WorldWideScience

Sample records for greenland sea deep

  1. Impact of deep-sea fishery for Greenland halibut (Reinhardtius hippoglossoides) on non-commercial fish species off West Greenland

    DEFF Research Database (Denmark)

    Jørgensen, Ole A; Bastardie, Francois; Eigaard, Ole Ritzau

    2014-01-01

    Since the late 1980s, a deep-sea fishery for Greenland halibut (Reinhardtius hippoglossoides) has been developing gradually in West Greenland. Deep-sea fish species are generally long-lived and characterized by late age of maturity, low fecundity, and slow growth, features that probably cause low....... During the period 1988–2011, population abundance and size composition changed as catch and effort in the Greenland halibut fishery increased. Two species showed a significant decrease in abundance, and four populations showed a significant reduction in mean weight of individuals (p , 0.05). Correlation...... analyses show that most of the observed trends in abundance are probably not related to increasing fishing effort for Greenland halibut. The analysis did, however, show that most of the observed decreases in mean weight were significantly correlated with fishing effort during the 24-year period...

  2. Ventilation of the deep Greenland and Norwegian seas: evidence from krypton-85, tritium, carbon-14 and argon-39

    International Nuclear Information System (INIS)

    Smethie, W.M. Jr.; Ostlund, H.G.; Loosli, H.H.

    1986-01-01

    On leg 5 of the TTO expedition, the distributions of 85 Kr, tritium, 14 C, 39 Ar, temperature, salinity, oxygen, carbon dioxide and nutrients were measured in the Greenland and Norwegian seas. These observations support previous observations that Greenland Sea Deep Water is formed by a deep convective process within the Greenland gyre. They also support AAGAARD et al.'s (1985, Journal of Geophysical Research, 90, 4833-4846) new hypothesis that Norwegian Sea Deep Water forms from a mixture of Greenland Sea Deep Water and Eurasian Basin Deep Water. Volume transports estimated from the distributions of 85 Kr, tritium, 14 C and 39 Ar range from 0.53 to 0.74 Sv for exchange between the surface and deep Greenland Sea and from 0.9 to 1.47 Sv for exchange between the deep Greenland and deep Norwegian Seas. The residence time of water and the deep Greenland Sea with respect to exchange with surface water ranges from 24 to 34 years reported by PETERSON and ROOTH (1976, Deep-Sea Research, 23, 273-283) and 35-42 years reported by BULLISTER and WEISS (1983, Science, 221, 265-268). The residence time of water in the deep Norwegian Sea with respect to exchange with the deep Greenland Sea ranges from 19 to 30 years compared to 97-107 years reported by PETERSON and ROOTH (1976) and 10-28 years reported by BULLISTER and WEISS (1983). The oxygen consumption rate was estimated to be at most 1.04 μM kg -1 y -1 for the deep Greenland Sea and to be between 0.47 and 0.79 μM kg -1 y -1 for the deep Norwegian Sea. (author)

  3. Simulated interannual variability of the Greenland Sea deep water formation and its connection to surface forcing

    Science.gov (United States)

    Haekkinen, Sirpa

    1995-01-01

    A fully prognostic Arctic ice-ocean model is used to study the interannual variability of deepwater formation in the Greenland Sea Gyre based on the simulations for the Arctic ice-ocean system for the period 1955 and 1960 - 1985. The model uses monthly climatology for thermodynamic forcing components (such as air temperature and cloudiness), together with constant annual net precipitation and river runoff. The daily wind forcing is derived from analyzed sea level air pressures from the National Center for Atmospheric Research (NCAR). In summary, the model shows that the occurence of deep convection in the Greenland Sea Gyre is controlled by the extensive Fram Strait ice export and/or local wind conditions in the Greenland Sea. In the latter case the weakening of the local wind curl allows the Polar Front to move eastward. The movement of the Polar Front causes adverse ice conditions, often together with much larger than normal ice export from the Arctic, such as in 1968, which can block convection in the gyre. The density difference between upper and lower layers is investigated as an indication of water mass formation through convection, occurring as strong diffusion in the model. The model-simulated density difference between the average top 100 m and deep levels reveals that the period 1960 - 1985 had only a few distinct years with weak stratification, and, especially, the model predicts no deep convection since the nid-1970s. The common factor for the years of the weakest decrease of the model-predicted heat content of the upper 2000 m which can, to a high degree, be explained by local heat loss.

  4. Interannual Variability of the Sea-Ice-Induced Salt Flux in the Greenland Sea

    DEFF Research Database (Denmark)

    Pedersen, Leif Toudal; Coon, M.D.

    2001-01-01

    The Greenland Sea is one of the few places in the World Ocean where deep convection takes place. The convection process is initiated by a density increase originating from rapid cooling and/or a salt flux to the upper layer of the ocean due to brine rejection from ice formation (Rudels, 1990......; Visbeck and others, 1995). The predominant ice types in the Greenland Sea arc frazil/grease ice and pancake ice. A numerical model has been developed relating ice formation and decay of these ice types as observed by the SMMR and SSM/I microwave radiometers and evaluating their contribution to salt...... redistribution in the Greenland Sea. The model has been used to calculate spatial distribution of the annual integrated net salt flux to the Greenland Sea from ice production and advection for the period 1979-97....

  5. Reduction of deepwater formation in the Greenland Sea during the 1980s: Evidence from tracer data

    International Nuclear Information System (INIS)

    Schlosser, P.; Boenisch, G.; Bayer, R.; Rhein, M.

    1991-01-01

    Hydrographic observations and measurements of the concentrations of chlorofluorocarbons (CFCs) have suggested that the formation of Greenland Sea Deep Water (GSDW) slowed down considerably during the 1980s. Such a decrease is related to weakened convection in the Greenland Sea and thus could have significant impact on the properties of the waters flowing over the Scotland-Iceland-Greenlad ridge system into the deep Atlantic. Study of the variability of GSDW formation is relevant for understanding the impact of the circulation in the European Polar seas on regional and global deep water characteristics. New long-term multitracer observations from the Greenland Sea show that GSDW formation indeed was greatly reduced during the 1980s. A box model of deepwater formation and exchange in the European Polar seas tuned by the tracer data indicates that the reduction rate of GSDW formation was about 80% and that the start date of the reduction was between 1978 and 1982. 24 refs., 4 figs

  6. Polarimetric signatures of sea ice in the Greenland Sea

    DEFF Research Database (Denmark)

    Skriver, Henning; Pedersen, Leif Toudal

    1995-01-01

    Polarimetric SAR data of sea ice have been acquired by the Danish polarimetric SAR (EMISAR) during a mission at the Greenland Sea in August 1994. Video recordings from a low-altitude acquisition have been used for interpretation of the SAR data. Also, ERS-1 SAR data and NOAA AVHRR-data have been...

  7. Greenland-Iceland-Norwegian Seas Regional Climatology (NODC Accession 0112824)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To provide an improved oceanographic foundation and reference for multi-disciplinary studies of the Greenland-Iceland-Norwegian Seas (GINS), NODC developed a new set...

  8. Deep-sea fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C; Damare, S.R.

    significant in terms of carbon sequestration (5, 8). In light of this, the diversity, abundance, and role of fungi in deep-sea sediments may form an important link in the global C biogeochemistry. This review focuses on issues related to collection...

  9. Deep sea radionuclides

    International Nuclear Information System (INIS)

    Kanisch, G.; Vobach, M.

    1993-01-01

    Every year since 1979, either in sping or in summer, the fishing research vessel 'Walther Herwig' goes to the North Atlantic disposal areas of solid radioactive wastes, and, for comparative purposes, to other areas, in order to collect water samples, plankton and nekton, and, from the deep sea bed, sediment samples and benthos organisms. In addition to data on the radionuclide contents of various media, information about the plankton, nekton and benthos organisms living in those areas and about their biomasses could be gathered. The investigations are aimed at acquiring scientifically founded knowledge of the uptake of radioactive substances by microorganisms, and their migration from the sea bottom to the areas used by man. (orig.) [de

  10. Deep sea biophysics

    International Nuclear Information System (INIS)

    Yayanos, A.A.

    1982-01-01

    A collection of deep-sea bacterial cultures was completed. Procedures were instituted to shelter the culture collection from accidential warming. A substantial data base on the rates of reproduction of more than 100 strains of bacteria from that collection was obtained from experiments and the analysis of that data was begun. The data on the rates of reproduction were obtained under conditions of temperature and pressure found in the deep sea. The experiments were facilitated by inexpensively fabricated pressure vessels, by the streamlining of the methods for the study of kinetics at high pressures, and by computer-assisted methods. A polybarothermostat was used to study the growth of bacteria along temperature gradients at eight distinct pressures. This device should allow for the study of microbial processes in the temperature field simulating the environment around buried HLW. It is small enough to allow placement in a radiation field in future studies. A flow fluorocytometer was fabricated. This device will be used to determine the DNA content per cell in bacteria grown in laboratory culture and in microorganisms in samples from the ocean. The technique will be tested for its rapidity in determining the concentration of cells (standing stock of microorganisms) in samples from the ocean

  11. Polarimetric C-Band SAR Observations of Sea Ice in the Greenland Sea

    DEFF Research Database (Denmark)

    Thomsen, Bjørn Bavnehøj; Nghiem, S.V.; Kwok, R.

    1998-01-01

    The fully polarimetric EMISAR acquired C-band radar signatures of sea ice in the Greenland Sea during a campaign in March 1995. The authors present maps of polarimetric signatures over an area containing various kinds of ice and discuss the use of polarimetric SAR for identification of ice types...

  12. Airborne gravity survey of Lincoln Sea and Wandel Sea, north Greenland

    DEFF Research Database (Denmark)

    Olesen, Arne Vestergaard; Forsberg, René; Keller, K.

    2000-01-01

    In June 1998 National Survey and Cadastre Denmark (KMS) carried out an airborne gravity survey over the Polar Sea to the north of Greenland. A Twin Otter from Greenlandair, equipped with autopilot and additional fuel tanks, was employed for the survey. A modified marine LaCoste & Romberg gravimet...

  13. Greenland coastal air temperatures linked to Baffin Bay and Greenland Sea ice conditions during autumn through regional blocking patterns

    Science.gov (United States)

    Ballinger, Thomas J.; Hanna, Edward; Hall, Richard J.; Miller, Jeffrey; Ribergaard, Mads H.; Høyer, Jacob L.

    2018-01-01

    Variations in sea ice freeze onset and regional sea surface temperatures (SSTs) in Baffin Bay and Greenland Sea are linked to autumn surface air temperatures (SATs) around coastal Greenland through 500 hPa blocking patterns, 1979-2014. We find strong, statistically significant correlations between Baffin Bay freeze onset and SSTs and SATs across the western and southernmost coastal areas, while weaker and fewer significant correlations are found between eastern SATs, SSTs, and freeze periods observed in the neighboring Greenland Sea. Autumn Greenland Blocking Index values and the incidence of meridional circulation patterns have increased over the modern sea ice monitoring era. Increased anticyclonic blocking patterns promote poleward transport of warm air from lower latitudes and local warm air advection onshore from ocean-atmosphere sensible heat exchange through ice-free or thin ice-covered seas bordering the coastal stations. Temperature composites by years of extreme late freeze conditions, occurring since 2006 in Baffin Bay, reveal positive monthly SAT departures that often exceed 1 standard deviation from the 1981-2010 climate normal over coastal areas that exhibit a similar spatial pattern as the peak correlations.

  14. Ploughing the deep sea floor.

    Science.gov (United States)

    Puig, Pere; Canals, Miquel; Company, Joan B; Martín, Jacobo; Amblas, David; Lastras, Galderic; Palanques, Albert

    2012-09-13

    Bottom trawling is a non-selective commercial fishing technique whereby heavy nets and gear are pulled along the sea floor. The direct impact of this technique on fish populations and benthic communities has received much attention, but trawling can also modify the physical properties of seafloor sediments, water–sediment chemical exchanges and sediment fluxes. Most of the studies addressing the physical disturbances of trawl gear on the seabed have been undertaken in coastal and shelf environments, however, where the capacity of trawling to modify the seafloor morphology coexists with high-energy natural processes driving sediment erosion, transport and deposition. Here we show that on upper continental slopes, the reworking of the deep sea floor by trawling gradually modifies the shape of the submarine landscape over large spatial scales. We found that trawling-induced sediment displacement and removal from fishing grounds causes the morphology of the deep sea floor to become smoother over time, reducing its original complexity as shown by high-resolution seafloor relief maps. Our results suggest that in recent decades, following the industrialization of fishing fleets, bottom trawling has become an important driver of deep seascape evolution. Given the global dimension of this type of fishery, we anticipate that the morphology of the upper continental slope in many parts of the world’s oceans could be altered by intensive bottom trawling, producing comparable effects on the deep sea floor to those generated by agricultural ploughing on land.

  15. A Deep-Sea Simulation.

    Science.gov (United States)

    Montes, Georgia E.

    1997-01-01

    Describes an activity that simulates exploration techniques used in deep-sea explorations and teaches students how this technology can be used to take a closer look inside volcanoes, inspect hazardous waste sites such as nuclear reactors, and explore other environments dangerous to humans. (DDR)

  16. Vision in the deep sea.

    Science.gov (United States)

    Warrant, Eric J; Locket, N Adam

    2004-08-01

    The deep sea is the largest habitat on earth. Its three great faunal environments--the twilight mesopelagic zone, the dark bathypelagic zone and the vast flat expanses of the benthic habitat--are home to a rich fauna of vertebrates and invertebrates. In the mesopelagic zone (150-1000 m), the down-welling daylight creates an extended scene that becomes increasingly dimmer and bluer with depth. The available daylight also originates increasingly from vertically above, and bioluminescent point-source flashes, well contrasted against the dim background daylight, become increasingly visible. In the bathypelagic zone below 1000 m no daylight remains, and the scene becomes entirely dominated by point-like bioluminescence. This changing nature of visual scenes with depth--from extended source to point source--has had a profound effect on the designs of deep-sea eyes, both optically and neurally, a fact that until recently was not fully appreciated. Recent measurements of the sensitivity and spatial resolution of deep-sea eyes--particularly from the camera eyes of fishes and cephalopods and the compound eyes of crustaceans--reveal that ocular designs are well matched to the nature of the visual scene at any given depth. This match between eye design and visual scene is the subject of this review. The greatest variation in eye design is found in the mesopelagic zone, where dim down-welling daylight and bio-luminescent point sources may be visible simultaneously. Some mesopelagic eyes rely on spatial and temporal summation to increase sensitivity to a dim extended scene, while others sacrifice this sensitivity to localise pinpoints of bright bioluminescence. Yet other eyes have retinal regions separately specialised for each type of light. In the bathypelagic zone, eyes generally get smaller and therefore less sensitive to point sources with increasing depth. In fishes, this insensitivity, combined with surprisingly high spatial resolution, is very well adapted to the

  17. Greenland

    DEFF Research Database (Denmark)

    Gad, Ulrik Pram

    2014-01-01

    in 1979 and made the 1985 withdrawal possible. On 25 November 2008, a majority of the people of Greenland voted in favour of enhanced home rule – ‘self-government’ – still within formal Danish sovereignty. Denmark and Greenland alike are preparing for a future envisioned as involving climate change...

  18. AWI Moored ULS Data, Greenland Sea and Fram Strait, 1991-2002, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of Upward Looking Sonar (ULS) data from 11 moorings in the Greenland Sea. Parameters in the processed data files include ice draft, water...

  19. AWI Moored ULS Data, Greenland Sea and Fram Strait, 1991-2002

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of Upward Looking Sonar (ULS) data from 11 moorings in the Greenland Sea. Parameters in the processed data files include ice draft, water...

  20. Zooplankton data: Vertical distributions of zooplankton in the Norweigian and Greenland Seas during summer, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Lane, P.V.Z.; Smith, S.L.; Schwarting, E.M.

    1993-08-01

    Recent studies of zooplankton populations in the Greenland Sea have focused on processes at the Marginal Ice Zone (MIZ) and the areas immediately adjacent to it under the ice and in open water. These studies have shown a relatively short period of intense secondary productivity which is closely linked temporally and spatially to phytoplankton blooms occurring near the ice edge in spring and early summer. During the summer of 1989 we participated in a project focusing on benthic and water column processes in the basins of the Norwegian and Greenland Seas. This study allowed us to compare biological processes at the MIZ with those occurring in the open waters of the Greenland Sea, and to compare processes at both of these locations with those in the Norwegian Sea. The data presented in this report are the results of zooplankton net tows covering the upper 1000 meters of the water column over the Norwegian Sea basin and the Greenland Sea basin, and the upper 500 meters of open water adjacent to the MIZ in the Greenland Sea. Sampling was conducted between 12 and 29 July 1989.

  1. A sea ice model for the marginal ice zone with an application to the Greenland Sea

    DEFF Research Database (Denmark)

    Pedersen, Leif Toudal; Coon, Max D.

    2004-01-01

    A model is presented that describes the formation, transport, and desalinization of frazil and pancake ice as it is formed in marginal seas. This model uses as input the total ice concentration evaluated from Special Sensor Microwave Imager and wind speed and direction. The model calculates...... the areal concentration, thickness, volume concentration, and salinity of frazil ice as well as the areal concentration, thickness, and salinity of pancakes. A simple parameterization for the Odden region of the Greenland Sea is presented. The model is run for the winter of 1996-1997. There are direct...... observations of the thickness and salinity of pancakes and the volume concentration of frazil ice to compare with the model. The model results compare very well with the measured data. This new ice model can be tuned to work in marginal seas elsewhere to calculate ice thickness, motion, and brine rejection...

  2. Wintertime re-ventilation of the East Greenland Current's Atlantic-origin Overflow Water in the western Iceland Sea

    Science.gov (United States)

    Våge, Kjetil; Håvik, Lisbeth; Papritz, Lukas; Spall, Michael; Moore, Kent

    2017-04-01

    The Deep Western Boundary Current constitutes the lower limb of the Atlantic Meridional Overturning Circulation, and, as such, is a crucial component of the Earth's climate system. The largest and densest contribution to the current stems from the overflow plume that passes through Denmark Strait. A main source of Denmark Strait Overflow Water (DSOW) is the East Greenland Current (EGC). The DSOW transported by the EGC originates from the Atlantic inflow into the Nordic Seas. This is then transformed into Atlantic-origin Overflow Water while progressing northward through the eastern part of the Nordic Seas. Here we show, using measurements from autonomous gliders deployed from fall 2015 to spring 2016, that the Atlantic-origin Overflow Water transported toward Denmark Strait by the EGC was re-ventilated while transiting the western Iceland Sea in winter. In summer, this region is characterized by an upper layer of cold, fresh Polar Surface Water that is thought to prevent convection. But in fall and winter this fresh water mass is diverted toward the Greenland shelf by enhanced northerly winds, which results in a water column that is preconditioned for convection. Severe heat loss from the ocean to the atmosphere offshore of the ice edge subsequently causes the formation of deep mixed layers. This further transforms the Atlantic-origin Overflow Water and impacts the properties of the DSOW, and hence the deepest and densest component of the lower limb of the Atlantic Meridional Overturning Circulation.

  3. NESTOR Deep Sea Neutrino Telescope

    International Nuclear Information System (INIS)

    Aggouras, G.; Anassontzis, E.G.; Ball, A.E.; Bourlis, G.; Chinowsky, W.; Fahrun, E.; Grammatikakis, G.; Green, C.; Grieder, P.; Katrivanos, P.; Koske, P.; Leisos, A.; Markopoulos, E.; Minkowsky, P.; Nygren, D.; Papageorgiou, K.; Przybylski, G.; Resvanis, L.K.; Siotis, I.; Sopher, J.; Staveris-Polikalas, A.; Tsagli, V.; Tsirigotis, A.; Tzamarias, S.; Zhukov, V.A.

    2006-01-01

    One module of NESTOR, the Mediterranean deep-sea neutrino telescope, was deployed at a depth of 4000m, 14km off the Sapienza Island, off the South West coast of Greece. The deployment site provides excellent environmental characteristics. The deployed NESTOR module is constructed as a hexagonal star like latticed titanium star with 12 Optical Modules and an one-meter diameter titanium sphere which houses the electronics. Power and data were transferred through a 30km electro-optical cable to the shore laboratory. In this report we describe briefly the detector and the detector electronics and discuss the first physics data acquired and give the zenith angular distribution of the reconstructed muons

  4. Greenland climate change

    DEFF Research Database (Denmark)

    Masson-Delmotte, Valérie; Swingedouw, Didier; Landais, Amaëlle

    2012-01-01

    Climate archives available from deep-sea and marine shelf sediments, glaciers, lakes and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that during the last decade (2000s......), atmospheric and sea-surface temperatures are reaching levels last encountered millennia ago when northern high latitude summer insolation was higher due to a different orbital configuration. Concurrently, records from lake sediments in southern Greenland document major environmental and climatic conditions...... regional climate and ice sheet dynamics. The magnitude and rate of future changes in Greenland temperature, in response to increasing greenhouse gas emissions, may be faster than any past abrupt events occurring under interglacial conditions. Projections indicate that within one century Greenland may...

  5. Sea Ice Retreat and its Impact on the Intensity of Open-Ocean Convection in the Greenland and Iceland Seas

    Science.gov (United States)

    Moore, K.; Våge, K.; Pickart, R. S.; Renfrew, I.

    2016-12-01

    The air-sea transfer of heat and freshwater plays a critical role in the global climate system. This is particularly true for the Greenland and Iceland Seas, where these fluxes drive ocean convection that contributes to Denmark Strait Overflow Water, the densest component of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). This buoyancy transfer is most pronounced during the winter downstream of the ice edge, where the cold and dry Arctic air first comes in contact with the relatively warm ocean surface. Here we show that the wintertime retreat of sea ice in the region, combined with different rates of warming for the atmosphere and sea surface of the Greenland and Iceland Seas, has resulted in statistically significant reductions of approximately 20% in the magnitude of the winter air-sea heat fluxes since 1979. Furthermore, it is demonstrated that modes of climate variability other than the North Atlantic Oscillation (NAO) are required to fully characterize the regional air-sea interaction in this region. Mixed-layer model simulations imply that a continued decrease in atmospheric forcing will exceed a threshold for the Greenland Sea whereby convection will become depth limited, reducing the ventilation of mid-depth waters in the Nordic Seas. In the Iceland Sea, further reductions have the potential to decrease the supply of the densest overflow waters to the AMOC.

  6. Temperature impacts on deep-sea biodiversity.

    Science.gov (United States)

    Yasuhara, Moriaki; Danovaro, Roberto

    2016-05-01

    Temperature is considered to be a fundamental factor controlling biodiversity in marine ecosystems, but precisely what role temperature plays in modulating diversity is still not clear. The deep ocean, lacking light and in situ photosynthetic primary production, is an ideal model system to test the effects of temperature changes on biodiversity. Here we synthesize current knowledge on temperature-diversity relationships in the deep sea. Our results from both present and past deep-sea assemblages suggest that, when a wide range of deep-sea bottom-water temperatures is considered, a unimodal relationship exists between temperature and diversity (that may be right skewed). It is possible that temperature is important only when at relatively high and low levels but does not play a major role in the intermediate temperature range. Possible mechanisms explaining the temperature-biodiversity relationship include the physiological-tolerance hypothesis, the metabolic hypothesis, island biogeography theory, or some combination of these. The possible unimodal relationship discussed here may allow us to identify tipping points at which on-going global change and deep-water warming may increase or decrease deep-sea biodiversity. Predicted changes in deep-sea temperatures due to human-induced climate change may have more adverse consequences than expected considering the sensitivity of deep-sea ecosystems to temperature changes. © 2014 Cambridge Philosophical Society.

  7. Greenland and Antarctica Ice Sheet Mass Changes and Effects on Global Sea Level

    DEFF Research Database (Denmark)

    Forsberg, René; Sørensen, Louise Sandberg; Simonsen, Sebastian Bjerregaard

    2017-01-01

    Thirteen years of GRACE data provide an excellent picture of the current mass changes of Greenland and Antarctica, with mass loss in the GRACE period 2002–2015 amounting to 265 ± 25 GT/year for Greenland (including peripheral ice caps), and 95 ± 50 GT/year for Antarctica, corresponding to 0.......72 and 0.26 mm/year average global sea level change. A significant acceleration in mass loss rate is found, especially for Antarctica, while Greenland mass loss, after a corresponding acceleration period, and a record mass loss in the summer of 2012, has seen a slight decrease in short-term mass loss trend....... The yearly mass balance estimates, based on point mass inversion methods, have relatively large errors, both due to uncertainties in the glacial isostatic adjustment processes, especially for Antarctica, leakage from unmodelled ocean mass changes, and (for Greenland) difficulties in separating mass signals...

  8. Deep-Sea Soft Coral Habitat Suitability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deep-sea corals, also known as cold water corals, create complex communities that provide habitat for a variety of invertebrate and fish species, such as grouper,...

  9. Deep-Sea Stony Coral Habitat Suitability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deep-sea corals, also known as cold water corals, create complex communities that provide habitat for a variety of invertebrate and fish species, such as grouper,...

  10. Methods in mooring deep sea sediment traps

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.; Fernando, V.; Rajaraman, V.S.; Janakiraman, G.

    The experience gained during the process of deployment and retrieval of nearly 39 sets of deep sea sediment trap moorings on various ships like FS Sonne, ORV Sagarkanya and DSV Nand Rachit are outlined. The various problems encountered...

  11. Biodiversity loss from deep-sea mining

    OpenAIRE

    C. L. Van Dover; J. A. Ardron; E. Escobar; M. Gianni; K. M. Gjerde; A. Jaeckel; D. O. B. Jones; L. A. Levin; H. Niner; L. Pendleton; C. R. Smith; T. Thiele; P. J. Turner; L. Watling; P. P. E. Weaver

    2017-01-01

    The emerging deep-sea mining industry is seen by some to be an engine for economic development in the maritime sector. The International Seabed Authority (ISA) – the body that regulates mining activities on the seabed beyond national jurisdiction – must also protect the marine environment from harmful effects that arise from mining. The ISA is currently drafting a regulatory framework for deep-sea mining that includes measures for environmental protection. Responsible mining increasingly stri...

  12. Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine

    Science.gov (United States)

    Maselli, Olivia J.; Chellman, Nathan J.; Grieman, Mackenzie; Layman, Lawrence; McConnell, Joseph R.; Pasteris, Daniel; Rhodes, Rachael H.; Saltzman, Eric; Sigl, Michael

    2017-01-01

    Reconstruction of past changes in Arctic sea ice extent may be critical for understanding its future evolution. Methanesulfonate (MSA) and bromine concentrations preserved in ice cores have both been proposed as indicators of past sea ice conditions. In this study, two ice cores from central and north-eastern Greenland were analysed at sub-annual resolution for MSA (CH3SO3H) and bromine, covering the time period 1750-2010. We examine correlations between ice core MSA and the HadISST1 ICE sea ice dataset and consult back trajectories to infer the likely source regions. A strong correlation between the low-frequency MSA and bromine records during pre-industrial times indicates that both chemical species are likely linked to processes occurring on or near sea ice in the same source regions. The positive correlation between ice core MSA and bromine persists until the mid-20th century, when the acidity of Greenland ice begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea ice extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea ice stimulates the release of reactive Br from sea ice, resulting in increased transport and deposition on the Greenland ice sheet.

  13. Uranium and plutonium containing particles in a sea sediment sample from Thule, Greenland

    DEFF Research Database (Denmark)

    Moring, M.; Ikäheimonen, T.K.; Pöllänen, R.

    2001-01-01

    Particles composed of radioactive materials and probably originating from US nuclear weapons were identified in sea sediment samples collected from Thule, Greenland in 1997. The weapons were destroyed close to the Thule Air Base in 1968 in an aeroplane crash, which dispersed radioactive materials...

  14. Photobiology of sea ice algae during initial spring growth in Kangerlussuaq, West Greenland

    DEFF Research Database (Denmark)

    Hawes, Ian; Lund-Hansen, Lars Chresten; Sorrell, Brian Keith

    2012-01-01

    We undertook a series of measurements of photophysiological parameters of sea ice algae over 12 days of early spring growth in a West Greenland Fjord, by variable chlorophyll fluorescence imaging. Imaging of the ice–water interface showed the development of ice algae in 0.3–0.4 mm wide brine...

