised volume filtration using the Laplacian of Gaussian filter to highlight fine, medium and coarse textures within GM and WM, followed by texture quantification. Relative TA (e.g. ratio of fine to medium) was also computed. T1-weighted MR whole-brain images from 32 participants with diagnosis of schizophrenia (n = 10) and healthy controls (n = 22) were examined. Five patients possessed marker alleles (SZ8) associated with schizophrenia on chromosome 8 in the pericentriolar material 1 gene while the remaining five had not inherited any of the alleles (SZ0). Filtered fine GM texture (mean grey-level intensity; MGI) most significantly differentiated schizophrenic patients from controls (P = 0.0058; area under the receiver-operating characteristic curve = 0.809, sensitivity = 90%, specificity = 70%). WM measurements did not distinguish the two groups. Filtered GM and WM textures (MGI) correlated with total GM and WM volume respectively. Medium-to-coarse GM entropy distinguished SZ0 from controls (P = 0.0069) while measures from SZ8 were intermediate between the two. 3-D TA of brain MR enables detection of subtle distributed morphological features associated with schizophrenia, determined partly by susceptibility genes. (orig.)

  3. Structural and functional connectivity underlying grey matter covariance: impact of developmental insult.

    Science.gov (United States)

    Paquola, Casey; Bennett, Maxwell; Lagopoulos, Jim

    2018-05-15

    Structural covariance networks (SCNs) may offer unique insights into the developmental impact of childhood maltreatment because they are thought to reflect coordinated maturation of distinct grey matter regions. T1-weighted magnetic resonance images were acquired from 121 young people with emerging mental illness. Diffusion weighted and resting state functional imaging was also acquired from a random subset of the participants (n=62). Ten study-specific SCNs were identified using a whole brain grey matter independent component analysis. The effects of childhood maltreatment and age on average grey matter density and the expression of each SCN were calculated. Childhood maltreatment was linked to age-related decreases in grey matter density across a SCN that overlapped with the default mode and fronto-parietal networks. Resting state functional connectivity and structural connectivity were calculated in the study-specific SCN and across the whole brain. Grey matter covariance was significantly correlated with rsFC across the SCN, and rsFC fully mediated the relationship between grey matter covariance and structural connectivity in the non-maltreated group. A unique association of grey matter covariance with structural connectivity was detected amongst individuals with a history of childhood maltreatment. Perturbation of grey matter development across the default mode and fronto-parietal networks following childhood maltreatment may have significant implications for mental well-being, given the networks' roles in self-referential activity. Cross-modal comparisons suggest reduced grey matter following childhood maltreatment could arise from deficient functional activity earlier in life.

  4. Differential diagnosis of white matter diseases in the tropics: An overview

    Directory of Open Access Journals (Sweden)

    Pandit Lekha

    2009-01-01

    Full Text Available In hospitals in the tropics, the availability of magnetic resonance imaging (MRI facilities in urban areas and especially in teaching institutions have resulted in white matter diseases being frequently reported in a variety of clinical settings. Unlike the west where multiple sclerosis (MS is the commonest white matter disease encountered, in the tropics, there are myriad causes for the same. Infectious and post infectious disorders probably account for the vast majority of these diseases. Human immunodeficiency virus (HIV infection tops the list of infective conditions. Central nervous system (CNS tuberculosis occasionally presents with patchy parenchymal lesions unaccompanied by meningeal involvement. Human T cell leukemia virus (HTLV infection and cystic inflammatory lesions such as neurocysticercosis are important causes to be considered in the differential diagnosis. Diagnosing post infectious demyelinating disorders is equally challenging since more than a third of cases seen in the tropics do not present with history of past infection or vaccinations. Metabolic and deficiency disorders such as Wernicke′s encephalopathy, osmotic demyelinating syndrome associated with extra pontine lesions and Vitamin B12 deficiency states can occassionaly cause confusion in diagnosis. This review considers a few important disorders which manifest with white matter changes on MRI and create diagnostic difficulties in a population in the tropics.

  5. Grey matter alterations in patients with Pantothenate Kinase-Associated Neurodegeneration (PKAN).

    Science.gov (United States)

    Rodriguez-Raecke, Rea; Roa-Sanchez, Pedro; Speckter, Herwin; Fermin-Delgado, Rafael; Perez-Then, Eddy; Oviedo, Jairo; Stoeter, Peter

    2014-09-01

    Pantothenate Kinase-Associated Neurodegeneration (PKAN) is a rare heritable disease marked by dystonia and loss of movement control. In contrast to the well-known "Eye-of-the-Tiger" sign affecting the globus pallidus, little is known about other deviations of brain morphology, especially about grey matter changes. We investigated 29 patients with PKAN and 29 age-matched healthy controls using Magnet Resonance Imaging and Voxel-Based Morphometry. As compared to controls, children with PKAN showed increased grey matter density in the putamen and nucleus caudatus and adults with PKAN showed increased grey matter density in the ventral part of the anterior cingulate cortex. A multiple regression analysis with dystonia score as predictor showed grey matter reduction in the cerebellum, posterior cingulate cortex, superior parietal lobule, pars triangularis and small frontal and temporal areas and an analysis with age as predictor showed grey matter decreases in the putamen, nucleus caudatus, supplementary motor area and anterior cingulate cortex. The grey matter increases may be regarded as a secondary phenomenon compensating the increased activity of the motor system due to a reduced inhibitory output of the globus pallidus. With increasing age, the grey matter reduction of cortical midline structures however might contribute to the progression of dystonic symptoms due to loss of this compensatory control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Frontal and subcortical grey matter reductions in PTSD.

    Science.gov (United States)

    O'Doherty, Daniel C M; Tickell, Ashleigh; Ryder, Will; Chan, Charles; Hermens, Daniel F; Bennett, Maxwell R; Lagopoulos, Jim

    2017-08-30

    Post-traumatic stress disorder (PTSD) is characterised by a range of debilitating psychological, physical and cognitive symptoms. PTSD has been associated with grey matter atrophy in limbic and frontal cortical brain regions. However, previous studies have reported heterogeneous findings, with grey matter changes observed beyond limbic/frontal areas. Seventy-five adults were recruited from the community, 25 diagnosed with PTSD along with 25 healthy and 25 trauma exposed age and gender matched controls. Participants underwent clinical assessment and magnetic resonance imaging. The data-analyses method Voxel Based Morphometry (VBM) was used to estimate cortical grey matter volumes. When compared to both healthy and trauma exposed controls, PTSD subjects demonstrated decreased grey matter volumes within subcortical brain regions-including the hippocampus and amygdala-along with reductions in the anterior cingulate cortex, frontal medial cortex, middle frontal gyrus, superior frontal gyrus, paracingulate gyrus, and precuneus cortex. Significant negative correlations were found between total CAPS lifetime clinical scores/sub-scores and GM volume of both the PTSD and TC groups. GM volumes of the left rACC and right amygdala showed a significant negative correlation within PTSD diagnosed subjects. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  7. Relationship between grey matter integrity and executive abilities in aging.

    Science.gov (United States)

    Manard, Marine; Bahri, Mohamed Ali; Salmon, Eric; Collette, Fabienne

    2016-07-01

    This cross-sectional study was designed to investigate grey matter changes that occur in healthy aging and the relationship between grey matter characteristics and executive functioning. Thirty-six young adults (18-30 years old) and 43 seniors (60-75 years old) were included. A general executive score was derived from a large battery of neuropsychological tests assessing three major aspects of executive functioning (inhibition, updating and shifting). Age-related grey matter changes were investigated by comparing young and older adults using voxel-based morphometry and voxel-based cortical thickness methods. A widespread difference in grey matter volume was found across many brain regions, whereas cortical thinning was mainly restricted to central areas. Multivariate analyses showed age-related changes in relatively similar brain regions to the respective univariate analyses but appeared more limited. Finally, in the older adult sample, a significant relationship between global executive performance and decreased grey matter volume in anterior (i.e. frontal, insular and cingulate cortex) but also some posterior brain areas (i.e. temporal and parietal cortices) as well as subcortical structures was observed. Results of this study highlight the distribution of age-related effects on grey matter volume and show that cortical atrophy does not appear primarily in "frontal" brain regions. From a cognitive viewpoint, age-related executive functioning seems to be related to grey matter volume but not to cortical thickness. Therefore, our results also highlight the influence of methodological aspects (from preprocessing to statistical analysis) on the pattern of results, which could explain the lack of consensus in literature. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Subcortical grey matter changes in untreated, early stage Parkinson's disease without dementia.

    Science.gov (United States)

    Lee, Hye Mi; Kwon, Kyum-Yil; Kim, Min-Jik; Jang, Ji-Wan; Suh, Sang-Il; Koh, Seong-Beom; Kim, Ji Hyun

    2014-06-01

    Previous MRI studies have investigated cortical or subcortical grey matter changes in patients with Parkinson's disease (PD), yielding inconsistent findings between the studies. We therefore sought to determine whether focal cortical or subcortical grey matter changes may be present from the early disease stage. We recruited 49 untreated, early stage PD patients without dementia and 53 control subjects. Voxel-based morphometry was used to evaluate cortical grey matter changes, and automated volumetry and shape analysis were used to assess volume changes and shape deformation of the subcortical grey matter structures, respectively. Voxel-based morphometry showed neither reductions nor increases in grey matter volume in patients compared to controls. Compared to controls, PD patients had significant reductions in adjusted volumes of putamen, nucleus accumbens, and hippocampus (corrected p grey matter and clinical variables representing disease duration and severity. Our results suggest that untreated, early stage PD without dementia is associated with volume reduction and shape deformation of subcortical grey matter, but not with cortical grey matter reduction. Our findings of structural changes in the posterolateral putamen and ventromedial putamen/nucleus accumbens could provide neuroanatomical basis for the involvement of motor and limbic striatum, further implicating motor and non-motor symptoms in PD, respectively. Early hippocampal involvement might be related to the risk for developing dementia in PD patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Periventricular leukomalacia in preterm children: assessment of grey and white matter and cerebrospinal fluid changes by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Tzarouchi, Loukia C.; Zikou, Anastasia; Xydis, Vassilios; Kosta, Paraskevi; Argyropoulou, Maria I. [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece); Astrakas, Loukas G. [University of Ioannina, Department of Medical Physics, Medical School, Ioannina (Greece); Andronikou, Styliani [University of Ioannina, Intensive Care Unit, Child Health Department, Medical School, Ioannina (Greece)

    2009-12-15

    Brain plasticity in patients with periventricular leukomalacia (PVL) may suggest grey matter (GM) changes. To assess the volume of 116 GM areas and total volume of GM, white matter (WM) and cerebrospinal fluid (CSF) in preterm children with PVL, using the Statistical Parametric Mapping (SPM5) and the Individual Brain Atlases Statistical Parametric Mapping (IBASPM) toolboxes. Ten preterm children (gestational age 31.7{+-}4.2 weeks, corrected age 27.8{+-}21.7 months) with PVL and 46 matched, preterm control subjects were studied using a three-dimensional T1-weighted sequence. Volumes were calculated using SPM5 and IBASPM. GM volume in frontal superior orbital, posterior cingulum and lingual gyrus, the putamen and thalamus was significantly higher in children with PVL (3.6{+-}0.6 cm{sup 3}, 2.0{+-}0.5 cm{sup 3}, 9.7{+-}1.7 cm{sup 3}, 2.5{+-}0.6 cm{sup 3}, 2.6{+-}0.9 cm{sup 3}, respectively) than in controls (3.1{+-}0.7 cm{sup 3}, 1.5{+-}0.2 cm{sup 3}, 8.2{+-}1.3 cm{sup 3}, 1.7{+-}1.4 cm{sup 3}, 1.8{+-}0.4 cm{sup 3}, respectively). White matter volume was lower (182.1{+-}40.5 cm{sup 3}) and CSF volume was higher (300.8{+-}56.2 cm{sup 3}) in children with PVL than in controls (222.9{+-}67.2 cm{sup 3}, 219.0{+-}61.8 cm{sup 3}, respectively), P<0.05. No significant difference was found in the total GM volume and the volume of neocortex. Preterm children with PVL show regional GM volume increase, possibly explained by axonal sprouting, neuronal hypertrophy and neurogenesis, which in turn may reflect brain plasticity. (orig.)

  10. White matter involvement in sporadic Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Caverzasi, Eduardo; Mandelli, Maria Luisa; DeArmond, Stephen J; Hess, Christopher P; Vitali, Paolo; Papinutto, Nico; Oehler, Abby; Miller, Bruce L; Lobach, Irina V; Bastianello, Stefano; Geschwind, Michael D; Henry, Roland G

    2014-12-01

    Sporadic Creutzfeldt-Jakob disease is considered primarily a disease of grey matter, although the extent of white matter involvement has not been well described. We used diffusion tensor imaging to study the white matter in sporadic Creutzfeldt-Jakob disease compared to healthy control subjects and to correlated magnetic resonance imaging findings with histopathology. Twenty-six patients with sporadic Creutzfeldt-Jakob disease and nine age- and gender-matched healthy control subjects underwent volumetric T1-weighted and diffusion tensor imaging. Six patients had post-mortem brain analysis available for assessment of neuropathological findings associated with prion disease. Parcellation of the subcortical white matter was performed on 3D T1-weighted volumes using Freesurfer. Diffusion tensor imaging maps were calculated and transformed to the 3D-T1 space; the average value for each diffusion metric was calculated in the total white matter and in regional volumes of interest. Tract-based spatial statistics analysis was also performed to investigate the deeper white matter tracts. There was a significant reduction of mean (P=0.002), axial (P=0.0003) and radial (P=0.0134) diffusivities in the total white matter in sporadic Creutzfeldt-Jakob disease. Mean diffusivity was significantly lower in most white matter volumes of interest (PCreutzfeldt-Jakob disease. Mean diffusivity reduction reflected concomitant decrease of both axial and radial diffusivity, without appreciable changes in white matter anisotropy. Tract-based spatial statistics analysis showed significant reductions of mean diffusivity within the white matter of patients with sporadic Creutzfeldt-Jakob disease, mainly in the left hemisphere, with a strong trend (P=0.06) towards reduced mean diffusivity in most of the white matter bilaterally. In contrast, by visual assessment there was no white matter abnormality either on T2-weighted or diffusion-weighted images. Widespread reduction in white matter mean

  11. White matter alterations in neurodegenerative and vascular dementia

    International Nuclear Information System (INIS)

    Supprian, T.; Kessler, H.; Falkai, P.; Retz, W.; Roesler, M.; Grunwald, I.; Reith, W.

    2003-01-01

    Due to a significant overlap of the two syndromes, differentiation of degenerative dementia of the Alzheimer-type from vascular dementia may be difficult even when imaging studies are available. White matter changes occur in many patients suffering from Alzheimer's disease. Little is known about the impact of white matter changes on the course and clinical presentation of Alzheimer's disease. High sensitivity of MRI in the detection of white matter alterations may account for over-diagnosing vascular dementia. The clinical significance of white matter alterations in dementia is still a matter of debate. The article reviews current concepts about the role of white matter alterations in dementia. (orig.) [de

  12. Neuropsychiatric symptoms and diagnosis of grey matter heterotopia: A case-based reflection

    Directory of Open Access Journals (Sweden)

    Gian Lippi

    2017-03-01

    Full Text Available Neuropsychiatric symptoms can be related to less common underlying neuropsychiatric conditions – in this case report, the condition discussed is that of grey matter heterotopia (GMH. The patient presented with a history of prominent aggression, impulsivity and manipulative and attention-seeking behaviour. Episodes of depression and incidents of deliberate self-harm and suicide attempts had been reported. Neuropsychiatric symptoms included anxiety, a labile mood, delusional thinking and auditory hallucinations. Testing revealed some cognitive difficulties and severe impairment of frontal lobe functions. A magnetic resonance imaging (MRI scan of his brain revealed the presence of GMH, which had previously been misdiagnosed as tuberous sclerosis. An MRI scan of the brain is the special investigation of choice for the correct diagnosis of GMH. The pathognomonic finding is that of heterotopic grey matter abnormally located within areas of white matter. Defective foetal neuronal migration between the third and fifth month of pregnancy can lead to GMH, which can present later on in childhood or adolescence with epilepsy, intellectual impairment or reading difficulties. During the late teenage years or early adulthood, a wide variety of neuropsychiatric symptoms may be present, which can lead to diagnostic difficulties.

  13. Enhancement of multiple cranial and spinal nerves in vanishing white matter: expanding the differential diagnosis.

    Science.gov (United States)

    Eluvathingal Muttikkal, Thomas Jose; Montealegre, Denia Ramirez; Matsumoto, Julie Ann

    2018-03-01

    Abnormal cranial or spinal nerve contrast enhancement on MRI in cases of suspected pediatric leukodystrophy is recognized as an important clue to the diagnosis of either metachromatic leukodystrophy or globoid cell leukodystrophy (Krabbe disease). We report a case of genetically confirmed childhood vanishing white matter with enhancement of multiple cranial and spinal nerves in addition to the more typical intracranial findings. This case expands the limited differential diagnosis of cranial nerve or spinal nerve enhancement in cases of suspected leukodystrophy and may aid in more efficient work-up and earlier diagnosis of vanishing white matter.

  14. Early grey matter changes in structural covariance networks in Huntington's disease.

    Science.gov (United States)

    Coppen, Emma M; van der Grond, Jeroen; Hafkemeijer, Anne; Rombouts, Serge A R B; Roos, Raymund A C

    2016-01-01

    Progressive subcortical changes are known to occur in Huntington's disease (HD), a hereditary neurodegenerative disorder. Less is known about the occurrence and cohesion of whole brain grey matter changes in HD. We aimed to detect network integrity changes in grey matter structural covariance networks and examined relationships with clinical assessments. Structural magnetic resonance imaging data of premanifest HD ( n  = 30), HD patients (n = 30) and controls (n = 30) was used to identify ten structural covariance networks based on a novel technique using the co-variation of grey matter with independent component analysis in FSL. Group differences were studied controlling for age and gender. To explore whether our approach is effective in examining grey matter changes, regional voxel-based analysis was additionally performed. Premanifest HD and HD patients showed decreased network integrity in two networks compared to controls. One network included the caudate nucleus, precuneous and anterior cingulate cortex (in HD p  covariance might be a sensitive approach to reveal early grey matter changes, especially for premanifest HD.

  15. Organic matter and heavy metals in grey-water sludge | Eriksson ...

    African Journals Online (AJOL)

    Grey-water intended for non-potable reuse is being intensively studied, but little attention has been given to the associated solid fraction, the grey-water sludge. In this study grey-water sludge originating from bathroom grey-water has been screened with respect to organic matter; particles; short-chain fatty alcohols and ...

  16. Sensory migraine aura is not associated with structural grey matter abnormalities

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal Mohammad; Arngrim, Nanna

    2016-01-01

    Migraine with aura (MA) is characterized by cortical dysfunction. Frequent aura attacks may alter cerebral cortical structure in patients, or structural grey matter abnormalities may predispose MA patients to aura attacks. In the present study we aimed to investigate cerebral grey matter structure...... sensory aura regularly. We analysed high-resolution structural MR images using two complimentary approaches and compared patients with and without sensory aura. Patients were also compared to controls. We found no differences of grey matter density or cortical thickness between patients with and without...... sensory aura and no differences for the cortical visual areas between patients and controls. The somatosensory cortex was thinner in patients (1.92 mm vs. 1.96 mm, P = 0.043) and the anterior cingulate cortex of patients had a decreased grey matter density (P = 0.039) compared to controls...

  17. Patterns of accentuated grey-white differentiation on diffusion-weighted imaging or the apparent diffusion coefficient maps in comatose survivors after global brain injury

    International Nuclear Information System (INIS)

    Kim, E.; Sohn, C.-H.; Chang, K.-H.; Chang, H.-W.; Lee, D.H.

    2011-01-01

    Aim: To determine what disease entities show accentuated grey-white differentiation of the cerebral hemisphere on diffusion-weighted images (DWI) or apparent diffusion coefficient (ADC) maps, and whether there is a correlation between the different patterns and the cause of the brain injury. Methods and materials: The DWI and ADC maps of 19 patients with global brain injury were reviewed and evaluated to investigate whether there was a correlation between the different patterns seen on the DWI and ADC maps and the cause of global brain injury. The ADC values were measured for quantitative analysis. Results: There were three different patterns of ADC decrease: a predominant ADC decrease in only the cerebral cortex (n = 8; pattern I); an ADC decrease in both the cerebral cortex and white matter (WM) and a predominant decrease in the WM (n = 9; pattern II); and a predominant ADC decrease in only the WM (n = 3; pattern III). Conclusion: Pattern I is cerebral cortical injury, suggesting cortical laminar necrosis in hypoxic brain injury. Pattern II is cerebral cortical and WM injury, frequently seen in brain death, while pattern 3 is mainly WM injury, especially found in hypoglycaemic brain injury. It is likely that pattern I is decorticate injury and pattern II is decerebrate injury in hypoxic ischaemic encephalopathy.Patterns I and II are found in severe hypoxic brain injury, and pattern II is frequently shown in brain death, whereas pattern III was found in severe hypoglycaemic injury.

  18. Playing Super Mario 64 increases hippocampal grey matter in older adults.

    Directory of Open Access Journals (Sweden)

    Greg L West

    Full Text Available Maintaining grey matter within the hippocampus is important for healthy cognition. Playing 3D-platform video games has previously been shown to promote grey matter in the hippocampus in younger adults. In the current study, we tested the impact of 3D-platform video game training (i.e., Super Mario 64 on grey matter in the hippocampus, cerebellum, and the dorsolateral prefrontal cortex (DLPFC of older adults. Older adults who were 55 to 75 years of age were randomized into three groups. The video game experimental group (VID; n = 8 engaged in a 3D-platform video game training over a period of 6 months. Additionally, an active control group took a series of self-directed, computerized music (piano lessons (MUS; n = 12, while a no-contact control group did not engage in any intervention (CON; n = 13. After training, a within-subject increase in grey matter within the hippocampus was significant only in the VID training group, replicating results observed in younger adults. Active control MUS training did, however, lead to a within-subject increase in the DLPFC, while both the VID and MUS training produced growth in the cerebellum. In contrast, the CON group displayed significant grey matter loss in the hippocampus, cerebellum and the DLPFC.

  19. Playing Super Mario 64 increases hippocampal grey matter in older adults.

    Science.gov (United States)

    West, Greg L; Zendel, Benjamin Rich; Konishi, Kyoko; Benady-Chorney, Jessica; Bohbot, Veronique D; Peretz, Isabelle; Belleville, Sylvie

    2017-01-01

    Maintaining grey matter within the hippocampus is important for healthy cognition. Playing 3D-platform video games has previously been shown to promote grey matter in the hippocampus in younger adults. In the current study, we tested the impact of 3D-platform video game training (i.e., Super Mario 64) on grey matter in the hippocampus, cerebellum, and the dorsolateral prefrontal cortex (DLPFC) of older adults. Older adults who were 55 to 75 years of age were randomized into three groups. The video game experimental group (VID; n = 8) engaged in a 3D-platform video game training over a period of 6 months. Additionally, an active control group took a series of self-directed, computerized music (piano) lessons (MUS; n = 12), while a no-contact control group did not engage in any intervention (CON; n = 13). After training, a within-subject increase in grey matter within the hippocampus was significant only in the VID training group, replicating results observed in younger adults. Active control MUS training did, however, lead to a within-subject increase in the DLPFC, while both the VID and MUS training produced growth in the cerebellum. In contrast, the CON group displayed significant grey matter loss in the hippocampus, cerebellum and the DLPFC.

  20. Grey matter volume in adolescents with anorexia nervosa and associated eating disorder symptoms.

    Science.gov (United States)

    Martin Monzon, Beatriz; Henderson, Luke A; Madden, Sloane; Macefield, Vaughan G; Touyz, Stephen; Kohn, Michael R; Clarke, Simon; Foroughi, Nasim; Hay, Phillipa

    2017-10-01

    Anorexia nervosa (AN) is a mental health disorder of complex aetiology. Previous neuroimaging studies have found consistent global reductions in global grey matter volume of underweight girls with AN; however, differences in regional grey matter volumes are less consistent. The aims of this study were to investigate grey matter regional volumes of adolescent girls with AN before and after weight recovery and the relationship of any changes with clinical characteristics. We collected high-resolution T1-weighted images from 26 underweight girls with AN before weight gain and 20 healthy control volunteers. Clinical features were assessed using the Eating Disorder Examination Questionnaire. AN subjects displayed reduced grey matter volumes in the insula, amygdala, prefrontal, hippocampal and cingulate cortices and the precuneus, relative to healthy controls. In a subset of 10 AN subjects who were followed after weight recovery, grey matter volumes increased to near-control levels in the orbito- and medial prefrontal, insular, left hippocampal and mid- and posterior cingulate cortices and precuneus. The recovery of the right anterior thalamus and the left orbitofrontal cortex was correlated with improvements in eating concerns and shape concerns, respectively. However, large parts of the anterior cingulate cortex, caudate nuclei and right hippocampus did not display any grey matter recovery following a short-term of treatment. These results show that in adolescents with AN, some brain regions display marked recovery in grey matter volume following weight recovery, whereas others do not, considering grey mater recovery possibly linked to symptom improvement. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Prominent microglial activation in cortical white matter is selectively associated with cortical atrophy in primary progressive aphasia.

    Science.gov (United States)

    Ohm, Daniel T; Kim, Garam; Gefen, Tamar; Rademaker, Alfred; Weintraub, Sandra; Bigio, Eileen; Mesulam, M-Marsel; Rogalski, Emily; Geula, Changiz

    2018-04-21

    Primary progressive aphasia (PPA) is a clinical syndrome characterized by selective language impairments associated with focal cortical atrophy favouring the language dominant hemisphere. PPA is associated with Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD), and significant accumulation of activated microglia. Activated microglia can initiate an inflammatory cascade that may contribute to neurodegeneration, but their quantitative distribution in cortical white matter and their relationship with cortical atrophy are unknown. We investigated white matter activated microglia and their association with grey matter atrophy in 10 PPA cases with either AD or FTLD-TDP pathology. Activated microglia were quantified with optical density measures of HLA-DR immunoreactivity in two regions with peak cortical atrophy, and one non-atrophied region within the language dominant hemisphere of each PPA case. Non-atrophied contralateral homologues of the language dominant regions were examined for hemispheric asymmetry. Qualitatively, greater densities of activated microglia were observed in cortical white matter when compared to grey matter. Quantitative analyses revealed significantly greater densities of activated microglia in the white matter of atrophied regions compared to non-atrophied regions in the language dominant hemisphere (p<0.05). Atrophied regions of the language dominant hemisphere also showed significantly more activated microglia compared to contralateral homologues (p<0.05). White matter activated microglia accumulate more in atrophied regions in the language dominant hemisphere of PPA. While microglial activation may constitute a response to neurodegenerative processes in white matter, the resultant inflammatory processes may also exacerbate disease progression and contribute to cortical atrophy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Asymmetry of cerebral grey and white matter and structural volumes in relation to sex hormones and chromosomes

    Directory of Open Access Journals (Sweden)

    Ivanka eSavic

    2014-11-01

    Full Text Available Whilst many studies show sex differences in cerebral asymmetry, their mechanisms are still unknown. This report describes the potential impact of sex hormones and sex chromosomes by comparing MR data from 39 male and 47 female controls and 33 men with an extra X-chromosome (47,XXY Methods: Regional asymmetry in grey and white matter volumes (GMV and WMV was calculated using voxel based moprhometry (SPM5, by contrasting the unflipped and flipped individual GMV and WMV images. In addition, structural volumes were calculated for the thalamus, caudate, putamen, amygdala, and hippocampus, using the FreeSurfer software. Effects of plasma testosterone and estrogen on the GMV and WMV, as well on the right/left ratios of the subcortical volumes were tested by multi-regression analysis.Results: All three groups showed a leftward asymmetry in the motor cortex and the planum temporale, and a rightward asymmetry of the middle occipital cortex. Both asymmetries were more pronounced in 46,XY males than 46,XX females and 47,XXY males, and were positively correlated with testosterone levels. There was also a rightward asymmetry of the vermis and leftward asymmetry in the cerebellar hemispheres in all groups. Notably, cerebellar asymmetries were larger in 46,XX females and 47,XXY males, but were not related to sex hormone levels. No asymmetry differences between 46,XX females and 47,XXY males, and no overall effects of brain size were detected.Conclusion: The asymmetry in the planum temporale area and the occipital cortex seem related to processes associated with testosterone, whereas the observed cerebellar asymmetries suggest a link with X-chromosome escapee genes. Sex differences in cerebral asymmetry are moderated by sex hormones and X-chromosome genes, in a regionally differentiated manner.

  3. Complement is activated in progressive multiple sclerosis cortical grey matter lesions.

    Science.gov (United States)

    Watkins, Lewis M; Neal, James W; Loveless, Sam; Michailidou, Iliana; Ramaglia, Valeria; Rees, Mark I; Reynolds, Richard; Robertson, Neil P; Morgan, B Paul; Howell, Owain W

    2016-06-22

    The symptoms of multiple sclerosis (MS) are caused by damage to myelin and nerve cells in the brain and spinal cord. Inflammation is tightly linked with neurodegeneration, and it is the accumulation of neurodegeneration that underlies increasing neurological disability in progressive MS. Determining pathological mechanisms at play in MS grey matter is therefore a key to our understanding of disease progression. We analysed complement expression and activation by immunocytochemistry and in situ hybridisation in frozen or formalin-fixed paraffin-embedded post-mortem tissue blocks from 22 progressive MS cases and made comparisons to inflammatory central nervous system disease and non-neurological disease controls. Expression of the transcript for C1qA was noted in neurons and the activation fragment and opsonin C3b-labelled neurons and glia in the MS cortical and deep grey matter. The density of immunostained cells positive for the classical complement pathway protein C1q and the alternative complement pathway activation fragment Bb was significantly increased in cortical grey matter lesions in comparison to control grey matter. The number of cells immunostained for the membrane attack complex was elevated in cortical lesions, indicating complement activation to completion. The numbers of classical (C1-inhibitor) and alternative (factor H) pathway regulator-positive cells were unchanged between MS and controls, whilst complement anaphylatoxin receptor-bearing microglia in the MS cortex were found closely apposed to cortical neurons. Complement immunopositive neurons displayed an altered nuclear morphology, indicative of cell stress/damage, supporting our finding of significant neurodegeneration in cortical grey matter lesions. Complement is activated in the MS cortical grey matter lesions in areas of elevated numbers of complement receptor-positive microglia and suggests that complement over-activation may contribute to the worsening pathology that underlies the

  4. Increased Grey Matter Associated with Long-Term Sahaja Yoga Meditation: A Voxel-Based Morphometry Study.

    Directory of Open Access Journals (Sweden)

    Sergio Elías Hernández

    Full Text Available To investigate regional differences in grey matter volume associated with the practice of Sahaja Yoga Meditation.Twenty three experienced practitioners of Sahaja Yoga Meditation and twenty three non-meditators matched on age, gender and education level, were scanned using structural Magnetic Resonance Imaging and their grey matter volume were compared using Voxel-Based Morphometry.Grey matter volume was larger in meditators relative to non-meditators across the whole brain. In addition, grey matter volume was larger in several predominantly right hemispheric regions: in insula, ventromedial orbitofrontal cortex, inferior temporal and parietal cortices as well as in left ventrolateral prefrontal cortex and left insula. No areas with larger grey matter volume were found in non-meditators relative to meditators.The study shows that long-term practice of Sahaja Yoga Meditation is associated with larger grey matter volume overall, and with regional enlargement in several right hemispheric cortical and subcortical brain regions that are associated with sustained attention, self-control, compassion and interoceptive perception. The increased grey matter volume in these attention and self-control mediating regions suggests use-dependent enlargement with regular practice of this meditation.

  5. Increased Grey Matter Associated with Long-Term Sahaja Yoga Meditation: A Voxel-Based Morphometry Study.

    Science.gov (United States)

    Hernández, Sergio Elías; Suero, José; Barros, Alfonso; González-Mora, José Luis; Rubia, Katya

    2016-01-01

    To investigate regional differences in grey matter volume associated with the practice of Sahaja Yoga Meditation. Twenty three experienced practitioners of Sahaja Yoga Meditation and twenty three non-meditators matched on age, gender and education level, were scanned using structural Magnetic Resonance Imaging and their grey matter volume were compared using Voxel-Based Morphometry. Grey matter volume was larger in meditators relative to non-meditators across the whole brain. In addition, grey matter volume was larger in several predominantly right hemispheric regions: in insula, ventromedial orbitofrontal cortex, inferior temporal and parietal cortices as well as in left ventrolateral prefrontal cortex and left insula. No areas with larger grey matter volume were found in non-meditators relative to meditators. The study shows that long-term practice of Sahaja Yoga Meditation is associated with larger grey matter volume overall, and with regional enlargement in several right hemispheric cortical and subcortical brain regions that are associated with sustained attention, self-control, compassion and interoceptive perception. The increased grey matter volume in these attention and self-control mediating regions suggests use-dependent enlargement with regular practice of this meditation.

  6. Differences in regional grey matter volumes in currently ill patients with anorexia nervosa.

    Science.gov (United States)

    Phillipou, Andrea; Rossell, Susan Lee; Gurvich, Caroline; Castle, David Jonathan; Abel, Larry Allen; Nibbs, Richard Grant; Hughes, Matthew Edward

    2018-01-01

    Neurobiological findings in anorexia nervosa (AN) are inconsistent, including differences in regional grey matter volumes. Methodological limitations often contribute to the inconsistencies reported. The aim of this study was to improve on these methodologies by utilising voxel-based morphometry (VBM) analysis with the use of diffeomorphic anatomic registration through an exponentiated lie algebra algorithm (DARTEL), in a relatively large group of individuals with AN. Twenty-six individuals with AN and 27 healthy controls underwent a T1-weighted magnetic resonance imaging (MRI) scan. AN participants were found to have reduced grey matter volumes in a number of areas including regions of the basal ganglia (including the ventral striatum), and parietal and temporal cortices. Body mass index (BMI) and global scores on the Eating Disorder Examination Questionnaire (EDE-Q) were also found to correlate with grey matter volumes in a region of the brainstem (including the substantia nigra and ventral tegmental area) in AN, and predicted 56% of the variance in grey matter volumes in this area. The brain regions associated with grey matter reductions in AN are consistent with regions responsible for cognitive deficits associated with the illness including anhedonia, deficits in affect perception and saccadic eye movement abnormalities. Overall, the findings suggest reduced grey matter volumes in AN that are associated with eating disorder symptomatology. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Whole brain analysis of postmortem density changes of grey and white matter on computed tomography by statistical parametric mapping

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Yuichi; Mori, Hiroshi; Katsube, Takashi; Kitagaki, Hajime [Shimane University Faculty of Medicine, Department of Radiology, Izumo-shi, Shimane (Japan); Kanayama, Hidekazu; Tada, Keiji; Yamamoto, Yasushi [Shimane University Hospital, Department of Radiology, Izumo-shi, Shimane (Japan); Takeshita, Haruo [Shimane University Faculty of Medicine, Department of Legal Medicine, Izumo-shi, Shimane (Japan); Kawakami, Kazunori [Fujifilm RI Pharma, Co., Ltd., Tokyo (Japan)

    2017-06-15

    This study examined the usefulness of statistical parametric mapping (SPM) for investigating postmortem changes on brain computed tomography (CT). This retrospective study included 128 patients (23 - 100 years old) without cerebral abnormalities who underwent unenhanced brain CT before and after death. The antemortem CT (AMCT) scans and postmortem CT (PMCT) scans were spatially normalized using our original brain CT template, and postmortem changes of CT values (in Hounsfield units; HU) were analysed by the SPM technique. Compared with AMCT scans, 58.6 % and 98.4 % of PMCT scans showed loss of the cerebral sulci and an unclear grey matter (GM)-white matter (WM) interface, respectively. SPM analysis revealed a significant decrease in cortical GM density within 70 min after death on PMCT scans, suggesting cytotoxic brain oedema. Furthermore, there was a significant increase in the density of the WM, lenticular nucleus and thalamus more than 120 min after death. The SPM technique demonstrated typical postmortem changes on brain CT scans, and revealed that the unclear GM-WM interface on early PMCT scans is caused by a rapid decrease in cortical GM density combined with a delayed increase in WM density. SPM may be useful for assessment of whole brain postmortem changes. (orig.)

  8. Whole brain analysis of postmortem density changes of grey and white matter on computed tomography by statistical parametric mapping

    International Nuclear Information System (INIS)

    Nishiyama, Yuichi; Mori, Hiroshi; Katsube, Takashi; Kitagaki, Hajime; Kanayama, Hidekazu; Tada, Keiji; Yamamoto, Yasushi; Takeshita, Haruo; Kawakami, Kazunori

    2017-01-01

    This study examined the usefulness of statistical parametric mapping (SPM) for investigating postmortem changes on brain computed tomography (CT). This retrospective study included 128 patients (23 - 100 years old) without cerebral abnormalities who underwent unenhanced brain CT before and after death. The antemortem CT (AMCT) scans and postmortem CT (PMCT) scans were spatially normalized using our original brain CT template, and postmortem changes of CT values (in Hounsfield units; HU) were analysed by the SPM technique. Compared with AMCT scans, 58.6 % and 98.4 % of PMCT scans showed loss of the cerebral sulci and an unclear grey matter (GM)-white matter (WM) interface, respectively. SPM analysis revealed a significant decrease in cortical GM density within 70 min after death on PMCT scans, suggesting cytotoxic brain oedema. Furthermore, there was a significant increase in the density of the WM, lenticular nucleus and thalamus more than 120 min after death. The SPM technique demonstrated typical postmortem changes on brain CT scans, and revealed that the unclear GM-WM interface on early PMCT scans is caused by a rapid decrease in cortical GM density combined with a delayed increase in WM density. SPM may be useful for assessment of whole brain postmortem changes. (orig.)

  9. Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke

    Science.gov (United States)

    Xing, Shihui; Lacey, Elizabeth H.; Skipper-Kallal, Laura M.; Jiang, Xiong; Harris-Love, Michelle L.; Zeng, Jinsheng

    2016-01-01

    The neural mechanisms underlying recovery of language after left hemisphere stroke remain elusive. Although older evidence suggested that right hemisphere language homologues compensate for damage in left hemisphere language areas, the current prevailing theory suggests that right hemisphere engagement is ineffective or even maladaptive. Using a novel combination of support vector regression-based lesion-symptom mapping and voxel-based morphometry, we aimed to determine whether local grey matter volume in the right hemisphere independently contributes to aphasia outcomes after chronic left hemisphere stroke. Thirty-two left hemisphere stroke survivors with aphasia underwent language assessment with the Western Aphasia Battery-Revised and tests of other cognitive domains. High-resolution T1-weighted images were obtained in aphasia patients and 30 demographically matched healthy controls. Support vector regression-based multivariate lesion-symptom mapping was used to identify critical language areas in the left hemisphere and then to quantify each stroke survivor’s lesion burden in these areas. After controlling for these direct effects of the stroke on language, voxel-based morphometry was then used to determine whether local grey matter volumes in the right hemisphere explained additional variance in language outcomes. In brain areas in which grey matter volumes related to language outcomes, we then compared grey matter volumes in patients and healthy controls to assess post-stroke plasticity. Lesion–symptom mapping showed that specific left hemisphere regions related to different language abilities. After controlling for lesion burden in these areas, lesion size, and demographic factors, grey matter volumes in parts of the right temporoparietal cortex positively related to spontaneous speech, naming, and repetition scores. Examining whether domain general cognitive functions might explain these relationships, partial correlations demonstrated that grey matter

  10. Staging of cortical and deep grey matter functional connectivity changes in multiple sclerosis.

    Science.gov (United States)

    Meijer, Kim A; Eijlers, Anand J C; Geurts, Jeroen J G; Schoonheim, Menno M

    2018-02-01

    Functional connectivity is known to increase as well as decrease throughout the brain in multiple sclerosis (MS), which could represent different stages of the disease. In addition, functional connectivity changes could follow the atrophy pattern observed with disease progression, that is, moving from the deep grey matter towards the cortex. This study investigated when and where connectivity changes develop and explored their clinical and cognitive relevance across different MS stages. A cohort of 121 patients with early relapsing-remitting MS (RRMS), 122 with late RRMS and 53 with secondary progressive MS (SPMS) as well as 96 healthy controls underwent MRI and neuropsychological testing. Functional connectivity changes were investigated for (1) within deep grey matter connectivity, (2) connectivity between the deep grey matter and cortex and (3) within-cortex connectivity. A post hoc regional analysis was performed to identify which regions were driving the connectivity changes. Patients with late RRMS and SPMS showed increased connectivity of the deep grey matter, especially of the putamen and palladium, with other deep grey matter structures and with the cortex. Within-cortex connectivity was decreased, especially for temporal, occipital and frontal regions, but only in SPMS relative to early RRMS. Deep grey matter connectivity alterations were related to cognition and disability, whereas within-cortex connectivity was only related to disability. Increased connectivity of the deep grey matter became apparent in late RRMS and further increased in SPMS. The additive effect of cortical network degeneration, which was only seen in SPMS, may explain the sudden clinical deterioration characteristic to this phase of the disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Participation of the dorsal periaqueductal grey matter in the hypoxic ventilatory response in unanaesthetized rats.

    Science.gov (United States)

    Lopes, L T; Biancardi, V; Vieira, E B; Leite-Panissi, C; Bícego, K C; Gargaglioni, L H

    2014-07-01

    Although periaqueductal grey matter activation is known to elicit respiratory and cardiovascular responses, the role of this midbrain area in the compensatory responses to hypoxia is still unknown. To test the participation of the periaqueductal grey matter in cardiorespiratory and thermal responses to hypoxia in adult male Wistar rats, we performed a chemical lesion of the dorsolateral/dorsomedial or the ventrolateral/lateral periaqueductal grey matter using ibotenic acid. Pulmonary ventilation, mean arterial pressure, heart rate and body temperature were measured in unanaesthetized rats during normoxic and hypoxic exposure (5, 15, 30 min, 7% O2). An ibotenic acid lesion of the dorsolateral/dorsomedial periaqueductal grey matter caused a higher increase in pulmonary ventilation (67.1%, 1730±282.5 mL kg(-1) min(-1)) compared to the Sham group (991.4±194 mL kg(-1) min(-1)) after 15 min in hypoxia, whereas for the ventrolateral/Lateral periaqueductal grey matter lesion, no differences were observed between groups. Mean arterial pressure, heart rate and body temperature were not affected by a dorsolateral/dorsomedial or ventrolateral/lateral periaqueductal grey matter lesion. Middle to caudal portions of the dorsolateral/dorsomedial periaqueductal grey matter neurones modulate the hypoxic ventilatory response, exerting an inhibitory modulation during low O2 situations. In addition, the middle to caudal portions of the dorsolateral/dorsomedial or ventrolateral/lateral periaqueductal grey matter do not appear to exert a tonic role on cardiovascular or thermal parameters during normoxic and hypoxic conditions. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  12. HLA-DRB*1501 associations with magnetic resonance imaging measures of grey matter pathology in multiple sclerosis.

    Science.gov (United States)

    Yaldizli, Özgür; Sethi, Varun; Pardini, Matteo; Tur, Carmen; Mok, Kin Y; Muhlert, Nils; Liu, Zheng; Samson, Rebecca S; Wheeler-Kingshott, Claudia A M; Yousry, Tarek A; Houlden, Henry; Hardy, John; Miller, David H; Chard, Declan T

    2016-05-01

    The HLA-DRB*1501 haplotype influences the risk of developing multiple sclerosis (MS), but it is not known how it affects grey matter pathology. To assess HLA-DRB(*)1501 effects on magnetic resonance imaging (MRI) cortical grey matter pathology. Whole and lesional cortical grey matter volumes, lesional and normal-appearing grey matter magnetization transfer ratio were measured in 85 people with MS and 36 healthy control subjects. HLA-DRB(*)1501 haplotype was determined by genotyping (rs3135388). No significant differences were observed in MRI measures between the HLA-DRB(*)1501 subgroups. The HLA-DRB(*)1501 haplotype is not strongly associated with MRI-visible grey matter pathology. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Grey matter, an endophenotype for schizophrenia? A voxel-based morphometry study in siblings of patients with schizophrenia.

    Science.gov (United States)

    van der Velde, Jorien; Gromann, Paula M; Swart, Marte; de Haan, Lieuwe; Wiersma, Durk; Bruggeman, Richard; Krabbendam, Lydia; Aleman, André

    2015-05-01

    Grey matter, both volume and concentration, has been proposed as an endophenotype for schizophrenia given a number of reports of grey matter abnormalities in relatives of patients with schizophrenia. However, previous studies on grey matter abnormalities in relatives have produced inconsistent results. The aim of the present study was to examine grey matter differences between controls and siblings of patients with schizophrenia and to examine whether the age, genetic loading or subclinical psychotic symptoms of selected individuals could explain the previously reported inconsistencies. We compared the grey matter volume and grey matter concentration of healthy siblings of patients with schizophrenia and healthy controls matched for age, sex and education using voxel-based morphometry (VBM). Furthermore, we selected subsamples based on age (grey matter volume or concentration. Furthermore, specifically selecting participants based on age, genetic loading or subclinical psychotic symptoms did not alter these findings. The main limitation was that subdividing the sample resulted in smaller samples for the subanalyses. Furthermore, we used MRI data from 2 different scanner sites. These results indicate that grey matter measured through VBM might not be a suitable endophenotype for schizophrenia.

  14. Pathological changes in the white matter after spinal contusion injury in the rat.

    Directory of Open Access Journals (Sweden)

    C Joakim Ek

    Full Text Available It has been shown previously that after spinal cord injury, the loss of grey matter is relatively faster than loss of white matter suggesting interventions to save white matter tracts offer better therapeutic possibilities. Loss of white matter in and around the injury site is believed to be the main underlying cause for the subsequent loss of neurological functions. In this study we used a series of techniques, including estimations of the number of axons with pathology, immunohistochemistry and mapping of distribution of pathological axons, to better understand the temporal and spatial pathological events in white matter following contusion injury to the rat spinal cord. There was an initial rapid loss of axons with no detectable further loss beyond 1 week after injury. Immunoreactivity for CNPase indicated that changes to oligodendrocytes are rapid, extending to several millimetres away from injury site and preceding much of the axonal loss, giving early prediction of the final volume of white matter that survived. It seems that in juvenile rats the myelination of axons in white matter tracts continues for some time, which has an important bearing on interpretation of our, and previous, studies. The amount of myelin debris and axon pathology progressively decreased with time but could still be observed at 10 weeks after injury, especially at more distant rostral and caudal levels from the injury site. This study provides new methods to assess injuries to spinal cord and indicates that early interventions are needed for the successful sparing of white matter tracts following injury.

  15. Voxel-based MRI intensitometry reveals extent of cerebral white matter pathology in amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Viktor Hartung

    Full Text Available Amyotrophic lateral sclerosis (ALS is characterized by progressive loss of upper and lower motor neurons. Advanced MRI techniques such as diffusion tensor imaging have shown great potential in capturing a common white matter pathology. However the sensitivity is variable and diffusion tensor imaging is not yet applicable to the routine clinical environment. Voxel-based morphometry (VBM has revealed grey matter changes in ALS, but the bias-reducing algorithms inherent to traditional VBM are not optimized for the assessment of the white matter changes. We have developed a novel approach to white matter analysis, namely voxel-based intensitometry (VBI. High resolution T1-weighted MRI was acquired at 1.5 Tesla in 30 ALS patients and 37 age-matched healthy controls. VBI analysis at the group level revealed widespread white matter intensity increases in the corticospinal tracts, corpus callosum, sub-central, frontal and occipital white matter tracts and cerebellum. VBI results correlated with disease severity (ALSFRS-R and patterns of cerebral involvement differed between bulbar- and limb-onset. VBI would be easily translatable to the routine clinical environment, and once optimized for individual analysis offers significant biomarker potential in ALS.

  16. The Effects of Meditation on Grey Matter Atrophy and Neurodegeneration: A Systematic Review.

    Science.gov (United States)

    Last, Nicole; Tufts, Emily; Auger, Leslie E

    2017-01-01

    The present systematic review is based on the premise that a variety of neurodegenerative diseases are accompanied by grey matter atrophy in the brain and meditation may impact this. Given that age is a major risk factor for many of these progressive and neurodegenerative diseases and that the percentage of the population over the age of 65 is quickly increasing, there is an obvious need for prompt treatment and prevention advances in research. As there is currently no cure for Alzheimer's disease and other neurodegenerative diseases, many are seeking non-pharmacological treatment options in attempts to offset the disease-related cognitive and functional declines. On the basis of a growing body of research suggesting that meditation is effective in increasing grey matter volume in healthy participants, this paper systematically reviewed the literature regarding the effects of meditation on restoring grey matter volume in healthy individuals and those affected by neurodegeneration. This review searched PubMed, CINAHL, and APA PsycNET to identify original studies that included MRI imaging to measure grey matter volume in meditators and post-mindfulness-based intervention participants compared to controls. Thirteen studies were considered eligible for review and involved a wide variety of meditation techniques and included participants with and without cognitive impairment. All studies reported significant increases in grey matter volume in the meditators/intervention group, albeit in assorted regions of the brain. Limited research exists on the mechanisms through which meditation affects disease-related neurodegeneration, but preliminary evidence suggests that it may offset grey matter atrophy.

  17. Functioning heterotopic grey matter? Increased blood flow with voluntary movement and sensory stimulation

    International Nuclear Information System (INIS)

    Shimodozono, M.; Kawahira, K.; Tanaka, N.

    1995-01-01

    Heterotopic grey matter has never been reported to have any neuronal function other than as an epileptic focus. However, recent advances in measurement of regional cerebral blood flow (rCBF) and cerebral metabolism have enabled us to assess localised function and functional changes of the brain. We saw a patient with cerebral haemorrhage with bilateral heterotopic grey matter. No neurological deficits or seizures were present before the haemorrhage. To establish the function of the heterotopic grey matter, we studied changes in their rCBF during voluntary movement and sensory stimulation of unilateral extremities using xenon-CT (Xe-CT). (orig.)

  18. The use of the lumbosacral enlargement as an intrinsic imaging biomarker: feasibility of grey matter and white matter cross-sectional area measurements using MRI at 3T.

    Directory of Open Access Journals (Sweden)

    Marios C Yiannakas

    Full Text Available Histopathological studies have demonstrated the involvement of spinal cord grey matter (GM and white matter (WM in several diseases and recent research has suggested the use of magnetic resonance imaging (MRI as a promising tool for in vivo assessment of the upper spinal cord. However, many neurological conditions would benefit from quantitative assessment of tissue integrity at different levels and relatively little work has been done, mainly due to technical challenges associated with imaging the lower spinal cord. In this study, the value of the lumbosacral enlargement (LSE as an intrinsic imaging biomarker was determined by exploring the feasibility of obtaining within it reliable GM and WM cross-sectional area (CSA measurements by means of a commercially available MRI system at 3 tesla (T. 10 healthy volunteers (mean age 27.5 years, 6 female gave written informed consent and high resolution images of the LSE were acquired and analysed using an optimised MRI acquisition and analysis protocol. GM and WM mean CSA measurements were obtained from a 15 mm section at the level of the LSE and the reproducibility of the measurements was determined by means of scan-rescan, intra- and inter-observer assessments. Mean (±SD LSE cross-sectional area (LSE-CSA was 62.3 (±4.1 mm2 and mean (±SD LSE grey matter cross-sectional area (LSE-GM-CSA was 19.8 (±3.3 mm2. The mean scan-rescan, intra- and inter-observer % coefficient of variation (COV for measuring the LSE-CSA were 2%, 2% and 2.5%, respectively and for measuring the LSE-GM-CSA were 7.8%, 8% and 8.6%, respectively. This study has shown that the LSE can be used reliably as an intrinsic imaging biomarker. The method presented here can be potentially extended to study the LSE in the diseased state and could provide a solid foundation for subsequent multi-parametric MRI investigations.

  19. Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke.

    Science.gov (United States)

    Xing, Shihui; Lacey, Elizabeth H; Skipper-Kallal, Laura M; Jiang, Xiong; Harris-Love, Michelle L; Zeng, Jinsheng; Turkeltaub, Peter E

    2016-01-01

    The neural mechanisms underlying recovery of language after left hemisphere stroke remain elusive. Although older evidence suggested that right hemisphere language homologues compensate for damage in left hemisphere language areas, the current prevailing theory suggests that right hemisphere engagement is ineffective or even maladaptive. Using a novel combination of support vector regression-based lesion-symptom mapping and voxel-based morphometry, we aimed to determine whether local grey matter volume in the right hemisphere independently contributes to aphasia outcomes after chronic left hemisphere stroke. Thirty-two left hemisphere stroke survivors with aphasia underwent language assessment with the Western Aphasia Battery-Revised and tests of other cognitive domains. High-resolution T1-weighted images were obtained in aphasia patients and 30 demographically matched healthy controls. Support vector regression-based multivariate lesion-symptom mapping was used to identify critical language areas in the left hemisphere and then to quantify each stroke survivor's lesion burden in these areas. After controlling for these direct effects of the stroke on language, voxel-based morphometry was then used to determine whether local grey matter volumes in the right hemisphere explained additional variance in language outcomes. In brain areas in which grey matter volumes related to language outcomes, we then compared grey matter volumes in patients and healthy controls to assess post-stroke plasticity. Lesion-symptom mapping showed that specific left hemisphere regions related to different language abilities. After controlling for lesion burden in these areas, lesion size, and demographic factors, grey matter volumes in parts of the right temporoparietal cortex positively related to spontaneous speech, naming, and repetition scores. Examining whether domain general cognitive functions might explain these relationships, partial correlations demonstrated that grey matter

  20. Grey matter connectivity within and between auditory, language and visual systems in prelingually deaf adolescents.

    Science.gov (United States)

    Li, Wenjing; Li, Jianhong; Wang, Zhenchang; Li, Yong; Liu, Zhaohui; Yan, Fei; Xian, Junfang; He, Huiguang

    2015-01-01

    Previous studies have shown brain reorganizations after early deprivation of auditory sensory. However, changes of grey matter connectivity have not been investigated in prelingually deaf adolescents yet. In the present study, we aimed to investigate changes of grey matter connectivity within and between auditory, language and visual systems in prelingually deaf adolescents. We recruited 16 prelingually deaf adolescents and 16 age-and gender-matched normal controls, and extracted the grey matter volume as the structural characteristic from 14 regions of interest involved in auditory, language or visual processing to investigate the changes of grey matter connectivity within and between auditory, language and visual systems. Sparse inverse covariance estimation (SICE) was utilized to construct grey matter connectivity between these brain regions. The results show that prelingually deaf adolescents present weaker grey matter connectivity within auditory and visual systems, and connectivity between language and visual systems declined. Notably, significantly increased brain connectivity was found between auditory and visual systems in prelingually deaf adolescents. Our results indicate "cross-modal" plasticity after deprivation of the auditory input in prelingually deaf adolescents, especially between auditory and visual systems. Besides, auditory deprivation and visual deficits might affect the connectivity pattern within language and visual systems in prelingually deaf adolescents.

  1. Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies.

    Science.gov (United States)

    Fornito, A; Yücel, M; Patti, J; Wood, S J; Pantelis, C

    2009-03-01

    Voxel-based morphometry (VBM) is a popular tool for mapping neuroanatomical changes in schizophrenia patients. Several recent meta-analyses have identified the brain regions in which patients most consistently show grey matter reductions, although they have not examined whether such changes reflect differences in grey matter concentration (GMC) or grey matter volume (GMV). These measures assess different aspects of grey matter integrity, and may therefore reflect different pathological processes. In this study, we used the Anatomical Likelihood Estimation procedure to analyse significant differences reported in 37 VBM studies of schizophrenia patients, incorporating data from 1646 patients and 1690 controls, and compared the findings of studies using either GMC or GMV to index grey matter differences. Analysis of all studies combined indicated that grey matter reductions in a network of frontal, temporal, thalamic and striatal regions are among the most frequently reported in literature. GMC reductions were generally larger and more consistent than GMV reductions, and were more frequent in the insula, medial prefrontal, medial temporal and striatal regions. GMV reductions were more frequent in dorso-medial frontal cortex, and lateral and orbital frontal areas. These findings support the primacy of frontal, limbic, and subcortical dysfunction in the pathophysiology of schizophrenia, and suggest that the grey matter changes observed with MRI may not necessarily result from a unitary pathological process.

  2. [Changes in phospholipids of the brain grey and white matter during in vitro autolysis in rats subjected to acute hypobaric hypoxic hypoxia].

    Science.gov (United States)

    Gribanov, G A; Leshchenko, D V; Golovko, M Iu

    2004-01-01

    The development of autolysis in grey brain matter of albino rats was accompanied by desintegration of aminophospholipids with parallel increase of glycerophosphates (GLP) and phosphatidic acids (PA) on early stages of incubation and lysophospholipids (LPL) on later stages. Acute hypobaric hypoxic hypoxia decreased the level of phosphatidylethanolamines (PE) with simultaneous accumulation of PA. Previous hypoxia altered the character of autolytic reorganizations of phospholipids. Oscillatory reciprocal reorganizations in the system PE > PS (phosphatidylserine) were observed at early stage (1 h) and at late stages of autolysis (24 h). At the same time increased transformation of phosphatidylcholines (PC) into sphingomyelins (SM) with simultaneous accumulation GLP was registered. During autolysis of brain white matter of control rats opposite oscillatory reorganizations of PE, PC, SM, PA with reduction of PE and simultaneous increase of LPL and PA level after 1 hour of incubation were observed. Reciprocal reactions of biotransformation in system PS > PE were revealed at 4th hour. Previous hypobaric hypoxic hypoxia reduced the level of total phospholipids as well as PS at simultaneous increase of LPL. Acute hypobaric hypoxic hypoxia increased autolytic transformations in system PC > SM and induced hydrolysis of PE, PC into LPL at late stages of autolysis.

  3. Grey matter, an endophenotype for schizophrenia? A voxel-based morphometry study in siblings of patients with schizophrenia

    Science.gov (United States)

    van der Velde, Jorien; Gromann, Paula M.; Swart, Marte; de Haan, Lieuwe; Wiersma, Durk; Bruggeman, Richard; Krabbendam, Lydia; Aleman, André

    2015-01-01

    Background Grey matter, both volume and concentration, has been proposed as an endophenotype for schizophrenia given a number of reports of grey matter abnormalities in relatives of patients with schizophrenia. However, previous studies on grey matter abnormalities in relatives have produced inconsistent results. The aim of the present study was to examine grey matter differences between controls and siblings of patients with schizophrenia and to examine whether the age, genetic loading or subclinical psychotic symptoms of selected individuals could explain the previously reported inconsistencies. Methods We compared the grey matter volume and grey matter concentration of healthy siblings of patients with schizophrenia and healthy controls matched for age, sex and education using voxel-based morphometry (VBM). Furthermore, we selected subsamples based on age (< 30 yr), genetic loading and subclinical psychotic symptoms to examine whether this would lead to different results. Results We included 89 siblings and 69 controls in our study. The results showed that siblings and controls did not differ significantly on grey matter volume or concentration. Furthermore, specifically selecting participants based on age, genetic loading or subclinical psychotic symptoms did not alter these findings. Limitations The main limitation was that subdividing the sample resulted in smaller samples for the subanalyses. Furthermore, we used MRI data from 2 different scanner sites. Conclusion These results indicate that grey matter measured through VBM might not be a suitable endophenotype for schizophrenia. PMID:25768029

  4. The value of T1-weighted images in the differentiation between MS, white matter lesions, and subcortical arteriosclerotic encephalopathy (SAE)

    Energy Technology Data Exchange (ETDEWEB)

    Uhlenbrock, D.; Sehlen, S.

    1989-07-01

    The aim of the study was to define reliable criteria for the differentiation of MR imaging between patients with MS and with 'vascular' white matter lesions/SAE. We examined 35 patients with proven MS according to the Poser criteria and 35 patients with other white matter lesions and/or SAE. The result is that with MR a differentiation can be achieved provided that T1-weighted spin-echo sequences are included and the different pattern of distribution is considered. MS plaques are predominantly located in the subependymal region, vascular white matter lesions are mainly located in the water-shed of the superficial middle cerebral branches and the deep perforating long medullary vessels in the centrum semiovale. Infratentorial lesions are more often seen in MS. Confluence at the lateral ventricles is frequently accompanied by confluent abnormalities around the third ventricle, Sylvian aqueduct, and fourth ventricle, which is uncommon in SAE. In MS many lesions visible on T2-weighted images have a cellular or intracellular composition that renders them visible also on T1-weighted ones as regions with low signal intensity and more or less distinct boundary. 'Vascular' white matter lesions and SAE mainly represent demyelination and can therefore be seen on T2-weighted images, but corresponding low signal intensity lesions on T1-weighted images are uncommon. In some exceptions there are such lesions with low signal representing lacunar infarcts or widened Virchow-Robin-spaces. (orig.).

  5. Diseases of white matter

    International Nuclear Information System (INIS)

    Holland, B.A.

    1987-01-01

    The diagnosis of white matter abnormalities was revolutionized by the advent of computed tomography (CT), which provided a noninvasive method of detection and assessment of progression of a variety of white matter processes. However, the inadequacies of CT were recognized early, including its relative insensitivity to small foci of abnormal myelin in the brain when correlated with autopsy findings and its inability to image directly white matter diseases of the spinal cord. Magnetic resonance imaging (MRI), on the other hand, sensitive to the slight difference in tissue composition of normal gray and white matter and to subtle increase in water content associated with myelin disorders, is uniquely suited for the examination of white matter pathology. Its clinical applications include the evaluation of the normal process of myelination in childhood and the various white matter diseases, including disorders of demyelination and dysmyelination

  6. Socioeconomic status, white matter, and executive function in children.

    Science.gov (United States)

    Ursache, Alexandra; Noble, Kimberly G

    2016-10-01

    A growing body of evidence links socioeconomic status (SES) to children's brain structure. Few studies, however, have specifically investigated relations of SES to white matter structure. Further, although several studies have demonstrated that family SES is related to development of brain areas that support executive functions (EF), less is known about the role that white matter structure plays in the relation of SES to EF. One possibility is that white matter differences may partially explain SES disparities in EF (i.e., a mediating relationship). Alternatively, SES may differentially shape brain-behavior relations such that the relation of white matter structure to EF may differ as a function of SES (i.e., a moderating relationship). In a diverse sample of 1082 children and adolescents aged 3-21 years, we examined socioeconomic disparities in white matter macrostructure and microstructure. We further investigated relations between family SES, children's white matter volume and integrity in tracts supporting EF, and performance on EF tasks. Socioeconomic status was associated with fractional anisotropy (FA) and volume in multiple white matter tracts. Additionally, family income moderated the relation between white matter structure and cognitive flexibility. Specifically, across multiple tracts of interest, lower FA or lower volume was associated with reduced cognitive flexibility among children from lower income families. In contrast, children from higher income families showed preserved cognitive flexibility in the face of low white matter FA or volume. SES factors did not mediate or moderate links between white matter and either working memory or inhibitory control. This work adds to a growing body of literature suggesting that the socioeconomic contexts in which children develop not only shape cognitive functioning and its underlying neurobiology, but may also shape the relations between brain and behavior.

  7. Regional grey matter volume abnormalities in bulimia nervosa and binge-eating disorder.

    Science.gov (United States)

    Schäfer, Axel; Vaitl, Dieter; Schienle, Anne

    2010-04-01

    This study investigated whether bulimia nervosa (BN) and binge-eating disorder (BED) are associated with structural brain abnormalities. Both disorders share the main symptom binge-eating, but are considered differential diagnoses. We attempted to identify alterations in grey matter volume (GMV) that are present in both psychopathologies as well as disorder-specific GMV characteristics. Such information can help to improve neurobiological models of eating disorders and their classification. A total of 50 participants (patients suffering from BN (purge type), BED, and normal-weight controls) underwent structural MRI scanning. GMV for specific brain regions involved in food/reinforcement processing was analyzed by means of voxel-based morphometry. Both patient groups were characterized by greater volumes of the medial orbitofrontal cortex (OFC) compared to healthy controls. In BN patients, who had increased ventral striatum volumes, body mass index and purging severity were correlated with striatal grey matter volume. Altogether, our data implicate a crucial role of the medial OFC in the studied eating disorders. The structural abnormality might be associated with dysfunctions in food reward processing and/or self-regulation. The bulimia-specific volume enlargement of the ventral striatum is discussed in the framework of negative reinforcement through purging and associated weight regulation. Copyright 2009 Elsevier Inc. All rights reserved.

  8. Grey matter changes of the pain matrix in patients with burning mouth syndrome.

    Science.gov (United States)

    Sinding, Charlotte; Gransjøen, Anne Mari; Schlumberger, Gina; Grushka, Miriam; Frasnelli, Johannes; Singh, Preet Bano

    2016-04-01

    Burning mouth syndrome (BMS) is characterized by a burning sensation in the mouth, usually in the absence of clinical and laboratory findings. Latest findings indicate that BMS could result from neuropathic trigeminal conditions. While many investigations have focused on the periphery, very few have examined possible central dysfunctions. To highlight changes of the central system of subjects with BMS, we analysed the grey matter concentration in 12 subjects using voxel-based morphometry. Data were compared with a control group (Ct). To better understand the brain mechanisms underlying BMS, the grey matter concentration of patients was also compared with those of dysgeusic patients (Dys). Dysgeusia is another oral dysfunction condition, characterized by a distorted sense of taste and accompanied by a reduced taste function. We found that a major part of the 'pain matrix' presented modifications of the grey matter concentration in subjects with BMS. Six regions out of eight were affected [anterior and posterior cingulate gyrus, lobules of the cerebellum, insula/frontal operculum, inferior temporal area, primary motor cortex, dorsolateral pre-frontal cortex (DLPFC)]. In the anterior cingulate gyrus, the lobules of the cerebellum, the inferior temporal lobe and the DLPFC, pain intensity correlated with grey matter concentration. Dys also presented changes in grey matter concentration but in different areas of the brain. Our results suggest that a deficiency in the control of pain could in part be a cause of BMS and that BMS and dysgeusia conditions are not linked to similar structural changes in the brain. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Alcohol consumption during adolescence is associated with reduced grey matter volumes.

    Science.gov (United States)

    Heikkinen, Noora; Niskanen, Eini; Könönen, Mervi; Tolmunen, Tommi; Kekkonen, Virve; Kivimäki, Petri; Tanila, Heikki; Laukkanen, Eila; Vanninen, Ritva

    2017-04-01

    Cognitive impairment has been associated with excessive alcohol use, but its neural basis is poorly understood. Chronic excessive alcohol use in adolescence may lead to neuronal loss and volumetric changes in the brain. Our objective was to compare the grey matter volumes of heavy- and light-drinking adolescents. This was a longitudinal study: heavy-drinking adolescents without an alcohol use disorder and their light-drinking controls were followed-up for 10 years using questionnaires at three time-points. Magnetic resonance imaging was conducted at the last time-point. The area near Kuopio University Hospital, Finland. The 62 participants were aged 22-28 years and included 35 alcohol users and 27 controls who had been followed-up for approximately 10 years. Alcohol use was measured by the Alcohol Use Disorders Identification Test (AUDIT)-C at three time-points during 10 years. Participants were selected based on their AUDIT-C score. Magnetic resonance imaging was conducted at the last time-point. Grey matter volume was determined and compared between heavy- and light-drinking groups using voxel-based morphometry on three-dimensional T1-weighted magnetic resonance images using predefined regions of interest and a threshold of P Grey matter volumes were significantly smaller among heavy-drinking participants in the bilateral anterior cingulate cortex, right orbitofrontal and frontopolar cortex, right superior temporal gyrus and right insular cortex compared to the control group (P grey matter. Moreover, the structural changes detected in the insula of alcohol users may reflect a reduced sensitivity to alcohol's negative subjective effects. © 2016 Society for the Study of Addiction.

  10. White matter structure changes as adults learn a second language.

    Science.gov (United States)

    Schlegel, Alexander A; Rudelson, Justin J; Tse, Peter U

    2012-08-01

    Traditional models hold that the plastic reorganization of brain structures occurs mainly during childhood and adolescence, leaving adults with limited means to learn new knowledge and skills. Research within the last decade has begun to overturn this belief, documenting changes in the brain's gray and white matter as healthy adults learn simple motor and cognitive skills [Lövdén, M., Bodammer, N. C., Kühn, S., Kaufmann, J., Schütze, H., Tempelmann, C., et al. Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia, 48, 3878-3883, 2010; Taubert, M., Draganski, B., Anwander, A., Müller, K., Horstmann, A., Villringer, A., et al. Dynamic properties of human brain structure: Learning-related changes in cortical areas and associated fiber connections. The Journal of Neuroscience, 30, 11670-11677, 2010; Scholz, J., Klein, M. C., Behrens, T. E. J., & Johansen-Berg, H. Training induces changes in white-matter architecture. Nature Neuroscience, 12, 1370-1371, 2009; Draganski, B., Gaser, C., Busch, V., Schuirer, G., Bogdahn, U., & May, A. Changes in grey matter induced by training. Nature, 427, 311-312, 2004]. Although the significance of these changes is not fully understood, they reveal a brain that remains plastic well beyond early developmental periods. Here we investigate the role of adult structural plasticity in the complex, long-term learning process of foreign language acquisition. We collected monthly diffusion tensor imaging scans of 11 English speakers who took a 9-month intensive course in written and spoken Modern Standard Chinese as well as from 16 control participants who did not study a language. We show that white matter reorganizes progressively across multiple sites as adults study a new language. Language learners exhibited progressive changes in white matter tracts associated with traditional left hemisphere language areas and their right hemisphere analogs. Surprisingly, the most significant changes

  11. An allometric scaling law between gray matter and white matter of cerebral cortex

    International Nuclear Information System (INIS)

    He Jihuan

    2006-01-01

    An allometric scaling relationship between cortical white and gray volumes is derived from a general model that describes brain's remarkable efficiency and prodigious communications between brain areas. The model assumes that (1) a cell's metabolic rate depends upon cell's surface; (2) the overall basal metabolic rates of brain areas depend upon their fractal structures; (3) differential brain areas have same basal metabolic rate at slow wave sleep. The obtained allometric exponent scaling white matter to gray matter is 1.2, which is very much close to Zhang and Sejnowski's observation data

  12. On Describing Human White Matter Anatomy: The White Matter Query Language

    OpenAIRE

    Wassermann, Demian; Makris, Nikos; Rathi, Yogesh; Shenton, Martha; Kikinis, Ron; Kubicki, Marek; Westin, Carl-Fredrik

    2013-01-01

    The main contribution of this work is the careful syntactical definition of major white matter tracts in the human brain based on a neuroanatomist’s expert knowledge. We present a technique to formally describe white matter tracts and to automatically extract them from diffusion MRI data. The framework is based on a novel query language with a near-to-English textual syntax. This query language allows us to construct a dictionary of anatomical definitions describing white matter tracts. The d...