  15. Temperature, Salinity, Oxygen, Phosphate, pH and Alkalinity data collected in the North Atlantic Ocean, Baltic Sea, Barents Sea, Greenland Sea, North Sea, Norwegian Sea and White Sea from R/Vs Artemovsk, Atlantida, Okeanograf, Professor Rudovits, and ice observations, 1957 - 1995 (NODC Accession 0073674)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, Salinity, Oxygen, Phosphate, pH and Alkalinity data collected in the North Atlantic Ocean, Baltic Sea, Barents Sea, Greenland Sea, North Sea, Norwegian...

  16. Ancient Biomolecules from Deep Ice Cores Reveal a Forested Southern Greenland

    Science.gov (United States)

    Willerslev, Eske; Cappellini, Enrico; Boomsma, Wouter; Nielsen, Rasmus; Hebsgaard, Martin B.; Brand, Tina B.; Hofreiter, Michael; Bunce, Michael; Poinar, Hendrik N.; Dahl-Jensen, Dorthe; Johnsen, Sigfus; Steffensen, Jørgen Peder; Bennike, Ole; Schwenninger, Jean-Luc; Nathan, Roger; Armitage, Simon; de Hoog, Cees-Jan; Alfimov, Vasily; Christl, Marcus; Beer, Juerg; Muscheler, Raimund; Barker, Joel; Sharp, Martin; Penkman, Kirsty E.H.; Haile, James; Taberlet, Pierre; Gilbert, M. Thomas P.; Casoli, Antonella; Campani, Elisa; Collins, Matthew J.

    2009-01-01

    One of the major difficulties in paleontology is the acquisition of fossil data from the 10% of Earth’s terrestrial surface that is covered by thick glaciers and ice sheets. Here we reveal that DNA and amino acids from buried organisms can be recovered from the basal sections of deep ice cores and allow reconstructions of past flora and fauna. We show that high altitude southern Greenland, currently lying below more than two kilometers of ice, was once inhabited by a diverse array of conifer trees and insects that may date back more than 450 thousand years. The results provide the first direct evidence in support of a forested southern Greenland and suggest that many deep ice cores may contain genetic records of paleoenvironments in their basal sections. PMID:17615355

  17. Sea-ice thickness from airborne laser altimetry over the Arctic Ocean north of Greenland

    DEFF Research Database (Denmark)

    Hvidegaard, Sine Munk; Forsberg, René

    2002-01-01

    We present a new method to measure ice thickness of polar sea-ice freeboard heights, using airborne laser altimetry combined with a precise geoid model, giving estimates of thickness of ice through isostatic equilibrium assumptions. In the paper we analyze a number of flights from the Polar Sea off...... Northern Greenland, and estimate accuracies of the estimated freeboard values to be at a 13 cm level, corresponding to about 1 m in absolute thickness....

  18. Zooplankton at deep Red Sea brine pools

    KAUST Repository

    Kaartvedt, Stein

    2016-03-02

    The deep-sea anoxic brines of the Red Sea comprise unique, complex and extreme habitats. These environments are too harsh for metazoans, while the brine–seawater interface harbors dense microbial populations. We investigated the adjacent pelagic fauna at two brine pools using net tows, video records from a remotely operated vehicle and submerged echosounders. Waters just above the brine pool of Atlantis II Deep (2000 m depth) appeared depleted of macrofauna. In contrast, the fauna appeared to be enriched at the Kebrit Deep brine–seawater interface (1466 m).

  19. Sea ice and primary production proxies in surface sediments from a High Arctic Greenland fjord

    DEFF Research Database (Denmark)

    Ribeiro, Sofia; Sejr, Mikael K; Limoges, Audrey

    2017-01-01

    Monitoring Programme. Clear spatial gradients in organic carbon and biogenic silica contents reflected marine influence, nutrient availability and river-induced turbidity, in good agreement with in situ measurements. The sea ice proxy IP25 was detected at all sites but at low concentrations, indicating...... that IP25 records from fjords need to be carefully considered and not directly compared to marine settings. The sea ice-associated biomarker HBI III revealed an open-water signature, with highest concentrations near the mid-July ice edge. This proxy evaluation is an important step towards reliable......In order to establish a baseline for proxy-based reconstructions for the Young Sound–Tyrolerfjord system (Northeast Greenland), we analysed the spatial distribution of primary production and sea ice proxies in surface sediments from the fjord, against monitoring data from the Greenland Ecosystem...

  20. Radiocaesium (137Cs) in marine mammals from Svalbard, the Barents Sea and the North Greenland Sea

    International Nuclear Information System (INIS)

    Andersen, Magnus; Gwynn, Justin P.; Dowdall, Mark; Kovacs, Kit M.; Lydersen, Christian

    2006-01-01

    Specific activities of the anthropogenic radionuclide, 137 Cs, were determined in marine mammals from Svalbard and the Barents and North Greenland Seas. Muscle samples were collected from 12 polar bears, 15 ringed seals, 10 hooded seals, 7 bearded seals, 14 harp seals, one walrus, one white whale and one blue whale in the period 2000-2003. The mean concentrations (± SD) of 137 Cs were: 0.72 ± 0.62 Bq/kg wet weight (w.w.) for polar bears; 0.49 ± 0.07 Bq/kg w.w. for ringed seals; 0.25 ± 0.10 Bq/kg w.w. for hooded seals; 0.22 ± 0.11 Bq/kg w.w. for bearded seals; 0.36 ± 0.13 Bq/kg w.w. for harp seals; 0.67 Bq/kg w.w. for the white whale sample; 0.24 Bq/kg w.w. for the blue whale; and below detection limit for the walrus. Significant differences in 137 Cs specific activities between some of the species were found. Ringed seals had higher specific activities than the other seal species in the study. Bearded seals and hooded seals had similar values, which were both significantly lower than the harp seal values. The results in the present study are consistent with previous reported results, indicating low specific activities of 137 Cs in Arctic marine mammals in the Barents Sea and Greenland Sea region during the last 20 years. The species specific differences found may be explained by varying diet or movement and distribution patterns between species. No age related patterns were found in specific activities for the two species (polar bears and hooded seals) for which sufficient data was available. Concentration factors (CF) of 137 Cs from seawater were determined for polar bears, ringed, bearded, harp and hooded seals. Mean CF values ranged from 79 ± 32 (SD) for bearded seals sampled in 2002 to 244 ± 36 (SD) for ringed seals sampled in 2003 these CF values are higher than those reported for fish and benthic organisms in the literature, suggesting bioaccumulation of 137 Cs in the marine ecosystem

  1. Deep-sea Hexactinellida (Porifera) of the Weddell Sea

    Science.gov (United States)

    Janussen, Dorte; Tabachnick, Konstantin R.; Tendal, Ole S.

    2004-07-01

    New Hexactinellida from the deep Weddel Sea are described. This moderately diverse hexactinellid fauna includes 14 species belonging to 12 genera, of which five species and one subgenus are new to science: Periphragella antarctica n. sp., Holascus pseudostellatus n. sp., Caulophacus (Caulophacus) discohexactinus n. sp., C. ( Caulodiscus) brandti n. sp., C. ( Oxydiscus) weddelli n. sp., and C. ( Oxydiscus) n. subgen. So far, 20 hexactinellid species have been reported from the deep Weddell Sea, 15 are known from the northern part and 10 only from here, while 10 came from the southern area, and five of these only from there. However, this apparent high "endemism" of Antarctic hexactinellid sponges is most likely the result of severe undersampling of the deep-sea fauna. We find no reason to believe that a division between an oceanic and a more continental group of species exists. The current poor database indicates that a substantial part of the deep hexactinellid fauna of the Weddell Sea is shared with other deep-sea regions, but it does not indicate a special biogeographic relationship with any other ocean.

  2. In Brief: Deep-sea observatory

    Science.gov (United States)

    Showstack, Randy

    2008-11-01

    The first deep-sea ocean observatory offshore of the continental United States has begun operating in the waters off central California. The remotely operated Monterey Accelerated Research System (MARS) will allow scientists to monitor the deep sea continuously. Among the first devices to be hooked up to the observatory are instruments to monitor earthquakes, videotape deep-sea animals, and study the effects of acidification on seafloor animals. ``Some day we may look back at the first packets of data streaming in from the MARS observatory as the equivalent of those first words spoken by Alexander Graham Bell: `Watson, come here, I need you!','' commented Marcia McNutt, president and CEO of the Monterey Bay Aquarium Research Institute, which coordinated construction of the observatory. For more information, see http://www.mbari.org/news/news_releases/2008/mars-live/mars-live.html.

  3. The distribution of artificial radionuclides in the waters of the Norwegian-Greenland Sea in 1985

    International Nuclear Information System (INIS)

    Wedekind, C.; Gabriel, H.; Goroncy, I.; Framcke, G.

    1997-01-01

    In the summer of 1985, sea water samples were taken to determine 3 H, 90 Sr, 134 Cs, 137 Cs and transuranics within a grid of 165 stations including 16 depth series down to the seafloor, covering all ice-free areas. The distribution of the activity concentrations and the nuclide ratios reveal the contamination pathway into the surface and deeper layers of the Norwegian-Greenland Sea from nuclear weapon fallout and civil nuclear technology. Moreover, the investigations show that: (1) a yearly discharge of 1 TBq (10 12 Bq) 90 Sr into the Irish Sea (English Channel) is diluted on its way to the southern Norwegian Sea, raising the concentration by about 0.04 m Bql -1 ; (2) the drift time to this sea area is around 4 years; (3) about 40% of the 137 Cs discharged does not reach the Norwegian Sea and (4) a further 30% leaves the Norwegian-Greenland Sea via the North Cape and flows into the Barents Sea. Investigations into the vertical distribution and stratification of the radioactivity indicate the time scale on which the radionuclides travel to the deeper layers. (author)

  4. Stable isotope geochemistry of deep sea cherts

    Energy Technology Data Exchange (ETDEWEB)

    Kolodny, Y; Epstein, S [California Inst. of Tech., Pasadena (USA). Div. of Geological Sciences

    1976-10-01

    Seventy four samples of DSDP (Deep Sea Drilling Project) recovered cherts of Jurassic to Miocene age from varying locations, and 27 samples of on-land exposed cherts were analyzed for the isotopic composition of their oxygen and hydrogen. These studies were accompanied by mineralogical analyses and some isotopic analyses of the coexisting carbonates. delta/sup 18/0 of chert ranges between 27 and 39 parts per thousand relative to SMOW, delta/sup 18/0 of porcellanite - between 30 and 42 parts per thousand. The consistent enrichment of opal-CT in porcellanites in /sup 18/0 with respect to coexisting microcrystalline quartz in chert is probably a reflection of a different temperature (depth) of diagenesis of the two phases. delta/sup 18/0 of deep sea cherts generally decrease with increasing age, indicating an overall cooling of the ocean bottom during the last 150 m.y. A comparison of this trend with that recorded by benthonic foraminifera (Douglas et al., Initial Reports of the Deep Sea Drilling Project; 32:509(1975)) indicates the possibility of delta/sup 18/0 in deep sea cherts not being frozen in until several tens of millions of years after deposition. Cherts of any Age show a spread of delta/sup 18/0 values, increasing diagenesis being reflected in a lowering of delta/sup 18/0. Drusy quartz has the lowest delta/sup 18/0 values. On land exposed cherts are consistently depleted in /sup 18/0 in comparison to their deep sea time equivalent cherts. Water extracted from deep sea cherts ranges between 0.5 and 1.4 wt%. deltaD of this water ranges between -78 and -95 parts per thousand and is not a function of delta/sup 18/0 of the cherts (or the temperature of their formation).

  5. Deep-sea geohazards in the South China Sea

    Science.gov (United States)

    Wu, Shiguo; Wang, Dawei; Völker, David

    2018-02-01

    Various geological processes and features that might inflict hazards identified in the South China Sea by using new technologies and methods. These features include submarine landslides, pockmark fields, shallow free gas, gas hydrates, mud diapirs and earthquake tsunami, which are widely distributed in the continental slope and reefal islands of the South China Sea. Although the study and assessment of geohazards in the South China Sea came into operation only recently, advances in various aspects are evolving at full speed to comply with National Marine Strategy and `the Belt and Road' Policy. The characteristics of geohazards in deep-water seafloor of the South China Sea are summarized based on new scientific advances. This progress is aimed to aid ongoing deep-water drilling activities and decrease geological risks in ocean development.

  6. Greenland deep boreholes inform on sliding and deformation of the basal ice

    Science.gov (United States)

    Dahl-Jensen, D.

    2017-12-01

    Repeated measurements of the deformation of the deep boreholes on the Greenland ice sheet informs on the basal sliding, near basal deformation and in general on the horizontal velocity through the ice. Results of the logging of the boreholes at Dye3, GRIP, NGRIP, NEEM and Camp Century through the last 40 years by the Danish Ice and Climate group will be presented and discussed. The results on the flow will be compared with the information on ice properties, impurity load and bedrock entrained material from the deep ice cores and the radio echo sounding images near the drill sites.The results show that the basal movement often happens in an impurity rich zone above the bedrock while pure basal sliding is limited even in the presence of basal water and significant basal melt.Most of the deep ice core sites are located close to ice divides where the surface velocity is limited so significant basal sliding is not expected. Exceptions are the surface velocities at Camp Century and Dye 3, both being 13 m/yr.Finally, the ongoing deep drilling at EGRIP will shortly be presented where we are drilling in the center of the North East Greenland Ice Stream (NEGIS).

  7. Deep Ocean Contribution to Sea Level Rise

    Science.gov (United States)

    Chang, L.; Sun, W.; Tang, H.; Wang, Q.

    2017-12-01

    The ocean temperature and salinity change in the upper 2000m can be detected by Argo floats, so we can know the steric height change of the ocean. But the ocean layers above 2000m represent only 50% of the total ocean volume. Although the temperature and salinity change are small compared to the upper ocean, the deep ocean contribution to sea level might be significant because of its large volume. There has been some research on the deep ocean rely on the very sparse situ observation and are limited to decadal and longer-term rates of change. The available observational data in the deep ocean are too spares to determine the temporal variability, and the long-term changes may have a bias. We will use the Argo date and combine the situ data and topographic data to estimate the temperature and salinity of the sea water below 2000m, so we can obtain a monthly data. We will analyze the seasonal and annual change of the steric height change due to the deep ocean between 2005 and 2016. And we will evaluate the result combination the present-day satellite and in situ observing systems. The deep ocean contribution can be inferred indirectly as the difference between the altimetry minus GRACE and Argo-based steric sea level.

  8. Detection of Organic Matter in Greenland Ice Cores by Deep-UV Fluorescence

    Science.gov (United States)

    Willis, M.; Malaska, M.; Wanger, G.; Bhartia, R.; Eshelman, E.; Abbey, W.; Priscu, J. C.

    2017-12-01

    The Greenland Ice Sheet is an Earthly analog for icy ocean worlds in the outer Solar System. Future missions to such worlds including Europa, Enceladus, and Titan may potentially include spectroscopic instrumentation to examine the surface/subsurface. The primary goal of our research is to test deep UV/Raman systems for in the situ detection and localization of organics in ice. As part of this effort we used a deep-UV fluorescence instrument able to detect naturally fluorescent biological materials such as aromatic molecules found in proteins and whole cells. We correlated these data with more traditional downstream analyses of organic material in natural ices. Supraglacial ice cores (2-4 m) were collected from several sites on the southwest outlet of the Greenland Ice Sheet using a 14-cm fluid-free mechanical coring system. Repeat spectral mapping data were initially collected longitudinally on uncut core sections. Cores were then cut into 2 cm thick sections along the longitudinal axis, slowly melted and analyzed for total organic carbon (TOC), total dissolved nitrogen (TDN), and bacterial density. These data reveal a spatial correlation between organic matter concentration, cell density, and the deep UV fluorescence maps. Our results provide a profile of the organics embedded within the ice from the top surface into the glacial subsurface, and the TOC:TDN data from the clean interior of the cores are indicative of a biological origin. This work provides a background dataset for future work to characterize organic carbon in the Greenland Ice Sheet and validation of novel instrumentation for in situ data collection on icy bodies.

  9. Frost flowers and sea-salt aerosols over seasonal sea-ice areas in northwestern Greenland during winter–spring

    Directory of Open Access Journals (Sweden)

    K. Hara

    2017-07-01

    Full Text Available Sea salts and halogens in aerosols, frost flowers, and brine play an important role in atmospheric chemistry in polar regions. Simultaneous sampling and observations of frost flowers, brine, and aerosol particles were conducted around Siorapaluk in northwestern Greenland during December 2013 to March 2014. Results show that water-soluble frost flower and brine components are sea-salt components (e.g., Na+, Cl−, Mg2+, K+, Ca2+, Br−, and iodine. Concentration factors of sea-salt components of frost flowers and brine relative to seawater were 1.14–3.67. Sea-salt enrichment of Mg2+, K+, Ca2+, and halogens (Cl−, Br−, and iodine in frost flowers is associated with sea-salt fractionation by precipitation of mirabilite and hydrohalite. High aerosol number concentrations correspond to the occurrence of higher abundance of sea-salt particles in both coarse and fine modes, and blowing snow and strong winds. Aerosol number concentrations, particularly in coarse mode, are increased considerably by release from the sea-ice surface under strong wind conditions. Sulfate depletion by sea-salt fractionation was found to be limited in sea-salt aerosols because of the presence of non-sea-salt (NSS SO42−. However, coarse and fine sea-salt particles were found to be rich in Mg. Strong Mg enrichment might be more likely to proceed in fine sea-salt particles. Magnesium-rich sea-salt particles might be released from the surface of snow and slush layer (brine on sea ice and frost flowers. Mirabilite-like and ikaite-like particles were identified only in aerosol samples collected near new sea-ice areas. From the field evidence and results from earlier studies, we propose and describe sea-salt cycles in seasonal sea-ice areas.

  10. Frost flowers and sea-salt aerosols over seasonal sea-ice areas in northwestern Greenland during winter-spring

    Science.gov (United States)

    Hara, Keiichiro; Matoba, Sumito; Hirabayashi, Motohiro; Yamasaki, Tetsuhide

    2017-07-01

    Sea salts and halogens in aerosols, frost flowers, and brine play an important role in atmospheric chemistry in polar regions. Simultaneous sampling and observations of frost flowers, brine, and aerosol particles were conducted around Siorapaluk in northwestern Greenland during December 2013 to March 2014. Results show that water-soluble frost flower and brine components are sea-salt components (e.g., Na+, Cl-, Mg2+, K+, Ca2+, Br-, and iodine). Concentration factors of sea-salt components of frost flowers and brine relative to seawater were 1.14-3.67. Sea-salt enrichment of Mg2+, K+, Ca2+, and halogens (Cl-, Br-, and iodine) in frost flowers is associated with sea-salt fractionation by precipitation of mirabilite and hydrohalite. High aerosol number concentrations correspond to the occurrence of higher abundance of sea-salt particles in both coarse and fine modes, and blowing snow and strong winds. Aerosol number concentrations, particularly in coarse mode, are increased considerably by release from the sea-ice surface under strong wind conditions. Sulfate depletion by sea-salt fractionation was found to be limited in sea-salt aerosols because of the presence of non-sea-salt (NSS) SO42-. However, coarse and fine sea-salt particles were found to be rich in Mg. Strong Mg enrichment might be more likely to proceed in fine sea-salt particles. Magnesium-rich sea-salt particles might be released from the surface of snow and slush layer (brine) on sea ice and frost flowers. Mirabilite-like and ikaite-like particles were identified only in aerosol samples collected near new sea-ice areas. From the field evidence and results from earlier studies, we propose and describe sea-salt cycles in seasonal sea-ice areas.

  11. Assessing Deep Sea Communities Through Seabed Imagery

    Science.gov (United States)

    Matkin, A. G.; Cross, K.; Milititsky, M.

    2016-02-01

    The deep sea still remains virtually unexplored. Human activity, such as oil and gas exploration and deep sea mining, is expanding further into the deep sea, increasing the need to survey and map extensive areas of this habitat in order to assess ecosystem health and value. The technology needed to explore this remote environment has been advancing. Seabed imagery can cover extensive areas of the seafloor and investigate areas where sampling with traditional coring methodologies is just not possible (e.g. cold water coral reefs). Remotely operated vehicles (ROVs) are an expensive option, so drop or towed camera systems can provide a more viable and affordable alternative, while still allowing for real-time control. Assessment of seabed imagery in terms of presence, abundance and density of particular species can be conducted by bringing together a variety of analytical tools for a holistic approach. Sixteen deep sea transects located offshore West Africa were investigated with a towed digital video telemetry system (DTS). Both digital stills and video footage were acquired. An extensive data set was obtained from over 13,000 usable photographs, allowing for characterisation of the different habitats present in terms of community composition and abundance. All observed fauna were identified to the lowest taxonomic level and enumerated when possible, with densities derived after the seabed area was calculated for each suitable photograph. This methodology allowed for consistent assessment of the different habitat types present, overcoming constraints, such as specific taxa that cannot be enumerated, such as sponges, corals or bryozoans, the presence of mobile and sessile species, or the level of taxonomic detail. Although this methodology will not enable a full characterisation of a deep sea community, in terms of species composition for instance, itt will allow a robust assessment of large areas of the deep sea in terms of sensitive habitats present and community

  12. A Moessbauer study of deep sea sediments

    International Nuclear Information System (INIS)

    Minai, Y.; Tominaga, T.; Furuta, T.; Kobayashi, K.

    1981-01-01

    In order to determine the chemical states of iron in deep sea sediments, Moessbauer spectra of the sediments collected from various areas of the Pacific have been measured. The Moessbauer spectra were composed of paramagnetic ferric, high-spin ferrous, and magnetic components. The correlation of their relative abundance to the sampling location and the kind of sediments may afford clues to infer the origin of each iron-bearing phase. (author)

  13. Microplastic pollution in deep-sea sediments

    International Nuclear Information System (INIS)

    Van Cauwenberghe, Lisbeth; Vanreusel, Ann; Mees, Jan; Janssen, Colin R.

    2013-01-01

    Microplastics are small plastic particles ( 3 was observed. •The depths from where these microplastics were recovered range from 1176 to 4843 m. •The sizes of the particles range from 75 to 161 μm at their largest cross-section. -- Here, we demonstrate that microplastics have invaded the marine environment to an extent that they appear to even be present in the remote deep sea

  14. Mark report satellite tags (mrPATs) to detail large-scale horizontal movements of deep water species: First results for the Greenland shark (Somniosus microcephalus)

    Science.gov (United States)

    Hussey, Nigel E.; Orr, Jack; Fisk, Aaron T.; Hedges, Kevin J.; Ferguson, Steven H.; Barkley, Amanda N.

    2018-04-01

    The deep-sea is increasingly viewed as a lucrative environment for the growth of resource extraction industries. To date, our ability to study deep-sea species lags behind that of those inhabiting the photic zone limiting scientific data available for management. In particular, knowledge of horizontal movements is restricted to two locations; capture and recapture, with no temporal information on absolute animal locations between endpoints. To elucidate the horizontal movements of a large deep-sea fish, a novel tagging approach was adopted using the smallest available prototype satellite tag - the mark-report pop-up archival tag (mrPAT). Five Greenland sharks (Somniosus microcephalus) were equipped with multiple mrPATs as well as a standard archival satellite tag (miniPAT) that were programmed to release in sequence at 8-10 day intervals. The performance of the mrPATs was quantified. The tagging approach provided multiple locations per individual and revealed a previously unknown directed migration of Greenland sharks from the Canadian high Arctic to Northwest Greenland. All tags reported locations, however, the accuracy and time from expected release were variable among tags (average time to an accurate location from expected release = 30.8 h, range: 4.9-227.6 h). Average mrPAT drift rate estimated from best quality messages (LQ1,2,3) was 0.37 ± 0.09 m/s indicating tags were on average 41.1 ± 63.4 km (range: 6.5-303.1 km) from the location of the animal when they transmitted. mrPATs provided daily temperature values that were highly correlated among tags and with the miniPAT (70.8% of tag pairs were significant). In contrast, daily tilt sensor data were variable among tags on the same animal (12.5% of tag pairs were significant). Tracking large-scale movements of deep-sea fish has historically been limited by the remote environment they inhabit. The current study provides a new approach to document reliable coarse scale horizontal movements to understand

  15. The deep sea Acoustic Detection system AMADEUS

    International Nuclear Information System (INIS)

    Naumann, Christopher Lindsay

    2008-01-01

    As a part of the ANTARES neutrino telescope, the AMADEUS (ANTARES Modules for Acoustic Detection Under the Sea) system is an array of acoustical sensors designed to investigate the possibilities of acoustic detection of ultra-high energy neutrinos in the deep sea. The complete system will comprise a total of 36 acoustic sensors in six clusters on two of the ANTARES detector lines. With an inter-sensor spacing of about one metre inside the clusters and between 15 and 340 metres between the different clusters, it will cover a wide range of distances as will as provide a considerable lever arm for point source triangulation. Three of these clusters have already been deployed in 2007 and have been in operation since, currently yielding around 2GB of acoustic data per day. The remaining three clusters are scheduled to be deployed in May 2008 together with the final ANTARES detector line. Apart from proving the feasibility of operating an acoustic detection system in the deep sea, the main aim of this project is an in-depth survey of both the acoustic properties of the sea water and the acoustic background present at the detector site. It will also serve as a platform for the development and refinement of triggering, filtering and reconstruction algorithms for acoustic particle detection. In this presentation, a description of the acoustic sensor and read-out system is given, together with examples for the reconstruction and evaluation of the acoustic data.

  16. Greenland uplift and regional sea level changes from ICESat observations and GIA modelling

    DEFF Research Database (Denmark)

    Spada, G.; Ruggieri, G.; Sørensen, Louise Sandberg

    2012-01-01

    ‐resolution GrIS mass balance, we study the time‐variations of various geophysical quantities in response to the current mass loss. They include vertical uplift and subsidence, geoid height variations, global patterns of sea level change (or fingerprints), and regional sea level variations along the coasts...... of Greenland. Long‐wavelength uplifts and gravity variations in response to current or past ice thickness variations are obtained solving the sea level equation, which accounts for both the elastic and the viscoelastic components of deformation. To capture the short‐wavelength components of vertical uplift...... in response to current ice mass loss, which is not resolved by satellite gravity observations, we have specifically developed a high‐resolution regional elastic rebound (ER) model. The elastic component of vertical uplift is combined with estimates of the viscoelastic displacement fields associated...

  17. The Greenlandic sea areas and activity level up to 2025

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; í Dali, Birita

    2016-01-01

    , petroleum activity, tourism and research/government activity. The last chapter is devoted to summarizing findings about the current developed activity level in the High North sea and coastal regions and the estimated activity level up to 2025. Possible implications for the preparedness system in the High....... It includes an overview of types of vessels and other objects involved in different activities, and the volume of traffic connected to different types of activities, such as fisheries, petroleum, tourism, navy and research. Furthermore, this report estimates the maritime activity level in the area the next...

  18. Extreme Longevity in Proteinaceous Deep-Sea Corals

    Energy Technology Data Exchange (ETDEWEB)

    Roark, E B; Guilderson, T P; Dunbar, R B; Fallon, S J; Mucciarone, D A

    2009-02-09

    Deep-sea corals are found on hard substrates on seamounts and continental margins world-wide at depths of 300 to {approx}3000 meters. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age date from the deep water proteinaceous corals Gerardia sp. and Leiopathes glaberrima show that radial growth rates are as low as 4 to 35 {micro}m yr{sup -1} and that individual colony longevities are on the order of thousands of years. The management and conservation of deep sea coral communities is challenged by their commercial harvest for the jewelry trade and damage caused by deep water fishing practices. In light of their unusual longevity, a better understanding of deep sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea ecosystems.

  19. Measurement of spectral sea ice albedo at Qaanaaq fjord in northwest Greenland

    Science.gov (United States)

    Tanikawa, T.