  13. ROLE OF MRI IN WHITE MATTER DISEASES- CLINICO-RADIOLOGICAL CORRELATION

    Directory of Open Access Journals (Sweden)

    Ravindranath Reddy Kamireddy

    2017-11-01

    Full Text Available BACKGROUND The diagnostic process is difficult as there are many different white matter disorders (inherited and acquired. MRI has high diagnostic specificity to study the pattern of brain structures. MRI is more useful in demonstrating abnormalities of myelination. MATERIALS AND METHODS Our study developed a practical algorithm that relies mainly on the characteristics of brain MRI. Our study included clinicallysuspected patients with demyelination during a period of one year. RESULTS Our study included 25 clinically-suspected patients (out of total of 400 patients with demyelination during a period of one year (February 2016 to January 2017.  Multiple sclerosis accounted for the majority of cases (36.0% followed by acute disseminated encephalomyelitis (20%.  In multiple sclerosis, majority of the patients presented in the third decade of life with a definite female preponderance (M:F-1:2.  The most common symptom and site of involvement were visual impairment (73.3% and periventricular area (80%, respectively.  Other causes like PML, PVL, CPM, reversible posterior leucoencephalopathy, leukodystrophies and motor neuron disease comprised the remainder of the cases. CONCLUSION MRI due to its excellent grey white matter resolution is very sensitive in detecting subtle demyelination, the sensitivity being still further enhanced by FLAIR sequences. MRI in correlation with the clinical signs and symptoms is an ideal modality in early diagnosis of white matter diseases.

  14. Grey matter correlates of autistic traits in women with anorexia nervosa.

    Science.gov (United States)

    Björnsdotter, Malin; Davidovic, Monika; Karjalainen, Louise; Starck, Göran; Olausson, Håkan; Wentz, Elisabet

    2018-03-01

    Patients with anorexia nervosa exhibit higher levels of behaviours typically associated with autism-spectrum disorder (ASD), but the neural basis is unclear. We sought to determine whether elevated autistic traits in women with anorexia nervosa may be reflected in cortical morphology. We used voxel-based morphometry (VBM) to examine regional grey matter volumes in high-resolution MRI structural brain scans in women with anorexia nervosa and matched healthy controls. The Autism-spectrum Quotient (AQ) scale was used to assess autistic traits. Women with anorexia nervosa ( n = 25) had higher AQ scores and lower bilateral superior temporal sulcus (STS) grey matter volumes than the control group ( n = 25). The AQ scores correlated negatively with average left STS grey matter volume in women with anorexia nervosa. We did not control for cognitive ability and examined only women with ongoing anorexia nervosa. Elevated autistic traits in women with anorexia nervosa are associated with morphometric alterations of brain areas linked to social cognition. This finding provides neurobiological support for the behavioural link between anorexia nervosa and ASD and emphasizes the importance of recognizing autistic traits in preventing and treating anorexia nervosa.

  15. Grey matter correlates of autistic traits in women with anorexia nervosa

    Science.gov (United States)

    Davidovic, Monika; Karjalainen, Louise; Starck, Göran; Olausson, Håkan; Wentz, Elisabet

    2018-01-01

    Background Patients with anorexia nervosa exhibit higher levels of behaviours typically associated with autism-spectrum disorder (ASD), but the neural basis is unclear. We sought to determine whether elevated autistic traits in women with anorexia nervosa may be reflected in cortical morphology. Methods We used voxel-based morphometry (VBM) to examine regional grey matter volumes in high-resolution MRI structural brain scans in women with anorexia nervosa and matched healthy controls. The Autism-spectrum Quotient (AQ) scale was used to assess autistic traits. Results Women with anorexia nervosa (n = 25) had higher AQ scores and lower bilateral superior temporal sulcus (STS) grey matter volumes than the control group (n = 25). The AQ scores correlated negatively with average left STS grey matter volume in women with anorexia nervosa. Limitations We did not control for cognitive ability and examined only women with ongoing anorexia nervosa. Conclusion Elevated autistic traits in women with anorexia nervosa are associated with morphometric alterations of brain areas linked to social cognition. This finding provides neurobiological support for the behavioural link between anorexia nervosa and ASD and emphasizes the importance of recognizing autistic traits in preventing and treating anorexia nervosa. PMID:29481315

  16. Grey-matter volume as a potential feature for the classification of Alzheimer's disease and mild cognitive impairment: an exploratory study.

    Science.gov (United States)

    Guo, Yane; Zhang, Zengqiang; Zhou, Bo; Wang, Pan; Yao, Hongxiang; Yuan, Minshao; An, Ningyu; Dai, Haitao; Wang, Luning; Zhang, Xi; Liu, Yong

    2014-06-01

    Specific patterns of brain atrophy may be helpful in the diagnosis of Alzheimer's disease (AD). In the present study, we set out to evaluate the utility of grey-matter volume in the classification of AD and amnestic mild cognitive impairment (aMCI) compared to normal control (NC) individuals. Voxel-based morphometric analyses were performed on structural MRIs from 35 AD patients, 27 aMCI patients, and 27 NC participants. A two-sample two-tailed t-test was computed between the NC and AD groups to create a map of abnormal grey matter in AD. The brain areas with significant differences were extracted as regions of interest (ROIs), and the grey-matter volumes in the ROIs of the aMCI patients were included to evaluate the patterns of change across different disease severities. Next, correlation analyses between the grey-matter volumes in the ROIs and all clinical variables were performed in aMCI and AD patients to determine whether they varied with disease progression. The results revealed significantly decreased grey matter in the bilateral hippocampus/parahippocampus, the bilateral superior/middle temporal gyri, and the right precuneus in AD patients. The grey-matter volumes were positively correlated with clinical variables. Finally, we performed exploratory linear discriminative analyses to assess the classifying capacity of grey-matter volumes in the bilateral hippocampus and parahippocampus among AD, aMCI, and NC. Leave-one-out cross-validation analyses demonstrated that grey-matter volumes in hippocampus and parahippocampus accurately distinguished AD from NC. These findings indicate that grey-matter volumes are useful in the classification of AD.

  17. White matter hypoperfusion and damage in dementia: post-mortem assessment.

    Science.gov (United States)

    Love, Seth; Miners, J Scott

    2015-01-01

    Neuroimaging has revealed a range of white matter abnormalities that are common in dementia, some that predict cognitive decline. The abnormalities may result from structural diseases of the cerebral vasculature, such as arteriolosclerosis and amyloid angiopathy, but can also be caused by nonstructural vascular abnormalities (eg, of vascular contractility or permeability), neurovascular instability or extracranial cardiac or vascular disease. Conventional histopathological assessment of the white matter has tended to conflate morphological vascular abnormalities with changes that reflect altered interstitial fluid dynamics or white matter ischemic damage, even though the latter may be of extracranial or nonstructural etiology. However, histopathology is being supplemented by biochemical approaches, including the measurement of proteins involved in the molecular responses to brain ischemia, myelin proteins differentially susceptible to ischemic damage, vessel-associated proteins that allow rapid measurement of microvessel density, markers of blood-brain barrier dysfunction and axonal injury, and mediators of white matter damage. By combining neuroimaging with histopathology and biochemical analysis, we can provide reproducible, quantitative data on the severity of white matter damage, and information on its etiology and pathogenesis. Together these have the potential to inform and improve treatment, particularly in forms of dementia to which white matter hypoperfusion makes a significant contribution. © 2014 International Society of Neuropathology.

  18. Mapping White Matter Microstructure in the One Month Human Brain.

    Science.gov (United States)

    Dean, D C; Planalp, E M; Wooten, W; Adluru, N; Kecskemeti, S R; Frye, C; Schmidt, C K; Schmidt, N L; Styner, M A; Goldsmith, H H; Davidson, R J; Alexander, A L

    2017-08-29

    White matter microstructure, essential for efficient and coordinated transmission of neural communications, undergoes pronounced development during the first years of life, while deviations to this neurodevelopmental trajectory likely result in alterations of brain connectivity relevant to behavior. Hence, systematic evaluation of white matter microstructure in the normative brain is critical for a neuroscientific approach to both typical and atypical early behavioral development. However, few studies have examined the infant brain in detail, particularly in infants under 3 months of age. Here, we utilize quantitative techniques of diffusion tensor imaging and neurite orientation dispersion and density imaging to investigate neonatal white matter microstructure in 104 infants. An optimized multiple b-value diffusion protocol was developed to allow for successful acquisition during non-sedated sleep. Associations between white matter microstructure measures and gestation corrected age, regional asymmetries, infant sex, as well as newborn growth measures were assessed. Results highlight changes of white matter microstructure during the earliest periods of development and demonstrate differential timing of developing regions and regional asymmetries. Our results contribute to a growing body of research investigating the neurobiological changes associated with neurodevelopment and suggest that characteristics of white matter microstructure are already underway in the weeks immediately following birth.

  19. Grey Box Modelling of Hydrological Systems

    DEFF Research Database (Denmark)

    Thordarson, Fannar Ørn

    of two papers where the stochastic differential equation based model is used for sewer runoff from a drainage system. A simple model is used to describe a complex rainfall-runoff process in a catchment, but the stochastic part of the system is formulated to include the increasing uncertainty when...... rainwater flows through the system, as well as describe the lower limit of the uncertainty when the flow approaches zero. The first paper demonstrates in detail the grey box model and all related transformations required to obtain a feasible model for the sewer runoff. In the last paper this model is used......The main topic of the thesis is grey box modelling of hydrologic systems, as well as formulation and assessment of their embedded uncertainties. Grey box model is a combination of a white box model, a physically-based model that is traditionally formulated using deterministic ordinary differential...

  20. Grey matter volume in healthy and epileptic beagles using voxel-based morphometry – a pilot study

    Directory of Open Access Journals (Sweden)

    Lisa Frank

    2018-02-01

    Full Text Available Abstract Background One of the most common chronic neurological disorders in dogs is idiopathic epilepsy (IE diagnosed as epilepsy without structural changes in the brain. In the current study the hypothesis should be proven that subtle grey matter changes occur in epileptic dogs. Therefore, magnetic resonance (MR images of one dog breed (Beagles were used to obtain an approximately uniform brain shape. Local differences in grey matter volume (GMV were compared between 5 healthy Beagles and 10 Beagles with spontaneously recurrent seizures (5 dogs with IE and 5 dogs with structural epilepsy (SE, using voxel-based morphometry (VBM. T1W images of all dogs were prepared using Amira 6.3.0 for brain extraction, FSL 4.1.8 for registration and SPM12 for realignment. After creation of tissue probability maps of cerebrospinal fluid, grey and white matter from control images to segment all extracted brains, GM templates for each group were constructed to normalize brain images for parametric statistical analysis, which was achieved using SPM12. Results Epileptic Beagles (IE and SE Beagles displayed statistically significant reduced GMV in olfactory bulb, cingulate gyrus, hippocampus and cortex, especially in temporal and occipital lobes. Beagles with IE showed statistically significant decreased GMV in olfactory bulb, cortex of parietal and temporal lobe, hippocampus and cingulate gyrus, Beagles with SE mild statistically significant GMV reduction in temporal lobe (p < 0.05; family- wise error correction. Conclusion These results suggest that, as reported in epileptic humans, focal reduction in GMV also occurs in epileptic dogs. Furthermore, the current study shows that VBM analysis represents an excellent method to detect GMV differences of the brain between a healthy dog group and dogs with epileptic syndrome, when MR images of one breed are used.

  1. The relationship of waist circumference and body mass index to grey matter volume in community dwelling adults with mild obesity.

    Science.gov (United States)

    Hayakawa, Y K; Sasaki, H; Takao, H; Yoshikawa, T; Hayashi, N; Mori, H; Kunimatsu, A; Aoki, S; Ohtomo, K

    2018-02-01

    Previous work has shown that high body mass index (BMI) is associated with low grey matter volume. However, evidence on the relationship between waist circumference (WC) and brain volume is relatively scarce. Moreover, the influence of mild obesity (as indexed by WC and BMI) on brain volume remains unclear. This study explored the relationships between WC and BMI and grey matter volume in a large sample of Japanese adults. The participants were 792 community-dwelling adults (523 men and 269 women). Brain magnetic resonance images were collected, and the correlation between WC or BMI and global grey matter volume were analysed. The relationships between WC or BMI and regional grey matter volume were also investigated using voxel-based morphometry. Global grey matter volume was not correlated with WC or BMI. Voxel-based morphometry analysis revealed significant negative correlations between both WC and BMI and regional grey matter volume. The areas correlated with each index were more widespread in men than in women. In women, the total area of the regions significantly correlated with WC was slightly greater than that of the regions significantly correlated with BMI. Results show that both WC and BMI were inversely related to regional grey matter volume, even in Japanese adults with somewhat mild obesity. Especially in populations with less obesity, such as the female participants in current study, WC may be more sensitive than BMI as a marker of grey matter volume differences associated with obesity.

  2. Increased microglial catalase activity in multiple sclerosis grey matter.

    Science.gov (United States)

    Gray, Elizabeth; Kemp, Kevin; Hares, Kelly; Redondo, Julianna; Rice, Claire; Scolding, Neil; Wilkins, Alastair

    2014-04-22

    Chronic demyelination, on-going inflammation, axonal loss and grey matter neuronal injury are likely pathological processes that contribute to disease progression in multiple sclerosis (MS). Although the precise contribution of each process and their aetiological substrates is not fully known, recent evidence has implicated oxidative damage as a major cause of tissue injury in MS. The degree of tissue injury caused by oxidative molecules, such as reactive oxygen species (ROS), is balanced by endogenous anti-oxidant enzymes which detoxify ROS. Understanding endogenous mechanisms which protect the brain against oxidative injury in MS is important, since enhancing anti-oxidant responses is a major therapeutic strategy for preventing irreversible tissue injury in the disease. Our aims were to determine expression and activity levels of the hydrogen peroxide-reducing enzyme catalase in MS grey matter (GM). In MS GM, a catalase enzyme activity was elevated compared to control GM. We measured catalase protein expression by immune dot-blotting and catalase mRNA by a real-time polymerase chain reaction (RT-PCR). Protein analysis studies showed a strong positive correlation between catalase and microglial marker IBA-1 in MS GM. In addition, calibration of catalase mRNA level with reference to the microglial-specific transcript AIF-1 revealed an increase in this transcript in MS. This was reflected by the extent of HLA-DR immunolabeling in MS GM which was significantly elevated compared to control GM. Collectively, these observations provide evidence that microglial catalase activity is elevated in MS grey matter and may be an important endogenous anti-oxidant defence mechanism in MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Modeling imperfectly repaired system data via grey differential equations with unequal-gapped times

    International Nuclear Information System (INIS)

    Guo Renkuan

    2007-01-01

    In this paper, we argue that grey differential equation models are useful in repairable system modeling. The arguments starts with the review on GM(1,1) model with equal- and unequal-spaced stopping time sequence. In terms of two-stage GM(1,1) filtering, system stopping time can be partitioned into system intrinsic function and repair effect. Furthermore, we propose an approach to use grey differential equation to specify a semi-statistical membership function for system intrinsic function times. Also, we engage an effort to use GM(1,N) model to model system stopping times and the associated operating covariates and propose an unequal-gapped GM(1,N) model for such analysis. Finally, we investigate the GM(1,1)-embed systematic grey equation system modeling of imperfectly repaired system operating data. Practical examples are given in step-by-step manner to illustrate the grey differential equation modeling of repairable system data

  4. Global grey matter volume in adult bipolar patients with and without lithium treatment: A meta-analysis.

    Science.gov (United States)

    Sun, Yue Ran; Herrmann, Nathan; Scott, Christopher J M; Black, Sandra E; Khan, Maisha M; Lanctôt, Krista L

    2018-01-01

    The goal of this meta-analysis was to quantitatively summarize the evidence available on the differences in grey matter volume between lithium-treated and lithium-free bipolar patients. A systematic search was conducted in Cochrane Central, Embase, MEDLINE, and PsycINFO databases for original peer-reviewed journal articles that reported on global grey matter volume in lithium-medicated and lithium-free bipolar patients. Standard mean difference and Hedges' g were used to calculate effect size in a random-effects model. Risk of publication bias was assessed using Egger's test and quality of evidence was assessed using standard criteria. There were 15 studies with a total of 854 patients (368 lithium-medicated, 486 lithium-free) included in the meta-analysis. Global grey matter volume was significantly larger in lithium-treated bipolar patients compared to lithium-free patients (SMD: 0.17, 95% CI: 0.01-0.33; z = 2.11, p = 0.035). Additionally, there was a difference in global grey matter volume between groups in studies that employed semi-automated segmentation methods (SMD: 0.66, 95% CI: 0.01-1.31; z = 1.99, p = 0.047), but no significant difference in studies that used fully-automated segmentation. No publication bias was detected (bias coefficient = - 0.65, p = 0.46). Variability in imaging methods and lack of high-quality evidence limits the interpretation of the findings. Results suggest that lithium-treated patients have a greater global grey matter volume than those who were lithium-free. Further study of the relationship between lithium and grey matter volume may elucidate the therapeutic potential of lithium in conditions characterized by abnormal changes in brain structure. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  5. White matter hyperintensities and changes in white matter integrity in patients with Alzheimer's disease

    International Nuclear Information System (INIS)

    Wang, Liya; Mao, Hui; Goldstein, Felicia C.; Levey, Allan I.; Lah, James J.; Meltzer, Carolyn C.; Holder, Chad A.

    2011-01-01

    White matter hyperintensities (WMHs) are a risk factor for Alzheimer's disease (AD). This study investigated the relationship between WMHs and white matter changes in AD using diffusion tensor imaging (DTI) and the sensitivity of each DTI index in distinguishing AD with WMHs. Forty-four subjects with WMHs were included. Subjects were classified into three groups based on the Scheltens rating scale: 15 AD patients with mild WMHs, 12 AD patients with severe WMHs, and 17 controls with mild WMHs. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (D R ), and axial diffusivity (D A ) were analyzed using the region of interest and tract-based spatial statistics methods. Sensitivity and specificity of DTI indices in distinguishing AD groups from the controls were evaluated. AD patients with mild WMHs exhibited differences from control subjects in most DTI indices in the medial temporal and frontal areas; however, differences in DTI indices from AD patients with mild WMHs and AD patients with severe WMHs were found in the parietal and occipital areas. FA and D R were more sensitive measurements than MD and D A in differentiating AD patients from controls, while MD was a more sensitive measurement in distinguishing AD patients with severe WMHs from those with mild WMHs. WMHs may contribute to the white matter changes in AD brains, specifically in temporal and frontal areas. Changes in parietal and occipital lobes may be related to the severity of WMHs. D R may serve as an imaging marker of myelin deficits associated with AD. (orig.)

  6. Grey matter morphological anomalies in the caudate head in first-episode psychosis patients with delusions of reference.

    Science.gov (United States)

    Tao, Haojuan; Wong, Gloria H Y; Zhang, Huiran; Zhou, Yuan; Xue, Zhimin; Shan, Baoci; Chen, Eric Y H; Liu, Zhening

    2015-07-30

    Delusions of reference (DOR) are theoretically linked with aberrant salience and associative learning. Previous studies have shown that the caudate nucleus plays a critical role in the cognitive circuits of coding prediction errors and associative learning. The current study aimed at testing the hypothesis that abnormalities in the caudate nucleus may be involved in the neuroanatomical substrate of DOR. Structural magnetic resonance imaging of the brain was performed in 44 first-episode psychosis patients (with diagnoses of schizophrenia or schizophreniform disorder) and 25 healthy controls. Patients were divided into three groups according to symptoms: patients with DOR as prominent positive symptom; patients with prominent positive symptoms other than DOR; and patients with minimal positive symptoms. All groups were age-, gender-, and education-matched, and patient groups were matched for diagnosis, duration of illness, and antipsychotic treatment. Voxel-based morphometric analysis was performed to identify group differences in grey matter density. Relationships were explored between grey matter density and DOR. Patients with DOR were found to have reduced grey matter density in the caudate compared with patients without DOR and healthy controls. Grey matter density values of the left and right caudate head were negatively correlated with DOR severity. Decreased grey matter density in the caudate nucleus may underlie DOR in early psychosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. An Optimized Clustering Approach for Automated Detection of White Matter Lesions in MRI Brain Images

    Directory of Open Access Journals (Sweden)

    M. Anitha

    2012-04-01

    Full Text Available Settings White Matter lesions (WMLs are small areas of dead cells found in parts of the brain. In general, it is difficult for medical experts to accurately quantify the WMLs due to decreased contrast between White Matter (WM and Grey Matter (GM. The aim of this paper is to
    automatically detect the White Matter Lesions which is present in the brains of elderly people. WML detection process includes the following stages: 1. Image preprocessing, 2. Clustering (Fuzzy c-means clustering, Geostatistical Possibilistic clustering and Geostatistical Fuzzy clustering and 3.Optimization using Particle Swarm Optimization (PSO. The proposed system is tested on a database of 208 MRI images. GFCM yields high sensitivity of 89%, specificity of 94% and overall accuracy of 93% over FCM and GPC. The clustered brain images are then subjected to Particle Swarm Optimization (PSO. The optimized result obtained from GFCM-PSO provides sensitivity of 90%, specificity of 94% and accuracy of 95%. The detection results reveals that GFCM and GFCMPSO better localizes the large regions of lesions and gives less false positive rate when compared to GPC and GPC-PSO which captures the largest loads of WMLs only in the upper ventral horns of the brain.

  8. Developmental Patterns of Doublecortin Expression and White Matter Neuron Density in the Postnatal Primate Prefrontal Cortex and Schizophrenia

    Science.gov (United States)

    Fung, Samantha J.; Joshi, Dipesh; Allen, Katherine M.; Sivagnanasundaram, Sinthuja; Rothmond, Debora A.; Saunders, Richard; Noble, Pamela L.; Webster, Maree J.; Shannon Weickert, Cynthia

    2011-01-01

    Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC). Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX), a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque) and density of white matter neurons (humans) during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37) and matched controls (n = 37) and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in schizophrenia. PMID

  9. Developmental patterns of doublecortin expression and white matter neuron density in the postnatal primate prefrontal cortex and schizophrenia.

    Directory of Open Access Journals (Sweden)

    Samantha J Fung

    Full Text Available Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC. Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX, a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque and density of white matter neurons (humans during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37 and matched controls (n = 37 and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in

  10. Characteristics of lesional and extra-lesional cortical grey matter in relapsing-remitting and secondary progressive multiple sclerosis: A magnetisation transfer and diffusion tensor imaging study.

    Science.gov (United States)

    Yaldizli, Özgür; Pardini, Matteo; Sethi, Varun; Muhlert, Nils; Liu, Zheng; Tozer, Daniel J; Samson, Rebecca S; Wheeler-Kingshott, Claudia Am; Yousry, Tarek A; Miller, David H; Chard, Declan T

    2016-02-01

    In multiple sclerosis (MS), diffusion tensor and magnetisation transfer imaging are both abnormal in lesional and extra-lesional cortical grey matter, but differences between clinical subtypes and associations with clinical outcomes have only been partly assessed. To compare mean diffusivity, fractional anisotropy and magnetisation transfer ratio (MTR) in cortical grey matter lesions (detected using phase-sensitive inversion recovery (PSIR) imaging) and extra-lesional cortical grey matter, and assess associations with disability in relapse-onset MS. Seventy-two people with MS (46 relapsing-remitting (RR), 26 secondary progressive (SP)) and 36 healthy controls were included in this study. MTR, mean diffusivity and fractional anisotropy were measured in lesional and extra-lesional cortical grey matter. Mean fractional anisotropy was higher and MTR lower in lesional compared with extra-lesional cortical grey matter. In extra-lesional cortical grey matter mean fractional anisotropy and MTR were lower, and mean diffusivity was higher in the MS group compared with controls. Mean MTR was lower and mean diffusivity was higher in lesional and extra-lesional cortical grey matter in SPMS when compared with RRMS. These differences were independent of disease duration. In multivariate analyses, MTR in extra-lesional more so than lesional cortical grey matter was associated with disability. Magnetic resonance abnormalities in lesional and extra-lesional cortical grey matter are greater in SPMS than RRMS. Changes in extra-lesional compared with lesional cortical grey matter are more consistently associated with disability. © The Author(s), 2015.

  11. Cross-sectional variations of white and grey matter in older hypertensive patients with subjective memory complaints

    Directory of Open Access Journals (Sweden)

    Ahmed Chetouani

    2018-01-01

    Altogether, our findings show that cross-sectional variations in overall white brain matter are linked to the metabolism of Alzheimer-like cortical areas and to cognitive performance in older hypertensive patients with only subjective memory complaints. Additional relationships with central BP strengthen the hypothesis of a contributing pathogenic role of hypertension.

  12. Electrophysiological analysis of pathways connecting the medial preoptic area with the mesencephalic central grey matter in rats.

    Science.gov (United States)

    MacLeod, N K; Mayer, M L

    1980-01-01

    1. An electrophysiological study of ascending and descending connexions between the dorsal raphe region of the mesencephalic periaqueductal grey matter and the medial preoptic area has been performed in dioestrous female rats anaesthetized with urethane. 2. Extracellular action potentials recorded from 208 neurones in the medial preoptic area were analysed for a change in excitability following stimulation of the periaqueductal grey matter. 174 neurones were also tested for changes in excitability following stimulation of the mediobasal hypothalamus. 3. Stimulation of the periaqueductal grey matter at 1 Hz was rarely effective, but short trains of pulses (three at 100 Hz) usually caused an initial inhibition (62.5% of 208) of both projection identified and adjacent neurones of the medial preoptic area, at latencies of 5--90 msec (mean 34.1 +/- 1.4 msec). Inhibition following stimulation of the mediobasal hypothalamus occurred less frequently (34%) and at shorter latency (mean 12.0 +/- 1.8 msec; n = 48). 4. Less frequently (10.6%) periaqueductal grey matter stimulation caused an initial excitation of preoptic neurones at latencies of 15--180 msec, (mean 35.3 +/- 7.2). Initial excitation following mediobasal hypothalamus stimulation was stronger, occurred more frequently (29%) and at shorter latencies (range 3--60 msec, mean 13.1 +/- 1.5). Following such initial excitation, inhibition of spontaneous or ionophoretically evoked activity occurred more frequently following mediobasal hypothalamic stimulation, than after periaqueductal grey matter stimulation. 5. Twenty-four neurones displayed antidromic invasion following periaqueductal grey matter stimulation. Latencies for invasion ranged from 13 to 50 msec (mean 25.5 +/- 2.0 msec) and are suggestive of an unmyelinated projection. Occasionally an abrupt decrease in latency followed an increase in stimulus intensity. Antidromic invasion from mediobasal hypothalamus was characterized by a shorter latency (mean 12.5 +/- 0

  13. Progression of regional grey matter atrophy in multiple sclerosis.

    Science.gov (United States)

    Eshaghi, Arman; Marinescu, Razvan V; Young, Alexandra L; Firth, Nicholas C; Prados, Ferran; Jorge Cardoso, M; Tur, Carmen; De Angelis, Floriana; Cawley, Niamh; Brownlee, Wallace J; De Stefano, Nicola; Laura Stromillo, M; Battaglini, Marco; Ruggieri, Serena; Gasperini, Claudio; Filippi, Massimo; Rocca, Maria A; Rovira, Alex; Sastre-Garriga, Jaume; Geurts, Jeroen J G; Vrenken, Hugo; Wottschel, Viktor; Leurs, Cyra E; Uitdehaag, Bernard; Pirpamer, Lukas; Enzinger, Christian; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A; Chard, Declan; Thompson, Alan J; Barkhof, Frederik; Alexander, Daniel C; Ciccarelli, Olga

    2018-06-01

    See Stankoff and Louapre (doi:10.1093/brain/awy114) for a scientific commentary on this article.Grey matter atrophy is present from the earliest stages of multiple sclerosis, but its temporal ordering is poorly understood. We aimed to determine the sequence in which grey matter regions become atrophic in multiple sclerosis and its association with disability accumulation. In this longitudinal study, we included 1417 subjects: 253 with clinically isolated syndrome, 708 with relapsing-remitting multiple sclerosis, 128 with secondary-progressive multiple sclerosis, 125 with primary-progressive multiple sclerosis, and 203 healthy control subjects from seven European centres. Subjects underwent repeated MRI (total number of scans 3604); the mean follow-up for patients was 2.41 years (standard deviation = 1.97). Disability was scored using the Expanded Disability Status Scale. We calculated the volume of brain grey matter regions and brainstem using an unbiased within-subject template and used an established data-driven event-based model to determine the sequence of occurrence of atrophy and its uncertainty. We assigned each subject to a specific event-based model stage, based on the number of their atrophic regions. Linear mixed-effects models were used to explore associations between the rate of increase in event-based model stages, and T2 lesion load, disease-modifying treatments, comorbidity, disease duration and disability accumulation. The first regions to become atrophic in patients with clinically isolated syndrome and relapse-onset multiple sclerosis were the posterior cingulate cortex and precuneus, followed by the middle cingulate cortex, brainstem and thalamus. A similar sequence of atrophy was detected in primary-progressive multiple sclerosis with the involvement of the thalamus, cuneus, precuneus, and pallidum, followed by the brainstem and posterior cingulate cortex. The cerebellum, caudate and putamen showed early atrophy in relapse-onset multiple

  14. Progression of regional grey matter atrophy in multiple sclerosis

    Science.gov (United States)

    Marinescu, Razvan V; Young, Alexandra L; Firth, Nicholas C; Jorge Cardoso, M; Tur, Carmen; De Angelis, Floriana; Cawley, Niamh; Brownlee, Wallace J; De Stefano, Nicola; Laura Stromillo, M; Battaglini, Marco; Ruggieri, Serena; Gasperini, Claudio; Filippi, Massimo; Rocca, Maria A; Rovira, Alex; Sastre-Garriga, Jaume; Geurts, Jeroen J G; Vrenken, Hugo; Wottschel, Viktor; Leurs, Cyra E; Uitdehaag, Bernard; Pirpamer, Lukas; Enzinger, Christian; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A; Chard, Declan; Thompson, Alan J; Barkhof, Frederik; Alexander, Daniel C; Ciccarelli, Olga

    2018-01-01

    Abstract See Stankoff and Louapre (doi:10.1093/brain/awy114) for a scientific commentary on this article. Grey matter atrophy is present from the earliest stages of multiple sclerosis, but its temporal ordering is poorly understood. We aimed to determine the sequence in which grey matter regions become atrophic in multiple sclerosis and its association with disability accumulation. In this longitudinal study, we included 1417 subjects: 253 with clinically isolated syndrome, 708 with relapsing-remitting multiple sclerosis, 128 with secondary-progressive multiple sclerosis, 125 with primary-progressive multiple sclerosis, and 203 healthy control subjects from seven European centres. Subjects underwent repeated MRI (total number of scans 3604); the mean follow-up for patients was 2.41 years (standard deviation = 1.97). Disability was scored using the Expanded Disability Status Scale. We calculated the volume of brain grey matter regions and brainstem using an unbiased within-subject template and used an established data-driven event-based model to determine the sequence of occurrence of atrophy and its uncertainty. We assigned each subject to a specific event-based model stage, based on the number of their atrophic regions. Linear mixed-effects models were used to explore associations between the rate of increase in event-based model stages, and T2 lesion load, disease-modifying treatments, comorbidity, disease duration and disability accumulation. The first regions to become atrophic in patients with clinically isolated syndrome and relapse-onset multiple sclerosis were the posterior cingulate cortex and precuneus, followed by the middle cingulate cortex, brainstem and thalamus. A similar sequence of atrophy was detected in primary-progressive multiple sclerosis with the involvement of the thalamus, cuneus, precuneus, and pallidum, followed by the brainstem and posterior cingulate cortex. The cerebellum, caudate and putamen showed early atrophy in relapse

  15. White matter atrophy and cognitive dysfunctions in neuromyelitis optica.

    Directory of Open Access Journals (Sweden)

    Frederic Blanc

    Full Text Available Neuromyelitis optica (NMO is an inflammatory disease of central nervous system characterized by optic neuritis and longitudinally extensive acute transverse myelitis. NMO patients have cognitive dysfunctions but other clinical symptoms of brain origin are rare. In the present study, we aimed to investigate cognitive functions and brain volume in NMO. The study population consisted of 28 patients with NMO and 28 healthy control subjects matched for age, sex and educational level. We applied a French translation of the Brief Repeatable Battery (BRB-N to the NMO patients. Using SIENAx for global brain volume (Grey Matter, GM; White Matter, WM; and whole brain and VBM for focal brain volume (GM and WM, NMO patients and controls were compared. Voxel-level correlations between diminished brain concentration and cognitive performance for each tests were performed. Focal and global brain volume of NMO patients with and without cognitive impairment were also compared. Fifteen NMO patients (54% had cognitive impairment with memory, executive function, attention and speed of information processing deficits. Global and focal brain atrophy of WM but not Grey Matter (GM was found in the NMO patients group. The focal WM atrophy included the optic chiasm, pons, cerebellum, the corpus callosum and parts of the frontal, temporal and parietal lobes, including superior longitudinal fascicle. Visual memory, verbal memory, speed of information processing, short-term memory and executive functions were correlated to focal WM volumes. The comparison of patients with, to patients without cognitive impairment showed a clear decrease of global and focal WM, including brainstem, corticospinal tracts, corpus callosum but also superior and inferior longitudinal fascicles. Cognitive impairment in NMO patients is correlated to the decreased of global and focal WM volume of the brain. Further studies are needed to better understand the precise origin of cognitive impairment in

  16. Ischemic tolerance in pre-myelinated white matter: the role of astrocyte glycogen in brain pathology.

    Science.gov (United States)

    Fern, Robert

    2015-06-01

    In isolated white matter, ischemic tolerance changes dramatically in the period immediately before the onset of myelination. In the absence of an extrinsic energy source, postnatal day 0 to 2 (P0 to P2) white matter axons are here shown to maintain excitability for over twice as long as axons >P2, a differential that was dependent on glycogen metabolism. Prolonged withdrawal of extrinsic energy supply tended to spare axons in zones around astrocytes, which are shown to be the sole repository for glycogen particles in developing white matter. Analysis of mitochondrial volume fraction revealed that neither axons nor astrocytes had a low metabolic rate in neonatal white matter, while oligodendroglia at older ages had an elevated metabolism. The astrocyte population is established early in neural development, and exhibits reduced cell density as maturation progresses and white matter expands. The findings show that this event establishes the necessary conditions for ischemia sensitivity in white matter and indicates that astrocyte proximity may be significant for the survival of neuronal elements in conditions associated with compromised energy supply.

  17. Astrocyte Sodium Signalling and Panglial Spread of Sodium Signals in Brain White Matter.

    Science.gov (United States)

    Moshrefi-Ravasdjani, Behrouz; Hammel, Evelyn L; Kafitz, Karl W; Rose, Christine R

    2017-09-01

    In brain grey matter, excitatory synaptic transmission activates glutamate uptake into astrocytes, inducing sodium signals which propagate into neighboring astrocytes through gap junctions. These sodium signals have been suggested to serve an important role in neuro-metabolic coupling. So far, it is unknown if astrocytes in white matter-that is in brain regions devoid of synapses-are also able to undergo such intra- and intercellular sodium signalling. In the present study, we have addressed this question by performing quantitative sodium imaging in acute tissue slices of mouse corpus callosum. Focal application of glutamate induced sodium transients in SR101-positive astrocytes. These were largely unaltered in the presence of ionotropic glutamate receptors blockers, but strongly dampened upon pharmacological inhibition of glutamate uptake. Sodium signals induced in individual astrocytes readily spread into neighboring SR101-positive cells with peak amplitudes decaying monoexponentially with distance from the stimulated cell. In addition, spread of sodium was largely unaltered during pharmacological inhibition of purinergic and glutamate receptors, indicating gap junction-mediated, passive diffusion of sodium between astrocytes. Using cell-type-specific, transgenic reporter mice, we found that sodium signals also propagated, albeit less effectively, from astrocytes to neighboring oligodendrocytes and NG2 cells. Again, panglial spread was unaltered with purinergic and glutamate receptors blocked. Taken together, our results demonstrate that activation of sodium-dependent glutamate transporters induces sodium signals in white matter astrocytes, which spread within the astrocyte syncytium. In addition, we found a panglial passage of sodium signals from astrocytes to NG2 cells and oligodendrocytes, indicating functional coupling between these macroglial cells in white matter.

  18. White matter disease of the brain

    International Nuclear Information System (INIS)

    Melville, G.E.; Fernandez, R.E.; Kishore, P.R.S.; Lee, S.H.

    1987-01-01

    The white matter disorders that are discussed in this chapter are subdivided into those disorders within which there is breakdown of normal myelin, termed myelinoclastic, and those diseases involving either formation or maintenance of abnormal myeline, termed dysmyelinating. CT is a well-established technique for studying white matter disease. Magnetic resonance imaging (MRI) is a new noninvasive technique which has shown greater sensitivity to white matter abnormalities. However, because of the rarity of may white matter diseases coupled with limited availability of MR facilities, the MRI experience in evaluating these patients is not extensive yet. Some patients may not be suitable for MRI because of the longer period of patient immobility that is required to avoid motion artifacts

  19. Iron deposition in the precentral grey matter in patients with multiple sclerosis: A quantitative study using susceptibility-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rumzan, Reshiana, E-mail: minouchka_16@yahoo.com [Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016 (China); Wang, Jing-jie, E-mail: jingjiewang@126.com [Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016 (China); Zeng, Chun, E-mail: zengchun19840305@163.com [Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016 (China); Chen, Xuan, E-mail: martha860831@sina.com [Department of Imaging, The Second People' s Hospital of Sichuan, 55 Renmin South Road, Chengdu 610041 (China); Li, Yongmei, E-mail: lymzhang70@yahoo.com.cn [Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016 (China); Luo, Tianyou, E-mail: ltychy@sina.com [Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016 (China); Lv, Fajin, E-mail: fajinlv@hotmail.com [Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016 (China); Wang, Zhong-ping, E-mail: wzp20551015@126.com [Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016 (China); Hou, Huanxin, E-mail: newt948@foxmail.com [Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016 (China); Huang, Fuhong, E-mail: fuhonghuang@163.com [Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016 (China)

    2013-02-15

    Purpose: Several studies suggest that iron deposition may play a role in multiple sclerosis (MS) pathology. Three-dimensional (3D) enhanced T2*-weighted angiography (ESWAN) at 3T was used to quantify iron deposition in the precentral grey matter in MS and its relationship with disease duration, atrophy and Expanded Disability Status Scale (EDSS) scores. Methods: We recruited 33 patients with diagnosis of clinically definite MS and 31 age- and sex-matched healthy controls who underwent conventional brain MRI, 3D-ESWAN and 3D T1sequences. We obtained the mean phase values (MPVs) of the precentral grey matter on ESWAN-filtered phase images and volume of the precentral gyrus on 3D T1 images. We investigated the correlation between precentral grey matter MPVs, precentral gyrus volume, disease duration and EDSS scores of MS patients and healthy controls. Results: The precentral grey matter MPVs in MS patients and controls were 1870.83 ± 56.61 and 1899.22 ± 51.73 respectively and had significant difference in the MS group vs. the control group (t = −2.09, P = 0.04). There was significant negative correlation between precentral grey matter MPVs and disease duration (r = −0.365, P = 0.03). No correlation was found between MPVs and EDSS scores. Mean precentral gyrus volume in MS patients was 4368.55 ± 867.78 whereas in controls was 5701.00 ± 1184.03 with significant difference between volume of the precentral gyrus in MS patients compared to healthy controls (t = −5.167, P < 0.001). There was a positive correlation between MPVs and precentral gyrus volume (r = 0.291, P = 0.020). Conclusions: Our study demonstrated that quantitative assessment of abnormal iron deposition in the precentral grey matter in MS patients can be measured using 3D-ESWAN.

  20. Pain sensitivity is inversely related to regional grey matter density in the brain.

    Science.gov (United States)

    Emerson, Nichole M; Zeidan, Fadel; Lobanov, Oleg V; Hadsel, Morten S; Martucci, Katherine T; Quevedo, Alexandre S; Starr, Christopher J; Nahman-Averbuch, Hadas; Weissman-Fogel, Irit; Granovsky, Yelena; Yarnitsky, David; Coghill, Robert C

    2014-03-01

    Pain is a highly personal experience that varies substantially among individuals. In search of an anatomical correlate of pain sensitivity, we used voxel-based morphometry to investigate the relationship between grey matter density across the whole brain and interindividual differences in pain sensitivity in 116 healthy volunteers (62 women, 54 men). Structural magnetic resonance imaging (MRI) and psychophysical data from 10 previous functional MRI studies were used. Age, sex, unpleasantness ratings, scanner sequence, and sensory testing location were added to the model as covariates. Regression analysis of grey matter density across the whole brain and thermal pain intensity ratings at 49°C revealed a significant inverse relationship between pain sensitivity and grey matter density in bilateral regions of the posterior cingulate cortex, precuneus, intraparietal sulcus, and inferior parietal lobule. Unilateral regions of the left primary somatosensory cortex also exhibited this inverse relationship. No regions showed a positive relationship to pain sensitivity. These structural variations occurred in areas associated with the default mode network, attentional direction and shifting, as well as somatosensory processing. These findings underscore the potential importance of processes related to default mode thought and attention in shaping individual differences in pain sensitivity and indicate that pain sensitivity can potentially be predicted on the basis of brain structure. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  1. Extensive grey matter pathology in the cerebellum in multiple sclerosis is linked to inflammation in the subarachnoid space.

    Science.gov (United States)

    Howell, Owain W; Schulz-Trieglaff, Elena Katharina; Carassiti, Daniele; Gentleman, Steven M; Nicholas, Richard; Roncaroli, Federico; Reynolds, Richard

    2015-10-01

    Multiple sclerosis (MS) is a progressive inflammatory neurological disease affecting myelin, neurons and glia. Demyelination and neurodegeneration of cortical grey matter contribute to a more severe disease, and inflammation of the forebrain meninges associates with pathology of the underlying neocortical grey matter, particularly in deep sulci. We assessed the extent of meningeal inflammation of the cerebellum, another structure with a deeply folded anatomy, to better understand the association between subarachnoid inflammation and grey matter pathology in progressive MS. We examined demyelinating and neuronal pathology in the context of meningeal inflammation in cerebellar tissue blocks from a cohort of 27 progressive MS cases previously characterized on the basis of the absence/presence of lymphoid-like aggregates in the forebrain meninges, in comparison with 11 non-neurological controls. Demyelination and meningeal inflammation of the cerebellum was greatest in those cases previously characterized as harbouring lymphoid-like structures in the forebrain regions. Meningeal inflammation was mild to moderate in cerebellar tissue blocks, and no lymphoid-like structures were seen. Quantification of meningeal macrophages, CD4+, CD8+ T lymphocytes, B cells and plasma cells revealed that the density of meningeal macrophages associated with microglial activation in the grey matter, and the extent of grey matter demyelination correlated with the density of macrophages and plasma cells in the overlying meninges, and activated microglia of the parenchyma. These data suggest that chronic inflammation is widespread throughout the subarachnoid space and contributes to a more severe subpial demyelinating pathology in the cerebellum. © 2014 British Neuropathological Society.

  2. Natural variation in sensory-motor white matter organization influences manifestations of Huntington's disease.

    Science.gov (United States)

    Orth, Michael; Gregory, Sarah; Scahill, Rachael I; Mayer, Isabella Sm; Minkova, Lora; Klöppel, Stefan; Seunarine, Kiran K; Boyd, Lara; Borowsky, Beth; Reilmann, Ralf; Bernhard Landwehrmeyer, G; Leavitt, Blair R; Roos, Raymund Ac; Durr, Alexandra; Rees, Geraint; Rothwell, John C; Langbehn, Douglas; Tabrizi, Sarah J

    2016-12-01

    While the HTT CAG-repeat expansion mutation causing Huntington's disease (HD) is highly correlated with the rate of pathogenesis leading to disease onset, considerable variance in age-at-onset remains unexplained. Therefore, other factors must influence the pathogenic process. We asked whether these factors were related to natural biological variation in the sensory-motor system. In 243 participants (96 premanifest and 35 manifest HD; 112 controls), sensory-motor structural MRI, tractography, resting-state fMRI, electrophysiology (including SEP amplitudes), motor score ratings, and grip force as sensory-motor performance were measured. Following individual modality analyses, we used principal component analysis (PCA) to identify patterns associated with sensory-motor performance, and manifest versus premanifest HD discrimination. We did not detect longitudinal differences over 12 months. PCA showed a pattern of loss of caudate, grey and white matter volume, cortical thickness in premotor and sensory cortex, and disturbed diffusivity in sensory-motor white matter tracts that was connected to CAG repeat length. Two further major principal components appeared in controls and HD individuals indicating that they represent natural biological variation unconnected to the HD mutation. One of these components did not influence HD while the other non-CAG-driven component of axial versus radial diffusivity contrast in white matter tracts were associated with sensory-motor performance and manifest HD. The first component reflects the expected CAG expansion effects on HD pathogenesis. One non-CAG-driven component reveals an independent influence on pathogenesis of biological variation in white matter tracts and merits further investigation to delineate the underlying mechanism and the potential it offers for disease modification. Hum Brain Mapp 37:4615-4628, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Diffuse periventricular leukomalacia in preterm children: assessment of grey matter changes by MRI

    International Nuclear Information System (INIS)

    Tzarouchi, L.C.; Xydis, V.; Zikou, A.K.; Papastefanaki, M.; Argyropoulou, Maria I.; Drougia, A.; Andronikou, S.; Astrakas, L.G.

    2011-01-01

    Preterm children may have cognitive deficits and behavioural disorders suggestive of grey matter (GM) injury. The prevalence is higher in preterm children with diffuse periventricular leukomalacia (dPVL). Evaluate changes in the volume of 116 GM areas in preterm children with dPVL. Eleven preterm children with dPVL, gestational age 32.8 ± 2.6 weeks, examined at corrected age 22.0 ± 18.2 months and 33 matched preterm controls with normal brain MRI were studied. Volumes of 116 individual GM areas, and white matter/cerebrospinal fluid (WM/CSF) ratio were calculated on T1-weighted high-resolution images after segmentation. Relative to controls, children with dPVL had decreased GM volume of the hippocampus, amygdala, and frontal lobes and temporal middle gyrus (P < 0.05); increased GM volume of the putamen, thalamus, globus pallidum, superior temporal gyrus and of the parietal and occipital lobes (P < 0.05) and lower WM volume/higher CSF volume (P < 0.05). WM/CSF ratios also differed (P < 0.05). Preterm children with dPVL have increased regional GM volume in some areas probably related with a process of brain plasticity-regeneration and reduced GM volume in areas associated with cognition and memory. (orig.)

  4. Diffuse periventricular leukomalacia in preterm children: assessment of grey matter changes by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Tzarouchi, L.C.; Xydis, V.; Zikou, A.K.; Papastefanaki, M.; Argyropoulou, Maria I. [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece); Drougia, A.; Andronikou, S. [University of Ioannina, Neonatal Intensive Care Unit, Child Health Department, Medical School, Ioannina (Greece); Astrakas, L.G. [University of Ioannina, Department of Medical Physics, Medical School, Ioannina (Greece)

    2011-12-15

    Preterm children may have cognitive deficits and behavioural disorders suggestive of grey matter (GM) injury. The prevalence is higher in preterm children with diffuse periventricular leukomalacia (dPVL). Evaluate changes in the volume of 116 GM areas in preterm children with dPVL. Eleven preterm children with dPVL, gestational age 32.8 {+-} 2.6 weeks, examined at corrected age 22.0 {+-} 18.2 months and 33 matched preterm controls with normal brain MRI were studied. Volumes of 116 individual GM areas, and white matter/cerebrospinal fluid (WM/CSF) ratio were calculated on T1-weighted high-resolution images after segmentation. Relative to controls, children with dPVL had decreased GM volume of the hippocampus, amygdala, and frontal lobes and temporal middle gyrus (P < 0.05); increased GM volume of the putamen, thalamus, globus pallidum, superior temporal gyrus and of the parietal and occipital lobes (P < 0.05) and lower WM volume/higher CSF volume (P < 0.05). WM/CSF ratios also differed (P < 0.05). Preterm children with dPVL have increased regional GM volume in some areas probably related with a process of brain plasticity-regeneration and reduced GM volume in areas associated with cognition and memory. (orig.)

  5. Neurotransmitter signaling in white matter.

    Science.gov (United States)

    Butt, Arthur M; Fern, Robert F; Matute, Carlos

    2014-11-01

    White matter (WM) tracts are bundles of myelinated axons that provide for rapid communication throughout the CNS and integration in grey matter (GM). The main cells in myelinated tracts are oligodendrocytes and astrocytes, with small populations of microglia and oligodendrocyte precursor cells. The prominence of neurotransmitter signaling in WM, which largely exclude neuronal cell bodies, indicates it must have physiological functions other than neuron-to-neuron communication. A surprising aspect is the diversity of neurotransmitter signaling in WM, with evidence for glutamatergic, purinergic (ATP and adenosine), GABAergic, glycinergic, adrenergic, cholinergic, dopaminergic and serotonergic signaling, acting via a wide range of ionotropic and metabotropic receptors. Both axons and glia are potential sources of neurotransmitters and may express the respective receptors. The physiological functions of neurotransmitter signaling in WM are subject to debate, but glutamate and ATP-mediated signaling have been shown to evoke Ca(2+) signals in glia and modulate axonal conduction. Experimental findings support a model of neurotransmitters being released from axons during action potential propagation acting on glial receptors to regulate the homeostatic functions of astrocytes and myelination by oligodendrocytes. Astrocytes also release neurotransmitters, which act on axonal receptors to strengthen action potential propagation, maintaining signaling along potentially long axon tracts. The co-existence of multiple neurotransmitters in WM tracts suggests they may have diverse functions that are important for information processing. Furthermore, the neurotransmitter signaling phenomena described in WM most likely apply to myelinated axons of the cerebral cortex and GM areas, where they are doubtless important for higher cognitive function. © 2014 Wiley Periodicals, Inc.

  6. White-matter microstructure and hearing acuity in older adults: a population-based cross-sectional DTI study.

    Science.gov (United States)

    Rigters, Stephanie C; Cremers, Lotte G M; Ikram, M Arfan; van der Schroeff, Marc P; de Groot, Marius; Roshchupkin, Gennady V; Niessen, Wiro J N; Baatenburg de Jong, Robert J; Goedegebure, André; Vernooij, Meike W

    2018-01-01

    To study the relation between the microstructure of white matter in the brain and hearing function in older adults we carried out a population-based, cross-sectional study. In 2562 participants of the Rotterdam Study, we conducted diffusion tensor imaging to determine the microstructure of the white-matter tracts. We performed pure-tone audiogram and digit-in-noise tests to quantify hearing acuity. Poorer white-matter microstructure, especially in the association tracts, was related to poorer hearing acuity. After differentiating the separate white-matter tracts in the left and right hemisphere, poorer white-matter microstructure in the right superior longitudinal fasciculus and the right uncinate fasciculus remained significantly associated with worse hearing. These associations did not significantly differ between middle-aged (51-69 years old) and older (70-100 years old) participants. Progressing age was thus not found to be an effect modifier. In a voxel-based analysis no voxels in the white matter were significantly associated with hearing impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Lower grey matter density and functional connectivity in the anterior insula in smokers compared to never-smokers

    Science.gov (United States)

    Stoeckel, Luke E.; Chai, Xiaoqian J.; Zhang, Jiahe; Whitfield-Gabrieli, Susan; Evins, A. Eden

    2015-01-01

    Rationale While nicotine addiction is characterized by both structural and functional abnormalities in brain networks involved in salience and cognitive control, few studies have integrated these data to understand how these abnormalities may support addiction. Objectives (1) To evaluate grey matter density and functional connectivity of the anterior insula in cigarette smokers and never-smokers and (2) characterize how differences in these measures related to smoking behavior. Methods We compared structural MRI (grey matter density via voxel-based morphometry) and seed-based functional connectivity MRI data in 16 minimally deprived smokers and 16 matched never-smokers. Results Compared to controls, smokers had lower grey matter density in left anterior insula extending into inferior frontal and temporal cortex. Grey matter density in this region was inversely correlated with cigarettes smoked per day. Smokers exhibited negative functional connectivity (anti-correlation) between the anterior insula and regions involved in cognitive control (left lateral prefrontal cortex) and semantic processing / emotion regulation (lateral temporal cortex), whereas controls exhibited positive connectivity between these regions. Conclusions There were differences in the anterior insula, a central region in the brain’s salience network, when comparing both volumetric and functional connectivity data between cigarette smokers and never smokers. Volumetric data, but not the functional connectivity data, was also associated with an aspect of smoking behavior (daily cigarettes smoked). PMID:25990865

  8. Atrophy of spared grey matter tissue predicts poorer motor recovery and rehabilitation response in chronic stroke

    Science.gov (United States)

    Gauthier, Lynne V.; Taub, Edward; Mark, Victor W.; Barghi, Ameen; Uswatte, Gitendra

    2011-01-01

    Background and Purpose Although the motor deficit following stroke is clearly due to the structural brain damage that has been sustained, this relationship is attenuated from the acute to chronic phases. We investigated the possibility that motor impairment and response to Constraint-Induced Movement therapy (CI therapy) in chronic stroke patients may relate more strongly to the structural integrity of brain structures remote from the lesion than to measures of overt tissue damage. Methods Voxel-based morphometry (VBM) analysis was performed on MRI scans from 80 chronic stroke patients to investigate whether variations in grey matter density were correlated with extent of residual motor impairment or with CI therapy-induced motor recovery. Results Decreased grey matter density in non-infarcted motor regions was significantly correlated with magnitude of residual motor deficit. In addition, reduced grey matter density in multiple remote brain regions predicted a lesser extent of motor improvement from CI therapy. Conclusions Atrophy in seemingly healthy parts of the brain that are distant from the infarct accounts for at least a portion of the sustained motor deficit in chronic stroke. PMID:22096036

  9. Spaceflight Effect on White Matter Structural Integrity

    Science.gov (United States)

    Lee, Jessica K.; Kopplemans, Vincent; Paternack, Ofer; Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Seidler, Rachael D.

    2017-01-01

    Recent reports of elevated brain white matter hyperintensity (WMH) counts and volume in postflight astronaut MRIs suggest that further examination of spaceflight's impact on the microstructure of brain white matter is warranted. To this end, retrospective longitudinal diffusion-weighted MRI scans obtained from 15 astronauts were evaluated. In light of the recent reports of microgravity-induced cephalad fluid shift and gray matter atrophy seen in astronauts, we applied a technique to estimate diffusion tensor imaging (DTI) metrics corrected for free water contamination. This approach enabled the analysis of white matter tissue-specific alterations that are unrelated to fluid shifts, occurring from before spaceflight to after landing. After spaceflight, decreased fractional anisotropy (FA) values were detected in an area encompassing the superior and inferior longitudinal fasciculi and the inferior fronto-occipital fasciculus. Increased radial diffusivity (RD) and decreased axial diffusivity (AD) were also detected within overlapping regions. In addition, FA values in the corticospinal tract decreased and RD measures in the precentral gyrus white matter increased from before to after flight. The results show disrupted structural connectivity of white matter in tracts involved in visuospatial processing, vestibular function, and movement control as a result of spaceflight. The findings may help us understand the structural underpinnings of the extensive spaceflight-induced sensorimotor remodeling. Prospective longitudinal assessment of the white matter integrity in astronauts is needed to characterize the evolution of white matter microstructural changes associated with spaceflight, their behavioral consequences, and the time course of recovery. Supported by a grant from the National Space Biomedical Research Institute, NASA NCC 9-58.

  10. White matter abnormalities in tuberous sclerosis complex

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, P.D. [Sheffield Univ. (United Kingdom). Academic Dept. of Radiology; Bolton, P. [Cambridge Univ. (United Kingdom). Section of Developmental Psychiatry; Verity, C. [Addenbrooke`s NHS Trust, Cambridge (United Kingdom). Dept. of Paediatric Radiology

    1998-09-01

    The aim of this study was to investigate and describe the range of white matter abnormalities in children with tuberous sclerosis complex by means of MR imaging. Material and Methods: A retrospective cross-sectional study was performed on the basis of MR imaging findings in 20 cases of tuberous sclerosis complex in children aged 17 years or younger. Results: White matter abnormalities were present in 19/20 (95%) cases of tuberous sclerosis complex. These were most frequently (19/20 cases) found in relation to cortical tubers in the supratentorial compartment. White matter abnormalities related to tubers were found in the cerebellum in 3/20 (15%) cases. White matter abnormalities described as radial migration lines were found in relation to 5 tubers in 3 (15%) children. In 4/20 (20%) cases, white matter abnormalities were found that were not related to cortical tubers. These areas had the appearance of white matter cysts in 3 cases and infarction in the fourth. In the latter case there was a definable event in the clinical history, supporting the diagnosis of stroke. Conclusion: A range of white matter abnormalities were found by MR imaging in tuberous sclerosis complex, the commonest being gliosis and hypomyelination related to cortical tubers. Radial migration lines were seen infrequently in relation to cortical tubers and these are thought to represent heterotopic glia and neurons along the expected path of cortical migration. (orig.)

  11. Partial volume effect-corrected FDG PET and grey matter volume loss in patients with mild Alzheimer's disease

    International Nuclear Information System (INIS)

    Samuraki, Miharu; Yanase, Daisuke; Yamada, Masahito; Matsunari, Ichiro; Chen, Wei-Ping; Yajima, Kazuyoshi; Fujikawa, Akihiko; Takeda, Nozomi; Nishimura, Shintaro; Matsuda, Hiroshi

    2007-01-01

    Although 18 F-fluorodeoxyglucose (FDG) PET is an established imaging technique to assess brain glucose utilisation, accurate measurement of tracer concentration is confounded by the presence of partial volume effect (PVE) due to the limited spatial resolution of PET, which is particularly true in atrophic brains such as those encountered in patients with Alzheimer's disease (AD). Our aim was to investigate the effects of PVE correction on FDG PET in conjunction with voxel-based morphometry (VBM) in patients with mild AD. Thirty-nine AD patients and 73 controls underwent FDG PET and MRI. The PVE-corrected grey matter PET images were obtained using an MRI-based three-compartment method. Additionally, the results of PET were compared with grey matter loss detected by VBM. Before PVE correction, reduced FDG uptake was observed in posterior cingulate gyri (PCG) and parieto-temporal lobes (PTL) in AD patients, which persisted after PVE correction. Notably, PVE correction revealed relatively preserved FDG uptake in hippocampal areas, despite the grey matter loss in medial temporal lobe (MTL) revealed by VBM. FDG uptake in PCG and PTL is reduced in AD regardless of whether or not PVE correction is applied, supporting the notion that the reduced FDG uptake in these areas is not the result of atrophy. Furthermore, FDG uptake by grey matter tissue in the MTL, including hippocampal areas, is relatively preserved, suggesting that compensatory mechanisms may play a role in patients with mild AD. (orig.)

  12. A prospective study of grey matter and cognitive function alterations in chemotherapy-treated breast cancer patients.

    Science.gov (United States)

    Lepage, Chris; Smith, Andra M; Moreau, Jeremy; Barlow-Krelina, Emily; Wallis, Nancy; Collins, Barbara; MacKenzie, Joyce; Scherling, Carole

    2014-01-01

    Subsequent to chemotherapy treatment, breast cancer patients often report a decline in cognitive functioning that can adversely impact many aspects of their lives. Evidence has mounted in recent years indicating that a portion of breast cancer survivors who have undergone chemotherapy display reduced performance on objective measures of cognitive functioning relative to comparison groups. Neurophysiological support for chemotherapy-related cognitive impairment has been accumulating due to an increase in neuroimaging studies in this field; however, longitudinal studies are limited and have not examined the relationship between structural grey matter alterations and neuropsychological performance. The aim of this study was to extend the cancer-cognition literature by investigating the association between grey matter attenuation and objectively measured cognitive functioning in chemotherapy-treated breast cancer patients. Female breast cancer patients (n = 19) underwent magnetic resonance imaging after surgery but before commencing chemotherapy, one month following treatment, and one year after treatment completion. Individually matched controls (n = 19) underwent imaging at similar intervals. All participants underwent a comprehensive neuropsychological battery comprising four cognitive domains at these same time points. Longitudinal grey matter changes were investigated using voxel-based morphometry. One month following chemotherapy, patients had distributed grey matter volume reductions. One year after treatment, a partial recovery was observed with alterations persisting predominantly in frontal and temporal regions. This course was not observed in the healthy comparison group. Processing speed followed a similar trajectory within the patient group, with poorest scores obtained one month following treatment and some improvement evident one year post-treatment. This study provides further credence to patient claims of altered cognitive functioning

  13. Major Superficial White Matter Abnormalities in Huntington's Disease

    Science.gov (United States)

    Phillips, Owen R.; Joshi, Shantanu H.; Squitieri, Ferdinando; Sanchez-Castaneda, Cristina; Narr, Katherine; Shattuck, David W.; Caltagirone, Carlo; Sabatini, Umberto; Di Paola, Margherita

    2016-01-01

    Background: The late myelinating superficial white matter at the juncture of the cortical gray and white matter comprising the intracortical myelin and short-range association fibers has not received attention in Huntington's disease. It is an area of the brain that is late myelinating and is sensitive to both normal aging and neurodegenerative disease effects. Therefore, it may be sensitive to Huntington's disease processes. Methods: Structural MRI data from 25 Pre-symptomatic subjects, 24 Huntington's disease patients and 49 healthy controls was run through a cortical pattern-matching program. The surface corresponding to the white matter directly below the cortical gray matter was then extracted. Individual subject's Diffusion Tensor Imaging (DTI) data was aligned to their structural MRI data. Diffusivity values along the white matter surface were then sampled at each vertex point. DTI measures with high spatial resolution across the superficial white matter surface were then analyzed with the General Linear Model to test for the effects of disease. Results: There was an overall increase in the axial and radial diffusivity across much of the superficial white matter (p < 0.001) in Pre-symptomatic subjects compared to controls. In Huntington's disease patients increased diffusivity covered essentially the whole brain (p < 0.001). Changes are correlated with genotype (CAG repeat number) and disease burden (p < 0.001). Conclusions: This study showed broad abnormalities in superficial white matter even before symptoms are present in Huntington's disease. Since, the superficial white matter has a unique microstructure and function these abnormalities suggest it plays an important role in the disease. PMID:27242403

  14. Altered grey matter volume and cortical thickness in patients with schizo-obsessive comorbidity

    DEFF Research Database (Denmark)

    Wang, Yong-Ming; Zou, Lai-Quan; Xie, Wen-Lan

    2018-01-01

    Recent findings suggest that schizo-obsessive comorbidity (SOC) may be a unique diagnostic entity. We examined grey matter (GM) volume and cortical thickness in 22 patients with SOC, and compared them with 21 schizophrenia (SCZ) patients, 22 obsessive-compulsive disorder (OCD) patients and 22...

  15. White matter cysts in patients with tuberous sclerosis

    International Nuclear Information System (INIS)

    Marti-Bonmati, L.; Dosda, R.; Menor, F.; Arana, E.; Poyatos, C.

    1999-01-01

    The presence of cysts in the white matter of the central nervous system of patients with tuberous sclerosis (TS) is an uncommon finding that has been reported only recently in neuroimaging studies. This article assesses the prevalence of these lesions in a large series of patients studied by magnetic resonance imaging (MRI) and their relationship to other epidemiological and imaging findings. MRI studies were performed in 46 patients (23 males and 23 females) with a mean age of 12.7 years, and the results were examined retrospectively in the search for cortical tubers, subependymal nodules and white matter nodules, lines and cysts. Nine patients (19.6%) presented cysts in white matter. Seven had only one cyst and the remaining two patients each had two. Multiple regression analysis relating the presence of the cysts with other neuroimaging findings in these patients revealed a statistically significant relationship only with white matter nodules (odds ratio: 7.5; p=0.006). White matter cysts are small, supratentorial lesions of deep location. There is a statistically relationship between the presence of these cysts and that of nodular lesions in the white matter. This finding supports the theory that the cyst originate from white matter nodules. (Author) 17 refs

  16. Increased cortical and deep grey matter sodium concentration is associated with physical and cognitive disability in relapse-onset multiple sclerosis

    DEFF Research Database (Denmark)

    Brownlee, WJ; Alves Da Mota, Patricia; Prados, Ferran

    digit modalities test (SDMT) and tests of verbal and visual memory. Linear regression was used to compare differences in tissue TSC between groups. Multivariable linear regression was used to identify independent associations between TSC and disability with adjustment for age, sex, disease duration......=0.40) and visual memory (β=-0.06, 95%CI -0.11, -.0.02, R2=0.19). Conclusion: Sodium accumulation in cortical and deep grey matter may reflect underlying neurodegeneration that is relevant to the development of long-term disability and cognitive impairment in relapse-onset MS. 23Na-MRI may become a secondary......-appearing white matter (NAWM), T1-isointense and T1-hypointense lesions was calculated. Physical disability was assessed using the Expanded Disability Status Scale (EDSS), timed 25-foot walk test (TWT) and 9-hole peg test (9HPT). Cognition was assessed using the paced auditory serial addition test (PASAT), symbol...

  17. White matter hyperintensities and normal-appearing white matter integrity in the aging brain.

    Science.gov (United States)

    Maniega, Susana Muñoz; Valdés Hernández, Maria C; Clayden, Jonathan D; Royle, Natalie A; Murray, Catherine; Morris, Zoe; Aribisala, Benjamin S; Gow, Alan J; Starr, John M; Bastin, Mark E; Deary, Ian J; Wardlaw, Joanna M

    2015-02-01

    White matter hyperintensities (WMH) of presumed vascular origin are a common finding in brain magnetic resonance imaging of older individuals and contribute to cognitive and functional decline. It is unknown how WMH form, although white matter degeneration is characterized pathologically by demyelination, axonal loss, and rarefaction, often attributed to ischemia. Changes within normal-appearing white matter (NAWM) in subjects with WMH have also been reported but have not yet been fully characterized. Here, we describe the in vivo imaging signatures of both NAWM and WMH in a large group of community-dwelling older people of similar age using biomarkers derived from magnetic resonance imaging that collectively reflect white matter integrity, myelination, and brain water content. Fractional anisotropy (FA) and magnetization transfer ratio (MTR) were significantly lower, whereas mean diffusivity (MD) and longitudinal relaxation time (T1) were significantly higher, in WMH than NAWM (p curve, 0.982; 95% CI, 0.975-0.989). Furthermore, the level of deterioration of NAWM was strongly associated with the severity of WMH, with MD and T1 increasing and FA and MTR decreasing in NAWM with increasing WMH score, a relationship that was sustained regardless of distance from the WMH. These multimodal imaging data indicate that WMH have reduced structural integrity compared with surrounding NAWM, and MD provides the best discriminator between the 2 tissue classes even within the mild range of WMH severity, whereas FA, MTR, and T1 only start reflecting significant changes in tissue microstructure as WMH become more severe. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Evidence for Functional Networks within the Human Brain's White Matter.

    Science.gov (United States)

    Peer, Michael; Nitzan, Mor; Bick, Atira S; Levin, Netta; Arzy, Shahar

    2017-07-05

    Investigation of the functional macro-scale organization of the human cortex is fundamental in modern neuroscience. Although numerous studies have identified networks of interacting functional modules in the gray-matter, limited research was directed to the functional organization of the white-matter. Recent studies have demonstrated that the white-matter exhibits blood oxygen level-dependent signal fluctuations similar to those of the gray-matter. Here we used these signal fluctuations to investigate whether the white-matter is organized as functional networks by applying a clustering analysis on resting-state functional MRI (RSfMRI) data from white-matter voxels, in 176 subjects (of both sexes). This analysis indicated the existence of 12 symmetrical white-matter functional networks, corresponding to combinations of white-matter tracts identified by diffusion tensor imaging. Six of the networks included interhemispheric commissural bridges traversing the corpus callosum. Signals in white-matter networks correlated with signals from functional gray-matter networks, providing missing knowledge on how these distributed networks communicate across large distances. These findings were replicated in an independent subject group and were corroborated by seed-based analysis in small groups and individual subjects. The identified white-matter functional atlases and analysis codes are available at http://mind.huji.ac.il/white-matter.aspx Our results demonstrate that the white-matter manifests an intrinsic functional organization as interacting networks of functional modules, similarly to the gray-matter, which can be investigated using RSfMRI. The discovery of functional networks within the white-matter may open new avenues of research in cognitive neuroscience and clinical neuropsychiatry. SIGNIFICANCE STATEMENT In recent years, functional MRI (fMRI) has revolutionized all fields of neuroscience, enabling identifications of functional modules and networks in the human

  19. Atrophy of gray and white matters in the brain during aging

    International Nuclear Information System (INIS)

    Takeda, Shumpei; Matsuzawa, Taiju; Ito, Hisao.

    1984-01-01

    We studied atrophy of gray and white matter during aging in 57 males and 44 females with no neurological disturbances using x-ray computed tomography. The ages ranged from 12 to 80 years. Brain atrophy was expressed as brain volume index: 100% x [(brain volume/cranial cavity volume) in individual subjects]/[(brain volume/cranial cavity volume) in normal subjects of 20-39 years]. Atrophy of gray and white matter volume was expressed as gray and white matter volume indices: 100% x (apparent gray or white matter volume index in individual subjects)/(apparent gray or white matter volume index in normal subjects whose brain volume index was greater than 98%), where apparent gray and white matter volume indices were expressed as 100% x [(gray or white matter volume/cranial cavity volume) in individual subjects]/[(gray or white matter volume/cranial cavity volume) in normal subjects of 20-39 years]. Both the gray and white matter volume indices changed proportionally to the brain volume index (p<0.001). As the brain atrophy advanced, the gray matter volume index decreased more than the white matter volume index (P<0.001). Decrease in the gray and white matter volume indices was statistically significant only in seventies (P<0.002 for gray matter, P<0.05 for white matter). (author)

  20. Heterogeneity in age-related white matter changes

    NARCIS (Netherlands)

    Schmidt, R.; Schmidt, H.; Haybaeck, J.; Loitfelder, M.; Weis, S.; Cavalieri, M.; Seiler, S.; Enzinger, C.; Ropele, S.; Erkinjuntti, T.; Pantoni, L.; Scheltens, P.; Fazekas, F.; Jellinger, K.

    2011-01-01

    White matter changes occur endemically in routine magnetic resonance imaging (MRI) scans of elderly persons. MRI appearance and histopathological correlates of white matter changes are heterogeneous. Smooth periventricular hyperintensities, including caps around the ventricular horns,

  1. White versus gray matter function as seen on neuropsychological testing following bone marrow transplant for acute leukemia in childhood

    Directory of Open Access Journals (Sweden)

    Fiona S Anderson

    2008-03-01

    Full Text Available Fiona S Anderson1, Alicia S Kunin-Batson1, Joanna L Perkins2, K Scott Baker31Divisions of Pediatric Clinical Neuroscience; 2Department of Pediatric Hematology/Oncology, Children’s Hospitals and Clinics, Minneapolis, MN, USA and 3Hematology/Oncology/BMT, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USAAbstract: Current theory suggests that neurocognitive late effects of treatments for childhood cancer such as difficulties with attention, processing speed and visual-motor ability are the result of white matter damage. Neuroimaging studies have produced a variety of white matter findings. However, although white matter is thought to be differentially affected, previous studies have not demonstrated a discrepancy between white and gray matter function. The present study included 36 children treated for childhood leukemia with hematopoietic stem cell transplant (HCT. Their performance on neurocognitive measures traditionally thought to measure white matter was compared to performance on measures thought to measure gray matter function. Composite white and gray matter standard scores were created based on neuropsychological measures that individuals with known white or gray matter damage perform poorly. As predicted, composite white matter scores (mean = 98.1 were significantly lower (t = 2.26, p = 0.03 than composite gray matter scores (mean = 102.5. Additionally, as gray matter performance increased, the difference between gray and white matter scores increased (R = 0.353, p = 0.035. Overall, the results of this study support the current theory that white matter damage is responsible for the more subtle neurocognitive late effects resulting from treatment for childhood leukemia.Keywords: late effects of cancer treatment, leukemia, neuropsychology, white matter, brain function

  2. Quantification of diffusion tensor imaging in normal white matter maturation of early childhood using an automated processing pipeline.

    Science.gov (United States)

    Loh, K B; Ramli, N; Tan, L K; Roziah, M; Rahmat, K; Ariffin, H

    2012-07-01

    The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas. Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction. DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued. DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data. Diffusion tensor imaging outperforms conventional MRI in depicting white matter maturation. • DTI will become an important clinical tool for diagnosing paediatric neurological diseases. • DTI appears especially helpful for developmental abnormalities, tumours and white matter disease. • An automated processing pipeline assists quantitative analysis of high throughput DTI data.

  3. Normal frontal lobe gray matter-white matter CT volume ratio in children

    International Nuclear Information System (INIS)

    Thompson, J.R.; Engelhart, J.; Hasso, A.N.; Hinshaw, D.B. Jr.

    1985-01-01

    We attempted to establish a computed tomographic value representing the normal volume ratio of gray matter to white matter (G/W) in children in order to have a baseline for studying various developmental disorders such as white matter hypoplasia. The records of 150 children 16 years of age or younger who had normal cranial computed tomography were reviewed. From these a group of 119 were excluded for various reasons. The remaining 3 were presumed to have normal brains. Using the region of interest function for tracing gray and white matter boundaries, superior and ventral to the foramen of Munro area, measurements were determined for consecutive adjacent frontal slices. Volumes were then calculated for both gray and white matter. A volume ratio of 2.010 (sigma=0.349), G/W, was then derived from each of 31 children. The clinical value of this ratio will be determined by future investigation. (orig.)

  4. Assessing the correlation between grey and white matter damage with motor and cognitive impairment in multiple sclerosis patients.

    Directory of Open Access Journals (Sweden)

    Emilia Sbardella

    Full Text Available BACKGROUND: Multiple sclerosis (MS is characterized by demyelinating and degenerative processes within the central nervous system. Unlike conventional MRI,new advanced imaging techniques improve pathological specificity and better highlight the relationship between anatomical damage and clinical impairment. OBJECTIVE: To investigate the relationship between clinical disability and both grey (GM and white matter (WM regional damage in MS patients. METHODS: Thirty-six relapsing remitting-MS patients and 25 sex- and age-matched controls were enrolled. All patients were clinically evaluated by the Expanded Disability Status Scale and the Multiple Sclerosis Functional Composite (MSFC scale, which includes the 9-hole peg test (9HPT, the timed 25-feet walking test (T25FW and the paced auditory serial addition test (PASAT. All subjects were imaged by a 3.0 T scanner: dual-echo fast spin-echo, 3DT1-weighted and diffusion-tensor imaging (DTI sequences were acquired. Voxel-based morphometry (VBM and tract-based spatial statistics (TBSS analyses were run for regional GM and WM assessment, respectively. T2 lesion volumes were also calculated, by using a semi-automated technique. RESULTS: Brain volumetric assessment of GM and DTI measures revealed significant differences between patients and controls. In patients, different measures of WM damage correlated each-other (p<0.0001, whereas none of them correlated with GM volume. In patients, focal GM atrophy and widespread WM damage significantly correlated with clinical measures. In particular, VBM analysis revealed a significant correlation (p<0.05 between GM volume and 9HPT in cerebellum and between GM volume and PASAT in orbito-frontal cortex. TBSS showed significant correlations between DTI metrics with 9HPT and PASAT scores in many WM bundles (p<0.05, including corpus callosum, internal capsule, posterior thalamic radiations, cerebral peduncles. CONCLUSIONS: Selective GM atrophy and widespread WM tracts

  5. VBM with viscous fluid registration of grey matter segments in SPM.

    Directory of Open Access Journals (Sweden)

    João M. S. Pereira

    2013-07-01

    Full Text Available Improved registration of grey matter segments in SPM has been achieved with the DARTEL algorithm. Previous work from our group suggested, however, that such improvements may not translate to studies of clinical groups. To address the registration issue in atrophic brains, this paper relaxed the condition of diffeomorphism, central to DARTEL, and made use of a viscous fluid registration model with limited regularisation constraints to register the modulated grey matter probability maps to an intra-population template. Quantitative analysis of the registration results after the additional viscous fluid step showed no worsening of co-localisation of fiducials compared to DARTEL or unified segmentation methods, and the resulting voxel based morphometry (VBM analyses were able to better identify atrophic regions and to produce results with fewer apparent false positives. DARTEL showed great sensitivity to atrophy, but the resulting VBM maps presented broad, amorphous regions of significance that are hard to interpret. We propose that the condition of diffeomorphism is not necessary for basic VBM studies in atrophic populations, but also that it has disadvantages that must be taken into consideration before a study. The presented viscous fluid registration method is proposed for VBM studies to enhance sensitivity and localizing power.

  6. White matter alterations in neurodegenerative and vascular dementia; Marklagerveraenderungen bei neurodegenerativen und vaskulaeren Demenzerkrankungen

    Energy Technology Data Exchange (ETDEWEB)

    Supprian, T. [Arbeitsgruppe Gerontopsychiatrie, Universitaets-Nervenklinik Homburg (Germany); Arbeitsgruppe Gerontopsychiatrie, Universitaets-Nervenklinik, Psychiatrie und Psychotherapie, 66421, Homburg (Germany); Kessler, H.; Falkai, P. [Arbeitsgruppe Gerontopsychiatrie, Universitaets-Nervenklinik Homburg (Germany); Retz, W.; Roesler, M. [Arbeitsgruppe Gerontopsychiatrie, Universitaets-Nervenklinik Homburg (Germany); Institut fuer gerichtliche Psychologie und Psychiatrie, Universitaet des Saarlandes, Homburg (Germany); Grunwald, I.; Reith, W. [Abteilung fuer Neuroradiologie, Universitaetskliniken des Saarlandes, Homburg (Germany)

    2003-07-01

    Due to a significant overlap of the two syndromes, differentiation of degenerative dementia of the Alzheimer-type from vascular dementia may be difficult even when imaging studies are available. White matter changes occur in many patients suffering from Alzheimer's disease. Little is known about the impact of white matter changes on the course and clinical presentation of Alzheimer's disease. High sensitivity of MRI in the detection of white matter alterations may account for over-diagnosing vascular dementia. The clinical significance of white matter alterations in dementia is still a matter of debate. The article reviews current concepts about the role of white matter alterations in dementia. (orig.) [German] Die Zuordnung einer Demenzerkrankung zu einem neurodegenerativen Pathomechanismus, wie der Demenz vom Alzheimer-Typ (DAT) oder einem vaskulaeren Pathomechanismus, kann trotz der Verfuegbarkeit bildgebender Verfahren Probleme bereiten. Ueberlappungen neurodegenerativer und vaskulaerer Mechanismen sind haeufig. Mikroangiopathische Veraenderungen des Marklagers finden sich bei einem hohen Anteil von Patienten mit der klinischen Verlaufsform einer Demenz vom Alzheimer-Typ. Es ist unklar, ob es sich um eine Koinzidenz zweier Pathomechanismen handelt oder ob eine wechselseitige Beeinflussung stattfindet. Die hohe Sensitivitaet der Magnetresonanztomographie bei der Erfassung mikroangiopathischer Veraenderungen des Marklagers koennte dazu fuehren, dass zu vaskulaere Demenzerkrankungen haeufig diagnostiziert werden. Der Einfluss mikroangiopathischer Veraenderungen des Marklagers auf den Demenzverlauf wird kontrovers diskutiert. Die vorgelegte Arbeit gibt eine Uebersicht ueber die aktuellen Konzepte zum Stellenwert von Marklagerveraenderungen bei Demenzerkrankungen. (orig.)

  7. White matter microstructure alterations: a study of alcoholics with and without post-traumatic stress disorder.

    Directory of Open Access Journals (Sweden)

    Caitlin A Durkee

    Full Text Available Many brain imaging studies have demonstrated reductions in gray and white matter volumes in alcoholism, with fewer investigators using diffusion tensor imaging (DTI to examine the integrity of white matter pathways. Among various medical conditions, alcoholism and post-traumatic stress disorder (PTSD are two comorbid diseases that have similar degenerative effects on the white matter integrity. Therefore, understanding and differentiating these effects would be very important in characterizing alcoholism and PTSD. Alcoholics are known to have neurocognitive deficits in decision-making, particularly in decisions related to emotionally-motivated behavior, while individuals with PTSD have deficits in emotional regulation and enhanced fear response. It is widely believed that these types of abnormalities in both alcoholism and PTSD are related to fronto-limbic dysfunction. In addition, previous studies have shown cortico-limbic fiber degradation through fiber tracking in alcoholism. DTI was used to measure white matter fractional anisotropy (FA, which provides information about tissue microstructure, possibly indicating white matter integrity. We quantitatively investigated the microstructure of white matter through whole brain DTI analysis in healthy volunteers (HV and alcohol dependent subjects without PTSD (ALC and with PTSD (ALC+PTSD. These data show significant differences in FA between alcoholics and non-alcoholic HVs, with no significant differences in FA between ALC and ALC+PTSD in any white matter structure. We performed a post-hoc region of interest analysis that allowed us to incorporate multiple covariates into the analysis and found similar results. HV had higher FA in several areas implicated in the reward circuit, emotion, and executive functioning, suggesting that there may be microstructural abnormalities in white matter pathways that contribute to neurocognitive and executive functioning deficits observed in alcoholics. Furthermore

  8. Improved estimates for the role of grey matter volume and GABA in bistable perception.

    Science.gov (United States)

    Sandberg, Kristian; Blicher, Jakob Udby; Del Pin, Simon Hviid; Andersen, Lau Møller; Rees, Geraint; Kanai, Ryota

    2016-10-01

    Across a century or more, ambiguous stimuli have been studied scientifically because they provide a method for studying the internal mechanisms of the brain while ensuring an unchanging external stimulus. In recent years, several studies have reported correlations between perceptual dynamics during bistable perception and particular brain characteristics such as the grey matter volume of areas in the superior parietal lobule (SPL) and the relative GABA concentration in the occipital lobe. Here, we attempt to replicate previous results using similar paradigms to those used in the studies first reporting the correlations. Using the original findings as priors for Bayesian analyses, we found strong support for the correlation between structure-from-motion percept duration and anterior SPL grey matter volume. Correlations between percept duration and other parietal areas as well as occipital GABA, however, were not directly replicated or appeared less strong than previous studies suggested. Inspection of the posterior distributions (current "best guess" based on new data given old data as prior) revealed that several original findings may reflect true relationships although no direct evidence was found in support of them in the current sample. Additionally, we found that multiple regression models based on grey matter volume at 2-3 parietal locations (but not including GABA) were the best predictors of percept duration, explaining approximately 35% of the inter-individual variance. Taken together, our results provide new estimates of correlation strengths, generally increasing confidence in the role of the aSPL while decreasing confidence in some of the other relationships. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. MR imaging of white matter lesions in AIDS

    International Nuclear Information System (INIS)

    Olsen, W.L.; Longo, F.; Norman, D.

    1987-01-01

    Autopsy reports have shown white-matter abnormalities from infection of the brain by the human immunodeficiency virus (HIV), the agent that causes acquired immunodeficiency syndrome (AIDS). The authors observed abnormal signal on T2-weighted images in the white matter of approximately one third of all AIDS patients. Of 50 patients with white-matter lesions, approximately two thirds had no clinical or biopsy evidence of cytomegalovirus, toxoplasmosis, PML, or lymphoma. Several patients were shown at autopsy to have isolated evidence of HIV encephalitis. The authors conclude that white-matter lesions are common in AIDS and are frequently caused by infection with HIV. Some MR findings may be helpful in characterizing these lesions, but the various etiologies are often indistinguishable

  10. Comparison of grey matter atrophy between patients with neuromyelitis optica and multiple sclerosis: A voxel-based morphometry study

    International Nuclear Information System (INIS)

    Duan Yunyun; Liu Yaou; Liang Peipeng; Jia Xiuqin; Yu Chunshui; Qin Wen; Sun Hui; Liao Zhangyuan; Ye Jing; Li Kuncheng

    2012-01-01

    Purpose: Previous studies have established regional grey matter (GM) loss in multiple sclerosis (MS). However, whether there is any regional GM atrophy in neuromyelitis optica (NMO) and the difference between NMO and MS is unclear. The present study addresses this issue by voxel-based morphometry (VBM). Methods: Conventional magnetic resonance imaging (MRI) and T1-weighted three-dimensional MRI were obtained from 26 NMO patients, 26 relapsing–remitting MS (RRMS) patients, and 26 normal controls. An analysis of covariance model assessed with cluster size inference was used to compare GM volume among three groups. The correlations of GM volume changes with disease duration, expanded disability status scale (EDSS) and brain T2 lesion volume (LV) were analyzed. Results: GM atrophy was found in NMO patients in several regions of frontal, temporal, parietal lobes and insula (uncorrected, p < 0.001). While extensive GM atrophy was found in RRMS patients, including most cortical regions and the deep grey matter (corrected for multiple comparisons, p < 0.01). Compared with NMO, those with RRMS had significant GM loss in bilateral thalami, caudate, left parahippocampal gyrus, right hippocampus and insula (corrected, p < 0.01). In RRMS group, regional GM loss in right caudate and bilateral thalami were strongly correlated with brain T2LV. Conclusions: Our study found the difference of GM atrophy between NMO and RRMS patients mainly in deep grey matter. The correlational results suggested axonal degeneration from lesions on T2WI may be a key pathogenesis of atrophy in deep grey matter in RRMS.

  11. Stress-induced grey matter loss determined by MRI is primarily due to loss of dendrites and their synapses.

    Science.gov (United States)

    Kassem, Mustafa S; Lagopoulos, Jim; Stait-Gardner, Tim; Price, William S; Chohan, Tariq W; Arnold, Jonathon C; Hatton, Sean N; Bennett, Maxwell R

    2013-04-01

    Stress, unaccompanied by signs of post-traumatic stress disorder, is known to decrease grey matter volume (GMV) in the anterior cingulate cortex (ACC) and hippocampus but not the amygdala in humans. We sought to determine if this was the case in stressed mice using high-resolution magnetic resonance imaging (MRI) and to identify the cellular constituents of the grey matter that quantitatively give rise to such changes. Stressed mice showed grey matter losses of 10 and 15 % in the ACC and hippocampus, respectively but not in the amygdala or the retrosplenial granular area (RSG). Concurrently, no changes in the number or volumes of the somas of neurons, astrocytes or oligodendrocytes were detected. A loss of synaptic spine density of up to 60 % occurred on different-order dendrites in the ACC and hippocampus (CA1) but not in the amygdala or RSG. The loss of spines was accompanied by decreases in cumulative dendritic length of neurons of over 40 % in the ACC and hippocampus (CA1) giving rise to decreases in volume of dendrites of 2.6 mm(3) for the former and 0.6 mm(3) for the latter, with no change in the amygdala or RSG. These values are similar to the MRI-determined loss of GMV following stress of 3.0 and 0.8 mm(3) in ACC and hippocampus, respectively, with no changes in the amygdala or RSG. This quantitative study is the first to relate GMV changes in the cortex measured with MRI to volume changes in cellular constituents of the grey matter.

  12. AGREEMENT BETWEEN THE WHITE MATTER CONNECTIVITY BASED ON THE TENSOR-BASED MORPHOMETRY AND THE VOLUMETRIC WHITE MATTER PARCELLATIONS BASED ON DIFFUSION TENSOR IMAGING.

    Science.gov (United States)

    Kim, Seung-Goo; Lee, Hyekyoung; Chung, Moo K; Hanson, Jamie L; Avants, Brian B; Gee, James C; Davidson, Richard J; Pollak, Seth D

    2012-01-01

    We are interested in investigating white matter connectivity using a novel computational framework that does not use diffusion tensor imaging (DTI) but only uses T1-weighted magnetic resonance imaging. The proposed method relies on correlating Jacobian determinants across different voxels based on the tensor-based morphometry (TBM) framework. In this paper, we show agreement between the TBM-based white matter connectivity and the DTI-based white matter atlas. As an application, altered white matter connectivity in a clinical population is determined.

  13. Total brain, cortical and white matter volumes in children previously treated with glucocorticoids

    DEFF Research Database (Denmark)

    Holm, Sara K; Madsen, Kathrine S; Vestergaard, Martin

    2018-01-01

    BACKGROUND: Perinatal exposure to glucocorticoids and elevated endogenous glucocorticoid-levels during childhood can have detrimental effects on the developing brain. Here, we examined the impact of glucocorticoid-treatment during childhood on brain volumes. METHODS: Thirty children and adolescents...... with rheumatic or nephrotic disease previously treated with glucocorticoids and 30 controls matched on age, sex, and parent education underwent magnetic resonance imaging (MRI) of the brain. Total cortical grey and white matter, brain, and intracranial volume, and total cortical thickness and surface area were...... were mainly driven by the children with rheumatic disease. Total cortical thickness and cortical surface area did not significantly differ between groups. We found no significant associations between glucocorticoid-treatment variables and volumetric measures. CONCLUSION: Observed smaller total brain...

  14. Correlation between white matter damage and gray matter lesions in multiple sclerosis patients

    Directory of Open Access Journals (Sweden)

    Xue-mei Han

    2017-01-01

    Full Text Available We observed the characteristics of white matter fibers and gray matter in multiple sclerosis patients, to identify changes in diffusion tensor imaging fractional anisotropy values following white matter fiber injury. We analyzed the correlation between fractional anisotropy values and changes in whole-brain gray matter volume. The participants included 20 patients with relapsing-remitting multiple sclerosis and 20 healthy volunteers as controls. All subjects underwent head magnetic resonance imaging and diffusion tensor imaging. Our results revealed that fractional anisotropy values decreased and gray matter volumes were reduced in the genu and splenium of corpus callosum, left anterior thalamic radiation, hippocampus, uncinate fasciculus, right corticospinal tract, bilateral cingulate gyri, and inferior longitudinal fasciculus in multiple sclerosis patients. Gray matter volumes were significantly different between the two groups in the right frontal lobe (superior frontal, middle frontal, precentral, and orbital gyri, right parietal lobe (postcentral and inferior parietal gyri, right temporal lobe (caudate nucleus, right occipital lobe (middle occipital gyrus, right insula, right parahippocampal gyrus, and left cingulate gyrus. The voxel sizes of atrophic gray matter positively correlated with fractional anisotropy values in white matter association fibers in the patient group. These findings suggest that white matter fiber bundles are extensively injured in multiple sclerosis patients. The main areas of gray matter atrophy in multiple sclerosis are the frontal lobe, parietal lobe, caudate nucleus, parahippocampal gyrus, and cingulate gyrus. Gray matter atrophy is strongly associated with white matter injury in multiple sclerosis patients, particularly with injury to association fibers.

  15. Linking white matter and deep gray matter alterations in premanifest Huntington disease

    Directory of Open Access Journals (Sweden)

    Andreia V. Faria

    2016-01-01

    Full Text Available Huntington disease (HD is a fatal progressive neurodegenerative disorder for which only symptomatic treatment is available. A better understanding of the pathology, and identification of biomarkers will facilitate the development of disease-modifying treatments. HD is potentially a good model of a neurodegenerative disease for development of biomarkers because it is an autosomal-dominant disease with complete penetrance, caused by a single gene mutation, in which the neurodegenerative process can be assessed many years before onset of signs and symptoms of manifest disease. Previous MRI studies have detected abnormalities in gray and white matter starting in premanifest stages. However, the understanding of how these abnormalities are related, both in time and space, is still incomplete. In this study, we combined deep gray matter shape diffeomorphometry and white matter DTI analysis in order to provide a better mapping of pathology in the deep gray matter and subcortical white matter in premanifest HD. We used 296 MRI scans from the PREDICT-HD database. Atrophy in the deep gray matter, thalamus, hippocampus, and nucleus accumbens was analyzed by surface based morphometry, and while white matter abnormalities were analyzed in (i regions of interest surrounding these structures, using (ii tractography-based analysis, and using (iii whole brain atlas-based analysis. We detected atrophy in the deep gray matter, particularly in putamen, from early premanifest stages. The atrophy was greater both in extent and effect size in cases with longer exposure to the effects of the CAG expansion mutation (as assessed by greater CAP-scores, and preceded detectible abnormalities in the white matter. Near the predicted onset of manifest HD, the MD increase was widespread, with highest indices in the deep and posterior white matter. This type of in-vivo macroscopic mapping of HD brain abnormalities can potentially indicate when and where therapeutics could be

  16. Regional Abnormality of Grey Matter in Schizophrenia: Effect from the Illness or Treatment?

    Directory of Open Access Journals (Sweden)

    Ying Yue

    Full Text Available Both schizophrenia and antipsychotic treatment are known to modulate brain morphology. However, it is difficult to establish whether observed structural brain abnormalities are due to disease or the effects of treatment. The aim of this study was to investigate the effects of illness and antipsychotic treatment on brain structures in antipsychotic-naïve first-episode schizophrenia based on a longitudinal short-term design. Twenty antipsychotic-naïve subjects with first-episode schizophrenia and twenty-four age- and sex-matched healthy controls underwent 3T MRI scans. Voxel-based morphometry (VBM was used to examine the brain structural abnormality in patients compared to healthy controls. Nine patients were included in the follow-up examination after 8 weeks of treatment. Tensor-based morphometry (TBM was used to identify longitudinal brain structural changes. We observed significantly reduced grey matter volume in the right superior temporal gyrus in antipsychotic-naïve patients with schizophrenia compared with healthy controls. After 8 weeks of treatment, patients showed significantly increased grey matter volume primarily in the bilateral prefrontal cortex, insula, right thalamus, left superior occipital cortex and the bilateral cerebellum. In addition, a greater enlargement of the prefrontal cortex is associated with the improvement in negative symptoms, and a more enlarged thalamus is associated with greater improvement in positive symptoms. Our results suggest the following: (1 the abnormality in the right superior temporal gyrus is present in the early stages of schizophrenia, possibly representing the core region related to schizophrenia; and (2 atypical antipsychotics could modulate brain morphology involving the thalamus, cortical grey matter and cerebellum. In addition, examination of the prefrontal cortex and thalamus might facilitate an efficient response to atypical antipsychotics in terms of symptom improvement.

  17. White Matter Integrity Dissociates Verbal Memory and Auditory Attention Span in Emerging Adults with Congenital Heart Disease.

    Science.gov (United States)

    Brewster, Ryan C; King, Tricia Z; Burns, Thomas G; Drossner, David M; Mahle, William T

    2015-01-01

    White matter disruptions have been identified in individuals with congenital heart disease (CHD). However, no specific theory-driven relationships between microstructural white matter disruptions and cognition have been established in CHD. We conducted a two-part study. First, we identified significant differences in fractional anisotropy (FA) of emerging adults with CHD using Tract-Based Spatial Statistics (TBSS). TBSS analyses between 22 participants with CHD and 18 demographically similar controls identified five regions of normal appearing white matter with significantly lower FA in CHD, and two higher. Next, two regions of lower FA in CHD were selected to examine theory-driven differential relationships with cognition: voxels along the left uncinate fasciculus (UF; a tract theorized to contribute to verbal memory) and voxels along the right middle cerebellar peduncle (MCP; a tract previously linked to attention). In CHD, a significant positive correlation between UF FA and memory was found, r(20)=.42, p=.049 (uncorrected). There was no correlation between UF and auditory attention span. A positive correlation between MCP FA and auditory attention span was found, r(20)=.47, p=.027 (uncorrected). There was no correlation between MCP and memory. In controls, no significant relationships were identified. These results are consistent with previous literature demonstrating lower FA in younger CHD samples, and provide novel evidence for disrupted white matter integrity in emerging adults with CHD. Furthermore, a correlational double dissociation established distinct white matter circuitry (UF and MCP) and differential cognitive correlates (memory and attention span, respectively) in young adults with CHD.

  18. Cerebral white matter hypoplasia

    International Nuclear Information System (INIS)

    Dietrich, R.B.; Shields, W.D.; Sankar, R.

    1990-01-01

    This paper demonstrates the MR imaging findings in children with cerebral white matter hypoplasia (CWMH). The MR studies of four children, aged 3-7 y (mean age, 2.3 y) with a diagnosis of CWMH were reviewed. In all cases multiplanar T1-weighted and T2-weighted spin-echo images were obtained. All children had similar histories of severe developmental delay and nonprogressive neurologic deficits despite normal gestational and birth histories. In two cases there was a history of maternal cocaine abuse. Autopsy correlation was available in one child. The MR images of all four children demonstrated diffuse lack of white matter and enlarged ventricles but normal-appearing gray matter. The corpus callosum, although completely formed, was severely thinned. There was no evidence of gliosis or porencephaly, and the distribution of myelin deposition was normal for age in all cases. Autopsy finding in one child correlated exactly with the MR finding

  19. Processing demands upon cognitive, linguistic, and articulatory functions promote grey matter plasticity in the adult multilingual brain: Insights from simultaneous interpreters.

    Science.gov (United States)

    Elmer, Stefan; Hänggi, Jürgen; Jäncke, Lutz

    2014-05-01

    Until now, considerable effort has been made to determine structural brain characteristics related to exceptional multilingual skills. However, at least one important question has not yet been satisfactorily addressed in the previous literature, namely whether and to which extent the processing demands upon cognitive, linguistic, and articulatory functions may promote grey matter plasticity in the adult multilingual brain. Based on the premise that simultaneous interpretation is a highly demanding linguistic task that places strong demands on executive and articulatory functions, here we compared grey matter volumes between professional simultaneous interpreters (SI) and multilingual control subjects. Thereby, we focused on a specific set of a-priori defined bilateral brain regions that have previously been shown to support neurocognitional aspects of language control and linguistic functions in the multilingual brain. These regions are the cingulate gyrus, caudate nucleus, frontal operculum (pars triangularis and opercularis), inferior parietal lobe (IPL) (supramarginal and angular gyrus), and the insula. As a main result, we found reduced grey matter volumes in professional SI, compared to multilingual controls, in the left middle-anterior cingulate gyrus, bilateral pars triangularis, left pars opercularis, bilateral middle part of the insula, and in the left supramarginal gyrus (SMG). Interestingly, grey matter volume in left pars triangularis, right pars opercularis, middle-anterior cingulate gyrus, and in the bilateral caudate nucleus was negatively correlated with the cumulative number of interpreting hours. Hence, we provide first evidence for an expertise-related grey matter architecture that may reflect a composite of brain characteristics that were still present before interpreting training and training-related changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Longitudinal development of hormone levels and grey matter density in 9 and 12-year-old twins.

    Science.gov (United States)

    Brouwer, Rachel M; Koenis, M M G; Schnack, Hugo G; van Baal, G Caroline; van Soelen, Inge L C; Boomsma, Dorret I; Hulshoff Pol, Hilleke E

    2015-05-01

    Puberty is characterized by major changes in hormone levels and structural changes in the brain. To what extent these changes are associated and to what extent genes or environmental influences drive such an association is not clear. We acquired circulating levels of luteinizing hormone, follicle stimulating hormone (FSH), estradiol and testosterone and magnetic resonance images of the brain from 190 twins at age 9 [9.2 (0.11) years; 99 females/91 males]. This protocol was repeated at age 12 [12.1 (0.26) years] in 125 of these children (59 females/66 males). Using voxel-based morphometry, we tested whether circulating hormone levels are associated with grey matter density in boys and girls in a longitudinal, genetically informative design. In girls, changes in FSH level between the age of 9 and 12 positively associated with changes in grey matter density in areas covering the left hippocampus, left (pre)frontal areas, right cerebellum, and left anterior cingulate and precuneus. This association was mainly driven by environmental factors unique to the individual (i.e. the non-shared environment). In 12-year-old girls, a higher level of circulating estradiol levels was associated with lower grey matter density in frontal and parietal areas. This association was driven by environmental factors shared among the members of a twin pair. These findings show a pattern of physical and brain development going hand in hand.

  1. The Relationship between Grey-Matter and ASD and ADHD Traits in Typical Adults

    Science.gov (United States)

    Geurts, Hilde M.; Ridderinkhof, K. Richard; Scholte, H. Steven

    2013-01-01

    We tested whether in 85 healthy adults (18-29 years) there is a relationship between grey-matter (GM) volume and autism and ADHD symptom severity. The structural MRI findings and autism and ADHD self-reports revealed that autism and ADHD symptom severity was correlated with GM volume in the left inferior frontal gyrus. Autism symptom-severity was…

  2. AGREEMENT BETWEEN THE WHITE MATTER CONNECTIVITY BASED ON THE TENSOR-BASED MORPHOMETRY AND THE VOLUMETRIC WHITE MATTER PARCELLATIONS BASED ON DIFFUSION TENSOR IMAGING

    OpenAIRE

    Kim, Seung-Goo; Lee, Hyekyoung; Chung, Moo K.; Hanson, Jamie L.; Avants, Brian B.; Gee, James C.; Davidson, Richard J.; Pollak, Seth D.

    2012-01-01

    We are interested in investigating white matter connectivity using a novel computational framework that does not use diffusion tensor imaging (DTI) but only uses T1-weighted magnetic resonance imaging. The proposed method relies on correlating Jacobian determinants across different voxels based on the tensor-based morphometry (TBM) framework. In this paper, we show agreement between the TBM-based white matter connectivity and the DTI-based white matter atlas. As an application, altered white ...

  3. Cortex Parcellation Associated Whole White Matter Parcellation in Individual Subjects

    Directory of Open Access Journals (Sweden)

    Patrick Schiffler

    2017-07-01

    Full Text Available The investigation of specific white matter areas is a growing field in neurological research and is typically achieved through the use of atlases. However, the definition of anatomically based regions remains challenging for the white matter and thus hinders region-specific analysis in individual subjects. In this article, we focus on creating a whole white matter parcellation method for individual subjects where these areas can be associated to cortex regions. This is done by combining cortex parcellation and fiber tracking data. By tracking fibers out of each cortex region and labeling the fibers according to their origin, we populate a candidate image. We then derive the white matter parcellation by classifying each white matter voxel according to the distribution of labels in the corresponding voxel from the candidate image. The parcellation of the white matter with the presented method is highly reliable and is not as dependent on registration as with white matter atlases. This method allows for the parcellation of the whole white matter into individual cortex region associated areas and, therefore, associates white matter alterations to cortex regions. In addition, we compare the results from the presented method to existing atlases. The areas generated by the presented method are not as sharply defined as the areas in most existing atlases; however, they are computed directly in the DWI space of the subject and, therefore, do not suffer from distortion caused by registration. The presented approach might be a promising tool for clinical and basic research to investigate modalities or system specific micro structural alterations of white matter areas in a quantitative manner.

  4. White matter abnormalities of microstructure and physiological noise in schizophrenia.

    Science.gov (United States)

    Cheng, Hu; Newman, Sharlene D; Kent, Jerillyn S; Bolbecker, Amanda; Klaunig, Mallory J; O'Donnell, Brian F; Puce, Aina; Hetrick, William P

    2015-12-01

    White matter abnormalities in schizophrenia have been revealed by many imaging techniques and analysis methods. One of the findings by diffusion tensor imaging is a decrease in fractional anisotropy (FA), which is an indicator of white matter integrity. On the other hand, elevation of metabolic rate in white matter was observed from positron emission tomography (PET) studies. In this report, we aim to compare the two structural and functional effects on the same subjects. Our comparison is based on the hypothesis that signal fluctuation in white matter is associated with white matter functional activity. We examined the variance of the signal in resting state fMRI and found significant differences between individuals with schizophrenia and non-psychiatric controls specifically in white matter tissue. Controls showed higher temporal signal-to-noise ratios clustered in regions including temporal, frontal, and parietal lobes, cerebellum, corpus callosum, superior longitudinal fasciculus, and other major white matter tracts. These regions with higher temporal signal-to-noise ratio agree well with those showing higher metabolic activity reported by studies using PET. The results suggest that individuals with schizophrenia tend to have higher functional activity in white matter in certain brain regions relative to healthy controls. Despite some overlaps, the distinct regions for physiological noise are different from those for FA derived from diffusion tensor imaging, and therefore provide a unique angle to explore potential mechanisms to white matter abnormality.

  5. MR imaging of white-matter diseases in children

    International Nuclear Information System (INIS)

    Sato, Y.; Yuh, W.T.C.; Mathews, K.; Wiese, J.; Kao, S.; Schreiber, A.; Farner, R.; Smith, W.

    1987-01-01

    MR imaging has become a valuable tool in the investigation of central nervous system abnormalities in children. This exhibit displays the MR imaging patterns in 30 children with diseases involving the white matter. Clinical, CT, and pathologic findings will be presented for comparison. The white matter disease entities studies include acquired white matter diseases, metabolic diseases, and phycomatoses. Specific examples include acute dissemination encephalomyelitis, anoxic encephalopathy, disseminated necrotizing leukoencephalopathy, demyelinating adrenoleukodystrophy, Krabbe disease, metachromatic leukodystrophy, Tay-Sachs disease, Gaucher disease, neurofibromatosis, and Sturge-Weber syndrome

  6. [Research on brain white matter network in cerebral palsy infant].

    Science.gov (United States)

    Li, Jun; Yang, Cheng; Wang, Yuanjun; Nie, Shengdong

    2017-10-01

    Present study used diffusion tensor image and tractography to construct brain white matter networks of 15 cerebral palsy infants and 30 healthy infants that matched for age and gender. After white matter network analysis, we found that both cerebral palsy and healthy infants had a small-world topology in white matter network, but cerebral palsy infants exhibited abnormal topological organization: increased shortest path length but decreased normalize clustering coefficient, global efficiency and local efficiency. Furthermore, we also found that white matter network hub regions were located in the left cuneus, precuneus, and left posterior cingulate gyrus. However, some abnormal nodes existed in the frontal, temporal, occipital and parietal lobes of cerebral palsy infants. These results indicated that the white matter networks for cerebral palsy infants were disrupted, which was consistent with previous studies about the abnormal brain white matter areas. This work could help us further study the pathogenesis of cerebral palsy infants.

  7. Considerations for the optimization of induced white matter injury preclinical models

    Directory of Open Access Journals (Sweden)

    Abdullah Shafique Ahmad

    2015-08-01

    Full Text Available The white matter injury in relation to acute neurologic conditions, especially stroke, has remained obscure until recently. Current advances in the imaging technologies in the field of stroke have confirmed that white matter injury plays an important role in the prognosis of stroke and suggest that white matter protection is essential for functional recovery and post-stroke rehabilitation. However, due to the lack of a reproducible animal model of white matter injury, the pathophysiology and mechanisms of this injury are not well studied. Moreover, producing selective white matter injury in animals, especially in rodents, has proven to be challenging. Problems associated with inducing selective white matter ischemic injury in the rodent derive from differences in the architecture of the brain, most particularly the ratio of white matter to gray matter in rodents compared to humans, the agents used to induce the injury, and the location of the injury. Aging, gender differences, and comorbidities further add to this complexity. This review provides a brief account of the techniques commonly used to induce general white matter injury in animal models (stroke and non-stroke related and highlights relevance, optimization issues, and translational potentials associated with this particular form of injury.

  8. Abnormal white matter properties in adolescent girls with anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Katherine E. Travis

    2015-01-01

    Full Text Available Anorexia nervosa (AN is a serious eating disorder that typically emerges during adolescence and occurs most frequently in females. To date, very few studies have investigated the possible impact of AN on white matter tissue properties during adolescence, when white matter is still developing. The present study evaluated white matter tissue properties in adolescent girls with AN using diffusion MRI with tractography and T1 relaxometry to measure R1 (1/T1, an index of myelin content. Fifteen adolescent girls with AN (mean age = 16.6 years ± 1.4 were compared to fifteen age-matched girls with normal weight and eating behaviors (mean age = 17.1 years ± 1.3. We identified and segmented 9 bilateral cerebral tracts (18 and 8 callosal fiber tracts in each participant's brain (26 total. Tract profiles were generated by computing measures for fractional anisotropy (FA and R1 along the trajectory of each tract. Compared to controls, FA in the AN group was significantly decreased in 4 of 26 white matter tracts and significantly increased in 2 of 26 white matter tracts. R1 was significantly decreased in the AN group compared to controls in 11 of 26 white matter tracts. Reduced FA in combination with reduced R1 suggests that the observed white matter differences in AN are likely due to reductions in myelin content. For the majority of tracts, group differences in FA and R1 did not occur within the same tract. The present findings have important implications for understanding the neurobiological factors underlying white matter changes associated with AN and invite further investigations examining associations between white matter properties and specific physiological, cognitive, social, or emotional functions affected in AN.

  9. Abnormal white matter properties in adolescent girls with anorexia nervosa

    Science.gov (United States)

    Travis, Katherine E.; Golden, Neville H.; Feldman, Heidi M.; Solomon, Murray; Nguyen, Jenny; Mezer, Aviv; Yeatman, Jason D.; Dougherty, Robert F.

    2015-01-01

    Anorexia nervosa (AN) is a serious eating disorder that typically emerges during adolescence and occurs most frequently in females. To date, very few studies have investigated the possible impact of AN on white matter tissue properties during adolescence, when white matter is still developing. The present study evaluated white matter tissue properties in adolescent girls with AN using diffusion MRI with tractography and T1 relaxometry to measure R1 (1/T1), an index of myelin content. Fifteen adolescent girls with AN (mean age = 16.6 years ± 1.4) were compared to fifteen age-matched girls with normal weight and eating behaviors (mean age = 17.1 years ± 1.3). We identified and segmented 9 bilateral cerebral tracts (18) and 8 callosal fiber tracts in each participant's brain (26 total). Tract profiles were generated by computing measures for fractional anisotropy (FA) and R1 along the trajectory of each tract. Compared to controls, FA in the AN group was significantly decreased in 4 of 26 white matter tracts and significantly increased in 2 of 26 white matter tracts. R1 was significantly decreased in the AN group compared to controls in 11 of 26 white matter tracts. Reduced FA in combination with reduced R1 suggests that the observed white matter differences in AN are likely due to reductions in myelin content. For the majority of tracts, group differences in FA and R1 did not occur within the same tract. The present findings have important implications for understanding the neurobiological factors underlying white matter changes associated with AN and invite further investigations examining associations between white matter properties and specific physiological, cognitive, social, or emotional functions affected in AN. PMID:26740918

  10. Episodic memory in detoxified alcoholics: contribution of grey matter microstructure alteration.

    Directory of Open Access Journals (Sweden)

    Sandra Chanraud

    Full Text Available Even though uncomplicated alcoholics may likely have episodic memory deficits, discrepancies exist regarding to the integrity of brain regions that underlie this function in healthy subjects. Possible relationships between episodic memory and 1 brain microstructure assessed by magnetic resonance diffusion tensor imaging (DTI, 2 brain volumes assessed by voxel-based morphometry (VBM were investigated in uncomplicated, detoxified alcoholics.Diffusion and morphometric analyses were performed in 24 alcohol dependent men without neurological or somatic complications and in 24 healthy men. The mean apparent coefficient of diffusion (ADC and grey matter volumes were measured in the whole brain. Episodic memory performance was assessed using a French version of the Free and Cued Selective Reminding Test (FCSRT. Correlation analyses between verbal episodic memory, brain microstructure, and brain volumes were carried out using SPM2 software.In those with alcohol dependence, higher ADC was detected mainly in frontal, temporal and parahippocampal regions, and in the cerebellum. In alcoholics, regions with higher ADC typically also had lower grey matter volume. Low verbal episodic memory performance in alcoholism was associated with higher mean ADC in parahippocampal areas, in frontal cortex and in the left temporal cortex; no correlation was found between regional volumes and episodic memory scores. Regression analyses for the control group were not significant.These findings support the hypothesis that regional microstructural but no macrostructural alteration of the brain might be responsible, at least in part, for episodic memory deficits in alcohol dependence.

  11. MR imaging of metabolic white matter diseases: Therapeutic response

    International Nuclear Information System (INIS)

    Gebarski, S.S.; Allen, R.

    1987-01-01

    In metabolic diseases affecting the brain, MR imaging abnormalities include white-matter signal aberrations suggesting myelination delay, dysmyelination and demyelination, pathologic iron storage, and finally, loss of substance usually in a nonspecific pattern. The authors suggest that MR imaging may have therapeutic implications: (1) classic galactosemia - white-matter signal aberration became normal after dietary therapy; (2) phenylketonuria - age- and sex-matched treated and nontreated adolescents showed marked differences in brain volume, with the treated patient's volume nearly normal; (3) maple syrup urine disease - gross white-matter signal aberration became nearly normal after dietary therapy; and (4) hyperglycinemia - relentless progression of white-matter signal aberration and loss of brain substance despite therapy. These data suggest that brain MR imaging may provide a therapeutic index in certain metabolic diseases

  12. Automated measurement of local white matter lesion volume

    DEFF Research Database (Denmark)

    van der Lijn, Fedde; Verhaaren, Benjamin F. J.; Ikram, M. Arfan

    2012-01-01

    in a periventricular region close to the ventricles and a subcortical zone further away. In this work we present a novel automated method for local white matter lesion volume quantification in magnetic resonance images. The method segments and measures the white matter lesion volume in 43 regions defined...

  13. Medial frontal white and gray matter contributions to general intelligence.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Ohtani

    Full Text Available The medial orbitofrontal cortex (mOFC and rostral anterior cingulate cortex (rACC are part of a wider neural network that plays an important role in general intelligence and executive function. We used structural brain imaging to quantify magnetic resonance gray matter volume and diffusion tensor white matter integrity of the mOFC-rACC network in 26 healthy participants who also completed neuropsychological tests of intellectual abilities and executive function. Stochastic tractography, the most effective Diffusion Tensor Imaging method for examining white matter connections between adjacent gray matter regions, was employed to assess the integrity of mOFC-rACC pathways. Fractional anisotropy (FA, which reflects the integrity of white matter connections, was calculated. Results indicated that higher intelligence correlated with greater gray matter volumes for both mOFC and rACC, as well as with increased FA for left posterior mOFC-rACC connectivity. Hierarchical regression analyses revealed that DTI-derived FA of left posterior mOFC-rACC uniquely accounted for 29%-34% of the variance in IQ, in comparison to 11%-16% uniquely explained by gray matter volume of the left rACC. Together, left rACC gray matter volume and white matter connectivity between left posterior mOFC and rACC accounted for up to 50% of the variance in general intelligence. This study is to our knowledge the first to examine white matter connectivity between OFC and ACC, two gray matter regions of interests that are very close in physical proximity, and underscores the important independent contributions of variations in rACC gray matter volume and mOFC-rACC white matter connectivity to individual differences in general intelligence.

  14. Yellowing and bleaching of grey hair caused by photo and thermal degradation.

    Science.gov (United States)

    Richena, M; Silveira, M; Rezende, C A; Joekes, I

    2014-09-05

    Yellowing is an undesirable phenomenon that is common in people with white and grey hair. Because white hair has no melanin, the pigment responsible for hair colour, the effects of photodegradation are more visible in this type of hair. The origin of yellowing and its relation to photodegradation processes are not properly established, and many questions remain open in this field. In this work, the photodegradation of grey hair was investigated as a function of the wavelength of incident radiation, and its ultrastructure was determined, always comparing the results obtained for the white and black fibres present in grey hair with the results of white wool. The results presented herein indicate that the photobehaviour of grey hair irradiated with a mercury lamp or with solar radiation is dependent on the wavelength range of the incident radiation and on the initial shade of yellow in the sample. Two types of grey hair were used: (1) blended grey hair (more yellow) and (2) grey hair from a single-donor (less yellow). After exposure to a full-spectrum mercury lamp for 200 h, the blended white hair turned less yellow (the yellow-blue difference, Db(*) becomes negative, Db(*)=-6), whereas the white hair from the single-donor turned slightly yellower (Db(*)=2). In contrast, VIS+IR irradiation resulted in bleaching in both types of hair, whereas a thermal treatment (at 81 °C) caused yellowing of both types of hair, resulting in a Db(*)=3 for blended white hair and Db(*)=9 for single-donor hair. The identity of the yellow chromophores was investigated by UV-Vis spectroscopy. The results obtained with this technique were contradictory, however, and it was not possible to obtain a simple correlation between the sample shade of yellow and the absorption spectra. In addition, the results are discussed in terms of the morphology differences between the pigmented and non-pigmented parts of grey hair, the yellowing and bleaching effects of grey hair, and the occurrence of dark

  15. Differential contributions of dorso-ventral and rostro-caudal prefrontal white matter tracts to cognitive control in healthy older adults.

    Directory of Open Access Journals (Sweden)

    Maren Strenziok

    Full Text Available Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions -episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex's role in semantic control and the dorsolateral prefrontal cortex's role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the

  16. Differential contributions of dorso-ventral and rostro-caudal prefrontal white matter tracts to cognitive control in healthy older adults.

    Science.gov (United States)

    Strenziok, Maren; Greenwood, Pamela M; Santa Cruz, Sophia A; Thompson, James C; Parasuraman, Raja

    2013-01-01

    Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions -episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex's role in semantic control and the dorsolateral prefrontal cortex's role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to

  17. "Grey matters".

    Science.gov (United States)

    Rose, Katie

    2014-01-01

    It's common in this world, for diagnoses to be confused. This grey, oblique world is the "World of Brain Tumors" from which these narratives are written, a world I entered when a tangerine-sized tumor was found on my temporal lobe. Each narrative illustrates this world in which everything is covered in a thick film rendering things once obvious, now unknown. Parents are asked to choose treatment plans for their children, plans that will inevitably alter their child's quality of life but in ways they cannot determine or even imagine. Parents are asked to play God. Most of the parents who share their stories in this collection, parents of PBT (pediatric brain tumor) patients have to walk the line of trying to not disrupt their relationships with their physicians, wanting the best for their child, and facing the decision to follow their gut or go with advised treatment plans.

  18. Screening three Finfish Species for their Potential in Removing Organic Matter from the Effluent of White Leg Shrimps (Litopenaeus vannamei Farming

    Directory of Open Access Journals (Sweden)

    Nguyen, LQ.

    2016-01-01

    Full Text Available White leg shrimp (Litopenaeus vannamei farming effluent contains pollutants that include high levels of organic matter (OM nutrients and growth-promoting substances. This study investigated the effects of varied concentrations of white leg shrimp (Litopenaeus vannamei farm wastewater 0, 50, 75 and 100%, on the survival rate (SR of three finfish species: tilapia (Oreochromis niloticus, grey mullet (Mugil cephalus and rabbit fish (Siganus guttatus as part of screening their potential in removing organic matter from the effluent of white leg shrimp farming. The different initial levels of shrimp wastewater from 50% to 100% had no significant effect on the survival rate of tilapia and mullet; but the survival rate of S. guttatus significantly decreased with increasing shrimp wastewater (P<0.05. The results showed that the removal of BOD, COD and TSS occurred in the range of 66-83, 68-81 and 30-54%; respectively and the removal efficiency of OM by mullet was higher than Tilapia in all treatments. The study also indicated that the reduction highest removal of BOD, COD and TSS was achieved being 83.1%, 80.7and 53,7% respectively, at the medium stocking density (25 fish/m2 of mullet.

  19. In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease

    DEFF Research Database (Denmark)

    Fennema-Notestine, C; Archibald, S.L.; Jacobsen, M.W.

    2004-01-01

    and education. Primary analyses defined six subcortical regions, the gray and white matter of primary cortical lobes and cerebellum, and abnormal signal in the cerebral white matter. RESULTS: As expected, basal ganglia and cerebral cortical gray matter volumes were significantly smaller in HD. The HD group also...... demonstrated significant cerebral white matter loss and an increase in the amount of abnormal signal in the white matter; occipital white matter appeared more affected than other cerebral white matter regions. Cortical gray and white matter measures were significantly related to caudate volume. Cerebellar gray...

  20. White matter integrity in kleptomania: A pilot study

    Science.gov (United States)

    Grant, Jon E.; Correia, Stephen; Brennan-Krohn, Thea

    2007-01-01

    This study's goal was to examine microstructural organization of frontal white matter in kleptomania. Ten females with DSM-IV kleptomania and 10 female controls underwent diffusion tensor imaging. Inferior frontal white matter was the a priori region of interest. Trace and fractional anisotropy (FA) were also calculated for frontal and posterior cortical regions in both subject groups. Kleptomania subjects had significantly higher mean frontal Trace, and significantly lower mean frontal FA than control subjects. Group differences remained significant when right and left frontal Trace and FA were analyzed. Groups did not differ significantly in posterior Trace or FA. Kleptomania may be associated with decreased white matter microstructural integrity in inferior frontal brain regions. PMID:16956753

  1. Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: evidence from voxel-based meta-analysis.

    Science.gov (United States)

    Wise, T; Radua, J; Via, E; Cardoner, N; Abe, O; Adams, T M; Amico, F; Cheng, Y; Cole, J H; de Azevedo Marques Périco, C; Dickstein, D P; Farrow, T F D; Frodl, T; Wagner, G; Gotlib, I H; Gruber, O; Ham, B J; Job, D E; Kempton, M J; Kim, M J; Koolschijn, P C M P; Malhi, G S; Mataix-Cols, D; McIntosh, A M; Nugent, A C; O'Brien, J T; Pezzoli, S; Phillips, M L; Sachdev, P S; Salvadore, G; Selvaraj, S; Stanfield, A C; Thomas, A J; van Tol, M J; van der Wee, N J A; Veltman, D J; Young, A H; Fu, C H; Cleare, A J; Arnone, D

    2017-10-01

    Finding robust brain substrates of mood disorders is an important target for research. The degree to which major depression (MDD) and bipolar disorder (BD) are associated with common and/or distinct patterns of volumetric changes is nevertheless unclear. Furthermore, the extant literature is heterogeneous with respect to the nature of these changes. We report a meta-analysis of voxel-based morphometry (VBM) studies in MDD and BD. We identified studies published up to January 2015 that compared grey matter in MDD (50 data sets including 4101 individuals) and BD (36 data sets including 2407 individuals) using whole-brain VBM. We used statistical maps from the studies included where available and reported peak coordinates otherwise. Group comparisons and conjunction analyses identified regions in which the disorders showed common and distinct patterns of volumetric alteration. Both disorders were associated with lower grey-matter volume relative to healthy individuals in a number of areas. Conjunction analysis showed smaller volumes in both disorders in clusters in the dorsomedial and ventromedial prefrontal cortex, including the anterior cingulate cortex and bilateral insula. Group comparisons indicated that findings of smaller grey-matter volumes relative to controls in the right dorsolateral prefrontal cortex and left hippocampus, along with cerebellar, temporal and parietal regions were more substantial in major depression. These results suggest that MDD and BD are characterised by both common and distinct patterns of grey-matter volume changes. This combination of differences and similarities has the potential to inform the development of diagnostic biomarkers for these conditions.

  2. Cigarette smoking is associated with reduced microstructural integrity of cerebral white matter.

    Science.gov (United States)

    Gons, Rob A R; van Norden, Anouk G W; de Laat, Karlijn F; van Oudheusden, Lucas J B; van Uden, Inge W M; Zwiers, Marcel P; Norris, David G; de Leeuw, Frank-Erik

    2011-07-01

    Cigarette smoking doubles the risk of dementia and Alzheimer's disease. Various pathophysiological pathways have been proposed to cause such a cognitive decline, but the exact mechanisms remain unclear. Smoking may affect the microstructural integrity of cerebral white matter. Diffusion tensor imaging is known to be sensitive for microstructural changes in cerebral white matter. We therefore cross-sectionally studied the relation between smoking behaviour (never, former, current) and diffusion tensor imaging parameters in both normal-appearing white matter and white matter lesions as well as the relation between smoking behaviour and cognitive performance. A structured questionnaire was used to ascertain the amount and duration of smoking in 503 subjects with small-vessel disease, aged between 50 and 85 years. Cognitive function was assessed with a neuropsychological test battery. All subjects underwent 1.5 Tesla magnetic resonance imaging. Using diffusion tensor imaging, fractional anisotropy and mean diffusivity were calculated in both normal-appearing white matter and white matter lesions. A history of smoking was associated with significant higher values of mean diffusivity in normal-appearing white matter and white matter lesions (P-trend for smoking status = 0.02) and with poorer cognitive functioning compared with those who never smoked. Associations with smoking and loss of structural integrity appeared to be strongest in normal-appearing white matter. Furthermore, the duration of smoking cessation was positively related to lower values of mean diffusivity and higher values of fractional anisotropy in normal-appearing white matter [β = -0.004 (95% confidence interval -0.007 to 0.000; P = 0.03) and β = 0.019 (95% confidence interval 0.001-0.038; P = 0.04)]. Fractional anisotropy and mean diffusivity values in normal-appearing white matter of subjects who had quit smoking for >20 years were comparable with subjects who had never smoked. These data suggest

  3. Increased density of DISC1-immunoreactive oligodendroglial cells in fronto-parietal white matter of patients with paranoid schizophrenia.

    Science.gov (United States)

    Bernstein, Hans-Gert; Jauch, Esther; Dobrowolny, Henrik; Mawrin, Christian; Steiner, Johann; Bogerts, Bernhard

    2016-09-01

    Profound white matter abnormalities have repeatedly been described in schizophrenia, which involve the altered expression of numerous oligodendrocyte-associated genes. Transcripts of the disrupted-in-schizophrenia 1 (DISC1) gene, a key susceptibility factor in schizophrenia, have recently been shown to be expressed by oligodendroglial cells and to negatively regulate oligodendrocyte differentiation and maturation. To learn more about the putative role(s) of oligodendroglia-associated DISC1 in schizophrenia, we analyzed the density of DISC1-immunoreactive oligodendrocytes in the fronto-parietal white matter in postmortem brains of patients with schizophrenia. Compared with controls (N = 12) and cases with undifferentiated/residual schizophrenia (N = 6), there was a significantly increased density of DISC1-expressing glial cells in paranoid schizophrenia (N = 12), which unlikely resulted from neuroleptic treatment. Pathophysiologically, over-expression of DISC1 protein(s) in white matter oligodendrocytes might add to the reduced levels of two myelin markers, 2',3'-cyclic-nucleotide 3'-phosphodiesterase and myelin basic protein in schizophrenia. Moreover, it might significantly contribute to cell cycle abnormalities as well as to deficits in oligodendroglial cell differentiation and maturation found in schizophrenia.

  4. Neuroanatomical Substrates of Executive Functions: Beyond Prefrontal Structures

    Science.gov (United States)

    Bettcher, Brianne M.; Mungas, Dan; Patel, Nihar; Elofson, Jonathan; Dutt, Shubir; Wynn, Matthew; Watson, Christa L.; Stephens, Melanie; Walsh, Christine M.; Kramer, Joel H.

    2016-01-01

    Executive functions are often considered lynchpin “frontal lobe tasks”, despite accumulating evidence that a broad network of anterior and posterior brain structures supports them. Using a latent variable modeling approach, we assessed whether prefrontal grey matter volumes independently predict executive function performance when statistically differentiated from global atrophy and individual non-frontal lobar volume contributions. We further examined whether fronto-parietal white matter microstructure underlies and independently contributes to executive functions. We developed a latent variable model to decompose lobar grey matter volumes into a global grey matter factor and specific lobar volumes (i.e. prefrontal, parietal, temporal, occipital) that were independent of global grey matter. We then added mean fractional anisotropy (FA) for the superior longitudinal fasciculus (dorsal portion), corpus callosum, and cingulum bundle (dorsal portion) to models that included grey matter volumes related to cognitive variables in previous analyses. Results suggested that the 2-factor model (shifting/inhibition, updating/working memory) plus an information processing speed factor best explained our executive function data in a sample of 202 community dwelling older adults, and was selected as the base measurement model for further analyses. Global grey matter was related to the executive function and speed variables in all four lobar models, but independent contributions of the frontal lobes were not significant. In contrast, when assessing the effect of white matter microstructure, cingulum FA made significant independent contributions to all three executive function and speed variables and corpus callosum FA was independently related to shifting/inhibition and speed. Findings from the current study indicate that while prefrontal grey matter volumes are significantly associated with cognitive neuroscience measures of shifting/inhibition and working memory in healthy

  5. Genetic disorders affecting white matter in the pediatric age.

    Science.gov (United States)

    Di Rocco, Maja; Biancheri, Roberta; Rossi, Andrea; Filocamo, Mirella; Tortori-Donati, Paolo

    2004-08-15

    Pediatric white matter disorders can be distinguished into well-defined leukoencephalopathies, and undefined leukoencephalopathies. The first category may be subdivided into: (a) hypomyelinating disorders; (b) dysmyelinating disorders; (c) leukodystrophies; (d) disorders related to cystic degeneration of myelin; and (e) disorders secondary to axonal damage. The second category, representing up to 50% of leukoencephalopathies in childhood, requires a multidisciplinar approach in order to define novel homogeneous subgroups of patients, possibly representing "new genetic disorders" (such as megalencephalic leukoencepahlopathy with subcortical cysts and vanishing white matter disease that have recently been identified). In the majority of cases, pediatric white matter disorders are inherited diseases. An integrated description of the clinical, neuroimaging and pathophysiological features is crucial for categorizing myelin disorders and better understanding their genetic basis. A review of the genetic disorders affecting white matter in the pediatric age, including some novel entities, is provided. Copyright 2004 Wiley-Liss, Inc.

  6. Conceptual elaboration versus direct lexical access in WAIS-similarities: differential effects of white-matter lesions and gray matter volumes.

    Science.gov (United States)

    Fernaeus, Sven-Erik; Hellström, Åke

    2017-09-18

    Wechsler Adult Intelligence Scale (WAIS) subscale Similarities have been classified as a test of either verbal comprehension or of inductive reasoning. The reason may be that items divide into two categories. We tested the hypothesis of heterogeneity of items in WAIS-Similarities. Consecutive patients at a memory clinic and healthy controls participated in the study. White-matter hyperintensities (WMHs) and normalized temporal lobe volumes were measured based on Magnetic resonance Imaging (MRI), and tests of verbal memory and attention were used in addition to WAIS-Similarities to collect behavioural data. Factor analysis supported the hypothesis that two factors are involved in the performance of WAIS-similarities: (1) semiautomatic lexical access and (2) conceptual elaboration. These factors were highly correlated but provided discriminative diagnostic information: In logistic regression analyses, scores of the lexical access factor and of the conceptual elaboration factor discriminated patients with mild cognitive impairment from Alzheimer's disease patients and from healthy controls, respectively. High scores of WMH, indicating periventricular white-matter lesions, predicted factor scores of direct lexical access but not those of conceptual elaboration, which were predicted only by medial and lateral temporal lobe volumes.

  7. Whole-brain voxel-based morphometry of white matter in mild cognitive impairment

    International Nuclear Information System (INIS)

    Wang Zhiqun; Guo Xiaojuan; Qi Zhigang; Yao Li; Li Kuncheng

    2010-01-01

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in mild cognitive impairment (MCI). Materials and methods: We studied 14 patients with MCI and 14 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The data were collected on a 3T MR system and analyzed by SPM2 to generate white matter volume maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MCI prominently including the bilateral temporal gyrus, the right anterior cingulate, the bilateral superior and medial frontal gyrus and right parietal angular gyrus. White matter reduction was more prominent in anterior regions than that in posterior regions. Conclusion: Whole-brain white matter reduction in MCI patients detected with VBM has special distribution which is in line with the white matter pathology of MCI.

  8. Whole-brain voxel-based morphometry of white matter in mild cognitive impairment

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhiqun [Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing (China); Guo Xiaojuan [College of Information Science and Technology, Beijing Normal University, 100875, Beijing (China); National Key Laboratory for Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing (China); Qi Zhigang [Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing (China); Yao Li [College of Information Science and Technology, Beijing Normal University, 100875, Beijing (China); National Key Laboratory for Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing (China); Li Kuncheng, E-mail: likuncheng@xwh.ccmu.edu.c [Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing (China)

    2010-08-15

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in mild cognitive impairment (MCI). Materials and methods: We studied 14 patients with MCI and 14 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The data were collected on a 3T MR system and analyzed by SPM2 to generate white matter volume maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MCI prominently including the bilateral temporal gyrus, the right anterior cingulate, the bilateral superior and medial frontal gyrus and right parietal angular gyrus. White matter reduction was more prominent in anterior regions than that in posterior regions. Conclusion: Whole-brain white matter reduction in MCI patients detected with VBM has special distribution which is in line with the white matter pathology of MCI.

  9. White matter abnormalities of microstructure and physiological noise in schizophrenia

    OpenAIRE

    Cheng, Hu; Newman, Sharlene D.; Kent, Jerillyn S.; Bolbecker, Amanda; Klaunig, Mallory J.; O'Donnell, Brian F.; Puce, Aina; Hetrick, William P.

    2015-01-01

    White matter abnormalities in schizophrenia have been revealed by many imaging techniques and analysis methods. One of the findings by diffusion tensor imaging is a decrease in fractional anisotropy (FA), which is an indicator of white matter integrity. On the other hand, elevation of metabolic rate in white matter was observed from positron emission tomography (PET) studies. In this report, we aim to compare the two structural and functional effects on the same subjects. Our comparison is ba...

  10. Effects of Aerobic Capacity on Thrombin-Induced Hydrocephalus and White Matter Injury.

    Science.gov (United States)

    Ni, Wei; Gao, Feng; Zheng, Mingzhe; Koch, Lauren G; Britton, Steven L; Keep, Richard F; Xi, Guohua; Hua, Ya

    2016-01-01

    We have previously shown that intracerebral hemorrhage-induced brain injury is less in rats bred for high aerobic capacity (high capacity runners; HCR) compared with those bred for low aerobic capacity (low capacity runners; LCRs). Thrombin, an essential component in the coagulation cascade, is produced after cerebral hemorrhage. Intraventricular injection of thrombin causes significant hydrocephalus and white matter damage. In the present study, we examined the effect of exercise capacity on thrombin-induced hydrocephalus and white matter damage. Mid-aged (13-month-old) female LCRs (n = 13) and HCRs (n = 12) rats were used in this study. Rats received an intraventricular injection of thrombin (3 U, 50 μl). All rats underwent magnetic resonance imaging (MRI) at 24 h and were then euthanized for brain histology and Western blot. The mortalities were 20 % in LCRs and 33 % in HCRs after thrombin injection (p > 0.05). No rats died after saline injection. Intraventricular thrombin injection resulted in hydrocephalus and periventricular white matter damage as determined on MRI. In LCR rats, thrombin induced significant ventricle enlargement (23.0 ± 2.3 vs12.8 ± 1.9 mm(3) in LCR saline group; p hydrocephalus in rats with low aerobic capacity. A differential effect of thrombin may contribute to differences in the effects of cerebral hemorrhage with aerobic capacity.

  11. Magnetic resonance imaging of white matter diseases of prematurity

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Mary A.; Supramaniam, Veena; Ederies, Ashraf; Chew, Andrew; Anjari, Mustafa; Counsell, Serena [Imperial College, Hammersmith Hospital, Robert Steiner MR Unit, MRC Clinical Sciences Centre, London (United Kingdom); Bassi, Laura; Groppo, Michela; Ramenghi, Luca A. [University of Milan, NICU, Institute of Pediatrics and Neonatology, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan (Italy)

    2010-06-15

    Periventricular leucomalacia (PVL) and parenchymal venous infarction complicating germinal matrix/intraventricular haemorrhage have long been recognised as the two significant white matter diseases responsible for the majority of cases of cerebral palsy in survivors of preterm birth. However, more recent studies using magnetic resonance imaging to assess the preterm brain have documented two new appearances, adding to the spectrum of white matter disease of prematurity: punctate white matter lesions, and diffuse excessive high signal intensity (DEHSI). These appear to be more common than PVL but less significant in terms of their impact on individual neurodevelopment. They may, however, be associated with later cognitive and behavioural disorders known to be common following preterm birth. It remains unclear whether PVL, punctate lesions, and DEHSI represent a continuum of disorders occurring as a result of a similar injurious process to the developing white matter. This review discusses the role of MR imaging in investigating these three disorders in terms of aetiology, pathology, and outcome. (orig.)

  12. File list: His.Neu.10.AllAg.White_Matter [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.White_Matter hg19 Histone Neural White Matter SRX998282,SRX1096828...,SRX998280,SRX1096827 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.10.AllAg.White_Matter.bed ...

  13. File list: His.Neu.20.AllAg.White_Matter [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.White_Matter hg19 Histone Neural White Matter SRX998282,SRX1096828...,SRX998280,SRX1096827 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.20.AllAg.White_Matter.bed ...

  14. File list: His.Neu.05.AllAg.White_Matter [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.White_Matter hg19 Histone Neural White Matter SRX998282,SRX998280,...SRX1096828,SRX1096827 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.05.AllAg.White_Matter.bed ...

  15. File list: His.Neu.50.AllAg.White_Matter [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.White_Matter hg19 Histone Neural White Matter SRX998282,SRX1096828...,SRX998280,SRX1096827 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.50.AllAg.White_Matter.bed ...

  16. Sex-related difference in human white matter volumes studied: Inspection of the corpus callosum and other white matter by VBM

    Science.gov (United States)

    Shiino, Akihiko; Chen, Yen-Wei; Tanigaki, Kenji; Yamada, Atsushi; Vigers, Piers; Watanabe, Toshiyuki; Tooyama, Ikuo; Akiguchi, Ichiro

    2017-01-01

    It has been contended that any observed difference of the corpus callosum (CC) size between men and women is not sex-related but brain-size-related. A recent report, however, showed that the midsagittal CC area was significantly larger in women in 37 brain-size-matched pairs of normal young adults. Since this constituted strong evidence of sexual dimorphism and was obtained from publicly available data in OASIS, we examined volume differences within the CC and in other white matter using voxel-based morphometry (VBM). We created a three-dimensional region of interest of the CC and measured its volume. The VBM statistics were analyzed by permutation test and threshold-free cluster enhancement (TFCE) with the significance levels at FWER women in the same 37 brain-size-matched pairs. We found that the CC genu was the subregion showing the most significant sex-related difference. We also found that white matter in the bilateral anterior frontal regions and the left lateral white matter near to Broca’s area were larger in women, whereas there were no significant larger regions in men. Since we used brain-size-matched subjects, our results gave strong volumetric evidence of localized sexual dimorphism of white matter.

  17. White matter integrity deficits in prefrontal-amygdala pathways in Williams syndrome.

    Science.gov (United States)

    Avery, Suzanne N; Thornton-Wells, Tricia A; Anderson, Adam W; Blackford, Jennifer Urbano

    2012-01-16

    Williams syndrome is a neurodevelopmental disorder associated with significant non-social fears. Consistent with this elevated non-social fear, individuals with Williams syndrome have an abnormally elevated amygdala response when viewing threatening non-social stimuli. In typically-developing individuals, amygdala activity is inhibited through dense, reciprocal white matter connections with the prefrontal cortex. Neuroimaging studies suggest a functional uncoupling of normal prefrontal-amygdala inhibition in individuals with Williams syndrome, which might underlie both the extreme amygdala activity and non-social fears. This functional uncoupling might be caused by structural deficits in underlying white matter pathways; however, prefrontal-amygdala white matter deficits have yet to be explored in Williams syndrome. We used diffusion tensor imaging to investigate prefrontal-amygdala white matter integrity differences in individuals with Williams syndrome and typically-developing controls with high levels of non-social fear. White matter pathways between the amygdala and several prefrontal regions were isolated using probabilistic tractography. Within each pathway, we tested for between-group differences in three measures of white matter integrity: fractional anisotropy (FA), radial diffusivity (RD), and parallel diffusivity (λ(1)). Individuals with Williams syndrome had lower FA, compared to controls, in several of the prefrontal-amygdala pathways investigated, indicating a reduction in white matter integrity. Lower FA in Williams syndrome was explained by significantly higher RD, with no differences in λ(1), suggestive of lower fiber density or axon myelination in prefrontal-amygdala pathways. These results suggest that deficits in the structural integrity of prefrontal-amygdala white matter pathways might underlie the increased amygdala activity and extreme non-social fears observed in Williams syndrome. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Comparison of grey matter and metabolic reductions in frontotemporal dementia using FDG-PET and voxel-based morphometric MR studies

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Tomonori; Uemura, Takafumi; Miyamoto, Naokazu; Yoshikawa, Toshiki; Kono, Atsushi K. [Hyogo Brain and Heart Center, Department of Radiology and Nuclear Medicine, Himeji, Hyogo (Japan); Ishii, Kazunari [Hyogo Brain and Heart Center, Department of Radiology and Nuclear Medicine, Himeji, Hyogo (Japan); Hyogo Institute for Aging Brain and Cognitive Disorders, Division of Neuroimaging Research, Himeji, Hyogo (Japan); Mori, Etsuro [Hyogo Institute for Aging Brain and Cognitive Disorders, Division of Clinical Neurosciences, Himeji, Hyogo (Japan); Tohoku University Graduate School of Medicine, Behavioral Neurology and Cognitive Neuroscience, Sendai, Miyagi (Japan)

    2008-12-15

    The aim of this study was to investigate the regional differences between the morphologic and functional changes in the same patients with frontotemporal dementia (FTD) using statistical parametric mapping and voxel-based morphometry (VBM). Thirteen FTD patients (mean age, 64.9 years old; mean MMSE score, 17.7), 20 sex-matched Alzheimer's disease (AD) patients (mean age, 65.0 years old; mean MMSE score, 17.5), and 20 normal volunteers (mean age, 65.2 years old; mean MMSE score, 29.0) underwent both [{sup 18}F]FDG positron emission tomography and three-dimensional spoiled gradient echo MRI. Statistical parametric mapping was used to conduct a VBM analysis of the morphologic data, which were compared voxel by voxel with the results of a similar analysis of glucose metabolic data. FTD patients showed decreased grey matter volume and decreased glucose metabolism in the frontal lobe and anterior temporal lobe. In addition, there was a clear asymmetry in grey matter volume in FTD patients by the VBM analysis while the glucose metabolic data showed little asymmetry. In AD patients, glucose metabolic reduction occurred in the bilateral posterior cingulate gyri and parietal lobules while grey matter density decreased the least in the same patients. In FTD, metabolic and morphologic changes occur in the bilateral frontal lobe and temporal lobe with a limited asymmetry whereas there was considerable discordance in the AD group. (orig.)