    2017-12-01

    The spectral albedos of sea ice were measured at Qaanaaq fjord in northwest Greenland. Spectral measurements were conducted for sea ice covered with snow and sea ice without snow where snow was artificially removed around measurement point. Thickness of the sea ice was approximately 1.3 m with 5 cm of snow over the sea ice. The measurements show that the spectral albedos of the sea ice with snow were lower than those of natural pure snow especially in the visible regions though the spectral shapes were similar to each other. This is because the spectral albedos in the visible region have information of not only the snow but also the sea ice under the snow. The spectral albedos of the sea ice without the snow were approximately 0.4 - 0.5 in the visible region, 0.05-0.25 in the near-infrared region and almost constant of approximately 0.05 in the region of 1500 - 2500 nm. In the visible region, it would be due to multiple scattering by an air bubble within the sea ice. In contrast, in the near-infrared and shortwave infrared wavelengths, surface reflection at the sea ice surface would be dominant. Since a light absorption by the ice in these regions is relatively strong comparing to the visible region, the light could not be penetrated deeply within the sea ice, resulting that surface reflection based on Fresnel reflection would be dominant. In this presentation we also show the results of comparison between the radiative transfer calculation and spectral measurement data.

  20. Ion transport in deep-sea sediments

    International Nuclear Information System (INIS)

    Heath, G.R.

    1979-01-01

    Initial assessment of the ability of deep-sea clays to contain nuclear waste is optimistic. Yet, the investigators have no delusions about the complexity of the natural geochemical system and the perturbations that may result from emplacement of thermally-hot waste cannisters. Even though they may never be able to predict the exact nature of all these perturbations, containment of the nuclides by the waste form/cannister system until most of the heat has decayed, and burial of the waste to a sufficient depth that the altered zone can be treated as a black box source of dissolved nuclides to the enclosing unperturbed sediment, encourage them to believe that ion migration in the deep seabed can be modeled accurately and that our preliminary estimates of migration rates are likely to be reasonably realistic

  1. Deep-Sea Corals: A New Oceanic Archive

    National Research Council Canada - National Science Library

    Adkins, Jess

    1998-01-01

    Deep-sea corals are an extraordinary new archive of deep ocean behavior. The species Desmophyllum cristagalli is a solitary coral composed of uranium rich, density banded aragonite that I have calibrated for several paleoclimate tracers...

  2. Mass loss of the Greenland Ice Sheet since the Little Ice Age, implications on sea level

    DEFF Research Database (Denmark)

    Kjeldsen, K. K.; Bjork, A. A.; Khan, Shfaqat Abbas

    The impact of mass loss from the Greenland Ice Sheet (GrIS) on 20th Century sea level rise (SLR) has long been subject to intense discussions. While globally distributed tide gauges suggest a global mean SLR of 15-20 cm, quantifying the separate components is of great concern - in particular...... for modeling sea level projections into the 21st Century. Estimates of the past GrIS contribution to SLR have been derived using a number of different approaches, e.g. surface mass balance (SMB) calculations combined with estimates of ice discharge found by in correlating SMB anomalies and calving rates. Here......-2010, NASA's Ice, Cloud, and land Elevation Satellite (ICESat) from 2003-2009, and NASA's Land, Vegetation, and Ice Sensor (LVIS) from 2010, to estimate mass loss throughout the 20th and early 21st Century. We present mass balance estimates of the GrIS since retreat commence from the maximum extent...

  3. Stratigraphy and palynology of the Lower Carboniferous Sortebakker Formation, Wandel Sea Basin, eastern North Greenland

    Energy Technology Data Exchange (ETDEWEB)

    Dalhoff, F.; Stemmerik, L. [Geological Survey of Denmark and Greenland, Copenhagen (Denmark); Vigran, J.O. [IKU Petroleum Research, Trondheim (Norway)

    2000-07-01

    Two palynological assemblages of Early Carboniferous age have been recorded from the upper parts of the non-marine, fluvial-dominated Sortebakker Formation in the Wandel Sea Basin. The stratigraphically lower assemblage includes poorly preserved Cingulizonates spp., Densosporites spp., Lycospora spp. and Schulzospora spp. whereas the upper assemblage contains a more diversified microflora including the stratigraphically important Tripartites distinctus, Potoniespores delicatus and Savitrisporites spp. The microflora enables correlation and dating of the succession to the late Visean Perotrilites tessellatus - Schulzospora campyloptera (TC) and Raistrickia nigra - Triquitrites marginatus (NM) miospore Biozones of western Europe. The depositional facies correspond to those seen in time equivalent deposits from East Greenland, Svalbard, Bjoernoeya and the Barents Sea. (au)

  4. First biological measurements of deep-sea corals from the Red Sea.

    Science.gov (United States)

    Roder, C; Berumen, M L; Bouwmeester, J; Papathanassiou, E; Al-Suwailem, A; Voolstra, C R

    2013-10-03

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with 'deep-sea' and 'cold-water' corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.

  5. First biological measurements of deep-sea corals from the Red Sea.

    KAUST Repository

    Roder, Cornelia

    2013-10-03

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with \\'deep-sea\\' and \\'cold-water\\' corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.

  6. Temporal and spatial variations of oceanic pCO2 and air-sea CO2 flux in th Greenland Sea and the Barents Sea

    International Nuclear Information System (INIS)

    Nakaoka, Shin-Ichiro; Aoki, Shuji; Nakazawa, Takakiyo; Yoshikawa-Inoue, Hisayuki

    2006-01-01

    In order to elucidate the seasonal and inter annual variations of oceanic CO 2 uptake in the Greenland Sea and the Barents Sea, the partial pressure of CO 2 in the surface ocean (pCO 2 sea ) was measured in all seasons between 1992 and 2001. We derived monthly varying relationships between pCO 2 sea and sea surface temperature (SST) and combined them with the SST data from the NCEP/NCAR reanalysis to determine pCO 2 sea and air-sea CO 2 flux in these seas. The pCO 2 sea values were normalized to the year 1995 by assuming that pCO 2 sea increased at the same growth rate (1.5 μatm/yr) of the pCO 2 in the air (pCO 2 air ) between 1992 and 2001. In 1995, the annual net air-sea CO 2 fluxes were evaluated to be 52 ± 20 gC/m 2 /yr in the Greenland Sea and 46 ± 18 gC/m 2 /yr in the Barents Sea. The CO 2 flux into the ocean reached its maximum in winter and minimum in summer. The wind speed and (delta)pCO 2 (=pCO 2 air -pCO 2 sea ) exerted a greater influence on the seasonal variation than the sea ice coverage. The annual CO 2 uptake examined in this study (70-80 deg N, 20 deg W-40 deg E) was estimated to be 0.050 ± 0.020 GtC/yr in 1995. The inter annual variation in the annual CO 2 uptake was found to be positively correlated with the North Atlantic Oscillation Index (NAOI) via wind strength but negatively correlated with (delta)pCO 2 and the sea ice coverage. The present results indicate that the variability in wind speed and sea ice coverage play a major role, while that in (delta)pCO 2 plays a minor role, in determining the interannual variation of CO 2 uptake in this area

  7. Arctic Ocean outflow and glacier-ocean interactions modify water over the Wandel Sea shelf (northeastern Greenland)

    DEFF Research Database (Denmark)

    Dmitrenko, Igor A.; Kirillov, Sergey A.; Rudels, Bert

    2017-01-01

    The first-ever conductivity-temperature-depth (CTD) observations on the Wandel Sea shelf in northeastern Greenland were collected in April-May 2015. They were complemented by CTDs taken along the continental slope during the Norwegian FRAM 2014-2015 drift. The CTD profiles are used to reveal...

  8. Influence of tropical atmospheric variability on Weddell Sea deep water convection

    Science.gov (United States)

    Kleppin, H.

    2016-02-01

    Climate reconstructions from ice core records in Greenland and Antarctica have revealed a series of abrupt climate transitions, showing a distinct relationship between northern and southern hemisphere climate during the last glacial period. The recent ice core records from West Antarctica (WAIS) point towards an atmospheric teleconnection as a possible trigger for the interhemispheric climate variability (Markle et al., 2015). An unforced simulation of the Community Climate System Model, version 4 (CCSM4) reveals Greenland warming and cooling events, caused by stochastic atmospheric forcing, that resemble Dansgaard-Oeschger cycles in pattern and magnitude (Kleppin et al., 2015). Anti-phased temperature changes in the Southern Hemisphere are small in magnitude and have a spatially varying pattern. We argue that both north and south high latitude climate variability is triggered by changes in tropical atmospheric deep convection in the western tropical Pacific. The atmospheric wave guide provides a fast communication pathway connecting the deep tropics and the polar regions. In the Southern Hemisphere this is manifested as a distinct pressure pattern over West Antarctica. These altered atmospheric surface conditions over the convective region can lead to destabilization of the water column and thus to convective overturning in the Weddell Sea. However, opposed to what is seen in the Northern Hemisphere no centennial scale variability can establish, due to the absence of a strong feedback mechanism between ocean, atmosphere and sea ice. Kleppin, H., Jochum, M., Otto-Bliesner, B., Shields, C. A., & Yeager, S. (2015). Stochastic Atmospheric Forcing as a Cause of Greenland Climate Transitions. Journal of Climate, (2015). Markle, B. and Coauthors (2015, April). Atmospheric teleconnections between the tropics and high southern latitudes during millennial climate change. In EGU General Assembly Conference Abstracts (Vol. 17, p. 2569).

  9. New geoid of Greenland: A case study of terrain and ice effects, GOCE and use of local sea level data

    DEFF Research Database (Denmark)

    Forsberg, René; Jensen, Tim Enzlberger

    2015-01-01

    Making an accurate geoid model of Greenland has always been a challenge due to the ice sheet and glaciers, and the rough topography and deep fjords in the ice free parts. Terrestrial gravity coverage has for the same reasons been relatively sparse, with an older airborne survey of the interior be...

  10. Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn.

    Science.gov (United States)

    Harper, J; Humphrey, N; Pfeffer, W T; Brown, J; Fettweis, X

    2012-11-08

    Surface melt on the Greenland ice sheet has shown increasing trends in areal extent and duration since the beginning of the satellite era. Records for melt were broken in 2005, 2007, 2010 and 2012. Much of the increased surface melt is occurring in the percolation zone, a region of the accumulation area that is perennially covered by snow and firn (partly compacted snow). The fate of melt water in the percolation zone is poorly constrained: some may travel away from its point of origin and eventually influence the ice sheet's flow dynamics and mass balance and the global sea level, whereas some may simply infiltrate into cold snow or firn and refreeze with none of these effects. Here we quantify the existing water storage capacity of the percolation zone of the Greenland ice sheet and show the potential for hundreds of gigatonnes of meltwater storage. We collected in situ observations of firn structure and meltwater retention along a roughly 85-kilometre-long transect of the melting accumulation area. Our data show that repeated infiltration events in which melt water penetrates deeply (more than 10 metres) eventually fill all pore space with water. As future surface melt intensifies under Arctic warming, a fraction of melt water that would otherwise contribute to sea-level rise will fill existing pore space of the percolation zone. We estimate the lower and upper bounds of this storage sink to be 322 ± 44 gigatonnes and  1,289(+388)(-252) gigatonnes, respectively. Furthermore, we find that decades are required to fill this pore space under a range of plausible future climate conditions. Hence, routing of surface melt water into filling the pore space of the firn column will delay expansion of the area contributing to sea-level rise, although once the pore space is filled it cannot quickly be regenerated.

  11. How Will Sea Ice Loss Affect the Greenland Ice Sheet? On the Puzzling Features of Greenland Ice-Core Isotopic Composition

    Science.gov (United States)

    Pausata, Francesco S. R.; Legrande, Allegra N.; Roberts, William H. G.

    2016-01-01

    The modern cryosphere, Earth's frozen water regime, is in fast transition. Greenland ice cores show how fast theses changes can be, presenting evidence of up to 15 C warming events over timescales of less than a decade. These events, called Dansgaard/Oeschger (D/O) events, are believed to be associated with rapid changes in Arctic sea ice, although the underlying mechanisms are still unclear. The modern demise of Arctic sea ice may, in turn, instigate abrupt changes on the Greenland Ice Sheet. The Arctic Sea Ice and Greenland Ice Sheet Sensitivity (Ice2Ice Chttps://ice2ice.b.uib.noD) initiative, sponsored by the European Research Council, seeks to quantify these past rapid changes to improve our understanding of what the future may hold for the Arctic. Twenty scientists gathered in Copenhagen as part of this initiative to discuss the most recent observational, technological, and model developments toward quantifying the mechanisms behind past climate changes in Greenland. Much of the discussion focused on the causes behind the changes in stable water isotopes recorded in ice cores. The participants discussed sources of variability for stable water isotopes and framed ways that new studies could improve understanding of modern climate. The participants also discussed how climate models could provide insights into the relative roles of local and nonlocal processes in affecting stable water isotopes within the Greenland Ice Sheet. Presentations of modeling results showed how a change in the source or seasonality of precipitation could occur not only between glacial and modern climates but also between abrupt events. Recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. Further, indications from recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. This feature complicates

  12. Taxonomic research on deep-sea macrofauna in the South China Sea using the Chinese deep-sea submersible Jiaolong.

    Science.gov (United States)

    Li, Xinzheng

    2017-07-01

    This paper reviews the taxonomic and biodiversity studies of deep-sea invertebrates in the South China Sea based on the samples collected by the Chinese manned deep-sea submersible Jiaolong. To date, 6 new species have been described, including the sponges Lophophysema eversa, Saccocalyx microhexactin and Semperella jiaolongae as well as the crustaceans Uroptychus jiaolongae, Uroptychus spinulosus and Globospongicola jiaolongi; some newly recorded species from the South China Sea have also been reported. The Bathymodiolus platifrons-Shinkaia crosnieri deep-sea cold seep community has been reported by Li (2015), as has the mitochondrial genome of the glass sponge L. eversa by Zhang et al. (2016). The population structures of two dominant species, the shrimp Shinkaia crosnieri and the mussel Bathymodiolus platifrons, from the cold seep Bathymodiolus platifrons-Shinkaia crosnieri community in the South China Sea and the hydrothermal vents in the Okinawa Trough, were compared using molecular analysis. The systematic position of the shrimp genus Globospongicola was discussed based on 16S rRNA gene sequences. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  13. A new procedure for deep sea mining tailings disposal

    NARCIS (Netherlands)

    Ma, W.; Schott, D.L.; Lodewijks, G.

    2017-01-01

    Deep sea mining tailings disposal is a new environmental challenge related to water pollution, mineral crust waste handling, and ocean biology. The objective of this paper is to propose a new tailings disposal procedure for the deep sea mining industry. Through comparisons of the tailings disposal

  14. The dynamics of biogeographic ranges in the deep sea.

    Science.gov (United States)

    McClain, Craig R; Hardy, Sarah Mincks

    2010-12-07

    Anthropogenic disturbances such as fishing, mining, oil drilling, bioprospecting, warming, and acidification in the deep sea are increasing, yet generalities about deep-sea biogeography remain elusive. Owing to the lack of perceived environmental variability and geographical barriers, ranges of deep-sea species were traditionally assumed to be exceedingly large. In contrast, seamount and chemosynthetic habitats with reported high endemicity challenge the broad applicability of a single biogeographic paradigm for the deep sea. New research benefiting from higher resolution sampling, molecular methods and public databases can now more rigorously examine dispersal distances and species ranges on the vast ocean floor. Here, we explore the major outstanding questions in deep-sea biogeography. Based on current evidence, many taxa appear broadly distributed across the deep sea, a pattern replicated in both the abyssal plains and specialized environments such as hydrothermal vents. Cold waters may slow larval metabolism and development augmenting the great intrinsic ability for dispersal among many deep-sea species. Currents, environmental shifts, and topography can prove to be dispersal barriers but are often semipermeable. Evidence of historical events such as points of faunal origin and climatic fluctuations are also evident in contemporary biogeographic ranges. Continued synthetic analysis, database construction, theoretical advancement and field sampling will be required to further refine hypotheses regarding deep-sea biogeography.

  15. Sea-level proxies in Holocene raised beach ridge deposits (Greenland) revealed by ground-penetrating radar.

    Science.gov (United States)

    Nielsen, Lars; Bendixen, Mette; Kroon, Aart; Hede, Mikkel Ulfeldt; Clemmensen, Lars B; Weβling, Ronny; Elberling, Bo

    2017-04-19

    Identification of sea-level proxies is important for reconstruction of past sea-level variation. Methods for reconstructing Holocene relative sea-level curves are crucial for quantification of the impact of Greenland ice thickness variation on global sea level and vertical land movement. Arctic beach ridges constitute important potential archives of sea-level variation. However, their surface morphology may have undergone modification since deposition due to freezing/thawing processes and erosion, and their morphology may therefore not be trustworthy for sea-level reconstruction. Therefore, geophysical imaging is used to examine the internal structures of the beach ridges and to define a sea-level proxy unaffected by surface processes. The GPR reflections from study sites in West and South Greenland show deposition of beachface deposits and upper shoreface deposits; the contact between steeply dipping beachface reflections and less-dipping shoreface reflections is used as sea-level proxy. Numerous points are identified along GPR transects facilitating reconstruction of relative sea-level variation of hitherto unprecedented resolution. Erosional events and deformation caused by freezing/thawing processes are clearly delineated. The approach constitutes a solid base for reconstruction of relative sea-level curves affected by a well-defined vertical land movement history since the studied beach ridge systems represent long time intervals and only relatively small spatial extents.

  16. Abrupt Greenland Ice Sheet runoff and sea water temperature changes since 1821, recorded by coralline algae

    Science.gov (United States)

    Kamenos, N.; Hoey, T.; Bedford, J.; Claverie, T.; Fallick, A. E.; Lamb, C. M.; Nienow, P. W.; O'Neill, S.; Shepherd, I.; Thormar, J.

    2012-12-01

    The Greenland Ice Sheet (GrIS) contains the largest store of fresh water in the northern hemisphere, equivalent to ~7.4m of eustatic sea level rise, but its impacts on current, past and future sea level, ocean circulation and European climate are poorly understood. Previous estimates of GrIS melt, from 26 years of satellite observations and temperature driven melt-models over 48 years, show a trend of increasing melt. There are however no runoff data of comparable duration with which to validate temperature-based runoff models, or relationships between the spatial extent of melt and runoff. Further, longer runoff records that extend GrIS melt records to centennial timescales will enable recently observed trends to be put into a better historical context. We measured Mg/Ca, δ18O and structural cell size in annual growth bands of red coralline algae to reconstruct: (1) near surface sea water temperature; and, (2) melt/runoff from the GrIS. (1) Temperature: we reconstructed the longest (1821-2009) sub-annual resolution record of water temperature in Disko Bugt (western Greenland) showing an abrupt change in temperature oscillation patterns during the 1920s which may be attributable to the interaction between atmospheric temperature and mass loss from Jakobshavn Isbrae glacier. (2) GrIS runoff: using samples from distal parts of Søndre Strømfjord we produced the first reconstruction of decadal (1939-2002) GrIS runoff. We observed significant negative relationships between historic runoff, relative salinity and marine summer temperature. Our reconstruction shows a trend of increasing reconstructed runoff since the mid 1980s. In situ summer marine temperatures followed a similar trend. We suggest that since 1939 atmospheric temperatures have been important in forcing runoff. Subject to locating in situ coralline algae samples, these methods can be applied across hundreds to thousands of years. These results show that our technique has significant potential to enhance

  17. The distribution of deep-sea sponge aggregations in the North Atlantic and implications for their effective spatial management

    Science.gov (United States)

    Howell, Kerry-Louise; Piechaud, Nils; Downie, Anna-Leena; Kenny, Andrew

    2016-09-01

    Sponge aggregations have been recognised as key component of shallow benthic ecosystems providing several important functional roles including habitat building and nutrient recycling. Within the deep-sea ecosystem, sponge aggregations may be extensive and available evidence suggests they may also play important functional roles, however data on their ecology, extent and distribution in the North Atlantic is lacking, hampering conservation efforts. In this study, we used Maximum Entropy Modelling and presence data for two deep-sea sponge aggregation types, Pheronema carpenteri aggregations and ostur aggregations dominated by geodid sponges, to address the following questions: 1) What environmental factors drive the broad-scale distribution of these selected sponge grounds? 2) What is the predicted distribution of these grounds in the northern North Atlantic, Norwegian and Barents Sea? 3) How are these sponge grounds distributed between Exclusive Economic Zones (EEZs) and High Seas areas? 4) What percentage of these grounds in High Seas areas are protected by the current High Seas MPA network? Our results suggest that silicate concentration, temperature, depth and amount of particulate organic carbon are the most important drivers of sponge distribution. Most of the sponge grounds are located within national EEZs rather than in the High Seas. Coordinated conservation planning between nations with significant areas of sponge grounds such as Iceland, Greenland and Faroes (Denmark), Norway (coastal Norway and Svalbard), Portugal and the UK, should be implemented in order to effectively manage these communities in view of the increasing level of human activity within the deep-sea environment.

  18. Authigenic gypsum in a deep sea core from Southeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.

    Authigenic gypsum has been encountered in a deep sea core RC9-157 from the southeastern Arabian Sea at a depth of 4111 m which is a zone of lysocline. The formation of gypsum in the deep sea region is attributed to the prevailing sulphate rich...

  19. Light at deep sea hydrothermal vents

    Science.gov (United States)

    Van Dover, Cindy Lee; Cann, J. R.; Cavanaugh, Colleen; Chamberlain, Steven; Delaney, John R.; Janecky, David; Imhoff, Johannes; Tyson, J. Anthony

    We usually think of the bottom of the sea as a dark environment, lit only by flashes of bioluminescent light. Discovery of light associated with geothermal processes at deep sea hydrothermal vents forces us to qualify our textbook descriptions of the seafloor as a uniformly dark environment. While a very dim glow emitted from high temperature (350°) vents (black smokers) at mid-oceanic ridge spreading centers has been documented [Van Dover et al, 1988], the source of this light and its role, if any, in the evolution and adaptation of photobiochemical processes have yet to be determined. Preliminary studies indicate that thermal radiation alone may account for the “glow” ]Smith and Delaney, 1989] and that a novel photoreceptor in shrimp-colonizing black smoker chimneys may detect this “glow” [Van Dover et al., 1989; Pelli and Chamberlain, 1989]. A more controversial question, posed by C. L. Van Dover, J. R. Cann, and J. R. Delaney at the 1993 LITE Workshop at the Woods Hole Oceanographic Institution in Massachusetts, is whether there may be sufficient light of appropriate wavelengths to support geothermally driven photosynthesis by microorganisms.

  20. Geophysical survey of the Eggvin Bank and Logi Ridge - Greenland Sea

    Science.gov (United States)

    Breivik, A. J.; Mjelde, R.; Rai, A. K.; Frassetto, A.

    2012-12-01

    The northern Greenland Sea has a number of features associated with excess volcanism. These include the Jan Mayen island, the Jan Mayen Plateau north of, and the Eggvin Bank west of Jan Mayen, and the Vesteris Seamount far to the north. In the summer of 2011, we colleced an Ocean Bottom Seismometer (OBS) profile across the Eggvin Bank, returning four good data sets. We also collected single-channel reflection seismic (SCS) data along the OBS line. The profile crosses the transform part of the West Jan Mayen Fracture Zone (WJMFZ), which connects seafloor spreading between the Kolbeinsey and Mohn ridges. Between the WJMFZ and the Vesteris Seamount there is a narrow ridge 170-180 km long, ending in a few seamounts in the east. It disturbs the magnetic seafloor anomalies, and has no conjugate on the Norwegian margin. It thus appears to be younger than the Eocene seafloor it lies on. Trend and position points to Traill Ø in East Greenland, which had magmatism at ~36 Ma. We name it the Logi Ridge after Norse mythology, where Logi is the master of fire, brother of Aegir, master of the sea. We have collected five SCS profiles across this ridge in order to study the surrounding sedimentation pattern. We also collected gravity and magnetic data along all profiles. Initial results show two flat-topped seamounts on the Eggvin Bank, and a flat-topped Logi Ridge, indicating that these have been at sealevel. The sedimentary strata show recent vertical movement north of the WJMFZ near the Jan Mayen Plateau, and compression around the Logi Ridge. Sailing line of R/V Håkon Mosby of Bergen. Survey lines are in bold, and OBS positions are marked by circles.

  1. Regions of open water and melting sea ice drive new particle formation in North East Greenland.

    Science.gov (United States)

    Dall Osto, M; Geels, C; Beddows, D C S; Boertmann, D; Lange, R; Nøjgaard, J K; Harrison, Roy M; Simo, R; Skov, H; Massling, A

    2018-04-17

    Atmospheric new particle formation (NPF) and growth significantly influences the indirect aerosol-cloud effect within the polar climate system. In this work, the aerosol population is categorised via cluster analysis of aerosol number size distributions (9-915 nm, 65 bins) taken at Villum Research Station, Station Nord (VRS) in North Greenland during a 7 year record (2010-2016). Data are clustered at daily averaged resolution; in total, we classified six categories, five of which clearly describe the ultrafine aerosol population, one of which is linked to nucleation events (up to 39% during summer). Air mass trajectory analyses tie these frequent nucleation events to biogenic precursors released by open water and melting sea ice regions. NPF events in the studied regions seem not to be related to bird colonies from coastal zones. Our results show a negative correlation (r = -0.89) between NPF events and sea ice extent, suggesting the impact of ultrafine Arctic aerosols is likely to increase in the future, given the likely increased sea ice melting. Understanding the composition and the sources of Arctic aerosols requires further integrated studies with joint multi-component ocean-atmosphere observation and modelling.

  2. Cloud amount/frequency, TRANSMISSIVITY and other data from BARTLETT in the Greenland Sea from 1989-09-07 to 1989-09-20 (NODC Accession 9200159)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and other data were collected in Greenland Sea. Data was collected from Ship BARTLETT. The data was collected over a...

  3. Cloud amount/frequency, TRANSMISSIVITY and other data from BARTLETT in the Greenland Sea from 1990-08-02 to 1990-08-20 (NODC Accession 9200158)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and other data were collected in Greenland Sea. Data was collected from Ship BARTLETT. The data was collected over a...

  4. Plankton data collected from instrumented tower and net casts in the Greenland Sea from the POLARSTERN from 09 June 1991 to 16 June 1991 (NODC Accession 0000772)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Plankton data were collected using instrumented tower and net casts from the POLARSTERN in the Greenland Sea. Data were collected from 09 June 1991 to 16 June 1991....

  5. Greenland, my greenland

    DEFF Research Database (Denmark)

    Andersen, Astrid

    2016-01-01

    In 2012, Visit Greenland, the Greenlandic national tourist organisation, conducted a survey on Danish prejudices towards Greenland and Greenlanders. The survey, linked to an ambivalent nation-building strategy that pitched Greenland as ‘the pioneering nation’, was aimed both at challenging...... tourist audience more concerned with preserving whales than with accepting the sustainable visions of indigenous modernity that are currently being articulated by Greenlanders. Contemporary Greenlandic nation branding is a response to these internal and external dichotomies....

  6. A deep sea community at the Kebrit brine pool in the Red Sea

    KAUST Repository

    Vestheim, Hege; Kaartvedt, Stein

    2015-01-01

    Approximately 25 deep sea brine pools occur along the mid axis of the Red Sea. These hypersaline, anoxic, and acidic environments have previously been reported to host diverse microbial communities. We visited the Kebrit brine pool in April 2013

  7. Landform partitioning and estimates of deep storage of soil organic matter in Zackenberg, Greenland

    Directory of Open Access Journals (Sweden)

    J. Palmtag

    2018-05-01

    Full Text Available Soils in the northern high latitudes are a key component in the global carbon cycle, with potential feedback on climate. This study aims to improve the previous soil organic carbon (SOC and total nitrogen (TN storage estimates for the Zackenberg area (NE Greenland that were based on a land cover classification (LCC approach, by using geomorphological upscaling. In addition, novel organic carbon (OC estimates for deeper alluvial and deltaic deposits (down to 300 cm depth are presented. We hypothesise that landforms will better represent the long-term slope and depositional processes that result in deep SOC burial in this type of mountain permafrost environments. The updated mean SOC storage for the 0–100 cm soil depth is 4.8 kg C m−2, which is 42 % lower than the previous estimate of 8.3 kg C m−2 based on land cover upscaling. Similarly, the mean soil TN storage in the 0–100 cm depth decreased with 44 % from 0.50 kg (± 0.1 CI to 0.28 (±0.1 CI kg TN m−2. We ascribe the differences to a previous areal overestimate of SOC- and TN-rich vegetated land cover classes. The landform-based approach more correctly constrains the depositional areas in alluvial fans and deltas with high SOC and TN storage. These are also areas of deep carbon storage with an additional 2.4 kg C m−2 in the 100–300 cm depth interval. This research emphasises the need to consider geomorphology when assessing SOC pools in mountain permafrost landscapes.