  19. Anisotropic diffusion within human white matter

    International Nuclear Information System (INIS)

    Chenevert, T.L.; Brunberg, J.A.; Pipe, J.G.

    1990-01-01

    This paper reports on measurements performed to assess the impact of fiber orientation on the apparent diffusion coefficient of human white matter in vivo. Orthogonal section selection pulses and strong motion sensitization gradient pulses were used for localized diffusion measurement along an anteroposteriorly oriented 1 x 1 cm tissue column in the left cerebral hemisphere. This region was selected since white matter fiber orientations are reasonably well defined. Independent acquisitions with motion sensitivity along anteroposterior and right-left directions allowed study of diffusion anisotropy. Motion artifacts were minimized by magnitude summation after one-dimensional Fourier transform of frequency-encoded echoes; consequently, cardiac gating was not required. Five normal volunteers were studied on a 1.5-T clinical MR system

  20. Abnormalities in white matter microstructure associated with chronic ketamine use.

    Science.gov (United States)

    Edward Roberts, R; Curran, H Valerie; Friston, Karl J; Morgan, Celia J A

    2014-01-01

    Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist that has been found to induce schizophrenia-type symptoms in humans and is a potent and fast-acting antidepressant. It is also a relatively widespread drug of abuse, particularly in China and the UK. Acute administration has been well characterized, but the effect of extended periods of ketamine use-on brain structure in humans-remains poorly understood. We measured indices of white matter microstructural integrity and connectivity in the brain of 16 ketamine users and 16 poly-drug-using controls, and we used probabilistic tractography to quantify changes in corticosubcortical connectivity associated with ketamine use. We found a reduction in the axial diffusivity profile of white matter in a right hemisphere network of white matter regions in ketamine users compared with controls. Within the ketamine-user group, we found a significant positive association between the connectivity profile between the caudate nucleus and the lateral prefrontal cortex and dissociative experiences. These findings suggest that chronic ketamine use may be associated with widespread disruption of white matter integrity, and white matter pathways between subcortical and prefrontal cortical areas may in part predict individual differences in dissociative experiences due to ketamine use.

  1. Diffusion-weighted magnetic resonance imaging of cerebral white matter development

    International Nuclear Information System (INIS)

    Prayer, Daniela.; Prayer, Lucas

    2003-01-01

    Diffusion-weighted magnetic resonance imaging (DWI) has become a sensitive tool to monitor white matter development. Different applications of diffusion-weighted techniques provide information about premyelinating, myelinating, and postmyelinating states of white matter maturation. Mirroring maturational processes on the cellular level, DWI has to be regarded as a morphological method as well as a functional instrument, giving insight into molecular processes during the formation of axons and myelin sheets and into the steric arrangement of white matter tracts the formation of which is strongly influenced by their function

  2. Diffusion-weighted magnetic resonance imaging of cerebral white matter development

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela. E-mail: daniela.prayer@univie.ac.at; Prayer, Lucas

    2003-03-01

    Diffusion-weighted magnetic resonance imaging (DWI) has become a sensitive tool to monitor white matter development. Different applications of diffusion-weighted techniques provide information about premyelinating, myelinating, and postmyelinating states of white matter maturation. Mirroring maturational processes on the cellular level, DWI has to be regarded as a morphological method as well as a functional instrument, giving insight into molecular processes during the formation of axons and myelin sheets and into the steric arrangement of white matter tracts the formation of which is strongly influenced by their function.

  3. White matter integrity in kleptomania: A pilot study

    OpenAIRE

    Grant, Jon E.; Correia, Stephen; Brennan-Krohn, Thea

    2006-01-01

    This study's goal was to examine microstructural organization of frontal white matter in kleptomania. Ten females with DSM-IV kleptomania and 10 female controls underwent diffusion tensor imaging. Inferior frontal white matter was the a priori region of interest. Trace and fractional anisotropy (FA) were also calculated for frontal and posterior cortical regions in both subject groups. Kleptomania subjects had significantly higher mean frontal Trace, and significantly lower mean frontal FA th...

  4. White matter deficits in psychopathic offenders and correlation with factor structure.

    Directory of Open Access Journals (Sweden)

    Sylco S Hoppenbrouwers

    Full Text Available Psychopathic offenders show a persistent pattern of emotional unresponsivity to the often horrendous crimes they perpetrate. Recent studies have related psychopathy to alterations in white matter. Therefore, diffusion tensor imaging followed by tract-based spatial statistics (TBSS analysis in 11 psychopathic offenders matched to 11 healthy controls was completed. Fractional anisotropy was calculated within each voxel and comparisons were made between groups using a permutation test. Any clusters of white matter voxels different between groups were submitted to probabilistic tractography. Significant differences in fractional anisotropy were found between psychopathic offenders and healthy controls in three main white matter clusters. These three clusters represented two major networks: an amygdalo-prefrontal network, and a striato-thalamo-frontal network. The interpersonal/affective component of the PCL-R correlated with white matter deficits in the orbitofrontal cortex and frontal pole whereas the antisocial component correlated with deficits in the striato-thalamo-frontal network. In addition to replicating earlier work concerning disruption of an amygdala-prefrontal network, we show for the first time that white matter integrity in a striato-thalamo-frontal network is disrupted in psychopathic offenders. The novelty of our findings lies in the two dissociable white matter networks that map directly onto the two major factors of psychopathy.

  5. Gray matter and white matter abnormalities in online game addiction

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Chuan-Bo, E-mail: send007@163.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); School of Neurosurgery, Anhui Medical University, 81 Meishang Road, Hefei, Anhui Province 230032 (China); Qian, Ruo-Bing, E-mail: rehomail@163.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Ahui Province 230001 (China); Fu, Xian-Ming, E-mail: 506537677@qq.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Ahui Province 230001 (China); Lin, Bin, E-mail: 274722758@qq.com [School of Neurosurgery, Anhui Medical University, 81 Meishang Road, Hefei, Anhui Province 230032 (China); Han, Xiao-Peng, E-mail: hanxiaopeng@163.com [Department of Psychology, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Niu, Chao-Shi, E-mail: niuchaoshi@163.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Ahui Province 230001 (China); Wang, Ye-Han, E-mail: wangyehan@163.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Ahui Province 230001 (China)

    2013-08-15

    Online game addiction (OGA) has attracted greater attention as a serious public mental health issue. However, there are only a few brain magnetic resonance imaging studies on brain structure about OGA. In the current study, we used voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) to investigate the microstructural changes in OGA and assessed the relationship between these morphology changes and the Young's Internet Addiction Scale (YIAS) scores within the OGA group. Compared with healthy subjects, OGA individuals showed significant gray matter atrophy in the right orbitofrontal cortex, bilateral insula, and right supplementary motor area. According to TBSS analysis, OGA subjects had significantly reduced FA in the right genu of corpus callosum, bilateral frontal lobe white matter, and right external capsule. Gray matter volumes (GMV) of the right orbitofrontal cortex, bilateral insula and FA values of the right external capsule were significantly positively correlated with the YIAS scores in the OGA subjects. Our findings suggested that microstructure abnormalities of gray and white matter were present in OGA subjects. This finding may provide more insights into the understanding of the underlying neural mechanisms of OGA.

  6. Gray matter and white matter abnormalities in online game addiction

    International Nuclear Information System (INIS)

    Weng, Chuan-Bo; Qian, Ruo-Bing; Fu, Xian-Ming; Lin, Bin; Han, Xiao-Peng; Niu, Chao-Shi; Wang, Ye-Han

    2013-01-01

    Online game addiction (OGA) has attracted greater attention as a serious public mental health issue. However, there are only a few brain magnetic resonance imaging studies on brain structure about OGA. In the current study, we used voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) to investigate the microstructural changes in OGA and assessed the relationship between these morphology changes and the Young's Internet Addiction Scale (YIAS) scores within the OGA group. Compared with healthy subjects, OGA individuals showed significant gray matter atrophy in the right orbitofrontal cortex, bilateral insula, and right supplementary motor area. According to TBSS analysis, OGA subjects had significantly reduced FA in the right genu of corpus callosum, bilateral frontal lobe white matter, and right external capsule. Gray matter volumes (GMV) of the right orbitofrontal cortex, bilateral insula and FA values of the right external capsule were significantly positively correlated with the YIAS scores in the OGA subjects. Our findings suggested that microstructure abnormalities of gray and white matter were present in OGA subjects. This finding may provide more insights into the understanding of the underlying neural mechanisms of OGA

  7. Gray matter and white matter abnormalities in online game addiction.

    Science.gov (United States)

    Weng, Chuan-Bo; Qian, Ruo-Bing; Fu, Xian-Ming; Lin, Bin; Han, Xiao-Peng; Niu, Chao-Shi; Wang, Ye-Han

    2013-08-01

    Online game addiction (OGA) has attracted greater attention as a serious public mental health issue. However, there are only a few brain magnetic resonance imaging studies on brain structure about OGA. In the current study, we used voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) to investigate the microstructural changes in OGA and assessed the relationship between these morphology changes and the Young's Internet Addiction Scale (YIAS) scores within the OGA group. Compared with healthy subjects, OGA individuals showed significant gray matter atrophy in the right orbitofrontal cortex, bilateral insula, and right supplementary motor area. According to TBSS analysis, OGA subjects had significantly reduced FA in the right genu of corpus callosum, bilateral frontal lobe white matter, and right external capsule. Gray matter volumes (GMV) of the right orbitofrontal cortex, bilateral insula and FA values of the right external capsule were significantly positively correlated with the YIAS scores in the OGA subjects. Our findings suggested that microstructure abnormalities of gray and white matter were present in OGA subjects. This finding may provide more insights into the understanding of the underlying neural mechanisms of OGA. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Financial literacy is associated with white matter integrity in old age.

    Science.gov (United States)

    Han, S Duke; Boyle, Patricia A; Arfanakis, Konstantinos; Fleischman, Debra; Yu, Lei; James, Bryan D; Bennett, David A

    2016-04-15

    Financial literacy, the ability to understand, access, and utilize information in ways that contribute to optimal financial outcomes, is important for independence and wellbeing in old age. We previously reported that financial literacy is associated with greater functional connectivity between brain regions in old age. Here, we tested the hypothesis that higher financial literacy would be associated with greater white matter integrity in old age. Participants included 346 persons without dementia (mean age=81.36, mean education=15.39, male/female=79/267, mean MMSE=28.52) from the Rush Memory and Aging Project. Financial literacy was assessed using a series of questions imbedded as part of an ongoing decision making study. White matter integrity was assessed with diffusion anisotropy measured with diffusion tensor magnetic resonance imaging (DTI). We tested the hypothesis that higher financial literacy is associated with higher diffusion anisotropy in white matter, adjusting for the effects of age, education, sex, and white matter hyperintense lesions. We then repeated the analysis also adjusting for cognitive function. Analyses revealed regions with significant positive associations between financial literacy and diffusion anisotropy, and many remained significant after accounting for cognitive function. White matter tracts connecting right hemisphere temporal-parietal brain regions were particularly implicated. Greater financial literacy is associated with higher diffusion anisotropy in white matter of nondemented older adults after adjusting for important covariates. These results suggest that financial literacy is positively associated with white matter integrity in old age. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. The dimensionality of between-person differences in white matter microstructure in old age.

    Science.gov (United States)

    Lövdén, Martin; Laukka, Erika Jonsson; Rieckmann, Anna; Kalpouzos, Grégoria; Li, Tie-Qiang; Jonsson, Tomas; Wahlund, Lars-Olof; Fratiglioni, Laura; Bäckman, Lars

    2013-06-01

    Between-person differences in white matter microstructure may partly generalize across the brain and partly play out differently for distinct tracts. We used diffusion-tensor imaging and structural equation modeling to investigate this issue in a sample of 260 adults aged 60-87 years. Mean fractional anisotropy and mean diffusivity of seven white matter tracts in each hemisphere were quantified. Results showed good fit of a model positing that individual differences in white matter microstructure are structured according to tracts. A general factor, although accounting for variance in the measures, did not adequately represent the individual differences. This indicates the presence of a substantial amount of tract-specific individual differences in white matter microstructure. In addition, individual differences are to a varying degree shared between tracts, indicating that general factors also affect white matter microstructure. Age-related differences in white matter microstructure were present for all tracts. Correlations among tract factors did not generally increase as a function of age, suggesting that aging is not a process with homogenous effects on white matter microstructure across the brain. These findings highlight the need for future research to examine whether relations between white matter microstructure and diverse outcomes are specific or general. Copyright © 2011 Wiley Periodicals, Inc.

  10. Quantification of diffusion tensor imaging in normal white matter maturation of early childhood using an automated processing pipeline

    International Nuclear Information System (INIS)

    Loh, K.B.; Ramli, N.; Tan, L.K.; Roziah, M.; Rahmat, K.; Ariffin, H.

    2012-01-01

    The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas. Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction. DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued. DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data. (orig.)

  11. Quantification of diffusion tensor imaging in normal white matter maturation of early childhood using an automated processing pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Loh, K.B.; Ramli, N.; Tan, L.K.; Roziah, M. [University of Malaya, Department of Biomedical Imaging, University Malaya Research Imaging Centre (UMRIC), Faculty of Medicine, Kuala Lumpur (Malaysia); Rahmat, K. [University of Malaya, Department of Biomedical Imaging, University Malaya Research Imaging Centre (UMRIC), Faculty of Medicine, Kuala Lumpur (Malaysia); University Malaya, Biomedical Imaging Department, Kuala Lumpur (Malaysia); Ariffin, H. [University of Malaya, Department of Paediatrics, Faculty of Medicine, Kuala Lumpur (Malaysia)

    2012-07-15

    The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas. Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction. DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued. DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data. (orig.)

  12. A semi-automated method for measuring thickness and white matter ...

    African Journals Online (AJOL)

    A semi-automated method for measuring thickness and white matter integrity of the corpus callosum. ... and interhemispheric differences. Future research will determine normal values for age and compare CC thickness with peripheral white matter volume loss in large groups of patients, using the semiautomated technique.

  13. Astrocytes are central in the pathomechanisms of vanishing white matter

    NARCIS (Netherlands)

    Dooves, Stephanie; Bugiani, Marianna; Postma, Nienke L.; Polder, Emiel; Land, Niels; Horan, Stephen T.; van Deijk, Anne-Lieke F.; van de Kreeke, Aleid; Jacobs, Gerbren; Vuong, Caroline; Klooster, Jan; Kamermans, Maarten; Wortel, Joke; Loos, Maarten; Wisse, Lisanne E.; Scheper, Gert C.; Abbink, Truus E. M.; Heine, Vivi M.; van der Knaap, Marjo S.

    2016-01-01

    Vanishing white matter (VWM) is a fatal leukodystrophy that is caused by mutations in genes encoding subunits of eukaryotic translation initiation factor 2B (eIF2B). Disease onset and severity are codetermined by genotype. White matter astrocytes and oligodendrocytes are almost exclusively affected;

  14. White matter microstructure damage in tremor-dominant Parkinson's disease patients

    International Nuclear Information System (INIS)

    Luo, ChunYan; Song, Wei; Chen, Qin; Yang, Jing; Shang, Hui-Fang; Gong, QiYong

    2017-01-01

    Resting tremor is one of the cardinal motor features of Parkinson's disease (PD). Several lines of evidence suggest resting tremor may have different underlying pathophysiological processes from those of bradykinesia and rigidity. The current study aims to identify white matter microstructural abnormalities associated with resting tremor in PD. We recruited 60 patients with PD (30 with tremor-dominant PD and 30 with nontremor-dominant PD) and 26 normal controls. All participants underwent clinical assessment and diffusion tensor MRI. We used tract-based spatial statistics to investigate white matter integrity across the entire white matter tract skeleton. Compared with both healthy controls and the nontremor-dominant PD patients, the tremor-dominant PD patients were characterized by increased mean diffusivity (MD) and axial diffusivity (AD) along multiple white matter tracts, mainly involving the cerebello-thalamo-cortical (CTC) pathway. The mean AD value in clusters with significant difference was correlated with resting tremor score in the tremor-dominant PD patients. There was no significant difference between the nontremor-dominant PD patients and controls. Our results support the notion that resting tremor in PD is a distinct condition in which significant microstructural white matter changes exist and provide evidence for the involvement of the CTC in tremor genesis of PD. (orig.)

  15. Cognitive processing speed in older adults: relationship with white matter integrity.

    Directory of Open Access Journals (Sweden)

    Geoffrey A Kerchner

    Full Text Available Cognitive processing slows with age. We sought to determine the importance of white matter integrity, assessed by diffusion tensor imaging (DTI, at influencing cognitive processing speed among normal older adults, assessed using a novel battery of computerized, non-verbal, choice reaction time tasks. We studied 131 cognitively normal adults aged 55-87 using a cross-sectional design. Each participant underwent our test battery, as well as MRI with DTI. We carried out cross-subject comparisons using tract-based spatial statistics. As expected, reaction time slowed significantly with age. In diffuse areas of frontal and parietal white matter, especially the anterior corpus callosum, fractional anisotropy values correlated negatively with reaction time. The genu and body of the corpus callosum, superior longitudinal fasciculus, and inferior fronto-occipital fasciculus were among the areas most involved. This relationship was not explained by gray or white matter atrophy or by white matter lesion volume. In a statistical mediation analysis, loss of white matter integrity mediated the relationship between age and cognitive processing speed.

  16. Colour-coded fractional anisotropy images: differential visualisation of white-matter tracts - preliminary experience

    International Nuclear Information System (INIS)

    Murata, T.; Higano, S.; Tamura, H.; Mugikura, S.; Takahashi, S.

    2002-01-01

    Diffusion-tensor analysis allows quantitative assessment of diffusion anisotropy. Fractional anisotropy (FA) is commonly used to quantify anisotropy. One of the limitations of FA imaging is, however, that it does not contain information about the directionality of anisotropy and it is therefore difficult to identify white-matter tracts on FA images. Our purpose was to describe a simple method of making composite images containing information about both magnitude and direction of diffusion anisotropy. The composite colour-coded FA images enabled us to identify different adjacent fibre bundles of similar degrees of diffusion anisotropy, and might be helpful in assessment of these fasciculi. (orig.)

  17. Volumetric analysis of the normal infant brain and in intrauterine growth retardation

    DEFF Research Database (Denmark)

    Toft, P B; Leth, H; Ring, P B

    1995-01-01

    and the volumes were determined by encircling each structure of interest on every slice. Segmentation into grey matter, white matter and CSF was done by semi-automatic discriminant analysis. Growth charts for the cerebrum, cerebellum, corpora striata, thalami, ventricles, and grey and white matter are provided...... for infants with appropriate birth weight. The striatal (P = 0.02) and thalamic (P matter to white matter (G/W-ratio) increased (P = 0.01). In the neonatal patients, brain volumes were independently associated...... growth retardation reduces grey matter volume more than white matter....

  18. A more randomly organized grey matter network is associated with deteriorating language and global cognition in individuals with subjective cognitive decline.

    Science.gov (United States)

    Verfaillie, Sander C J; Slot, Rosalinde E R; Dicks, Ellen; Prins, Niels D; Overbeek, Jozefien M; Teunissen, Charlotte E; Scheltens, Philip; Barkhof, Frederik; van der Flier, Wiesje M; Tijms, Betty M

    2018-03-30

    Grey matter network disruptions in Alzheimer's disease (AD) are associated with worse cognitive impairment cross-sectionally. Our aim was to investigate whether indications of a more random network organization are associated with longitudinal decline in specific cognitive functions in individuals with subjective cognitive decline (SCD). We included 231 individuals with SCD who had annually repeated neuropsychological assessment (3 ± 1 years; n = 646 neuropsychological investigations) available from the Amsterdam Dementia Cohort (54% male, age: 63 ± 9, MMSE: 28 ± 2). Single-subject grey matter networks were extracted from baseline 3D-T1 MRI scans and we computed basic network (size, degree, connectivity density) and higher-order (path length, clustering, betweenness centrality, normalized path length [lambda] and normalized clustering [gamma]) parameters at whole brain and/or regional levels. We tested associations of network parameters with baseline and annual cognition (memory, attention, executive functioning, language composite scores, and global cognition [all domains with MMSE]) using linear mixed models, adjusted for age, sex, education, scanner and total gray matter volume. Lower network size was associated with steeper decline in language (β ± SE = 0.12 ± 0.05, p organized grey matter network was associated with a steeper decline of cognitive functioning, possibly indicating the start of cognitive impairment. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  19. Age-related cerebral white matter changes on computed tomography

    International Nuclear Information System (INIS)

    Fukuda, Hitoshi; Kobayashi, Shotai; Koide, Hiromi; Yamaguchi, Shuhei; Okada, Kazunori; Shimote, Kouichi; Tsunematsu, Tokugoro

    1989-01-01

    Changes of cerebral white matter on computed cranial tomography related to aging were studied in 70 subjects aged 30 to 94 years. The subjects had no histories of cerebrovascular accidents and no abnormalities in the central nervous system were shown by physical examinations and CT scans. We measured the average attenuation values (CT numbers) of each elliptical region (165 pixels, 0.39cm 2 ) in the bilateral thalamus and twelve areas of deep white matter. Multiple regression analysis was used to assess the effects of age, cranial size and cranial bone CT numbers on the brain CT numbers. We also studied the association between brain CT numbers and brain atrophy, hypertension, diabetes mellitus. CT numbers of frontal white matter surrounding anterior horns decreased with aging in 70 subjects aged 30 to 94 years. No significant correlation between age and brain CT numbers was found in any other region by multivariate analysis, because of the prominent effect of cranial bone CT numbers on brain CT numbers. Although no age-related changes of white matter CT numbers was found in 41 subjects aged 30 to 65 years, there were significant negative correlations between age and white matter CT numbers at all regions in 29 subjects aged 66 to 94 years. Brain atrophy was associated with brain CT numbers. No association was found for hypertension or diabetes mellitus. Brain CT numbers decreased with aging even in neurologically healthy persons in older age. Brain CT numbers also decreased as cerebral atrophy advanced. (author)

  20. Age-related cerebral white matter changes on computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hitoshi; Kobayashi, Shotai; Koide, Hiromi; Yamaguchi, Shuhei; Okada, Kazunori; Shimote, Kouichi; Tsunematsu, Tokugoro

    1989-01-01

    Changes of cerebral white matter on computed cranial tomography related to aging were studied in 70 subjects aged 30 to 94 years. The subjects had no histories of cerebrovascular accidents and no abnormalities in the central nervous system were shown by physical examinations and CT scans. We measured the average attenuation values (CT numbers) of each elliptical region (165 pixels, 0.39cm/sup 2/) in the bilateral thalamus and twelve areas of deep white matter. Multiple regression analysis was used to assess the effects of age, cranial size and cranial bone CT numbers on the brain CT numbers. We also studied the association between brain CT numbers and brain atrophy, hypertension, diabetes mellitus. CT numbers of frontal white matter surrounding anterior horns decreased with aging in 70 subjects aged 30 to 94 years. No significant correlation between age and brain CT numbers was found in any other region by multivariate analysis, because of the prominent effect of cranial bone CT numbers on brain CT numbers. Although no age-related changes of white matter CT numbers was found in 41 subjects aged 30 to 65 years, there were significant negative correlations between age and white matter CT numbers at all regions in 29 subjects aged 66 to 94 years. Brain atrophy was associated with brain CT numbers. No association was found for hypertension or diabetes mellitus. Brain CT numbers decreased with aging even in neurologically healthy persons in older age. Brain CT numbers also decreased as cerebral atrophy advanced. (author).

  1. Cellular and ultrastructural characterization of the grey-morph phenotype in southern right whales (Eubalaena australis).

    Science.gov (United States)

    Eroh, Guy D; Clayton, Fred C; Florell, Scott R; Cassidy, Pamela B; Chirife, Andrea; Marón, Carina F; Valenzuela, Luciano O; Campbell, Michael S; Seger, Jon; Rowntree, Victoria J; Leachman, Sancy A

    2017-01-01

    Southern right whales (SRWs, Eubalena australis) are polymorphic for an X-linked pigmentation pattern known as grey morphism. Most SRWs have completely black skin with white patches on their bellies and occasionally on their backs; these patches remain white as the whale ages. Grey morphs (previously referred to as partial albinos) appear mostly white at birth, with a splattering of rounded black marks; but as the whales age, the white skin gradually changes to a brownish grey color. The cellular and developmental bases of grey morphism are not understood. Here we describe cellular and ultrastructural features of grey-morph skin in relation to that of normal, wild-type skin. Melanocytes were identified histologically and counted, and melanosomes were measured using transmission electron microscopy. Grey-morph skin had fewer melanocytes when compared to wild-type skin, suggesting reduced melanocyte survival, migration, or proliferation in these whales. Grey-morph melanocytes had smaller melanosomes relative to wild-type skin, normal transport of melanosomes to surrounding keratinocytes, and normal localization of melanin granules above the keratinocyte nuclei. These findings indicate that SRW grey-morph pigmentation patterns are caused by reduced numbers of melanocytes in the skin, as well as by reduced amounts of melanin production and/or reduced sizes of mature melanosomes. Grey morphism is distinct from piebaldism and albinism found in other species, which are genetic pigmentation conditions resulting from the local absence of melanocytes, or the inability to synthesize melanin, respectively.

  2. Regional diffusion changes of cerebral grey matter during normal aging-A fluid-inversion prepared diffusion imaging study

    International Nuclear Information System (INIS)

    Ni Jianming; Chen Shuang; Liu Jianjun; Huang Gang; Shen Tianzhen; Chen Xingrong

    2010-01-01

    Background and purpose: Although diffusion characteristics of white matter (WM) and its aging effects have been well described in the literature, diffusion characteristics of grey matter (GM), especially the cortical GM, have not been fully evaluated. In the present study, we used the fluid-inversion prepared diffusion imaging (FLIPD) technique to determine if there are age-related water diffusivity changes in GM. Materials and methods: 120 healthy volunteers were recruited for our study. They were divided into three age groups: group one (20-39 years old), group two (40-59 years old) and group three (60 years or older). All patients were evaluated with MRI using FLIPD at 3.0 T. Apparent diffusion coefficient (ADC) values of the frontal GM, cingulate cortex and thalami were determined bilaterally by region-of-interest analysis. Results: Group three had significantly higher ADC values in both thalami and the left frontal GM compared to group two or group one. No ADC value difference was found among the three groups in the right frontal GM and bilateral cingulate cortex. There was a significant positive correlation between individual ADC values and age in both thalami and left frontal GM. For the cingulate cortex and the right frontal GM, ADC values did not correlate significantly with advancing age. Conclusion: Statistically significant age-related diffusion changes were observed in both thalami and the left frontal cortex. The data reported here may serve as a reference for future studies.

  3. Direct voxel-based comparisons between grey matter shrinkage and glucose hypometabolism in chronic alcoholism.

    Science.gov (United States)

    Ritz, Ludivine; Segobin, Shailendra; Lannuzel, Coralie; Boudehent, Céline; Vabret, François; Eustache, Francis; Beaunieux, Hélène; Pitel, Anne L

    2016-09-01

    Alcoholism is associated with widespread brain structural abnormalities affecting mainly the frontocerebellar and the Papez's circuits. Brain glucose metabolism has received limited attention, and few studies used regions of interest approach and showed reduced global brain metabolism predominantly in the frontal and parietal lobes. Even though these studies have examined the relationship between grey matter shrinkage and hypometabolism, none has performed a direct voxel-by-voxel comparison between the degrees of structural and metabolic abnormalities. Seventeen alcoholic patients and 16 control subjects underwent both structural magnetic resonance imaging and (18)F-2-fluoro-deoxy-glucose-positron emission tomography examinations. Structural abnormalities and hypometabolism were examined in alcoholic patients compared with control subjects using two-sample t-tests. Then, these two patterns of brain damage were directly compared with a paired t-test. Compared to controls, alcoholic patients had grey matter shrinkage and hypometabolism in the fronto-cerebellar circuit and several nodes of Papez's circuit. The direct comparison revealed greater shrinkage than hypometabolism in the cerebellum, cingulate cortex, thalamus and hippocampus and parahippocampal gyrus. Conversely, hypometabolism was more severe than shrinkage in the dorsolateral, premotor and parietal cortices. The distinct profiles of abnormalities found within the Papez's circuit, the fronto-cerebellar circuit and the parietal gyrus in chronic alcoholism suggest the involvement of different pathological mechanisms. © The Author(s) 2015.

  4. Exploring the multiple-hit hypothesis of preterm white matter damage using diffusion MRI

    Directory of Open Access Journals (Sweden)

    Madeleine L. Barnett

    2018-01-01

    Conclusion: This study suggests multiple perinatal risk factors have an independent association with diffuse white matter injury at term equivalent age and exposure to multiple perinatal risk factors exacerbates dMRI defined, clinically significant white matter injury. Our findings support the multiple hit hypothesis for preterm white matter injury.

  5. White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks

    Directory of Open Access Journals (Sweden)

    R. Guerrero

    2018-01-01

    Full Text Available White matter hyperintensities (WMH are a feature of sporadic small vessel disease also frequently observed in magnetic resonance images (MRI of healthy elderly subjects. The accurate assessment of WMH burden is of crucial importance for epidemiological studies to determine association between WMHs, cognitive and clinical data; their causes, and the effects of new treatments in randomized trials. The manual delineation of WMHs is a very tedious, costly and time consuming process, that needs to be carried out by an expert annotator (e.g. a trained image analyst or radiologist. The problem of WMH delineation is further complicated by the fact that other pathological features (i.e. stroke lesions often also appear as hyperintense regions. Recently, several automated methods aiming to tackle the challenges of WMH segmentation have been proposed. Most of these methods have been specifically developed to segment WMH in MRI but cannot differentiate between WMHs and strokes. Other methods, capable of distinguishing between different pathologies in brain MRI, are not designed with simultaneous WMH and stroke segmentation in mind. Therefore, a task specific, reliable, fully automated method that can segment and differentiate between these two pathological manifestations on MRI has not yet been fully identified. In this work we propose to use a convolutional neural network (CNN that is able to segment hyperintensities and differentiate between WMHs and stroke lesions. Specifically, we aim to distinguish between WMH pathologies from those caused by stroke lesions due to either cortical, large or small subcortical infarcts. The proposed fully convolutional CNN architecture, called uResNet, that comprised an analysis path, that gradually learns low and high level features, followed by a synthesis path, that gradually combines and up-samples the low and high level features into a class likelihood semantic segmentation. Quantitatively, the proposed CNN

  6. Damage to white matter bottlenecks contributes to language impairments after left hemispheric stroke

    Directory of Open Access Journals (Sweden)

    Joseph C. Griffis

    2017-01-01

    Full Text Available Damage to the white matter underlying the left posterior temporal lobe leads to deficits in multiple language functions. The posterior temporal white matter may correspond to a bottleneck where both dorsal and ventral language pathways are vulnerable to simultaneous damage. Damage to a second putative white matter bottleneck in the left deep prefrontal white matter involving projections associated with ventral language pathways and thalamo-cortical projections has recently been proposed as a source of semantic deficits after stroke. Here, we first used white matter atlases to identify the previously described white matter bottlenecks in the posterior temporal and deep prefrontal white matter. We then assessed the effects of damage to each region on measures of verbal fluency, picture naming, and auditory semantic decision-making in 43 chronic left hemispheric stroke patients. Damage to the posterior temporal bottleneck predicted deficits on all tasks, while damage to the anterior bottleneck only significantly predicted deficits in verbal fluency. Importantly, the effects of damage to the bottleneck regions were not attributable to lesion volume, lesion loads on the tracts traversing the bottlenecks, or damage to nearby cortical language areas. Multivariate lesion-symptom mapping revealed additional lesion predictors of deficits. Post-hoc fiber tracking of the peak white matter lesion predictors using a publicly available tractography atlas revealed evidence consistent with the results of the bottleneck analyses. Together, our results provide support for the proposal that spatially specific white matter damage affecting bottleneck regions, particularly in the posterior temporal lobe, contributes to chronic language deficits after left hemispheric stroke. This may reflect the simultaneous disruption of signaling in dorsal and ventral language processing streams.

  7. Increased White Matter Inflammation in Aging- and Alzheimer’s Disease Brain

    Directory of Open Access Journals (Sweden)

    Divya Raj

    2017-06-01

    Full Text Available Chronic neuroinflammation, which is primarily mediated by microglia, plays an essential role in aging and neurodegeneration. It is still unclear whether this microglia-induced neuroinflammation occurs globally or is confined to distinct brain regions. In this study, we investigated microglia activity in various brain regions upon healthy aging and Alzheimer’s disease (AD-related pathology in both human and mouse samples. In purified microglia isolated from aging mouse brains, we found a profound gene expression pattern related to pro-inflammatory processes, phagocytosis, and lipid homeostasis. Particularly in white matter microglia of 24-month-old mice, abundant expression of phagocytic markers including Mac-2, Axl, CD16/32, Dectin1, CD11c, and CD36 was detected. Interestingly, in white matter of human brain tissue the first signs of inflammatory activity were already detected during middle age. Thus quantification of microglial proteins, such as CD68 (commonly associated with phagocytosis and HLA-DR (associated with antigen presentation, in postmortem human white matter brain tissue showed an age-dependent increase in immunoreactivity already in middle-aged people (53.2 ± 2.0 years. This early inflammation was also detectable by non-invasive positron emission tomography imaging using [11C]-(R-PK11195, a ligand that binds to activated microglia. Increased microglia activity was also prominently present in the white matter of human postmortem early-onset AD (EOAD brain tissue. Interestingly, microglia activity in the white matter of late-onset AD (LOAD CNS was similar to that of the aged clinically silent AD cases. These data indicate that microglia-induced neuroinflammation is predominant in the white matter of aging mice and humans as well as in EOAD brains. This white matter inflammation may contribute to the progression of neurodegeneration, and have prognostic value for detecting the onset and progression of aging and neurodegeneration.

  8. The value of diffusion tensor imaging in the differential diagnosis of subcortical ischemic vascular dementia and Alzheimer's disease in patients with only mild white matter alterations on T2-weighted images

    International Nuclear Information System (INIS)

    Fu, Jian-Liang; Zhang, Ting; Chang, Cheng; Zhang, Yu-Zhen; Li, Wen-Bin

    2012-01-01

    Background: Diffusion tensor imaging (DTI) is a form of functional magnetic resonance imaging (MRI) that allows examination of the microstructural integrity of white matter in the brain. Dementia is a neurodegenerative disease, and DTI can provide indirect insights of the microstructural characteristics of brains in individuals with different forms of dementia. Purpose: To evaluate the value of DTI in the diagnosis and differential diagnosis of patients with subcortical ischemic vascular dementia (SIVD) and Alzheimer's disease (AD). Material and Methods: The study included 40 patients (20 AD patients and 20 SIVD patients) and 20 normal controls (NC). After routine MRI and DTI, fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were measured and compared in regions of interest (ROI). Results: Compared to NC and AD patients, SIVD patients had lower FA values and higher ADC values in the inferior-fronto-occipital fascicles (IFOF), genu of the corpus callosum (GCC), splenium of the corpus callosum (SCC), and superior longitudinal fasciculus (SLF). Compared to controls and SIVD patients, AD patients had lower FA values in the anterior frontal lobe, temporal lobe, hippocampus, IFOF, GCC, and CF; and higher ADC values in the temporal lobe and hippocampus. Conclusion: DTI can be used to estimate the white matter impairment in dementia patients. There were significant regional reductions of FA values and heightened ADC values in multiple regions in SIVD patients compared to AD patients. When compared with conventional MRI, DTI may provide a more objective method for the differential diagnosis of SIVD and AD disease patients who have only mild white matter alterations on T2-weighted imaging

  9. Progressive white-matter disease with primary cerebellar involvement: a separate entity?

    Energy Technology Data Exchange (ETDEWEB)

    Yalcinkaya, C. [Division of Child Neurology, Department of Neurology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul (Turkey); Arslanoglu, I. [Division of Endocrinology, Department of Paediatrics, Goeztepe Hospital, Istanbul (Turkey); Islak, C. [Division of Neuroradiology, Department of Radiology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul (Turkey); Aydin, A. [Division of Metabolic Disease, Department of Paediatrics, Cerrahpasa Medical Faculty, Istanbul University, Istanbul (Turkey); Boltshauser, E. [Division of Paediatric Neurology, University Children' s Hospital, Steinwiesstrasse 75, 8032 Zuerich (Switzerland)

    2002-09-01

    Although its metabolic basis has not yet been clarified, we report a progressive white-matter disease in a Turkish girl, starting in the cerebellum and spreading to supratentorial white matter. The onset was at the age of 2.5 years with diabetes insipidus, followed by ataxia and pyramidal signs resulting in loss of walking. Aqueduct stenosis was first recognised at the age of 8 years. To our knowledge, this MRI and clinical pattern does not correspond to a recognised, well-defined white-matter disease and may indicate a separate entity. (orig.)

  10. Progressive white-matter disease with primary cerebellar involvement: a separate entity?

    International Nuclear Information System (INIS)

    Yalcinkaya, C.; Arslanoglu, I.; Islak, C.; Aydin, A.; Boltshauser, E.

    2002-01-01

    Although its metabolic basis has not yet been clarified, we report a progressive white-matter disease in a Turkish girl, starting in the cerebellum and spreading to supratentorial white matter. The onset was at the age of 2.5 years with diabetes insipidus, followed by ataxia and pyramidal signs resulting in loss of walking. Aqueduct stenosis was first recognised at the age of 8 years. To our knowledge, this MRI and clinical pattern does not correspond to a recognised, well-defined white-matter disease and may indicate a separate entity. (orig.)

  11. Bilirubin and its oxidation products damage brain white matter

    Science.gov (United States)

    Lakovic, Katarina; Ai, Jinglu; D'Abbondanza, Josephine; Tariq, Asma; Sabri, Mohammed; Alarfaj, Abdullah K; Vasdev, Punarjot; Macdonald, Robert Loch

    2014-01-01

    Brain injury after intracerebral hemorrhage (ICH) occurs in cortex and white matter and may be mediated by blood breakdown products, including hemoglobin and heme. Effects of blood breakdown products, bilirubin and bilirubin oxidation products, have not been widely investigated in adult brain. Here, we first determined the effect of bilirubin and its oxidation products on the structure and function of white matter in vitro using brain slices. Subsequently, we determined whether these compounds have an effect on the structure and function of white matter in vivo. In all, 0.5 mmol/L bilirubin treatment significantly damaged both the function and the structure of myelinated axons but not the unmyelinated axons in brain slices. Toxicity of bilirubin in vitro was prevented by dimethyl sulfoxide. Bilirubin oxidation products (BOXes) may be responsible for the toxicity of bilirubin. In in vivo experiments, unmyelinated axons were found more susceptible to damage from bilirubin injection. These results suggest that unmyelinated axons may have a major role in white-matter damage in vivo. Since bilirubin and BOXes appear in a delayed manner after ICH, preventing their toxic effects may be worth investigating therapeutically. Dimethyl sulfoxide or its structurally related derivatives may have a potential therapeutic value at antagonizing axonal damage after hemorrhagic stroke. PMID:25160671

  12. Fractional anisotropy in white matter tracts of very-low-birth-weight infants

    Energy Technology Data Exchange (ETDEWEB)

    Dudink, Jeroen; Conneman, Nikk; Goudoever, Johannes van; Govaert, Paul [Erasmus MC-Sophia Children' s Hospital, Division of Neonatology, Department of Paediatrics, P.O. Box 2060, Rotterdam (Netherlands); Lequin, Maarten [Erasmus MC-Sophia Children' s Hospital, Division of Paediatrics, Department of Radiology, Rotterdam (Netherlands); Pul, Carola van [Maxima Medical Center, Department of Clinical Physics, Veldhoven (Netherlands); Buijs, Jan [Maxima Medical Center, Division of Neonatology, Department of Paediatrics, Veldhoven (Netherlands)

    2007-12-15

    Advances in neonatal intensive care have not yet reduced the high incidence of neurodevelopmental disability among very-low-birth-weight (VLBW) infants. As neurological deficits are related to white-matter injury, early detection is important. Diffusion tensor imaging (DTI) could be an excellent tool for assessment of white-matter injury. To provide DTI fractional anisotropy (FA) reference values for white-matter tracts of VLBW infants for clinical use. We retrospectively analysed DTI images of 28 VLBW infants (26-32 weeks gestational age) without evidence of white-matter abnormalities on conventional MRI sequences, and normal developmental outcome (assessed at age 1-3 years). For DTI an echoplanar sequence with diffusion gradient (b = 1,000 s/mm{sup 2}) applied in 25 non-collinear directions was used. We measured FA and apparent diffusion coefficient (ADC) of different white-matter tracts in the first 4 days of life. A statistically significant correlation was found between gestational age and FA of the posterior limb of the internal capsule in VLBW infants (r = 0.495, P<0.01). Values of FA and ADC were measured in white-matter tracts of VLBW infants. FA of the pyramidal tracts measured in the first few days after birth is related to gestational age. (orig.)

  13. Fractional anisotropy in white matter tracts of very-low-birth-weight infants

    International Nuclear Information System (INIS)

    Dudink, Jeroen; Conneman, Nikk; Goudoever, Johannes van; Govaert, Paul; Lequin, Maarten; Pul, Carola van; Buijs, Jan

    2007-01-01

    Advances in neonatal intensive care have not yet reduced the high incidence of neurodevelopmental disability among very-low-birth-weight (VLBW) infants. As neurological deficits are related to white-matter injury, early detection is important. Diffusion tensor imaging (DTI) could be an excellent tool for assessment of white-matter injury. To provide DTI fractional anisotropy (FA) reference values for white-matter tracts of VLBW infants for clinical use. We retrospectively analysed DTI images of 28 VLBW infants (26-32 weeks gestational age) without evidence of white-matter abnormalities on conventional MRI sequences, and normal developmental outcome (assessed at age 1-3 years). For DTI an echoplanar sequence with diffusion gradient (b = 1,000 s/mm 2 ) applied in 25 non-collinear directions was used. We measured FA and apparent diffusion coefficient (ADC) of different white-matter tracts in the first 4 days of life. A statistically significant correlation was found between gestational age and FA of the posterior limb of the internal capsule in VLBW infants (r = 0.495, P<0.01). Values of FA and ADC were measured in white-matter tracts of VLBW infants. FA of the pyramidal tracts measured in the first few days after birth is related to gestational age. (orig.)

  14. Experience-dependent plasticity in white matter microstructure: Reasoning training alters structural connectivity

    Directory of Open Access Journals (Sweden)

    Allyson P Mackey

    2012-08-01

    Full Text Available Diffusion tensor imaging (DTI techniques have made it possible to investigate white matter plasticity in humans. Changes in DTI measures, principally increases in fractional anisotropy (FA, have been observed following training programs as diverse as juggling, meditation, and working memory. Here, we sought to test whether three months of reasoning training could alter white matter microstructure. We recruited participants (n=23 who were enrolled in a course to prepare for the Law School Admission Test (LSAT, a test that places strong demands on reasoning skills, as well as age- and IQ-matched controls planning to take the LSAT in the future (n=22. DTI data were collected at two scan sessions scheduled three months apart. In trained participants but not controls, we observed decreases in radial diffusivity (RD in white matter connecting frontal cortices, and in mean diffusivity (MD within frontal and parietal lobe white matter. Further, participants exhibiting larger gains on the LSAT exhibited greater decreases in MD in the right internal capsule. In summary, reasoning training altered multiple measures of white matter structure in young adults. While the cellular underpinnings are unknown, these results provide evidence of experience-dependent white matter changes that may not be limited to myelination.

  15. Gray and white matter volume abnormalities in monozygotic and same-gender dizygotic twins discordant for schizophrenia

    DEFF Research Database (Denmark)

    Hilshoff, Hilleke E.; Brans, Rachel G. H.; van Haren, Neeltje E. M.

    2004-01-01

    BACKGROUND: Whole brain tissue volume decreases in schizophrenia have been related to both genetic risk factors and disease-related (possibly nongenetic) factors; however, whether genetic and environmental risk factors in the brains of patients with schizophrenia are differentially reflected...... in gray or white matter volume change is not known. METHODS: Magnetic resonance imaging (1.5 T) brain scans of 11 monozygotic and 11 same-gender dizygotic twin pairs discordant for schizophrenia were acquired and compared with 11 monozygotic and 11 same-gender dizygotic healthy control twin pairs. RESULTS......: Repeated-measures volume analysis of covariance revealed decreased whole brain volume in the patients with schizophrenia as compared with their co-twins and with healthy twin pairs. Decreased white matter volume was found in discordant twin pairs compared with healthy twin pairs, particularly...

  16. Altered White Matter Microstructure in Children with Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Nagel, Bonnie J.; Bathula, Deepti; Herting, Megan; Schmitt, Colleen; Kroenke, Christopher D.; Fair, Damien; Nigg, Joel T.

    2011-01-01

    Objective: Identification of biomarkers is a priority for attention-deficit/hyperactivity disorder (ADHD). Studies have documented macrostructural brain alterations in ADHD, but few have examined white matter microstructure, particularly in preadolescent children. Given dramatic white matter maturation across childhood, microstructural differences…

  17. Numerical transcoding proficiency in 10-year-old schoolchildren is associated with grey-matter interindividual differences: A voxel-based morphometry study

    Directory of Open Access Journals (Sweden)

    Amélie eLubin

    2013-04-01

    Full Text Available Are individual differences in numerical performance sustained by variations in grey matter volume in schoolchildren? To our knowledge, this challenging question for neuroeducation has not yet been investigated in typical development. We used the Voxel-Based Morphometry method to search for possible structural brain differences between two groups of 10-year-old schoolchildren (N=22 whose performance differed only in numerical transcoding between analog and symbolic systems. The results indicated that children with low numerical proficiency have less grey matter volume in the parietal (particularly in the left intraparietal sulcus and the bilateral angular gyri and occipito-temporal areas. All the identified regions have previously been shown to be functionally involved in transcoding between analog and symbolic numerical systems. Our data contribute to a better understanding of the intertwined relationships between mathematics learning and brain structure in healthy schoolchildren.

  18. Grey Matter Changes Associated with Heavy Cannabis Use: A Longitudinal sMRI Study

    Science.gov (United States)

    Cousijn, Janna; Vingerhoets, Wilhelmina A. M.; van den Brink, Wim; Wiers, Reinout W.; Meijer, Carin J.; Machielsen, Marise W. J.; Veltman, Dick J.; Goudriaan, Anneke E.; de Haan, Lieuwe

    2016-01-01

    Cannabis is the most frequently used illicit drug worldwide. Cross-sectional neuroimaging studies suggest that chronic cannabis exposure and the development of cannabis use disorders may affect brain morphology. However, cross-sectional studies cannot make a conclusive distinction between cause and consequence and longitudinal neuroimaging studies are lacking. In this prospective study we investigate whether continued cannabis use and higher levels of cannabis exposure in young adults are associated with grey matter reductions. Heavy cannabis users (N = 20, age baseline M = 20.5, SD = 2.1) and non-cannabis using healthy controls (N = 22, age baseline M = 21.6, SD = 2.45) underwent a comprehensive psychological assessment and a T1- structural MRI scan at baseline and 3 years follow-up. Grey matter volumes (orbitofrontal cortex, anterior cingulate cortex, insula, striatum, thalamus, amygdala, hippocampus and cerebellum) were estimated using the software package SPM (VBM-8 module). Continued cannabis use did not have an effect on GM volume change at follow-up. Cross-sectional analyses at baseline and follow-up revealed consistent negative correlations between cannabis related problems and cannabis use (in grams) and regional GM volume of the left hippocampus, amygdala and superior temporal gyrus. These results suggests that small GM volumes in the medial temporal lobe are a risk factor for heavy cannabis use or that the effect of cannabis on GM reductions is limited to adolescence with no further damage of continued use after early adulthood. Long-term prospective studies starting in early adolescence are needed to reach final conclusions. PMID:27224247

  19. Grey Matter Changes Associated with Heavy Cannabis Use: A Longitudinal sMRI Study.

    Directory of Open Access Journals (Sweden)

    Laura Koenders

    Full Text Available Cannabis is the most frequently used illicit drug worldwide. Cross-sectional neuroimaging studies suggest that chronic cannabis exposure and the development of cannabis use disorders may affect brain morphology. However, cross-sectional studies cannot make a conclusive distinction between cause and consequence and longitudinal neuroimaging studies are lacking. In this prospective study we investigate whether continued cannabis use and higher levels of cannabis exposure in young adults are associated with grey matter reductions. Heavy cannabis users (N = 20, age baseline M = 20.5, SD = 2.1 and non-cannabis using healthy controls (N = 22, age baseline M = 21.6, SD = 2.45 underwent a comprehensive psychological assessment and a T1- structural MRI scan at baseline and 3 years follow-up. Grey matter volumes (orbitofrontal cortex, anterior cingulate cortex, insula, striatum, thalamus, amygdala, hippocampus and cerebellum were estimated using the software package SPM (VBM-8 module. Continued cannabis use did not have an effect on GM volume change at follow-up. Cross-sectional analyses at baseline and follow-up revealed consistent negative correlations between cannabis related problems and cannabis use (in grams and regional GM volume of the left hippocampus, amygdala and superior temporal gyrus. These results suggests that small GM volumes in the medial temporal lobe are a risk factor for heavy cannabis use or that the effect of cannabis on GM reductions is limited to adolescence with no further damage of continued use after early adulthood. Long-term prospective studies starting in early adolescence are needed to reach final conclusions.

  20. Radiation dose reduction using 100-kVp and a sinogram-affirmed iterative reconstruction algorithm in adolescent head CT: Impact on grey-white matter contrast and image noise

    Energy Technology Data Exchange (ETDEWEB)

    Nagayama, Yasunori [Kumamoto City Hospital, Department of Radiology, Kumamoto (Japan); Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Nakaura, Takeshi; Yuki, Hideaki; Hirarta, Kenichiro; Kidoh, Masafumi; Oda, Seitaro; Utsunomiya, Daisuke; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Tsuji, Akinori; Urata, Joji; Furusawa, Mitsuhiro [Kumamoto City Hospital, Department of Radiology, Kumamoto (Japan)

    2017-07-15

    To retrospectively evaluate the image quality and radiation dose of 100-kVp scans with sinogram-affirmed iterative reconstruction (IR) for unenhanced head CT in adolescents. Sixty-nine patients aged 12-17 years underwent head CT under 120- (n = 34) or 100-kVp (n = 35) protocols. The 120-kVp images were reconstructed with filtered back-projection (FBP), 100-kVp images with FBP (100-kVp-F) and sinogram-affirmed IR (100-kVp-S). We compared the effective dose (ED), grey-white matter (GM-WM) contrast, image noise, and contrast-to-noise ratio (CNR) between protocols in supratentorial (ST) and posterior fossa (PS). We also assessed GM-WM contrast, image noise, sharpness, artifacts, and overall image quality on a four-point scale. ED was 46% lower with 100- than 120-kVp (p < 0.001). GM-WM contrast was higher, and image noise was lower, on 100-kVp-S than 120-kVp at ST (p < 0.001). CNR of 100-kVp-S was higher than of 120-kVp (p < 0.001). GM-WM contrast of 100-kVp-S was subjectively rated as better than of 120-kVp (p < 0.001). There were no significant differences in the other criteria between 100-kVp-S and 120-kVp (p = 0.072-0.966). The 100-kVp with sinogram-affirmed IR facilitated dramatic radiation reduction and better GM-WM contrast without increasing image noise in adolescent head CT. (orig.)

  1. The effects of white matter hyperintensities and amyloid deposition on Alzheimer dementia

    Directory of Open Access Journals (Sweden)

    Brian A. Gordon

    2015-01-01

    Conclusions: The amount of amyloid deposition and white matter damage independently predicts cognitive impairment. This suggests a diagnostic utility of qualitative white matter scales in addition to measuring amyloid levels.

  2. Episodic memory function is associated with multiple measures of white matter integrity in cognitive aging

    Directory of Open Access Journals (Sweden)

    Samuel Neal Lockhart

    2012-03-01

    Full Text Available Previous neuroimaging research indicates that white matter injury and integrity, measured respectively by white matter hyperintensities (WMH and fractional anisotropy (FA obtained from diffusion tensor imaging, differ with aging and cerebrovascular disease and are associated with episodic memory deficits in cognitively normal older adults. However, knowledge about tract-specific relationships between WMH, FA, and episodic memory in aging remains limited. We hypothesized that white matter connections between frontal cortex and subcortical structures as well as connections between frontal and temporo-parietal cortex would be most affected. In the current study, we examined relationships between WMH, FA and episodic memory in 15 young adults, 13 elders with minimal WMH and 15 elders with extensive WMH, using an episodic recognition memory test for object-color associations. Voxel-based statistics were used to identify voxel clusters where white matter measures were specifically associated with variations in episodic memory performance, and white matter tracts intersecting these clusters were analyzed to examine white matter-memory relationships. White matter injury and integrity measures were significantly associated with episodic memory in extensive regions of white matter, located predominantly in frontal, parietal, and subcortical regions. Template based tractography indicated that white matter injury, as measured by WMH, in the uncinate and inferior longitudinal fasciculi were significantly negatively associated with episodic memory performance. Other tracts such as thalamo-frontal projections, superior longitudinal fasciculus, and dorsal cingulum bundle demonstrated strong negative associations as well. The results suggest that white matter injury to multiple pathways, including connections of frontal and temporal cortex and frontal-subcortical white matter tracts, plays a critical role in memory differences seen in older individuals.

  3. Early and extensive spinal white matter involvement in neuromyelitis optica.

    Science.gov (United States)

    Hayashida, Shotaro; Masaki, Katsuhisa; Yonekawa, Tomomi; Suzuki, Satoshi O; Hiwatashi, Akio; Matsushita, Takuya; Watanabe, Mitsuru; Yamasaki, Ryo; Suenaga, Toshihiko; Iwaki, Toru; Murai, Hiroyuki; Kira, Jun-Ichi

    2017-05-01

    Studies of longitudinally extensive spinal cord lesions (LESCLs) in neuromyelitis optica (NMO) have focused on gray matter, where the relevant antigen, aquaporin-4 (AQP4), is abundant. Because spinal white matter pathology in NMO is not well characterized, we aimed to clarify spinal white matter pathology of LESCLs in NMO. We analyzed 50 spinal cord lesions from eleven autopsied NMO/NMO spectrum disorder (NMOSD) cases. We also evaluated LESCLs with three or fewer spinal cord attacks by 3-tesla MRI in 15 AQP4 antibody-positive NMO/NMOSD patients and in 15 AQP4 antibody-negative multiple sclerosis (MS) patients. Pathological analysis revealed seven cases of AQP4 loss and four predominantly demyelinating cases. Forty-four lesions from AQP4 loss cases involved significantly more frequently posterior columns (PC) and lateral columns (LC) than anterior columns (AC) (59.1%, 63.6%, and 34.1%, respectively). The posterior horn (PH), central portion (CP), and anterior horn (AH) were similarly affected (38.6%, 36.4% and 31.8%, respectively). Isolated perivascular inflammatory lesions with selective loss of astrocyte endfoot proteins, AQP4 and connexin 43, were present only in white matter and were more frequent in PC and LC than in AC (22.7%, 29.5% and 2.3%, P corr  = 0.020, and P corr  = 0.004, respectively). MRI indicated LESCLs more frequently affected PC and LC than AC in anti-AQP4 antibody-seropositive NMO/NMOSD (86.7%, 60.0% and 20.0%, P corr  = 0.005, and P corr  = 0.043, respectively) and AQP4 antibody-seronegative MS patients (86.7%, 73.3% and 33.3%, P corr  = 0.063, and P corr  = 0.043, respectively). PH, CP and AH were involved in 93.3%, 86.7% and 73.3% of seropositive patients, respectively, and in 53.3%, 60.0% and 40.0% of seronegative patients, respectively. NMO frequently and extensively affects spinal white matter in addition to central gray matter, especially in PC and LC, where isolated perivascular lesions with astrocyte endfoot

  4. Brain white matter 1 H MRS in Leber optic neuropathy mutation carriers

    DEFF Research Database (Denmark)

    Ostojic, Jelena; Jancic, Jasna; Kozic, Dusko

    2009-01-01

    OBJECTIVE: This study was conducted in order to test the hypothesis that proton MR spectroscopic (1H MRS) profile of Leber's hereditary optic neuropathy (LHON) mutation carriers group (including both symptomatic and asymptomatic) differs from group of healthy individuals and to determine metabolite...... or ratio that contributes most to differentiation. PATIENTS AND METHODS: We performed single voxel 1H MRS in normal appearing white matter of eighteen LHON mtDNA mutation carriers bearing one of three LHON mtDNA point mutations and in fifty control subjects. RESULTS: ANOVA showed significant difference...

  5. White Matter Pathways and Social Cognition.

    Science.gov (United States)

    Wang, Yin; Metoki, Athanasia; Alm, Kylie H; Olson, Ingrid R

    2018-04-20

    There is a growing consensus that social cognition and behavior emerge from interactions across distributed regions of the "social brain". Researchers have traditionally focused their attention on functional response properties of these gray matter networks and neglected the vital role of white matter connections in establishing such networks and their functions. In this article, we conduct a comprehensive review of prior research on structural connectivity in social neuroscience and highlight the importance of this literature in clarifying brain mechanisms of social cognition. We pay particular attention to three key social processes: face processing, embodied cognition, and theory of mind, and their respective underlying neural networks. To fully identify and characterize the anatomical architecture of these networks, we further implement probabilistic tractography on a large sample of diffusion-weighted imaging data. The combination of an in-depth literature review and the empirical investigation gives us an unprecedented, well-defined landscape of white matter pathways underlying major social brain networks. Finally, we discuss current problems in the field, outline suggestions for best practice in diffusion-imaging data collection and analysis, and offer new directions for future research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Does functional MRI detect activation in white matter? A review of emerging evidence, issues, and future directions

    Science.gov (United States)

    Gawryluk, Jodie R.; Mazerolle, Erin L.; D'Arcy, Ryan C. N.

    2014-01-01

    Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows for visualization of activated brain regions. Until recently, fMRI studies have focused on gray matter. There are two main reasons white matter fMRI remains controversial: (1) the blood oxygen level dependent (BOLD) fMRI signal depends on cerebral blood flow and volume, which are lower in white matter than gray matter and (2) fMRI signal has been associated with post-synaptic potentials (mainly localized in gray matter) as opposed to action potentials (the primary type of neural activity in white matter). Despite these observations, there is no direct evidence against measuring fMRI activation in white matter and reports of fMRI activation in white matter continue to increase. The questions underlying white matter fMRI activation are important. White matter fMRI activation has the potential to greatly expand the breadth of brain connectivity research, as well as improve the assessment and diagnosis of white matter and connectivity disorders. The current review provides an overview of the motivation to investigate white matter fMRI activation, as well as the published evidence of this phenomenon. We speculate on possible neurophysiologic bases of white matter fMRI signals, and discuss potential explanations for why reports of white matter fMRI activation are relatively scarce. We end with a discussion of future basic and clinical research directions in the study of white matter fMRI. PMID:25152709

  7. Scalable Brain Network Construction on White Matter Fibers.

    Science.gov (United States)

    Chung, Moo K; Adluru, Nagesh; Dalton, Kim M; Alexander, Andrew L; Davidson, Richard J

    2011-02-12

    DTI offers a unique opportunity to characterize the structural connectivity of the human brain non-invasively by tracing white matter fiber tracts. Whole brain tractography studies routinely generate up to half million tracts per brain, which serves as edges in an extremely large 3D graph with up to half million edges. Currently there is no agreed-upon method for constructing the brain structural network graphs out of large number of white matter tracts. In this paper, we present a scalable iterative framework called the ε-neighbor method for building a network graph and apply it to testing abnormal connectivity in autism.

  8. DTI and VBM reveal white matter changes without associated gray matter changes in patients with idiopathic restless legs syndrome

    Science.gov (United States)

    Belke, Marcus; Heverhagen, Johannes T; Keil, Boris; Rosenow, Felix; Oertel, Wolfgang H; Stiasny-Kolster, Karin; Knake, Susanne; Menzler, Katja

    2015-01-01

    Background and Purpose We evaluated cerebral white and gray matter changes in patients with iRLS in order to shed light on the pathophysiology of this disease. Methods Twelve patients with iRLS were compared to 12 age- and sex-matched controls using whole-head diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) techniques. Evaluation of the DTI scans included the voxelwise analysis of the fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). Results Diffusion tensor imaging revealed areas of altered FA in subcortical white matter bilaterally, mainly in temporal regions as well as in the right internal capsule, the pons, and the right cerebellum. These changes overlapped with changes in RD. Voxel-based morphometry did not reveal any gray matter alterations. Conclusions We showed altered diffusion properties in several white matter regions in patients with iRLS. White matter changes could mainly be attributed to changes in RD, a parameter thought to reflect altered myelination. Areas with altered white matter microstructure included areas in the internal capsule which include the corticospinal tract to the lower limbs, thereby supporting studies that suggest changes in sensorimotor pathways associated with RLS. PMID:26442748

  9. Whole-brain voxel-based morphometry of white matter in medial temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Yu Aihong [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, Beijing 100053 (China); Li Kuncheng [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, Beijing 100053 (China)], E-mail: Likuncheng@vip.sina.com; Li Lin; Shan Baoci [Institute of High Energy Physics, Chinese Academy of Sciences (China); Wang Yuping; Xue Sufang [Department of Neurology, Xuanwu Hospital, Capital University of Medical Sciences (China)

    2008-01-15

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in medial temporal lobe epilepsy (MTLE). Materials and methods: We studied 23 patients with MTLE and 13 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The seizure focus was right sided in 11 patients and left sided in 12. The data were collected on a 1.5 T MR system and analyzed by SPM 99 to generate white matter density maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MTLE prominently including bilateral frontal lobes, bilateral temporal lobes and corpus callosum. White matter reduction was also found in the bilateral cerebellar hemispheres in the left MTLE group. Conclusion: VBM is a simple and automated approach that is able to identify diffuse whole-brain white matter reduction in MTLE.

  10. Whole-brain voxel-based morphometry of white matter in medial temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Yu Aihong; Li Kuncheng; Li Lin; Shan Baoci; Wang Yuping; Xue Sufang

    2008-01-01

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in medial temporal lobe epilepsy (MTLE). Materials and methods: We studied 23 patients with MTLE and 13 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The seizure focus was right sided in 11 patients and left sided in 12. The data were collected on a 1.5 T MR system and analyzed by SPM 99 to generate white matter density maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MTLE prominently including bilateral frontal lobes, bilateral temporal lobes and corpus callosum. White matter reduction was also found in the bilateral cerebellar hemispheres in the left MTLE group. Conclusion: VBM is a simple and automated approach that is able to identify diffuse whole-brain white matter reduction in MTLE

  11. Combining voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes.

    Science.gov (United States)

    Lehmbeck, Jan T; Brassen, Stefanie; Weber-Fahr, Wolfgang; Braus, Dieter F

    2006-04-03

    The present study combined optimized voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes. We compared grey matter density maps (grey matter voxel-based morphometry) and white matter fractional anisotropy maps (diffusion tensor imaging-voxel-based morphometry) between two groups of 17 younger and 17 older women. Older women exhibited reduced white matter fractional anisotropy as well as decreased grey matter density most prominently in the frontal, limbic, parietal and temporal lobes. A discriminant analysis identified four frontal and limbic grey and white matter areas that separated the two groups most effectively. We conclude that grey matter voxel-based morphometry and diffusion tensor imaging voxel-based morphometry are well suited for the detection of age-related changes and their combination provides high accuracy when detecting the neural correlates of aging.

  12. Changes in the white-gray matter density difference in computed tomography associated with maturation

    International Nuclear Information System (INIS)

    Tsuchiya, Setsuko; Maruyama, Hiroshi; Maruyama, Kazuko

    1980-01-01

    The attenuation of the x-ray beam in infantile brain tissue is markedly lower than in adults, so the CT image in infants, particularly in the newborn, seems to indicate demyelinating diseases. Therefore, the evaluation of nonpathological scans of infants and adults was performed in order to establish baseline numerical data on white and gray matter differentiation associated with maturation. One hundred and nine normal cases with no motion artifacts were selected. The age distribution was from 39 weeks to 40 years, as shown in Fig. 1. The Hitachi CT-H 250 tomograph was used for all the patient scans. The x-ray tube was operated at 120 kV and 30 mA. The thickness of each slice was 10 mm. The patients were scanned parallel with the canthomeatal line. The CT numbers are displayed on the EMI scale, in which water is zero and bone is +500. The mean CT numbers and the standard deviation were calculated by means of a computer on a horizontal plane through the pineal body; the following regions were selected for computation: White matter: preventricular frontal area. 44 mm 2 (36 pixels). Gray matter: head of the caudate nucleus and the thalamus. 24 mm 2 (20 pixels). The mean CT number for white matter was 13.5 +- 0.5 in the newborn and 16.8 +- 0.4 in adults. These numbers increased very rapidly during the 2nd month after birth and reached the adult value by 13 years. On the other hand, the mean CT number for gray matter was 15.6 +- 0.6 in the newborn and 19.7 +- 0.4 in adults. These numbers increased only gradually after birth and reached maximum value at 20 years, These results are probably due to a decrease in the water content per unit of volume and an increase in brain solids (protein, RNA and myelin) rather than to a decrease in the extracellular space associated with maturation. The difference between the average white and gray value was also studied. The white-gray difference was lowest (1.6 units) at 2 months and highest (2.9 units) in adults. (author)

  13. White matter structural connectivity and episodic memory in early childhood

    Directory of Open Access Journals (Sweden)

    Chi T. Ngo

    2017-12-01

    Full Text Available Episodic memory undergoes dramatic improvement in early childhood; the reason for this is poorly understood. In adults, episodic memory relies on a distributed neural network. Key brain regions that supporting these processes include the hippocampus, portions of the parietal cortex, and portions of prefrontal cortex, each of which shows different developmental profiles. Here we asked whether developmental differences in the axonal pathways connecting these regions may account for the robust gains in episodic memory in young children. Using diffusion weighted imaging, we examined whether white matter connectivity between brain regions implicated in episodic memory differed with age, and were associated with memory performance differences in 4- and 6-year-old children. Results revealed that white matter connecting the hippocampus to the inferior parietal lobule significantly predicted children’s performance on episodic memory tasks. In contrast, variation in the white matter connecting the hippocampus to the medial prefrontal cortex did not relate to memory performance. These findings suggest that structural connectivity between the hippocampus and lateral parietal regions is relevant to the development of episodic memory. Keywords: White matter, Memory development, Episodic memory, Diffusion weighted imaging

  14. Leptomeningeal Contrast Enhancement Is Associated with Disability Progression and Grey Matter Atrophy in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Gleb Makshakov

    2017-01-01

    Full Text Available Leptomeningeal contrast enhancement (LMCE on magnetic resonance imaging (MRI is a newly recognized possible biomarker in multiple sclerosis (MS, associated with MS progression and cortical atrophy. In this study, we aimed to assess the prevalence of LMCE foci and their impact on neurodegeneration and disability. Materials. 54 patients with MS were included in the study. LMCE were detected with a 3 Tesla scanner on postcontrast fluid-attenuated inversion-recovery (FLAIR sequence. Expanded Disability Status Scale (EDSS score, number of relapses during 5 years from MS onset, and number of contrast-enhancing lesions on T1 weighted MRI were counted. Results. LMCE was detected in 41% (22/54 of patients. LMCE-positive patients had longer disease duration (p=0,0098 and higher EDSS score (p=0,039, but not a higher relapse rate (p=0,091. No association of LMCE with higher frequency of contrast-enhancing lesions on T1-weighted images was detected (p=0,3842. Analysis of covariates, adjusted for age, sex, and disease duration, revealed a significant effect of LMCE on the cortex volume (p=0.043, F=2.529, the total grey matter volume (p=0.043, F=2.54, and total ventricular volume (p=0.039, F=2.605. Conclusions. LMCE was shown to be an independent and significant biomarker of grey matter atrophy and disability in MS.

  15. Shades of white : diffusion properties of T1- and FLAIR-defined white matter signal abnormalities differ in stages from cognitively normal to dementia

    NARCIS (Netherlands)

    Riphagen, Joost M.; Gronenschild, Ed HBM; Salat, David H.; Freeze, Whitney M.; Ivanov, Dimo; Clerx, Lies; Verhey, Frans R. J.; Aalten, Pauline; Jacobs, Heidi I. L.

    The underlying pathology of white matter signal abnormalities (WMSAs) is heterogeneous and may vary dependent on the magnetic resonance imaging contrast used to define them. We investigated differences in white matter diffusivity as an indicator for white matter integrity underlying WMSA based on

  16. Quantitative multivoxel {sup 1}H MR spectroscopy of the brain in children with acute liver failure

    Energy Technology Data Exchange (ETDEWEB)

    Sijens, Paul E.; Alkefaji, Heyder; Meiners, Linda C.; Oudkerk, Matthijs [University Medical Center Groningen and University of Groningen, Department of Radiology, Beatrix Children' s Hospital, Groningen (Netherlands); Lunsing, Roelineke J. [University Medical Center Groningen and University of Groningen, Department of Child Neurology, Beatrix Children' s Hospital, Groningen (Netherlands); Spronsen, Francjan J. van; Verkade, Henkjan J. [University Medical Center Groningen and University of Groningen, Department of Pediatrics, Beatrix Children' s Hospital, Groningen (Netherlands)

    2008-11-15

    Acute liver failure (ALF)-related encephalopathy was previously characterized by MR spectroscopy of single voxels containing both grey and white matter brain tissue. Quantitative multivoxel MRS was used here to compare grey and white matter brain tissue concentrations of glutamate/glutamine (Glx) and lactate in ALF and associate the results with other liver function parameters. Five pediatric patients with ALF-related encephalopathy and five controls, examined after successful liver transplantation, were examined by brain MRI/MRS. ALF patients had higher Glx and lactate concentrations in brain white matter than controls (Glx + 125%: P < 0.01; lactate + 33%, P < 0.05) and higher Glx in grey matter (Glx + 125%: P < 0.01). Within the group of ALF patients positive correlations were found between grey or white matter lactate concentration and serum ammonia (P < 0.05), and negative correlations between grey or white matter Glx and venous pH (P < 0.001). This is the first study presenting evidence of high Glx levels in both white and grey matter brain tissue in ALF-related encephalopathy. The elevations in CNS Glx and lactate concentrations appear to relate to hepatic detoxification (ammonia, venous pH), rather than to liver parenchymal integrity (aspartate aminotransferase, alanine aminotransferase) or biliary cholestasis (bilirubin, {gamma}-glutamyl transpeptidase, alkaline phosphatase). (orig.)

  17. Quantitative multivoxel 1H MR spectroscopy of the brain in children with acute liver failure

    International Nuclear Information System (INIS)

    Sijens, Paul E.; Alkefaji, Heyder; Meiners, Linda C.; Oudkerk, Matthijs; Lunsing, Roelineke J.; Spronsen, Francjan J. van; Verkade, Henkjan J.

    2008-01-01

    Acute liver failure (ALF)-related encephalopathy was previously characterized by MR spectroscopy of single voxels containing both grey and white matter brain tissue. Quantitative multivoxel MRS was used here to compare grey and white matter brain tissue concentrations of glutamate/glutamine (Glx) and lactate in ALF and associate the results with other liver function parameters. Five pediatric patients with ALF-related encephalopathy and five controls, examined after successful liver transplantation, were examined by brain MRI/MRS. ALF patients had higher Glx and lactate concentrations in brain white matter than controls (Glx + 125%: P < 0.01; lactate + 33%, P < 0.05) and higher Glx in grey matter (Glx + 125%: P < 0.01). Within the group of ALF patients positive correlations were found between grey or white matter lactate concentration and serum ammonia (P < 0.05), and negative correlations between grey or white matter Glx and venous pH (P < 0.001). This is the first study presenting evidence of high Glx levels in both white and grey matter brain tissue in ALF-related encephalopathy. The elevations in CNS Glx and lactate concentrations appear to relate to hepatic detoxification (ammonia, venous pH), rather than to liver parenchymal integrity (aspartate aminotransferase, alanine aminotransferase) or biliary cholestasis (bilirubin, γ-glutamyl transpeptidase, alkaline phosphatase). (orig.)

  18. The nature of white matter abnormalities in blast-related mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Jasmeet P. Hayes

    2015-01-01

    Full Text Available Blast-related traumatic brain injury (TBI has been a common injury among returning troops due to the widespread use of improvised explosive devices in the Iraq and Afghanistan Wars. As most of the TBIs sustained are in the mild range, brain changes may not be detected by standard clinical imaging techniques such as CT. Furthermore, the functional significance of these types of injuries is currently being debated. However, accumulating evidence suggests that diffusion tensor imaging (DTI is sensitive to subtle white matter abnormalities and may be especially useful in detecting mild TBI (mTBI. The primary aim of this study was to use DTI to characterize the nature of white matter abnormalities following blast-related mTBI, and in particular, examine the extent to which mTBI-related white matter abnormalities are region-specific or spatially heterogeneous. In addition, we examined whether mTBI with loss of consciousness (LOC was associated with more extensive white matter abnormality than mTBI without LOC, as well as the potential moderating effect of number of blast exposures. A second aim was to examine the relationship between white matter integrity and neurocognitive function. Finally, a third aim was to examine the contribution of PTSD symptom severity to observed white matter alterations. One hundred fourteen OEF/OIF veterans underwent DTI and neuropsychological examination and were divided into three groups including a control group, blast-related mTBI without LOC (mTBI - LOC group, and blast-related mTBI with LOC (mTBI + LOC group. Hierarchical regression models were used to examine the extent to which mTBI and PTSD predicted white matter abnormalities using two approaches: 1 a region-specific analysis and 2 a measure of spatial heterogeneity. Neurocognitive composite scores were calculated for executive functions, attention, memory, and psychomotor speed. Results showed that blast-related mTBI + LOC was associated with greater odds of

  19. Diminished white matter integrity in patients with systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Tobias Schmidt-Wilcke

    2014-01-01

    Conclusions: Our data suggest that changes in regional white matter integrity, in terms of a decrease in FA, are present not only in NPSLE patients, but also in non-NPSLE patients, though to a lesser degree. We also demonstrate that the way statistical maps are corrected for multiple comparisons has a profound influence on whether alterations in white matter integrity in non-NPSLE patients are deemed significant.

  20. Pathophysiology of white matter perfusion in Alzheimer's disease and vascular dementia.

    Science.gov (United States)

    Barker, Rachel; Ashby, Emma L; Wellington, Dannielle; Barrow, Vivienne M; Palmer, Jennifer C; Kehoe, Patrick G; Esiri, Margaret M; Love, Seth

    2014-05-01

    Little is known about the contributors and physiological responses to white matter hypoperfusion in the human brain. We previously showed the ratio of myelin-associated glycoprotein to proteolipid protein 1 in post-mortem human brain tissue correlates with the degree of ante-mortem ischaemia. In age-matched post-mortem cohorts of Alzheimer's disease (n = 49), vascular dementia (n = 17) and control brains (n = 33) from the South West Dementia Brain Bank (Bristol), we have now examined the relationship between the ratio of myelin-associated glycoprotein to proteolipid protein 1 and several other proteins involved in regulating white matter vascularity and blood flow. Across the three cohorts, white matter perfusion, indicated by the ratio of myelin-associated glycoprotein to proteolipid protein 1, correlated positively with the concentration of the vasoconstrictor, endothelin 1 (P = 0.0005), and negatively with the concentration of the pro-angiogenic protein, vascular endothelial growth factor (P = 0.0015). The activity of angiotensin-converting enzyme, which catalyses production of the vasoconstrictor angiotensin II was not altered. In samples of frontal white matter from an independent (Oxford, UK) cohort of post-mortem brains (n = 74), we confirmed the significant correlations between the ratio of myelin-associated glycoprotein to proteolipid protein 1 and both endothelin 1 and vascular endothelial growth factor. We also assessed microvessel density in the Bristol (UK) samples, by measurement of factor VIII-related antigen, which we showed to correlate with immunohistochemical measurements of vessel density, and found factor VIII-related antigen levels to correlate with the level of vascular endothelial growth factor (P = 0.0487), suggesting that upregulation of vascular endothelial growth factor tends to increase vessel density in the white matter. We propose that downregulation of endothelin 1 and upregulation of vascular endothelial growth factor in the context

  1. White matter sexual dimorphism of the adult human brain

    Directory of Open Access Journals (Sweden)

    Bourisly Ali K.

    2017-05-01

    Full Text Available Sex-biased psychophysiology, behavior, brain function, and conditions are extensive, yet underlying structural brain mechanisms remain unclear. There is contradicting evidence regarding sexual dimorphism when it comes to brain structure, and there is still no consensus on whether or not there exists such a dimorphism for brain white matter. Therefore, we conducted a voxel-based morphometry (VBM analysis along with global volume analysis for white matter across sex. We analyzed 384 T1-weighted MRI brain images (192 male, 192 female to investigate any differences in white matter (WM between males and females. In the VBM analysis, we found males to have larger WM, compared to females, in occipital, temporal, insular, parietal, and frontal brain regions. In contrast, females showed only one WM region to be significantly larger than males: the right postcentral gyrus in the parietal lobe region. Although, on average, males showed larger global WM volume, we did not find any significant difference in global WM volume between males and females.

  2. A Voxel-Based Diffusion Tensor Imaging Study of White Matter in Bipolar Disorder

    OpenAIRE

    Mahon, Katie; Wu, Jinghui; Malhotra, Anil K.; Burdick, Katherine E.; DeRosse, Pamela; Ardekani, Babak A.; Szeszko, Philip R.

    2009-01-01

    There is evidence from post-mortem and magnetic resonance imaging studies that hyperintensities, oligodendrioglial abnormalities and gross white matter volumetric alterations play a role in the pathophysiology of bipolar disorder. There is also functional imaging evidence for a defect in frontal cortico-subcortical pathways in bipolar disorder, but the white matter comprising these pathways has not been well-investigated. Few studies have investigated white matter integrity in patients with b...

  3. Growth of White Matter in the Adolescent Brain: Myelin or Axon?

    Science.gov (United States)

    Paus, Tomas

    2010-01-01

    White matter occupies almost half of the human brain. It contains axons connecting spatially segregated modules and, as such, it is essential for the smooth flow of information in functional networks. Structural maturation of white matter continues during adolescence, as reflected in age-related changes in its volume, as well as in its…

  4. Gray/White Matter Contrast in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Carme Uribe

    2018-03-01

    Full Text Available Gray/white matter contrast (GWC decreases with aging and has been found to be a useful MRI biomarker in Alzheimer’s disease (AD, but its utility in Parkinson’s disease (PD patients has not been investigated. The aims of the study were to test whether GWC is sensitive to aging changes in PD patients, if PD patients differ from healthy controls (HCs in GWC, and whether the use of GWC data would improve the sensitivity of cortical thickness analyses to differentiate PD patients from controls. Using T1-weighted structural images, we obtained individual cortical thickness and GWC values from a sample of 90 PD patients and 27 controls. Images were processed with the automated FreeSurfer stream. GWC was computed by dividing the white matter (WM by the gray matter (GM values and projecting the ratios onto a common surface. The sample characteristics were: 52 patients and 14 controls were males; mean age of 64.4 ± 10.6 years in PD and 64.7 ± 8.6 years in controls; 8.0 ± 5.6 years of disease evolution; 15.6 ± 9.8 UPDRS; and a range of 1.5–3 in Hoehn and Yahr (H&Y stage. In both PD and controls we observed significant correlations between GWC and age involving almost the entire cortex. When applying a stringent cluster-forming threshold of p < 0.0001, the correlation between GWC and age also involved the entire cortex in the PD group; in the control group, the correlation was found in the parahippocampal gyrus and widespread frontal and parietal areas. The GWC of PD patients did not differ from controls’, whereas cortical thickness analyses showed thinning in temporal and parietal cortices in the PD group. Cortical thinning remained unchanged after adjusting for GWC. GWC is a very sensitive measure for detecting aging effects, but did not provide additional information over other parameters of atrophy in PD.

  5. Effect of antenatal growth and prematurity on brain white matter: diffusion tensor study

    International Nuclear Information System (INIS)

    Lepomaeki, V.; Paavilainen, T.; Komu, M.; Matomaeki, J.; Lapinleimu, H.; Liisa Lehtonen, L.; Hurme, S.; Haataja, L.; Parkkola, R.

    2012-01-01

    White matter maturation is characterised by increasing fractional anisotropy (FA) and decreasing mean diffusivity (MD). Contradictory results have been published on the effect of premature birth on white matter maturation at term-equivalent age. To assess the association of gestational age and low birth-weight-for-gestational-age (z-score) with white matter maturation. Infants (n = 76, 53 males) born at different gestational ages were imaged at term-equivalent age. Gestational age and birth weight z-score were used as continuous variables and the effect on diffusion parameters was assessed. Brain maturation was studied using regions-of-interest analysis in several white matter areas. Gestational age showed no significant effect on white matter maturation at term-equivalent age. Children with low birth weight z-score had lower FA in the genu and splenium of the corpus callosum (regression, P = 0.012 and P = 0.032; correlation, P = 0.009 and P = 0.006, respectively), and higher MD in the splenium of the corpus callosum (regression, P = 0.002; correlation, P = 0.0004) compared to children whose birth weight was appropriate for gestational age. Children with low birth weight relative to gestational age show delay and/or anomaly in white matter maturation at term-equivalent age. (orig.)

  6. Probing white-matter microstructure with higher-order diffusion tensors and susceptibility tensor MRI

    Science.gov (United States)

    Liu, Chunlei; Murphy, Nicole E.; Li, Wei

    2012-01-01

    Diffusion MRI has become an invaluable tool for studying white matter microstructure and brain connectivity. The emergence of quantitative susceptibility mapping and susceptibility tensor imaging (STI) has provided another unique tool for assessing the structure of white matter. In the highly ordered white matter structure, diffusion MRI measures hindered water mobility induced by various tissue and cell membranes, while susceptibility sensitizes to the molecular composition and axonal arrangement. Integrating these two methods may produce new insights into the complex physiology of white matter. In this study, we investigated the relationship between diffusion and magnetic susceptibility in the white matter. Experiments were conducted on phantoms and human brains in vivo. Diffusion properties were quantified with the diffusion tensor model and also with the higher order tensor model based on the cumulant expansion. Frequency shift and susceptibility tensor were measured with quantitative susceptibility mapping and susceptibility tensor imaging. These diffusion and susceptibility quantities were compared and correlated in regions of single fiber bundles and regions of multiple fiber orientations. Relationships were established with similarities and differences identified. It is believed that diffusion MRI and susceptibility MRI provide complementary information of the microstructure of white matter. Together, they allow a more complete assessment of healthy and diseased brains. PMID:23507987

  7. Effect of antenatal growth and prematurity on brain white matter: diffusion tensor study

    Energy Technology Data Exchange (ETDEWEB)

    Lepomaeki, V. [Turku University Central Hospital, Medical Imaging Centre of Southwest Finland, Turku (Finland); Turku University Central Hospital, Turku PET-Centre, PO Box 52, Turku (Finland); Paavilainen, T.; Komu, M. [Turku University Central Hospital, Medical Imaging Centre of Southwest Finland, Turku (Finland); Matomaeki, J.; Lapinleimu, H.; Liisa Lehtonen, L. [Turku University Central Hospital and University of Turku, Department of Pediatrics, Turku (Finland); Hurme, S. [University of Turku, Department of Biostatistics, Turku (Finland); Haataja, L. [Turku University Central Hospital and University of Turku, Department of Pediatric Neurology, Turku (Finland); Parkkola, R. [Turku University Central Hospital, Medical Imaging Centre of Southwest Finland, Turku (Finland); Turku University Central Hospital, Turku PET-Centre, PO Box 52, Turku (Finland); University of Turku, Department of Diagnostic Radiology, Turku (Finland)

    2012-06-15

    White matter maturation is characterised by increasing fractional anisotropy (FA) and decreasing mean diffusivity (MD). Contradictory results have been published on the effect of premature birth on white matter maturation at term-equivalent age. To assess the association of gestational age and low birth-weight-for-gestational-age (z-score) with white matter maturation. Infants (n = 76, 53 males) born at different gestational ages were imaged at term-equivalent age. Gestational age and birth weight z-score were used as continuous variables and the effect on diffusion parameters was assessed. Brain maturation was studied using regions-of-interest analysis in several white matter areas. Gestational age showed no significant effect on white matter maturation at term-equivalent age. Children with low birth weight z-score had lower FA in the genu and splenium of the corpus callosum (regression, P = 0.012 and P = 0.032; correlation, P = 0.009 and P = 0.006, respectively), and higher MD in the splenium of the corpus callosum (regression, P = 0.002; correlation, P = 0.0004) compared to children whose birth weight was appropriate for gestational age. Children with low birth weight relative to gestational age show delay and/or anomaly in white matter maturation at term-equivalent age. (orig.)

  8. Differentiating therapy-induced leukoencephalopathy from unmyelinated white matter in children treated for acute lymphoblastic leukemia (ALL)

    Science.gov (United States)

    Reddick, Wilburn E.; Glass, John O.; Pui, Ching-Hon

    2003-05-01

    Reliably detecting subtle therapy-induced leukoencephalopathy in children treated for cancer is a challenging task due to its nearly identical MR properties and location with unmyelinated white matter. T1, T2, PD, and FLAIR images were collected for 44 children aged 1.7-18.7 (median 5.9) years near the start of therapy for ALL. The ICBM atlas and corresponding apriori maps were spatially normalized to each patient and resliced using SPM99 software. A combined imaging set consisting of MR images and WM, GM and CSF apriori maps were then analyzed with a Kohonen Self-Organizing Map. Vectors from hyperintense regions were compared to normal appearing genu vectors from the same patient. Analysis of the distributions of the differences, calculated on T2 and FLAIR images, revealed two distinct groups. The first large group, assumed normal unmyelinated white matter, consisted of 37 patients with changes in FLAIR ranging from 80 to 147 (mean 117-/+17) and T2 ranging from 92 to 217 (mean 144-/+28). The second group, assumed leukoencephalopathy, consisted of seven patients with changes in FLAIR ranging from 154 to 196 (mean 171-/+19) and T2 ranging from 190 to 287 (mean 216-/+33). A threshold was established for both FLAIR (change > 150) and T2 (change > 180).

  9. The value of diffusion tensor imaging in the differential diagnosis of subcortical ischemic vascular dementia and Alzheimer's disease in patients with only mild white matter alterations on T2-weighted images

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jian-Liang; Zhang, Ting (Dept. of Neurology, Shanghai Jiaotong Univ. Affiliated Sixth People' s Hospital, Shanghai (China)); Chang, Cheng; Zhang, Yu-Zhen; Li, Wen-Bin (Inst. of Diagnostic and Interventional Radiology, Shanghai Jiaotong Univ. Affiliated Sixth People' s Hospital, Shanghai (China)), Email: liwenbin@sh163.net

    2012-04-15

    Background: Diffusion tensor imaging (DTI) is a form of functional magnetic resonance imaging (MRI) that allows examination of the microstructural integrity of white matter in the brain. Dementia is a neurodegenerative disease, and DTI can provide indirect insights of the microstructural characteristics of brains in individuals with different forms of dementia. Purpose: To evaluate the value of DTI in the diagnosis and differential diagnosis of patients with subcortical ischemic vascular dementia (SIVD) and Alzheimer's disease (AD). Material and Methods: The study included 40 patients (20 AD patients and 20 SIVD patients) and 20 normal controls (NC). After routine MRI and DTI, fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were measured and compared in regions of interest (ROI). Results: Compared to NC and AD patients, SIVD patients had lower FA values and higher ADC values in the inferior-fronto-occipital fascicles (IFOF), genu of the corpus callosum (GCC), splenium of the corpus callosum (SCC), and superior longitudinal fasciculus (SLF). Compared to controls and SIVD patients, AD patients had lower FA values in the anterior frontal lobe, temporal lobe, hippocampus, IFOF, GCC, and CF; and higher ADC values in the temporal lobe and hippocampus. Conclusion: DTI can be used to estimate the white matter impairment in dementia patients. There were significant regional reductions of FA values and heightened ADC values in multiple regions in SIVD patients compared to AD patients. When compared with conventional MRI, DTI may provide a more objective method for the differential diagnosis of SIVD and AD disease patients who have only mild white matter alterations on T2-weighted imaging

  10. Strength of Temporal White Matter Pathways Predicts Semantic Learning.

    Science.gov (United States)

    Ripollés, Pablo; Biel, Davina; Peñaloza, Claudia; Kaufmann, Jörn; Marco-Pallarés, Josep; Noesselt, Toemme; Rodríguez-Fornells, Antoni

    2017-11-15

    Learning the associations between words and meanings is a fundamental human ability. Although the language network is cortically well defined, the role of the white matter pathways supporting novel word-to-meaning mappings remains unclear. Here, by using contextual and cross-situational word learning, we tested whether learning the meaning of a new word is related to the integrity of the language-related white matter pathways in 40 adults (18 women). The arcuate, uncinate, inferior-fronto-occipital and inferior-longitudinal fasciculi were virtually dissected using manual and automatic deterministic fiber tracking. Critically, the automatic method allowed assessing the white matter microstructure along the tract. Results demonstrate that the microstructural properties of the left inferior-longitudinal fasciculus predict contextual learning, whereas the left uncinate was associated with cross-situational learning. In addition, we identified regions of special importance within these pathways: the posterior middle temporal gyrus, thought to serve as a lexical interface and specifically related to contextual learning; the anterior temporal lobe, known to be an amodal hub for semantic processing and related to cross-situational learning; and the white matter near the hippocampus, a structure fundamental for the initial stages of new-word learning and, remarkably, related to both types of word learning. No significant associations were found for the inferior-fronto-occipital fasciculus or the arcuate. While previous results suggest that learning new phonological word forms is mediated by the arcuate fasciculus, these findings show that the temporal pathways are the crucial neural substrate supporting one of the most striking human abilities: our capacity to identify correct associations between words and meanings under referential indeterminacy. SIGNIFICANCE STATEMENT The language-processing network is cortically (i.e., gray matter) well defined. However, the role of the

  11. A voxel-based diffusion tensor imaging study of white matter in bipolar disorder.

    Science.gov (United States)

    Mahon, Katie; Wu, Jinghui; Malhotra, Anil K; Burdick, Katherine E; DeRosse, Pamela; Ardekani, Babak A; Szeszko, Philip R

    2009-05-01

    There is evidence from post-mortem and magnetic resonance imaging studies that hyperintensities, oligodendroglial abnormalities, and gross white matter volumetric alterations are involved in the pathophysiology of bipolar disorder. There is also functional imaging evidence for a defect in frontal cortico-subcortical pathways in bipolar disorder, but the white matter comprising these pathways has not been well investigated. Few studies have investigated white matter integrity in patients with bipolar disorder compared to healthy volunteers and the majority of studies have used manual region-of-interest approaches. In this study, we compared fractional anisotropy (FA) values between 30 patients with bipolar disorder and 38 healthy volunteers in the brain white matter using a voxelwise analysis following intersubject registration to Talairach space. Compared to healthy volunteers, patients demonstrated significantly (p or =50) higher FA within the right and left frontal white matter and lower FA within the left cerebellar white matter. Examination of individual eigenvalues indicated that group differences in both axial diffusivity and radial diffusivity contributed to abnormal FA within these regions. Tractography was performed in template space on averaged diffusion tensor imaging data from all individuals. Extraction of bundles passing through the clusters that differed significantly between groups suggested that white matter abnormalities along the pontine crossing tract, corticospinal/corticopontine tracts, and thalamic radiation fibers may be involved in the pathogenesis of bipolar disorder. Our findings are consistent with models of bipolar disorder that implicate dysregulation of cortico-subcortical and cerebellar regions in the disorder and may have relevance for phenomenology.

  12. White Matter Hyperintensity Volume and Cerebral Perfusion in Older Individuals with Hypertension Using Arterial Spin-Labeling

    NARCIS (Netherlands)

    van Dalen, J. W.; Mutsaerts, H. J. M. M.; Nederveen, A. J.; Vrenken, H.; Steenwijk, M. D.; Caan, M. W. A.; Majoie, C. B. L. M.; van Gool, W. A.; Richard, E.

    2016-01-01

    BACKGROUND AND PURPOSE: White matter hyperintensities of presumed vascular origin in elderly patients with hypertension may be part of a general cerebral perfusion deficit, involving not only the white matter hyperintensities but also the surrounding normal-appearing white matter and gray matter. We

  13. Early dynamics of white matter deficits in children developing dyslexia.

    Science.gov (United States)

    Vanderauwera, Jolijn; Wouters, Jan; Vandermosten, Maaike; Ghesquière, Pol

    2017-10-01

    Neural anomalies have been demonstrated in dyslexia. Recent studies in pre-readers at risk for dyslexia and in pre-readers developing poor reading suggest that these anomalies might be a cause of their reading impairment. Our study goes one step further by exploring the neurodevelopmental trajectory of white matter anomalies in pre-readers with and without a familial risk for dyslexia (n=61) of whom a strictly selected sample develops dyslexia later on (n=15). We collected longitudinal diffusion MRI and behavioural data until grade 3. The results provide evidence that children with dyslexia exhibit pre-reading white matter anomalies in left and right long segment of the arcuate fasciculus (AF), with predictive power of the left segment above traditional cognitive measures and familial risk. Whereas white matter differences in the left AF seem most strongly related to the development of dyslexia, differences in the left IFOF and in the right AF seem driven by both familial risk and later reading ability. Moreover, differences in the left AF appeared to be dynamic. This study supports and expands recent insights into the neural basis of dyslexia, pointing towards pre-reading anomalies related to dyslexia, as well as underpinning the dynamic character of white matter. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Modification of grey scale in computer tomographic images

    International Nuclear Information System (INIS)

    Hemmingsson, A.; Jung, B.

    1980-01-01

    Optimum perception of minute but relevant attenuation differences in CT images often requires display window settings so narrow that a considerable fraction of the image appears completely black or white and consequently without structure. In order to improve the display characteristics two principles of grey scale modification are presented. In one method the pixel contents are displayed unchanged within a selectable attenuation band but moved towards the limits of the band for pixels that are outside it. In the other the grey scale is arranged to a constant number of pixels per grey scale interval. (Auth.)

  15. Regional White Matter Decreases in Alzheimer's Disease Using Optimized Voxel-Based Morphometry

    International Nuclear Information System (INIS)

    Shuyu Li; Fang Pu; Feng Shi; Sheng Xie; Yinhua Wang; Tianzi Jiang

    2008-01-01

    Background: Most studies that attempt to clarify structural abnormalities related to functional disconnection in patients with Alzheimer's disease (AD) have focused on exploring pathological changes in cortical gray matter. However, white matter fibers connecting these cerebral areas may also be abnormal. Purpose: To investigate the regional changes of white matter volume in patients with AD compared to healthy subjects. Material and Methods: White matter volume changes in whole-brain magnetic resonance images acquired from 19 patients with AD and 20 healthy subjects (control group) were observed using the optimized voxel-based morphometry (VBM) method. In addition, the corpus callosum (CC) of AD patients and the control group was investigated further by outlining manually the boundary of the CC on a midsagittal slice. Each area of the CC was then corrected by dividing each subject's intracranial area in the midsagittal plane. Results: Compared with the control group, AD patients showed significantly reduced white matter volumes in the posterior part of the CC and the temporal lobe in the left and right hemispheres. Moreover, the voxel showing peak statistical difference in the posterior of the CC was left sided. The five subdivisions of the CC were also significantly smaller among the AD patients relative to the control group. Conclusion: Our findings suggest that these abnormalities in white matter regions may contribute to the functional disconnections in AD

  16. Grey matter volume loss is associated with specific clinical motor signs in Huntington's disease.

    Science.gov (United States)

    Coppen, Emma M; Jacobs, Milou; van den Berg-Huysmans, Annette A; van der Grond, Jeroen; Roos, Raymund A C

    2018-01-01

    Motor disturbances are clinical hallmarks of Huntington's disease (HD) and involve chorea, dystonia, hypokinesia and visuomotor dysfunction. Investigating the association between specific motor signs and different regional volumes is important to understand the heterogeneity of HD. To investigate the motor phenotype of HD and associations with subcortical and cortical grey matter volume loss. Structural T1-weighted MRI scans of 79 HD patients and 30 healthy controls were used to calculate volumes of seven subcortical structures including the nucleus accumbens, hippocampus, thalamus, caudate nucleus, putamen, pallidum and amygdala. Multiple linear regression analyses, corrected for age, gender, CAG, MRI scan protocol and normalized brain volume, were performed to assess the relationship between subcortical volumes and different motor subdomains (i.e. eye movements, chorea, dystonia, hypokinesia/rigidity and gait/balance). Voxel-based morphometry analysis was used to investigate the relationship between cortical volume changes and motor signs. Subcortical volume loss of the accumbens nucleus, caudate nucleus, putamen, and pallidum were associated with higher chorea scores. No other subcortical region was significantly associated with motor symptoms after correction for multiple comparisons. Voxel-based cortical grey matter volume reductions in occipital regions were related with an increase in eye movement scores. In HD, chorea is mainly associated with subcortical volume loss, while eye movements are more related to cortical volume loss. Both subcortical and cortical degeneration has an impact on motor impairment in HD. This implies that there is a widespread contribution of different brain regions resulting in the clinical motor presentation seen in HD patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Grey matter volume and cortical structure in Prader-Willi syndrome compared to typically developing young adults

    Directory of Open Access Journals (Sweden)

    Katherine E. Manning

    2018-01-01

    Full Text Available Prader-Willi syndrome (PWS is a neurodevelopmental disorder of genomic imprinting, presenting with a characteristic overeating disorder, mild to moderate intellectual disability, and a variable range of social and behavioral difficulties. Consequently, widespread alterations in neural structure and developmental and maturational trajectory would be expected. To date, there have been few quantitative and systematic studies of brain morphology in PWS, although alterations of volume and of cortical organisation have been reported. This study aimed to investigate, in detail, the structure of grey matter and cortex in the brain in a sample of young adults with PWS in a well-matched case-controlled analysis. 20 young adults with PWS, aged 19–27 years, underwent multiparameter mapping magnetic resonance imaging sequences, from which measures of grey matter volume, cortical thickness and magnetisation transfer saturation, as a proxy measure of myelination, were examined. These variables were investigated in comparison to a control group of 40 typically developing young adults, matched for age and sex. A voxel-based morphometry analysis identified large and widespread bilateral clusters of both increased and decreased grey matter volume in the brain in PWS. In particular, widespread areas of increased volume encompassed parts of the prefrontal cortex, especially medially, the majority of the cingulate cortices, from anterior to posterior aspects, insula cortices, and areas of the parietal and temporal cortices. Increased volume was also reported in the caudate, putamen and thalamus. The most ventromedial prefrontal areas, in contrast, showed reduced volume, as did the parts of the medial temporal lobe, bilateral temporal poles, and a small cluster in the right lateral prefrontal cortex. Analysis of cortical structure revealed that areas of increased volume in the PWS group were largely driven by greater cortical thickness. Conversely, analysis of

  18. Grey matter volume and cortical structure in Prader-Willi syndrome compared to typically developing young adults.

    Science.gov (United States)

    Manning, Katherine E; Tait, Roger; Suckling, John; Holland, Anthony J

    2018-01-01

    Prader-Willi syndrome (PWS) is a neurodevelopmental disorder of genomic imprinting, presenting with a characteristic overeating disorder, mild to moderate intellectual disability, and a variable range of social and behavioral difficulties. Consequently, widespread alterations in neural structure and developmental and maturational trajectory would be expected. To date, there have been few quantitative and systematic studies of brain morphology in PWS, although alterations of volume and of cortical organisation have been reported. This study aimed to investigate, in detail, the structure of grey matter and cortex in the brain in a sample of young adults with PWS in a well-matched case-controlled analysis. 20 young adults with PWS, aged 19-27 years, underwent multiparameter mapping magnetic resonance imaging sequences, from which measures of grey matter volume, cortical thickness and magnetisation transfer saturation, as a proxy measure of myelination, were examined. These variables were investigated in comparison to a control group of 40 typically developing young adults, matched for age and sex. A voxel-based morphometry analysis identified large and widespread bilateral clusters of both increased and decreased grey matter volume in the brain in PWS. In particular, widespread areas of increased volume encompassed parts of the prefrontal cortex, especially medially, the majority of the cingulate cortices, from anterior to posterior aspects, insula cortices, and areas of the parietal and temporal cortices. Increased volume was also reported in the caudate, putamen and thalamus. The most ventromedial prefrontal areas, in contrast, showed reduced volume, as did the parts of the medial temporal lobe, bilateral temporal poles, and a small cluster in the right lateral prefrontal cortex. Analysis of cortical structure revealed that areas of increased volume in the PWS group were largely driven by greater cortical thickness. Conversely, analysis of myelin content using

  19. Subcortical White Matter Changes with Normal Aging Detected by Multi-Shot High Resolution Diffusion Tensor Imaging.

    Directory of Open Access Journals (Sweden)

    Sheng Xie

    Full Text Available Subcortical white matter builds neural connections between cortical and subcortical regions and constitutes the basis of neural networks. It plays a very important role in normal brain function. Various studies have shown that white matter deteriorates with aging. However, due to the limited spatial resolution provided by traditional diffusion imaging techniques, microstructural information from subcortical white matter with normal aging has not been comprehensively assessed. This study aims to investigate the deterioration effect with aging in the subcortical white matter and provide a baseline standard for pathological disorder diagnosis. We apply our newly developed multi-shot high resolution diffusion tensor imaging, using self-feeding multiplexed sensitivity-encoding, to measure subcortical white matter changes in regions of interest of healthy persons with a wide age range. Results show significant fractional anisotropy decline and radial diffusivity increasing with age, especially in the anterior part of the brain. We also find that subcortical white matter has more prominent changes than white matter close to the central brain. The observed changes in the subcortical white matter may be indicative of a mild demyelination and a loss of myelinated axons, which may contribute to normal age-related functional decline.

  20. White matter microstructure damage in tremor-dominant Parkinson's disease patients

    Energy Technology Data Exchange (ETDEWEB)

    Luo, ChunYan; Song, Wei; Chen, Qin; Yang, Jing; Shang, Hui-Fang [Sichuan University, Department of Neurology, West China Hospital, Chengdu, Sichuan (China); Gong, QiYong [Sichuan University, Huaxi MR Research Center, Department of Radiology, West China Hospital, Chengdu, Sichuan (China)

    2017-07-15

    Resting tremor is one of the cardinal motor features of Parkinson's disease (PD). Several lines of evidence suggest resting tremor may have different underlying pathophysiological processes from those of bradykinesia and rigidity. The current study aims to identify white matter microstructural abnormalities associated with resting tremor in PD. We recruited 60 patients with PD (30 with tremor-dominant PD and 30 with nontremor-dominant PD) and 26 normal controls. All participants underwent clinical assessment and diffusion tensor MRI. We used tract-based spatial statistics to investigate white matter integrity across the entire white matter tract skeleton. Compared with both healthy controls and the nontremor-dominant PD patients, the tremor-dominant PD patients were characterized by increased mean diffusivity (MD) and axial diffusivity (AD) along multiple white matter tracts, mainly involving the cerebello-thalamo-cortical (CTC) pathway. The mean AD value in clusters with significant difference was correlated with resting tremor score in the tremor-dominant PD patients. There was no significant difference between the nontremor-dominant PD patients and controls. Our results support the notion that resting tremor in PD is a distinct condition in which significant microstructural white matter changes exist and provide evidence for the involvement of the CTC in tremor genesis of PD. (orig.)

  1. Microstructural Abnormalities of Short-Distance White Matter Tracts in Autism Spectrum Disorder

    Science.gov (United States)

    Shukla, Dinesh K.; Keehn, Brandon; Smylie, Daren M.; Muller, Ralph-Axel

    2011-01-01

    Recent functional connectivity magnetic resonance imaging and diffusion tensor imaging (DTI) studies have suggested atypical functional connectivity and reduced integrity of long-distance white matter fibers in autism spectrum disorder (ASD). However, evidence for short-distance white matter fibers is still limited, despite some speculation of…

  2. Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia.

    Science.gov (United States)

    Chen, Aiqing; Akinyemi, Rufus O; Hase, Yoshiki; Firbank, Michael J; Ndung'u, Michael N; Foster, Vincent; Craggs, Lucy J L; Washida, Kazuo; Okamoto, Yoko; Thomas, Alan J; Polvikoski, Tuomo M; Allan, Louise M; Oakley, Arthur E; O'Brien, John T; Horsburgh, Karen; Ihara, Masafumi; Kalaria, Raj N

    2016-01-01

    White matter hyperintensities as seen on brain T2-weighted magnetic resonance imaging are associated with varying degrees of cognitive dysfunction in stroke, cerebral small vessel disease and dementia. The pathophysiological mechanisms within the white matter accounting for cognitive dysfunction remain unclear. With the hypothesis that gliovascular interactions are impaired in subjects with high burdens of white matter hyperintensities, we performed clinicopathological studies in post-stroke survivors, who had exhibited greater frontal white matter hyperintensities volumes that predicted shorter time to dementia onset. Histopathological methods were used to identify substrates in the white matter that would distinguish post-stroke demented from post-stroke non-demented subjects. We focused on the reactive cell marker glial fibrillary acidic protein (GFAP) to study the incidence and location of clasmatodendrosis, a morphological attribute of irreversibly injured astrocytes. In contrast to normal appearing GFAP+ astrocytes, clasmatodendrocytes were swollen and had vacuolated cell bodies. Other markers such as aldehyde dehydrogenase 1 family, member L1 (ALDH1L1) showed cytoplasmic disintegration of the astrocytes. Total GFAP+ cells in both the frontal and temporal white matter were not greater in post-stroke demented versus post-stroke non-demented subjects. However, the percentage of clasmatodendrocytes was increased by >2-fold in subjects with post-stroke demented compared to post-stroke non-demented subjects (P = 0.026) and by 11-fold in older controls versus young controls (P < 0.023) in the frontal white matter. High ratios of clasmotodendrocytes to total astrocytes in the frontal white matter were consistent with lower Mini-Mental State Examination and the revised Cambridge Cognition Examination scores in post-stroke demented subjects. Double immunofluorescent staining showed aberrant co-localization of aquaporin 4 (AQP4) in retracted GFAP+ astrocytes with

  3. Usefulness of Diffusion Tensor Imaging of White Matter in Alzheimer Disease and Vascular Dementia

    International Nuclear Information System (INIS)

    Sugihara, S.; Kinoshita, T.; Matsusue, E.; Fujii, S.; Ogawa, T.

    2004-01-01

    Purpose: To evaluate the usefulness of diffusion tensor imaging in detecting the water diffusivity caused by neuro pathological change in Alzheimer disease and vascular dementia. Material and Methods: Twenty patients with Alzheimer disease, 20 with vascular dementia, and 10 control subjects were examined. Diffusion tensor imaging applied diffusion gradient encoding in six non-collinear directions. Fractional anisotropy values were compared in the genu and splenium of the corpus callosum, and anterior and posterior white matter among the three groups. Results: In the patients with Alzheimer disease, fractional anisotropy values of the posterior white matter were significantly lower than those of controls. In patients with vascular dementia, fractional anisotropy values of the anterior white matter tended to be lower than those of the posterior white matter (P=0.07). Conclusion: Diffusion tensor imaging reflects the neuro pathological changes in the white matter, and may be useful in the diagnosis of Alzheimer disease and vascular dementia. Keywords: Alzheimer disease, .; diffusion tensor imaging, .; vascular dementia

  4. Computed tomography in neuronal ceroid lipofuscinosis

    International Nuclear Information System (INIS)

    Valavanis, A.; Schubiger, O.; Hayek, J.; Friede, R.L

    1981-01-01

    The computed tomography (CT) findings in a verified case of neutronal ceroid lipofuscinosis (NCL) are presented. CT revealed diffuse and severe cerebral atrophy, reflected by generalized subarachnoid space enlargement and symmetric ventricular dilatation. There was no evidence of abnormalities of the white matter. The CT features in our case of NCL correspond perfectly with the neuropathologic changes of the disease mentioned in the literature. Furthermore, CT is of considerable help in differentiating between those inherited metabolic brain diseases characterized primarily by white matter involvement and those presenting predominantly with changes of grey matter. (orig.) [de

  5. White Matter Volume Predicts Language Development in Congenital Heart Disease.

    Science.gov (United States)

    Rollins, Caitlin K; Asaro, Lisa A; Akhondi-Asl, Alireza; Kussman, Barry D; Rivkin, Michael J; Bellinger, David C; Warfield, Simon K; Wypij, David; Newburger, Jane W; Soul, Janet S

    2017-02-01

    To determine whether brain volume is reduced at 1 year of age and whether these volumes are associated with neurodevelopment in biventricular congenital heart disease (CHD) repaired in infancy. Infants with biventricular CHD (n = 48) underwent brain magnetic resonance imaging (MRI) and neurodevelopmental testing with the Bayley Scales of Infant Development-II and the MacArthur-Bates Communicative Development Inventories at 1 year of age. A multitemplate based probabilistic segmentation algorithm was applied to volumetric MRI data. We compared volumes with those of 13 healthy control infants of comparable ages. In the group with CHD, we measured Spearman correlations between neurodevelopmental outcomes and the residuals from linear regression of the volumes on corrected chronological age at MRI and sex. Compared with controls, infants with CHD had reductions of 54 mL in total brain (P = .009), 40 mL in cerebral white matter (P Development-II scores but did correlate positively with MacArthur-Bates Communicative Development Inventory language development. Infants with biventricular CHD show total brain volume reductions at 1 year of age, driven by differences in cerebral white matter. White matter volume correlates with language development, but not broader developmental indices. These findings suggest that abnormalities in white matter development detected months after corrective heart surgery may contribute to language impairment. ClinicalTrials.gov: NCT00006183. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. White-Matter Structural Connectivity Underlying Human Laughter-Related Traits Processing.

    Science.gov (United States)

    Wu, Ching-Lin; Zhong, Suyu; Chan, Yu-Chen; Chen, Hsueh-Chih; Gong, Gaolang; He, Yong; Li, Ping

    2016-01-01

    Most research into the neural mechanisms of humor has not explicitly focused on the association between emotion and humor on the brain white matter networks mediating this connection. However, this connection is especially salient in gelotophobia (the fear of being laughed at), which is regarded as the presentation of humorlessness, and two related traits, gelotophilia (the enjoyment of being laughed at) and katagelasticism (the enjoyment of laughing at others). Here, we explored whether the topological properties of white matter networks can account for the individual differences in the laughter-related traits of 31 healthy adults. We observed a significant negative correlation between gelotophobia scores and the clustering coefficient, local efficiency and global efficiency, but a positive association between gelotophobia scores and path length in the brain's white matter network. Moreover, the current study revealed that with increasing individual fear of being laughed at, the linking efficiencies in superior frontal gyrus, anterior cingulate cortex, parahippocampal gyrus, and middle temporal gyrus decreased. However, there were no significant correlations between either gelotophilia or katagelasticism scores or the topological properties of the brain white matter network. These findings suggest that the fear of being laughed at is directly related to the level of local and global information processing of the brain network, which might provide new insights into the neural mechanisms of the humor information processing.

  7. Preclinical cerebral network connectivity evidence of deficits in mild white matter lesions

    Directory of Open Access Journals (Sweden)

    Ying eLiang

    2016-02-01

    Full Text Available White matter lesions (WMLs are notable for their high prevalence and have been demonstrated to be a potential neuroimaging biomarker of early diagnosis of Alzheimer’s disease. This study aimed to identify the brain functional and structural mechanisms underlying cognitive decline observed in mild WMLs. Multi-domain cognitive tests, as well as resting-state, diffusion tensor and structural images were obtained on 42 mild WMLs and 42 age/sex-matched healthy controls. For each participant, we examined the functional connectivity of three resting-state networks related to the changed cognitive domains: the default mode network (DMN and the bilateral fronto-parietal network (FPN. We also performed voxel-based morphometry analysis to compare whole-brain gray matter volume, atlas-based quantification of the white matter tracts interconnecting the RSNs, and the relationship between functional connectivity and structural connectivity. We observed functional connectivity alterations in the DMN and the right FPN combined with related white matter integrity disruption in mild WMLs. However, no significant gray matter atrophy difference was found. Furthermore, the right precuneus functional connectivity in the DMN exhibited a significantly negative correlation with the memory test scores. Our study suggests that in mild WMLs, dysfunction of RSNs might be a consequence of decreased white matter structural connectivity, which further affects cognitive performance.

  8. The role of white matter lesions in cognitive impairment of vascular origin

    International Nuclear Information System (INIS)

    Kazakov, D.

    2003-01-01

    Abnormalities involving the cerebral white matter, in particular the centrum semiovale, are a subject of great current interest. Partly this is because modern neuroimaging methods detect white matter changes with increasing frequency in persons older than 60 years and also because these abnormalities may be associated with specific neuro behavioral deficits, including cognitive impairment. The significance of these changes, as well as their pathophysiological background is incompletely understood. The aim of this paper is to critically review the existing knowledge about the role of the white matter lesions, based on the critical analysis of over 100 publications (most appearing in the last decade). (author)

  9. Depressive Symptoms in Adolescents: Associations with White Matter Volume and Marijuana Use

    Science.gov (United States)

    Medina, Krista Lisdahl; Nagel, Bonnie J.; Park, Ann; McQueeny, Tim; Tapert, Susan F.

    2007-01-01

    Background: Depressed mood has been associated with decreased white matter and reduced hippocampal volumes. However, the relationship between brain structure and mood may be unique among adolescents who use marijuana heavily. The goal of this study was to examine the relationship between white matter and hippocampal volumes and depressive symptoms…

  10. White Matter Hyperintensities on MRI in High-Altitude U-2 Pilots

    Science.gov (United States)

    2013-08-19

    SUBJECT TERMS MRI; white matter hyperintensities; hypobaric exposure; neurological decompression sickness 16. SECURITY CLASSIFICATION OF: 17...normal controls and did not increase with age in pilots, suggesting that hypobaric exposure produces white matter damage different from that occurring in...relapse we observed in 3 NDCS pilots after successful hyperbaric treatment (US Navy Treatment Table 6; 100% fraction of inspired oxygen; 2.8 atm absolute

  11. Left hemisphere fractional anisotropy increase in noise-induced tinnitus: a diffusion tensor imaging (DTI) study of white matter tracts in the brain.

    Science.gov (United States)

    Benson, Randall R; Gattu, Ramtilak; Cacace, Anthony T

    2014-03-01

    Diffusion tensor imaging (DTI) is a contemporary neuroimaging modality used to study connectivity patterns and microstructure of white matter tracts in the brain. The use of DTI in the study of tinnitus is a relatively unexplored methodology with no studies focusing specifically on tinnitus induced by noise exposure. In this investigation, participants were two groups of adults matched for etiology, age, and degree of peripheral hearing loss, but differed by the presence or absence (+/-) of tinnitus. It is assumed that matching individuals on the basis of peripheral hearing loss, allows for differentiating changes in white matter microstructure due to hearing loss from changes due to the effects of chronic tinnitus. Alterations in white matter tracts, using the fractional anisotropy (FA) metric, which measures directional diffusion of water, were quantified using tract-based spatial statistics (TBSS) with additional details provided by in vivo probabilistic tractography. Our results indicate that 10 voxel clusters differentiated the two groups, including 9 with higher FA in the group with tinnitus. A decrease in FA was found for a single cluster in the group with tinnitus. However, seven of the 9 clusters with higher FA were in left hemisphere thalamic, frontal, and parietal white matter. These foci were localized to the anterior thalamic radiations and the inferior and superior longitudinal fasciculi. The two right-sided clusters with increased FA were located in the inferior fronto-occipital fasciculus and superior longitudinal fasciculus. The only decrease in FA for the tinnitus-positive group was found in the superior longitudinal fasciculus of the left parietal lobe. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Coupled changes in brain white matter microstructure and fluid intelligence in later life.

    Science.gov (United States)

    Ritchie, Stuart J; Bastin, Mark E; Tucker-Drob, Elliot M; Maniega, Susana Muñoz; Engelhardt, Laura E; Cox, Simon R; Royle, Natalie A; Gow, Alan J; Corley, Janie; Pattie, Alison; Taylor, Adele M; Valdés Hernández, Maria Del C; Starr, John M; Wardlaw, Joanna M; Deary, Ian J

    2015-06-03

    Understanding aging-related cognitive decline is of growing importance in aging societies, but relatively little is known about its neural substrates. Measures of white matter microstructure are known to correlate cross-sectionally with cognitive ability measures, but only a few small studies have tested for longitudinal relations among these variables. We tested whether there were coupled changes in brain white matter microstructure indexed by fractional anisotropy (FA) and three broad cognitive domains (fluid intelligence, processing speed, and memory) in a large cohort of human participants with longitudinal diffusion tensor MRI and detailed cognitive data taken at ages 73 years (n = 731) and 76 years (n = 488). Longitudinal changes in white matter microstructure were coupled with changes in fluid intelligence, but not with processing speed or memory. Individuals with higher baseline white matter FA showed less subsequent decline in processing speed. Our results provide evidence for a longitudinal link between changes in white matter microstructure and aging-related cognitive decline during the eighth decade of life. They are consistent with theoretical perspectives positing that a corticocortical "disconnection" partly explains cognitive aging. Copyright © 2015 Ritchie et al.

  13. ABCD1 dysfunction alters white matter microvascular perfusion

    DEFF Research Database (Denmark)

    Lauer, Arne; Da, Xiao; Hansen, Mikkel Bo

    2017-01-01

    Cerebral X-linked adrenoleukodystrophy is a devastating neurodegenerative disorder caused by mutations in the ABCD1 gene, which lead to a rapidly progressive cerebral inflammatory demyelination in up to 60% of affected males. Selective brain endothelial dysfunction and increased permeability...... of the blood–brain barrier suggest that white matter microvascular dysfunction contributes to the conversion to cerebral disease. Applying a vascular model to conventional dynamic susceptibility contrast magnetic reson- ance perfusion imaging, we demonstrate that lack of ABCD1 function causes increased...... capillary flow heterogeneity in asymptom- atic hemizygotes predominantly in the white matter regions and developmental stages with the highest probability for conversion to cerebral disease. In subjects with ongoing inflammatory demyelination we observed a sequence of increased capillary flow hetero...

  14. White matter microstructural organization and gait stability in older adults

    Directory of Open Access Journals (Sweden)

    Sjoerd M. Bruijn

    2014-06-01

    Full Text Available Understanding age-related decline in gait stability and the role of alterations in brain structure is crucial. Here, we studied the relationship between white matter microstructural organization using Diffusion Tensor Imaging (DTI and advanced gait stability measures in 15 healthy young adults (range 18-30 years and 25 healthy older adults (range 62-82 years.Among the different gait stability measures, only stride time and the maximum Lyapunov exponent (which quantifies how well participants are able to attenuate small perturbations were found to decline with age. White matter microstructural organization (FA was lower throughout the brain in older adults. We found a strong correlation between FA in the left anterior thalamic radiation and left corticospinal tract on the one hand, and step width and safety margin (indicative of how close participants are to falling over on the other. These findings suggest that white matter FA in tracts connecting subcortical and prefrontal areas is associated with the implementation of an effective stabilization strategy during gait.

  15. Distinct white matter abnormalities in different idiopathic generalized epilepsy syndromes.

    Science.gov (United States)

    Liu, Min; Concha, Luis; Beaulieu, Christian; Gross, Donald W

    2011-12-01

    By definition idiopathic generalized epilepsy (IGE) is not associated with structural abnormalities on conventional magnetic resonance imaging (MRI). However, recent quantitative studies suggest white and gray matter alterations in IGE. The purpose of this study was to investigate whether there are white and/or gray matter structural differences between controls and two subsets of IGE, namely juvenile myoclonic epilepsy (JME) and IGE with generalized tonic-clonic seizures only (IGE-GTC). We assessed white matter integrity and gray matter volume using diffusion tensor tractography-based analysis of fractional anisotropy and voxel-based morphometry, respectively, in 25 patients with IGE, all of whom had experienced generalized tonic-clonic convulsions. Specifically, 15 patients with JME and 10 patients with IGE-GTC were compared to two groups of similarly matched controls separately. Correlations between total lifetime generalized tonic-clonic seizures and fractional anisotropy were investigated for both groups. Tractography revealed lower fractional anisotropy in specific tracts including the crus of the fornix, body of corpus callosum, uncinate fasciculi, superior longitudinal fasciculi, anterior limb of internal capsule, and corticospinal tracts in JME with respect to controls, whereas there were no fractional anisotropy differences in IGE-GTC. No correlation was found between fractional anisotropy and total lifetime generalized tonic-clonic seizures for either JME or IGE-GTC. Although false discovery rate-corrected voxel-based morphometry (VBM) showed no gray matter volume differences between patient and control groups, spatial extent cluster-corrected VBM analysis suggested a trend of gray matter volume reduction in frontal and central regions in both patient groups, more lateral in JME and more medial in IGE-GTC. The findings support the idea that the clinical syndromes of JME and IGE-GTC have unique anatomic substrates. The fact that the primary clinical

  16. White matter microstructure mediates the relationship between cardiorespiratory fitness and spatial working memory in older adults.

    Science.gov (United States)

    Oberlin, Lauren E; Verstynen, Timothy D; Burzynska, Agnieszka Z; Voss, Michelle W; Prakash, Ruchika Shaurya; Chaddock-Heyman, Laura; Wong, Chelsea; Fanning, Jason; Awick, Elizabeth; Gothe, Neha; Phillips, Siobhan M; Mailey, Emily; Ehlers, Diane; Olson, Erin; Wojcicki, Thomas; McAuley, Edward; Kramer, Arthur F; Erickson, Kirk I

    2016-05-01

    White matter structure declines with advancing age and has been associated with a decline in memory and executive processes in older adulthood. Yet, recent research suggests that higher physical activity and fitness levels may be associated with less white matter degeneration in late life, although the tract-specificity of this relationship is not well understood. In addition, these prior studies infrequently associate measures of white matter microstructure to cognitive outcomes, so the behavioral importance of higher levels of white matter microstructural organization with greater fitness levels remains a matter of speculation. Here we tested whether cardiorespiratory fitness (VO2max) levels were associated with white matter microstructure and whether this relationship constituted an indirect pathway between cardiorespiratory fitness and spatial working memory in two large, cognitively and neurologically healthy older adult samples. Diffusion tensor imaging was used to determine white matter microstructure in two separate groups: Experiment 1, N=113 (mean age=66.61) and Experiment 2, N=154 (mean age=65.66). Using a voxel-based regression approach, we found that higher VO2max was associated with higher fractional anisotropy (FA), a measure of white matter microstructure, in a diverse network of white matter tracts, including the anterior corona radiata, anterior internal capsule, fornix, cingulum, and corpus callosum (PFDR-correctedmicrostructure within these regions, among others, constituted a significant indirect path between VO2max and spatial working memory performance. These results suggest that greater aerobic fitness levels are associated with higher levels of white matter microstructural organization, which may, in turn, preserve spatial memory performance in older adulthood. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. White matter connectivity and Internet gaming disorder

    Science.gov (United States)

    Jeong, Bum Seok; Han, Doug Hyun; Kim, Sun Mi; Lee, Sang Won; Renshaw, Perry F.

    2017-01-01

    Internet use and on-line game play stimulate corticostriatal-limbic circuitry in both healthy subjects and subjects with Internet gaming disorder (IGD). We hypothesized that increased fractional anisotropy (FA) with decreased radial diffusivity (RD) would be observed in IGD subjects, compared with healthy control subjects, and that these white matter indices would be associated with clinical variables including duration of illness and executive function. We screened 181 male patients in order to recruit a large number (n = 58) of IGD subjects without psychiatric co-morbidity as well as 26 male healthy comparison subjects. Multiple diffusion-weighted images were acquired using a 3.0 Tesla magnetic resonance imaging scanner. Tract-based spatial statistics was applied to compare group differences in diffusion tensor imaging (DTI) metrics between IGD and healthy comparison subjects. IGD subjects had increased FA values within forceps minor, right anterior thalamic radiation, right corticospinal tract, right inferior longitudinal fasciculus, right cingulum to hippocampus and right inferior fronto-occipital fasciculus (IFOF) as well as parallel decreases in RD value within forceps minor, right anterior thalamic radiation and IFOF relative to healthy control subjects. In addition, the duration of illness in IGD subjects was positively correlated with the FA values (integrity of white matter fibers) and negatively correlated with RD scores (diffusivity of axonal density) of whole brain white matter. In IGD subjects without psychiatric co-morbidity, our DTI results suggest that increased myelination (increased FA and decreased RD values) in right-sided frontal fiber tracts may be the result of extended game play. PMID:25899390

  18. Grey Matter Atrophy in Multiple Sclerosis: Clinical Interpretation Depends on Choice of Analysis Method.

    Directory of Open Access Journals (Sweden)

    Veronica Popescu

    Full Text Available Studies disagree on the location of grey matter (GM atrophy in the multiple sclerosis (MS brain.To examine the consistency between FSL, FreeSurfer, SPM for GM atrophy measurement (for volumes, patient/control discrimination, and correlations with cognition.127 MS patients and 50 controls were included and cortical and deep grey matter (DGM volumetrics were performed. Consistency of volumes was assessed with Intraclass Correlation Coefficient/ICC. Consistency of patients/controls discrimination was assessed with Cohen's d, t-tests, MANOVA and a penalized double-loop logistic classifier. Consistency of association with cognition was assessed with Pearson correlation coefficient and ANOVA. Voxel-based morphometry (SPM-VBM and FSL-VBM and vertex-wise FreeSurfer were used for group-level comparisons.The highest volumetry ICC were between SPM and FreeSurfer for cortical regions, and the lowest between SPM and FreeSurfer for DGM. The caudate nucleus and temporal lobes had high consistency between all software, while amygdala had lowest volumetric consistency. Consistency of patients/controls discrimination was largest in the DGM for all software, especially for thalamus and pallidum. The penalized double-loop logistic classifier most often selected the thalamus, pallidum and amygdala for all software. FSL yielded the largest number of significant correlations. DGM yielded stronger correlations with cognition than cortical volumes. Bilateral putamen and left insula volumes correlated with cognition using all methods.GM volumes from FreeSurfer, FSL and SPM are different, especially for cortical regions. While group-level separation between MS and controls is comparable, correlations between regional GM volumes and clinical/cognitive variables in MS should be cautiously interpreted.

  19. Leukoencephalopathy With Vanishing White Matter: A Review

    NARCIS (Netherlands)

    Bugiani, M.; Boor, I.; Powers, J.M.; Scheper, G.C.; van der Knaap, M.S.

    2010-01-01

    Vanishing white matter (VWM) is one of the most prevalent inherited childhood leukoencephalopathies, but this may affect people ofall ages, including neonates and adults. It is a progressive disorder clinically dominated by cerebellar ataxia and in which minor stress conditions, such as fever or

  20. Leukoencephalopathy with vanishing white matter: a review

    NARCIS (Netherlands)

    Bugiani, Marianna; Boor, Ilja; Powers, James M.; Scheper, Gert C.; van der Knaap, Marjo S.

    2010-01-01

    Vanishing white matter (VWM) is one of the most prevalent inherited childhood leukoencephalopathies, but this may affect people of all ages, including neonates and adults. It is a progressive disorder clinically dominated by cerebellar ataxia and in which minor stress conditions, such as fever or

  1. The Classical Pathways of Occipital Lobe Epileptic Propagation Revised in the Light of White Matter Dissection.

    Science.gov (United States)

    Latini, Francesco; Hjortberg, Mats; Aldskogius, Håkan; Ryttlefors, Mats

    2015-01-01

    The clinical evidences of variable epileptic propagation in occipital lobe epilepsy (OLE) have been demonstrated by several studies. However the exact localization of the epileptic focus sometimes represents a problem because of the rapid propagation to frontal, parietal, or temporal regions. Each white matter pathway close to the supposed initial focus can lead the propagation towards a specific direction, explaining the variable semiology of these rare epilepsy syndromes. Some new insights in occipital white matter anatomy are herein described by means of white matter dissection and compared to the classical epileptic patterns, mostly based on the central position of the primary visual cortex. The dissections showed a complex white matter architecture composed by vertical and longitudinal bundles, which are closely interconnected and segregated and are able to support specific high order functions with parallel bidirectional propagation of the electric signal. The same sublobar lesions may hyperactivate different white matter bundles reemphasizing the importance of the ictal semiology as a specific clinical demonstration of the subcortical networks recruited. Merging semiology, white matter anatomy, and electrophysiology may lead us to a better understanding of these complex syndromes and tailored therapeutic options based on individual white matter connectivity.

  2. The Classical Pathways of Occipital Lobe Epileptic Propagation Revised in the Light of White Matter Dissection

    Science.gov (United States)

    Latini, Francesco; Hjortberg, Mats; Aldskogius, Håkan; Ryttlefors, Mats

    2015-01-01

    The clinical evidences of variable epileptic propagation in occipital lobe epilepsy (OLE) have been demonstrated by several studies. However the exact localization of the epileptic focus sometimes represents a problem because of the rapid propagation to frontal, parietal, or temporal regions. Each white matter pathway close to the supposed initial focus can lead the propagation towards a specific direction, explaining the variable semiology of these rare epilepsy syndromes. Some new insights in occipital white matter anatomy are herein described by means of white matter dissection and compared to the classical epileptic patterns, mostly based on the central position of the primary visual cortex. The dissections showed a complex white matter architecture composed by vertical and longitudinal bundles, which are closely interconnected and segregated and are able to support specific high order functions with parallel bidirectional propagation of the electric signal. The same sublobar lesions may hyperactivate different white matter bundles reemphasizing the importance of the ictal semiology as a specific clinical demonstration of the subcortical networks recruited. Merging semiology, white matter anatomy, and electrophysiology may lead us to a better understanding of these complex syndromes and tailored therapeutic options based on individual white matter connectivity. PMID:26063964

  3. Seven-Tesla Magnetization Transfer Imaging to Detect Multiple Sclerosis White Matter Lesions.

    Science.gov (United States)

    Chou, I-Jun; Lim, Su-Yin; Tanasescu, Radu; Al-Radaideh, Ali; Mougin, Olivier E; Tench, Christopher R; Whitehouse, William P; Gowland, Penny A; Constantinescu, Cris S

    2018-03-01

    Fluid-attenuated inversion recovery (FLAIR) imaging at 3 Tesla (T) field strength is the most sensitive modality for detecting white matter lesions in multiple sclerosis. While 7T FLAIR is effective in detecting cortical lesions, it has not been fully optimized for visualization of white matter lesions and thus has not been used for delineating lesions in quantitative magnetic resonance imaging (MRI) studies of the normal appearing white matter in multiple sclerosis. Therefore, we aimed to evaluate the sensitivity of 7T magnetization-transfer-weighted (MT w ) images in the detection of white matter lesions compared with 3T-FLAIR. Fifteen patients with clinically isolated syndrome, 6 with multiple sclerosis, and 10 healthy participants were scanned with 7T 3-dimensional (D) MT w and 3T-2D-FLAIR sequences on the same day. White matter lesions visible on either sequence were delineated. Of 662 lesions identified on 3T-2D-FLAIR images, 652 were detected on 7T-3D-MT w images (sensitivity, 98%; 95% confidence interval, 97% to 99%). The Spearman correlation coefficient between lesion loads estimated by the two sequences was .910. The intrarater and interrater reliability for 7T-3D-MT w images was good with an intraclass correlation coefficient (ICC) of 98.4% and 81.8%, which is similar to that for 3T-2D-FLAIR images (ICC 96.1% and 96.7%). Seven-Tesla MT w sequences detected most of the white matter lesions identified by FLAIR at 3T. This suggests that 7T-MT w imaging is a robust alternative for detecting demyelinating lesions in addition to 3T-FLAIR. Future studies need to compare the roles of optimized 7T-FLAIR and of 7T-MT w imaging. © 2017 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  4. The hidden-Markov brain: comparison and inference of white matter hyperintensities on magnetic resonance imaging (MRI)

    Science.gov (United States)

    Pham, Tuan D.; Salvetti, Federica; Wang, Bing; Diani, Marco; Heindel, Walter; Knecht, Stefan; Wersching, Heike; Baune, Bernhard T.; Berger, Klaus

    2011-02-01

    Rating and quantification of cerebral white matter hyperintensities on magnetic resonance imaging (MRI) are important tasks in various clinical and scientific settings. As manual evaluation is time consuming and imprecise, much effort has been made to automate the quantification of white matter hyperintensities. There is rarely any report that attempts to study the similarity/dissimilarity of white matter hyperintensity patterns that have different sizes, shapes and spatial localizations on the MRI. This paper proposes an original computational neuroscience framework for such a conceptual study with a standpoint that the prior knowledge about white matter hyperintensities can be accumulated and utilized to enable a reliable inference of the rating of a new white matter hyperintensity observation. This computational approach for rating inference of white matter hyperintensities, which appears to be the first study, can be utilized as a computerized rating-assisting tool and can be very economical for diagnostic evaluation of brain tissue lesions.

  5. Radiation dose reduction using 100-kVp and a sinogram-affirmed iterative reconstruction algorithm in adolescent head CT: Impact on grey-white matter contrast and image noise.

    Science.gov (United States)

    Nagayama, Yasunori; Nakaura, Takeshi; Tsuji, Akinori; Urata, Joji; Furusawa, Mitsuhiro; Yuki, Hideaki; Hirarta, Kenichiro; Kidoh, Masafumi; Oda, Seitaro; Utsunomiya, Daisuke; Yamashita, Yasuyuki

    2017-07-01

    To retrospectively evaluate the image quality and radiation dose of 100-kVp scans with sinogram-affirmed iterative reconstruction (IR) for unenhanced head CT in adolescents. Sixty-nine patients aged 12-17 years underwent head CT under 120- (n = 34) or 100-kVp (n = 35) protocols. The 120-kVp images were reconstructed with filtered back-projection (FBP), 100-kVp images with FBP (100-kVp-F) and sinogram-affirmed IR (100-kVp-S). We compared the effective dose (ED), grey-white matter (GM-WM) contrast, image noise, and contrast-to-noise ratio (CNR) between protocols in supratentorial (ST) and posterior fossa (PS). We also assessed GM-WM contrast, image noise, sharpness, artifacts, and overall image quality on a four-point scale. ED was 46% lower with 100- than 120-kVp (p < 0.001). GM-WM contrast was higher, and image noise was lower, on 100-kVp-S than 120-kVp at ST (p < 0.001). CNR of 100-kVp-S was higher than of 120-kVp (p < 0.001). GM-WM contrast of 100-kVp-S was subjectively rated as better than of 120-kVp (p < 0.001). There were no significant differences in the other criteria between 100-kVp-S and 120-kVp (p = 0.072-0.966). The 100-kVp with sinogram-affirmed IR facilitated dramatic radiation reduction and better GM-WM contrast without increasing image noise in adolescent head CT. • 100-kVp head CT provides 46% radiation dose reduction compared with 120-kVp. • 100-kVp scanning improves subjective and objective GM-WM contrast. • Sinogram-affirmed IR decreases head CT image noise, especially in supratentorial region. • 100-kVp protocol with sinogram-affirmed IR is suited for adolescent head CT.

  6. Age-related changes of diffusional anisotropy in the cerebral white matter in normal subjects

    International Nuclear Information System (INIS)

    Hanyu, Haruo; Asano, Tetsuichi; Ogawa, Kimikazu; Takasaki, Masaru; Shindo, Hiroaki; Kakizaki, Dai; Abe, Kimihiko

    1997-01-01

    To investigate age-related changes of diffusional anisotropy in the cerebral white matter, we performed diffusion-weighted MRI studies in 21 normal subjects aged 25 to 96 years. The anisotropic rations (ARs), defined as the apparent diffusion coefficients perpendicular to the nerve fibers to those parallel to the nerve fibers, were significantly higher in elderly than in young subjects in the anterior and posterior white matter surrounding the lateral ventricle. Moreover, significant correlation between age and AR was found in the anterior white matter. The ventricular index (VI) measured on MRI, as a quantitative indicator of brain atrophy, was significantly higher in elderly than younger subjects, and significantly correlated with AR in the anterior white matter. Multiple regression analysis demonstrated that the VI showed the highest correlation for AR. On the other hand, there was no significant correlations between ARs in the corpus callosum and age. These results suggest that morphological changes in the myelin and axon in the white matter occur in elderly normal subjects, probably due to neuronal loss with aging. (author)

  7. White matter pathways in persistent developmental stuttering: Lessons from tractography.

    Science.gov (United States)

    Kronfeld-Duenias, Vered; Civier, Oren; Amir, Ofer; Ezrati-Vinacour, Ruth; Ben-Shachar, Michal

    2018-03-01

    Fluent speech production relies on the coordinated processing of multiple brain regions. This highlights the role of neural pathways that connect distinct brain regions in producing fluent speech. Here, we aim to investigate the role of the white matter pathways in persistent developmental stuttering (PDS), where speech fluency is disrupted. We use diffusion weighted imaging and tractography to compare the white matter properties between adults who do and do not stutter. We compare the diffusion properties along 18 major cerebral white matter pathways. We complement the analysis with an overview of the methodology and a roadmap of the pathways implicated in PDS according to the existing literature. We report differences in the microstructural properties of the anterior callosum, the right inferior longitudinal fasciculus and the right cingulum in people who stutter compared with fluent controls. Persistent developmental stuttering is consistently associated with differences in bilateral distributed networks. We review evidence showing that PDS involves differences in bilateral dorsal fronto-temporal and fronto-parietal pathways, in callosal pathways, in several motor pathways and in basal ganglia connections. This entails an important role for long range white matter pathways in this disorder. Using a wide-lens analysis, we demonstrate differences in additional, right hemispheric pathways, which go beyond the replicable findings in the literature. This suggests that the affected circuits may extend beyond the known language and motor pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Habitual 'sleep credit' is associated with greater grey matter volume of the medial prefrontal cortex, higher emotional intelligence and better mental health.

    Science.gov (United States)

    Weber, Mareen; Webb, Christian A; Deldonno, Sophie R; Kipman, Maia; Schwab, Zachary J; Weiner, Melissa R; Killgore, William D S

    2013-10-01

    In modern society, people often fail to obtain the amount of sleep that experts recommend for good health and performance. Insufficient sleep can lead to degraded cognitive performance and alterations in emotional functioning. However, most people also acknowledge that on a regular basis they obtain more sleep than they subjectively perceive they need at a minimum to stave off performance decrements, a construct we describe as subjective 'sleep credit'. Few people would contest the notion that getting more sleep is better, but data on both behavioural and neuroanatomical correlates of 'sleep credit' are surprisingly limited. We conducted a voxel-based morphometric study to assess cerebral grey matter correlates of habitually sleeping more than one's subjective requirements. We further tested whether these structural correlates are associated with perceived emotional intelligence and indices of psychopathology while controlling for age, gender, and total intracranial volume. In a sample of 55 healthy adults aged 18-45 years (28 males, 27 females), whole-brain multiple regression showed that habitual subjective 'sleep credit' was correlated positively with grey matter volume within regions of the left medial prefrontal cortex and right orbitofrontal gyrus. Volumes were extracted and regressed against self-report emotion and psychopathology indices. Only grey matter volume of the medial prefrontal cortex cluster correlated with greater emotional intelligence and lower scores on several indices of psychopathology. Findings converge with previous evidence of the role of the medial prefrontal cortex in the relationship between sleep and emotional functioning, and suggest that behaviour and brain structure vary with habitual 'sleep credit'. © 2013 European Sleep Research Society.

  9. Computerized tomographic evaluation of chronic ischemic lesions in cerebral white matter

    International Nuclear Information System (INIS)

    Yamanouchi, Hiroshi; Tohgi, Hideo; Iio, Masahiro; Tomonaga, Masanori.