  8. Landform partitioning and estimates of deep storage of soil organic matter in Zackenberg, Greenland

    Science.gov (United States)

    Palmtag, Juri; Cable, Stefanie; Christiansen, Hanne H.; Hugelius, Gustaf; Kuhry, Peter

    2018-05-01

    Soils in the northern high latitudes are a key component in the global carbon cycle, with potential feedback on climate. This study aims to improve the previous soil organic carbon (SOC) and total nitrogen (TN) storage estimates for the Zackenberg area (NE Greenland) that were based on a land cover classification (LCC) approach, by using geomorphological upscaling. In addition, novel organic carbon (OC) estimates for deeper alluvial and deltaic deposits (down to 300 cm depth) are presented. We hypothesise that landforms will better represent the long-term slope and depositional processes that result in deep SOC burial in this type of mountain permafrost environments. The updated mean SOC storage for the 0-100 cm soil depth is 4.8 kg C m-2, which is 42 % lower than the previous estimate of 8.3 kg C m-2 based on land cover upscaling. Similarly, the mean soil TN storage in the 0-100 cm depth decreased with 44 % from 0.50 kg (± 0.1 CI) to 0.28 (±0.1 CI) kg TN m-2. We ascribe the differences to a previous areal overestimate of SOC- and TN-rich vegetated land cover classes. The landform-based approach more correctly constrains the depositional areas in alluvial fans and deltas with high SOC and TN storage. These are also areas of deep carbon storage with an additional 2.4 kg C m-2 in the 100-300 cm depth interval. This research emphasises the need to consider geomorphology when assessing SOC pools in mountain permafrost landscapes.

  9. Nuclear wastes beneath the deep sea floor

    International Nuclear Information System (INIS)

    Bishop, W.P.; Hollister, C.D.

    1974-01-01

    Projections of energy demands for the year 2000 show that nuclear power will likely be one of our energy sources. But the benefits of nuclear power must be balanced against the drawbacks of its by-product: high-level wastes. While it may become possible to completely destroy or eliminate these wastes, it is at least equally possible that we may have to dispose of them on earth in such a way as to assure their isolation from man for periods of the order of a million years. Undersea regions in the middle of tectonic plates and in the approximate center of major current gyres offer some conceptual promise for waste disposal because of their geologic stability and comparatively low organic productivity. The advantages of this concept and the types of detailed information needed for its accurate assessment are discussed. The technical feasibility of permanent disposal beneath the deep sea floor cannot be accurately assessed with present knowledge, and there is a need for a thorough study of the types and rates of processes that affect this part of the earth's surface. Basic oceanographic research aimed at understanding these processes is yielding answers that apply to this societal need. (U.S.)

  10. Correlation between sea surface temperature and wind speed in Greenland Sea and their relationships with NAO variability

    Directory of Open Access Journals (Sweden)

    Bo Qu

    2012-09-01

    Full Text Available The North Atlantic Oscillation (NAO is one of the major causes of many recent changes in the Arctic Ocean. Generally, it is related to wind speed, sea surface temperature (SST, and sea ice cover. In this study, we analyzed the distributions of and correlations between SST, wind speed, NAO, and sea ice cover from 2003 to 2009 in the Greenland Sea at 10°W to 10°E, 65°N to 80°N. SST reached its peak in July, while wind speed reached its minimum in July. Seasonal variability of SST and wind speed was different for different regions. SST and wind speed mainly had negative correlations. Detailed correlation research was focused on the 75°N to 80°N band. Regression analysis shows that in this band, the variation of SST lagged three months behind that of wind speed. Ice cover and NAO had a positive correlation, and the correlation coefficient between ice cover and NAO in the year 2007 was 0.61. SST and NAO also had a positive correlation, and SST influenced NAO one month in advance. The correlation coefficients between SST and NAO reached 0.944 for the year 2005, 0.7 for the year 2008, and 0.74 for the year 2009 after shifting SST one month later. NAO also had a positive correlation with wind speed, and it also influenced wind speed one month in advance. The correlation coefficients between NAO and wind speed reached 0.783, 0.813, and 0.818 for the years 2004, 2005, and 2008, respectively, after shifting wind speed one month earlier.

  11. QUANTIFYING REGIONAL SEA LEVEL RISE CONTRIBUTIONS FROM THE GREENLAND ICE SHEET

    Directory of Open Access Journals (Sweden)

    Diandong Ren

    2013-01-01

    Full Text Available This study projects the sea level contribution from the Greenland ice sheet (GrIS through to 2100, using a recently developed ice dynamics model forced by atmospheric parameters derived from three different climate models (CGCMs. The geographical pattern of the near-surface ice warming imposes a divergent flow field favoring mass loss through enhanced ice flow. The calculated average mass loss rate during the latter half of the 21st century is ~0.64±0.06 mm/year eustatic sea level rise, which is significantly larger than the IPCC AR4 estimate from surface mass balance. The difference is due largely to the positive feedbacks from reduced ice viscosity and the basal sliding mechanism present in the ice dynamics model. This inter-model, inter-scenario spread adds approximately a 20% uncertainty to the IPCC ice model estimates. The sea level rise is geographically non-uniform and reaches 1.69±0.24 mm/year by 2100 for the northeast coastal region of the United States, amplified by the expected weakening of the Atlantic meridional overturning circulation (AMOC. In contrast to previous estimates, which neglected the GrIS fresh water input, both sides of the North Atlantic Gyre are projected to experience sea level rises. The impacts on a selection of major cities on both sides of the Atlantic and in the Pacific and southern oceans also are assessed. The other ocean basins are found to be less affected than the Atlantic Ocean.

  12. Radiocaesium ({sup 137}Cs) in marine mammals from Svalbard, the Barents Sea and the North Greenland Sea

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Magnus; Kovacs, Kit M.; Lydersen, Christian [Norwegian Polar Institute, N-9296, Tromsoe (Norway); Gwynn, Justin P.; Dowdall, Mark [Norwegian Radiation Protection Authority, N-9296, Tromsoe (Norway)

    2006-06-15

    Specific activities of the anthropogenic radionuclide, {sup 137}Cs, were determined in marine mammals from Svalbard and the Barents and North Greenland Seas. Muscle samples were collected from 12 polar bears, 15 ringed seals, 10 hooded seals, 7 bearded seals, 14 harp seals, one walrus, one white whale and one blue whale in the period 2000-2003. The mean concentrations (+/-SD) of {sup 137}Cs were: 0.72+/-0.62 Bq/kg wet weight (w.w.) for polar bears; 0.49+/-0.07 Bq/kg w.w. for ringed seals; 0.25+/-0.10 Bq/kg w.w. for hooded seals; 0.22+/-0.11 Bq/kg w.w. for bearded seals; 0.36+/-0.13 Bq/kg w.w. for harp seals; 0.67 Bq/kg w.w. for the white whale sample; 0.24 Bq/kg w.w. for the blue whale; and below detection limit for the walrus. Significant differences in {sup 137}Cs specific activities between some of the species were found. Ringed seals had higher specific activities than the other seal species in the study. Bearded seals and hooded seals had similar values, which were both significantly lower than the harp seal values. The results in the present study are consistent with previous reported results, indicating low specific activities of {sup 137}Cs in Arctic marine mammals in the Barents Sea and Greenland Sea region during the last 20 years. The species specific differences found may be explained by varying diet or movement and distribution patterns between species. No age related patterns were found in specific activities for the two species (polar bears and hooded seals) for which sufficient data was available. Concentration factors (CF) of {sup 137}Cs from seawater were determined for polar bears, ringed, bearded, harp and hooded seals. Mean CF values ranged from 79+/-32 (SD) for bearded seals sampled in 2002 to 244+/-36 (SD) for ringed seals sampled in 2003 these CF values are higher than those reported for fish and benthic organisms in the literature, suggesting bioaccumulation of {sup 137}Cs in the marine ecosystem. (author)

  13. U.V. repair in deep-sea bacteria

    International Nuclear Information System (INIS)

    Lutz, L.; Yayanos, A.A.

    1986-01-01

    Exposure of cells to light of less than 320 nanometers wavelengths may lead to lethal lesions and perhaps carcinogenesis. Many organisms have evolved mechanisms to repair U.V. light-induced damage. Organisms such as deep-sea bacteria are presumably never exposed to U.V. light and perhaps occasionally to visible from bioluminescence. Thus, the repair of U.V. damage in deep-sea bacterial DNA might be inefficient and repair by photoreactivation unlikely. The bacteria utilized in this investigation are temperature sensitive and barophilic. Four deep-sea isolates were chosen for this study: PE-36 from 3584 m, CNPT-3 from 5782 m, HS-34 from 5682 m, and MT-41 from 10,476 m, all are from the North Pacific ocean. The deep-sea extends from 1100 m to depths greater than 7000 m. It is a region of relatively uniform conditions. The temperature ranges from 5 to -1 0 C. There is no solar light in the deep-sea. Deep-sea bacteria are sensitive to U.V. light; in fact more sensitive than a variety of terrestrial and sea-surface bacteria. All four isolates demonstrate thymine dimer repair. Photoreactivation was observed in only MT-41. The other strains from shallower depths displayed no photoreactivation. The presence of DNA sequences homologous to the rec A, uvr A, B, and C and phr genes of E. coli have been examined by Southern hybridization techniques

  14. The biomass of the deep-sea benthopelagic plankton

    Science.gov (United States)

    Wishner, K. F.

    1980-04-01

    Deep-sea benthopelagic plankton samples were collected with a specially designed opening-closing net system 10 to 100 m above the bottom in five different oceanic regions at depths from 1000 to 4700 m. Benthopelagic plankton biomasses decrease exponentially with depth. At 1000 m the biomass is about 1% that of the surface zooplankton, at 5000 m about 0.1%. Effects of differences in surface primary productivity on deep-sea plankton biomass are much less than the effect of depth and are detectable only in a few comparisons of extreme oceanic regions. The biomass at 10 m above the bottom is greater than that at 100 m above the bottom (in a three-sample comparison), which could be a consequence of an enriched near-bottom environment. The deep-sea plankton biomass in the Red Sea is anomalously low. This may be due to increased decomposition rates in the warm (22°C) deep Red Sea water, which prevent much detritus from reaching the deep sea. A model of organic carbon utilization in the benthic boundary layer (bottom 100 m), incorporating results from deep-sea sediment trap and respiration studies, indicates that the benthopelagic plankton use only a small amount of the organic carbon flux. A large fraction of the flux is unaccounted for by present estimates of benthic and benthopelagic respiration.

  15. Challenging oil bioremediation at deep-sea hydrostatic pressure

    Directory of Open Access Journals (Sweden)

    Alberto Scoma

    2016-08-01

    Full Text Available The Deepwater Horizon (DWH accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (biotechnology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons at deep-sea remain unanswered, as much as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil take up are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled-oil. The fate of solid alkanes (tar and that of hydrocarbons degradation rates was largely overlooked, as the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea, despite being present at hydrocarbon seeps at the Gulf of Mexico. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation.

  16. Modelling Greenland icebergs

    Science.gov (United States)

    Marson, Juliana M.; Myers, Paul G.; Hu, Xianmin

    2017-04-01

    The Atlantic Meridional Overturning Circulation (AMOC) is well known for carrying heat from low to high latitudes, moderating local temperatures. Numerical studies have examined the AMOC's variability under the influence of freshwater input to subduction and deep convections sites. However, an important source of freshwater has often been overlooked or misrepresented: icebergs. While liquid runoff decreases the ocean salinity near the coast, icebergs are a gradual and remote source of freshwater - a difference that affects sea ice cover, temperature, and salinity distribution in ocean models. Icebergs originated from the Greenland ice sheet, in particular, can affect the subduction process in Labrador Sea by decreasing surface water density. Our study aims to evaluate the distribution of icebergs originated from Greenland and their contribution to freshwater input in the North Atlantic. To do that, we use an interactive iceberg module coupled with the Nucleus for European Modelling of the Ocean (NEMO v3.4), which will calve icebergs from Greenland according to rates established by Bamber et al. (2012). Details on the distribution and trajectory of icebergs within the model may also be of use for understanding potential navigation threats, as shipping increases in northern waters.

  17. The relationship between sea surface temperature and population change of Great Cormorants Phalacrocorax carbo breeding near Disko Bay, Greenland

    DEFF Research Database (Denmark)

    White, C.R.; Boertmann, David; Gremillet, D.

    2011-01-01

    waters. We show that rates of population change of Cormorant colonies around Disko Bay, Greenland, are positively correlated with sea surface temperature, suggesting that they may benefit from a warming Arctic. However, although Cormorant populations may increase in response to Arctic warming, the extent...... of expansion of their winter range may ultimately be limited by other factors, such as sensory constraints on foraging behaviour during long Arctic nights....

  18. Deep Sea Coral National Observation Database, Northeast Region

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The national database of deep sea coral observations. Northeast version 1.0. * This database was developed by the NOAA NOS NCCOS CCMA Biogeography office as part of...

  19. The MEUST deep sea infrastructure in the Toulon site

    Directory of Open Access Journals (Sweden)

    Lamare Patrick

    2016-01-01

    Full Text Available The MEUST infrastructure (Mediterranean Eurocentre for Underwater Sciences and Technologies is a permanent deep sea cabled infrastructure currently being deployed off shore of Toulon, France. The design and the status of the infrastructure are presented.

  20. Deep-sea impact experiments and their future requirements

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    In recent years, several experiments to assess the potential impacts due to deep-sea mining in the Pacific as well as the Indian Oceans have indicated the immediate changes and restoration patterns of environmental conditions in the marine ecosystem...

  1. Call to protect deep-sea coral, sponge ecosystems

    Science.gov (United States)

    Showstack, Randy

    2004-03-01

    More than 1100 scientists are signatories to a 15 February consensus statement calling for the protection of deep sea coral and sponge ecosystems. The statement indicates that ``the greatest human threat'' to these ecosystems ``is commercial fishing, especially bottom trawling.''

  2. Diversity and adaptations of deep-sea microorganisms

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    -tolerant enzymes, natural products of potential use in human health management and environmental bioremediation using solvent-tolerant microorganisms are some of the potential biotechnological applications of these deep-sea microbes....

  3. A new procedure for deep sea mining tailings disposal

    OpenAIRE

    Ma, W.; Schott, D.L.; Lodewijks, G.

    2017-01-01

    Deep sea mining tailings disposal is a new environmental challenge related to water pollution, mineral crust waste handling, and ocean biology. The objective of this paper is to propose a new tailings disposal procedure for the deep sea mining industry. Through comparisons of the tailings disposal methods which exist in on-land mining and the coastal mining fields, a new tailings disposal procedure, i.e., the submarine–backfill–dam–reuse (SBDR) tailings disposal procedure, is proposed. It com...

  4. Erbium-doped fiber lasers as deep-sea hydrophones

    International Nuclear Information System (INIS)

    Bagnoli, P.E.; Beverini, N.; Bouhadef, B.; Castorina, E.; Falchini, E.; Falciai, R.; Flaminio, V.; Maccioni, E.; Morganti, M.; Sorrentino, F.; Stefani, F.; Trono, C.

    2006-01-01

    The present work describes the development of a hydrophone prototype for deep-sea acoustic detection. The base-sensitive element is a single-mode erbium-doped fiber laser. The high sensitivity of these sensors makes them particularly suitable for a wide range of deep-sea acoustic applications, including geological and marine mammals surveys and above all as acoustic detectors in under-water telescopes for high-energy neutrinos

  5. First biological measurements of deep-sea corals from the Red Sea

    OpenAIRE

    C. Roder; M. L. Berumen; J. Bouwmeester; E. Papathanassiou; A. Al-Suwailem; C. R. Voolstra

    2013-01-01

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with ?deep-sea? and ?cold-water? corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20?C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the ...

  6. Microalgal composition and primary production in Arctic sea ice: a seasonal study from Kobbeijord (Kangerluarsunnguaq), West Greenland

    DEFF Research Database (Denmark)

    Mikkelsen, Ditte Marie; Rysgaard, Søren; Glud, Ronnie N.

    2008-01-01

    We investigated the microalgal community in sea ice and in the water column of Kobbefjord, west Greenland, through an entire sea ice season, Temporal variation in physical (photosynthetically active radiation [PAR), temperature, brine volume) and chemical (salinity, nutrient concentration......) properties confirmed that sea ice is a very dynamic habitat. Nevertheless, a viable sea ice algal comuunity was present throughout the year, with a species succession from flagellate dominance (dinoflagellates and cryptophytes) in December to February, followed by Chaetoceros simplex (a centric diatom...... (maxima of 1.8 and 2.6 mu g chl](-1) in March and May, respectively). Primary production mirrored biomass dynamic, which had 2 seasonal peaks of ca. 21 and 15 mg Cm-2 d(-1). Integrated primary production over 7 mo was 0.8 g Cm-2 in sea ice and 94.4 g C m(-2) in the water column, with the vast majority...

  7. Microalgal composition and primary production in Arctic sea ice: a seasonal study from Kobbeijord (Kangerluarsunnguaq), West Greenland

    DEFF Research Database (Denmark)

    Mikkelsen, Ditte Marie; Rysgaard, Søren; Glud, Ronnie N.

    2008-01-01

    We investigated the microalgal community in sea ice and in the water column of Kobbefjord, west Greenland, through an entire sea ice season, Temporal variation in physical (photosynthetically active radiation [PAR), temperature, brine volume) and chemical (salinity, nutrient concentration...... (maxima of 1.8 and 2.6 mu g chl](-1) in March and May, respectively). Primary production mirrored biomass dynamic, which had 2 seasonal peaks of ca. 21 and 15 mg Cm-2 d(-1). Integrated primary production over 7 mo was 0.8 g Cm-2 in sea ice and 94.4 g C m(-2) in the water column, with the vast majority......) properties confirmed that sea ice is a very dynamic habitat. Nevertheless, a viable sea ice algal comuunity was present throughout the year, with a species succession from flagellate dominance (dinoflagellates and cryptophytes) in December to February, followed by Chaetoceros simplex (a centric diatom...

  8. Bipolar gene flow in deep-sea benthic foraminifera

    DEFF Research Database (Denmark)

    Pawlowski, J.; Fahrni, J.; Lecroq, B.

    2007-01-01

    Despite its often featureless appearance, the deep-ocean floor includes some of the most diverse habitats on Earth. However, the accurate assessment of global deep-sea diversity is impeded by a paucity of data on the geographical ranges of bottom-dwelling species, particularly at the genetic leve...

  9. Deep-sea coral research and technology program: Alaska deep-sea coral and sponge initiative final report

    Science.gov (United States)

    Rooper, Chris; Stone, Robert P.; Etnoyer, Peter; Conrath, Christina; Reynolds, Jennifer; Greene, H. Gary; Williams, Branwen; Salgado, Enrique; Morrison, Cheryl L.; Waller, Rhian G.; Demopoulos, Amanda W.J.

    2017-01-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska’s marine waters. In some places, such as the central and western Aleutian Islands, deep-sea coral and sponge resources can be extremely diverse and may rank among the most abundant deep-sea coral and sponge communities in the world. Many different species of fishes and invertebrates are associated with deep-sea coral and sponge communities in Alaska. Because of their biology, these benthic invertebrates are potentially impacted by climate change and ocean acidification. Deepsea coral and sponge ecosystems are also vulnerable to the effects of commercial fishing activities. Because of the size and scope of Alaska’s continental shelf and slope, the vast majority of the area has not been visually surveyed for deep-sea corals and sponges. NOAA’s Deep Sea Coral Research and Technology Program (DSCRTP) sponsored a field research program in the Alaska region between 2012–2015, referred to hereafter as the Alaska Initiative. The priorities for Alaska were derived from ongoing data needs and objectives identified by the DSCRTP, the North Pacific Fishery Management Council (NPFMC), and Essential Fish Habitat-Environmental Impact Statement (EFH-EIS) process.This report presents the results of 15 projects conducted using DSCRTP funds from 2012-2015. Three of the projects conducted as part of the Alaska deep-sea coral and sponge initiative included dedicated at-sea cruises and fieldwork spread across multiple years. These projects were the eastern Gulf of Alaska Primnoa pacifica study, the Aleutian Islands mapping study, and the Gulf of Alaska fish productivity study. In all, there were nine separate research cruises carried out with a total of 109 at-sea days conducting research. The remaining projects either used data and samples collected by the three major fieldwork projects or were piggy-backed onto existing research programs at the Alaska Fisheries Science Center (AFSC).

  10. Factors governing the deep ventilation of the Red Sea

    KAUST Repository

    Papadopoulos, Vassilis P.

    2015-11-19

    A variety of data based on hydrographic measurements, satellite observations, reanalysis databases, and meteorological observations are used to explore the interannual variability and factors governing the deep water formation in the northern Red Sea. Historical and recent hydrographic data consistently indicate that the ventilation of the near-bottom layer in the Red Sea is a robust feature of the thermohaline circulation. Dense water capable to reach the bottom layers of the Red Sea can be regularly produced mostly inside the Gulfs of Aqaba and Suez. Occasionally, during colder than usual winters, deep water formation may also take place over coastal areas in the northernmost end of the open Red Sea just outside the Gulfs of Aqaba and Suez. However, the origin as well as the amount of deep waters exhibit considerable interannual variability depending not only on atmospheric forcing but also on the water circulation over the northern Red Sea. Analysis of several recent winters shows that the strength of the cyclonic gyre prevailing in the northernmost part of the basin can effectively influence the sea surface temperature (SST) and intensify or moderate the winter surface cooling. Upwelling associated with periods of persistent gyre circulation lowers the SST over the northernmost part of the Red Sea and can produce colder than normal winter SST even without extreme heat loss by the sea surface. In addition, the occasional persistence of the cyclonic gyre feeds the surface layers of the northern Red Sea with nutrients, considerably increasing the phytoplankton biomass.

  11. 40Ar/39Ar studies of deep sea igneous rocks

    International Nuclear Information System (INIS)

    Seidemann, D.

    1978-01-01

    An attempt to date deep-sea igneous rocks reliably was made using the 40 Ar/ 39 Ar dating technique. It was determined that the 40 Ar/ 39 Ar incremental release technique could not be used to eliminate the effects of excess radiogenic 40 Ar in deep-sea basalts. Excess 40 Ar is released throughout the extraction temperature range and cannot be distinguished from 40 Ar generated by in situ 40 K decay. The problem of the reduction of K-Ar dates associated with sea water alteration of deep-sea igneous rocks could not be resolved using the 40 Ar/ 39 Ar technique. Irradiation induced 39 Ar loss and/or redistribution in fine-grained and altered igneous rocks results in age spectra that are artifacts of the experimental procedure and only partly reflect the geologic history of the sample. Therefore, caution must be used in attributing significance to age spectra of fine grained and altered deep-sea igneous rocks. Effects of 39 Ar recoil are not important for either medium-grained (or coarser) deep-sea rocks or glasses because only a small fraction of the 39 Ar recoils to channels of easy diffusion, such as intergranular boundaries or cracks, during the irradiation. (author)

  12. Evolutionary process of deep-sea bathymodiolus mussels.

    Science.gov (United States)

    Miyazaki, Jun-Ichi; de Oliveira Martins, Leonardo; Fujita, Yuko; Matsumoto, Hiroto; Fujiwara, Yoshihiro

    2010-04-27

    Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4) genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of symbiosis in that nutritional adaptation to the deep sea proceeded from extracellular

  13. Evolutionary process of deep-sea bathymodiolus mussels.

    Directory of Open Access Journals (Sweden)

    Jun-Ichi Miyazaki

    Full Text Available BACKGROUND: Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. METHODOLOGY/PRINCIPAL FINDING: We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI and NADH dehydrogenase subunit 4 (ND4 genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. CONCLUSIONS/SIGNIFICANCE: The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of

  14. Seasonal variation of deep-sea bioluminescence in the Ionian Sea

    International Nuclear Information System (INIS)

    Craig, Jessica; Jamieson, Alan J.; Bagley, Philip M.; Priede, Imants G.

    2011-01-01

    The ICDeep (Image Intensified Charge Coupled Device for Deep sea research) profiler was used to measure the density of deep bioluminescent animals (BL) through the water column in the east, west and mid-Ionian Sea and in the Algerian Basin. A west to east decrease in BL density was found. Generalized additive modelling was used to investigate seasonal variation in the east and west Ionian Sea (NESTOR and NEMO neutrino telescope sites, respectively) from BL measurements in autumn 2008 and spring 2009. A significant seasonal effect was found in the west Ionian Sea (p<0.001), where a deep autumnal peak in BL density occurred between 500 and 2400 m. No significant seasonal variation in BL density was found in the east Ionian Sea (p=0.07). In both spring and autumn, significant differences in BL density were found through the water column between the east and west Ionian Sea (p<0.001).

  15. Seasonal variation of deep-sea bioluminescence in the Ionian Sea

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Jessica, E-mail: j.craig@abdn.ac.u [University of Aberdeen, Oceanlab, Main Street, Newburgh, Aberdeenshire, AB41 6AA (United Kingdom); Jamieson, Alan J.; Bagley, Philip M.; Priede, Imants G. [University of Aberdeen, Oceanlab, Main Street, Newburgh, Aberdeenshire, AB41 6AA (United Kingdom)

    2011-01-21

    The ICDeep (Image Intensified Charge Coupled Device for Deep sea research) profiler was used to measure the density of deep bioluminescent animals (BL) through the water column in the east, west and mid-Ionian Sea and in the Algerian Basin. A west to east decrease in BL density was found. Generalized additive modelling was used to investigate seasonal variation in the east and west Ionian Sea (NESTOR and NEMO neutrino telescope sites, respectively) from BL measurements in autumn 2008 and spring 2009. A significant seasonal effect was found in the west Ionian Sea (p<0.001), where a deep autumnal peak in BL density occurred between 500 and 2400 m. No significant seasonal variation in BL density was found in the east Ionian Sea (p=0.07). In both spring and autumn, significant differences in BL density were found through the water column between the east and west Ionian Sea (p<0.001).

  16. Classification of new-ice in the Greenland Sea using Satellite SSM/I radiometer and SeaWinds scatterometer data and comparison with ice model

    DEFF Research Database (Denmark)

    Tonboe, Rasmus; Pedersen, Leif Toudal

    2005-01-01

    In the ice covered waters of the Greenland Sea the polarisation ratio of QuikSCAT SeaWinds Ku-band (13.4 GHz) scatterometer measurements and the polarisation ratio of DMSP-SSM/I 19 GHz radiometer measurements are used in combination to classify new-ice and mature ice. In particular, the formation...... to the physical transition of the ice cover from pancake ice to a consolidated young-ice sheet. The classification of each pixel into ice or water is done using two scatterometer parameters, namely the polarisation ratio and the daily standard deviation of the backscatter. (C) 2005 Elsevier Inc. All rights...

  17. Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable.

    Directory of Open Access Journals (Sweden)

    Roberto Danovaro

    Full Text Available Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth, including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components

  18. Palaeogene tectono-stratigraphic evolution of the Western Barents Sea, Svalbard and Northeast Greenland

    DEFF Research Database (Denmark)

    Petersen, Thomas Guldborg

    This thesis contains a detailed interpretation of seismic facies of the Paleogene sedimentary succession on the Northeast Greenland Shelf. Based on this, a model for the depostional environment and its interplay with the large scale plate tectonic evolution is produced. The model suggests...... is similar and by using the dated volcanic events onshore Greenland temporal constraints of the deposition on the Northeast Greenland Shelf are much improved. Based on this correlation, the succession can be subdivided into pre-, syn- and post- volcanic intervals. The provenance of the sedimentary succession...

  19. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JOHAN HJORT in the Barents Sea, North Greenland Sea and Norwegian Sea from 1993-07-30 to 1993-08-15 (NODC Accession 0113559)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113559 includes chemical, discrete sample, physical and profile data collected from JOHAN HJORT in the Barents Sea, North Greenland Sea and Norwegian...