    1981-01-01

    The purpose of this study is to clarify the correlation between the low density areas and periventricular lucency (PVL) on CT and the histopathologic changes of chronic ischemic lesions in cerebral white matter. Thirty seven brains from chronic cases with stroke and 17 brains from patients who showed PVLs on CT were examined histologically. CT scans were performed using GE CT/T. Chronic ischemic lesions with severe demyelination or diffuse cavitation were detected as low density areas on CT. But if associated with severe gliosis, those lesions could not be detected on CT. Areas with myelin pallor could not be detected on CT. In some cases diffuse ischemic lesions as demyelination and cavitation were found in the areas corresponding to PVLs on CT. However, they were not always expressed on CT. Other cases with PVL had no histological changes in the frontal white matter. In conclusion, chronic ischemic lesions in the cerebral white matter could not always be detected as low density areas on CT. This may be partly because decreased density due to demyelination and cavitation was counterbalanced by severe gliosis which tends to increase the density. In some cases PVLs were related to diffuse ischemic lesions in the frontal white matter, but this was not always the case. (author)

  10. White matter hyperintensities, systemic inflammation, brain growth, and cognitive functions in children exposed to air pollution.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Styner, Martin; Gómez-Garza, Gilberto; Zhu, Hongtu; Torres-Jardón, Ricardo; Carlos, Esperanza; Solorio-López, Edelmira; Medina-Cortina, Humberto; Kavanaugh, Michael; D'Angiulli, Amedeo

    2012-01-01

    Air pollution exposures are linked to neuroinflammation and neuropathology in young urbanites. Forty percent of exposed children and young adults exhibit frontal tau hyperphosphorylation and 51% have amyloid-β diffuse plaques compared to 0% in low pollution controls. In older adults, white matter hyperintensities (WMH) are associated with cognitive deficits while inflammatory markers correlate with greater atrophy than expected for age. We investigated patterns of WMH, magnetic resonance imaging (MRI) volume growth, blood inflammatory mediators, and cognition in matched children from two urban cohorts: one severely and one minimally exposed to air pollution. Baseline and one year follow-up measurements of cognitive abilities, brain MRI volumes, and blood were collected in 20 Mexico City (MC) children (10 with WMH+, and 10 without WMH-) and 10 matched controls (WMH-). MC WMH- children display the profile of classical pro-inflammatory defensive responses: high interleukin 12, production of powerful pro-inflammatory cytokines, and low concentrations of key cytokines and chemokines associated with neuroprotection. MC WMH+ children exhibit a response involved in resolution of inflammation, immunoregulation, and tissue remodeling. The MC WMH+ group responded to the air pollution-associated brain volumetric alterations with white and grey matter volume increases in temporal, parietal, and frontal regions and better cognitive performance compared to MC WMH-. We conclude that complex modulation of cytokines and chemokines influences children's central nervous system structural and volumetric responses and cognitive correlates resulting from environmental pollution exposures. Identification of biomarkers associating systemic inflammation to brain growth is critical for detecting children at higher risk for cognitive deficits and neurodegeneration, thereby warranting early implementation of neuroprotective measures.

  11. DEWS (DEep White matter hyperintensity Segmentation framework): A fully automated pipeline for detecting small deep white matter hyperintensities in migraineurs.

    Science.gov (United States)

    Park, Bo-Yong; Lee, Mi Ji; Lee, Seung-Hak; Cha, Jihoon; Chung, Chin-Sang; Kim, Sung Tae; Park, Hyunjin

    2018-01-01

    Migraineurs show an increased load of white matter hyperintensities (WMHs) and more rapid deep WMH progression. Previous methods for WMH segmentation have limited efficacy to detect small deep WMHs. We developed a new fully automated detection pipeline, DEWS (DEep White matter hyperintensity Segmentation framework), for small and superficially-located deep WMHs. A total of 148 non-elderly subjects with migraine were included in this study. The pipeline consists of three components: 1) white matter (WM) extraction, 2) WMH detection, and 3) false positive reduction. In WM extraction, we adjusted the WM mask to re-assign misclassified WMHs back to WM using many sequential low-level image processing steps. In WMH detection, the potential WMH clusters were detected using an intensity based threshold and region growing approach. For false positive reduction, the detected WMH clusters were classified into final WMHs and non-WMHs using the random forest (RF) classifier. Size, texture, and multi-scale deep features were used to train the RF classifier. DEWS successfully detected small deep WMHs with a high positive predictive value (PPV) of 0.98 and true positive rate (TPR) of 0.70 in the training and test sets. Similar performance of PPV (0.96) and TPR (0.68) was attained in the validation set. DEWS showed a superior performance in comparison with other methods. Our proposed pipeline is freely available online to help the research community in quantifying deep WMHs in non-elderly adults.

  12. Searching and synthesising 'grey literature' and 'grey information' in public health: critical reflections on three case studies.

    Science.gov (United States)

    Adams, Jean; Hillier-Brown, Frances C; Moore, Helen J; Lake, Amelia A; Araujo-Soares, Vera; White, Martin; Summerbell, Carolyn

    2016-09-29

    Grey literature includes a range of documents not controlled by commercial publishing organisations. This means that grey literature can be difficult to search and retrieve for evidence synthesis. Much knowledge and evidence in public health, and other fields, accumulates from innovation in practice. This knowledge may not even be of sufficient formality to meet the definition of grey literature. We term this knowledge 'grey information'. Grey information may be even harder to search for and retrieve than grey literature. On three previous occasions, we have attempted to systematically search for and synthesise public health grey literature and information-both to summarise the extent and nature of particular classes of interventions and to synthesise results of evaluations. Here, we briefly describe these three 'case studies' but focus on our post hoc critical reflections on searching for and synthesising grey literature and information garnered from our experiences of these case studies. We believe these reflections will be useful to future researchers working in this area. Issues discussed include search methods, searching efficiency, replicability of searches, data management, data extraction, assessing study 'quality', data synthesis, time and resources, and differentiating evidence synthesis from primary research. Information on applied public health research questions relating to the nature and range of public health interventions, as well as many evaluations of these interventions, may be predominantly, or only, held in grey literature and grey information. Evidence syntheses on these topics need, therefore, to embrace grey literature and information. Many typical systematic review methods for searching, appraising, managing, and synthesising the evidence base can be adapted for use with grey literature and information. Evidence synthesisers should carefully consider the opportunities and problems offered by including grey literature and information

  13. Family Income, Cumulative Risk Exposure, and White Matter Structure in Middle Childhood

    Directory of Open Access Journals (Sweden)

    Alexander J. Dufford

    2017-11-01

    Full Text Available Family income is associated with gray matter morphometry in children, but little is known about the relationship between family income and white matter structure. In this paper, using Tract-Based Spatial Statistics, a whole brain, voxel-wise approach, we examined the relationship between family income (assessed by income-to-needs ratio and white matter organization in middle childhood (N = 27, M = 8.66 years. Results from a non-parametric, voxel-wise, multiple regression (threshold-free cluster enhancement, p < 0.05 FWE corrected indicated that lower family income was associated with lower white matter organization [assessed by fractional anisotropy (FA] for several clusters in white matter tracts involved in cognitive and emotional functions including fronto-limbic circuitry (uncinate fasciculus and cingulum bundle, association fibers (inferior longitudinal fasciculus, superior longitudinal fasciculus, and corticospinal tracts. Further, we examined the possibility that cumulative risk (CR exposure might function as one of the potential pathways by which family income influences neural outcomes. Using multiple regressions, we found lower FA in portions of these tracts, including those found in the left cingulum bundle and left superior longitudinal fasciculus, was significantly related to greater exposure to CR (β = -0.47, p < 0.05 and β = -0.45, p < 0.05.

  14. Neonatal white matter abnormalities an important predictor of neurocognitive outcome for very preterm children.

    Directory of Open Access Journals (Sweden)

    Lianne J Woodward

    Full Text Available BACKGROUND: Cerebral white matter abnormalities on term MRI are a strong predictor of motor disability in children born very preterm. However, their contribution to cognitive impairment is less certain. OBJECTIVE: Examine relationships between the presence and severity of cerebral white matter abnormalities on neonatal MRI and a range of neurocognitive outcomes assessed at ages 4 and 6 years. DESIGN/METHODS: The study sample consisted of a regionally representative cohort of 104 very preterm (≤32 weeks gestation infants born from 1998-2000 and a comparison group of 107 full-term infants. At term equivalent, all preterm infants underwent a structural MRI scan that was analyzed qualitatively for the presence and severity of cerebral white matter abnormalities, including cysts, signal abnormalities, loss of white matter volume, ventriculomegaly, and corpus callosal thinning/myelination. At corrected ages 4 and 6 years, all children underwent a comprehensive neurodevelopmental assessment that included measures of general intellectual ability, language development, and executive functioning. RESULTS: At 4 and 6 years, very preterm children without cerebral white matter abnormalities showed no apparent neurocognitive impairments relative to their full-term peers on any of the domain specific measures of intelligence, language, and executive functioning. In contrast, children born very preterm with mild and moderate-to-severe white matter abnormalities were characterized by performance impairments across all measures and time points, with more severe cerebral abnormalities being associated with increased risks of cognitive impairment. These associations persisted after adjustment for gender, neonatal medical risk factors, and family social risk. CONCLUSIONS: Findings highlight the importance of cerebral white matter connectivity for later intact cognitive functioning amongst children born very preterm. Preterm born children without cerebral white

  15. Early gray-matter and white-matter concentration in infancy predict later language skills: a whole brain voxel-based morphometry study.

    Science.gov (United States)

    Deniz Can, Dilara; Richards, Todd; Kuhl, Patricia K

    2013-01-01

    Magnetic resonance imaging (MRI) brain scans were obtained from 19 infants at 7 months. Expressive and receptive language performance was assessed at 12 months. Voxel-based morphometry (VBM) identified brain regions where gray-matter and white-matter concentrations at 7 months correlated significantly with children's language scores at 12 months. Early gray-matter concentration in the right cerebellum, early white-matter concentration in the right cerebellum, and early white-matter concentration in the left posterior limb of the internal capsule (PLIC)/cerebral peduncle were positively and strongly associated with infants' receptive language ability at 12 months. Early gray-matter concentration in the right hippocampus was positively and strongly correlated with infants' expressive language ability at 12 months. Our results suggest that the cerebellum, PLIC/cerebral peduncle, and the hippocampus may be associated with early language development. Potential links between these structural predictors and infants' linguistic functions are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. In vivo characterization of cortical and white matter neuroaxonal pathology in early multiple sclerosis.

    Science.gov (United States)

    Granberg, Tobias; Fan, Qiuyun; Treaba, Constantina Andrada; Ouellette, Russell; Herranz, Elena; Mangeat, Gabriel; Louapre, Céline; Cohen-Adad, Julien; Klawiter, Eric C; Sloane, Jacob A; Mainero, Caterina

    2017-11-01

    Neuroaxonal pathology is a main determinant of disease progression in multiple sclerosis; however, its underlying pathophysiological mechanisms, including its link to inflammatory demyelination and temporal occurrence in the disease course are still unknown. We used ultra-high field (7 T), ultra-high gradient strength diffusion and T1/T2-weighted myelin-sensitive magnetic resonance imaging to characterize microstructural changes in myelin and neuroaxonal integrity in the cortex and white matter in early stage multiple sclerosis, their distribution in lesional and normal-appearing tissue, and their correlations with neurological disability. Twenty-six early stage multiple sclerosis subjects (disease duration ≤5 years) and 24 age-matched healthy controls underwent 7 T T2*-weighted imaging for cortical lesion segmentation and 3 T T1/T2-weighted myelin-sensitive imaging and neurite orientation dispersion and density imaging for assessing microstructural myelin, axonal and dendrite integrity in lesional and normal-appearing tissue of the cortex and the white matter. Conventional mean diffusivity and fractional anisotropy metrics were also assessed for comparison. Cortical lesions were identified in 92% of early multiple sclerosis subjects and they were characterized by lower intracellular volume fraction (P = 0.015 by paired t-test), lower myelin-sensitive contrast (P = 0.030 by related-samples Wilcoxon signed-rank test) and higher mean diffusivity (P = 0.022 by related-samples Wilcoxon signed-rank test) relative to the contralateral normal-appearing cortex. Similar findings were observed in white matter lesions relative to normal-appearing white matter (all P test) and lower fractional anisotropy (P Wilcoxon signed-rank test) suggestive of less coherent underlying fibre orientation. Additionally, the normal-appearing white matter in multiple sclerosis subjects had diffusely lower intracellular volume fractions than the white matter in controls (P = 0.029 by unpaired

  17. Raymond de Vieussens and his contribution to the study of white matter anatomy: historical vignette.

    Science.gov (United States)

    Vergani, Francesco; Morris, Christopher M; Mitchell, Patrick; Duffau, Hugues

    2012-12-01

    In recent years, there has been a renewed interest in the study of white matter anatomy, both with the use of postmortem dissections and diffusion tensor imaging tractography. One of the precursors in the study of white matter anatomy was Raymond de Vieussens (1641-1716), a French anatomist born in Le Vigan. He studied medicine at the University of Montpellier in southern France, one of the most ancient and lively schools of medicine in Europe. In 1684 Vieussens published his masterpiece, the Neurographia Universalis, which is still considered one of the most complete and accurate descriptions of the nervous system provided in the 17th century. He described the white matter of the centrum ovale and was the first to demonstrate the continuity of the white matter fibers from the centrum ovale to the brainstem. He also described the dentate nuclei, the pyramids, and the olivary nuclei. According to the theory of Galen, Vieussens considered that the function of the white matter was to convey the "animal spirit" from the centrum ovale to the spinal cord. Although neglected, Vieussens' contribution to the study of white matter is relevant. His pioneering work showed that the white matter is not a homogeneous substance, but rather a complex structure rich in fibers that are interconnected with different parts of the brain. These initial results paved the way to advancements observed in later centuries that eventually led to modern hodology.

  18. In Vivo Evidence of Reduced Integrity of the Gray-White Matter Boundary in Autism Spectrum Disorder.

    Science.gov (United States)

    Andrews, Derek Sayre; Avino, Thomas A; Gudbrandsen, Maria; Daly, Eileen; Marquand, Andre; Murphy, Clodagh M; Lai, Meng-Chuan; Lombardo, Michael V; Ruigrok, Amber N V; Williams, Steven C; Bullmore, Edward T; The Mrc Aims Consortium; Suckling, John; Baron-Cohen, Simon; Craig, Michael C; Murphy, Declan G M; Ecker, Christine

    2017-02-01

    Atypical cortical organization and reduced integrity of the gray-white matter boundary have been reported by postmortem studies in individuals with autism spectrum disorder (ASD). However, there are no in vivo studies that examine these particular features of cortical organization in ASD. Hence, we used structural magnetic resonance imaging to examine differences in tissue contrast between gray and white matter in 98 adults with ASD and 98 typically developing controls, to test the hypothesis that individuals with ASD have significantly reduced tissue contrast. More specifically, we examined contrast as a percentage between gray and white matter tissue signal intensities (GWPC) sampled at the gray-white matter boundary, and across different cortical layers. We found that individuals with ASD had significantly reduced GWPC in several clusters throughout the cortex (cluster, P gray-white matter interface, which indicates a less distinct gray-white matter boundary in ASD. Our in vivo findings of reduced GWPC in ASD are therefore consistent with prior postmortem findings of a less well-defined gray-white matter boundary in ASD. Taken together, these results indicate that GWPC might be utilized as an in vivo proxy measure of atypical cortical microstructural organization in future studies. © The Author 2017. Published by Oxford University Press.

  19. Familial and environmental influences on brain volumes in twins with schizophrenia.

    Science.gov (United States)

    Picchioni, Marco M; Rijsdijk, Fruhling; Toulopoulou, Timothea; Chaddock, Christopher; Cole, James H; Ettinger, Ulrich; Oses, Ana; Metcalfe, Hugo; Murray, Robin M; McGuire, Philip

    2017-03-01

    Reductions in whole brain and grey matter volumes are robust features of schizophrenia, yet their etiological influences are unclear. We investigated the association between the genetic and environmental risk for schizophrenia and brain volumes. Whole brain, grey matter and white matter volumes were established from structural MRIs from twins varying in their zygosity and concordance for schizophrenia. Hippocampal volumes were measured manually. We conducted between-group testing and full genetic modelling. We included 168 twins in our study. Whole brain, grey matter, white matter and right hippocampal volumes were smaller in twins with schizophrenia. Twin correlations were larger for whole brain, grey matter and white matter volumes in monozygotic than dizygotic twins and were significantly heritable, whereas hippocampal volume was the most environmentally sensitive. There was a significant phenotypic correlation between schizophrenia and reductions in all the brain volumes except for that of the left hippocampus. For whole brain, grey matter and the right hippocampus the etiological links with schizophrenia were principally associated with the shared familial environment. Lower birth weight and perinatal hypoxia were both associated with lower whole brain volume and with lower white matter and grey matter volumes, respectively. Scan data were collected across 2 sites, and some groups were modest in size. Whole brain, grey matter and right hippocampal volume reductions are linked to schizophrenia through correlated familial risk (i.e., the shared familial environment). The degree of influence of etiological factors varies between brain structures, leading to the possibility of a neuroanatomically specific etiological imprint.

  20. Experimental focal neocortical epilepsy is associated with reduced white matter volume growth : results from multiparametric MRI analysis

    NARCIS (Netherlands)

    Otte, Wim; van Meer, Maurits P A; van der Marel, Kajo; Zwartbol, René; Viergever, Max A.; Braun, Kees P J; Dijkhuizen, Rick M.

    2015-01-01

    Focal epilepsy has recently been associated with remote white matter damage, including reduced white matter volume. Longitudinal assessment of these white matter changes, in relation to functional mechanisms and consequences, may be ideally done by in vivo neuroimaging in well-controlled

  1. Lhermitte-Duclos disease with neurofibrillary tangles in heterotopic cerebral grey matter

    Directory of Open Access Journals (Sweden)

    Daniel Rusiecki

    2016-06-01

    Full Text Available Lhermitte-Duclos disease (LDD, a disorder first described by French physicians Lhermitte and Duclos in 1920 [25], is a benign, slow growing dysplastic gangliocytoma of the cerebellum, characterized by replacement of the granule cell layer by abnormal granule and Purkinje like cells. The most frequent presenting signs and symptoms are megalocephaly, increased intracranial pressure, nausea, hydrocephalus, ataxia, gait abnormalities, and intermittent headaches, all of which are attributed to the mass effect [6,11,25]. Many cases are associated with a mutation in the phosphatase and tensin homolog or PTEN gene which is also involved in numerous otherwise unrelated central nervous system abnormalities, namely Cowden syndrome [1,6,11], autism spectrum disorder [18], cerebral cortical dysplasia [11,30] and Bannayan-Riley-Ruvalcaba syndrome [30]. The presence of cortical heterotopia has been reported in a small number of LDD cases [3,5,17,32]. We describe a unique case of LDD with cerebral cortical heterotopic grey matter containing neurofibrillary tangles.

  2. Deficits in Neurite Density Underlie White Matter Structure Abnormalities in First-Episode Psychosis.

    Science.gov (United States)

    Rae, Charlotte L; Davies, Geoff; Garfinkel, Sarah N; Gabel, Matt C; Dowell, Nicholas G; Cercignani, Mara; Seth, Anil K; Greenwood, Kathryn E; Medford, Nick; Critchley, Hugo D

    2017-11-15

    Structural abnormalities across multiple white matter tracts are recognized in people with early psychosis, consistent with dysconnectivity as a neuropathological account of symptom expression. We applied advanced neuroimaging techniques to characterize microstructural white matter abnormalities for a deeper understanding of the developmental etiology of psychosis. Thirty-five first-episode psychosis patients, and 19 healthy controls, participated in a quantitative neuroimaging study using neurite orientation dispersion and density imaging, a multishell diffusion-weighted magnetic resonance imaging technique that distinguishes white matter fiber arrangement and geometry from changes in neurite density. Fractional anisotropy (FA) and mean diffusivity images were also derived. Tract-based spatial statistics compared white matter structure between patients and control subjects and tested associations with age, symptom severity, and medication. Patients with first-episode psychosis had lower regional FA in multiple commissural, corticospinal, and association tracts. These abnormalities predominantly colocalized with regions of reduced neurite density, rather than aberrant fiber bundle arrangement (orientation dispersion index). There was no direct relationship with active symptoms. FA decreased and orientation dispersion index increased with age in patients, but not control subjects, suggesting accelerated effects of white matter geometry change. Deficits in neurite density appear fundamental to abnormalities in white matter integrity in early psychosis. In the first application of neurite orientation dispersion and density imaging in psychosis, we found that processes compromising axonal fiber number, density, and myelination, rather than processes leading to spatial disruption of fiber organization, are implicated in the etiology of psychosis. This accords with a neurodevelopmental origin of aberrant brain-wide structural connectivity predisposing individuals to

  3. Impact of early and recent stress on white matter microstructure in major depressive disorder.

    Science.gov (United States)

    Poletti, Sara; Aggio, Veronica; Brioschi, Silvia; Bollettini, Irene; Falini, Andrea; Colombo, Cristina; Benedetti, Francesco

    2018-01-01

    Major Depressive Disorder (MDD) is a worldwide-spread pathology, characterized by lifetime-recurrent episodes. Adverse childhood experiences (ACE) increase the lifetime risk of developing depression and affect the structure of the brain. Recent stressful events (RSE) can trigger the onset of depressive episodes, and affect grey matter volume. The aim of our study is to analyse the effect of both early and recent stress events on white matter microstructure in MDD patients and healthy volunteers. Sixty-five MDD inpatients and fifty-nine healthy controls underwent MRI acquisition of diffusion tensor images with a 3.0T scanner. Severity of ACE and RSE was rated, respectively, on the Risky Families Questionnaire and on the Social Readjustment Rating Scale. A significant effect of diagnosis was observed, with MDD subjects showing reduced fractional anisotropy (FA) and axial diffusivity (AD) compared to healthy controls in all the major association, projection and commissural tracts. In patients with MDD, but not in healthy controls, both ACE and RSE correlated with measures of WM microstructure: ACE correlated negatively with AD and MD, whereas RSE correlated negatively with FA. The two diagnostic groups differed for age and education, previous and current medications, and treatment periods. Exposure to both early and recent stress exerts a widespread effect on WM microstructure of MDD patients, with a different impact possibly depending from the developmental period in which the stress has occurred. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Gray and white matter correlates of the Big Five personality traits.

    Science.gov (United States)

    Privado, Jesús; Román, Francisco J; Saénz-Urturi, Carlota; Burgaleta, Miguel; Colom, Roberto

    2017-05-04

    Personality neuroscience defines the scientific study of the neurobiological basis of personality. This field assumes that individual differences in personality traits are related with structural and functional variations of the human brain. Gray and white matters are structural properties considered separately in previous research. Available findings in this regard are largely disparate. Here we analyze the relationships between gray matter (cortical thickness (CT), cortical surface area (CSA), and cortical volume) and integrity scores obtained after several white matter tracts connecting different brain regions, with individual differences in the personality traits comprised by the Five-Factor Model (extraversion, agreeableness, conscientiousness, neuroticism, and openness to experience). These psychological and biological data were obtained from young healthy women. The main findings showed statistically significant associations between occipital CSA variations and extraversion, as well as between parietal CT variations and neuroticism. Regarding white matter integrity, openness showed positive correlations with tracts connecting posterior and anterior brain regions. Therefore, variations in discrete gray matter clusters were associated with temperamental traits (extraversion and neuroticism), whereas long-distance structural connections were related with the dimension of personality that has been associated with high-level cognitive processes (openness). Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Characterization of neurons in the cortical white matter in human temporal lobe epilepsy.

    Science.gov (United States)

    Richter, Zsófia; Janszky, József; Sétáló, György; Horváth, Réka; Horváth, Zsolt; Dóczi, Tamás; Seress, László; Ábrahám, Hajnalka

    2016-10-01

    The aim of the present work was to characterize neurons in the archi- and neocortical white matter, and to investigate their distribution in mesial temporal sclerosis. Immunohistochemistry and quantification of neurons were performed on surgically resected tissue sections of patients with therapy-resistant temporal lobe epilepsy. Temporal lobe tissues of patients with tumor but without epilepsy and that from autopsy were used as controls. Neurons were identified with immunohistochemistry using antibodies against NeuN, calcium-binding proteins, transcription factor Tbr1 and neurofilaments. We found significantly higher density of neurons in the archi- and neocortical white matter of patients with temporal lobe epilepsy than in that of controls. Based on their morphology and neurochemical content, both excitatory and inhibitory cells were present among these neurons. A subset of neurons in the white matter was Tbr-1-immunoreactive and these neurons coexpressed NeuN and neurofilament marker SMI311R. No colocalization of Tbr1 was observed with the inhibitory neuronal markers, calcium-binding proteins. We suggest that a large population of white matter neurons comprises remnants of the subplate. Furthermore, we propose that a subset of white matter neurons was arrested during migration, highlighting the role of cortical maldevelopment in epilepsy associated with mesial temporal sclerosis. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Non-pharmacological modulation of cerebral white matter organization

    DEFF Research Database (Denmark)

    Kristensen, Tina D; Mandl, Rene C W; Jepsen, Jens R M

    2018-01-01

    OBJECTIVE: Neuroplasticity is a well-described phenomenon, but effects of non-pharmacological interventions on white matter (WM) are unclear. Here we review associations between active non-pharmacological interventions and WM organization in healthy subjects and in psychiatric patients. METHOD...

  7. Genetics Home Reference: leukoencephalopathy with vanishing white matter

    Science.gov (United States)

    ... Torres C, Pröschel C. EIF2B5 mutations compromise GFAP+ astrocyte generation in vanishing white matter leukodystrophy. Nat Med. ... of Medicine Lister Hill National Center for Biomedical Communications 8600 Rockville Pike, Bethesda, MD 20894, USA HONCode ...

  8. Information processing speed mediates the relationship between white matter and general intelligence in schizophrenia.

    Science.gov (United States)

    Alloza, Clara; Cox, Simon R; Duff, Barbara; Semple, Scott I; Bastin, Mark E; Whalley, Heather C; Lawrie, Stephen M

    2016-08-30

    Several authors have proposed that schizophrenia is the result of impaired connectivity between specific brain regions rather than differences in local brain activity. White matter abnormalities have been suggested as the anatomical substrate for this dysconnectivity hypothesis. Information processing speed may act as a key cognitive resource facilitating higher order cognition by allowing multiple cognitive processes to be simultaneously available. However, there is a lack of established associations between these variables in schizophrenia. We hypothesised that the relationship between white matter and general intelligence would be mediated by processing speed. White matter water diffusion parameters were studied using Tract-based Spatial Statistics and computed within 46 regions-of-interest (ROI). Principal component analysis was conducted on these white matter ROI for fractional anisotropy (FA) and mean diffusivity, and on neurocognitive subtests to extract general factors of white mater structure (gFA, gMD), general intelligence (g) and processing speed (gspeed). There was a positive correlation between g and gFA (r= 0.67, p =0.001) that was partially and significantly mediated by gspeed (56.22% CI: 0.10-0.62). These findings suggest a plausible model of structure-function relations in schizophrenia, whereby white matter structure may provide a neuroanatomical substrate for general intelligence, which is partly supported by speed of information processing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. The first week after concussion: Blood flow, brain function and white matter microstructure

    Directory of Open Access Journals (Sweden)

    Nathan W. Churchill

    2017-01-01

    Full Text Available Concussion is a major health concern, associated with short-term deficits in physical function, emotion and cognition, along with negative long-term health outcomes. However, we remain in the early stages of characterizing MRI markers of concussion, particularly during the first week post-injury when symptoms are most severe. In this study, 52 varsity athletes were scanned using Magnetic Resonance Imaging (MRI, including 26 athletes with acute concussion (scanned 1–7 days post-injury and 26 matched control athletes. A comprehensive set of functional and structural MRI measures were analyzed, including cerebral blood flow (CBF and global functional connectivity (Gconn of grey matter, along with fractional anisotropy (FA and mean diffusivity (MD of white matter. An analysis comparing acutely concussed athletes and controls showed limited evidence for reliable mean effects of acute concussion, with only MD showing spatially extensive differences between groups. We subsequently demonstrated that the number of days post-injury explained a significant proportion of inter-subject variability in MRI markers of acutely concussed athletes. Athletes scanned at early acute injury (1–3 days had elevated CBF and Gconn and reduced FA, but those scanned at late acute injury (5–7 days had the opposite response. In contrast, MD showed a more complex, spatially-dependent relationship with days post-injury. These novel findings highlight the variability of MRI markers during the acute phase of concussion and the critical importance of considering the acute injury time interval, which has significant implications for studies relating acute MRI data to concussion outcomes.

  10. Spatial characteristics of white matter abnormalities in schizophrenia

    NARCIS (Netherlands)

    T.J.H. White (Tonya); S.M. Ehrlich (Stefan); B.C. Ho (Beng ); D.S. Manoach (Dara); A. Caprihan (Arvind); S.C. Schulz (S. Charles); N.C. Andreasen; R.L. Gollub (Randy); V.D. Calhoun (Vince); V. Magnotta

    2013-01-01

    textabstractThere is considerable evidence implicating brain white matter (WM) abnormalities in the pathophysiology of schizophrenia; however, the spatial localization of WM abnormalities reported in the existing studies is heterogeneous. Thus, the goal of this study was to quantify the spatial

  11. A voxel-based morphometry study of brain volume changes in patients with neuromyelitis optica

    International Nuclear Information System (INIS)

    Duan Yunyun; Liu Yaou; Liang Peipeng; Huang Jing; Ren Zhuoqiong; Ye Jing; Dong Huiqing; Chen Hai; Li Kuncheng

    2012-01-01

    Objective: To detect changes of regional grey matter and white matter volume in patients of neuromyelitis optica (NMO) by voxel-based morphometry (VBM), and investigate its relationship with clinical variables. Methods: Conventional magnetic resonance imaging (MRI) and structural three-dimensional MRI were obtained from 20 NMO and 20 sex-and age-matched healthy volunteers. The comparison of grey matter and white matter volume between the two groups was analyzed by VBM tools of statistical parametric mapping (SPM) 5. Pearson correlation analysis was used to assess correlations between regional volume decrease and disease duration and expanded disability status scale (EDSS) scores in NMO patients. Results: Compared with normal controls, NMO patients had grey matter atrophy in several cortical regions, such as right inferior frontal gyrus (cluster size 514), left superior temporal gyrus (282), right middle temporal gyrus (229) and right insula (211) (t=3.58-5.11, AlphaSim corrected, P<0.05). White matter atrophy was found in several subcortical regions in NMO patients, such as right precentral and postcentral gyrus (cluster size 457, 110), left middle frontal gyrus (285), and right inferior parietal lobule (231) (t=2.90-4.25, AlphaSim corrected, P<0.05). Grey matter and white matter volume loss were not significantly correlated with clinical duration or EDSS score in NMO. Conclusion: By means of VBM, regional atrophy of grey matter and white matter is found in NMO patients, which may provide evidence for brain structural abnormality in NMO. (authors)

  12. Regional White Matter Decreases in Alzheimer's Disease Using Optimized Voxel-Based Morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Shuyu Li; Fang Pu; Feng Shi; Sheng Xie; Yinhua Wang; Tianzi Jiang [Dept. of Bioengineering, Beijing Univ. of Aeronautics and Astronautics, Beijing (China)

    2008-02-15

    Background: Most studies that attempt to clarify structural abnormalities related to functional disconnection in patients with Alzheimer's disease (AD) have focused on exploring pathological changes in cortical gray matter. However, white matter fibers connecting these cerebral areas may also be abnormal. Purpose: To investigate the regional changes of white matter volume in patients with AD compared to healthy subjects. Material and Methods: White matter volume changes in whole-brain magnetic resonance images acquired from 19 patients with AD and 20 healthy subjects (control group) were observed using the optimized voxel-based morphometry (VBM) method. In addition, the corpus callosum (CC) of AD patients and the control group was investigated further by outlining manually the boundary of the CC on a midsagittal slice. Each area of the CC was then corrected by dividing each subject's intracranial area in the midsagittal plane. Results: Compared with the control group, AD patients showed significantly reduced white matter volumes in the posterior part of the CC and the temporal lobe in the left and right hemispheres. Moreover, the voxel showing peak statistical difference in the posterior of the CC was left sided. The five subdivisions of the CC were also significantly smaller among the AD patients relative to the control group. Conclusion: Our findings suggest that these abnormalities in white matter regions may contribute to the functional disconnections in AD.

  13. Regional White Matter Decreases in Alzheimer's Disease Using Optimized Voxel-Based Morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Shuyu Li; Fang Pu; Feng Shi; Sheng Xie; Yinhua Wang; Tianzi Jiang (Dept. of Bioengineering, Beijing Univ. of Aeronautics and Astronautics, Beijing (China))

    2008-02-15

    Background: Most studies that attempt to clarify structural abnormalities related to functional disconnection in patients with Alzheimer's disease (AD) have focused on exploring pathological changes in cortical gray matter. However, white matter fibers connecting these cerebral areas may also be abnormal. Purpose: To investigate the regional changes of white matter volume in patients with AD compared to healthy subjects. Material and Methods: White matter volume changes in whole-brain magnetic resonance images acquired from 19 patients with AD and 20 healthy subjects (control group) were observed using the optimized voxel-based morphometry (VBM) method. In addition, the corpus callosum (CC) of AD patients and the control group was investigated further by outlining manually the boundary of the CC on a midsagittal slice. Each area of the CC was then corrected by dividing each subject's intracranial area in the midsagittal plane. Results: Compared with the control group, AD patients showed significantly reduced white matter volumes in the posterior part of the CC and the temporal lobe in the left and right hemispheres. Moreover, the voxel showing peak statistical difference in the posterior of the CC was left sided. The five subdivisions of the CC were also significantly smaller among the AD patients relative to the control group. Conclusion: Our findings suggest that these abnormalities in white matter regions may contribute to the functional disconnections in AD

  14. Diffusion tensor imaging, white matter lesions, the corpus callosum, and gait in the elderly

    Science.gov (United States)

    Gait impairment is common in the elderly, especially affected by stroke and white matter hyper intensities found in conventional brain magnetic resonance imaging (MRI). Diffusion tensor imaging (DTI) is more sensitive to white matter damage than conventional MRI. The relationship between DTI measure...

  15. The CT (Hounsfield unit) number of brain tissue in healthy infants. A new reliable method for detection of possible degenerative disease.

    Science.gov (United States)

    Boris, P; Bundgaard, F; Olsen, A

    1987-01-01

    It is difficult to correlate CT Hounsfield unit (H. U.) numbers from one CT investigation to another and from one CT scanner to another, especially when dealing with small changes in the brain substance, as in degenerative brain diseases in children. By subtracting the mean value of cerebrospinal fluid (CSF) from the mean value of grey and white matter, it is possible to remove most of the errors due, for example, to maladjustments, short and long-term drift, X-ray fan, and detector asymmetry. Measurements of white and grey matter using these methods showed CT H. U. numbers changing from 15 H. U. to 22 H. U. in white matter and 23 H. U. to 30 H. U. in grey matter in 86 healthy infants aged 0-5 years. In all measurements, the difference between grey and white matter was exactly 8 H. U. The method has proven to be highly accurate and reproducible.

  16. Changes in the Cell Population in Brain White Matter in Multiple System Atrophy

    DEFF Research Database (Denmark)

    Nykjaer, Charlotte Havelund; Brudek, Tomasz; Salvesen, Lisette

    2017-01-01

    . OBJECTIVES AND METHODS: To establish the extent of involvement of the white matter in the disease, we have used stereology to quantify the total number of neurons and glial cells (oligodendrocytes, astrocytes, and microglia) in the brains from 10 MSA patients and 11 controls. RESULTS: The mean total number...... of white matter interstitial neurons in the patient brains was 0.5 × 10(9) (coefficient of variation = standard deviation/mean = 0.37), which was significantly lower than the 1.1 × 10(9) (0.41) in the control brains (P = .001) and equal to a reduction by ∼50%. The patient brains had a significantly higher...... number of white matter microglia, 1.5 × 10(9) (0.47) versus 0.7 × 10(9) (0.39) microglia in the control subjects (P = .003) and equal to an increase by ∼ 100%. There was no significant difference in mean total numbers of white matter oligodendrocytes and astrocytes between the groups. CONCLUSIONS: We...

  17. Sex differences in abnormal white matter development associated with conduct disorder in children.

    Science.gov (United States)

    Decety, Jean; Yoder, Keith J; Lahey, Benjamin B

    2015-08-30

    Associations between white matter pathway abnormalities and antisocial personality disorder in adults are well replicated, and there is some evidence for an association of white matter abnormalities with conduct disorder (CD) in adolescents. In this study, white matter maturation using diffusion tensor imaging (DTI) was examined in 110 children aged 10.0 ± 0.8 years selected to vary widely in their numbers of CD symptoms. The results replicated age-related increases in fractional anisotropy (FA) found in previous studies. There was not a significant association between the number of CD symptoms and FA, but CD symptoms were found to be significantly associated with greater axial and radial diffusivity in a broad range of white matter tracts, particularly in girls. In complementary analyses, there were similar significant differences in axial and radial diffusivity between children who met diagnostic criteria for CD and healthy children with no symptoms of CD, particularly in girls. Brain structural abnormalities may contribute to the emergence of CD in childhood, perhaps playing a greater role in girls. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. White matter magnetic resonance hyperintensities in dementia of the Alzheimer type

    DEFF Research Database (Denmark)

    Waldemar, G; Christiansen, P; Larsson, H B

    1994-01-01

    In a prospective MRI study the presence, appearance, volume, and regional cerebral blood flow (rCBF) correlates of periventricular hyperintensities (PVHs) and deep white matter hyperintensities (DWMHs) were examined in 18 patients with probable Alzheimer's disease and in 10 age matched healthy...... in the Alzheimer's disease group (p ... patients had extensive DWMH lesions in the central white matter. In the group of patients with Alzheimer's disease as a whole, the volume of DWMHs correlated well with rCBF in the hippocampal region ( r = -0.72; p

  19. Aging of cerebral white matter.

    Science.gov (United States)

    Liu, Huan; Yang, Yuanyuan; Xia, Yuguo; Zhu, Wen; Leak, Rehana K; Wei, Zhishuo; Wang, Jianyi; Hu, Xiaoming

    2017-03-01

    White matter (WM) occupies a large volume of the human cerebrum and is mainly composed of myelinated axons and myelin-producing glial cells. The myelinated axons within WM are the structural foundation for efficient neurotransmission between cortical and subcortical areas. Similar to neuron-enriched gray matter areas, WM undergoes a series of changes during the process of aging. WM malfunction can induce serious neurobehavioral and cognitive impairments. Thus, age-related changes in WM may contribute to the functional decline observed in the elderly. In addition, aged WM becomes more susceptible to neurological disorders, such as stroke, traumatic brain injury (TBI), and neurodegeneration. In this review, we summarize the structural and functional alterations of WM in natural aging and speculate on the underlying mechanisms. We also discuss how age-related WM changes influence the progression of various brain disorders, including ischemic and hemorrhagic stroke, TBI, Alzheimer's disease, and Parkinson's disease. Although the physiology of WM is still poorly understood relative to gray matter, WM is a rational therapeutic target for a number of neurological and psychiatric conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Regional grey matter volume and concentration in at-risk adolescents: Untangling associations with callous-unemotional traits and conduct disorder symptoms.

    Science.gov (United States)

    Cohn, Moran D; Viding, Essi; McCrory, Eamon; Pape, Louise; van den Brink, Wim; Doreleijers, Theo A H; Veltman, Dick J; Popma, Arne

    2016-08-30

    Structural Magnetic Resonance Imaging studies have reported volume reductions in several brain regions implicated in social cognition and emotion recognition in juvenile antisocial populations. However, it is unclear whether these structural abnormalities are specifically related to antisocial features, or to co-occurring callous-unemotional (CU) traits. The present study employed voxel-based morphometry to assess both grey matter volume (GMV) and grey matter concentration (GMC) in a large representative at-risk sample of adolescents (n=134; mean age 17.7yr), characterized by a broad range of CU trait and conduct disorder (CD) symptom scores. There was a significant interaction between CD symptom and CU trait scores in the prediction of GMV in the anterior insula, with a significant positive association between CU traits and GMV in youth low on CD symptoms only. In addition, we found a significant unique positive association between CD symptoms and GMC in the amygdala, and unique negative associations between CU traits and GMC in the amygdala and insula. These findings are in line with accumulating evidence of distinct associations of CD symptoms and CU traits with amygdala and insula GMC in juvenile antisocial populations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Cortisol Reactivity to Stress and Its Association With White Matter Integrity in Adults With Schizophrenia.

    Science.gov (United States)

    Nugent, Katie L; Chiappelli, Joshua; Sampath, Hemalatha; Rowland, Laura M; Thangavelu, Kavita; Davis, Beshaun; Du, Xiaoming; Muellerklein, Florian; Daughters, Stacey; Kochunov, Peter; Hong, L Elliot

    2015-09-01

    Although acute hypothalamic-pituitary-adrenal axis response to stress is often adaptive, prolonged responses may have detrimental effects. Many components of white matter structures are sensitive to prolonged cortisol exposure. We aimed to identify a behavioral laboratory assay for cortisol response related to brain pathophysiology in schizophrenia. We hypothesized that an abnormally prolonged cortisol response to stress may be linked to abnormal white matter integrity in patients with schizophrenia. Acute and prolonged salivary cortisol response was measured outside the scanner at pretest and then at 0, 20, and 40 minutes after a psychological stress task in patients with schizophrenia (n = 45) and controls (n = 53). Tract-averaged white matter was measured by 64-direction diffusion tensor imaging in a subset of patients (n = 30) and controls (n = 33). Patients who did not tolerate the psychological stress task and quit had greater acute (t = 2.52 [p = .016] and t = 3.51 [p = .001] at 0 and 20 minutes) and prolonged (t = 3.62 [p = .001] at 40 minutes) cortisol reactivity compared with patients who finished the task. Abnormally prolonged cortisol reactivity in patients was significantly associated with reduced white matter integrity (r = -0.468, p = .009). Regardless of task completion status, acute cortisol response was not related to the white matter measures in patients or controls. This paradigm was successful at identifying a subset of patients whose cortisol response was associated with brain pathophysiology. Abnormal cortisol response may adversely affect white matter integrity, partly explaining this pathology observed in schizophrenia. Prolonged stress responses may be targeted for intervention to test for protective effects against white matter damages.

  2. Decoupling of structural and functional brain connectivity in older adults with white matter hyperintensities

    NARCIS (Netherlands)

    Reijmer, Y. D.; Schultz, A. P.; Leemans, A.; O'Sullivan, M. J.; Gurol, M. E.; Sperling, R.; Greenberg, S. M.; Viswanathan, A.; Hedden, T.

    2015-01-01

    Age-related impairments in the default network (DN) have been related to disruptions in connecting white matter tracts. We hypothesized that the local correlation between DN structural and functional connectivity is negatively affected in the presence of global white matter injury. In 125 clinically

  3. Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain.

    Science.gov (United States)

    Al-Mashhadi, Sufana; Simpson, Julie E; Heath, Paul R; Dickman, Mark; Forster, Gillian; Matthews, Fiona E; Brayne, Carol; Ince, Paul G; Wharton, Stephen B

    2015-09-01

    White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2'-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (γH2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined. © 2014 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  4. Determinants of iron accumulation in deep grey matter of multiple sclerosis patients

    DEFF Research Database (Denmark)

    Ropele, Stefan; Kilsdonk, Iris D; Wattjes, Mike P

    2014-01-01

    BACKGROUND: Iron accumulation in deep grey matter (GM) structures is a consistent finding in multiple sclerosis (MS) patients. This study focused on the identification of independent determinants of iron accumulation using R2* mapping. SUBJECTS AND METHODS: Ninety-seven MS patients and 81 healthy...... controls were included in this multicentre study. R2* mapping was performed on 3T MRI systems. R2*in deep GM was corrected for age and was related to disease duration, disability, T2 lesion load and brain volume. RESULTS: Compared to controls, R2* was increased in all deep GM regions of MS patients except...... and the red nucleus. In lesions, R2* was inversely correlated with disease duration and higher total lesion load. CONCLUSION: Iron accumulation in deep GM of MS patients is most strongly and independently associated with duration and severity of the disease. Additional associations between cortical GM atrophy...

  5. White matter cysts in patients with tuberous sclerosis; Quistes de sustancia blanca en pacientes con esclerosis tuberosa

    Energy Technology Data Exchange (ETDEWEB)

    Marti-Bonmati, L; Dosda, R [Hospital Universitario Dr. Peset. Servicio de Resonancia Magnetica ATQ-Quiron. Valencia (Spain); Menor, F [Hospital Infantil La Fe. Valencia (Spain); Arana, E [Hospital Casa de La Salud. Valencia (Spain); Poyatos, C [Hospital Universitario Dr. Peset. Valencia (Spain)

    1999-07-01

    The presence of cysts in the white matter of the central nervous system of patients with tuberous sclerosis (TS) is an uncommon finding that has been reported only recently in neuroimaging studies. This article assesses the prevalence of these lesions in a large series of patients studied by magnetic resonance imaging (MRI) and their relationship to other epidemiological and imaging findings. MRI studies were performed in 46 patients (23 males and 23 females) with a mean age of 12.7 years, and the results were examined retrospectively in the search for cortical tubers, subependymal nodules and white matter nodules, lines and cysts. Nine patients (19.6%) presented cysts in white matter. Seven had only one cyst and the remaining two patients each had two. Multiple regression analysis relating the presence of the cysts with other neuroimaging findings in these patients revealed a statistically significant relationship only with white matter nodules (odds ratio: 7.5; p=0.006). White matter cysts are small, supratentorial lesions of deep location. There is a statistically relationship between the presence of these cysts and that of nodular lesions in the white matter. This finding supports the theory that the cyst originate from white matter nodules. (Author) 17 refs.

  6. White Matter Integrity Pre- and Post Marijuana and Alcohol Initiation in Adolescence

    Directory of Open Access Journals (Sweden)

    Lindsay M. Squeglia

    2013-03-01

    Full Text Available Characterizing the effects of alcohol and marijuana use on adolescent brain development is important for understanding potential alterations in neurodevelopment. Several cross sectional studies have identified group differences in white matter integrity after initiation of heavy alcohol and marijuana use, however none have explored white matter trajectories in adolescents pre- and post initiation of use, particularly for marijuana users. This study followed 16 adolescents with minimal alcohol and marijuana use at ages 16–18 over three years. At follow-up, teens were 19–22 years old; half of the participants initiated heavy alcohol use and half initiated heavy alcohol and marijuana use. Repeated-measures ANOVA revealed 20 clusters in association and projection fibers tracts (p < 0.01 in which a group by time interaction was found. Most consistently, white matter integrity (i.e., fractional anisotropy decreased for those who initiated both heavy alcohol and marijuana use over the follow-up interval. No effect of time or change in white matter integrity was seen for those who initiated alcohol use only in the majority of clusters. In most regions, at the baseline time point, teens who would later initiate both alcohol and marijuana use demonstrated white matter integrity greater than or equal to teens that initiated alcohol use only. Findings suggest poorer tissue integrity associated with combined initiation of heavy alcohol and marijuana use in late adolescence. While pre-existing differences may also be related to likelihood of substance use, the present data suggest an effect on tissue integrity for these teens transitioning to combined alcohol and marijuana use in later adolescence.

  7. Assessment of white matter abnormalities in paranoid schizophrenia and bipolar mania patients.

    Science.gov (United States)

    Cui, Liqian; Chen, Zhuangfei; Deng, Wei; Huang, Xiaoqi; Li, Mingli; Ma, Xiaohong; Huang, Chaohua; Jiang, Lijun; Wang, Yingcheng; Wang, Qiang; Collier, David A; Gong, Qiyong; Li, Tao

    2011-12-30

    White matter abnormalities have been repeatedly reported in both schizophrenia and bipolar disorder (BD) in diffusion tensor imaging (DTI) studies, but the empirical evidence about the diagnostic specificity of white matter abnormalities in these disorders is still limited. This study sought to investigate the alterations in fractional anisotropy (FA) in white matter throughout the entire brain of patients from Chengdu, China with paranoid schizophrenia and bipolar mania. For this purpose, DTI was used to assess white matter integrity in patients with paranoid schizophrenia (n=25) and psychotic bipolar mania (n=18) who had been treated with standard pharmacotherapy for fewer than 5 days at the time of study, as well as in normal controls (n=30). The differences in FA were measured by use of voxel-based analysis. The results show that reduced FA was found in the left posterior corona radiata (PCR) in patients with psychotic bipolar mania and paranoid schizophrenia compared to the controls. Patients with psychotic bipolar mania also showed a significant reduction in FA in right posterior corona radiata and in right anterior thalamic radiation (ATR). A direct comparison between the two patient groups found no significant differences in any regions, and none of the findings were associated with illness duration. Correlation analysis indicated that FA values showed a significant negative correlation with positive symptom scores on the Positive and Negative Syndrome Scale in the left frontal-parietal lobe in the paranoid schizophrenia. It was concluded that common abnormalities in the left PCR might imply an overlap in white matter pathology in the two disorders and might be related to shared risk factors for the two disorders. 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Whole brain white matter changes revealed by multiple diffusion metrics in multiple sclerosis: A TBSS study

    International Nuclear Information System (INIS)

    Liu, Yaou; Duan, Yunyun; He, Yong; Yu, Chunshui; Wang, Jun; Huang, Jing; Ye, Jing; Parizel, Paul M.; Li, Kuncheng; Shu, Ni

    2012-01-01

    Objective: To investigate whole brain white matter changes in multiple sclerosis (MS) by multiple diffusion indices, we examined patients with diffusion tensor imaging and utilized tract-based spatial statistics (TBSS) method to analyze the data. Methods: Forty-one relapsing-remitting multiple sclerosis (RRMS) patients and 41 age- and gender-matched normal controls were included in this study. Diffusion weighted images were acquired by employing a single-shot echo planar imaging sequence on a 1.5 T MR scanner. Voxel-wise analyses of multiple diffusion metrics, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) were performed with TBSS. Results: The MS patients had significantly decreased FA (9.11%), increased MD (8.26%), AD (3.48%) and RD (13.17%) in their white matter skeletons compared with the controls. Through TBSS analyses, we found abnormal diffusion changes in widespread white matter regions in MS patients. Specifically, decreased FA, increased MD and increased RD were involved in whole-brain white matter, while several regions exhibited increased AD. Furthermore, white matter regions with significant correlations between the diffusion metrics and the clinical variables (the EDSS scores, disease durations and white matter lesion loads) in MS patients were identified. Conclusion: Widespread white matter abnormalities were observed in MS patients revealed by multiple diffusion metrics. The diffusion changes and correlations with clinical variables were mainly attributed to increased RD, implying the predominant role of RD in reflecting the subtle pathological changes in MS

  9. Whole brain white matter changes revealed by multiple diffusion metrics in multiple sclerosis: A TBSS study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou, E-mail: asiaeurope80@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Duan, Yunyun, E-mail: xiaoyun81.love@163.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); He, Yong, E-mail: yong.h.he@gmail.com [State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875 (China); Yu, Chunshui, E-mail: csyuster@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Wang, Jun, E-mail: jun_wang@bnu.edu.cn [State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875 (China); Huang, Jing, E-mail: sainthj@126.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Ye, Jing, E-mail: jingye.2007@yahoo.com.cn [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Parizel, Paul M., E-mail: paul.parizel@ua.ac.be [Department of Radiology, Antwerp University Hospital and University of Antwerp, Wilrijkstraat 10, 2650 Edegem, 8 Belgium (Belgium); Li, Kuncheng, E-mail: kunchengli55@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Shu, Ni, E-mail: nshu55@gmail.com [State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875 (China)

    2012-10-15

    Objective: To investigate whole brain white matter changes in multiple sclerosis (MS) by multiple diffusion indices, we examined patients with diffusion tensor imaging and utilized tract-based spatial statistics (TBSS) method to analyze the data. Methods: Forty-one relapsing-remitting multiple sclerosis (RRMS) patients and 41 age- and gender-matched normal controls were included in this study. Diffusion weighted images were acquired by employing a single-shot echo planar imaging sequence on a 1.5 T MR scanner. Voxel-wise analyses of multiple diffusion metrics, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) were performed with TBSS. Results: The MS patients had significantly decreased FA (9.11%), increased MD (8.26%), AD (3.48%) and RD (13.17%) in their white matter skeletons compared with the controls. Through TBSS analyses, we found abnormal diffusion changes in widespread white matter regions in MS patients. Specifically, decreased FA, increased MD and increased RD were involved in whole-brain white matter, while several regions exhibited increased AD. Furthermore, white matter regions with significant correlations between the diffusion metrics and the clinical variables (the EDSS scores, disease durations and white matter lesion loads) in MS patients were identified. Conclusion: Widespread white matter abnormalities were observed in MS patients revealed by multiple diffusion metrics. The diffusion changes and correlations with clinical variables were mainly attributed to increased RD, implying the predominant role of RD in reflecting the subtle pathological changes in MS.

  10. Quantitative multivoxel H-1 MR spectroscopy of the brain in children with acute liver failure

    NARCIS (Netherlands)

    Sijens, Paul E.; Alkefaji, Heyder; Lunsing, Roelineke J.; van Spronsen, Francjan J.; Meiners, Linda C.; Oudkerk, Matthijs; Verkade, Henkjan J.

    Acute liver failure (ALF)-related encephalopathy was previously characterized by MR spectroscopy of single voxels containing both grey and white matter brain tissue. Quantitative multivoxel MRS was used here to compare grey and white matter brain tissue concentrations of glutamate/glutamine (Glx)

  11. White matter structural connectivity and episodic memory in early childhood.

    Science.gov (United States)

    Ngo, Chi T; Alm, Kylie H; Metoki, Athanasia; Hampton, William; Riggins, Tracy; Newcombe, Nora S; Olson, Ingrid R

    2017-12-01

    Episodic memory undergoes dramatic improvement in early childhood; the reason for this is poorly understood. In adults, episodic memory relies on a distributed neural network. Key brain regions that supporting these processes include the hippocampus, portions of the parietal cortex, and portions of prefrontal cortex, each of which shows different developmental profiles. Here we asked whether developmental differences in the axonal pathways connecting these regions may account for the robust gains in episodic memory in young children. Using diffusion weighted imaging, we examined whether white matter connectivity between brain regions implicated in episodic memory differed with age, and were associated with memory performance differences in 4- and 6-year-old children. Results revealed that white matter connecting the hippocampus to the inferior parietal lobule significantly predicted children's performance on episodic memory tasks. In contrast, variation in the white matter connecting the hippocampus to the medial prefrontal cortex did not relate to memory performance. These findings suggest that structural connectivity between the hippocampus and lateral parietal regions is relevant to the development of episodic memory. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Uncertainty representation of grey numbers and grey sets.

    Science.gov (United States)

    Yang, Yingjie; Liu, Sifeng; John, Robert

    2014-09-01

    In the literature, there is a presumption that a grey set and an interval-valued fuzzy set are equivalent. This presumption ignores the existence of discrete components in a grey number. In this paper, new measurements of uncertainties of grey numbers and grey sets, consisting of both absolute and relative uncertainties, are defined to give a comprehensive representation of uncertainties in a grey number and a grey set. Some simple examples are provided to illustrate that the proposed uncertainty measurement can give an effective representation of both absolute and relative uncertainties in a grey number and a grey set. The relationships between grey sets and interval-valued fuzzy sets are also analyzed from the point of view of the proposed uncertainty representation. The analysis demonstrates that grey sets and interval-valued fuzzy sets provide different but overlapping models for uncertainty representation in sets.

  13. White Matter Glial Pathology in Autism

    Science.gov (United States)

    2015-11-01

    AWARD NUMBER: W81XWH-12-1-0302 TITLE: White Matter Glial Pathology in Autism PRINCIPAL INVESTIGATOR: Gregory A. Ordway, Ph.D. CONTRACTING...Pathology in Autism 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0302 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Gregory A. Ordway, Ph.D...Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Methods used to directly study the autism brain include brain

  14. Gray, White Matter Concentration Changes and Their Correlation with Heterotopic Neurons in Temporal Lobe Epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Tae, Woo Suk; Joo, Eun Yun; Kim, Sung Tae; Hong, Seung Bong [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2010-02-15

    To identify changes in gray and white matter concentrations (GMC, WMC), and their relation to heterotopic neuron numbers in mesial temporal lobe epilepsy (mTLE). The gray matter or white matter concentrations of 16 left and 15 right mTLE patients who achieved an excellent surgical outcome were compared with those of 24 healthy volunteers for the left group and with 23 healthy volunteers for the right group, by optimized voxel-based morphometry using unmodulated and modulated images. A histologic count of heterotopic neurons was obtained in the white matter of the anterior temporal lobe originating from the patients' surgical specimens. In addition, the number of heterotopic neurons were tested to determine if there was a correlation with the GMC or WMC. The GMCs of the left and right mTLE groups were reduced in the ipsilateral hippocampi, bilateral thalami, precentral gyri, and in the cerebellum. The WMCs were reduced in the ipsilateral white matter of the anterior temporal lobe, bilateral parahippocampal gyri, and internal capsules, but increased in the pons and bilateral precentral gyri. The heterotopic neuron counts in the left mTLE group showed a positive correlation (r = 0.819, p < 0.0001) with GMCs and a negative correlation (r = - 0.839, p < 0.0001) with WMCs in the white matter of the anterior temporal lobe. The present study shows the abnormalities of the cortico-thalamo- hippocampal network including a gray matter volume reduction in the anterior frontal lobes and an abnormality of brain tissue concentration in the pontine area. Furthermore, heterotopic neuron numbers were significantly correlated with GMC or WMC in the left white matter of anterior temporal lobe.

  15. Child abuse associates with an imbalance of oligodendrocyte-lineage cells in ventromedial prefrontal white matter.

    Science.gov (United States)

    Tanti, A; Kim, J J; Wakid, M; Davoli, M-A; Turecki, G; Mechawar, N

    2017-11-21

    Child abuse (CA) is a major risk factor for depression, and strongly associates with suicidal behavior during adulthood. Neuroimaging studies have reported widespread changes in white matter integrity and brain connectivity in subjects with a history of CA. Although such observations could reflect changes in myelin and oligodendrocyte function, their cellular underpinnings have never been addressed. Using postmortem brain samples from depressed suicides with or without history of CA and matched controls (18 per group), we aimed to characterize the effects of CA on oligodendrocyte-lineage (OL) cells in the ventromedial prefrontal white matter. Using immunoblotting, double-labeling immunofluorescence and stereological estimates of stage-specific markers, we found that CA is associated with increased numbers of mature myelinating oligodendrocytes, accompanied by decreased numbers of more immature OL cells. This was paralleled by an increased expression of transcription factor MASH1, which is involved in the terminal differentiation of the OL, suggesting that CA may trigger an increased maturation, or bias the populations of OL cells toward a more mature phenotype. Some of these effects, which were absent in the brain of depressed suicides with no history of CA, were also found to recover with age, suggesting that changes in the balance of the OL may reflect a transient adaptive mechanism triggered by early-life adversity. In conclusion, our results indicate that CA in depressed suicides is associated with an imbalance of the OL in the ventromedial prefrontal white matter, an effect that could lead to myelin remodeling and long-term connectivity changes within the limbic network.Molecular Psychiatry advance online publication, 21 November 2017; doi:10.1038/mp.2017.231.

  16. Computerized detection method for asymptomatic white matter lesions in brain screening MR images using a clustering technique

    International Nuclear Information System (INIS)

    Kunieda, Takuya; Uchiyama, Yoshikazu; Hara, Takeshi

    2008-01-01

    Asymptomatic white matter lesions are frequently identified by the screening system known as Brain Dock, which is intended for the detection of asymptomatic brain diseases. The detection of asymptomatic white matter lesions is important because their presence is associated with an increased risk of stroke. Therefore, we have developed a computerized method for the detection of asymptomatic white matter lesions in order to assist radiologists in image interpretation as a ''second opinion''. Our database consisted of T 1 - and T 2 -weighted images obtained from 73 patients. The locations of the white matter lesions were determined by an experienced neuroradiologist. In order to restrict the area to be searched for white matter lesions, we first segmented the cerebral region in T 1 -weighted images by applying thresholding and region-growing techniques. To identify the initial candidate lesions, k-means clustering with pixel values in T 1 - and T 2 -weighted images was applied to the segmented cerebral region. To eliminate false positives (FPs), we determined the features, such as location, size, and circularity, of each of the initial candidate lesions. Finally, a rule-based scheme and a quadratic discriminant analysis with these features were employed to distinguish between white matter lesions and FPs. The results showed that the sensitivity for the detection of white matter lesions was 93.2%, with 4.3 FPs per image, suggesting that our computerized method may be useful for the detection of asymptomatic white matter lesions in T 1 - and T 2 -weighted images. (author)

  17. Metric to quantify white matter damage on brain magnetic resonance images

    International Nuclear Information System (INIS)

    Valdes Hernandez, Maria del C.; Munoz Maniega, Susana; Anblagan, Devasuda; Bastin, Mark E.; Wardlaw, Joanna M.; Chappell, Francesca M.; Morris, Zoe; Sakka, Eleni; Dickie, David Alexander; Royle, Natalie A.; Armitage, Paul A.; Deary, Ian J.

    2017-01-01

    Quantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need. We obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change. The correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change. The new metric is practical and simple to calculate. It is robust to variations in image processing methods and scanning protocols, and sensitive to subtle and severe white

  18. Blood Pressure Control in Aging Predicts Cerebral Atrophy Related to Small-Vessel White Matter Lesions

    Directory of Open Access Journals (Sweden)

    Kyle C. Kern

    2017-05-01

    Full Text Available Cerebral small-vessel damage manifests as white matter hyperintensities and cerebral atrophy on brain MRI and is associated with aging, cognitive decline and dementia. We sought to examine the interrelationship of these imaging biomarkers and the influence of hypertension in older individuals. We used a multivariate spatial covariance neuroimaging technique to localize the effects of white matter lesion load on regional gray matter volume and assessed the role of blood pressure control, age and education on this relationship. Using a case-control design matching for age, gender, and educational attainment we selected 64 participants with normal blood pressure, controlled hypertension or uncontrolled hypertension from the Northern Manhattan Study cohort. We applied gray matter voxel-based morphometry with the scaled subprofile model to (1 identify regional covariance patterns of gray matter volume differences associated with white matter lesion load, (2 compare this relationship across blood pressure groups, and (3 relate it to cognitive performance. In this group of participants aged 60–86 years, we identified a pattern of reduced gray matter volume associated with white matter lesion load in bilateral temporal-parietal regions with relative preservation of volume in the basal forebrain, thalami and cingulate cortex. This pattern was expressed most in the uncontrolled hypertension group and least in the normotensives, but was also more evident in older and more educated individuals. Expression of this pattern was associated with worse performance in executive function and memory. In summary, white matter lesions from small-vessel disease are associated with a regional pattern of gray matter atrophy that is mitigated by blood pressure control, exacerbated by aging, and associated with cognitive performance.

  19. Executive Functions in Healthy Older Adults Are Differentially Related to Macro- and Microstructural White Matter Characteristics of the Cerebral Lobes

    Directory of Open Access Journals (Sweden)

    Sarah Hirsiger

    2017-11-01

    Full Text Available Aging is associated with microstructural white matter (WM changes. WM microstructural characteristics, measured with diffusion tensor imaging (DTI, are different in normal appearing white matter (NAWM and WM hyperintensities (WMH. It is largely unknown how the microstructural properties of WMH are associated with cognition and if there are regional effects for specific cognitive domains. We therefore examined within 200 healthy older participants (a differences in microstructural characteristics of NAWM and WMH per cerebral lobe; and (b the association of macrostructural (WMH volume and microstructural characteristics (within NAWM and WMH separately of each lobe with measures of executive function and processing speed. Multi-modal imaging (i.e., T1, DTI, and FLAIR was used to assess WM properties. The Stroop and the Trail Making Test were used to measure inhibition, task-switching (both components of executive function, and processing speed. We observed that age was associated with deterioration of white matter microstructure of the NAWM, most notably in the frontal lobe. Older participants had larger WMH volumes and lowest fractional anisotropy values within WMH were found in the frontal lobe. Task-switching was associated with cerebral NAWM volume and NAWM volume of all lobes. Processing speed was associated with total NAWM volume, and microstructural properties of parietal NAWM, the parietal WMH, and the temporal NAWM. Task-switching was related to microstructural properties of WMH of the frontal lobe and WMH volume of the parietal lobe. Our results confirm that executive functioning and processing speed are uniquely associated with macro- and microstructural properties of NAWM and WMH. We further demonstrate for the first time that these relationships differ by lobar region. This warrants the consideration of these distinct WM indices when investigating cognitive function.

  20. Frontoparietal white matter integrity predicts haptic performance in chronic stroke

    Directory of Open Access Journals (Sweden)

    Alexandra L. Borstad

    2016-01-01

    Full Text Available Frontoparietal white matter supports information transfer between brain areas involved in complex haptic tasks such as somatosensory discrimination. The purpose of this study was to gain an understanding of the relationship between microstructural integrity of frontoparietal network white matter and haptic performance in persons with chronic stroke and to compare frontoparietal network integrity in participants with stroke and age matched control participants. Nineteen individuals with stroke and 16 controls participated. Haptic performance was quantified using the Hand Active Sensation Test (HASTe, an 18-item match-to-sample test of weight and texture discrimination. Three tesla MRI was used to obtain diffusion-weighted and high-resolution anatomical images of the whole brain. Probabilistic tractography was used to define 10 frontoparietal tracts total; Four intrahemispheric tracts measured bilaterally 1 thalamus to primary somatosensory cortex (T–S1, 2 thalamus to primary motor cortex (T–M1, 3 primary to secondary somatosensory cortex (S1 to SII and 4 primary somatosensory cortex to middle frontal gyrus (S1 to MFG and, 2 interhemispheric tracts; S1–S1 and precuneus interhemispheric. A control tract outside the network, the cuneus interhemispheric tract, was also examined. The diffusion metrics fractional anisotropy (FA, mean diffusivity (MD, axial (AD and radial diffusivity (RD were quantified for each tract. Diminished FA and elevated MD values are associated with poorer white matter integrity in chronic stroke. Nine of 10 tracts quantified in the frontoparietal network had diminished structural integrity poststroke compared to the controls. The precuneus interhemispheric tract was not significantly different between groups. Principle component analysis across all frontoparietal white matter tract MD values indicated a single factor explained 47% and 57% of the variance in tract mean diffusivity in stroke and control groups respectively

  1. Frontoparietal white matter integrity predicts haptic performance in chronic stroke.

    Science.gov (United States)

    Borstad, Alexandra L; Choi, Seongjin; Schmalbrock, Petra; Nichols-Larsen, Deborah S

    2016-01-01

    Frontoparietal white matter supports information transfer between brain areas involved in complex haptic tasks such as somatosensory discrimination. The purpose of this study was to gain an understanding of the relationship between microstructural integrity of frontoparietal network white matter and haptic performance in persons with chronic stroke and to compare frontoparietal network integrity in participants with stroke and age matched control participants. Nineteen individuals with stroke and 16 controls participated. Haptic performance was quantified using the Hand Active Sensation Test (HASTe), an 18-item match-to-sample test of weight and texture discrimination. Three tesla MRI was used to obtain diffusion-weighted and high-resolution anatomical images of the whole brain. Probabilistic tractography was used to define 10 frontoparietal tracts total; Four intrahemispheric tracts measured bilaterally 1) thalamus to primary somatosensory cortex (T-S1), 2) thalamus to primary motor cortex (T-M1), 3) primary to secondary somatosensory cortex (S1 to SII) and 4) primary somatosensory cortex to middle frontal gyrus (S1 to MFG) and, 2 interhemispheric tracts; S1-S1 and precuneus interhemispheric. A control tract outside the network, the cuneus interhemispheric tract, was also examined. The diffusion metrics fractional anisotropy (FA), mean diffusivity (MD), axial (AD) and radial diffusivity (RD) were quantified for each tract. Diminished FA and elevated MD values are associated with poorer white matter integrity in chronic stroke. Nine of 10 tracts quantified in the frontoparietal network had diminished structural integrity poststroke compared to the controls. The precuneus interhemispheric tract was not significantly different between groups. Principle component analysis across all frontoparietal white matter tract MD values indicated a single factor explained 47% and 57% of the variance in tract mean diffusivity in stroke and control groups respectively. Age

  2. DCDC2 polymorphism is associated with left temporoparietal gray and white matter structures during development.

    Science.gov (United States)

    Darki, Fahimeh; Peyrard-Janvid, Myriam; Matsson, Hans; Kere, Juha; Klingberg, Torkel

    2014-10-22

    Three genes, DYX1C1, DCDC2, and KIAA0319, have been previously associated with dyslexia, neuronal migration, and ciliary function. Three polymorphisms within these genes, rs3743204 (DYX1C1), rs793842 (DCDC2), and rs6935076 (KIAA0319) have also been linked to normal variability of left temporoparietal white matter volume connecting the middle temporal cortex to the angular and supramarginal gyri. Here, we assessed whether these polymorphisms are also related to the cortical thickness of the associated regions during childhood development using a longitudinal dataset of 76 randomly selected children and young adults who were scanned up to three times each, 2 years apart. rs793842 in DCDC2 was significantly associated with the thickness of left angular and supramarginal gyri as well as the left lateral occipital cortex. The cortex was significantly thicker for T-allele carriers, who also had lower white matter volume and lower reading comprehension scores. There was a negative correlation between white matter volume and cortical thickness, but only white matter volume predicted reading comprehension 2 years after scanning. These results show how normal variability in reading comprehension is related to gene, white matter volume, and cortical thickness in the inferior parietal lobe. Possibly, the variability of gray and white matter structures could both be related to the role of DCDC2 in ciliary function, which affects both neuronal migration and axonal outgrowth. Copyright © 2014 the authors 0270-6474/14/3414455-08$15.00/0.

  3. Neonatal deep white matter venous infarction and liquefaction: a pseudo-abscess lesion

    International Nuclear Information System (INIS)

    Ruess, Lynne; Rusin, Jerome A.; Dent, Carly M.; Tiarks, Hailey J.; Yoshida, Michelle A.

    2014-01-01

    Deep white matter hemorrhagic venous infarction with subsequent cavitation due to necrosis and liquefaction has been described in neonates and may be associated with infection and meningitis. In our experience, the MRI pattern of these lesions is confused with the pattern seen with cerebral abscesses. The purpose of our study was to characterize the MRI findings of post infarction necrosis and liquefaction after hemorrhagic deep white matter venous infarction in infants and to distinguish these lesions from cerebral abscesses. An institutional review board approved a retrospective review of imaging records to identify all patients with cerebral venous infarction at a children's hospital during a 10-year period. Nine infants had deep white matter hemorrhagic venous infarction with white matter fluid signal cavitary lesions. A diagnosis of cerebral abscess was considered in all. The imaging and laboratory findings in these patients are reviewed and compared to descriptions of abscesses found in the literature. There were six female and three male infants. The mean age at presentation was 20 days (range: 0-90 days), while the corrected age at presentation was less than 30 days for all patients. Seven patients presented with seizures and signs of infection; one infant presented with lethargy and later proved to have protein C deficiency. MRI was performed 0-12 days from presentation in these eight patients. Another patient with known protein C deficiency underwent MRI at 30 days for follow-up of screening US abnormalities. There were a total of 38 deep cerebral white matter fluid signal cavitary lesions: 25 frontal, 9 parietal, 2 temporal, 2 occipital. Larger lesions had dependent debris. All lesions had associated hemorrhage and many lesions had evidence of adjacent small vessel venous thrombosis. Lesions imaged after gadolinium showed peripheral enhancement. Three lesions increased in size on follow-up imaging. Three patients, two with meningitis confirmed via

  4. Neonatal deep white matter venous infarction and liquefaction: a pseudo-abscess lesion

    Energy Technology Data Exchange (ETDEWEB)

    Ruess, Lynne; Rusin, Jerome A. [Nationwide Children' s Hospital, Department of Radiology, Columbus, OH (United States); The Ohio State University College of Medicine and Public Health, Columbus, OH (United States); Dent, Carly M.; Tiarks, Hailey J.; Yoshida, Michelle A. [Nationwide Children' s Hospital, Department of Radiology, Columbus, OH (United States)

    2014-11-15

    Deep white matter hemorrhagic venous infarction with subsequent cavitation due to necrosis and liquefaction has been described in neonates and may be associated with infection and meningitis. In our experience, the MRI pattern of these lesions is confused with the pattern seen with cerebral abscesses. The purpose of our study was to characterize the MRI findings of post infarction necrosis and liquefaction after hemorrhagic deep white matter venous infarction in infants and to distinguish these lesions from cerebral abscesses. An institutional review board approved a retrospective review of imaging records to identify all patients with cerebral venous infarction at a children's hospital during a 10-year period. Nine infants had deep white matter hemorrhagic venous infarction with white matter fluid signal cavitary lesions. A diagnosis of cerebral abscess was considered in all. The imaging and laboratory findings in these patients are reviewed and compared to descriptions of abscesses found in the literature. There were six female and three male infants. The mean age at presentation was 20 days (range: 0-90 days), while the corrected age at presentation was less than 30 days for all patients. Seven patients presented with seizures and signs of infection; one infant presented with lethargy and later proved to have protein C deficiency. MRI was performed 0-12 days from presentation in these eight patients. Another patient with known protein C deficiency underwent MRI at 30 days for follow-up of screening US abnormalities. There were a total of 38 deep cerebral white matter fluid signal cavitary lesions: 25 frontal, 9 parietal, 2 temporal, 2 occipital. Larger lesions had dependent debris. All lesions had associated hemorrhage and many lesions had evidence of adjacent small vessel venous thrombosis. Lesions imaged after gadolinium showed peripheral enhancement. Three lesions increased in size on follow-up imaging. Three patients, two with meningitis confirmed via

  5. White matter microstructure mediates the relationship between cardiorespiratory fitness and spatial working memory in older adults

    OpenAIRE

    Oberlin, Lauren E.; Verstynen, Timothy D.; Burzynska, Agnieszka Z.; Voss, Michelle W.; Prakash, Ruchika Shaurya; Chaddock-Heyman, Laura; Wong, Chelsea; Fanning, Jason; Awick, Elizabeth; Gothe, Neha; Phillips, Siobhan M.; Mailey, Emily; Ehlers, Diane; Olson, Erin; Wojcicki, Thomas

    2015-01-01

    White matter structure declines with advancing age and has been associated with a decline in memory and executive processes in older adulthood. Yet, recent research suggests that higher physical activity and fitness levels may be associated with less white matter degeneration in late life, although the tract-specificity of this relationship is not well understood. In addition, these prior studies infrequently associate measures of white matter microstructure to cognitive outcomes, so the beha...

  6. QCD matter in white dwarfs and supernova collapse

    International Nuclear Information System (INIS)

    Mathews, Grant J.; Meixner, M.; Lan, N.Q.; Suh, I.-S.

    2010-01-01

    The search for astrophysical evidence for a transition to QCD matter is an important goal. Although much effort has gone into searching for neutron star candidates, here we describe the exploration of two other possible signatures. One is the search for strange dwarfs. Masses and radii for a large number of white dwarfs have been deduced from a combination of proper motion studies, Hipparcos parallax distances, effective temperatures, and binary or spectroscopic masses. Some stars appear to have radii which are significantly smaller than that expected for a standard electron-degenerate white-dwarf equation of state. We argue that there is marginal evidence for bimodality in the radius distribution. We show that the data exhibit several features consistent with the expected mass-radius relation of strange dwarfs. We identify eight nearby white dwarfs that are possible candidates for strange matter cores and suggest observational tests of this hypothesis. We also review the current status of core-collapse supernova research, and in particular, the effects on the explosion of a QCD phase transition in the proto-neutron-star core. We describe how a first order transition could enhance the explosion and lead to observable effects in the emergent neutrino light curve. (author)

  7. Poor Receptive Joint Attention Skills Are Associated with Atypical Grey Matter Asymmetry in the Posterior Superior Temporal Gyrus of Chimpanzees (Pan troglodytes

    Directory of Open Access Journals (Sweden)

    William eHopkins

    2014-01-01

    Full Text Available Clinical and experimental data have implicated the posterior superior temporal gyrus as an important cortical region in the processing of socially relevant stimuli such as gaze following, eye direction, and head orientation. Gaze following and responding to different socio-communicative signals is an important and highly adaptive skill in primates, including humans. Here, we examined whether individual differences in responding to socio-communicative cues was associated with variation in either grey matter volume and asymmetry in a sample of chimpanzees. MRI scans and behavioral data on receptive joint attention (RJA was obtained from a sample of 191 chimpanzees. We found that chimpanzees that performed poorly on the RJA task had more rightward asymmetries in the posterior but not anterior superior temporal gyrus. We further found that middle-aged and elderly chimpanzee performed more poorly on the RJA task and had significantly less grey matter than young-adult and sub-adult chimpanzees. The results are consistent with previous studies implicating the posterior temporal gyrus in the processing of socially relevant information.

  8. Running exercise protects the capillaries in white matter in a rat model of depression.

    Science.gov (United States)

    Chen, Lin-Mu; Zhang, Ai-Pin; Wang, Fei-Fei; Tan, Chuan-Xue; Gao, Yuan; Huang, Chun-Xia; Zhang, Yi; Jiang, Lin; Zhou, Chun-Ni; Chao, Feng-Lei; Zhang, Lei; Tang, Yong

    2016-12-01

    Running has been shown to improve depressive symptoms when used as an adjunct to medication. However, the mechanisms underlying the antidepressant effects of running are not fully understood. Changes of capillaries in white matter have been discovered in clinical patients and depression model rats. Considering the important part of white matter in depression, running may cause capillary structural changes in white matter. Chronic unpredictable stress (CUS) rats were provided with a 4-week running exercise (from the fifth week to the eighth week) for 20 minutes each day for 5 consecutive days each week. Anhedonia was measured by a behavior test. Furthermore, capillary changes were investigated in the control group, the CUS/Standard group, and the CUS/Running group using stereological methods. The 4-week running increased sucrose consumption significantly in the CUS/Running group and had significant effects on the total volume, total length, and total surface area of the capillaries in the white matter of depression rats. These results demonstrated that exercise-induced protection of the capillaries in white matter might be one of the structural bases for the exercise-induced treatment of depression. It might provide important parameters for further study of the vascular mechanisms of depression and a new research direction for the development of clinical antidepressant means. J. Comp. Neurol. 524:3577-3586, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Development of the Cell Population in the Brain White Matter of Young Children

    DEFF Research Database (Denmark)

    Sigaard, Rasmus Krarup; Kjær, Majken; Pakkenberg, Bente

    2014-01-01

    While brain gray matter is primarily associated with sensorimotor processing and cognition, white matter modulates the distribution of action potentials, coordinates communication between different brain regions, and acts as a relay for input/output signals. Previous studies have described......, and microglia) in the cerebral white matter of 9 infants aged 0-33 months, using design-based stereological methods to obtain quantitative data about brain development. There were linear increases with age in the numbers of oligodendrocytes (7-28 billion) and astrocytes (1.5-6.7 billion) during the first 3...

  10. Loss of white matter integrity is associated with gait disorders in cerebral small vessel disease

    NARCIS (Netherlands)

    Laat, K.F. de; Tuladhar, A.M.; Norden, A.G.W. van; Norris, D.G.; Zwiers, M.P.; Leeuw, F.E. de

    2011-01-01

    Gait disturbances are common in the elderly. Cerebral small vessel disease, including white matter lesions and lacunars infarcts, is thought to disrupt white matter tracts that connect important motor regions, hence resulting in gait disturbances. Pathological studies have demonstrated abnormalities

  11. Changes in cognitive functions and cerebral grey matter and their associations with inflammatory markers, endocrine markers, and APOE genotypes in testicular cancer patients undergoing treatment

    DEFF Research Database (Denmark)

    Amidi, Ali; Agerbæk, Mads; Wu, Lisa M.

    2017-01-01

    Evidence suggests that testicular cancer (TC) and its treatment are associated with cognitive impairment. However, the underlying neural substrate and biological mechanisms are poorly understood. This study aimed to investigate changes in cognition and brain grey matter (GM) morphology in TC...

  12. Enhancement of the white matter following prophylactic therapy of the central nervous system for leukemia: radiation effects and methotrexate leukoencephalopathy

    International Nuclear Information System (INIS)

    Shalen, P.R.; Ostrow, P.T.; Glass, P.J.

    1981-01-01

    The authors report a case of fatal necrotizing leukoencephalopathy following prophylactic therapy of the central nervous system for acute lymphoblastic leukemia. The clinical, CT, and neuropathological findings are described. The CT scan demonstrated symmetrical white-matter enhancement. Histological analysis was consistent with the effects of irradiation and methotrexate. The differential diagnosis of the clinical and CT findings is discussed. Brain biopsy is the diagnostic procedure of choice

  13. White matter lesion progression

    DEFF Research Database (Denmark)

    Hofer, Edith; Cavalieri, Margherita; Bis, Joshua C

    2015-01-01

    10 cohorts. To assess the relative contribution of genetic factors to progression of WML, we compared in 7 cohorts risk models including demographics, vascular risk factors plus single-nucleotide polymorphisms that have been shown to be associated cross-sectionally with WML in the current......BACKGROUND AND PURPOSE: White matter lesion (WML) progression on magnetic resonance imaging is related to cognitive decline and stroke, but its determinants besides baseline WML burden are largely unknown. Here, we estimated heritability of WML progression, and sought common genetic variants...... associated with WML progression in elderly participants from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. METHODS: Heritability of WML progression was calculated in the Framingham Heart Study. The genome-wide association study included 7773 elderly participants from...

  14. White Matter Features Associated With Autistic Traits in Obsessive-Compulsive Disorder

    Directory of Open Access Journals (Sweden)

    Masaru Kuno

    2018-05-01

    Full Text Available Obsessive-compulsive disorder (OCD is among the most debilitating psychiatric disorders. Comorbid autism spectrum disorder (ASD or autistic traits may impair treatment response in OCD. To identify possible neurostructural deficits underlying autistic traits, we performed white matter tractography on diffusion tensor images (DTI and assessed autistic trait severity using the Autism-Spectrum Quotient (AQ in 33 OCD patients. Correlations between AQ and the DTI parameters, fractional anisotropy (FA, mean diffusivity (MD, axial diffusivity (AD, and radial diffusivity (RD were examined in major white matter tracts that were suggested to be altered in previous OCD studies. We found a negative correlation between AQ and FA and positive correlations between AQ and MD, AD and RD in the left uncinate fasciculus using age, Beck Depression Inventory, Yale-Brown Obsessive-Compulsive Scale, intelligence quotient and medication as covariates. However, we could not detect the significant results between AQ and all DTI parameters when adding gender as a covariate. In addition, in the ASD comorbid group, FA in the left uncinate fasciculus was significantly lower than in the non-ASD comorbid group and MD and RD were significantly higher than in the non-ASD group. These results did not survive correction for multiple comparisons. In ASD, the socio-emotional dysfunction is suggested to be related to the alteration of white matter microstructure in uncinate fasciculus. Our results suggest that variations in white matter features of the left uncinate fasciculus might be partly explained by autistic traits encountered in OCD patients.

  15. Brodmann area analysis of white matter anisotropy and age in schizophrenia.

    Science.gov (United States)

    Schneiderman, Jason S; Hazlett, Erin A; Chu, King-Wai; Zhang, Jane; Goodman, Chelain R; Newmark, Randall E; Torosjan, Yuliya; Canfield, Emily L; Entis, Jonathan; Mitropoulou, Vivian; Tang, Cheuk Y; Friedman, Joseph; Buchsbaum, Monte S

    2011-08-01

    Diffusion tensor and structural MRI images were acquired on ninety-six patients with schizophrenia (69 men and 27 women) between the ages of 18 and 79 (mean=39.83, SD=15.16 DSM-IV diagnosis of schizophrenia according to the Comprehensive Assessment of Symptoms and History). The patients reported a mean age of onset of 23 years (range=13-38, SD=6). Patients were divided into an acute subgroup (duration ≤3 years, n=25), and a chronic subgroup (duration >3 years, n=64). Ninety-three mentally normal comparison subjects were recruited; 55 men and 38 women between the ages of 18 and 82 (mean=35.77, SD=18.12). The MRI images were segmented by Brodmann area, and the fractional anisotropy (FA) for the white matter within each Brodmann area was calculated. The FA in white matter was decreased in patients with schizophrenia broadly across the entire brain, but to a greater extent in white matter underneath frontal, temporal and cingulate cortical areas. Both normals and patients with schizophrenia showed a decrease in anisotropy with age but patients with schizophrenia showed a significantly greater rate of decrease in FA in Brodmann area 10 bilaterally, 11 in the left hemisphere and 34 in the right hemisphere. When the effect of age was removed, patients ill more than three years showed lower anisotropy in frontal motor and cingulate white matter in comparison to acute patients ill three years or less, consistent with an ongoing progression of the illness. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Application of Grey Theory in Operator Management

    International Nuclear Information System (INIS)

    Xu, Hong

    2011-01-01

    Scientific and reasonable operator management is the basis of nuclear security. It was paid more attention after the three-mile island accident. The prediction of operators' basic behavior parameters is the premise and foundation of scientific and reasonable operator management. Grey theory happens to solve the dilemma encountered in prediction and decision-making of operator behavior in operator management of NPP. The procedure is divided into two steps: according to the history record of operators' behavior parameter, a differential equation model using grey theory is set up to predict the future behavior of operators and use grey theory to make decision for operator management. The calculation result is helpful for operator management and also useful for operators to find their shortcoming. Grey theory using in the study provides a new idea and method for future operator management in NPP

  17. Anterior temporal white matter lesions in myotonic dystrophy with intellectual impairment: an MRI and neuropathological study

    International Nuclear Information System (INIS)

    Ogata, A.; Tashiro, K.; Terae, S.; Fujita, M.

    1998-01-01

    We studied 12 patients with myotonic dystrophy using MRI and the Mini-mental state examination (MMSE), to see it specific MRI findings were associated with intellectual impairment. We also compared them with the neuropathological findings in an autopsy case of MD with intellectual impairment. Mild intellectual impairment was found in 8 of the 12 patients. On T 2-weighted and proton density-weighted images, high-intensity areas were seen in cerebral white matter in 10 of the 12 patients. In seven of these, anterior temporal white-matter lesions (ATWML) were found; all seven had mild intellectual impairment (MMSE 22-26), whereas none of the four patients with normal mentation had ATWML. In only one of the eight patients with intellectual impairment were white-matter lesions not found. Pathological findings were severe loss and disordered arrangement of myelin sheaths and axons in addition to heterotopic neurons within anterior temporal white matter. Bilateral ATWML might be a factor for intellectual impairment in MD. The retrospective pathological study raised the possibility that the ATWML are compatible with focal dysplasia of white matter. (orig.)

  18. The effects of puberty on white matter development in boys.

    Science.gov (United States)

    Menzies, Lara; Goddings, Anne-Lise; Whitaker, Kirstie J; Blakemore, Sarah-Jayne; Viner, Russell M

    2015-02-01

    Neuroimaging studies demonstrate considerable changes in white matter volume and microstructure during adolescence. Most studies have focused on age-related effects, whilst puberty-related changes are not well understood. Using diffusion tensor imaging and tract-based spatial statistics, we investigated the effects of pubertal status on white matter mean diffusivity (MD) and fractional anisotropy (FA) in 61 males aged 12.7-16.0 years. Participants were grouped into early-mid puberty (≤Tanner Stage 3 in pubic hair and gonadal development; n=22) and late-post puberty (≥Tanner Stage 4 in pubic hair or gonadal development; n=39). Salivary levels of pubertal hormones (testosterone, DHEA and oestradiol) were also measured. Pubertal stage was significantly related to MD in diverse white matter regions. No relationship was observed between pubertal status and FA. Regression modelling of MD in the significant regions demonstrated that an interaction model incorporating puberty, age and puberty×age best explained our findings. In addition, testosterone was correlated with MD in these pubertally significant regions. No relationship was observed between oestradiol or DHEA and MD. In conclusion, pubertal status was significantly related to MD, but not FA, and this relationship cannot be explained by changes in chronological age alone. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Longitudinal changes in white matter microstructure after heavy cannabis use

    Directory of Open Access Journals (Sweden)

    Mary P. Becker

    2015-12-01

    Full Text Available Diffusion tensor imaging (DTI studies of cannabis users report alterations in brain white matter microstructure, primarily based on cross-sectional research, and etiology of the alterations remains unclear. We report findings from longitudinal voxelwise analyses of DTI data collected at baseline and at a 2-year follow-up on 23 young adult (18–20 years old at baseline regular cannabis users and 23 age-, sex-, and IQ-matched non-using controls with limited substance use histories. Onset of cannabis use was prior to age 17. Cannabis users displayed reduced longitudinal growth in fractional anisotropy in the central and parietal regions of the right and left superior longitudinal fasciculus, in white matter adjacent to the left superior frontal gyrus, in the left corticospinal tract, and in the right anterior thalamic radiation lateral to the genu of the corpus callosum, along with less longitudinal reduction of radial diffusion in the right central/posterior superior longitudinal fasciculus, corticospinal tract, and posterior cingulum. Greater amounts of cannabis use were correlated with reduced longitudinal growth in FA as was relatively impaired performance on a measure of verbal learning. These findings suggest that continued heavy cannabis use during adolescence and young adulthood alters ongoing development of white matter microstructure, contributing to functional impairment.

  20. Insight and white matter fractional anisotropy in first-episode schizophrenia.

    Science.gov (United States)

    Asmal, Laila; du Plessis, Stefan; Vink, Matthijs; Fouche, Jean-Paul; Chiliza, Bonginkosi; Emsley, Robin

    2017-05-01

    Impaired insight is a hallmark feature of schizophrenia. Structural studies implicate predominantly prefrontal, cingulate, cuneus/precuneus, and inferior temporal brain regions. The cortical midline structures (CMS) are also implicated in functional studies primarily through self-reflective processing tasks. However, few studies have explored the relationship between white matter tracts and insight in schizophrenia, and none in first-episode schizophrenia (FES). Here, we examined for fractional anisotropy (FA) differences in 89 minimally treated FES patients and 98 matched controls, and identified those FA differences associated with impaired clinical insight in patients. We found widespread FA reduction in FES patients compared to controls. Poorer insight in patients was predicted by lower FA values in a number of white matter tracts with a predilection for tracts associated with cortical midline structures (fronto-occipital, cingulate, cingulate hippocampus, uncinate, anterior corona radiata), and more severe depressive symptoms. The association between FA abnormalities and insight was most robust for the awareness of symptoms and illness awareness domains. Our study implicates a network of tracts involved in impaired insight in schizophrenia with a predilection for the CMS. This study is a first step in delineating the white matter tracts involved in insight impairment in schizophrenia prior to chronicity. Copyright © 2016. Published by Elsevier B.V.

  1. Intra-individual variability in information processing speed reflects white matter microstructure in multiple sclerosis.

    Science.gov (United States)

    Mazerolle, Erin L; Wojtowicz, Magdalena A; Omisade, Antonina; Fisk, John D

    2013-01-01

    Slowed information processing speed is commonly reported in persons with multiple sclerosis (MS), and is typically investigated using clinical neuropsychological tests, which provide sensitive indices of mean-level information processing speed. However, recent studies have demonstrated that within-person variability or intra-individual variability (IIV) in information processing speed may be a more sensitive indicator of neurologic status than mean-level performance on clinical tests. We evaluated the neural basis of increased IIV in mildly affected relapsing-remitting MS patients by characterizing the relation between IIV (controlling for mean-level performance) and white matter integrity using diffusion tensor imaging (DTI). Twenty women with relapsing-remitting MS and 20 matched control participants completed the Computerized Test of Information Processing (CTIP), from which both mean response time and IIV were calculated. Other clinical measures of information processing speed were also collected. Relations between IIV on the CTIP and DTI metrics of white matter microstructure were evaluated using tract-based spatial statistics. We observed slower and more variable responses on the CTIP in MS patients relative to controls. Significant relations between white matter microstructure and IIV were observed for MS patients. Increased IIV was associated with reduced integrity in more white matter tracts than was slowed information processing speed as measured by either mean CTIP response time or other neuropsychological test scores. Thus, despite the common use of mean-level performance as an index of cognitive dysfunction in MS, IIV may be more sensitive to the overall burden of white matter disease at the microstructural level. Furthermore, our study highlights the potential value of considering within-person fluctuations, in addition to mean-level performance, for uncovering brain-behavior relationships in neurologic disorders with widespread white matter pathology.

  2. Association of plasma homocysteine and white matter hypodensities in a sample of stroke patients

    International Nuclear Information System (INIS)

    Naveed, G.

    2015-01-01

    Studies of homocysteine in vascular disorders have yielded conflicting data. There are also differences based on various ethnicities and cultures. In this study, we have examined the homocysteine patterns in local stroke patients, so as to ascertain the homocysteine status in a sample of local population. Homocysteine-white matter hypodensities relationship in stroke is emerging, as an important aspect in stroke pathophysiology and is thought to have prognostic and therapeutic values. Methods: We included 150 stroke patients who were diagnosed as having clinical stroke on the basis of history; physical examination and CT (Computerized Tomography) scan of brain. These patients were recruited from neurology and emergency wards of two public sector hospitals of Lahore. The presence or absence of white matter hypodensities were diagnosed after consultation with a radiologist. Blood samples were collected from the same stroke patients. Results: We found a strong association between white matter hypodensities and total homocysteine in plasma of stroke patients p<0.001. Conclusion: Homocysteine is a risk factor for white matter hypodensities in stroke patients in our study. (author)

  3. White matter hyperintensities of presumed vascular origin: a population-based study in rural Ecuador (The Atahualpa Project).

    Science.gov (United States)

    Del Brutto, Oscar H; Mera, Robertino M; Del Brutto, Victor J; Zambrano, Mauricio; Lama, Julio

    2015-04-01

    Cerebral small vessel disease is probably one of the most common pathogenetic mechanisms underlying stroke in Latin America. However, the importance of silent markers of small vessel disease, including white matter hyperintensities of presumed vascular origin, has not been assessed so far. The study aims to evaluate prevalence and correlates of white matter hyperintensities in community-dwelling elders living in Atahualpa (rural Ecuador). Atahualpa residents aged ≥ 60 years were identified during a door-to-door survey and invited to undergo brain magnetic resonance imaging for identification and grading white matter hyperintensities and other markers of small vessel disease. Using multivariate logistic regression models, we evaluated whether white matter hyperintensities is associated with demographics, cardiovascular health status, stroke, cerebral microbleeds, and cortical atrophy, after adjusting for the other variables. Out of 258 enrolled persons (mean age, 70 ± 8 years; 59% women), 172 (67%) had white matter hyperintensities, which were moderate to severe in 63. Analyses showed significant associations of white matter hyperintensities presence and severity with age and cardiovascular health status, as well as with overt and silent strokes, and a trend for association with cerebral microbleeds and cortical atrophy. Prevalence and correlates of white matter hyperintensities in elders living in rural Ecuador is almost comparable with that reported from industrialized nations, reinforcing the concept that the burden of small vessel disease is on the rise in underserved Latin American populations. © 2014 World Stroke Organization.

  4. Diffusion-Weighted MR Imaging of Unusual White Matter Lesion in a Patient with Menkes Disease

    International Nuclear Information System (INIS)

    Lee, Eun Shin; Ryoo, Jae Wook; Choi, Dae Seob; Cho, Jae Min; Kwon, Soo Hyun; Shin, Hee Suk

    2007-01-01

    We report here on the diffusion-weighted imaging of unusual white matter lesions in a case of Menkes disease. On the initial MR imaging, the white matter lesions were localized in the deep periventricular white matter in the absence of diffuse cortical atrophy. The lesion showed diffuse high signal on the diffusion weighted images and diffuse progression and persistent hyperintensity on the follow up imaging. Our case suggests that the white matter lesion may precede diffuse cortical atrophy in a patient with Menkes disease. Menkes disease is an X-linked disorder that's caused by impaired intracellular transport of copper. We describe here the DWI findings of unusual and progressive white matter lesions in a case of Menkes disease. Menkes disease is an X-linked recessive disorder, and it is due to an inborn error of copper metabolism. The cause of Menkes disease has been isolated to a genetic defect in copper-transporting adenosine triphosphatase, and this results in low levels of intracellular copper. It is characterized clinically by failure to thrive, retarded mental and motor development, clonic seizure and peculiarly coarse, sparse and colorless scalp hair. These clinical findings can be explained by a dysfunction of the copper-dependent enzymes

  5. Preliminary study of normal changes in brain white matter during childhood with diffusion tensor imaging

    International Nuclear Information System (INIS)

    Xiao Jiangxi; Guo Xuemei; Xie Sheng; Wang Xiaoying; Jiang Xuexiang

    2005-01-01

    Objective: To study the normal changes in brain white matter during childhood by analyzing the anisotropy of different regions and different age groups with diffusion tensor imaging (DTI). Methods: DTI was performed in 89 children (age range from 2 days to 18 years) without brain abnormalities, and the data measured in fractional anisotropy (FA) maps were analyzed statistically. Children less than 6 months were ranged to group 1, 6-12 months to group 2, 1-3 years to group 3, 3-5 years to group 4, 5-8 years to group 5, 8-12 years to group 6, 12-18 years to group 7. Results: (1) There were significant differences in anisotropy (FA values) among different regions of white matter in brain. In group 7, the FA value of corpus callosum was 0.826 ± 0.039, middle cerebellar peduncle 0.678 ± 0.043, frontal white matter 0.489 ± 0.033. (2) The anisotropy among different age group was statistically different, P<0.05. (3) The anisotropy of white matter increased with the increasing of age, and FA values showed positively exponentially correlations with age. Conclusion: DTI shows the structure of white matters in vivo, with which normal changes in brain during childhood can be evaluated. (authors)

  6. The Mechanism of White and Brown Adipocyte Differentiation

    Directory of Open Access Journals (Sweden)

    Hironori Nakagami

    2013-04-01

    Full Text Available Obesity gives vent to many diseases such as type 2 diabetes, hypertension, and hyperlipidemia, being considered as the main causes of mortality and morbidity worldwide. The pathogenesis and pathophysiology of metabolic syndrome can well be understood by studying the molecular mechanisms that control the development and function of adipose tissue. In human body, exist two types of adipose tissue, the white and the brown one, which are reported to play various roles in energy homeostasis. The major and most efficient storage of energy occurs in the form of triglycerides in white adipose tissue while brown adipose tissue actively participates in both basal and inducible energy consumption in the form of thermogenesis. Recent years have observed a rapid and greater interest towards developmental plasticity and therapeutic potential of stromal cells those isolated from adipose tissue. The adipocyte differentiation involves a couple of regulators in the white or brown adipogenesis. Peroxisome proliferators-activated receptor-γ actively participates in regulating carbohydrate and lipid metabolism, and also acts as main regulator of both white and brown adipogenesis. This review based on our recent research, seeks to highlight the adipocyte differentiation.

  7. Selection and Evaluation of Indexes Commonly Used to Determine Contamination with T-2 Toxin in Pacific White Shrimp Litopenaeus vannamei by the Grey Relational Method.

    Science.gov (United States)

    Lu, Pengli; Wang, Yaling; Dai, Zhe; Sun, Lijun; Xu, Defeng; Liu, Ying; Ye, Riying; Gooneratne, Ravi; Bi, Siyuan

    2017-09-01

    The objectives of the present study were to evaluate the effects of different concentrations of the mycotoxin T-2 toxin in feed on muscle performance in the Pacific white shrimp Litopenaeus vannamei, evaluate indexes of physiological variables that indicate T-2 toxin contamination in the shrimp using the grey relational method, and determine the dose-response relationships between T-2 toxin and the indexes. Of the 6 physical, 7 biochemical, and 17 nutritional indexes examined, the values of the grey relational coefficients were highest for the hepatopancreas: body weight ratio (HBR), alanine aminotransferase (ALT) activity, and serine (SER) content (0.83, 0.68, and 0.82, respectively). Therefore, the HBR, ALT activity, and SER content were selected as appropriate indexes for contamination of Pacific white shrimp muscle with T-2 toxin. Based on their dose-response relationship curves, mean effective doses of 1.45, 1.69, and 1.33 mg of T-2 toxin/kg of feed were obtained for the HBR, ALT activity, and SER content, respectively. These results offer technical reference points for the evaluation and control of T-2 toxin in shrimp feed. Received April 28, 2016; accepted April 9, 2017.

  8. A radiological study of cerebral white matter lesions in patients with dementia using diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Shindo, Hiroaki; Hanyu, Haruo; Kakizaki, Dai; Abe, Kimihiko; Takasaki, Masaru

    1999-01-01

    We investigated the changes in water diffusion in the cerebral white matter and the corpus callosum in 12 patients with Binswanger's disease (BD), and 19 patients with Alzheimer's Disease (AD), including 12 without (AD-) and 7 with periventricular hyperintensity (PVH) lesions (AD+), using diffusion-weighted magnetic resonance imaging (MRI). Apparent diffusion coefficients (ADCs) in the anterior and posterior white matter were significantly higher in patients with BD and AD than in 12 age-matched controls. The ADCs were significantly higher in AD (+) than in AD (-) patients. Anisotropic ratios (ARs), defined as diffusion restricted perpendicular to the direction of the nerve fibers, were significantly higher in BD and AD (+) patients, and even in AD (-) patients, than in the controls. ARs in the anterior white matter were significantly higher in BD than in AD (+), while in the posterior white matter the ratios were significantly higher in AD (+) rather than BD patients. The ADCs and ARs in the genu of the corpus callosum were significantly higher in patients with BD and AD (+) compared to the control subjects, while ADCs and ARs in the splenium were significantly higher in patients with AD (+) and AD (-) than in those with BD. These results suggest that mild myelin loss occurs in AD patients even in apparently normal white matter and in the splenium of the corpus callosum. A definite loss of myelin and axons, including incomplete infarction, occurs preferentially in anterior white matter in BD, while in posterior white matter in AD (+), as seen on T2-weighted images as PVH. Studies with diffusion-weighted MRI may allow the characterization of different pathological processes and enable the demonstration of underlying white matter lesion in patients with dementia that cannot be visualized by conventional MRI. (author)

  9. Model Identification Using Stochastic Differential Equation Grey-Box Models in Diabetes

    DEFF Research Database (Denmark)

    Duun-Henriksen, Anne Katrine; Schmidt, Signe; Røge, Rikke Meldgaard

    2013-01-01

    are uncorrelated and provides the possibility to pinpoint model deficiencies. METHODS: An identifiable model of the glucoregulatory system in a type 1 diabetes mellitus (T1DM) patient is used as the basis for development of a stochastic-differential-equation-based grey-box model (SDE-GB). The parameters...... in a significant improvement in the prediction and uncorrelated errors. Tracking of the "peak time of meal absorption" parameter showed that the absorption rate varied according to meal type. CONCLUSION: This study shows the potential of using SDE-GBs in diabetes modeling. Improved model predictions were obtained...... are estimated on clinical data from four T1DM patients. The optimal SDE-GB is determined from likelihood-ratio tests. Finally, parameter tracking is used to track the variation in the "time to peak of meal response" parameter. RESULTS: We found that the transformation of the ODE model into an SDE-GB resulted...

  10. Regulation of white and brown adipocyte differentiation by RhoGAP DLC1.

    Directory of Open Access Journals (Sweden)

    Choon Kiat Sim

    Full Text Available Adipose tissues constitute an important component of metabolism, the dysfunction of which can cause obesity and type II diabetes. Here we show that differentiation of white and brown adipocytes requires Deleted in Liver Cancer 1 (DLC1, a Rho GTPase Activating Protein (RhoGAP previously studied for its function in liver cancer. We identified Dlc1 as a super-enhancer associated gene in both white and brown adipocytes through analyzing the genome-wide binding profiles of PPARγ, the master regulator of adipogenesis. We further observed that Dlc1 expression increases during differentiation, and knockdown of Dlc1 by siRNA in white adipocytes reduces the formation of lipid droplets and the expression of fat marker genes. Moreover, knockdown of Dlc1 in brown adipocytes reduces expression of brown fat-specific genes and diminishes mitochondrial respiration. Dlc1-/- knockout mouse embryonic fibroblasts show a complete inability to differentiate into adipocytes, but this phenotype can be rescued by inhibitors of Rho-associated kinase (ROCK and filamentous actin (F-actin, suggesting the involvement of Rho pathway in DLC1-regulated adipocyte differentiation. Furthermore, PPARγ binds to the promoter of Dlc1 gene to regulate its expression during both white and brown adipocyte differentiation. These results identify DLC1 as an activator of white and brown adipocyte differentiation, and provide a molecular link between PPARγ and Rho pathways.

  11. Relative signal intensity changes of frontal and occipital white matters on T 2 weighted axial MR image : correlation with age

    International Nuclear Information System (INIS)

    Kim, You Me; Kim, Seung Cheol

    1998-01-01

    The purpose of this study is to assess relative signal intensity changes in frontal and occipital white matter with age, as seen on T 2 weighted axial MR images. Thirty eight normal adults (20-29 years old) and 114 children (0-11 years old) were investigated. All had nonspecific neurologic symptoms and their MR images, obtained using a 1.5 T system (Signa, GE Medical Systems, Milwaukee, U.S.A.), appeared to be normal. The signal intensities of frontal and occipital white matter were evaluated on T2 weighted axial images at the level of the foramen of Monro. When the signal intensity of white matter was higher than that of gray matter, grade 0 was assigned; when the opposite situation pertained, this was graded I - III. Grade I indicated that the signal intensity of occipital white matter was lower than that of frontal white matter; grade II, that the signal intensity of white matter of both lobes was similar. When the signal intensity of frontal white matter was lower than that of occipital age, and by one year after 2 years of age, and then determined grade according to age, age distribution according to grade, and the ages at which signal intensities were similar to those of adults. On T2-weighted MR images, the signal intensity of frontal white matter ultimately shows a lower signal intensity than that of occipital white matter. (author). 11 refs., 6 figs

  12. Gestational age at birth and brain white matter development in term-born infants and children

    Science.gov (United States)

    Studies on infants/children born preterm have shown that adequate gestational length is critical for brain white matter development. Less is known regarding how variations in gestational age at birth in term infants/children affect white matter development, which was evaluated in this study. Using d...

  13. Establishment of Requirements and Methodology for the Development and Implementation of GreyMatters, a Memory Clinic Information System.

    Science.gov (United States)

    Tapuria, Archana; Evans, Matt; Curcin, Vasa; Austin, Tony; Lea, Nathan; Kalra, Dipak

    2017-01-01

    The aim of the paper is to establish the requirements and methodology for the development process of GreyMatters, a memory clinic system, outlining the conceptual, practical, technical and ethical challenges, and the experiences of capturing clinical and research oriented data along with the implementation of the system. The methodology for development of the information system involved phases of requirements gathering, modeling and prototype creation, and 'bench testing' the prototype with experts. The standard Institute of Electrical and Electronics Engineers (IEEE) recommended approach for the specifications of software requirements was adopted. An electronic health record (EHR) standard, EN13606 was used, and clinical modelling was done through archetypes and the project complied with data protection and privacy legislation. The requirements for GreyMatters were established. Though the initial development was complex, the requirements, methodology and standards adopted made the construction, deployment, adoption and population of a memory clinic and research database feasible. The electronic patient data including the assessment scales provides a rich source of objective data for audits and research and to establish study feasibility and identify potential participants for the clinical trials. The establishment of requirements and methodology, addressing issues of data security and confidentiality, future data compatibility and interoperability and medico-legal aspects such as access controls and audit trails, led to a robust and useful system. The evaluation supports that the system is an acceptable tool for clinical, administrative, and research use and forms a useful part of the wider information architecture.

  14. Structural white matter abnormalities in patients with idiopathic dystonia

    NARCIS (Netherlands)

    Bonilha, Leonardo; de Vries, Paulien M.; Vincent, Diana J.; Rorden, Chris; Morgan, Paul S.; Hurd, Mark W.; Besenski, Nada; Bergmann, Kenneth J.; Hinson, Vanessa K.

    2007-01-01

    We investigated whether structural white matter abnormalities, in the form of disruption of axonal coherence and integrity as measured with diffusion tensor imaging (DTI), constitute an underlying pathological mechanism of idiopathic dystonia (ID), independent of genotype status. We studied seven

  15. Broad spectrum of neuropsychiatric phenotypes associated with white matter disease in PTEN hamartoma tumor syndrome.

    Science.gov (United States)

    Balci, Tugce B; Davila, Jorge; Lewis, Denice; Boafo, Addo; Sell, Erick; Richer, Julie; Nikkel, Sarah M; Armour, Christine M; Tomiak, Eva; Lines, Matthew A; Sawyer, Sarah L

    2018-01-01

    White matter lesions have been described in patients with PTEN hamartoma tumor syndrome (PHTS). How these lesions correlate with the neurocognitive features associated with PTEN mutations, such as autism spectrum disorder (ASD) or developmental delay, has not been well established. We report nine patients with PTEN mutations and white matter changes on brain magnetic resonance imaging (MRI), eight of whom were referred for reasons other than developmental delay or ASD. Their clinical presentations ranged from asymptomatic macrocephaly with normal development/intellect, to obsessive compulsive disorder, and debilitating neurological disease. To our knowledge, this report constitutes the first detailed description of PTEN-related white matter changes in adult patients and in children with normal development and intelligence. We present a detailed assessment of the neuropsychological phenotype of our patients and discuss the relationship between the wide array of neuropsychiatric features and observed white matter findings in the context of these individuals. © 2017 Wiley Periodicals, Inc.

  16. Global and regional associations of smaller cerebral gray and white matter volumes with gait in older people.

    Directory of Open Access Journals (Sweden)

    Michele L Callisaya

    Full Text Available BACKGROUND: Gait impairments increase with advancing age and can lead to falls and loss of independence. Brain atrophy also occurs in older age and may contribute to gait decline. We aimed to investigate global and regional relationships of cerebral gray and white matter volumes with gait speed, and its determinants step length and cadence, in older people. METHODS: In a population-based study, participants aged >60 years without Parkinson's disease or brain infarcts underwent magnetic resonance imaging and gait measurements using a computerized walkway. Linear regression was used to study associations of total gray and white matter volumes with gait, adjusting for each other, age, sex, height and white matter hyperintensity volume. Other covariates considered in analyses included weight and vascular disease history. Voxel-based morphometry was used to study regional relationships of gray and white matter with gait. RESULTS: There were 305 participants, mean age 71.4 (6.9 years, 54% male, mean gait speed 1.16 (0.22 m/s. Smaller total gray matter volume was independently associated with poorer gait speed (p = 0.001 and step length (p<0.001, but not cadence. Smaller volumes of cortical and subcortical gray matter in bilateral regions important for motor control, vision, perception and memory were independently associated with slower gait speed and shorter steps. No global or regional associations were observed between white matter volume and gait independent of gray matter volume, white matter hyperintensity volume and other covariates. CONCLUSION: Smaller gray matter volume in bilaterally distributed brain networks serving motor control was associated with slower gait speed and step length, but not cadence.

  17. 4E-BP1 regulates the differentiation of white adipose tissue.

    Science.gov (United States)

    Tsukiyama-Kohara, Kyoko; Katsume, Asao; Kimura, Kazuhiro; Saito, Masayuki; Kohara, Michinori

    2013-07-01

    4E Binding protein 1 (4E-BP1) suppresses translation initiation. The absence of 4E-BP1 drastically reduces the amount of adipose tissue in mice. To address the role of 4E-BP1 in adipocyte differentiation, we characterized 4E-BP1(-/-) mice in this study. The lack of 4E-BP1 decreased the amount of white adipose tissue and increased the amount of brown adipose tissue. In 4E-BP1(-/-) MEF cells, PPARγ coactivator 1 alpha (PGC-1α) expression increased and exogenous 4E-BP1 expression suppressed PGC-1α expression. The level of 4E-BP1 expression was higher in white adipocytes than in brown adipocytes and showed significantly greater up-regulation in white adipocytes than in brown adipocytes during preadipocyte differentiation into mature adipocytes. The amount of PGC-1α was consistently higher in HB cells (a brown preadipocyte cell line) than in HW cells (a white preadipocyte cell line) during differentiation. Moreover, the ectopic over-expression of 4E-BP1 suppressed PGC-1α expression in white adipocytes, but not in brown adipocytes. Thus, the results of our study indicate that 4E-BP1 may suppress brown adipocyte differentiation and PGC-1α expression in white adipose tissues. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  18. Application of grey theory in operator management

    International Nuclear Information System (INIS)

    Xu Hong

    2013-01-01

    Scientific and reasonable operator management is the basis of nuclear safety. It is paid more attention after the three-mile island accident. The prediction of operators' basic behavior parameters is the premise and foundation of scientific and reasonable operator management. Grey theory happened to solve the dilemma encountered in prediction and decision-making of operator behavior in operator management of nuclear power plant. The procedure was divided into two steps: 1) According to the historical record of operators' behavior parameters, a differential equation model using grey theory was set up to predict the future behavior of operators; 2) operator management decision-making was made based on grey theory. The calculation result is not only helpful for operator management but also useful for operators to find their shortcomings. Grey theory used in the study provides a new idea and method for future operator management in nuclear power plant. (author)

  19. Metric to quantify white matter damage on brain magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Valdes Hernandez, Maria del C.; Munoz Maniega, Susana; Anblagan, Devasuda; Bastin, Mark E.; Wardlaw, Joanna M. [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); UK Dementia Research Institute, Edinburgh Dementia Research Centre, London (United Kingdom); Chappell, Francesca M.; Morris, Zoe; Sakka, Eleni [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); UK Dementia Research Institute, Edinburgh Dementia Research Centre, London (United Kingdom); Dickie, David Alexander; Royle, Natalie A. [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); Armitage, Paul A. [University of Sheffield, Department of Cardiovascular Sciences, Sheffield (United Kingdom); Deary, Ian J. [University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); University of Edinburgh, Department of Psychology, Edinburgh (United Kingdom)

    2017-10-15

    Quantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need. We obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change. The correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p < 0.0001) was slightly stronger than between the latter and WMH volumes (Spearman ρ > =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change. The new metric is practical and simple to calculate. It is robust to variations in

  20. White Matter Lesion Progression in LADIS

    DEFF Research Database (Denmark)

    Schmidt, Reinhold; Berghold, Andrea; Jokinen, Hanna

    2012-01-01

    BACKGROUND AND PURPOSE: White matter lesion (WML) progression has been advocated as a surrogate marker in intervention trials on cerebral small vessel disease. We assessed the rate of visually rated WML progression, studied correlations between lesion progression and cognition, and estimated sample...... sizes for clinical trials with pure WML progression vs combined WML progression-cognitive outcomes. METHODS: Those 394 participants of the Leukoaraiosis and Disability Study (LADIS) study with magnetic resonance imaging scanning at baseline and 3-year follow-up were analyzed. WML progression rating...

  1. Thalamic diffusion differences related to cognitive function in white matter lesions.

    Science.gov (United States)

    Fernández-Andújar, Marina; Soriano-Raya, Juan José; Miralbell, Júlia; López-Cancio, Elena; Cáceres, Cynthia; Bargalló, Núria; Barrios, Maite; Arenillas, Juan Francisco; Toran, Pere; Alzamora, Maite; Clemente, Imma; Dávalos, Antoni; Mataró, Maria

    2014-05-01

    Cerebral white matter lesions (WMLs) are related to cognitive deficits, probably due to a disruption of frontal-subcortical circuits. We explored thalamic diffusion differences related to white matter lesions (WMLs) and their association with cognitive function in middle-aged individuals. Ninety-six participants from the Barcelona-AsIA Neuropsychology Study were included. Participants were classified into groups based on low grade and high grade of periventricular hyperintensities (PVHs) and deep white matter hyperintensities (DWMHs). Tract-Based Spatial Statistics was used to study thalamic diffusion differences between groups. Mean fractional anisotropy (FA) values in significant areas were calculated for each subject and correlated with cognitive performance. Participants with high-grade PVHs and DWMHs showed lower FA thalamic values compared to those with low-grade PVHs and DWMHs, respectively. Decreased FA thalamic values in high-grade DWMHs, but not high-grade PVH, were related to lower levels of performance in psychomotor speed, verbal fluency, and visuospatial skills. Thalamic diffusion differences are related to lower cognitive function only in participants with high-grade DWMHs. These results support the hypothesis that fronto-subcortical disruption is associated with cognitive function only in DWMHs. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Age-Related White Matter Changes

    Directory of Open Access Journals (Sweden)

    Yun Yun Xiong

    2011-01-01

    Full Text Available Age-related white matter changes (WMC are considered manifestation of arteriolosclerotic small vessel disease and are related to age and vascular risk factors. Most recent studies have shown that WMC are associated with a host of poor outcomes, including cognitive impairment, dementia, urinary incontinence, gait disturbances, depression, and increased risk of stroke and death. Although the clinical relevance of WMC has been extensively studied, to date, only very few clinical trials have evaluated potential symptomatic or preventive treatments for WMC. In this paper, we reviewed the current understanding in the pathophysiology, epidemiology, clinical importance, chemical biomarkers, and treatments of age-related WMC.

  3. Reduced thalamic volume in preterm infants is associated with abnormal white matter metabolism independent of injury

    International Nuclear Information System (INIS)

    Wisnowski, Jessica L.; Ceschin, Rafael C.; Choi, So Young; Schmithorst, Vincent J.; Painter, Michael J.; Nelson, Marvin D.; Blueml, Stefan; Panigrahy, Ashok

    2015-01-01

    Altered thalamocortical development is hypothesized to be a key substrate underlying neurodevelopmental disabilities in preterm infants. However, the pathogenesis of this abnormality is not well-understood. We combined magnetic resonance spectroscopy of the parietal white matter and morphometric analyses of the thalamus to investigate the association between white matter metabolism and thalamic volume and tested the hypothesis that thalamic volume would be associated with diminished N-acetyl-aspartate (NAA), a measure of neuronal/axonal maturation, independent of white matter injury. Data from 106 preterm infants (mean gestational age at birth: 31.0 weeks ± 4.3; range 23-36 weeks) who underwent MR examinations under clinical indications were included in this study. Linear regression analyses demonstrated a significant association between parietal white matter NAA concentration and thalamic volume. This effect was above and beyond the effect of white matter injury and age at MRI and remained significant even when preterm infants with punctate white matter lesions (pWMLs) were excluded from the analysis. Furthermore, choline, and among the preterm infants without pWMLs, lactate concentrations were also associated with thalamic volume. Of note, the associations between NAA and choline concentration and thalamic volume remained significant even when the sample was restricted to neonates who were term-equivalent age or older. These observations provide convergent evidence of a neuroimaging phenotype characterized by widespread abnormal thalamocortical development and suggest that the pathogenesis may involve impaired axonal maturation. (orig.)

  4. Reduced thalamic volume in preterm infants is associated with abnormal white matter metabolism independent of injury

    Energy Technology Data Exchange (ETDEWEB)

    Wisnowski, Jessica L. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Ceschin, Rafael C. [University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); University of Pittsburgh, Department of Biomedical Informatics, Pittsburgh, PA (United States); Choi, So Young [University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Schmithorst, Vincent J. [University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Painter, Michael J. [University of Pittsburgh, Department of Pediatrics, Division of Neurology, Childrens Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Nelson, Marvin D. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Blueml, Stefan [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Rudi Schulte Research Institute, Santa Barbara, CA (United States); Panigrahy, Ashok [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States)

    2015-05-01

    Altered thalamocortical development is hypothesized to be a key substrate underlying neurodevelopmental disabilities in preterm infants. However, the pathogenesis of this abnormality is not well-understood. We combined magnetic resonance spectroscopy of the parietal white matter and morphometric analyses of the thalamus to investigate the association between white matter metabolism and thalamic volume and tested the hypothesis that thalamic volume would be associated with diminished N-acetyl-aspartate (NAA), a measure of neuronal/axonal maturation, independent of white matter injury. Data from 106 preterm infants (mean gestational age at birth: 31.0 weeks ± 4.3; range 23-36 weeks) who underwent MR examinations under clinical indications were included in this study. Linear regression analyses demonstrated a significant association between parietal white matter NAA concentration and thalamic volume. This effect was above and beyond the effect of white matter injury and age at MRI and remained significant even when preterm infants with punctate white matter lesions (pWMLs) were excluded from the analysis. Furthermore, choline, and among the preterm infants without pWMLs, lactate concentrations were also associated with thalamic volume. Of note, the associations between NAA and choline concentration and thalamic volume remained significant even when the sample was restricted to neonates who were term-equivalent age or older. These observations provide convergent evidence of a neuroimaging phenotype characterized by widespread abnormal thalamocortical development and suggest that the pathogenesis may involve impaired axonal maturation. (orig.)

  5. Executive dysfunctions in migraine with and without aura: what is the role of white matter lesions?

    Science.gov (United States)

    Le Pira, Francesco; Reggio, Ester; Quattrocchi, Graziella; Sanfilippo, Cristina; Maci, Tiziana; Cavallaro, Tiziana; Zappia, Mario

    2014-01-01

    Executive dysfunctions and white matter lesions on magnetic resonance imaging have been reported in migraine. The aim of this study was to determine whether any correlation between these 2 variables exists. Forty-four subjects affected by migraine with or without aura were compared with 16 healthy subjects. A battery of neuropsychological tests assessing executive functions was administered to all subjects. Number and total volume of white matter lesions were assessed in the whole brain and in the frontal lobe. The performances of both groups of migraineurs, with and without aura, were significantly worse when compared with controls on Boston Scanning Test. Moreover, we found lower performances compared with controls respectively on Frontal Assessment Battery in patients with migraine with aura and on Controlled Oral Word Association Test in patients with migraine without aura. Nineteen patients (43.2%) and one control subject (6.2%) had white matter lesions. We did not find any significant correlation between white matter lesions load and neuropsychological performances. On the basis of our results, white matter lesions load on magnetic resonance imaging do not seem to contribute to neuropsychological performances deficit in migraineurs. © 2013 American Headache Society.

  6. Encephalopathy with intracerebral calcification, white matter lesions, growth hormone deficiency, microcephaly, and retinal degeneration: two sibs confirming a probably distinct entity.

    OpenAIRE

    Bönnemann, C G; Meinecke, P; Reich, H

    1991-01-01

    Two sibs with an encephalopathy, including intracerebral calcification and white matter lesions, dwarfism owing to growth hormone deficiency, and retinal degeneration are reported. The onset of the disease in both patients occurred with retardation of motor development during the first year of life. Later, dwarfism, mental retardation, spasticity, ataxia, and retinal degeneration became apparent. These cases probably represent some form of connatal leucodystrophy. The differential diagnosis i...

  7. White matter tract integrity in treatment-resistant gambling disorder

    DEFF Research Database (Denmark)

    Chamberlain, Samuel R.; Derbyshire, Katherine; Daws, Richard E.

    2016-01-01

    Background: Gambling disorder is a relatively common psychiatric disorder recently re-classified within the DSM-5 under the category of ‘substance-related and addictive disorders’. Aims: To compare white matter integrity in patients with gambling disorder with healthy controls; to explore...

  8. White matter hyperintensities and working memory : An explorative study

    NARCIS (Netherlands)

    van Harten, Barbera; Weinstein, Henry C.; Scheltens, Philip; Sergeant, Joseph A.; Scherder, Erik J. A.; Oosterman, J

    2008-01-01

    White matter hyperintensities (WMH) are commonly observed in elderly people and may have the most profound effect on executive functions, including working memory. Surprisingly, the Digit Span backward, a frequently employed working memory task, reveals no association with WMH. In the present study,

  9. Microsatellite and Mitochondrial DNA Study of Native Eastern European Cattle Populations: The Case of the Romanian Grey.

    Science.gov (United States)

    Ilie, Daniela Elena; Cean, Ada; Cziszter, Ludovic Toma; Gavojdian, Dinu; Ivan, Alexandra; Kusza, Szilvia

    2015-01-01

    The Eastern European Grey cattle are regarded as the direct descendants of the aurochs (Bos taurus primigenius). Nowadays in Romania, less than 100 Grey animals are being reared and included in the national gene reserve. We examined the genetic diversity among Romanian Grey, Brown, Spotted and Black and White cattle breeds, with a particular focus on Romanian Grey through the use of (i) 11 bovine specific microsatellite markers on 83 animals and (ii) 638 bp length of mitochondrial DNA (mtDNA) D-loop region sequence data from a total of 81 animals. Both microsatellite and mtDNA analysis revealed a high level of genetic variation in the studied breeds. In Romanian Grey a total of 100 alleles were found, the mean number of observed alleles per locus was 9.091; the average observed heterozygosity was 0.940; the Wright's fixation index (FIS) was negative (-0.189) and indicates that there is no inbreeding and no selection pressure. MtDNA analysis revealed 52 haplotypes with 67 variable sites among the Romanian cattle breeds without any insertion or deletion. Haplotype diversity was 0.980 ± 0.007 and ranged from 0.883 ± 0.056 (Brown) to 0.990 ± 0.028 (Spotted and Black and White). The highest genetic variability of the mtDNA was recorded in the Grey breed, where 18 haplotypes were identified. The most frequent mtDNA D-loop region belonged to T3 haplogroup (80.247%), which was found across all studied breeds, while T2 haplotypes (16.049%) was only found in Grey, Spotted and Black and White genotypes. The T1 haplotypes (3.704%) were found in the Grey and Spotted. The current results contribute to the general knowledge on genetic diversity found in Eastern European cattle breeds and could prove a valuable tool for the conservation efforts of animal genetic resources (FAnGR).

  10. Transient Global Amnesia with Reversible White Matter Lesions: A Variant of Posterior Reversible Encephalopathy Syndrome?

    Directory of Open Access Journals (Sweden)

    Tomoki Nakamizo

    2015-01-01

    Full Text Available Transient global amnesia (TGA is a self-limited disease characterized by isolated amnesia, which resolves within 24 h. In contrast, posterior reversible encephalopathy syndrome (PRES is a potentially life-threatening disease that usually presents with seizures, altered mental status, headache, and visual disturbances. It is characterized by reversible vasogenic edema that predominantly involves the parieto-occipital subcortical white matter as shown by neuroimaging studies. To date, there have been no reported cases of PRES with a clinical course resembling TGA. Here we report the case of a 58-year-old woman who presented with isolated amnesia and headache. On admission, her blood pressure was 187/100 mmHg. She had complete anterograde amnesia and slight retrograde amnesia without other neurological findings. After the treatment of her hypertension, the amnesia resolved within 24 h. Although the initial magnetic resonance image (MRI was almost normal, the fluid attenuation inversion recovery (FLAIR images of the MRI on the next day revealed several small foci of high intensity areas in the fronto-parieto-occipital subcortical white matter, presumed to be vasogenic edema in PRES. The lesions disappeared one month later. This case suggests that PRES can mimic the clinical course of TGA. PRES should be considered in the differential diagnosis for TGA.

  11. Accretion of matter onto white dwarfs as a possible x-ray mechanism

    International Nuclear Information System (INIS)

    DeGregoria, A.J.

    1973-01-01

    Accretion of matter onto white dwarfs is investigated; to see if x-rays are produced; to see what type of radiation spectrum one gets; to see what type of short term time dependent behavior one gets; and, finally, to see how everything varies as the rate of inflow of matter is varied and as the mass and radius of the white dwarf under consideration are varied. The main approximation used is the assumption of spherical symmetry. The motivation behind the investigation is to see how well one can explain the various x-ray sources known

  12. Altered Gray Matter Volume and White Matter Integrity in College Students with Mobile Phone Dependence

    OpenAIRE

    Wang, Yongming; Zou, Zhiling; Song, Hongwen; Xu, Xiaodan; Wang, Huijun; d?Oleire Uquillas, Federico; Huang, Xiting

    2016-01-01

    Mobile phone dependence (MPD) is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI). Gray matter volume (GMV) and white matter (WM) integrity [four indices: fractional ...

  13. An optimized voxel-based morphometry study in the evaluation of brain structural abnormalities in anisometropic amblyopia patients

    International Nuclear Information System (INIS)

    Liu Shengyuan; Zhang Jing; Zhang Quan; Yin Huiming; Zhang Lihong; Li Wei; Zhang Yunting

    2012-01-01

    Objective: To investigate possible neural mechanism of anisometropic amblyopia by analysing the whole brain volume changes both in grey matter and white matter using optimized voxel-based morphometry (VBM). Methods: Twelve anisometropic amblyopia patients and 12 age,gender and handedness matched healthy volunteers underwent 3-dimensional (3D) fast spoiled gradient echo (FSPGR) sequence scanning on 1.5 Tesla MR system. Raw data was processed and analyzed using statistical parametric mapping (SPM) 5. Results: Compared to healthy controls,the grey matter exhibiting significantly decreased volume in patients included right cuneus, bilateral occipital gyrus, right middle frontal gyrus, left middle temporal gyrus, right superior temporal gyrus, right precuneus,and middle part of right cingulate gyrus (clusters > 10). The grey matter showing increased volume in patients included right cerebellum,right parahippocampal gyrus, left precentral gyrus,and left superior frontal gyrus (clusters > 10). The white matter volume in bilateral optic radiation and internal capsule, especially right optic radiation, decreased significantly in patient group (clusters > 10 ). No white matter showed significantly increased volume in patient group. Conclusion: VBM can be used to investigate the changes of grey matter volume and white matter volume in the whole brain of anisometropic amblyopia children, it provides a method to illustrate the presumed neuro-mechanism from a morphologic point of view. (authors)

  14. Numerical simulation model of hyperacute/acute stage white matter infarction.

    Science.gov (United States)

    Sakai, Koji; Yamada, Kei; Oouchi, Hiroyuki; Nishimura, Tsunehiko

    2008-01-01

    Although previous studies have revealed the mechanisms of changes in diffusivity (apparent diffusion coefficient [ADC]) in acute brain infarction, changes in diffusion anisotropy (fractional anisotropy [FA]) in white matter have not been examined. We hypothesized that membrane permeability as well as axonal swelling play important roles, and we therefore constructed a simulation model using random walk simulation to replicate the diffusion of water molecules. We implemented a numerical diffusion simulation model of normal and infarcted human brains using C++ language. We constructed this 2-pool model using simple tubes aligned in a single direction. Random walk simulation diffused water. Axon diameters and membrane permeability were then altered in step-wise fashion. To estimate the effects of axonal swelling, axon diameters were changed from 6 to 10 microm. Membrane permeability was altered from 0% to 40%. Finally, both elements were combined to explain increasing FA in the hyperacute stage of white matter infarction. The simulation demonstrated that simple water shift into the intracellular space reduces ADC and increases FA, but not to the extent expected from actual human cases (ADC approximately 50%; FA approximately +20%). Similarly, membrane permeability alone was insufficient to explain this phenomenon. However, a combination of both factors successfully replicated changes in diffusivity indices. Both axonal swelling and reduced membrane permeability appear important in explaining changes in ADC and FA based on eigenvalues in hyperacute-stage white matter infarction.

  15. Incidental white-matter foci on MRI in ''healthy'' subjects: evidence of subtle cognitive dysfunction

    International Nuclear Information System (INIS)

    Baum, K.A.; Schulte, C.; Girke, W.; Reischies, F.M.; Felix, R.

    1996-01-01

    The clinical significance of incidental white-matter foci seen on MRI is controversial. Mainly using a computer-assisted neuropsychological test battery, we tested the hypothesis that there is a clinical correlate of these foci. We studied 41 individuals aged 45-65 years with no history of neurological or psychiatric disorder, in whom no indication of central nervous system abnormalities was found on standardised neurological examination. A computer-assisted neuropsychological test battery, with the advantage of precise measuring of both time and deviation (e. g. in position memory tests), and rating scales for emotional dysfunction were administered; selected soft neurological signs were assessed. In 16 subjects (39 %) MRI showed high-signal foci in the white matter on spin-echo sequences. White-matter foci not adjacent to the lateral ventricles were found to be related to performance on immediate visual memory/visuoperceptual skills, visuomotor tracking/psychomotor speed and, to a lesser degree, learning capacity and abstract and conceptual reasoning skills. Subtle cognitive dysfunction would appear to be a clinical correlate of punctate white-matter foci on MRI of otherwise ''healty'' individuals. (orig.). With 1 fig., 2 tabs

  16. Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants

    Directory of Open Access Journals (Sweden)

    Jeum Kyu Hong

    2016-10-01

    Full Text Available Bacterial wilt and grey mould in tomato plants are economically destructive bacterial and fungal diseases caused by Ralstonia solanacearum and Botrytis cinerea, respectively. Various approaches including chemical and biological controls have been attempted to arrest the tomato diseases so far. In this study, in vitro growths of bacterial R. solanacearum and fungal B. cinerea were evaluated using four different vitamins including thiamine (vitamin B1, niacin (vitamin B3, pyridoxine (vitamin B6, and menadione (vitamin K3. In planta efficacies of the four vitamin treatments on tomato protection against both diseases were also demonstrated. All four vitamins showed different in vitro antibacterial activities against R. solanacearum in dose-dependent manners. However, treatment with 2 mM thiamine was only effective in reducing bacterial wilt of detached tomato leaves without phytotoxicity under lower disease pressure (10⁶ colony-forming unit [cfu]/ml. Treatment with the vitamins also differentially reduced in vitro conidial germination and mycelial growth of B. cinerea. The four vitamins slightly reduced the conidial germination, and thiamine, pyridoxine and menadione inhibited the mycelial growth of B. cinerea. Menadione began to drastically suppress the conidial germination and mycelial growth by 5 and 0.5 mM, respectively. Grey mould symptoms on the inoculated tomato leaves were significantly reduced by pyridoxine and menadione pretreatments one day prior to the fungal challenge inoculation. These findings suggest that disease-specific vitamin treatment will be integrated for eco-friendly management of tomato bacterial wilt and grey mould.

  17. Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants.

    Science.gov (United States)

    Hong, Jeum Kyu; Kim, Hyeon Ji; Jung, Heesoo; Yang, Hye Ji; Kim, Do Hoon; Sung, Chang Hyun; Park, Chang-Jin; Chang, Seog Won

    2016-10-01

    Bacterial wilt and grey mould in tomato plants are economically destructive bacterial and fungal diseases caused by Ralstonia solanacearum and Botrytis cinerea , respectively. Various approaches including chemical and biological controls have been attempted to arrest the tomato diseases so far. In this study, in vitro growths of bacterial R. solanacearum and fungal B. cinerea were evaluated using four different vitamins including thiamine (vitamin B1), niacin (vitamin B3), pyridoxine (vitamin B6), and menadione (vitamin K3). In planta efficacies of the four vitamin treatments on tomato protection against both diseases were also demonstrated. All four vitamins showed different in vitro antibacterial activities against R. solanacearum in dose-dependent manners. However, treatment with 2 mM thiamine was only effective in reducing bacterial wilt of detached tomato leaves without phytotoxicity under lower disease pressure (10 6 colony-forming unit [cfu]/ml). Treatment with the vitamins also differentially reduced in vitro conidial germination and mycelial growth of B. cinerea . The four vitamins slightly reduced the conidial germination, and thiamine, pyridoxine and menadione inhibited the mycelial growth of B. cinerea . Menadione began to drastically suppress the conidial germination and mycelial growth by 5 and 0.5 mM, respectively. Grey mould symptoms on the inoculated tomato leaves were significantly reduced by pyridoxine and menadione pretreatments one day prior to the fungal challenge inoculation. These findings suggest that disease-specific vitamin treatment will be integrated for eco-friendly management of tomato bacterial wilt and grey mould.

  18. Microstructural abnormalities in white and gray matter in obese adolescents with and without type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Arie Nouwen

    Full Text Available Aims/hypotheses: In adults, type 2 diabetes and obesity have been associated with structural brain changes, even in the absence of dementia. Some evidence suggested similar changes in adolescents with type 2 diabetes but comparisons with a non-obese control group have been lacking. The aim of the current study was to examine differences in microstructure of gray and white matter between adolescents with type 2 diabetes, obese adolescents and healthy weight adolescents. Methods: Magnetic resonance imaging data were collected from 15 adolescents with type 2 diabetes, 21 obese adolescents and 22 healthy weight controls. Volumetric differences in the gray matter between the three groups were examined using voxel based morphology, while tract based spatial statistics was used to examine differences in the microstructure of the white matter. Results: Adolescents with type 2 diabetes and obese adolescents had reduced gray matter volume in the right hippocampus, left putamen and caudate, bilateral amygdala and left thalamus compared to healthy weight controls. Type 2 diabetes was also associated with significant regional changes in fractional anisotropy within the corpus callosum, fornix, left inferior fronto-occipital fasciculus, left uncinate, left internal and external capsule. Fractional anisotropy reductions within these tracts were explained by increased radial diffusivity, which may suggest demyelination of white matter tracts. Mean diffusivity and axial diffusivity did not differ between the groups. Conclusion/interpretation: Our data shows that adolescent obesity alone results in reduced gray matter volume and that adolescent type 2 diabetes is associated with both white and gray matter abnormalities. Keywords: Type 2 diabetes, Obesity, White matter, Gray matter, Demyelination

  19. Segmentation of brain parenchymal regions into gray matter and white matter with Alzheimer's disease

    International Nuclear Information System (INIS)

    Tokunaga, Chiaki; Yoshiura, Takashi; Yamashita, Yasuo; Magome, Taiki; Honda, Hiroshi; Arimura, Hidetaka; Toyofuku, Fukai; Ohki, Masafumi

    2010-01-01

    It is very difficult and time consuming for neuroradiologists to estimate the degree of cerebral atrophy based on the volume of cortical regions etc. Our purpose of this study was to develop an automated segmentation of the brain parenchyma into gray and white matter regions with Alzheimer's disease (AD) in three-dimensional (3D) T1-weighted MR images. Our proposed method consisted of extraction of a brain parenchymal region based on a brain model matching and segmentation of the brain parenchyma into gray and white matter regions based on a fuzzy c-means (FCM) algorithm. We applied our proposed method to MR images of the whole brains obtained from 9 cases, including 4 clinically AD cases and 5 control cases. The mean volume percentage of a cortical region (41.7%) to a brain parenchymal region in AD patients was smaller than that (45.2%) in the control subjects (p=0.000462). (author)

  20. Paradoxical embolisation and cerebral white matter lesions in dementia.

    NARCIS (Netherlands)

    Purandare, N.; Oude Voshaar, R.C.; McCollum, C.; Jackson, A.; Burns, A.

    2008-01-01

    The study aimed to examine the relationship between spontaneous cerebral emboli (SCE), patent foramen ovale (PFO) and white matter hyperintensities (WMH) on cerebral MRI in patients with Alzheimer's disease (AD) and vascular dementia (VaD). SCE were identified by transcranial Doppler of the middle

  1. Model identification using stochastic differential equation grey-box models in diabetes.

    Science.gov (United States)

    Duun-Henriksen, Anne Katrine; Schmidt, Signe; Røge, Rikke Meldgaard; Møller, Jonas Bech; Nørgaard, Kirsten; Jørgensen, John Bagterp; Madsen, Henrik

    2013-03-01

    The acceptance of virtual preclinical testing of control algorithms is growing and thus also the need for robust and reliable models. Models based on ordinary differential equations (ODEs) can rarely be validated with standard statistical tools. Stochastic differential equations (SDEs) offer the possibility of building models that can be validated statistically and that are capable of predicting not only a realistic trajectory, but also the uncertainty of the prediction. In an SDE, the prediction error is split into two noise terms. This separation ensures that the errors are uncorrelated and provides the possibility to pinpoint model deficiencies. An identifiable model of the glucoregulatory system in a type 1 diabetes mellitus (T1DM) patient is used as the basis for development of a stochastic-differential-equation-based grey-box model (SDE-GB). The parameters are estimated on clinical data from four T1DM patients. The optimal SDE-GB is determined from likelihood-ratio tests. Finally, parameter tracking is used to track the variation in the "time to peak of meal response" parameter. We found that the transformation of the ODE model into an SDE-GB resulted in a significant improvement in the prediction and uncorrelated errors. Tracking of the "peak time of meal absorption" parameter showed that the absorption rate varied according to meal type. This study shows the potential of using SDE-GBs in diabetes modeling. Improved model predictions were obtained due to the separation of the prediction error. SDE-GBs offer a solid framework for using statistical tools for model validation and model development. © 2013 Diabetes Technology Society.

  2. Mapping White Matter Integrity and Neurobehavioral Correlates in Children with Fetal Alcohol Spectrum Disorders

    Science.gov (United States)

    Sowell, Elizabeth R.; Johnson, Arianne; Kan, Eric; Lu, Lisa H.; Van Horn, John Darrell; Toga, Arthur W.; O’Connor, Mary J.; Bookheimer, Susan Y.