  20. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the HAKON MOSBY in the Barents Sea, North Greenland Sea and Norwegian Sea from 1999-10-03 to 1999-10-11 (NODC Accession 0113888)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113888 includes chemical, discrete sample, physical and profile data collected from HAKON MOSBY in the Barents Sea, North Greenland Sea and Norwegian...

  1. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from JOHAN HJORT in the Barents Sea, North Greenland Sea and Norwegian Sea from 2000-05-27 to 2000-06-20 (NODC Accession 0115683)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115683 includes biological, chemical, discrete sample, physical and profile data collected from JOHAN HJORT in the Barents Sea, North Greenland Sea...

  2. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JOHAN HJORT in the Barents Sea, North Greenland Sea and Norwegian Sea from 1999-06-15 to 1999-07-07 (NODC Accession 0115678)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115678 includes chemical, discrete sample, physical and profile data collected from JOHAN HJORT in the Barents Sea, North Greenland Sea and Norwegian...

  3. Species distribution models of tropical deep-sea snappers.

    Directory of Open Access Journals (Sweden)

    Céline Gomez

    Full Text Available Deep-sea fisheries provide an important source of protein to Pacific Island countries and territories that are highly dependent on fish for food security. However, spatial management of these deep-sea habitats is hindered by insufficient data. We developed species distribution models using spatially limited presence data for the main harvested species in the Western Central Pacific Ocean. We used bathymetric and water temperature data to develop presence-only species distribution models for the commercially exploited deep-sea snappers Etelis Cuvier 1828, Pristipomoides Valenciennes 1830, and Aphareus Cuvier 1830. We evaluated the performance of four different algorithms (CTA, GLM, MARS, and MAXENT within the BIOMOD framework to obtain an ensemble of predicted distributions. We projected these predictions across the Western Central Pacific Ocean to produce maps of potential deep-sea snapper distributions in 32 countries and territories. Depth was consistently the best predictor of presence for all species groups across all models. Bathymetric slope was consistently the poorest predictor. Temperature at depth was a good predictor of presence for GLM only. Model precision was highest for MAXENT and CTA. There were strong regional patterns in predicted distribution of suitable habitat, with the largest areas of suitable habitat (> 35% of the Exclusive Economic Zone predicted in seven South Pacific countries and territories (Fiji, Matthew & Hunter, Nauru, New Caledonia, Tonga, Vanuatu and Wallis & Futuna. Predicted habitat also varied among species, with the proportion of predicted habitat highest for Aphareus and lowest for Etelis. Despite data paucity, the relationship between deep-sea snapper presence and their environments was sufficiently strong to predict their distribution across a large area of the Pacific Ocean. Our results therefore provide a strong baseline for designing monitoring programs that balance resource exploitation and

  4. Ecosystem function and services provided by the deep sea

    Science.gov (United States)

    Thurber, A. R.; Sweetman, A. K.; Narayanaswamy, B. E.; Jones, D. O. B.; Ingels, J.; Hansman, R. L.

    2014-07-01

    The deep sea is often viewed as a vast, dark, remote, and inhospitable environment, yet the deep ocean and seafloor are crucial to our lives through the services that they provide. Our understanding of how the deep sea functions remains limited, but when treated synoptically, a diversity of supporting, provisioning, regulating and cultural services becomes apparent. The biological pump transports carbon from the atmosphere into deep-ocean water masses that are separated over prolonged periods, reducing the impact of anthropogenic carbon release. Microbial oxidation of methane keeps another potent greenhouse gas out of the atmosphere while trapping carbon in authigenic carbonates. Nutrient regeneration by all faunal size classes provides the elements necessary for fueling surface productivity and fisheries, and microbial processes detoxify a diversity of compounds. Each of these processes occur on a very small scale, yet considering the vast area over which they occur they become important for the global functioning of the ocean. The deep sea also provides a wealth of resources, including fish stocks, enormous bioprospecting potential, and elements and energy reserves that are currently being extracted and will be increasingly important in the near future. Society benefits from the intrigue and mystery, the strange life forms, and the great unknown that has acted as a muse for inspiration and imagination since near the beginning of civilization. While many functions occur on the scale of microns to meters and timescales up to years, the derived services that result are only useful after centuries of integrated activity. This vast dark habitat, which covers the majority of the globe, harbors processes that directly impact humans in a variety of ways; however, the same traits that differentiate it from terrestrial or shallow marine systems also result in a greater need for integrated spatial and temporal understanding as it experiences increased use by society. In

  5. Revealing Holobiont Structure and Function of Three Red Sea Deep-Sea Corals

    KAUST Repository

    Yum, Lauren

    2014-12-01

    Deep-sea corals have long been regarded as cold-water coral; however a reevaluation of their habitat limitations has been suggested after the discovery of deep-sea coral in the Red Sea where temperatures exceed 20˚C. To gain further insight into the biology of deep-sea corals at these temperatures, the work in this PhD employed a holotranscriptomic approach, looking at coral animal host and bacterial symbiont gene expression in Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus sp. sampled from the deep Red Sea. Bacterial community composition was analyzed via amplicon-based 16S surveys and cultured bacterial strains were subjected to bioprospecting in order to gauge the pharmaceutical potential of coralassociated microbes. Coral host transcriptome data suggest that coral can employ mitochondrial hypometabolism, anaerobic glycolysis, and surface cilia to enhance mass transport rates to manage the low oxygen and highly oligotrophic Red Sea waters. In the microbial community associated with these corals, ribokinases and retron-type reverse transcriptases are abundantly expressed. In its first application to deep-sea coral associated microbial communities, 16S-based next-generation sequencing found that a single operational taxonomic unit can comprise the majority of sequence reads and that a large number of low abundance populations are present, which cannot be visualized with first generation sequencing. Bioactivity testing of selected bacterial isolates was surveyed over 100 cytological parameters with high content screening, covering several major organelles and key proteins involved in a variety of signaling cascades. Some of these cytological profiles were similar to those of several reference pharmacologically active compounds, which suggest that the bacteria isolates produce compounds with similar mechanisms of action as the reference compounds. The sum of this work offers several mechanisms by which Red Sea deep-sea corals cope with environmental

  6. Past sea-level data from Lakse Bugt, Disko Island, West Greenland from ground-penetrating radar data

    DEFF Research Database (Denmark)

    Emerich Souza, Priscila; Nielsen, Lars; Kroon, Aart

    Beach-ridge deposits have been used as sea-level indicators in numerous studies from temperate coastal regions. However, their present surface morphology in artic regions may not accurately correspond to past sea-level, because subsequent surface erosion, solifluction processes and/or later...... sediment deposition may have altered the surface significantly. The internal structure of these beach ridges, however, is often well-preserved and thus constitutes an important key to reconstruction of past sea levels as seen elsewhere. In the present study, high-resolution reflection GPR data and high......-precision topographic data were collected at Lakse Bugt (Disko Island, West Greenland) using a shielded 250 MHz antennae system and a RTK-Trimble R8 DGPS, respectively. Three transects were collected across a sequence of fossil, raised beach ridge deposits, and two transects were obtained across modern beach deposits...

  7. A multi-archive coherent chronology: from Greenland to the Mediterranean sea

    Science.gov (United States)

    Bazin, Lucie; Landais, Amaelle; Lemieux-Dudon, Bénédicte; Siani, Giuseppe; Michel, Elisabeth; Combourieu-Nebout, Nathalie; Blamart, Dominique; Genty, Dominique

    2015-04-01

    Understanding the climate mechanisms requires a precise knowledge of the sequence of events during major climate changes. In order to provide precise relationships between changes in orbital and/or greenhouse gases concentration forcing, sea level changes and high vs low latitudes temperatures, a common chronological framework for different paleoclimatic archives is required. Coherent chronologies for ice cores have been recently produced using a bayesian dating tool, DATICE (Lemieux-Dudon et al., 2010, Bazin et al., 2013, Veres et al., 2013). Such tool has been recently developed to include marine cores and speleothems in addition to ice cores. This new development should enable one to test the coherency of different chronologies using absolute and stratigraphic links as well as to provide relationship between climatic changes recorded in different archives. We present here a first application of multi-archive coherent dating including paleoclimatic archives from (1) Greenland (NGRIP ice core), (2) Mediterranean sea (marine core MD90-917, 41° N17° E, 1010 m) and (3) speleothems from the South of France and North Tunisia (Chauvet, Villars and La Mine speleothems, Genty et al., 2006). Thanks to the good absolute chronological constraints from annual layer counting in NGRIP, 14C and tephra layers in MD90-917 and U-Th dating in speleothems, we can provide a precise chronological framework for the last 50 ka (ie. thousand years before present). Then, we present different tests on how to combine the records from the different archives and give the most plausible scenario for the sequence of events at different latitudes over the last deglaciation. Bazin, L., Landais, A. ; Lemieu¬-Dudon, B. ; Kele, H. T. M. ; Veres, D. ; Parrenin, F. ; Martinerie, P. ; Ritz, C. ; Capron, E. ; Lipenkov, V. ; Loutre, M.-F. ; Raynaud, D. ; Vinther, B. ; Svensson, A. ; Rasmussen, S. ; Severi, M. ; Blunier, T. ; Leuenberger, M. ; Fischer, H. ; Masson-¬-Delmotte, V. ; Chappellaz, J

  8. Studies of the reproductive biology of deep-sea megabenthos

    International Nuclear Information System (INIS)

    Tyler, P.A.

    1987-07-01

    The final report describes the general biology and ecology of the 15 holothurians, 3 asteroids, 2 zoanthids and 1 crustacea species studied in Reports I-XIII, the sampling methods used and the station data. A summary of the histological, histochemical and biochemical results for the species examined is given. The data suggest that the reproductive processes in the deep-sea species examined are highly unlikely to be part of a pathway for the transfer of radionuclides from the deep-sea back to man. (author)

  9. Water transparency measurements in the deep Ionian Sea

    CERN Document Server

    Anassontzis, E G; Belias, A; Fotiou, A; Grammatikakis, G; Kontogiannis, H; Koske, P; Koutsoukos, S; Lykoussis, V; Markopoulos, E; Psallidas, A; Resvanis, L K; Siotis, I; Stavrakakis, S; Stavropoulos, G; Zhukov, V A

    2010-01-01

    A long optical base line spectrophotometer designed to measure light transmission in deep sea waters is described. The variable optical path length allows measurements without the need for absolute or external calibration. The spectrophotometer uses eight groups of uncollimated light sources emitting in the range 370–530 nm and was deployed at various depths at two locations in the Ionian Sea that are candidate sites for a future underwater neutrino telescope. Light transmission spectra at the two locations are presented and compared.

  10. Oceanography related to deep sea waste disposal

    International Nuclear Information System (INIS)

    1978-09-01

    In connection with studies on the feasibility of the safe disposal of radioactive waste, from a large scale nuclear power programme, either on the bed of the deep ocean or within the deep ocean bed, preparation of the present document was commissioned by the (United Kingdom) Department of the Environment. It attempts (a) to summarize the present state of knowledge of the deep ocean environment relevant to the disposal options and assess the processes which could aid or hinder dispersal of material released from its container; (b) to identify areas of research in which more work is needed before the safety of disposal on, or beneath, the ocean bed can be assessed; and (c) to indicate which areas of research can or should be undertaken by British scientists. The programmes of international cooperation in this field are discussed. The report is divided into four chapters dealing respectively with geology and geophysics, geochemistry, physical oceanography and marine biology. (U.K.)

  11. Pollen from the Deep-Sea: A Breakthrough in the Mystery of the Ice Ages

    Directory of Open Access Journals (Sweden)

    María F. Sánchez Goñi

    2018-01-01

    Full Text Available Pollen from deep-sea sedimentary sequences provides an integrated regional reconstruction of vegetation and climate (temperature, precipitation, and seasonality on the adjacent continent. More importantly, the direct correlation of pollen, marine and ice indicators allows comparison of the atmospheric climatic changes that have affected the continent with the response of the Earth’s other reservoirs, i.e., the oceans and cryosphere, without any chronological uncertainty. The study of long continuous pollen records from the European margin has revealed a changing and complex interplay between European climate, North Atlantic sea surface temperatures (SSTs, ice growth and decay, and high- and low-latitude forcing at orbital and millennial timescales. These records have shown that the amplitude of the last five terrestrial interglacials was similar above 40°N, while below 40°N their magnitude differed due to precession-modulated changes in seasonality and, particularly, winter precipitation. These records also showed that vegetation response was in dynamic equilibrium with rapid climate changes such as the Dangaard-Oeschger (D-O cycles and Heinrich events, similar in magnitude and velocity to the ongoing global warming. However, the magnitude of the millennial-scale warming events of the last glacial period was regionally-specific. Precession seems to have imprinted regions below 40°N while obliquity, which controls average annual temperature, probably mediated the impact of D-O warming events above 40°N. A decoupling between high- and low-latitude climate was also observed within last glacial warm (Greenland interstadials and cold phases (Greenland stadials. The synchronous response of western European vegetation/climate and eastern North Atlantic SSTs to D-O cycles was not a pervasive feature throughout the Quaternary. During periods of ice growth such as MIS 5a/4, MIS 11c/b and MIS 19c/b, repeated millennial-scale cold-air/warm-sea

  12. Pollen from the Deep-Sea: A Breakthrough in the Mystery of the Ice Ages.

    Science.gov (United States)

    Sánchez Goñi, María F; Desprat, Stéphanie; Fletcher, William J; Morales-Molino, César; Naughton, Filipa; Oliveira, Dulce; Urrego, Dunia H; Zorzi, Coralie

    2018-01-01

    Pollen from deep-sea sedimentary sequences provides an integrated regional reconstruction of vegetation and climate (temperature, precipitation, and seasonality) on the adjacent continent. More importantly, the direct correlation of pollen, marine and ice indicators allows comparison of the atmospheric climatic changes that have affected the continent with the response of the Earth's other reservoirs, i.e., the oceans and cryosphere, without any chronological uncertainty. The study of long continuous pollen records from the European margin has revealed a changing and complex interplay between European climate, North Atlantic sea surface temperatures (SSTs), ice growth and decay, and high- and low-latitude forcing at orbital and millennial timescales. These records have shown that the amplitude of the last five terrestrial interglacials was similar above 40°N, while below 40°N their magnitude differed due to precession-modulated changes in seasonality and, particularly, winter precipitation. These records also showed that vegetation response was in dynamic equilibrium with rapid climate changes such as the Dangaard-Oeschger (D-O) cycles and Heinrich events, similar in magnitude and velocity to the ongoing global warming. However, the magnitude of the millennial-scale warming events of the last glacial period was regionally-specific. Precession seems to have imprinted regions below 40°N while obliquity, which controls average annual temperature, probably mediated the impact of D-O warming events above 40°N. A decoupling between high- and low-latitude climate was also observed within last glacial warm (Greenland interstadials) and cold phases (Greenland stadials). The synchronous response of western European vegetation/climate and eastern North Atlantic SSTs to D-O cycles was not a pervasive feature throughout the Quaternary. During periods of ice growth such as MIS 5a/4, MIS 11c/b and MIS 19c/b, repeated millennial-scale cold-air/warm-sea decoupling events

  13. Dynamic and static elastic moduli of North Sea and deep sea chalk

    DEFF Research Database (Denmark)

    Gommesen, Lars; Fabricius, Ida Lykke

    2001-01-01

    We have established an empirical relationship between the dynamic and the static mechanical properties of North Sea and deep sea chalk for a large porosity interval with respect to porosity, effective stress history and textural composition. The chalk investigated is from the Tor and Hod Formatio...

  14. Priapulus from the deep sea (Vermes, Priapulida)

    NARCIS (Netherlands)

    Land, van der J.

    1972-01-01

    INTRODUCTION The species of the genus Priapulus occur in rather cold water. Hence, their shallow-water distribution is restricted to northern and southern waters (fig. 1); there are only a few isolated records from sub-tropical localities. However, in deep water the genus apparently has a world-wide

  15. Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations

    Science.gov (United States)

    Bradley, Sarah; Reerink, Thomas; van de Wal, Roderik S. W.; Helsen, Michiel; Goelzer, Heiko

    2016-04-01

    Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. As there are few observational estimates of the long-term (yrs) sub marine basal melting rates (mbm) for the GIS, we developed a mbm parameterization within IMAU-ice controlled primarily by changes in paleo water depth. We also investigate the influence of the LIS on the GIS evolution by including relative sea level forcing's derived from a Glacial Isostatic Adjustment model. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but significantly reduces the GIS contribution to Last

  16. Age-dependent mixing of deep-sea sediments

    International Nuclear Information System (INIS)

    Smith, C.R.; Maggaard, L.; Pope, R.H.; DeMaster, D.J.

    1993-01-01

    Rates of bioturbation measured in deep-sea sediments commonly are tracer dependent; in particular, shorter lived radiotracers (such as 234 Th) often yield markedly higher diffusive mixing coefficients than their longer-lived counterparts (e.g., 210 Pb). At a single station in the 1,240-m deep Santa Catalina Basin, the authors document a strong negative correlation between bioturbation rate and tracer half-life. Sediment profiles of 234 Th (half-life = 24 days) yield an average mixing coefficient (60 cm 2 y -1 ) two orders of magnitude greater than that for 210 Pb (half-life = 22 y, mean mixing coefficient = 0.4 cm 2 y -1 ). A similar negative relationship between mixing rate and tracer time scale is observed at thirteen other deep-sea sites in which multiple radiotracers have been used to assess diffusive mixing rates. This relationship holds across a variety of radiotracer types and time scales. The authors hypothesize that this negative relationship results from age-dependent mixing, a process in which recently sedimented, food-rich particles are ingested and mixed at higher rates by deposit feeders than are older, food-poor particles. Results from an age-dependent mixing model demonstrate that this process indeed can yield the bioturbation-rate vs. tracer-time-scale correlations observed in deep-sea sediments. Field data on mixing rates of recently sedimented particles, as well as the radiotracer activity of deep-sea deposit feeders, provide strong support for the age-dependent mixing model. The presence of age-dependent mixing in deep-sea sediments may have major implications for diagenetic modeling, requiring a match between the characteristic time scales of mixing tracers and modeled reactants. 102 refs., 6 figs., 5 tabs

  17. Deep-Sea Microbes: Linking Biogeochemical Rates to -Omics Approaches

    Science.gov (United States)

    Herndl, G. J.; Sintes, E.; Bayer, B.; Bergauer, K.; Amano, C.; Hansman, R.; Garcia, J.; Reinthaler, T.

    2016-02-01

    Over the past decade substantial progress has been made in determining deep ocean microbial activity and resolving some of the enigmas in understanding the deep ocean carbon flux. Also, metagenomics approaches have shed light onto the dark ocean's microbes but linking -omics approaches to biogeochemical rate measurements are generally rare in microbial oceanography and even more so for the deep ocean. In this presentation, we will show by combining metagenomics, -proteomics and biogeochemical rate measurements on the bulk and single-cell level that deep-sea microbes exhibit characteristics of generalists with a large genome repertoire, versatile in utilizing substrate as revealed by metaproteomics. This is in striking contrast with the apparently rather uniform dissolved organic matter pool in the deep ocean. Combining the different -omics approaches with metabolic rate measurements, we will highlight some major inconsistencies and enigmas in our understanding of the carbon cycling and microbial food web structure in the dark ocean.

  18. Phosphate solubilizing bacteria: Comparison between coastal and deep sea sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Biche, S.; Pandey, S.; Gonsalves, M.J.B.D.; Das, A.; Mascarenhas-Pereira, M.B.L.; LokaBharathi, P.A.

    in the CIB sediments (r=0.59) than in the coastal sediments (r= 0.22). It is apparent that the enzyme activity in the coastal sediments could be more for P mobilization and in the oligotrophic deep sea it could be both for P and C mobilization....

  19. Fungi and macroaggregation in deep-sea sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.R.; Raghukumar, C.

    Whereas fungi in terrestrial soils have been well studied, little is known of them in deep-sea sediments. Recent studies have demonstrated the presence of fungal hyphae in such sediments but in low abundance. We present evidence in this study...

  20. Radio-active waste disposal and deep-sea biology

    International Nuclear Information System (INIS)

    Rice, A.L.

    1978-01-01

    The deep-sea has been widely thought of as a remote, sparsely populated, and biologically inactive environment, well suited to receive the noxious products of nuclear fission processes. Much of what is known of abyssal biology tends to support this view, but there are a few disquieting contra-indications. The realisation, in recent years, that many animal groups show a previously unsuspected high species diversity in the deep-sea emphasized the paucity of our knowledge of this environment. More dramatically, the discovery of a large, active, and highly mobile abysso-bentho-pelagic fauna changed the whole concept of abyssal life. Finally, while there is little evidence for the existence of vertical migration patterns linking the deep-sea bottom communities with those of the overlying water layers, there are similarly too few negative results for the possibility of such transport mechanisms to be dismissed. In summary, biological knowledge of the abyss is insufficient to answer the questions raised in connection with deep-sea dumping, but in the absence of adequate answers it might be dangerous to ignore the questions

  1. Species diversity variations in Neogene deep-sea benthic

    Indian Academy of Sciences (India)

    Some species of benthic foraminifera are sensitive to changes in water mass properties whereas others are sensitive to organic fluxes and deep-sea oxygenation. Benthic faunal diversity has been found closely linked to food web, bottom water oxygen levels, and substrate and water mass stability. The present study is ...

  2. Diverse deep-sea fungi from the South China Sea and their antimicrobial activity.

    Science.gov (United States)

    Zhang, Xiao-Yong; Zhang, Yun; Xu, Xin-Ya; Qi, Shu-Hua

    2013-11-01

    We investigated the diversity of fungal communities in nine different deep-sea sediment samples of the South China Sea by culture-dependent methods followed by analysis of fungal internal transcribed spacer (ITS) sequences. Although 14 out of 27 identified species were reported in a previous study, 13 species were isolated from sediments of deep-sea environments for the first report. Moreover, these ITS sequences of six isolates shared 84-92 % similarity with their closest matches in GenBank, which suggested that they might be novel phylotypes of genera Ajellomyces, Podosordaria, Torula, and Xylaria. The antimicrobial activities of these fungal isolates were explored using a double-layer technique. A relatively high proportion (56 %) of fungal isolates exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among four marine pathogenic microbes (Micrococcus luteus, Pseudoaltermonas piscida, Aspergerillus versicolor, and A. sydowii). Out of these antimicrobial fungi, the genera Arthrinium, Aspergillus, and Penicillium exhibited antibacterial and antifungal activities, while genus Aureobasidium displayed only antibacterial activity, and genera Acremonium, Cladosporium, Geomyces, and Phaeosphaeriopsis displayed only antifungal activity. To our knowledge, this is the first report to investigate the diversity and antimicrobial activity of culturable deep-sea-derived fungi in the South China Sea. These results suggest that diverse deep-sea fungi from the South China Sea are a potential source for antibiotics' discovery and further increase the pool of fungi available for natural bioactive product screening.

  3. Sorption of americium and neptunium by deep-sea sediments

    International Nuclear Information System (INIS)

    Higgo, J.J.W.; Rees, L.V.C.; Cronan, D.S.

    1983-01-01

    The sorption and desorption of americium and neptunium by a wide range of deep-sea sediments from natural sea water at 4 0 C has been studied using a carefully controlled batch technique. All the sediments studied should form an excellent barrier to the migration of americium since distribution coefficients were uniformly greater than 10 5 and the sorption-desorption reaction may not be reversible. The sorption of neptunium was reversible and, except for one red clay, the distribution coefficients were greater than 10 3 for all the sediments investigated. Nevertheless the migration of neptunium should also be effectively retarded by most deep-sea sediments even under relatively oxidizing conditions. The neptunium in solution remained in the V oxidation state throughout the experiments. Under the experimental conditions used colloidal americium was trapped by the sediment and solubility did not seem to be the controlling factor in the desorption of americium. (Auth.)

  4. Plastic microfibre ingestion by deep-sea organisms

    Science.gov (United States)

    Taylor, M. L.; Gwinnett, C.; Robinson, L. F.; Woodall, L. C.

    2016-09-01

    Plastic waste is a distinctive indicator of the world-wide impact of anthropogenic activities. Both macro- and micro-plastics are found in the ocean, but as yet little is known about their ultimate fate and their impact on marine ecosystems. In this study we present the first evidence that microplastics are already becoming integrated into deep-water organisms. By examining organisms that live on the deep-sea floor we show that plastic microfibres are ingested and internalised by members of at least three major phyla with different feeding mechanisms. These results demonstrate that, despite its remote location, the deep sea and its fragile habitats are already being exposed to human waste to the extent that diverse organisms are ingesting microplastics.

  5. Worldwide Analysis of Sedimentary DNA Reveals Major Gaps in Taxonomic Knowledge of Deep-Sea Benthos

    DEFF Research Database (Denmark)

    Sinniger, Frédéric; Pawlowski, Jan; Harii, Saki

    2016-01-01

    in 39 deep-sea sediment samples from bathyal and abyssal depths worldwide. The eDNA dataset was dominated by meiobenthic taxa and we identified all animal phyla commonly found in the deep-sea benthos; yet, the diversity within these phyla remains largely unknown. The large numbers of taxonomically...... for pure and applied deep-sea environmental research but also emphasizes the necessity to integrate such new approaches with traditional morphology-based examination of deep-sea organisms....

  6. Monitoring the impact of simulated deep-sea mining in Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.; Nath, B.N.; Jaisankar, S.

    Monitoring the Impact of Simulated Deep-sea Mining in Central Indian Basin R. SHARMA, B. NAGENDER NATH, AND S. JAI SANKAR National Institute of Oceanography, Dona Paula, Goa, India Monitoring of deep-sea disturbances, natural or man-made, has gained... has shown a partial recovery of the benthic ecosystem, with indications of restoration and recolonization. Keywords deep-sea mining, environmental impact, Central Indian Basin Deep-sea mineral deposits such as the polymetallic nodules and crusts...

  7. Quaternary redox transitions in deep crystalline rock fractures at the western margin of the Greenland ice sheet

    International Nuclear Information System (INIS)

    Drake, Henrik; Suksi, Juhani; Tullborg, Eva-Lena; Lahaye, Yann

    2017-01-01

    When planning for long term deep geological repositories for spent nuclear fuel knowledge of processes that will influence and change the sub-surface environment is crucial. For repositories in northern Europe and similar areas, influence from advancing and retreating continental ice sheets must be planned for. Rapid transport of meltwater into the bedrock may introduce oxic conditions at great depth, which may affect the copper canisters planned to encapsulate the spent fuel. The lack of direct observations has led to simplified modelling assumptions not reflecting the complexity of natural systems. As part of a unique field and modelling study, The Greenland Analogue Project, of a continental ice sheet and related sub-surface conditions, we here present mineralogical and U-series data unravelling the Quaternary redox history in the deep bedrock fracture system close to the margin of the Greenland ice sheet. The aim was to increase the understanding of circulation of potentially oxygenated glacial meltwater from the surface down to 650 m depth. Secondary mineral coatings were sampled from open fractures in cored boreholes down to 650 m, within and below the current permafrost. Despite continental ice sheet coverage and/or prevailing permafrost during large parts of the last 1 Ma, measured disequilibrium in the 238 U- 234 U- 230 Th system shows that water has circulated in the bedrock fracture system at various occasions during this time span. In fractures of the upper 60 m, infiltration of oxygenated surface water has resulted in a prominent near-surface ”oxidised zone” with abundant FeOOH precipitation. However, this zone must be relict because it is currently within permafrost and the U-series disequilibrium signatures of most fracture coatings show evidence of deposition of U prior to the Holocene and even prior to the last glaciation maximum which occurred less than 100 ka ago. This U deposition is found both within and below the near surface

  8. Deep water characteristics and circulation in the South China Sea

    Science.gov (United States)

    Wang, Aimei; Du, Yan; Peng, Shiqiu; Liu, Kexiu; Huang, Rui Xin

    2018-04-01

    This study investigates the deep circulation in the South China Sea (SCS) using oceanographic observations combined with results from a bottom layer reduced gravity model. The SCS water, 2000 m below the surface, is quite different from that in the adjacent Pacific Ocean, and it is characterized by its low dissolved oxygen (DO), high temperature and low salinity. The horizontal distribution of deep water properties indicates a basin-scale cyclonic circulation driven by the Luzon overflow. The results of the bottom layer reduced gravity model are consistent with the existence of the cyclonic circulation in the deep SCS. The circulation is stronger at the northern/western boundary. After overflowing the sill of the Luzon Strait, the deep water moves broadly southwestward, constrained by the 3500 m isobath. The broadening of the southward flow is induced by the downwelling velocity in the interior of the deep basin. The main deep circulation bifurcates into two branches after the Zhongsha Islands. The southward branch continues flowing along the 3500 m isobath, and the eastward branch forms the sub-basin scale cyclonic circulation around the seamounts in the central deep SCS. The returning flow along the east boundary is fairly weak. The numerical experiments of the bottom layer reduced gravity model reveal the important roles of topography, bottom friction, and the upwelling/downwelling pattern in controlling the spatial structure, particularly the strong, deep western boundary current.

  9. Extreme Low Light Requirement for Algae Growth Underneath Sea Ice: A Case Study From Station Nord, NE Greenland

    Science.gov (United States)

    Hancke, Kasper; Lund-Hansen, Lars C.; Lamare, Maxim L.; Højlund Pedersen, Stine; King, Martin D.; Andersen, Per; Sorrell, Brian K.

    2018-02-01

    Microalgae colonizing the underside of sea ice in spring are a key component of the Arctic foodweb as they drive early primary production and transport of carbon from the atmosphere to the ocean interior. Onset of the spring bloom of ice algae is typically limited by the availability of light, and the current consensus is that a few tens-of-centimeters of snow is enough to prevent sufficient solar radiation to reach underneath the sea ice. We challenge this consensus, and investigated the onset and the light requirement of an ice algae spring bloom, and the importance of snow optical properties for light penetration. Colonization by ice algae began in May under >1 m of first-year sea ice with ˜1 m thick snow cover on top, in NE Greenland. The initial growth of ice algae began at extremely low irradiance (automated high-frequency temperature profiles. We propose that changes in snow optical properties, caused by temperature-driven snow metamorphosis, was the primary driver for allowing sufficient light to penetrate through the thick snow and initiate algae growth below the sea ice. This was supported by radiative-transfer modeling of light attenuation. Implications are an earlier productivity by ice algae in Arctic sea ice than recognized previously.

  10. Storm-induced water dynamics and thermohaline structure at the tidewater Flade Isblink Glacier outlet to theWandel Sea (NE Greenland)

    DEFF Research Database (Denmark)

    Kirillov, Sergei; Dmitrenko, Igor; Rysgaard, Soren

    2017-01-01

    In April 2015, an ice-tethered conductivity-temperature-depth (CTD) profiler and a down-looking acoustic Doppler current profiler (ADCP) were deployed from the landfast ice near the tidewater glacier terminus of the Flade Isblink Glacier in the Wandel Sea, NE Greenland. The 3-week time series...

  11. Description of Pyramimonas diskoicola sp. nov. and the importance of the flagellate Pyramimonas (Prasinophyceae) in Greenland sea ice during the winter–spring transition

    DEFF Research Database (Denmark)

    Harðardóttir, Sara; Lundholm, Nina; Moestrup, Øjvind

    2014-01-01

    Pyramimonas Schmarda is a genus of unicellular green flagellates, recorded in marine water and sea ice samples. Pyramimonas is within the prey size range of the most important protozoan grazers in Disko Bay, West Greenland, where this study took place. Despite the potential ecological importance...

  12. Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR

    NARCIS (Netherlands)

    Fettweis, X.; Franco, B.; Tedesco, M.; van Angelen, J.H.; Lenaerts, J.T.M.; van den Broeke, M.R.; Gallée, H.

    2013-01-01

    To estimate the sea level rise (SLR) originating from changes in surface mass balance (SMB) of the Greenland ice sheet (GrIS), we present 21st century climate projections obtained with the regional climate model MAR (Mod`ele Atmosph´erique R´egional), forced by output of three CMIP5 (Coupled Model

  13. Greenland plays a large role in the gloomy picture painted of probable future sea-level rise

    Science.gov (United States)

    Hanna, Edward

    2012-12-01

    Goelzer et al (2012) paint a portentous picture of what is likely to happen to the global sea-level over the next 1000 years. This worrying assessment is based on our current best understanding of how the world's giant ice sheets of Greenland and Antarctica, as well as a quarter of a million smaller glacial ice masses, and the ocean collectively respond to ongoing climate change. Theirs is a state of the science study that integrates these key contributors of sea-level change based on the latest models and current understanding, and an integrated Earth systems modelling approach termed LOVECLIM. As they point out in their study, only a handful of global climate models to date—i.e. models that are used to make predictions of future climate change—incorporate dynamically (fully) coupled ice-sheet models. According to the scenarios presented by Goelzer et al (2012), we could see between 2.1 and 6.8 m of global sea-level rise by 3000 AD, compared with 'just' 1.1 m if the atmosphere is stabilised at 2000 CO2 levels. Much, up to some 4 m, of this contribution comes from increased melting and mass loss of the Greenland ice sheet, which is several times more sensitive than the Antarctic ice sheet to warming temperatures in these simulations. Interestingly, dynamical ice mass losses through iceberg calving become increasingly less significant for Greenland as the ice sheet retreats further inland during the 1000 yr runs (Sole et al 2008). The latest modelling studies show that around a half, perhaps more, of the recent Greenland mass losses (Barletta et al 2012, Rignot et al 2011) are already through increased melt and runoff (Hanna et al 2008, 2012, van den Broeke et al 2009); note also the recent (summer 2012) record surface melting of the Greenland ice sheet (Nghiem et al 2012) caused by atmospheric forcing (Overland et al 2012) and the potential of such events to impact on ice flow (Bartholomew et al 2011). By contrast, the greatest sea-level rise reported for

  14. Indian deep-sea environment experiment (INDEX): Monitoring the restoration of marine enviroment after artificial disturbance to simulate deep-sea mining in central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    the restoration of marine environment after artificial disturbance to simulate deep-sea mining in Central Indian Basin Guest Editor Rahul Sharma Note from guest editor A special issue on Indian Deep-sea Environment Experiment (INDEX) conducted by the scientists... in Geochemical Associations in Artificially Disturbed Deep-Sea Sediments B. Nagender Nath, G. Parthiban, S. Banaulikar, and Subhadeep Sarkar Marine Georesources and Geotechnology, 24:61–62, 2006 Copyright # Taylor & Francis Group, LLC ISSN: 1064-119X print/1521...

  15. Deep Coherent Vortices and Their Sea Surface Expressions

    Science.gov (United States)

    Ienna, Federico; Bashmachnikov, Igor; Dias, Joaquim; Peliz, Alvaro

    2017-04-01

    Mediterranean Water eddies, known as Meddies, are an important dynamic process occurring at depths of 1000-meters in the Northeast Atlantic Ocean. Meddies occur as a direct result of the Mediterranean Outflow exiting through the Gibraltar Strait, and represent a prevalent mechanism that can be found extensively throughout the ocean. Moreover, Meddy cores are known to produce measurable expressions at the sea surface in the form of rotating coherent vortices, not only affecting the sea surface from beneath, but also allowing for the possibility to remotely study these deep phenomena through data gathered at the sea surface. While many past studies have focused on the properties of Meddy cores, only a handful of studies focus on the physical characteristics and behavior of the surface expressions produced. Are Meddy surface expressions different from other like vortices that dominate the physical ocean surface? What are the relationships between deep and surface mechanisms, and do any feedbacks exist? To shed light on these questions, we investigate the relationship between Meddies and their sea-surface expressions through observations using in-situ float and drifter profiles and satellite altimetry. A total of 782 Meddy cores were examined in the Northeast Atlantic using temperature and salinity data obtained by CTD and Argo during the Mecanismos de transporte e de dispersão da Água Mediterrânica no Atlântico Nordeste (MEDTRANS) project, and their corresponding sea-level expressions were geo-temporally matched in satellite altimetry data. We report several statistical properties of the sea-surface expressions of Meddies, including their mean diameter and vertical magnitude, and compare the properties of their surface features to the underlying Meddy cores. We investigate how the deep core affects the surface, and whether surface expressions may in return yield information about the underlying cores. Additionally, we examine the variability of the surface

  16. Deep and intermediate mediterranean water in the western Alboran Sea

    Science.gov (United States)

    Parrilla, Gregorio; Kinder, Thomas H.; Preller, Ruth H.

    1986-01-01

    Hydrographic and current meter data, obtained during June to October 1982, and numerical model experiments are used to study the distribution and flow of Mediterranean waters in the western Alboran Sea. The Intermediate Water is more pronounced in the northern three-fourths of the sea, but its distribution is patchy as manifested by variability of the temperature and salinity maxima at scales ≤10 km. Current meters in the lower Intermediate Water showed mean flow toward the Strait at 2 cm s -1. A reversal of this flow lasted about 2 weeks. A rough estimate of the mean westward Intermediate Water transport was 0.4 × 10 6 m 3 s -1, about one-third of the total outflow, so that the best estimates of the contributions of traditionally defined Intermediate Water and Deep Water account for only about one-half of the total outflow. The Deep Water was uplifted against the southern continental slope from Alboran Island (3°W) to the Strait. There was also a similar but much weaker banking against the Spanish slope, but a deep current record showed that the eastward recirculation implied by this banking is probably intermittent. Two-layer numerical model experiments simulated the Intermediate Water flow with a flat bottom and the Deep Water with realistic bottom topography. Both experiments replicated the major circulation features, and the Intermediate Water flow was concentrated in the north because of rotation and the Deep Water flow in the south because of topographic control.

  17. The effect of sea-ice loss on beluga whales (Delphinapterus leucas) in West Greenland

    DEFF Research Database (Denmark)

    Heide-Jørgensen, M.P.; Laidre, K.L.; Simon, Malene Juul

    2009-01-01

    An aerial survey was conducted to estimate the abundance of belugas (Delphinapterus leucas) on their wintering ground in West Greenland in March-April 2006 and 2008. The survey was conducted as a double platform aerial line transect survey, and sampled approximately 17% of the total survey area o...

  18. A deep sea community at the Kebrit brine pool in the Red Sea

    KAUST Repository

    Vestheim, Hege

    2015-02-26

    Approximately 25 deep sea brine pools occur along the mid axis of the Red Sea. These hypersaline, anoxic, and acidic environments have previously been reported to host diverse microbial communities. We visited the Kebrit brine pool in April 2013 and found macrofauna present just above the brine–seawater interface (~1465 m). In particular, inactive sulfur chimneys had associated epifauna of sea anemones, sabellid type polychaetes, and hydroids, and infauna consisting of capitellid polychaetes, gastropods of the genus Laeviphitus (fam. Elachisinidae), and top snails of the family Cocculinidae. The deep Red Sea generally is regarded as extremely poor in benthos. We hypothesize that the periphery along the Kebrit holds increased biomass and biodiversity that are sustained by prokaryotes associated with the brine pool or co-occurring seeps.

  19. Exploring the Potential Impact of Greenland Meltwater on Stratification, Photosynthetically Active Radiation, and Primary Production in the Labrador Sea

    Science.gov (United States)

    Oliver, Hilde; Luo, Hao; Castelao, Renato M.; van Dijken, Gert L.; Mattingly, Kyle S.; Rosen, Joshua J.; Mote, Thomas L.; Arrigo, Kevin R.; Rennermalm, Åsa K.; Tedesco, Marco; Yager, Patricia L.

    2018-04-01

    In July 2012, the surface of the Greenland Ice Sheet (GrIS) melted to an extent unprecedented over the last 100 years; we questioned the potential for such an extreme melt event to impact marine phytoplankton offshore. We hypothesized that stratification from meltwater could reduce light limitation for phytoplankton, and used a suite of numerical models to quantify the impact for 2003-2012. Because much of the 2012 meltwater discharged from southern Greenland, our study focused on the southwestern and southeastern coasts of Greenland, and the Labrador Sea. A 1-D phytoplankton model used output from a Regional Ocean Modeling System (ROMS) coupled with a Regional Climate Model and a hydrological model of meltwater from runoff sources on the ice sheet, peripheral glaciers, and tundra. ROMS was run with and without meltwater to test the sensitivity of phytoplankton photosynthetic rates to the meltwater input. With meltwater, the pycnocline was shallower during late summer and early fall and thus light limitation on photosynthesis was reduced. Averaged over all years, added meltwater had the potential to increase gross primary production by 3-12% in the summer (July-August), and 13-60% in the fall (September-October). This meltwater effect was amplified when light was more limiting, and thus was greatest in the fall, under cloudier conditions, with higher self-shading, and with more light-sensitive phytoplankton groups. As the GrIS melt is projected to increase, late summer primary production in this region has the potential to increase as well, which could constitute an important biosphere response to high-latitude climate change.

  20. How effective is albedo modification (solar radiation management geoengineering) in preventing sea-level rise from the Greenland Ice Sheet?

    International Nuclear Information System (INIS)

    Applegate, Patrick J; Keller, Klaus

    2015-01-01

    Albedo modification (AM) is sometimes characterized as a potential means of avoiding climate threshold responses, including large-scale ice sheet mass loss. Previous work has investigated the effects of AM on total sea-level rise over the present century, as well as AM’s ability to reduce long-term (≫10 3 yr) contributions to sea-level rise from the Greenland Ice Sheet (GIS). These studies have broken new ground, but neglect important feedbacks in the GIS system, or are silent on AM’s effectiveness over the short time scales that may be most relevant for decision-making (<10 3 yr). Here, we assess AM’s ability to reduce GIS sea-level contributions over decades to centuries, using a simplified ice sheet model. We drive this model using a business-as-usual base temperature forcing scenario, as well as scenarios that reflect AM-induced temperature stabilization or temperature drawdown. Our model results suggest that (i) AM produces substantial near-term reductions in the rate of GIS-driven sea-level rise. However, (ii) sea-level rise contributions from the GIS continue after AM begins. These continued sea level rise contributions persist for decades to centuries after temperature stabilization and temperature drawdown begin, unless AM begins in the next few decades. Moreover, (iii) any regrowth of the GIS is delayed by decades or centuries after temperature drawdown begins, and is slow compared to pre-AM rates of mass loss. Combined with recent work that suggests AM would not prevent mass loss from the West Antarctic Ice Sheet, our results provide a nuanced picture of AM’s possible effects on future sea-level rise. (letter)

  1. The deep-sea hub of the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Anghinolfi, M. [INFN Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Calzas, A. [Centre de Physique des Particules de Marseille (CNRS/IN2P3), Universite de la Mediterranee, 13288 Marseille (France); Dinkespiler, B. [Centre de Physique des Particules de Marseille (CNRS/IN2P3), Universite de la Mediterranee, 13288 Marseille (France); Cuneo, S. [INFN Laboratori Nazionali del Sud, Via S. Sofia 44, I-95123 Catania (Italy); Favard, S. [Centre de Physique des Particules de Marseille (CNRS/IN2P3), Universite de la Mediterranee, 13288 Marseille (France); Hallewell, G. [Centre de Physique des Particules de Marseille (CNRS/IN2P3), Universite de la Mediterranee, 13288 Marseille (France)]. E-mail: gregh@cppm.in2p3.fr; Jaquet, M. [Centre de Physique des Particules de Marseille (CNRS/IN2P3), Universite de la Mediterranee, 13288 Marseille (France); Musumeci, M. [INFN Laboratori Nazionali del Sud, Via S. Sofia 44, I-95123 Catania (Italy); Papaleo, R. [INFN Laboratori Nazionali del Sud, Via S. Sofia 44, I-95123 Catania (Italy); Raia, G. [INFN Laboratori Nazionali del Sud, Via S. Sofia 44, I-95123 Catania (Italy); Valdy, P. [IFREMER - Institut francais de recherche pour l' exploitation de la mer, Centre de La Seyne, 83500 La Seyne sur mer (France); Vernin, P. [DSM-DAPNIA, CEA SACLAY, 91191 Gif sur Yvette Cedex (France)

    2006-11-15

    The ANTARES neutrino telescope, currently under construction at 2500 m depth off the French Mediterranean coast, will contain 12 detection lines, powered and read out through a deep-sea junction box (JB) hub. Electrical energy from the shore station is distributed through a transformer with multiple secondary windings and a plugboard with 16 deep sea-mateable electro-optic connectors. Connections are made to the JB outputs using manned or remotely operated submersible vehicles. The triply redundant power management and slow control system is based on two identical AC-powered systems, communicating with the shore through 160 Mb/s fibre G-links and a third battery-powered system using a slower link. We describe the power and slow control systems of the underwater hub.

  2. The deep-sea hub of the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Anghinolfi, M.; Calzas, A.; Dinkespiler, B.; Cuneo, S.; Favard, S.; Hallewell, G.; Jaquet, M.; Musumeci, M.; Papaleo, R.; Raia, G.; Valdy, P.; Vernin, P.

    2006-01-01

    The ANTARES neutrino telescope, currently under construction at 2500 m depth off the French Mediterranean coast, will contain 12 detection lines, powered and read out through a deep-sea junction box (JB) hub. Electrical energy from the shore station is distributed through a transformer with multiple secondary windings and a plugboard with 16 deep sea-mateable electro-optic connectors. Connections are made to the JB outputs using manned or remotely operated submersible vehicles. The triply redundant power management and slow control system is based on two identical AC-powered systems, communicating with the shore through 160 Mb/s fibre G-links and a third battery-powered system using a slower link. We describe the power and slow control systems of the underwater hub

  3. Alchemy or Science? Compromising Archaeology in the Deep Sea

    Science.gov (United States)

    Adams, Jonathan

    2007-06-01

    In the torrid debate between archaeology and treasure hunting, compromise is often suggested as the pragmatic solution, especially for archaeology carried out either in deep water or beyond the constraints that commonly regulate such activities in territorial seas. Both the wisdom and the need for such compromise have even been advocated by some archaeologists, particularly in forums such as the internet and conferences. This paper argues that such a compromise is impossible, not in order to fuel confrontation but simply because of the nature of any academic discipline. We can define what archaeology is in terms of its aims, theories, methods and ethics, so combining it with an activity founded on opposing principles must transform it into something else. The way forward for archaeology in the deep sea does not lie in a contradictory realignment of archaeology’s goals but in collaborative research designed to mesh with emerging national and regional research and management plans.

  4. Food web structure and vulnerability of a deep-sea ecosystem in the NW Mediterranean Sea

    OpenAIRE

    Tecchio, Samuele; Coll, Marta; Christensen, Villy; Company, Joan B.; Ramirez-Llodra, Eva; Sarda, Francisco

    2013-01-01

    There is increasing fishing pressure on the continental margins of the oceans, and this raises concerns about the vulnerability of the ecosystems thriving there. The current knowledge of the biology of deep-water fish species identifies potential reduced resilience to anthropogenic disturbance. However, there are extreme difficulties in sampling the deep sea, resulting in poorly resolved and indirectly obtained food-web relationships. Here, we modelled the flows and biomasses of a Mediterrane...

  5. Far red bioluminescence from two deep-sea fishes.

    Science.gov (United States)

    Widder, E A; Latz, M I; Herring, P J; Case, J F

    1984-08-03

    Spectral measurements of red bioluminescence were obtained from the deep-sea stomiatoid fishes Aristostomias scintillans (Gilbert) and Malacosteus niger (Ayres). Red luminescence from suborbital light organs extends to the near infrared, with peak emission at approximately 705 nanometers in the far red. These fishes also have postorbital light organs that emit blue luminescence with maxima between 470 and 480 nanometers. The red bioluminescence may be due to an energy transfer system and wavelength-selective filtering.

  6. Evidence for ephemeral middle Eocene to early Oligocene Greenland glacial ice and pan-Arctic sea ice.

    Science.gov (United States)

    Tripati, Aradhna; Darby, Dennis

    2018-03-12

    Earth's modern climate is defined by the presence of ice at both poles, but that ice is now disappearing. Therefore understanding the origin and causes of polar ice stability is more critical than ever. Here we provide novel geochemical data that constrain past dynamics of glacial ice on Greenland and Arctic sea ice. Based on accurate source determinations of individual ice-rafted Fe-oxide grains, we find evidence for episodic glaciation of distinct source regions on Greenland as far-ranging as ~68°N and ~80°N synchronous with ice-rafting from circum-Arctic sources, beginning in the middle Eocene. Glacial intervals broadly coincide with reduced CO 2 , with a potential threshold for glacial ice stability near ~500 p.p.m.v. The middle Eocene represents the Cenozoic onset of a dynamic cryosphere, with ice in both hemispheres during transient glacials and substantial regional climate heterogeneity. A more stable cryosphere developed at the Eocene-Oligocene transition, and is now threatened by anthropogenic emissions.

  7. How deep-sea wood falls sustain chemosynthetic life.

    Directory of Open Access Journals (Sweden)

    Christina Bienhold

    Full Text Available Large organic food falls to the deep sea--such as whale carcasses and wood logs--are known to serve as stepping stones for the dispersal of highly adapted chemosynthetic organisms inhabiting hot vents and cold seeps. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches by deploying wood colonization experiments at a depth of 1690 m in the Eastern Mediterranean for one year. Wood-boring bivalves of the genus Xylophaga played a key role in the degradation of the wood logs, facilitating the development of anoxic zones and anaerobic microbial processes such as sulfate reduction. Fauna and bacteria associated with the wood included types reported from other deep-sea habitats including chemosynthetic ecosystems, confirming the potential role of large organic food falls as biodiversity hot spots and stepping stones for vent and seep communities. Specific bacterial communities developed on and around the wood falls within one year and were distinct from freshly submerged wood and background sediments. These included sulfate-reducing and cellulolytic bacterial taxa, which are likely to play an important role in the utilization of wood by chemosynthetic life and other deep-sea animals.

  8. How Deep-Sea Wood Falls Sustain Chemosynthetic Life

    Science.gov (United States)

    Bienhold, Christina; Pop Ristova, Petra; Wenzhöfer, Frank; Dittmar, Thorsten; Boetius, Antje

    2013-01-01

    Large organic food falls to the deep sea – such as whale carcasses and wood logs – are known to serve as stepping stones for the dispersal of highly adapted chemosynthetic organisms inhabiting hot vents and cold seeps. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches by deploying wood colonization experiments at a depth of 1690 m in the Eastern Mediterranean for one year. Wood-boring bivalves of the genus Xylophaga played a key role in the degradation of the wood logs, facilitating the development of anoxic zones and anaerobic microbial processes such as sulfate reduction. Fauna and bacteria associated with the wood included types reported from other deep-sea habitats including chemosynthetic ecosystems, confirming the potential role of large organic food falls as biodiversity hot spots and stepping stones for vent and seep communities. Specific bacterial communities developed on and around the wood falls within one year and were distinct from freshly submerged wood and background sediments. These included sulfate-reducing and cellulolytic bacterial taxa, which are likely to play an important role in the utilization of wood by chemosynthetic life and other deep-sea animals. PMID:23301092

  9. Late Eocene impact events recorded in deep-sea sediments

    Science.gov (United States)

    Glass, B. P.

    1988-01-01

    Raup and Sepkoski proposed that mass extinctions have occurred every 26 Myr during the last 250 Myr. In order to explain this 26 Myr periodicity, it was proposed that the mass extinctions were caused by periodic increases in cometary impacts. One method to test this hypothesis is to determine if there were periodic increases in impact events (based on crater ages) that correlate with mass extinctions. A way to test the hypothesis that mass extinctions were caused by periodic increases in impact cratering is to look for evidence of impact events in deep-sea deposits. This method allows direct observation of the temporal relationship between impact events and extinctions as recorded in the sedimentary record. There is evidence in the deep-sea record for two (possibly three) impact events in the late Eocene. The younger event, represented by the North American microtektite layer, is not associated with an Ir anomaly. The older event, defined by the cpx spherule layer, is associated with an Ir anomaly. However, neither of the two impact events recorded in late Eocene deposits appears to be associated with an unusual number of extinctions. Thus there is little evidence in the deep-sea record for an impact-related mass extinction in the late Eocene.

  10. Research on the usage of a deep sea fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Otsubo, Akira; Kowata, Yasuki [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-09-01

    Many new types of fast reactors have been studied in PNC. A deep sea fast reactor has the highest realization probability of the reactors studied because its development is desired by many specialists of oceanography, meteorology, deep sea bottom oil field, seismology and so on and because the development does not cost big budget and few technical problems remain to be solved. This report explains the outline and the usage of the reactor of 40 kWe and 200 to 400 kWe. The reactor can be used as a power source at an unmanned base for long term climate prediction and the earth science and an oil production base in a deep sea region. On the other hand, it is used for heat and electric power supply to a laboratory in the polar region. In future, it will be used in the space. At the present time, a large FBR development plan does not proceed successfully and a realization goal time of FBR has gone later and later. We think that it is the most important to develop the reactor as fast as possible and to plant a fast reactor technique in our present society. (author)

  11. Deep-sea disposal: Protecting fish and man

    International Nuclear Information System (INIS)

    Hagen, A.

    1988-01-01

    The definition of radioactive waste unsuitable for dumping at sea is based on the protection of man. See IAEA Safety Series No. 78. The development of criteria for assessing the impact on deep sea marine organisms at the population level has been attempted in a report recently published by the IAEA. See IAEA Technical Reports Series, No. 228 (1988). The report indicates that certain radionuclides may give rise to high dose rates to marine organisms if dumping is carried out with the assumptions of instantaneous release at the sea floor and dumping over long periods of time. In the report, a hypothetical dose rate to molluscs from zinc-65, which poses no significant harm to man, has the potential for giving high doses to bottom-dwelling molluscs

  12. Microbial ecology of deep-sea hypersaline anoxic basins

    KAUST Repository

    Merlino, Giuseppe

    2018-05-09

    Deep hypersaline anoxic basins (DHABs) are unique water bodies occurring within fractures at the bottom of the sea, where the dissolution of anciently buried evaporites created dense anoxic brines that are separated by a chemocline/pycnocline from the overlying oxygenated deep-seawater column. DHABs have been described in the Gulf of Mexico, the Mediterranean Sea, the Black Sea and the Red Sea. They are characterized by prolonged historical separation of the brines from the upper water column due to lack of mixing and by extreme conditions of salinity, anoxia, and relatively high hydrostatic pressure and temperatures. Due to these combined selection factors, unique microbial assemblages thrive in these polyextreme ecosystems. The topological localization of the different taxa in the brine-seawater transition zone coupled with the metabolic interactions and niche adaptations determine the metabolic functioning and biogeochemistry of DHABs. In particular, inherent metabolic strategies accompanied by genetic adaptations have provided insights on how prokaryotic communities can adapt to salt-saturated condition. Here, we review the current knowledge on the diversity, genomics, metabolisms and ecology of prokaryotes in DHABs.

  13. Deep-sea pennatulaceans (sea pens) - recent discoveries, morphological adaptations, and responses to benthic oceanographic parameters

    Science.gov (United States)

    Williams, G. C.

    2015-12-01

    Pennatulaceans are sessile, benthic marine organisms that are bathymetrically wide-ranging, from the intertidal to approximately 6300 m in depth, and are conspicuous constituents of deep-sea environments. The vast majority of species are adapted for anchoring in soft sediments by the cylindrical peduncle - a muscular hydrostatic skeleton. However, in the past decade a few species ("Rockpens") have been discovered and described that can attach to hard substratum such as exposed rocky outcrops at depths between 669 and 1969 m, by a plunger-like adaptation of the base of the peduncle. Of the thirty-six known genera, eleven (or 30%) have been recorded from depths greater than 1000 m. The pennatulacean depth record holders are an unidentified species of Umbellula from 6260 m in the Peru-Chile Trench and a recently-discovered and described genus and species, Porcupinella profunda, from 5300 m the Porcupine Abyssal Plain of the northeastern Atlantic. A morphologically-differentiated type of polyp (acrozooid) have recently been discovered and described in two genera of shallow-water coral reef sea pens. Acrozooids apparently represent asexual buds and presumably can detach from the adult to start clonal colonies through asexual budding. Acrozooids are to be expected in deep-sea pennatulaceans, but so far have not been observed below 24 m in depth. Morphological responses at depths greater than 1000 m in deep-sea pennatulaceas include: fewer polyps, larger polyps, elongated stalks, and clustering of polyps along the rachis. Responses to deep-ocean physical parameters and anthropogenic changes that could affect the abundance and distribution of deep-sea pennatulaceans include changes in bottom current flow and food availability, changes in seawater temperature and pH, habitat destruction by fish trawling, and sunken refuse pollution. No evidence of the effects of ocean acidification or other effects of anthropogenic climate change in sea pens of the deep-sea has been

  14. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the G.O. SARS in the North Greenland Sea and Norwegian Sea from 2006-07-21 to 2006-08-05 (NODC Accession 0105859)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0105859 includes chemical, discrete sample, physical and profile data collected from G.O. SARS in the North Greenland Sea and Norwegian Sea from...