    2013-01-01

    Brain structural abnormalities and neurocognitive dysfunction have been observed in individuals with fetal alcohol spectrum disorders (FASDs). Little is known about how white matter integrity is related to these functional and morphological deficits. We used a combination of diffusion tensor and T1-weighted magnetic resonance imaging to evaluate white matter integrity in individuals with FASDs and related these findings to neurocognitive deficits. Seventeen children and adolescents with FASDs were compared with 19 typically developing age-and gender-matched controls. Lower fractional anisotropy (FA) was observed in individuals with FASDs relative to controls in the right lateral temporal lobe and bilaterally in the lateral aspects of the splenium of the corpus callosum. White matter density was also lower in some, but not all regions in which FA was lower. FA abnormalities were confirmed to be in areas of white matter in post hoc region of interest analyses, further supporting that less myelin or disorganized fiber tracts are associated with heavy prenatal alcohol exposure. Significant correlations between performance on a test of visuomotor integration and FA in bilateral splenium, but not temporal regions were observed within the FASD group. Correlations between the visuomotor task and FA within the splenium were not significant with in the control group, and were not significant for measures of reading ability. This suggests that this region of white matter is particularly susceptible to damage from prenatal alcohol exposure and that disruption of splenial fibers in this group is associated with poorer visuomotor integration. PMID:18256251

  3. Memory binding and white matter integrity in familial Alzheimer's disease.

    Science.gov (United States)

    Parra, Mario A; Saarimäki, Heini; Bastin, Mark E; Londoño, Ana C; Pettit, Lewis; Lopera, Francisco; Della Sala, Sergio; Abrahams, Sharon

    2015-05-01

    Binding information in short-term and long-term memory are functions sensitive to Alzheimer's disease. They have been found to be affected in patients who meet criteria for familial Alzheimer's disease due to the mutation E280A of the PSEN1 gene. However, only short-term memory binding has been found to be affected in asymptomatic carriers of this mutation. The neural correlates of this dissociation are poorly understood. The present study used diffusion tensor magnetic resonance imaging to investigate whether the integrity of white matter structures could offer an account. A sample of 19 patients with familial Alzheimer's disease, 18 asymptomatic carriers and 21 non-carrier controls underwent diffusion tensor magnetic resonance imaging, neuropsychological and memory binding assessment. The short-term memory binding task required participants to detect changes across two consecutive screens displaying arrays of shapes, colours, or shape-colour bindings. The long-term memory binding task was a Paired Associates Learning Test. Performance on these tasks were entered into regression models. Relative to controls, patients with familial Alzheimer's disease performed poorly on both memory binding tasks. Asymptomatic carriers differed from controls only in the short-term memory binding task. White matter integrity explained poor memory binding performance only in patients with familial Alzheimer's disease. White matter water diffusion metrics from the frontal lobe accounted for poor performance on both memory binding tasks. Dissociations were found in the genu of corpus callosum which accounted for short-term memory binding impairments and in the hippocampal part of cingulum bundle which accounted for long-term memory binding deficits. The results indicate that white matter structures in the frontal and temporal lobes are vulnerable to the early stages of familial Alzheimer's disease and their damage is associated with impairments in two memory binding functions known to

  4. Effects of Surgery and Proton Therapy on Cerebral White Matter of Craniopharyngioma Patients

    Energy Technology Data Exchange (ETDEWEB)

    Uh, Jinsoo, E-mail: jinsoo.uh@stjude.org [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Merchant, Thomas E. [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Li, Yimei; Li, Xingyu [Department of Biostatistics, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Sabin, Noah D. [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Indelicato, Daniel J. [Department of Radiation Oncology, University of Florida, Jacksonville, Florida (United States); Ogg, Robert J. [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Boop, Frederick A. [Semmes-Murphey Neurologic and Spine Institute, Memphis, Tennessee (United States); Jane, John A. [Department of Neurosurgery, University of Virginia, Charlottesville, Virginia (United States); Hua, Chiaho [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2015-09-01

    Purpose: The purpose of this study was to determine radiation dose effect on the structural integrity of cerebral white matter in craniopharyngioma patients receiving surgery and proton therapy. Methods and Materials: Fifty-one patients (2.1-19.3 years of age) with craniopharyngioma underwent surgery and proton therapy in a prospective therapeutic trial. Anatomical magnetic resonance images acquired after surgery but before proton therapy were inspected to identify white matter structures intersected by surgical corridors and catheter tracks. Longitudinal diffusion tensor imaging (DTI) was performed to measure microstructural integrity changes in cerebral white matter. Fractional anisotropy (FA) derived from DTI was statistically analyzed for 51 atlas-based white matter structures of the brain to determine radiation dose effect. FA in surgery-affected regions in the corpus callosum was compared to that in its intact counterpart to determine whether surgical defects affect radiation dose effect. Results: Surgical defects were seen most frequently in the corpus callosum because of transcallosal resection of tumors and insertion of ventricular or cyst catheters. Longitudinal DTI data indicated reductions in FA 3 months after therapy, which was followed by a recovery in most white matter structures. A greater FA reduction was correlated with a higher radiation dose in 20 white matter structures, indicating a radiation dose effect. The average FA in the surgery-affected regions before proton therapy was smaller (P=.0001) than that in their non–surgery-affected counterparts with more intensified subsequent reduction of FA (P=.0083) after therapy, suggesting that surgery accentuated the radiation dose effect. Conclusions: DTI data suggest that mild radiation dose effects occur in patients with craniopharyngioma receiving surgery and proton therapy. Surgical defects present at the time of proton therapy appear to accentuate the radiation dose effect longitudinally

  5. Effects of Surgery and Proton Therapy on Cerebral White Matter of Craniopharyngioma Patients

    International Nuclear Information System (INIS)

    Uh, Jinsoo; Merchant, Thomas E.; Li, Yimei; Li, Xingyu; Sabin, Noah D.; Indelicato, Daniel J.; Ogg, Robert J.; Boop, Frederick A.; Jane, John A.; Hua, Chiaho

    2015-01-01

    Purpose: The purpose of this study was to determine radiation dose effect on the structural integrity of cerebral white matter in craniopharyngioma patients receiving surgery and proton therapy. Methods and Materials: Fifty-one patients (2.1-19.3 years of age) with craniopharyngioma underwent surgery and proton therapy in a prospective therapeutic trial. Anatomical magnetic resonance images acquired after surgery but before proton therapy were inspected to identify white matter structures intersected by surgical corridors and catheter tracks. Longitudinal diffusion tensor imaging (DTI) was performed to measure microstructural integrity changes in cerebral white matter. Fractional anisotropy (FA) derived from DTI was statistically analyzed for 51 atlas-based white matter structures of the brain to determine radiation dose effect. FA in surgery-affected regions in the corpus callosum was compared to that in its intact counterpart to determine whether surgical defects affect radiation dose effect. Results: Surgical defects were seen most frequently in the corpus callosum because of transcallosal resection of tumors and insertion of ventricular or cyst catheters. Longitudinal DTI data indicated reductions in FA 3 months after therapy, which was followed by a recovery in most white matter structures. A greater FA reduction was correlated with a higher radiation dose in 20 white matter structures, indicating a radiation dose effect. The average FA in the surgery-affected regions before proton therapy was smaller (P=.0001) than that in their non–surgery-affected counterparts with more intensified subsequent reduction of FA (P=.0083) after therapy, suggesting that surgery accentuated the radiation dose effect. Conclusions: DTI data suggest that mild radiation dose effects occur in patients with craniopharyngioma receiving surgery and proton therapy. Surgical defects present at the time of proton therapy appear to accentuate the radiation dose effect longitudinally

  6. Diffusion tensor imaging of brain white matter in Huntington gene mutation individuals

    Directory of Open Access Journals (Sweden)

    Roberta Arb Saba

    Full Text Available ABSTRACT Objective To evaluate the role of the involvement of white matter tracts in huntingtin gene mutation patients as a potential biomarker of the progression of the disease. Methods We evaluated 34 participants (11 symptomatic huntingtin gene mutation, 12 presymptomatic huntingtin gene mutation, and 11 controls. We performed brain magnetic resonance imaging to assess white matter integrity using diffusion tensor imaging, with measurement of fractional anisotropy. Results We observed a significant decrease of fractional anisotropy in the cortical spinal tracts, corona radiate, corpus callosum, external capsule, thalamic radiations, superior and inferior longitudinal fasciculus, and inferior frontal-occipital fasciculus in the Huntington disease group compared to the control and presymptomatic groups. Reduction of fractional anisotropy is indicative of a degenerative process and axonal loss. There was no statistically significant difference between the presymptomatic and control groups. Conclusion White matter integrity is affected in huntingtin gene mutation symptomatic individuals, but other studies with larger samples are required to assess its usefulness in the progression of the neurodegenerative process.

  7. Normalization of white matter intensity on T1-weighted images of patients with acquired central nervous system demyelination.

    Science.gov (United States)

    Ghassemi, Rezwan; Brown, Robert; Narayanan, Sridar; Banwell, Brenda; Nakamura, Kunio; Arnold, Douglas L

    2015-01-01

    Intensity variation between magnetic resonance images (MRI) hinders comparison of tissue intensity distributions in multicenter MRI studies of brain diseases. The available intensity normalization techniques generally work well in healthy subjects but not in the presence of pathologies that affect tissue intensity. One such disease is multiple sclerosis (MS), which is associated with lesions that prominently affect white matter (WM). To develop a T1-weighted (T1w) image intensity normalization method that is independent of WM intensity, and to quantitatively evaluate its performance. We calculated median intensity of grey matter and intraconal orbital fat on T1w images. Using these two reference tissue intensities we calculated a linear normalization function and applied this to the T1w images to produce normalized T1w (NT1) images. We assessed performance of our normalization method for interscanner, interprotocol, and longitudinal normalization variability, and calculated the utility of the normalization method for lesion analyses in clinical trials. Statistical modeling showed marked decreases in T1w intensity differences after normalization (P < .0001). We developed a WM-independent T1w MRI normalization method and tested its performance. This method is suitable for longitudinal multicenter clinical studies for the assessment of the recovery or progression of disease affecting WM. Copyright © 2014 by the American Society of Neuroimaging.

  8. Assessing white matter ischemic damage in dementia patients by measurement of myelin proteins

    Science.gov (United States)

    Barker, Rachel; Wellington, Dannielle; Esiri, Margaret M; Love, Seth

    2013-01-01

    White matter ischemia is difficult to quantify histologically. Myelin-associated glycoprotein (MAG) is highly susceptible to ischemia, being expressed only adaxonally, far from the oligodendrocyte cell body. Myelin-basic protein (MBP) and proteolipid protein (PLP) are expressed throughout the myelin sheath. We compared MAG, MBP, and PLP levels in parietal white matter homogenates from 17 vascular dementia (VaD), 49 Alzheimer's disease (AD), and 33 control brains, after assessing the post-mortem stability of these proteins. Small vessel disease (SVD) and cerebral amyloid angiopathy (CAA) severity had been assessed in paraffin sections. The concentration of MAG remained stable post-mortem, declined with increasing SVD, and was significantly lower in VaD than controls. The concentration of MBP fell progressively post-mortem, limiting its diagnostic utility in this context. Proteolipid protein was stable post-mortem and increased significantly with SVD severity. The MAG/PLP ratio declined significantly with SVD and CAA severity. The MAG and PLP levels and MAG/PLP did not differ significantly between AD and control brains. We validated the utility of MAG and MAG/PLP measurements on analysis of 74 frontal white matter samples from an Oxford cohort in which SVD had previously been scored. MAG concentration and the MAG/PLP ratio are useful post-mortem measures of ante-mortem white matter ischemia. PMID:23532085

  9. Determinants of cerebral white matter lesions: A longitudinal population based MRI study

    NARCIS (Netherlands)

    H.F. de Leeuw (Frank)

    1999-01-01

    textabstractW hite matter lesions are frequently found on cerebral magnetic resonance imaging scans of elderly non-demented and demented people. l-4 The pathogenesis of white matter lesions is largely unknown. However age and high diastolic and systolic blood pressure levels and indicators of

  10. Aerobic fitness is associated with greater white matter integrity in children

    Directory of Open Access Journals (Sweden)

    Laura eChaddock-Heyman

    2014-08-01

    Full Text Available Aerobic fitness has been found to play a positive role in brain and cognitive health of children. Yet, many of the neural biomarkers related to aerobic fitness remain unknown. Here, using diffusion tensor imaging (DTI, we demonstrated that higher aerobic fitness was related to greater estimates of white matter microstructure in children. Higher fit 9- and 10-year-old children showed greater fractional anisotropy (FA in sections of the corpus callosum, corona radiata, and superior longitudinal fasciculus, compared to lower fit children. The FA effects were primarily characterized by aerobic fitness differences in radial diffusivity (RD, thereby raising the possibility that estimates of myelination may vary as a function of individual differences in fitness during childhood. White matter structure may be another potential neural mechanism of aerobic fitness that assists in efficient communication between gray matter regions as well as the integration of regions into networks.

  11. Memory binding and white matter integrity in familial Alzheimer’s disease

    Science.gov (United States)

    Saarimäki, Heini; Bastin, Mark E.; Londoño, Ana C.; Pettit, Lewis; Lopera, Francisco; Della Sala, Sergio; Abrahams, Sharon

    2015-01-01

    Binding information in short-term and long-term memory are functions sensitive to Alzheimer’s disease. They have been found to be affected in patients who meet criteria for familial Alzheimer’s disease due to the mutation E280A of the PSEN1 gene. However, only short-term memory binding has been found to be affected in asymptomatic carriers of this mutation. The neural correlates of this dissociation are poorly understood. The present study used diffusion tensor magnetic resonance imaging to investigate whether the integrity of white matter structures could offer an account. A sample of 19 patients with familial Alzheimer’s disease, 18 asymptomatic carriers and 21 non-carrier controls underwent diffusion tensor magnetic resonance imaging, neuropsychological and memory binding assessment. The short-term memory binding task required participants to detect changes across two consecutive screens displaying arrays of shapes, colours, or shape-colour bindings. The long-term memory binding task was a Paired Associates Learning Test. Performance on these tasks were entered into regression models. Relative to controls, patients with familial Alzheimer’s disease performed poorly on both memory binding tasks. Asymptomatic carriers differed from controls only in the short-term memory binding task. White matter integrity explained poor memory binding performance only in patients with familial Alzheimer’s disease. White matter water diffusion metrics from the frontal lobe accounted for poor performance on both memory binding tasks. Dissociations were found in the genu of corpus callosum which accounted for short-term memory binding impairments and in the hippocampal part of cingulum bundle which accounted for long-term memory binding deficits. The results indicate that white matter structures in the frontal and temporal lobes are vulnerable to the early stages of familial Alzheimer’s disease and their damage is associated with impairments in two memory binding

  12. Quantitative MRI assessments of white matter in children treated for acute lymphoblastic leukemia

    Science.gov (United States)

    Reddick, Wilburn E.; Glass, John O.; Helton, Kathleen J.; Li, Chin-Shang; Pui, Ching-Hon

    2005-04-01

    The purpose of this study was to use objective quantitative MR imaging methods to prospectively assess changes in the physiological structure of white matter during the temporal evolution of leukoencephalopathy (LE) in children treated for acute lymphoblastic leukemia. The longitudinal incidence, extent (proportion of white matter affect), and intensity (elevation of T1 and T2 relaxation rates) of LE was evaluated for 44 children. A combined imaging set consisting of T1, T2, PD, and FLAIR MR images and white matter, gray matter and CSF a priori maps from a spatially normalized atlas were analyzed with a neural network segmentation based on a Kohonen Self-Organizing Map (SOM). Quantitative T1 and T2 relaxation maps were generated using a nonlinear parametric optimization procedure to fit the corresponding multi-exponential models. A Cox proportional regression was performed to estimate the effect of intravenous methotrexate (IV-MTX) exposure on the development of LE followed by a generalized linear model to predict the probability of LE in new patients. Additional T-tests of independent samples were performed to assess differences in quantitative measures of extent and intensity at four different points in therapy. Higher doses and more courses of IV-MTX placed patients at a higher risk of developing LE and were associated with more intense changes affecting more of the white matter volume; many of the changes resolved after completion of therapy. The impact of these changes on neurocognitive functioning and quality of life in survivors remains to be determined.

  13. MR imaging of the brain: metabolic and toxic white matter diseases

    International Nuclear Information System (INIS)

    Forsting, M.

    1999-01-01

    Metabolic disorders of the brain are rare, complex and confusing. The diagnostic modality of choice nowadays is MRI. The high diagnostic sensitivity, however, is coupled with a lack of specificity and usually results in the depiction of similar appearing but clinically diverse white matter processes. For this reason it is essential to perform the MRI as early as possible during the course of the disease and to keep in close contact to the referring clinician to optimize image interpretation. Another precondition is to know the natural course of brain myelination and to know how this appears on the individual MR machine with different parameters. In some diseases like phenylketonuria MRI seems to be an excellent tool to monitor dietary treatment and patient compliance. In patients after radio- and / or chemotherapy MRI reveals the radiation induced leucencephalopathy and can usually differentiate between a recurrent malignancy. (orig.)

  14. Numerical methods for stochastic partial differential equations with white noise

    CERN Document Server

    Zhang, Zhongqiang

    2017-01-01

    This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical compa...

  15. Cardiopulmonary fitness correlates with regional cerebral grey matter perfusion and density in men with coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Bradley J MacIntosh

    Full Text Available Physical activity is associated with positive effects on the brain but there is a paucity of clinical neuroimaging data in patients with coronary artery disease (CAD, a cardiovascular condition associated with grey matter loss. The purpose of this study was to determine which brain regions are impacted by cardiopulmonary fitness and with the change in fitness after 6 months of exercise-based cardiac rehabilitation.CAD patients underwent magnetic resonance imaging at baseline, and peak volume of oxygen uptake during exercise testing (VO2Peak was measured at baseline and after 6 months of training. T1-weighted structural images were used to perform grey matter (GM voxel-based morphometry (VBM. Pseudo-continuous arterial spin labeling (pcASL was used to produce cerebral blood flow (CBF images. VBM and CBF data were tested voxel-wise using VO2Peak and age as explanatory variables.In 30 men with CAD (mean age 65±7 years, VBM and CBF identified 7 and 5 respective regions positively associated with baseline VO2Peak. These included the pre- and post-central, paracingulate, caudate, hippocampal regions and converging findings in the putamen. VO2Peak increased by 20% at follow-up in 29 patients (t = 9.6, df = 28, p<0.0001. Baseline CBF in the left post-central gyrus and baseline GM density in the right putamen predicted greater change in VO2Peak.Perfusion and GM density were associated with fitness at baseline and with greater fitness gains with exercise. This study identifies new neurobiological correlates of fitness and demonstrates the utility of multi-modal MRI to evaluate the effects of exercise in CAD patients.

  16. Grey matter abnormalities in children and adolescents with functional neurological symptom disorder.

    Science.gov (United States)

    Kozlowska, Kasia; Griffiths, Kristi R; Foster, Sheryl L; Linton, James; Williams, Leanne M; Korgaonkar, Mayuresh S

    2017-01-01

    Functional neurological symptom disorder refers to the presence of neurological symptoms not explained by neurological disease. Although this disorder is presumed to reflect abnormal function of the brain, recent studies in adults show neuroanatomical abnormalities in brain structure . These structural brain abnormalities have been presumed to reflect long-term adaptations to the disorder, and it is unknown whether child and adolescent patients, with illness that is typically of shorter duration, show similar deficits or have normal brain structure. High-resolution, three-dimensional T1-weighted magnetic resonance images (MRIs) were acquired in 25 patients (aged 10-18 years) and 24 healthy controls. Structure was quantified in terms of grey matter volume using voxel-based morphometry. Post hoc, we examined whether regions of structural difference related to a measure of motor readiness to emotional signals and to clinical measures of illness duration, illness severity, and anxiety/depression. Patients showed greater volumes in the left supplementary motor area (SMA) and right superior temporal gyrus (STG) and dorsomedial prefrontal cortex (DMPFC) (corrected p disorder.

  17. Genetic Schizophrenia Risk Variants Jointly Modulate Total Brain and White Matter Volume

    DEFF Research Database (Denmark)

    Terwisscha van Scheltinga, Afke F; Bakker, Steven C; van Haren, Neeltje E M

    2013-01-01

    with total brain volume (R(2)=.048, p=1.6×10(-4)) and white matter volume (R(2)=.051, p=8.6×10(-5)) equally in patients and control subjects. The number of (independent) SNPs that substantially influenced both disease risk and white matter (n=2020) was much smaller than the entire set of SNPs that modulated...... modulating schizophrenia and brain volume. METHODS: Odds ratios for genome-wide SNP data were calculated in the sample collected by the Psychiatric Genome-wide Association Study Consortium (8690 schizophrenia patients and 11,831 control subjects, excluding subjects from the present study). These were used...

  18. Coupling effects of grey-grey separate spatial screening soliton pairs

    International Nuclear Information System (INIS)

    Jiang Qichang; Su Yanli; Ji Xuanmang

    2012-01-01

    The existence and coupling effects of grey-grey separate spatial soliton pairs in a biased series non-photovoltaic photorefractive crystal circuit are investigated in this paper. The numerical solution of grey-grey soliton pairs is derived. The coupling effects between two grey solitons resulting from the input optical intensity and crystal temperature are analyzed numerically. The results show that when the input optical intensity of one crystal changes, two grey solitons in a soliton pair will all change; that is, two grey solitons can affect each other by the light-induced current that flows from one crystal to another. When the temperature of one crystal increases, the intensity width of the grey soliton in this crystal first decreases and then increases. Simultaneously, the intensity width of another grey soliton increases monotonically.

  19. Cognitive subtypes of dyslexia are characterized by distinct patterns of grey matter volume.

    Science.gov (United States)

    Jednoróg, Katarzyna; Gawron, Natalia; Marchewka, Artur; Heim, Stefan; Grabowska, Anna

    2014-09-01

    The variety of different causal theories together with inconsistencies about the anatomical brain markers emphasize the heterogeneity of developmental dyslexia. Attempts were made to test on a behavioral level the existence of subtypes of dyslexia showing distinguishable cognitive deficits. Importantly, no research was directly devoted to the investigation of structural brain correlates of these subtypes. Here, for the first time, we applied voxel-based morphometry (VBM) to study grey matter volume (GMV) differences in a relatively large sample (n = 46) of dyslexic children split into three subtypes based on the cognitive deficits: phonological, rapid naming, magnocellular/dorsal, and auditory attention shifting. VBM revealed GMV clusters specific for each studied group including areas of left inferior frontal gyrus, cerebellum, right putamen, and bilateral parietal cortex. In addition, using discriminant analysis on these clusters 79% of cross-validated cases were correctly re-classified into four groups (controls vs. three subtypes). Current results indicate that dyslexia may result from distinct cognitive impairments characterized by distinguishable anatomical markers.

  20. Surface-based reconstruction and diffusion MRI in the assessment of gray and white matter damage in multiple sclerosis

    Science.gov (United States)

    Caffini, Matteo; Bergsland, Niels; LaganÃ, Marcella; Tavazzi, Eleonora; Tortorella, Paola; Rovaris, Marco; Baselli, Giuseppe

    2014-03-01

    Despite advances in the application of nonconventional MRI techniques in furthering the understanding of multiple sclerosis pathogenic mechanisms, there are still many unanswered questions, such as the relationship between gray and white matter damage. We applied a combination of advanced surface-based reconstruction and diffusion tensor imaging techniques to address this issue. We found significant relationships between white matter tract integrity indices and corresponding cortical structures. Our results suggest a direct link between damage in white and gray matter and contribute to the notion of gray matter loss relating to clinical disability.

  1. White matter integrity in veterans with mild traumatic brain injury: associations with executive function and loss of consciousness.

    Science.gov (United States)

    Sorg, Scott F; Delano-Wood, Lisa; Luc, Norman; Schiehser, Dawn M; Hanson, Karen L; Nation, Daniel A; Lanni, Elisa; Jak, Amy J; Lu, Kun; Meloy, M J; Frank, Lawrence R; Lohr, James B; Bondi, Mark W

    2014-01-01

    We investigated using diffusion tensor imaging (DTI) and the association between white matter integrity and executive function (EF) performance in postacute mild traumatic brain injury (mTBI). In addition, we examined whether injury severity, as measured by loss of consciousness (LOC) versus alterations in consciousness (AOC), is related to white matter microstructural alterations and neuropsychological outcome. Thirty Iraq and Afghanistan War era veterans with a history of mTBI and 15 healthy veteran control participants. There were no significant overall group differences between control and mTBI participants on DTI measures. However, a subgroup of mTBI participants with EF decrements (n = 13) demonstrated significantly decreased fractional anisotropy of prefrontal white matter, corpus callosum, and cingulum bundle structures compared with mTBI participants without EF decrements (n = 17) and control participants. Participants having mTBI with LOC were more likely to evidence reduced EF performances and disrupted ventral prefrontal white matter integrity when compared with either mTBI participants without LOC or control participants. Findings suggest that altered white matter integrity contributes to reduced EF in subgroups of veterans with a history of mTBI and that LOC may be a risk factor for reduced EF as well as associated changes to ventral prefrontal white matter.

  2. Cortical and white matter alterations in patients with neuropathic pain after spinal cord injury.

    Science.gov (United States)

    Yoon, Eun Jin; Kim, Yu Kyeong; Shin, Hyung Ik; Lee, Youngjo; Kim, Sang Eun

    2013-12-02

    Neuropathic pain is one of the major problems of patients with spinal cord injury (SCI), which remains refractory to treatment despite a variety of therapeutic approach. Multimodal neuroimaging could provide complementary information for brain mechanisms underlying neuropathic pain, which could be based on development of more effective treatment strategies. Ten patients suffering from chronic neuropathic pain after SCI and 10 healthy controls underwent FDG-PET, T1-anatomical MRI and diffusion tensor imaging. We found decreases of both metabolism and the gray matter volume in the left dorsolateral prefrontal cortex in patients compared to healthy controls, as well as hypometabolism in the medial prefrontal cortex and gray matter volume loss in bilateral anterior insulae and subgenual anterior cingulate cortices. These brain regions are generally known to participate in pain modulation by affective and cognitive processes. Decreases of mean diffusivity (MD) in the right internal capsule including, cerebral peduncle, pre-and post-central white matter, and prefrontal white matter as components of the corticospinal and thalamocortical tracts were demonstrated in patients. Further, lower MD value of prefrontal white matter was correlated with decreased metabolism of medial prefrontal cortex in patients. These results indicated that white matter changes imply abnormal pain modulation in patients as well as motor impairment. Our study showed the functional and structural multimodal imaging modality commonly identified the possible abnormalities in the brain regions participating pain modulation in neuropathic pain. Multifaceted imaging studies in neuropathic pain could be useful elucidating precise mechanisms of persistent pain, and providing future directions for treatment. © 2013 Elsevier B.V. All rights reserved.

  3. Effects of low-level sarin and cyclosarin exposure on white matter integrity in Gulf War Veterans.

    Science.gov (United States)

    Chao, Linda L; Zhang, Yu; Buckley, Shannon

    2015-05-01

    We previously found evidence of reduced gray and white matter volume in Gulf War (GW) veterans with predicted low-level exposure to sarin (GB) and cyclosarin (GF). Because loss of white matter tissue integrity has been linked to both gray and white matter atrophy, the current study sought to test the hypothesis that GW veterans with predicted GB/GF exposure have evidence of disrupted white matter microstructural integrity. Measures of fractional anisotropy and directional (i.e., axial and radial) diffusivity were assessed from the 4T diffusion tensor images (DTI) of 59 GW veterans with predicted GB/GF exposure and 59 "matched" unexposed GW veterans (mean age: 48 ± 7 years). The DTI data were analyzed using regions of interest (ROI) analyses that accounted for age, sex, total brain gray and white matter volume, trauma exposure, posttraumatic stress disorder, current major depression, and chronic multisymptom illness status. There were no significant group differences in fractional anisotropy or radial diffusivity. However, there was increased axial diffusivity in GW veterans with predicted GB/GF exposure compared to matched, unexposed veterans throughout the brain, including the temporal stem, corona radiata, superior and inferior (hippocampal) cingulum, inferior and superior fronto-occipital fasciculus, internal and external capsule, and superficial cortical white matter blades. Post hoc analysis revealed significant correlations between higher fractional anisotropy and lower radial diffusivity with better neurobehavioral performance in unexposed GW veterans. In contrast, only increased axial diffusivity in posterior limb of the internal capsule was associated with better psychomotor function in GW veterans with predicted GB/GF exposure. The finding that increased axial diffusivity in a region of the brain that contains descending corticospinal fibers was associated with better psychomotor function and the lack of significant neurobehavioral deficits in veterans

  4. White Matter Structure in Older Adults Moderates the Benefit of Sleep Spindles on Motor Memory Consolidation.

    Science.gov (United States)

    Mander, Bryce A; Zhu, Alyssa H; Lindquist, John R; Villeneuve, Sylvia; Rao, Vikram; Lu, Brandon; Saletin, Jared M; Ancoli-Israel, Sonia; Jagust, William J; Walker, Matthew P

    2017-11-29

    Sleep spindles promote the consolidation of motor skill memory in young adults. Older adults, however, exhibit impoverished sleep-dependent motor memory consolidation. The underlying pathophysiological mechanism(s) explaining why motor memory consolidation in older adults fails to benefit from sleep remains unclear. Here, we demonstrate that male and female older adults show impoverished overnight motor skill memory consolidation relative to young adults, with the extent of impairment being associated with the degree of reduced frontal fast sleep spindle density. The magnitude of the loss of frontal fast sleep spindles in older adults was predicted by the degree of reduced white matter integrity throughout multiple white matter tracts known to connect subcortical and cortical brain regions. We further demonstrate that the structural integrity of selective white matter fiber tracts, specifically within right posterior corona radiata, right tapetum, and bilateral corpus callosum, statistically moderates whether sleep spindles promoted overnight consolidation of motor skill memory. Therefore, white matter integrity within tracts known to connect cortical sensorimotor control regions dictates the functional influence of sleep spindles on motor skill memory consolidation in the elderly. The deterioration of white matter fiber tracts associated with human brain aging thus appears to be one pathophysiological mechanism influencing subcortical-cortical propagation of sleep spindles and their related memory benefits. SIGNIFICANCE STATEMENT Numerous studies have shown that sleep spindle expression is reduced and sleep-dependent motor memory is impaired in older adults. However, the mechanisms underlying these alterations have remained unknown. The present study reveals that age-related degeneration of white matter within select fiber tracts is associated with reduced sleep spindles in older adults. We further demonstrate that, within these same fiber tracts, the degree of

  5. Differential white cell count by centrifugal microfluidics.

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    2010-07-01

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generation of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.

  6. Early treatment of minocycline alleviates white matter and cognitive impairments after chronic cerebral hypoperfusion

    Science.gov (United States)

    Ma, Jing; Zhang, Jing; Hou, Wei Wei; Wu, Xiao Hua; Liao, Ru Jia; Chen, Ying; Wang, Zhe; Zhang, Xiang Nan; Zhang, Li San; Zhou, Yu Dong; Chen, Zhong; Hu, Wei Wei

    2015-01-01

    Subcortical ischemic vascular dementia (SIVD) caused by chronic cerebral hypoperfusion develops with progressive white matter and cognitive impairments, yet no effective therapy is available. We investigated the temporal effects of minocycline on an experimental SIVD exerted by right unilateral common carotid arteries occlusion (rUCCAO). Minocycline treated at the early stage (day 0–3), but not the late stage after rUCCAO (day 4–32) alleviated the white matter and cognitive impairments, and promoted remyelination. The actions of minocycline may not involve the inhibition of microglia activation, based on the effects after the application of a microglial activation inhibitor, macrophage migration inhibitory factor, and co-treatment with lipopolysaccharides. Furthermore, minocycline treatment at the early stage promoted the proliferation of oligodendrocyte progenitor cells (OPCs) in subventricular zone, increased OPC number and alleviated apoptosis of mature oligodendrocytes in white matter. In vitro, minocycline promoted OPC proliferation and increased the percentage of OPCs in S and G2/M phases. We provided direct evidence that early treatment is critical for minocycline to alleviate white matter and cognitive impairments after chronic cerebral hypoperfusion, which may be due to its robust effects on OPC proliferation and mature oligodendrocyte loss. So, early therapeutic time window may be crucial for its application in SIVD. PMID:26174710

  7. Organising white matter in a brain without corpus callosum fibres.

    Science.gov (United States)

    Bénézit, Audrey; Hertz-Pannier, Lucie; Dehaene-Lambertz, Ghislaine; Monzalvo, Karla; Germanaud, David; Duclap, Delphine; Guevara, Pamela; Mangin, Jean-François; Poupon, Cyril; Moutard, Marie-Laure; Dubois, Jessica

    2015-02-01

    Isolated corpus callosum dysgenesis (CCD) is a congenital malformation which occurs during early development of the brain. In this study, we aimed to identify and describe its consequences beyond the lack of callosal fibres, on the morphology, microstructure and asymmetries of the main white matter bundles with diffusion imaging and fibre tractography. Seven children aged between 9 and 13 years old and seven age- and gender-matched control children were studied. First, we focused on bundles within the mesial region of the cerebral hemispheres: the corpus callosum, Probst bundles and cingulum which were selected using a conventional region-based approach. We demonstrated that the Probst bundles have a wider connectivity than the previously described rostrocaudal direction, and a microstructure rather distinct from the cingulum but relatively close to callosal remnant fibres. A sigmoid bundle was found in two partial ageneses. Second, the corticospinal tract, thalamic radiations and association bundles were extracted automatically via an atlas of adult white matter bundles to overcome bias resulting from a priori knowledge of the bundles' anatomical morphology and trajectory. Despite the lack of callosal fibres and the colpocephaly observed in CCD, all major white matter bundles were identified with a relatively normal morphology, and preserved microstructure (i.e. fractional anisotropy, mean diffusivity) and asymmetries. Consequently the bundles' organisation seems well conserved in brains with CCD. These results await further investigations with functional imaging before apprehending the cognition variability in children with isolated dysgenesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Never forget a name: white matter connectivity predicts person memory

    Science.gov (United States)

    Metoki, Athanasia; Alm, Kylie H.; Wang, Yin; Ngo, Chi T.; Olson, Ingrid R.

    2018-01-01

    Through learning and practice, we can acquire numerous skills, ranging from the simple (whistling) to the complex (memorizing operettas in a foreign language). It has been proposed that complex learning requires a network of brain regions that interact with one another via white matter pathways. One candidate white matter pathway, the uncinate fasciculus (UF), has exhibited mixed results for this hypothesis: some studies have shown UF involvement across a range of memory tasks, while other studies report null results. Here, we tested the hypothesis that the UF supports associative memory processes and that this tract can be parcellated into subtracts that support specific types of memory. Healthy young adults performed behavioral tasks (two face-name learning tasks, one word pair memory task) and underwent a diffusion-weighted imaging scan. Our results revealed that variation in UF microstructure was significantly associated with individual differences in performance on both face-name tasks, as well as the word association memory task. A UF sub-tract, functionally defined by its connectivity between face-selective regions in the anterior temporal lobe and orbitofrontal cortex, selectively predicted face-name learning. In contrast, connectivity between the fusiform face patch and both anterior face patches had no predictive validity. These findings suggest that there is a robust and replicable relationship between the UF and associative learning and memory. Moreover, this large white matter pathway can be subdivided to reveal discrete functional profiles. PMID:28646241

  9. MRI of white matter changes in the Sjoegren-Larsson syndrome

    International Nuclear Information System (INIS)

    Hussain, M.Z.; Oba, H.; Ohtomo, K.; Aihara, M.; Hayashibe, H.; Nakazawa, S.; Uchiyama, G.

    1995-01-01

    We report a case of Sjoegren-Larsson syndrome with spastic diplegia and conduction aphasia. MRI demonstrated the white matter changes deep in the cerebral hemispheres. We analyse the MRI findings and compare the results with neuropsychological signs. (orig.)

  10. MRI of white matter changes in the Sjoegren-Larsson syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, M.Z. [Dept. of Radiology, Yamanashi Medical Coll., Yamanashi (Japan); Oba, H. [Dept. of Radiology, Yamanashi Medical Coll., Yamanashi (Japan); Ohtomo, K. [Dept. of Radiology, Yamanashi Medical Coll., Yamanashi (Japan); Aihara, M. [Dept. of Paediatrics, Yamanashi Medical Coll., Tamahocho, Yamanashi (Japan); Hayashibe, H. [Dept. of Paediatrics, Yamanashi Medical Coll., Tamahocho, Yamanashi (Japan); Nakazawa, S. [Dept. of Paediatrics, Yamanashi Medical Coll., Tamahocho, Yamanashi (Japan); Uchiyama, G. [Dept. of Radiology, Yamanashi Medical Coll., Yamanashi (Japan)

    1995-10-01

    We report a case of Sjoegren-Larsson syndrome with spastic diplegia and conduction aphasia. MRI demonstrated the white matter changes deep in the cerebral hemispheres. We analyse the MRI findings and compare the results with neuropsychological signs. (orig.)

  11. Investigation of spatial correlation in MR images of human cerebral white matter using geostatistical methods

    International Nuclear Information System (INIS)

    Keil, Fabian

    2014-01-01

    Investigating the structure of human cerebral white matter is gaining interest in the neurological as well as in the neuroscientific community. It has been demonstrated in many studies that white matter is a very dynamic structure, rather than a static construct which does not change for a lifetime. That means, structural changes within white matter can be observed even on short timescales, e.g. in the course of normal ageing, neurodegenerative diseases or even during learning processes. To investigate these changes, one method of choice is the texture analysis of images obtained from white matter. In this regard, MRI plays a distinguished role as it provides a completely non-invasive way of acquiring in vivo images of human white matter. This thesis adapted a statistical texture analysis method, known as variography, to quantify the spatial correlation of human cerebral white matter based on MR images. This method, originally introduced in geoscience, relies on the idea of spatial correlation in geological phenomena: in naturally grown structures near things are correlated stronger to each other than distant things. This work reveals that the geological principle of spatial correlation can be applied to MR images of human cerebral white matter and proves that variography is an adequate method to quantify alterations therein. Since the process of MRI data acquisition is completely different to the measuring process used to quantify geological phenomena, the variographic analysis had to be adapted carefully to MR methods in order to provide a correctly working methodology. Therefore, theoretical considerations were evaluated with numerical samples in a first, and validated with real measurements in a second step. It was shown that MR variography facilitates to reduce the information stored in the texture of a white matter image to a few highly significant parameters, thereby quantifying heterogeneity and spatial correlation distance with an accuracy better than 5

  12. White matter impairments in autism, evidence from voxel-based morphometry and diffusion tensor imaging.

    Science.gov (United States)

    Ke, Xiaoyan; Tang, Tianyu; Hong, Shanshan; Hang, Yueyue; Zou, Bing; Li, Huiguo; Zhou, Zhenyu; Ruan, Zongcai; Lu, Zuhong; Tao, Guotai; Liu, Yijun

    2009-04-10

    This study explored white matter abnormalities in a group of Chinese children with high functioning autism (HFA). Twelve male children with HFA and ten matched typically developing children underwent diffusion tensor imaging (DTI) as well three-dimensional T1-weighted MRI for voxel-based morphometry (VBM). We found a significant decrease of the white matter density in the right frontal lobe, left parietal lobe and right anterior cingulate and a significant increase in the right frontal lobe, left parietal lobe and left cingulate gyrus in the HFA group compared with the control group. The HFA group also had decreased FA in the frontal lobe and left temporal lobe. By combining DT-MRI FA and MRI volumetric analyses based on the VBM model, the results showed consistent white matter abnormalities in a group of Chinese children with HFA.

  13. Occipital deep white matter hyperintensity as seen by MRI, 1

    International Nuclear Information System (INIS)

    Miyazaki, Masahito; Hashimoto, Toshiaki; Tayama, Masanobu; Kuroda, Yasuhiro

    1992-01-01

    Magnetic resonance imaging was performed in 270 patients with various neurologic complaints (1-15Y) with a 0.5 tesla superconducting imaging system using a field echo T1-weighted sequence and spin echo T2-weighted and PD-weighted sequences. Twenty-seven of them had deep white matter hyperintensity (DWMH) in the occipital lobe on T2-weighted images. The frequency of mild DWMH differed in different age groups, suggesting that mild DWMH may result from delayed myelination in the central nervous system. However, the frequency of severe DWMH, which was revealed as isointense relative to cerebrospinal fluid, did not differ in different age groups and it was significantly more common in severely retarded patients. Classification of DWMH based on the signal intensity is valuable to distinguish white matter abnormalities in the occipital lobe from delayed myelination in the same site. (author)

  14. Incidental white matter lesions identified on magnetic resonance images of normal Japanese individuals; Correlation with age and hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Hirofumi; Kida, Yoshihisa; Tanaka, Takayuki; Iwakoshi, Takanori; Niwa, Masahiro; Kobayashi, Tatsuya [Komaki City Hospital, Hokkaido (Japan)

    1994-05-01

    Incidental white matter high-intensity lesions are frequently seen on T[sub 2]-weighted magnetic resonance (MR) images of the brain in older people. The incidence increases with advancing age or hypertension. Brain MR images of 59 normal individuals were examined to analyze this phenomenon. The total number of white matter high-intensity lesions correlated significantly with age (p=0.004) or systolic blood pressure (p=0.03). The 60- to 69-year-old group demonstrated a very close correlation of white matter lesions with systolic (p=0.02) and diastolic blood pressure (p=0.01), in contrast to the 50- to 59-year-old group. Hypertensive subjects in their 60s are thought to develop more white matter lesions than subjects in their 50s. (author).

  15. Pediatric frontal lobe epilepsy : white matter abnormalities and cognitive impairment

    NARCIS (Netherlands)

    Braakman, H.M.H.; Vaessen, M.J.; Jansen, J.F.A.; Debeij-van Hall, M.H.J.A.; Louw, de A.; Hofman, P.A.M.; Vles, J.S.H.; Aldenkamp, A.P.; Backes, W.H.

    2014-01-01

    Objectives: Cognitive impairment is frequent in children with frontal lobe epilepsy (FLE). Its etiology remains unknown. With diffusion tensor imaging, we have studied cerebral white matter properties and associations with cognitive functioning in children with FLE and healthy controls.

  16. White matter correlates of cognitive domains in normal aging with diffusion tensor imaging

    Directory of Open Access Journals (Sweden)

    Efrat eSasson

    2013-03-01

    Full Text Available The ability to perform complex as well as simple cognitive tasks engages a network of brain regions that is mediated by the white matter fiber bundles connecting them. Different cognitive tasks employ distinctive white matter fiber bundles. The temporal lobe and its projections subserve a variety of key functions known to deteriorate during aging. In a cohort of 52 healthy subjects (ages 25-82 years, we performed voxel-wise regression analysis correlating performance in higher-order cognitive domains (executive function, information processing speed, and memory with white matter integrity, as measured by diffusion tensor imaging (DTI fiber tracking in the temporal lobe projections (uncinate fasciculus (UF, fornix, cingulum, inferior longitudinal fasciculus (ILF, and superior longitudinal fasciculus (SLF. The fiber tracts were spatially registered and statistical parametric maps were produced to spatially localize the significant correlations. Results showed that performance in the executive function domain is correlated with DTI parameters in the left SLF and right UF; performance in the information processing speed domain is correlated with fractional anisotropy (FA in the left cingulum, left fornix, right and left ILF and SLF; and the memory domain shows significant correlations with DTI parameters in the right fornix, right cingulum, left ILF, left SLF and right UF. These findings suggest that DTI tractography enables anatomical definition of region of interest for correlation of behavioral parameters with diffusion indices, and functionality can be correlated with white matter integrity.

  17. Optimal voxel size for measuring global gray and white matter proton metabolite concentrations using chemical shift imaging

    DEFF Research Database (Denmark)

    Hanson, Lars Peter Grüner; Adalsteinsson, E; Pfefferbaum, A

    2000-01-01

    Quantification of gray and white matter levels of spectroscopically visible metabolites can provide important insights into brain development and pathological conditions. Chemical shift imaging offers a gain in efficiency for estimation of global gray and white matter metabolite concentrations co...

  18. MRI of cortical dysplasia - correlation with pathological findings

    Energy Technology Data Exchange (ETDEWEB)

    Usui, N.; Kajita, Y.; Yoshida, J. [Dept. of Neurosurgery, Nagoya Univ. School of Medicine (Japan); Matsuda, K.; Mihara, T.; Tottori, T.; Ohtsubo, T.; Baba, K.; Matsuyama, N.; Inoue, Y.; Yagi, K. [National Epilepsy Centre, Shizuoka Higashi Hospital (Japan)

    2001-10-01

    Cortical dysplasia (CD) is the most epileptogenic structural lesion associated with epilepsy and patients with intractable seizures caused by this condition are good surgical candidates. MRI plays an important role in detecting the abnormalities of CD. We clarified the MRI characteristics of CD by comparing imaging and histological findings in 20 patients with intractable seizures who underwent surgical resection. There were 12 males and eight females, mean age at operation was 15 years. MRI was performed at 1.5 tesla; T1-weighted, T2- and proton density-weighted spin-echo and fluid-attenuated inversion-recovery (FLAIR) images were obtained. The lesions were in the frontal lobe in nine cases, temporal in two, occipital in another two, insular in one and multilobar in six. Blurring of the grey/white matter junction was seen in all patients, and T2 prolongation in white matter and/or at the grey/white matter junction in 19. Abnormal signal intensity was more frequent in the white matter or at the grey/white matter junction than in the grey matter. FLAIR images made this abnormal high signal easier to appreciate, and we thought them very useful in this context. In areas of T2 prolongation, we saw dysplastic neurones and/or balloon cells, dysmyelination, and ectopic neuronal clustering histologically; glial proliferation played an important role in prolonging T2. (orig.)

  19. Neurocognitive Correlates of White Matter Quality in Adolescent Substance Users

    Science.gov (United States)

    Bava, Sunita; Jacobus, Joanna; Mahmood, Omar; Yang, Tony T.; Tapert, Susan F.

    2010-01-01

    Background: Progressive myelination during adolescence implicates an increased vulnerability to neurotoxic substances and enduring neurocognitive consequences. This study examined the cognitive manifestations of altered white matter microstructure in chronic marijuana and alcohol-using (MJ + ALC) adolescents. Methods: Thirty-six MJ + ALC…

  20. White Matter Lesion Progression: Genome-Wide Search for Genetic Influences

    NARCIS (Netherlands)

    E. Hofer (Edith); M. Cavalieri (Margherita); J.C. Bis (Joshua); C. DeCarli (Charles); M. Fornage (Myriam); S. Sigurdsson (Sigurdur); V. Srikanth (Velandai); S. Trompet (Stella); B.F.J. Verhaaren (Benjamin); C. Wolf (Christiane); Q. Yang (Qiong Fang); H.H.H. Adams (Hieab); P. Amouyel (Philippe); A. Beiser (Alexa); B.M. Buckley (Brendan M.); M. Callisaya (Michele); G. Chauhan (Ganesh); A.J.M. De Craen (Anton J. M.); C. Dufouil (Carole); C.M. van Duijn (Cornelia); I. Ford; P. Freudenberger (Paul); R.F. Gottesman (Rebecca); V. Gudnason (Vilmundur); G. Heiss (Gerardo); A. Hofman (Albert); T. Lumley (Thomas); O. Martinez (Oliver); B. Mazoyer (Bernard); C. Moran (Chris); W.J. Niessen (Wiro); T.G. Phan (Thanh); B.M. Psaty (Bruce); C.L. Satizabal (Claudia L.); N. Sattar (Naveed); S. Schilling (Sabrina); D.K. Shibata (Dean); P.E. Slagboom (Eline); G.D. Smith; D.J. Stott (David. J.); K.D. Taylor (Kent); R. Thomson (Russell); A.M. Töglhofer (Anna Maria); C. Tzourio (Christophe); M.A. van Buchem (Mark); J. Wang (Jing); R.G.J. Westendorp (Rudi); B. Gwen Windham; M.W. Vernooij (Meike); A.P. Zijdenbos; R.J. Beare (Richard); S. Debette (Stéphanie); M.A. Ikram (Arfan); J.W. Jukema (Jan Wouter); L.J. Launer (Lenore); W.T. Longstreth Jr; T.H. Mosley (Thomas H.); S. Seshadri (Sudha); R. Schmidt (Reinhold); R. Schmidt (Reinhold)

    2015-01-01

    textabstractBackground and Purpose-White matter lesion (WML) progression on magnetic resonance imaging is related to cognitive decline and stroke, but its determinants besides baseline WML burden are largely unknown. Here, we estimated heritability of WML progression, and sought common genetic

  1. Mitochondrial dysfunction in alveolar and white matter developmental failure in premature infants.

    Science.gov (United States)

    Ten, Vadim S

    2017-02-01

    At birth, some organs in premature infants are not developed enough to meet challenges of the extra-uterine life. Although growth and maturation continues after premature birth, postnatal organ development may become sluggish or even arrested, leading to organ dysfunction. There is no clear mechanistic concept of this postnatal organ developmental failure in premature neonates. This review introduces a concept-forming hypothesis: Mitochondrial bioenergetic dysfunction is a fundamental mechanism of organs maturation failure in premature infants. Data collected in support of this hypothesis are relevant to two major diseases of prematurity: white matter injury and broncho-pulmonary dysplasia. In these diseases, totally different clinical manifestations are defined by the same biological process, developmental failure of the main functional units-alveoli in the lungs and axonal myelination in the brain. Although molecular pathways regulating alveolar and white matter maturation differ, proper bioenergetic support of growth and maturation remains critical biological requirement for any actively developing organ. Literature analysis suggests that successful postnatal pulmonary and white matter development highly depends on mitochondrial function which can be inhibited by sublethal postnatal stress. In premature infants, sublethal stress results mostly in organ maturation failure without excessive cellular demise.

  2. Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation.

    Science.gov (United States)

    Mukherjee, Pratik; Miller, Jeffrey H; Shimony, Joshua S; Philip, Joseph V; Nehra, Deepika; Snyder, Abraham Z; Conturo, Thomas E; Neil, Jeffrey J; McKinstry, Robert C

    2002-10-01

    Conventional MR imaging findings of human brain development are thought to result from decreasing water content, increasing macromolecular concentration, and myelination. We use diffusion-tensor MR imaging to test theoretical models that incorporate hypotheses regarding how these maturational processes influence water diffusion in developing gray and white matter. Experimental data were derived from diffusion-tensor imaging of 167 participants, ages 31 gestational weeks to 11 postnatal years. An isotropic diffusion model was applied to the gray matter of the basal ganglia and thalamus. A model that assumes changes in the magnitude of diffusion while maintaining cylindrically symmetric anisotropy was applied to the white matter of the corpus callosum and internal capsule. Deviations of the diffusion tensor from the ideal model predictions, due to measurement noise, were estimated by using Monte Carlo simulations. Developing gray matter of the basal ganglia and developing white matter of the internal capsule and corpus callosum largely conformed to theory, with only small departures from model predictions in older children. However, data from the thalamus substantially diverged from predicted values, with progressively larger deviations from the model with increasing participant age. Changes in water diffusion during maturation of central gray and white matter structures can largely be explained by theoretical models incorporating simple assumptions regarding the influence of brain water content and myelination, although deviations from theory increase as the brain matures. Diffusion-tensor MR imaging is a powerful method for studying the process of brain development, with both scientific and clinical applications.

  3. White matter developmental trajectories associated with persistence and recovery of childhood stuttering.

    Science.gov (United States)

    Chow, Ho Ming; Chang, Soo-Eun

    2017-04-08

    Stuttering affects the fundamental human ability of fluent speech production, and can have a significant negative impact on an individual's psychosocial development. While the disorder affects about 5% of all preschool children, approximately 80% of them recover naturally within a few years of stuttering onset. The pathophysiology and neuroanatomical development trajectories associated with persistence and recovery of stuttering are still largely unknown. Here, the first mixed longitudinal diffusion tensor imaging (DTI) study of childhood stuttering has been reported. A total of 195 high quality DTI scans from 35 children who stutter (CWS) and 43 controls between 3 and 12 years of age were acquired, with an average of three scans per child, each collected approximately a year apart. Fractional anisotropy (FA), a measure reflecting white matter structural coherence, was analyzed voxel-wise to examine group and age-related differences using a linear mixed-effects (LME) model. Results showed that CWS exhibited decreased FA relative to controls in the left arcuate fasciculus, underlying the inferior parietal and posterior temporal areas, and the mid body of corpus callosum. Further, white matter developmental trajectories reflecting growth rate of these tract regions differentiated children with persistent stuttering from those who recovered from stuttering. Specifically, a reduction in FA growth rate (i.e., slower FA growth with age) in persistent children relative to fluent controls in the left arcuate fasciculus and corpus callosum was found, which was not evident in recovered children. These findings provide first glimpses into the possible neural mechanisms of onset, persistence, and recovery of childhood stuttering. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Evaluation of Whiteness in Linen and Semi-linen Fabrics

    Directory of Open Access Journals (Sweden)

    Liucina Kot

    2015-03-01

    Full Text Available Whiteness of textiles is one of the main "white" product quality indicators described by the following parameters: lightness of a colour, colour tone (white shade, white uniformity and stability under the influence of physical factors. “White” textile products can be perceived by comparing them with a white standard (Pantone colour palette. On the other hand, the whiteness of the fabric can be estimated using the colorimeter and determining lightness of a fabric L. The purpose of a research is to assess the whiteness of a linen and semi-linen fabric using two different methods, to carry out a comparative analysis of the results and to associate fabric whiteness with the fabric structure parameters. Two methods were used for experiment (colorimeter Spectraflash SF450X and expert assessment of whiteness. The analysed colours of a fabric were divided into five colours: white, whitish, light grey, grey and dark grey. The examination of the two methods, different results were obtained: testing with colorimeter, white colour was found in only one fabric, while the experts found the fabrics of white colour much more. The opinions of experts vary also. Fabric lightness L was associated with fabric structure parameters – the warp and weft settings and fabric weave. It was found that these fabric structure parameters affect the lightness of a colour of a fabric L very little.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5348

  5. Grey Guide: A Community Driven Open Resource Project in Grey Literature

    OpenAIRE

    Biagioni, Stefania; Giannini, Silvia

    2017-01-01

    In December 2013, the GreyGuide Project was formerly launched as an online forum and repository of good practice in grey literature. The GreyGuide manages Open Source Repositories and provides a unique resource in the field of grey literature that is long awaited and which responds to the information needs of a diverse, international grey literature community. As GreyNet's web access Portal, the GreyGuide now provides a wealth of content that was previously either confined to web pages or was...

  6. MR imaging of the brain: metabolic and toxic white matter diseases

    Energy Technology Data Exchange (ETDEWEB)

    Forsting, M. [Univ. of Essen (Germany). Dept. of Neuroradiology

    1999-08-01

    Metabolic disorders of the brain are rare, complex and confusing. The diagnostic modality of choice nowadays is MRI. The high diagnostic sensitivity, however, is coupled with a lack of specificity and usually results in the depiction of similar appearing but clinically diverse white matter processes. For this reason it is essential to perform the MRI as early as possible during the course of the disease and to keep in close contact to the referring clinician to optimize image interpretation. Another precondition is to know the natural course of brain myelination and to know how this appears on the individual MR machine with different parameters. In some diseases like phenylketonuria MRI seems to be an excellent tool to monitor dietary treatment and patient compliance. In patients after radio- and / or chemotherapy MRI reveals the radiation induced leucencephalopathy and can usually differentiate between a recurrent malignancy. (orig.) With 3 figs., 1 tab., 23 refs.

  7. Disrupted Gamma Synchrony after Mild Traumatic Brain Injury and Its Correlation with White Matter Abnormality

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2017-10-01

    Full Text Available Mild traumatic brain injury (mTBI has been firmly associated with disrupted white matter integrity due to induced white matter damage and degeneration. However, comparatively less is known about the changes of the intrinsic functional connectivity mediated via neural synchronization in the brain after mTBI. Moreover, despite the presumed link between structural and functional connectivity, no existing studies in mTBI have demonstrated clear association between the structural abnormality of white matter axons and the disruption of neural synchronization. To investigate these questions, we recorded resting state EEG and diffusion tensor imaging (DTI from a cohort of military service members. A newly developed synchronization measure, the weighted phase lag index was applied on the EEG data for estimating neural synchronization. Fractional anisotropy was computed from the DTI data for estimating white matter integrity. Fifteen service members with a history of mTBI within the past 3 years were compared to 22 demographically similar controls who reported no history of head injury. We observed that synchronization at low-gamma frequency band (25–40 Hz across scalp regions was significantly decreased in mTBI cases compared with controls. The synchronization in theta (4–7 Hz, alpha (8–13 Hz, and beta (15–23 Hz frequency bands were not significantly different between the two groups. In addition, we found that across mTBI cases, the disrupted synchronization at low-gamma frequency was significantly correlated with the white matter integrity of the inferior cerebellar peduncle, which was also significantly reduced in the mTBI group. These findings demonstrate an initial correlation between the impairment of white matter integrity and alterations in EEG synchronization in the brain after mTBI. The results also suggest that disruption of intrinsic neural synchronization at low-gamma frequency may be a characteristic functional pathology

  8. MRI of the cervical spine with 3D gradient echo sequence at 3 T: initial experience

    International Nuclear Information System (INIS)

    Xiao, L.; Siu, C.W.J.; Yeung, K.; Leung, A.; Yuen, M.K.; Wong, Y.C.

    2015-01-01

    Aim: The aim of this study was to compare three-dimensional (3D) high resolution T2*-weighted gradient echo (3D FFE) magnetic resonance (MR) sequence with conventional 2D T2-weighted turbo spin echo (TSE) MR sequence for imaging of the cervical spine, especially to assess the detectability of the internal anatomy of the cervical spinal cord, i.e. to distinguish the grey and white matter. Methods: Fifteen volunteers were examined at 3.0T MR unit. Signal-to-noise (SNR), contrast-to-noise (CNR) and image homogeneity were evaluated. In the visual analysis, the visibility of anatomical structures of the cervical spine and artifacts were assessed. The nonparametric method of paired sample t-test was adopted to evaluate the differences between the sequences. Results: The 3D FFE sequence provided better results for CNR, cerebrospinal fluid (CSF) versus white matter, grey matter, disk and bone. Moreover, it yielded good results for the CNR grey matter versus white matter. The butterfly-shaped “H” is clearly displayed in the 3D FFE sequence. The statistical analysis revealed the statistically significant difference between the 2D TSE and 3D FFE sequences for the contrast of CSF versus spinal cord (both grey matter and white matter). Conclusion: The 3D FFE sequence in MR imaging of the cervical spinal cord is superior in delineation of spinal cord anatomical structures compared to 2D TSE sequence. -- Highlights: •We investigate the potential of 3D FFE sequence to distinguish the grey-white of the cervical spinal cord at 3T MRI system. •We optimized The 3D FFE sequence was optimized to increase the grey-white contrast. •Utilizing medium TE for T2W and the shortest TR for reduction of susceptibility related artifacts and motion artefacts. •This technique may increase the confidence in the diagnosis of disease with the improved delineation of cord anatomy

  9. Investigation of spatial correlation in MR images of human cerebral white matter using geostatistical methods

    Energy Technology Data Exchange (ETDEWEB)

    Keil, Fabian

    2014-03-20

    Investigating the structure of human cerebral white matter is gaining interest in the neurological as well as in the neuroscientific community. It has been demonstrated in many studies that white matter is a very dynamic structure, rather than a static construct which does not change for a lifetime. That means, structural changes within white matter can be observed even on short timescales, e.g. in the course of normal ageing, neurodegenerative diseases or even during learning processes. To investigate these changes, one method of choice is the texture analysis of images obtained from white matter. In this regard, MRI plays a distinguished role as it provides a completely non-invasive way of acquiring in vivo images of human white matter. This thesis adapted a statistical texture analysis method, known as variography, to quantify the spatial correlation of human cerebral white matter based on MR images. This method, originally introduced in geoscience, relies on the idea of spatial correlation in geological phenomena: in naturally grown structures near things are correlated stronger to each other than distant things. This work reveals that the geological principle of spatial correlation can be applied to MR images of human cerebral white matter and proves that variography is an adequate method to quantify alterations therein. Since the process of MRI data acquisition is completely different to the measuring process used to quantify geological phenomena, the variographic analysis had to be adapted carefully to MR methods in order to provide a correctly working methodology. Therefore, theoretical considerations were evaluated with numerical samples in a first, and validated with real measurements in a second step. It was shown that MR variography facilitates to reduce the information stored in the texture of a white matter image to a few highly significant parameters, thereby quantifying heterogeneity and spatial correlation distance with an accuracy better than 5

  10. White matter injury in newborns with congenital heart disease: a diffusion tensor imaging study.

    Science.gov (United States)

    Mulkey, Sarah B; Ou, Xiawei; Ramakrishnaiah, Raghu H; Glasier, Charles M; Swearingen, Christopher J; Melguizo, Maria S; Yap, Vivien L; Schmitz, Michael L; Bhutta, Adnan T

    2014-09-01

    Brain injury is observed on cranial magnetic resonance imaging preoperatively in up to 50% of newborns with congenital heart disease. Newer imaging techniques such as diffusion tensor imaging provide sensitive measures of the white matter integrity. The objective of this study was to evaluate the diffusion tensor imaging analysis technique of tract-based spatial statistics in newborns with congenital heart disease. Term newborns with congenital heart disease who would require surgery at less than 1 month of age were prospectively enrolled (n = 19). Infants underwent preoperative and postoperative brain magnetic resonance imaging with diffusion tensor imaging. Tract-based spatial statistics, an objective whole-brain diffusion tensor imaging analysis technique, was used to determine differences in white matter fractional anisotropy between infant groups. Term control infants were also compared with congenital heart disease infants. Postmenstrual age was equivalent between congenital heart disease infant groups and between congenital heart disease and control infants. Ten infants had preoperative brain injury, either infarct or white matter injury, by conventional brain magnetic resonance imaging. The technique of tract-based spatial statistics showed significantly lower fractional anisotropy (P tensor imaging analysis technique that may have better sensitivity in detecting white matter injury compared with conventional brain magnetic resonance imaging in term newborns with congenital heart disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Quantifying indices of short- and long-range white matter connectivity at each cortical vertex.

    Directory of Open Access Journals (Sweden)

    Maria Carmela Padula

    Full Text Available Several neurodevelopmental diseases are characterized by impairments in cortical morphology along with altered white matter connectivity. However, the relationship between these two measures is not yet clear. In this study, we propose a novel methodology to compute and display metrics of white matter connectivity at each cortical point. After co-registering the extremities of the tractography streamlines with the cortical surface, we computed two measures of connectivity at each cortical vertex: the mean tracts' length, and the proportion of short- and long-range connections. The proposed measures were tested in a clinical sample of 62 patients with 22q11.2 deletion syndrome (22q11DS and 57 typically developing individuals. Using these novel measures, we achieved a fine-grained visualization of the white matter connectivity patterns at each vertex of the cortical surface. We observed an intriguing pattern of both increased and decreased short- and long-range connectivity in 22q11DS, that provides novel information about the nature and topology of white matter alterations in the syndrome. We argue that the method presented in this study opens avenues for additional analyses of the relationship between cortical properties and patterns of underlying structural connectivity, which will help clarifying the intrinsic mechanisms that lead to altered brain structure in neurodevelopmental disorders.

  12. Right Hemisphere Grey Matter Volume and Language Functions in Stroke Aphasia

    Directory of Open Access Journals (Sweden)

    Sladjana Lukic

    2017-01-01

    Full Text Available The role of the right hemisphere (RH in recovery from aphasia is incompletely understood. The present study quantified RH grey matter (GM volume in individuals with chronic stroke-induced aphasia and cognitively healthy people using voxel-based morphometry. We compared group differences in GM volume in the entire RH and in RH regions-of-interest. Given that lesion site is a critical source of heterogeneity associated with poststroke language ability, we used voxel-based lesion symptom mapping (VLSM to examine the relation between lesion site and language performance in the aphasic participants. Finally, using results derived from the VLSM as a covariate, we evaluated the relation between GM volume in the RH and language ability across domains, including comprehension and production processes both at the word and sentence levels and across spoken and written modalities. Between-subject comparisons showed that GM volume in the RH SMA was reduced in the aphasic group compared to the healthy controls. We also found that, for the aphasic group, increased RH volume in the MTG and the SMA was associated with better language comprehension and production scores, respectively. These data suggest that the RH may support functions previously performed by LH regions and have important implications for understanding poststroke reorganization.

  13. White Matter Integrity Deficit Associated with Betel Quid Dependence

    Directory of Open Access Journals (Sweden)

    Fulai Yuan

    2017-10-01

    Full Text Available Betel quid (BQ is a commonly consumed psychoactive substance, which has been regarded as a human carcinogen. Long-term BQ chewing may cause Diagnostic and Statistical Manual of Mental Disorders-IV dependence symptoms, which can lead to decreased cognitive functions, such as attention and inhibition control. Although betel quid dependence (BQD individuals have been reported with altered brain structure and function, there is little evidence showing white matter microstructure alternation in BQD individuals. The present study aimed to investigate altered white matter microstructure in BQD individuals using diffusion tensor imaging. Tract-based spatial statistics was used to analyze the data. Compared with healthy controls, BQD individuals exhibited higher mean diffusivity (MD in anterior thalamic radiation (ATR. Further analysis revealed that the ATR in BQD individuals showed less fractional anisotropy (FA than that in healthy controls. Correlation analysis showed that both the increase of MD and reduction of FA in BQD individuals were associated with severity of BQ dependence. These results suggested that BQD would disrupt the balance between prefrontal cortex and subcortical areas, causing declined inhibition control.

  14. White Matter Integrity Deficit Associated with Betel Quid Dependence.

    Science.gov (United States)

    Yuan, Fulai; Zhu, Xueling; Kong, Lingyu; Shen, Huaizhen; Liao, Weihua; Jiang, Canhua

    2017-01-01

    Betel quid (BQ) is a commonly consumed psychoactive substance, which has been regarded as a human carcinogen. Long-term BQ chewing may cause Diagnostic and Statistical Manual of Mental Disorders-IV dependence symptoms, which can lead to decreased cognitive functions, such as attention and inhibition control. Although betel quid dependence (BQD) individuals have been reported with altered brain structure and function, there is little evidence showing white matter microstructure alternation in BQD individuals. The present study aimed to investigate altered white matter microstructure in BQD individuals using diffusion tensor imaging. Tract-based spatial statistics was used to analyze the data. Compared with healthy controls, BQD individuals exhibited higher mean diffusivity (MD) in anterior thalamic radiation (ATR). Further analysis revealed that the ATR in BQD individuals showed less fractional anisotropy (FA) than that in healthy controls. Correlation analysis showed that both the increase of MD and reduction of FA in BQD individuals were associated with severity of BQ dependence. These results suggested that BQD would disrupt the balance between prefrontal cortex and subcortical areas, causing declined inhibition control.

  15. GreyGuide, GreyNet’s web access portal and lobby for change in Grey Literature

    OpenAIRE

    Farace, Dominic J. (GreyNet); Frantzen, Jerry (GreyNet); Biagioni, Stefania (ISTI-CNR); Carlesi, Carlo (ISTI-CNR); Ponti, Roberto (ISTI-CNR); Stock, Christiane (Inist-CNRS); GreyNet, Grey Literature Network Service

    2015-01-01

    In December 2013, the GreyGuide was formerly launched as an online forum and repository of good practice in grey literature. The project partners then turned to the acquisition of both proposed and published good practices. During this same timeframe, GreyNet – one of the project partners – welcomed far reaching developments in its infrastructure. Three new committees were established alongside its Program Committee in line with GreyNet’s fourfold mission dedicated to research, publication, o...

  16. Accelerated cerebral white matter development in preterm infants: a voxel-based morphometry study with diffusion tensor MR imaging

    DEFF Research Database (Denmark)

    Giménez, Mónica; Miranda, Maria J; Born, A Peter

    2008-01-01

    stratum. While some earlier findings in preterm infants have suggested developmental delays, the results of this study are more consistent with accelerated white matter development, possibly as a result of increased sensorimotor stimulation in the extrauterine environment. These results are the first...... to suggest that the increased intensity of stimulation associated with preterm birth may advance the process of white matter maturation in the human brain. Questions remain about whether these findings reflect acceleration of the process of white matter maturation generally, or localized alterations induced...

  17. Near-infrared spectroscopic monitoring of a series of industrial batch processes using a bilinear grey model.

    Science.gov (United States)

    van Sprang, Eric N M; Ramaker, Henk-Jan; Westerhuis, Johan A; Smilde, Age K; Gurden, Stephen P; Wienke, Dietrich

    2003-08-01

    A good process understanding is the foundation for process optimization, process monitoring, end-point detection, and estimation of the end-product quality. Performing good process measurements and the construction of process models will contribute to a better process understanding. To improve the process knowledge it is common to build process models. These models are often based on first principles such as kinetic rates or mass balances. These types of models are also known as hard or white models. White models are characterized by being generally applicable but often having only a reasonable fit to real process data. Other commonly used types of models are empirical or black-box models such as regression and neural nets. Black-box models are characterized by having a good data fit but they lack a chemically meaningful model interpretation. Alternative models are grey models, which are combinations of white models and black models. The aim of a grey model is to combine the advantages of both black-box models and white models. In a qualitative case study of monitoring industrial batches using near-infrared (NIR) spectroscopy, it is shown that grey models are a good tool for detecting batch-to-batch variations and an excellent tool for process diagnosis compared to common spectroscopic monitoring tools.

  18. Differential impact of white matter hyperintensities on long-term outcomes in ischemic stroke patients with large artery atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Minyoul Baik

    Full Text Available The presence of white matter hyperintensity (WMH is related to poor long-term outcomes in stroke patients. However, the long-term outcome is unknown in patients with both large artery atherosclerosis (LAA and WMH.We investigated the impact of WMH on long-term outcome in patients with LAA. Consecutive patients in a prospective stroke registry were included. Patients were followed for a median of 7.7 years (interquartile range, 5.6-9.7. The degree of WMH was assessed by Fazekas grade on fluid-attenuated inversion recovery images. Total WMH burden was calculated by summation of Fazekas scores in periventricular and deep white matter. Severe WMH was defined as total burden score ≥ 3.Among 2529 patients, 639 patients (25.3% were classified with the LAA subtype. After applying exclusion criteria, the data from 538 patients were analyzed. The mean patient age was 65.7 ± 10.3 years. Severe WMHs were found in 243 patients (45.2%. During follow-up, 200 patients (37.2% died. Cox regression analysis showed that LAA patients with severe WMH had a 1.50-fold (95% CI, 1.12-2.00, p = 0.007 higher death rate compared to those without. In the older age group (≥65 years, Cox regression revealed that patients with severe WMH had a 1.75-fold (95% CI, 1.15-2.65, p = 0.008 higher 5-year death rate, whereas the younger age group did not have this association.The degree of WMH might be a surrogate marker for long-term outcome in patients with LAA. Atherosclerotic burdens in both small and large arteries might impact long-term prognosis in ischemic stroke patients.

  19. White dwarf stars as strange quark matter detectors

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O G [Departamento de AstronomIa y AstroFisica, Pontificia Universidad Catolica, Vicuna Mackenna 4860, Casilla 306, Santiago (Chile); Facultad de Ciencias Astronomicas y GeoFisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, B1900FWA, La Plata (Argentina)

    2005-11-01

    We show that the presence of a strange matter core inside a white dwarf (WD) star produces a drastic change in the spectrum of non-radial oscillations in the range of periods corresponding to gravity modes. The distinctive, observable signal for such a core is a very short period spacing between consecutive modes, far shorter than in the case of pulsating WDs without any compact core. (letter to the editor)

  20. Automated detection of Lupus white matter lesions in MRI

    Directory of Open Access Journals (Sweden)

    Eloy Roura Perez

    2016-08-01

    Full Text Available Brain magnetic resonance imaging provides detailed information which can be used to detect and segment white matter lesions (WML. In this work we propose an approach to automatically segment WML in Lupus patients by using T1w and fluid-attenuated inversion recovery (FLAIR images. Lupus WML appear as small focal abnormal tissue observed as hyperintensities in the FLAIR images. The quantification of these WML is a key factor for the stratification of lupus patients and therefore both lesion detection and segmentation play an important role. In our approach, the T1w image is first used to classify the three main tissues of the brain, white matter (WM, gray matter (GM and cerebrospinal fluid (CSF, while the FLAIR image is then used to detect focal WML as outliers of its GM intensity distribution. A set of post-processing steps based on lesion size, tissue neighborhood, and location are used to refine the lesion candidates. The proposal is evaluated on 20 patients, presenting qualitative and quantitative results in terms of precision and sensitivity of lesion detection (True Positive Rate (62% and Positive Prediction Value (80% respectively as well as segmentation accuracy (Dice Similarity Coefficient (72%. Obtained results illustrate the validity of the approach to automatically detect and segment lupus lesions. Besides, our approach is publicly available as a SPM8/12 toolbox extension with a simple parameter configuration.