  15. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JOHAN HJORT in the North Greenland Sea and Norwegian Sea from 1997-04-14 to 1997-05-22 (NODC Accession 0113563)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113563 includes chemical, discrete sample, physical and profile data collected from JOHAN HJORT in the North Greenland Sea and Norwegian Sea from...

  16. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the HAKON MOSBY in the North Greenland Sea and Norwegian Sea from 1995-02-17 to 1995-03-18 (NODC Accession 0113543)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113543 includes chemical, discrete sample, physical and profile data collected from HAKON MOSBY in the North Greenland Sea and Norwegian Sea from...

  17. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the HAKON MOSBY in the North Greenland Sea and Norwegian Sea from 1998-03-08 to 1998-03-24 (NODC Accession 0113546)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113546 includes chemical, discrete sample, physical and profile data collected from HAKON MOSBY in the North Greenland Sea and Norwegian Sea from...

  18. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the HAKON MOSBY in the North Greenland Sea and Norwegian Sea from 1997-02-25 to 1997-03-24 (NODC Accession 0113545)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113545 includes chemical, discrete sample, physical and profile data collected from HAKON MOSBY in the North Greenland Sea and Norwegian Sea from...

  19. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the HAKON MOSBY in the North Greenland Sea and Norwegian Sea from 1994-02-24 to 1994-03-17 (NODC Accession 0113541)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113541 includes chemical, discrete sample, physical and profile data collected from HAKON MOSBY in the North Greenland Sea and Norwegian Sea from...

  20. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the HAKON MOSBY in the North Greenland Sea and Norwegian Sea from 1994-08-26 to 1994-09-10 (NODC Accession 0113542)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113542 includes chemical, discrete sample, physical and profile data collected from HAKON MOSBY in the North Greenland Sea and Norwegian Sea from...

  1. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JOHAN HJORT in the North Greenland Sea and Norwegian Sea from 1995-04-27 to 1995-05-23 (NODC Accession 0113561)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113561 includes chemical, discrete sample, physical and profile data collected from JOHAN HJORT in the North Greenland Sea and Norwegian Sea from...

  2. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JAMES CLARK ROSS in the North Greenland Sea and Norwegian Sea from 1996-07-20 to 1996-08-22 (NODC Accession 0113757)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113757 includes chemical, discrete sample, physical and profile data collected from JAMES CLARK ROSS in the North Greenland Sea and Norwegian Sea...

  3. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JOHAN HJORT in the North Greenland Sea and Norwegian Sea from 1993-11-06 to 1993-12-02 (NODC Accession 0115679)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115679 includes chemical, discrete sample, physical and profile data collected from JOHAN HJORT in the North Greenland Sea and Norwegian Sea from...

  4. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JOHAN HJORT in the North Greenland Sea and Norwegian Sea from 1992-11-05 to 1992-12-01 (NODC Accession 0115403)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115403 includes chemical, discrete sample, physical and profile data collected from JOHAN HJORT in the North Greenland Sea and Norwegian Sea from...

  5. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JOHAN HJORT in the North Greenland Sea and Norwegian Sea from 1991-11-05 to 1991-11-27 (NODC Accession 0115685)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115685 includes chemical, discrete sample, physical and profile data collected from JOHAN HJORT in the North Greenland Sea and Norwegian Sea from...

  6. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JOHAN HJORT in the North Greenland Sea and Norwegian Sea from 1994-05-25 to 1994-06-06 (NODC Accession 0113954)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113954 includes chemical, discrete sample, physical and profile data collected from JOHAN HJORT in the North Greenland Sea and Norwegian Sea from...

  7. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JOHAN HJORT in the North Greenland Sea and Norwegian Sea from 1996-10-30 to 1996-11-10 (NODC Accession 0115680)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115680 includes chemical, discrete sample, physical and profile data collected from JOHAN HJORT in the North Greenland Sea and Norwegian Sea from...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from G.O. SARS in the Barents Sea, North Greenland Sea and others from 2007-02-12 to 2007-10-28 (NCEI Accession 0157392)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157392 includes Surface underway, chemical, meteorological and physical data collected from G.O. SARS in the Barents Sea, North Greenland Sea, North...

  9. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the YMER in the Arctic Ocean, Barents Sea and North Greenland Sea from 1980-08-11 to 1980-09-19 (NODC Accession 0113607)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113607 includes chemical, discrete sample, physical and profile data collected from YMER in the Arctic Ocean, Barents Sea and North Greenland Sea...

  10. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JOHAN HJORT in the North Greenland Sea and Norwegian Sea from 1995-11-08 to 1995-11-26 (NODC Accession 0113562)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113562 includes chemical, discrete sample, physical and profile data collected from JOHAN HJORT in the North Greenland Sea and Norwegian Sea from...

  11. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JOHAN HJORT in the North Greenland Sea and Norwegian Sea from 1998-08-01 to 1998-08-23 (NODC Accession 0113758)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113758 includes chemical, discrete sample, physical and profile data collected from JOHAN HJORT in the North Greenland Sea and Norwegian Sea from...

  12. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the USCGC POLAR SEA in the North Greenland Sea from 1992-07-15 to 1992-08-14 (NODC Accession 0115687)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115687 includes biological, chemical, discrete sample, physical and profile data collected from USCGC POLAR SEA in the North Greenland Sea from...

  13. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the USCGC POLAR SEA in the North Greenland Sea from 1993-07-18 to 1993-08-20 (NODC Accession 0114447)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0114447 includes biological, chemical, discrete sample, physical and profile data collected from USCGC POLAR SEA in the North Greenland Sea from...

  14. Sea-level and deep-sea-temperature variability over the past 5.3 million years.

    Science.gov (United States)

    Rohling, E J; Foster, G L; Grant, K M; Marino, G; Roberts, A P; Tamisiea, M E; Williams, F

    2014-04-24

    Ice volume (and hence sea level) and deep-sea temperature are key measures of global climate change. Sea level has been documented using several independent methods over the past 0.5 million years (Myr). Older periods, however, lack such independent validation; all existing records are related to deep-sea oxygen isotope (δ(18)O) data that are influenced by processes unrelated to sea level. For deep-sea temperature, only one continuous high-resolution (Mg/Ca-based) record exists, with related sea-level estimates, spanning the past 1.5 Myr. Here we present a novel sea-level reconstruction, with associated estimates of deep-sea temperature, which independently validates the previous 0-1.5 Myr reconstruction and extends it back to 5.3 Myr ago. We find that deep-sea temperature and sea level generally decreased through time, but distinctly out of synchrony, which is remarkable given the importance of ice-albedo feedbacks on the radiative forcing of climate. In particular, we observe a large temporal offset during the onset of Plio-Pleistocene ice ages, between a marked cooling step at 2.73 Myr ago and the first major glaciation at 2.15 Myr ago. Last, we tentatively infer that ice sheets may have grown largest during glacials with more modest reductions in deep-sea temperature.

  15. Arctic Ocean outflow and glacier-ocean interactions modify water over the Wandel Sea shelf (northeastern Greenland)

    DEFF Research Database (Denmark)

    Dmitrenko, Igor A.; Kirillov, Sergey A.; Rudels, Bert

    2017-01-01

    The first-ever conductivity-temperature-depth (CTD) observations on the Wandel Sea shelf in northeastern Greenland were collected in April-May 2015. They were complemented by CTDs taken along the continental slope during the Norwegian FRAM 2014-2015 drift. The CTD profiles are used to reveal...... the origin of water masses and interactions with ambient water from the continental slope and the tidewater glacier outlet. The subsurface water is associated with the Pacific water outflow from the Arctic Ocean. The underlying halocline separates the Pacific water from a deeper layer of polar water that has...... interacted with the warm Atlantic water outflow through the Fram Strait, recorded below 140 m. Over the outer shelf, the halocline shows numerous cold density-compensated intrusions indicating lateral interaction with an ambient polar water mass across the continental slope. At the front of the tidewater...

  16. From the chlorophyll a in the surface layer to its vertical profile: a Greenland Sea relationship for satellite applications

    Directory of Open Access Journals (Sweden)

    A. Cherkasheva

    2013-04-01

    Full Text Available Current estimates of global marine primary production range over a factor of two. Improving these estimates requires an accurate knowledge of the chlorophyll vertical profiles, since they are the basis for most primary production models. At high latitudes, the uncertainty in primary production estimates is larger than globally, because here phytoplankton absorption shows specific characteristics due to the low-light adaptation, and in situ data and ocean colour observations are scarce. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer have not included the Arctic region, or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved profiles. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the regions in the Arctic where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S. Merian cruises combined with data from the ARCSS-PP database (Arctic primary production in situ database for the years 1957–2010. The profiles were categorized according to their mean concentration in the surface layer, and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll (CHL exceeding 0.7 mg C m−3 showed values gradually decreasing from April to August. A similar seasonal pattern was observed when monthly profiles were averaged over all the surface CHL concentrations. The maxima of all chlorophyll profiles moved from the greater depths to the surface from spring to late summer respectively. The profiles with the smallest surface values always showed a subsurface chlorophyll

  17. Identification of new deep sea sinuous channels in the eastern Arabian Sea.

    Science.gov (United States)

    Mishra, Ravi; Pandey, D K; Ramesh, Prerna; Clift, Peter D

    2016-01-01

    Deep sea channel systems are recognized in most submarine fans worldwide as well as in the geological record. The Indus Fan is the second largest modern submarine fan, having a well-developed active canyon and deep sea channel system. Previous studies from the upper Indus Fan have reported several active channel systems. In the present study, deep sea channel systems were identified within the middle Indus Fan using high resolution multibeam bathymetric data. Prominent morphological features within the survey block include the Raman Seamount and Laxmi Ridge. The origin of the newly discovered channels in the middle fan has been inferred using medium resolution satellite bathymetry data. Interpretation of new data shows that the highly sinuous deep sea channel systems also extend to the east of Laxmi Ridge, as well as to the west of Laxmi Ridge, as previously reported. A decrease in sinuosity southward can be attributed to the morphological constraints imposed by the elevated features. These findings have significance in determining the pathways for active sediment transport systems, as well as their source characterization. The geometry suggests a series of punctuated avulsion events leading to the present array of disconnected channels. Such channels have affected the Laxmi Basin since the Pliocene and are responsible for reworking older fan sediments, resulting in loss of the original erosional signature supplied from the river mouth. This implies that distal fan sediments have experienced significant signal shredding and may not represent the erosion and weathering conditions within the onshore basin at the time of sedimentation.

  18. Antifouling potentials of eight deep-sea-derived fungi from the South China Sea.

    Science.gov (United States)

    Zhang, Xiao-Yong; Xu, Xin-Ya; Peng, Jiang; Ma, Chun-Feng; Nong, Xu-Hua; Bao, Jie; Zhang, Guang-Zhao; Qi, Shu-Hua

    2014-04-01

    Marine-derived microbial secondary metabolites are promising potential sources of nontoxic antifouling agents. The search for environmentally friendly and low-toxic antifouling components guided us to investigate the antifouling potentials of eight novel fungal isolates from deep-sea sediments of the South China Sea. Sixteen crude ethyl acetate extracts of the eight fungal isolates showed distinct antibacterial activity against three marine bacteria (Loktanella hongkongensis UST950701-009, Micrococcus luteus UST950701-006 and Pseudoalteromonas piscida UST010620-005), or significant antilarval activity against larval settlement of bryozoan Bugula neritina. Furthermore, the extract of Aspergillus westerdijkiae DFFSCS013 displayed strong antifouling activity in a field trial lasting 4 months. By further bioassay-guided isolation, five antifouling alkaloids including brevianamide F, circumdatin F and L, notoamide C, and 5-chlorosclerotiamide were isolated from the extract of A. westerdijkiae DFFSCS013. This is the first report about the antifouling potentials of metabolites of the deep-sea-derived fungi from the South China Sea, and the first stage towards the development of non- or low-toxic antifouling agents from deep-sea-derived fungi.

  19. Observations of Deep-Sea Coral and Sponge Occurrences from the NOAA National Deep-Sea Coral and Sponge Database, 1842-Present (NCEI Accession 0145037)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA’s Deep-Sea Coral Research and Technology Program (DSC-RTP) compiles a national database of the known locations of deep-sea corals and sponges in U.S....

  20. East Greenland and Barents Sea polar bears (Ursus maritimus): adaptive variation between two populations using skull morphometrics as an indicator of environmental and genetic differences.

    Science.gov (United States)

    Pertoldi, Cino; Sonne, Christian; Wiig, Øystein; Baagøe, Hans J; Loeschcke, Volker; Bechshøft, Thea Østergaard

    2012-06-01

    A morphometric study was conducted on four skull traits of 37 male and 18 female adult East Greenland polar bears (Ursus maritimus) collected 1892-1968, and on 54 male and 44 female adult Barents Sea polar bears collected 1950-1969. The aim was to compare differences in size and shape of the bear skulls using a multivariate approach, characterizing the variation between the two populations using morphometric traits as an indicator of environmental and genetic differences. Mixture analysis testing for geographic differentiation within each population revealed three clusters for Barents Sea males and three clusters for Barents Sea females. East Greenland consisted of one female and one male cluster. A principal component analysis (PCA) conducted on the clusters defined by the mixture analysis, showed that East Greenland and Barents Sea polar bear populations overlapped to a large degree, especially with regards to females. Multivariate analyses of variance (MANOVA) showed no significant differences in morphometric means between the two populations, but differences were detected between clusters from each respective geographic locality. To estimate the importance of genetics and environment in the morphometric differences between the bears, a PCA was performed on the covariance matrix derived from the skull measurements. Skull trait size (PC1) explained approx. 80% of the morphometric variation, whereas shape (PC2) defined approx. 15%, indicating some genetic differentiation. Hence, both environmental and genetic factors seem to have contributed to the observed skull differences between the two populations. Overall, results indicate that many Barents Sea polar bears are morphometrically similar to the East Greenland ones, suggesting an exchange of individuals between the two populations. Furthermore, a subpopulation structure in the Barents Sea population was also indicated from the present analyses, which should be considered with regards to future management

  1. Arctic Ocean UNCLOS Article 76 Work for Greenland Starts on Land

    Science.gov (United States)

    Dahl-Jensen, T.; Marcussen, C.; Jackson, R.; Voss, P.

    2005-12-01

    One of the most lonely and desolate stretches of coastline on the planet has become the target for UNCLOS article 76 related research. The Danish Continental Shelf Project has launched a work program to investigate the possibilities for Greenland to claim an area outside the 200 nm limit in the Arctic Ocean. The role of the Lomonosov Ridge as a Natural Prolongation of Greenland/Canada is an important issue, and in order to better evaluate the connection between Greenland and the Lomonosov Ridge the nature of not only the ridge but also of Northern Greenland is the target of deep crustal investigations. The North Greenland Fold belt covers the ice-free part of North Greenland and continues west in the Canadian Arctic. The foldbelt was formed during the Ellesmerian orogeny, where sediments from the Franklinian Basin where compressed and deformed. The deep structure of basin and its subsequent closure are broadly unknown. Three broad band earthquake seismological stations where installed in North Greenland to supplement the existing stations at Alert (Canada) and Station Nord to the east, and the first data was available summer 2005. Crustal thickness data from these first results are presented. Plans for the spring 2006 consist of wide-angle acquisition on the sea ice from the Greenland-Canadian mainland out onto the Lomonosov Ridge, a joint Danish - Canadian project with a 400 km long profile over difficult ice conditions, 18 tons of explosives, three helicopters, a Twin Otter and about 30 participants.

  2. High air-sea CO 2 uptake rates in nearshore and shelf areas of Southern Greenland: Temporal and spatial variability

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Mortensen, J.; Juul-Pedersen, T.

    2012-01-01

    significant correlation between average annual gross primary production and annual air-sea flux during 2005-2010, which suggests that regulation of pCO 2 in the fjord is more complex. Despite three confined periods with supersaturated pCO 2 conditions in surface waters during 2005-2010, Godthåbsfjord can......The present study is based on hourly samplings of wind speed, monthly sampling sessions of temperature, salinity, dissolved inorganic carbon, alkalinity, nutrients, primary productivity and vertical export in the outer sill region (station GF3) of a sub-arctic SW Greenland fjord (Godthåbsfjord......) through 2005-2010. Air-sea CO 2 fluxes varied at GF3 from c. -20gCm -2month -1 (uptake from the atmosphere) to 25gCm -2month -1 (release to the atmosphere) during 2005-10. The average annual air-sea CO 2 flux of -83 to -108gCm -2yr -1 was within the range of the local gross annual primary productivity...

  3. Cloud amount/frequency, NITRATE and other data from KNORR, ENDEAVOR and OCEANUS in the Greenland Sea from 1988-09-11 to 1991-03-22 (NODC Accession 9100241)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD), Bathythermograph (XBT) and Sound Velocity data (XSV) were collected from fifty seven stations in Greenland Sea using...

  4. Global diversity and biogeography of deep-sea pelagic prokaryotes

    KAUST Repository

    Salazar, Guillem

    2015-08-07

    The deep-sea is the largest biome of the biosphere, and contains more than half of the whole ocean\\'s microbes. Uncovering their general patterns of diversity and community structure at a global scale remains a great challenge, as only fragmentary information of deep-sea microbial diversity exists based on regional-scale studies. Here we report the first globally comprehensive survey of the prokaryotic communities inhabiting the bathypelagic ocean using high-throughput sequencing of the 16S rRNA gene. This work identifies the dominant prokaryotes in the pelagic deep ocean and reveals that 50% of the operational taxonomic units (OTUs) belong to previously unknown prokaryotic taxa, most of which are rare and appear in just a few samples. We show that whereas the local richness of communities is comparable to that observed in previous regional studies, the global pool of prokaryotic taxa detected is modest (∼3600 OTUs), as a high proportion of OTUs are shared among samples. The water masses appear to act as clear drivers of the geographical distribution of both particle-attached and free-living prokaryotes. In addition, we show that the deep-oceanic basins in which the bathypelagic realm is divided contain different particle-attached (but not free-living) microbial communities. The combination of the aging of the water masses and a lack of complete dispersal are identified as the main drivers for this biogeographical pattern. All together, we identify the potential of the deep ocean as a reservoir of still unknown biological diversity with a higher degree of spatial complexity than hitherto considered.

  5. Global diversity and biogeography of deep-sea pelagic prokaryotes

    KAUST Repository

    Salazar, Guillem; Cornejo-Castillo, Francisco M.; Bení tez-Barrios, Veró nica; Fraile-Nuez, Eugenio; Á lvarez-Salgado, X. Antó n; Duarte, Carlos M.; Gasol, Josep M.; Acinas, Silvia G.

    2015-01-01

    The deep-sea is the largest biome of the biosphere, and contains more than half of the whole ocean's microbes. Uncovering their general patterns of diversity and community structure at a global scale remains a great challenge, as only fragmentary information of deep-sea microbial diversity exists based on regional-scale studies. Here we report the first globally comprehensive survey of the prokaryotic communities inhabiting the bathypelagic ocean using high-throughput sequencing of the 16S rRNA gene. This work identifies the dominant prokaryotes in the pelagic deep ocean and reveals that 50% of the operational taxonomic units (OTUs) belong to previously unknown prokaryotic taxa, most of which are rare and appear in just a few samples. We show that whereas the local richness of communities is comparable to that observed in previous regional studies, the global pool of prokaryotic taxa detected is modest (∼3600 OTUs), as a high proportion of OTUs are shared among samples. The water masses appear to act as clear drivers of the geographical distribution of both particle-attached and free-living prokaryotes. In addition, we show that the deep-oceanic basins in which the bathypelagic realm is divided contain different particle-attached (but not free-living) microbial communities. The combination of the aging of the water masses and a lack of complete dispersal are identified as the main drivers for this biogeographical pattern. All together, we identify the potential of the deep ocean as a reservoir of still unknown biological diversity with a higher degree of spatial complexity than hitherto considered.

  6. Age, growth rates, and paleoclimate studies of deep sea corals

    Science.gov (United States)

    Prouty, Nancy G; Roark, E. Brendan; Andrews, Allen; Robinson, Laura; Hill, Tessa; Sherwood, Owen; Williams, Branwen; Guilderson, Thomas P.; Fallon, Stewart

    2015-01-01

    Deep-water corals are some of the slowest growing, longest-lived skeletal accreting marine organisms. These habitat-forming species support diverse faunal assemblages that include commercially and ecologically important organisms. Therefore, effective management and conservation strategies for deep-sea corals can be informed by precise and accurate age, growth rate, and lifespan characteristics for proper assessment of vulnerability and recovery from perturbations. This is especially true for the small number of commercially valuable, and potentially endangered, species that are part of the black and precious coral fisheries (Tsounis et al. 2010). In addition to evaluating time scales of recovery from disturbance or exploitation, accurate age and growth estimates are essential for understanding the life history and ecology of these habitat-forming corals. Given that longevity is a key factor for population maintenance and fishery sustainability, partly due to limited and complex genetic flow among coral populations separated by great distances, accurate age structure for these deep-sea coral communities is essential for proper, long-term resource management.

  7. Deep sea mega-geomorphology: Progress and problems

    Science.gov (United States)

    Bryan, W. B.

    1985-01-01

    Historically, marine geologists have always worked with mega-scale morphology. This is a consequence both of the scale of the ocean basins and of the low resolution of the observational remote sensing tools available until very recently. In fact, studies of deep sea morphology have suffered from a serious gap in observational scale. Traditional wide-beam echo sounding gave images on a scale of miles, while deep sea photography has been limited to scales of a few tens of meters. Recent development of modern narrow-beam echo sounding coupled with computer-controlled swath mapping systems, and development of high-resolution deep-towed side-scan sonar, are rapidly filling in the scale gap. These technologies also can resolve morphologic detail on a scale of a few meters or less. As has also been true in planetary imaging projects, the ability to observe phenomena over a range of scales has proved very effective in both defining processes and in placing them in proper context.

  8. White Sea's Severe Winter Hydrological Hazard and Its Effect On Decrease of Population of Greenland Seals (1998/99 Winter Ecological Catastrophe)

    Science.gov (United States)

    Melentyev, Konstantin V.; Chernook, Vladimir I.

    Types of hydrological hazards are various but its agencies are especially diversified . At this study hazard effects will be assessed for White Sea population of Greenland seals - a representatives of high level of marine fodder chains and the prime part of the Arctic nature. Number of population and type of their migration are strongly depended from different meteorological and hydrological parameters and processes, climate change and anthropogenical press, including pollution and fur-seal fishery, create additional problems. Especially hard situation happens now with the ice- associated sea mammals (p olar bear, seal, walrus, etc.). Mass destruction of seals in the White Sea (ecological catastrophe) which happens periodically is close connected with different kind of meteorological and hydrological hazard. Greenland seals selected these water areas for whelping where a rookeries are organized on pack ice. But severe winter conditions (long-run severe frosts and NE winds) can modify ice regime of the White Sea which lead to effect "blocking" of pack ice (and whelping rookeries) inside the "Basin". These features stimulated strong reduction number ofseals (especially pups). Marine biology use modelling of the system "sea mammal-media", study "behavior factors" and mammals biodiversity at the different natural conditions. But the main critical goal is the development of special observational network for the White Sea and contiguous regions. A contemporary technologies assume integration of remote sensing and in situ hydro-chemical measurements. Airborne IR and visible observation of the marginal Arctic seas became now an indispensable part of marine ecological investigations. Application of satellite data for monitoring of sea mammals has been attractive also but practical use is restrained by its small spatial resolution, daytime illumination and cloud influence in the Arctic. Launching ERS synthetic aperture radar (SAR) in 1991, which provides global all- weather

  9. Phylogenetic and physiological diversity of microorganisms isolated from a deep greenland glacier ice core

    Science.gov (United States)

    Miteva, V. I.; Sheridan, P. P.; Brenchley, J. E.

    2004-01-01

    We studied a sample from the GISP 2 (Greenland Ice Sheet Project) ice core to determine the diversity and survival of microorganisms trapped in the ice at least 120,000 years ago. Previously, we examined the phylogenetic relationships among 16S ribosomal DNA (rDNA) sequences in a clone library obtained by PCR amplification from genomic DNA extracted from anaerobic enrichments. Here we report the isolation of nearly 800 aerobic organisms that were grouped by morphology and amplified rDNA restriction analysis patterns to select isolates for further study. The phylogenetic analyses of 56 representative rDNA sequences showed that the isolates belonged to four major phylogenetic groups: the high-G+C gram-positives, low-G+C gram-positives, Proteobacteria, and the Cytophaga-Flavobacterium-Bacteroides group. The most abundant and diverse isolates were within the high-G+C gram-positive cluster that had not been represented in the clone library. The Jukes-Cantor evolutionary distance matrix results suggested that at least 7 isolates represent new species within characterized genera and that 49 are different strains of known species. The isolates were further categorized based on the isolation conditions, temperature range for growth, enzyme activity, antibiotic resistance, presence of plasmids, and strain-specific genomic variations. A significant observation with implications for the development of novel and more effective cultivation methods was that preliminary incubation in anaerobic and aerobic liquid prior to plating on agar media greatly increased the recovery of CFU from the ice core sample.

  10. Deep-sea Lebensspuren of the Australian continental margins

    Science.gov (United States)

    Przeslawski, Rachel; Dundas, Kate; Radke, Lynda; Anderson, Tara J.

    Much of the deep sea comprises soft-sediment habitats dominated by comparatively low abundances of species-rich macrofauna and meiofauna. Although often not observed, these animals bioturbate the sediment during feeding and burrowing, leaving signs of their activities called Lebensspuren ('life traces'). In this study, we use still images to quantify Lebensspuren from the eastern (1921 images, 13 stations, 1300-2200 m depth) and western (1008 images, 11 stations, 1500-4400 m depth) Australian margins using a univariate measure of trace richness and a multivariate measure of Lebensspuren assemblages. A total of 46 Lebensspuren types were identified, including those matching named trace fossils and modern Lebensspuren found elsewhere in the world. Most traces could be associated with waste, crawling, dwellings, organism tests, feeding, or resting, but the origin of 15% of trace types remains unknown. Assemblages were significantly different between the two regions and depth profiles, with five Lebensspuren types accounting for over 95% of the differentiation (ovoid pinnate trace, crater row, spider trace, matchstick trace, mesh trace). Lebensspuren richness showed no strong relationships with depth, total organic carbon, or mud, although there was a positive correlation to chlorin index (i.e., organic freshness) in the eastern margin, with richness increasing with organic freshness. Lebensspuren richness was not related to epifauna either, indicating that epifauna may not be the primary source of Lebensspuren. Despite the abundance and distinctiveness of several traces both in the current and previous studies (e.g., ovoid pinnate, mesh, spider), their origin and distribution remains a mystery. We discuss this and several other considerations in the identification and quantification of Lebensspuren. This study represents the first comprehensive catalogue of deep-sea Lebensspuren in Australian waters and highlights the potential of Lebensspuren as valuable and often

  11. Radiocarbon Based Ages and Growth Rates: Hawaiian Deep Sea Corals

    Energy Technology Data Exchange (ETDEWEB)

    Roark, E B; Guilderson, T P; Dunbar, R B; Ingram, B L

    2006-01-13

    The radial growth rates and ages of three different groups of Hawaiian deep-sea 'corals' were determined using radiocarbon measurements. Specimens of Corallium secundum, Gerardia sp., and Leiopathes glaberrima, were collected from 450 {+-} 40 m at the Makapuu deep-sea coral bed using a submersible (PISCES V). Specimens of Antipathes dichotoma were collected at 50 m off Lahaina, Maui. The primary source of carbon to the calcitic C. secundum skeleton is in situ dissolved inorganic carbon (DIC). Using bomb {sup 14}C time markers we calculate radial growth rates of {approx} 170 {micro}m y{sup -1} and ages of 68-75 years on specimens as tall as 28 cm of C. secundum. Gerardia sp., A. dichotoma, and L. glaberrima have proteinaceous skeletons and labile particulate organic carbon (POC) is their primary source of architectural carbon. Using {sup 14}C we calculate a radial growth rate of 15 {micro}m y{sup -1} and an age of 807 {+-} 30 years for a live collected Gerardia sp., showing that these organisms are extremely long lived. Inner and outer {sup 14}C measurements on four sub-fossil Gerardia spp. samples produce similar growth rate estimates (range 14-45 {micro}m y{sup -1}) and ages (range 450-2742 years) as observed for the live collected sample. Similarly, with a growth rate of < 10 {micro}m y{sup -1} and an age of {approx}2377 years, L. glaberrima at the Makapuu coral bed, is also extremely long lived. In contrast, the shallow-collected A. dichotoma samples yield growth rates ranging from 130 to 1,140 {micro}m y{sup -1}. These results show that Hawaiian deep-sea corals grow more slowly and are older than previously thought.

  12. Deep-sea benthic footprint of the deepwater horizon blowout.

    Directory of Open Access Journals (Sweden)

    Paul A Montagna

    Full Text Available The Deepwater Horizon (DWH accident in the northern Gulf of Mexico occurred on April 20, 2010 at a water depth of 1525 meters, and a deep-sea plume was detected within one month. Oil contacted and persisted in parts of the bottom of the deep-sea in the Gulf of Mexico. As part of the response to the accident, monitoring cruises were deployed in fall 2010 to measure potential impacts on the two main soft-bottom benthic invertebrate groups: macrofauna and meiofauna. Sediment was collected using a multicorer so that samples for chemical, physical and biological analyses could be taken simultaneously and analyzed using multivariate methods. The footprint of the oil spill was identified by creating a new variable with principal components analysis where the first factor was indicative of the oil spill impacts and this new variable mapped in a geographic information system to identify the area of the oil spill footprint. The most severe relative reduction of faunal abundance and diversity extended to 3 km from the wellhead in all directions covering an area about 24 km(2. Moderate impacts were observed up to 17 km towards the southwest and 8.5 km towards the northeast of the wellhead, covering an area 148 km(2. Benthic effects were correlated to total petroleum hydrocarbon, polycyclic aromatic hydrocarbons and barium concentrations, and distance to the wellhead; but not distance to hydrocarbon seeps. Thus, benthic effects are more likely due to the oil spill, and not natural hydrocarbon seepage. Recovery rates in the deep sea are likely to be slow, on the order of decades or longer.

  13. Deep sea AUV navigation using multiple acoustic beacons

    Science.gov (United States)

    Ji, Da-xiong; Song, Wei; Zhao, Hong-yu; Liu, Jian

    2016-04-01

    Navigation is a critical requirement for the operation of Autonomous Underwater Vehicles (AUVs). To estimate the vehicle position, we present an algorithm using an extended Kalman filter (EKF) to integrate dead-reckoning position with acoustic ranges from multiple beacons pre-deployed in the operating environment. Owing to high latency, variable sound speed multipath transmissions and unreliability in acoustic measurements, outlier recognition techniques are proposed as well. The navigation algorithm has been tested by the recorded data of deep sea AUV during field operations in a variety of environments. Our results show the improved performance over prior techniques based on position computation.

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from G.O. SARS in the North Greenland Sea, North Sea and Norwegian Sea from 2011-04-29 to 2011-11-01 (NCEI Accession 0157278)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157278 includes Surface underway, chemical, meteorological and physical data collected from G.O. SARS in the North Greenland Sea, North Sea and...

  15. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    OpenAIRE

    Yum, L. K.; Baumgarten, S.; Röthig, T.; Roder, C.; Roik, Anna; Michell, C.; Voolstra, C. R.

    2017-01-01

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20??C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studie...

  16. Isotopes in Greenland Precipitation

    DEFF Research Database (Denmark)

    Faber, Anne-Katrine

    Greenland ice cores offer a unique opportunity to investigate the climate system behaviour. The objective of this PhD project is to investigate isotope modelling of present- day conditions and conduct model-data comparison using Greenland ice cores. Thus this thesis investigates how the integration...... of model and data can be used to improve the understanding of climate changes. This is done through analysis of isotope modelling, observations and ice core measurements. This dissertation comprises three projects: (1) Modelling the isotopic response to changes in Arctic sea surface conditions, (2......) Constructing a new Greenland database of observations and present-day ice core measurements, and (3) Performance test of isotope-enabled CAM5 for Greenland. The recent decades of rapid Arctic sea ice decline are used as a basis for an observational-based model experiment using the isotope-enabled CAM model 3...

  17. Characterization of icebergs and floating sea ice in the Yung Sund fjord in Greenland from satellite radar and optical images.

    Science.gov (United States)

    Guillaso, Stephane; Gay, Michel; Gervaise, Cedric

    2017-04-01

    At the Zackenberg site, sea ice starts to move between June and September resulting in icebergs flowing freely on the sea. Splitting into smaller parts, they reduce in size. Icebergs represent a risk for maritime transport and needs to be studied. In order to determine iceberg density per surface unit, size distribution, and movement of icebergs, we need to observe, detect, range and track them. The use of SAR images is particularly well adapted in regions where cloud cover is very present. We focused our study on the Yung Sund fjord in Greenland, where lots of icebergs and sea ice are generated during the summer. In the beginning of July, sea ice breaks up first, followed by icebergs created by the different glaciers based in the ocean. During our investigation, we noticed that the iceberg and sea ice were drifting very fast and thus, we needed to adapt our methodology. To achieve our goal, we collected all remote sensing data available in the region, principally Sentinel 1/2 and LandSAT 8 during one ice free season (from July 1st 2016 to September 30th, 2016). We developed an original approach in order to detect, characterize and track icebergs and sea ice independently from data. The iceberg detection was made using a watershed technique. The advantage of this technique is that it can be applied to both optical and radar images. For the latter, calibrated intensity is transformed into an image using a scaling function, in order to make ice brighter. Land data is masked using a topographic map. When data is segmented, a statistical test derived from the CFAR approach is performed to isolate an iceberg and floating sea ice from the ocean. Finally, a method, such SIFT or BRISK is used to identify and track the different segmented object. These approaches give a representation of the object and make the tracking easier and independent of the scale and rotation, which can occur because icebergs are dependent on ocean currents and wind. Finally, to fill in the gap

  18. The Greenland shark

    DEFF Research Database (Denmark)

    Costantini, David; Smith, Shona; Killen, Shaun S.

    2017-01-01

    the oxidative status of the Greenland shark (Somniosus microcephalus), which has recently been found as the longest living vertebrate animal known to science with a lifespan of at least 272years. As compared to other species, the Greenland shark had body mass-corrected values of muscle glutathione peroxidase...... that the values of metrics of oxidative status we measured might be linked to ecological features (e.g., adaptation to cold waters and deep dives) of this shark species rather to its lifespan....

  19. Turbidites and Benthic Faunal Succession in the Deep Sea: An Ecological Paradox

    National Research Council Canada - National Science Library

    Young, David

    2001-01-01

    Characteristics of benthic faunal succession following turbidity flows in the deep sea will vary according to the composition of turbidite materials, the spatial scales of deposition, the structure...

  20. Global ocean conveyor lowers extinction risk in the deep sea

    Science.gov (United States)

    Henry, Lea-Anne; Frank, Norbert; Hebbeln, Dierk; Wienberg, Claudia; Robinson, Laura; van de Flierdt, Tina; Dahl, Mikael; Douarin, Mélanie; Morrison, Cheryl L.; López Correa, Matthias; Rogers, Alex D.; Ruckelshausen, Mario; Roberts, J. Murray

    2014-06-01

    General paradigms of species extinction risk are urgently needed as global habitat loss and rapid climate change threaten Earth with what could be its sixth mass extinction. Using the stony coral Lophelia pertusa as a model organism with the potential for wide larval dispersal, we investigated how the global ocean conveyor drove an unprecedented post-glacial range expansion in Earth's largest biome, the deep sea. We compiled a unique ocean-scale dataset of published radiocarbon and uranium-series dates of fossil corals, the sedimentary protactinium-thorium record of Atlantic meridional overturning circulation (AMOC) strength, authigenic neodymium and lead isotopic ratios of circulation pathways, and coral biogeography, and integrated new Bayesian estimates of historic gene flow. Our compilation shows how the export of Southern Ocean and Mediterranean waters after the Younger Dryas 11.6 kyr ago simultaneously triggered two dispersal events in the western and eastern Atlantic respectively. Each pathway injected larvae from refugia into ocean currents powered by a re-invigorated AMOC that led to the fastest postglacial range expansion ever recorded, covering 7500 km in under 400 years. In addition to its role in modulating global climate, our study illuminates how the ocean conveyor creates broad geographic ranges that lower extinction risk in the deep sea.

  1. Magnetically tunable oil droplet lens of deep-sea shrimp

    Science.gov (United States)

    Iwasaka, M.; Hirota, N.; Oba, Y.

    2018-05-01

    In this study, the tunable properties of a bio-lens from a deep-sea shrimp were investigated for the first time using magnetic fields. The skin of the shrimp exhibited a brilliantly colored reflection of incident white light. The light reflecting parts and the oil droplets in the shrimp's skin were observed in a glass slide sample cell using a digital microscope that operated in the bore of two superconducting magnets (maximum strengths of 5 and 13 T). In the ventral skin of the shrimp, which contained many oil droplets, some comparatively large oil droplets (50 to 150 μm in diameter) were present. A distinct response to magnetic fields was found in these large oil droplets. Further, the application of the magnetic fields to the sample cell caused a change in the size of the oil droplets. The phenomena observed in this work indicate that the oil droplets of deep sea shrimp can act as lenses in which the optical focusing can be modified via the application of external magnetic fields. The results of this study will make it possible to fabricate bio-inspired soft optical devices in future.

  2. Significant Impact of Glacial Meltwater on the Pelagic Carbon Cycle in a High Arctic Greenland Fjord

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Bruhn, Annette; Sejr, Mikael Kristian

    2014-01-01

    a concentrations, mainly concentrated in a pronounced deep chlorophyll maximum (DCM), reflected the overlap between the nitracline and the photic zone, with 5-10 fold higher values in the outer part of the fjord and in the Greenland Sea, as compared to the inner fjord. The depth of the DCM increased from 5–40 m...

  3. Seasonal variations in active microwave signatures of sea ice in the Greenland Sea during 1992 and 1993

    DEFF Research Database (Denmark)

    Thomsen, Bjørn Bavnehøj; Skriver, Henning; Pedersen, Leif Toudal

    1995-01-01

    into the research of other statistical features of the sea ice than the mean value and also their seasonal variations. This paper investigates the backscatter coefficient and texture of different sea ice types and water by using calibrated precision images (PRI) acquired by the synthetic aperture radar (SAR...

  4. Activity syndromes and metabolism in giant deep-sea isopods

    Science.gov (United States)

    Wilson, Alexander D. M.; Szekeres, Petra; Violich, Mackellar; Gutowsky, Lee F. G.; Eliason, Erika J.; Cooke, Steven J.

    2017-03-01

    Despite growing interest, the behavioural ecology of deep-sea organisms is largely unknown. Much of this scarcity in knowledge can be attributed to deepwater animals being secretive or comparatively 'rare', as well as technical difficulties associated with accessing such remote habitats. Here we tested whether two species of giant marine isopod (Bathynomus giganteus, Booralana tricarinata) captured from 653 to 875 m in the Caribbean Sea near Eleuthera, The Bahamas, exhibited an activity behavioural syndrome across two environmental contexts (presence/absence of food stimulus) and further whether this syndrome carried over consistently between sexes. We also measured routine metabolic rate and oxygen consumption in response to a food stimulus in B. giganteus to assess whether these variables are related to individual differences in personality. We found that both species show an activity syndrome across environmental contexts, but the underlying mechanistic basis of this syndrome, particularly in B. giganteus, is unclear. Contrary to our initial predictions, neither B. giganteus nor B. tricarinata showed any differences between mean expression of behavioural traits between sexes. Both sexes of B. tricarinata showed strong evidence of an activity syndrome underlying movement and foraging ecology, whereas only male B. giganteus showed evidence of an activity syndrome. Generally, individuals that were more active and bolder, in a standard open arena test were also more active when a food stimulus was present. Interestingly, individual differences in metabolism were not related to individual differences in behaviour based on present data. Our study provides the first measurements of behavioural syndromes and metabolism in giant deep-sea isopods.

  5. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump

    KAUST Repository

    Agusti, Susana

    2015-07-09

    The role of the ocean as a sink for CO2 is partially dependent on the downward transport of phytoplankton cells packaged within fast-sinking particles. However, whether such fast-sinking mechanisms deliver fresh organic carbon down to the deep bathypelagic sea and whether this mechanism is prevalent across the ocean requires confirmation. Here we report the ubiquitous presence of healthy photosynthetic cells, dominated by diatoms, down to 4,000 m in the deep dark ocean. Decay experiments with surface phytoplankton suggested that the large proportion (18%) of healthy photosynthetic cells observed, on average, in the dark ocean, requires transport times from a few days to a few weeks, corresponding to sinking rates (124–732 m d−1) comparable to those of fast-sinking aggregates and faecal pellets. These results confirm the expectation that fast-sinking mechanisms inject fresh organic carbon into the deep sea and that this is a prevalent process operating across the global oligotrophic ocean.

  6. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump

    KAUST Repository

    Agusti, Susana; Gonzá lez-Gordillo, J. I.; Vaqué , D.; Estrada, M.; Cerezo, M. I.; Salazar, G.; Gasol, J. M.; Duarte, Carlos M.

    2015-01-01

    The role of the ocean as a sink for CO2 is partially dependent on the downward transport of phytoplankton cells packaged within fast-sinking particles. However, whether such fast-sinking mechanisms deliver fresh organic carbon down to the deep bathypelagic sea and whether this mechanism is prevalent across the ocean requires confirmation. Here we report the ubiquitous presence of healthy photosynthetic cells, dominated by diatoms, down to 4,000 m in the deep dark ocean. Decay experiments with surface phytoplankton suggested that the large proportion (18%) of healthy photosynthetic cells observed, on average, in the dark ocean, requires transport times from a few days to a few weeks, corresponding to sinking rates (124–732 m d−1) comparable to those of fast-sinking aggregates and faecal pellets. These results confirm the expectation that fast-sinking mechanisms inject fresh organic carbon into the deep sea and that this is a prevalent process operating across the global oligotrophic ocean.

  7. The Age of Human-Robot Collaboration: Deep Sea Exploration

    KAUST Repository

    Khatib, Oussama

    2018-01-18

    The promise of oceanic discovery has intrigued scientists and explorers for centuries, whether to study underwater ecology and climate change, or to uncover natural resources and historic secrets buried deep at archaeological sites. Reaching these depth is imperative since factors such as pollution and deep-sea trawling increasingly threaten ecology and archaeological sites. These needs demand a system deploying human-level expertise at the depths, and yet remotely operated vehicles (ROVs) are inadequate for the task. To meet the challenge of dexterous operation at oceanic depths, in collaboration with KAUSTメs Red Sea Research Center and MEKA Robotics, Oussama Khatib and the team developed Ocean One, a bimanual humanoid robot that brings immediate and intuitive haptic interaction to oceanic environments. Introducing Ocean One, the haptic robotic avatar During this lecture, Oussama Khatib will talk about how teaming with the French Ministry of Cultureメs Underwater Archaeology Research Department, they deployed Ocean One in an expedition in the Mediterranean to Louis XIVメs flagship Lune, lying off the coast of Toulon at ninety-one meters. In the spring of 2016, Ocean One became the first robotic avatar to embody a humanメs presence at the seabed. Ocean Oneメs journey in the Mediterranean marks a new level of marine exploration: Much as past technological innovations have impacted society, Ocean Oneメs ability to distance humans physically from dangerous and unreachable work spaces while connecting their skills, intuition, and experience to the task promises to fundamentally alter remote work. Robotic avatars will search for and acquire materials, support equipment, build infrastructure, and perform disaster prevention and recovery operations - be it deep in oceans and mines, at mountain tops, or in space.

  8. Installation of deep water sub-sea equipment

    Energy Technology Data Exchange (ETDEWEB)

    Pollack, Jack; Demian, Nabil [SBM-IMODCO Inc., Houston, TX (UNited States)

    2004-07-01

    Offshore oil developments are being planned in water depths exceeding 2000 m. Lowering and positioning large, heavy sub sea hardware, using conventional methods, presents new technical challenges in these ultra deep waters. In 3000 m a safe lift using conventional steel cables will require more capacity to support the cable self weight than the static payload. Adding dynamic loads caused by the motions of the surface vessel can quickly cause the safe capacity of the wire to be exceeded. Synthetic ropes now exist to greatly reduce the lowering line weight. The lower stiffness of these synthetic ropes aggravate the dynamic line tensions due to vessel motions and relatively little is known about the interaction of these ropes on the winches and sheaves required for pay-out and haul-in of these lines under dynamic load. Usage of conventional winches would damage the synthetic rope and risk the hardware being deployed. Reliable and economic installation systems that can operate from existing installation vessels are considered vital for ultra deep-water oil development. The paper describes a Deep Water Sub-Sea Hardware Deployment system consisting of a buoy with variable, pressure-balanced buoyancy, which is used to offset most of the payload weight as it is lowered. The buoyant capacity is controlled by air pumped into the tank from the surface vessel through a reinforced hose. The buoy and payload motion are isolated from the deployment line surface dynamics using a simple passive heave compensator mounted between the buoy and the bottom of the deployment rope. The system components, functionality and dynamic behavior are presented in the paper. (author)

  9. 75 FR 49420 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic...

    Science.gov (United States)

    2010-08-13

    .... 100513223-0289-02] RIN 0648-AY88 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic Deep-Sea Red Crab Specifications In- season Adjustment AGENCY: National Marine...-sea (DAS) allocation for the Atlantic deep- sea red crab fishery that were implemented in May 2010...

  10. 75 FR 35435 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic...

    Science.gov (United States)

    2010-06-22

    .... 100513223-0254-01] RIN 0648-AY88 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic Deep-Sea Red Crab Specifications In- season Adjustment AGENCY: National Marine... deep-sea red crab fishery, including a target total allowable catch (TAC) and a fleet-wide days-at-sea...

  11. Arctic Ocean outflow and glacier–ocean interactions modify water over the Wandel Sea shelf (northeastern Greenland

    Directory of Open Access Journals (Sweden)

    I. A. Dmitrenko

    2017-12-01

    Full Text Available The first-ever conductivity–temperature–depth (CTD observations on the Wandel Sea shelf in northeastern Greenland were collected in April–May 2015. They were complemented by CTDs taken along the continental slope during the Norwegian FRAM 2014–2015 drift. The CTD profiles are used to reveal the origin of water masses and interactions with ambient water from the continental slope and the tidewater glacier outlet. The subsurface water is associated with the Pacific water outflow from the Arctic Ocean. The underlying halocline separates the Pacific water from a deeper layer of polar water that has interacted with the warm Atlantic water outflow through the Fram Strait, recorded below 140 m. Over the outer shelf, the halocline shows numerous cold density-compensated intrusions indicating lateral interaction with an ambient polar water mass across the continental slope. At the front of the tidewater glacier outlet, colder and turbid water intrusions were observed at the base of the halocline. On the temperature–salinity plots these stations indicate a mixing line that is different from the ambient water and seems to be conditioned by the ocean–glacier interaction. Our observations of Pacific water are set within the context of upstream observations in the Beaufort Sea and downstream observations from the Northeast Water Polynya, and clearly show the modification of Pacific water during its advection across the Arctic Ocean. Moreover, ambient water over the Wandel Sea slope shows different thermohaline structures indicating the different origin and pathways of the on-shore and off-shore branches of the Arctic Ocean outflow through the western Fram Strait.

  12. Arctic Ocean outflow and glacier-ocean interactions modify water over the Wandel Sea shelf (northeastern Greenland)

    Science.gov (United States)

    Dmitrenko, Igor A.; Kirillov, Sergey A.; Rudels, Bert; Babb, David G.; Toudal Pedersen, Leif; Rysgaard, Søren; Kristoffersen, Yngve; Barber, David G.

    2017-12-01

    The first-ever conductivity-temperature-depth (CTD) observations on the Wandel Sea shelf in northeastern Greenland were collected in April-May 2015. They were complemented by CTDs taken along the continental slope during the Norwegian FRAM 2014-2015 drift. The CTD profiles are used to reveal the origin of water masses and interactions with ambient water from the continental slope and the tidewater glacier outlet. The subsurface water is associated with the Pacific water outflow from the Arctic Ocean. The underlying halocline separates the Pacific water from a deeper layer of polar water that has interacted with the warm Atlantic water outflow through the Fram Strait, recorded below 140 m. Over the outer shelf, the halocline shows numerous cold density-compensated intrusions indicating lateral interaction with an ambient polar water mass across the continental slope. At the front of the tidewater glacier outlet, colder and turbid water intrusions were observed at the base of the halocline. On the temperature-salinity plots these stations indicate a mixing line that is different from the ambient water and seems to be conditioned by the ocean-glacier interaction. Our observations of Pacific water are set within the context of upstream observations in the Beaufort Sea and downstream observations from the Northeast Water Polynya, and clearly show the modification of Pacific water during its advection across the Arctic Ocean. Moreover, ambient water over the Wandel Sea slope shows different thermohaline structures indicating the different origin and pathways of the on-shore and off-shore branches of the Arctic Ocean outflow through the western Fram Strait.

  13. Stronger at Depth: Jamming Grippers as Deep Sea Sampling Tools.

    Science.gov (United States)

    Licht, Stephen; Collins, Everett; Mendes, Manuel Lopes; Baxter, Christopher

    2017-12-01

    In this work we experimentally demonstrate (a) that the holding strength of universal jamming grippers increases as a function of the jamming pressure to greater than three atmospheres, and (b) that jamming grippers can be operated in the deep sea in ambient pressures exceeding one hundred atmospheres, where such high jamming pressures can be readily achieved. Laboratory experiments in a pressurized, water-filled test cell are used to measure the holding force of a "universal" style jamming gripper as a function of the pressure difference between internal membrane pressure and ambient pressure. Experiments at sea are used to demonstrate that jamming grippers can be installed on, and operated from, remotely operated vehicles at depths in excess of 1200 m. In both experiments, the jamming gripper consists of a latex balloon filled with a mixture of fresh water and ∼200 μm glass beads, which are cheaply available in large quantities as sand blasting media. The use of a liquid, rather than a gas, as the fluid media allows operation of the gripper with a closed-loop fluid system; jamming pressure is controlled with an electrically driven water hydraulic cylinder in the laboratory and with an oil hydraulic-driven large-bore water hydraulic cylinder at sea.

  14. Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes

    KAUST Repository

    Antunes, Andre

    2011-05-30

    Summary: The Red Sea harbours approximately 25 deep-sea anoxic brine pools. They constitute extremely unique and complex habitats with the conjugation of several extreme physicochemical parameters rendering them some of the most inhospitable environments on Earth. After 50 years of research mostly driven by chemists, geophysicists and geologists, the microbiology of the brines has been receiving increased interest in the last decade. Recent molecular and cultivation-based studies have provided us with a first glimpse on the enormous biodiversity of the local microbial communities, the identification of several new taxonomic groups, and the isolation of novel extremophiles that thrive in these environments. This review presents a general overview of these unusual biotopes and compares them with other similar environments in the Mediterranean Sea and the Gulf of Mexico, with a focus on their microbial ecology. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Characterization of bacterial diversity associated with deep sea ferromanganese nodules from the South China Sea.

    Science.gov (United States)

    Zhang, De-Chao; Liu, Yan-Xia; Li, Xin-Zheng

    2015-09-01

    Deep sea ferromanganese (FeMn) nodules contain metallic mineral resources and have great economic potential. In this study, a combination of culture-dependent and culture-independent (16S rRNA genes clone library and pyrosequencing) methods was used to investigate the bacterial diversity in FeMn nodules from Jiaolong Seamount, the South China Sea. Eleven bacterial strains including some moderate thermophiles were isolated. The majority of strains belonged to the phylum Proteobacteria; one isolate belonged to the phylum Firmicutes. A total of 259 near full-length bacterial 16S rRNA gene sequences in a clone library and 67,079 valid reads obtained using pyrosequencing indicated that members of the Gammaproteobacteria dominated, with the most abundant bacterial genera being Pseudomonas and Alteromonas. Sequence analysis indicated the presence of many organisms whose closest relatives are known manganese oxidizers, iron reducers, hydrogen-oxidizing bacteria and methylotrophs. This is the first reported investigation of bacterial diversity associated with deep sea FeMn nodules from the South China Sea.

  16. The peripheral olfactory organ in the Greenland shark Somniosus microcephalus (Bloch and Schneider, 1801

    Directory of Open Access Journals (Sweden)

    Laura Ghigliotti

    2015-11-01

    Full Text Available The Greenland shark Somniosus microcephalus (Bloch and Schneider, 1801 is the largest predatory fish in Arctic waters. The socio-economic significance of Greenland shark is demonstrated by its impact on the fishing cultures in Greenland, Scandinavia and Iceland for centuries. The fundamental biology and ecological role of Greenland shark, on the other hand, is virtually unknown. Although knowledge of its life history is limited, increasing evidence indicates that the Greenland shark may undertake long-distance migrations and perform vertical movements from the surface to the deep sea. It is an omnivorous species feeding on carrion and a wide variety of pelagic and bottom-dwelling organisms ranging from invertebrates to mammals, and including active species such as fishes and seals. Accordingly, Greenland shark should be recognized as a top predator, with a strong potential to influence the trophic dynamics of the Arctic marine ecosystem. The sensory biology of Greenland shark is scarcely studied, and considering the importance of olfaction in chemoreception, feeding and other behavioral traits, we examined the architecture of the peripheral olfactory organ where olfactory cues are received from the environment – the olfactory rosette. The structural organization of the olfactory rosette, in terms of histological features of the sensory epithelium, number of primary lamellae and total sensory surface area, provides a first proxy of the olfactory capability of Greenland shark. Based on own results and published studies, the overall morphology of the olfactory rosette is viewed in context of the functional and trophic ecology among other elasmobranch species.

  17. Environmental radioactivity in Greenland in 1974

    International Nuclear Information System (INIS)

    Aarkrog, A.; Lippert, J.

    1975-07-01

    Measurements of fall-out radioactivity in Greenland in 1974 are reported. Strontium 90 (and Caesium-137 in most cases) was determined in samples of precipitation, sea water, vegetation, animals, and drinking water. Estimates are given of the mean contents of 90 Sr and 137 Cs in the human diet in Greenland in 1974. Three Greenlanders were measured by wholebody counting. (author)

  18. Deep Sea Coral voucher sequence dataset - Identification of deep-sea corals collected during the 2009 - 2014 West Coast Groundfish Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data for this project resides in the West Coast Groundfish Bottom Trawl Survey Database. Deep-sea corals are often components of trawling bycatch, though their...

  19. Environmental radioactivity in Greenland 1977

    International Nuclear Information System (INIS)

    Aarkrog, A.; Lippert, J.

    1978-07-01

    Measurements of fallout radioactivity in Greenland in 1977 are reported. Strontium-90 (and Cesium-137 in most cases) was determined in samples of precipitation, sea water, vegetation, animals, and drinking water. Estimates are given of the mean contents of 90 Sr and 137 Cs in the human diet in Greenland in 1977. (author)

  20. NOAA National Deep-Sea Coral and Sponge Database 1842-Present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's Deep-Sea Coral Research and Technology Program (DSC-RTP) is compiling a national geodatabase of the known locations of deep-sea corals and sponges in U.S....

  1. An oceanographic model for the dispersion of wastes disposed of in the deep sea

    International Nuclear Information System (INIS)

    1986-01-01

    This report reviews the present knowledge of oceanic processes by which substances might be transferred from a deep-sea dump site back to man or his food chain and recommends pragmatic ways to calculate such transfers in order that deep-sea dumping of contaminants may be regulated effectively. The recommendations as to the currently most appropriate models are given

  2. An interactive end-user software application for a deep-sea photographic database

    Digital Repository Service at National Institute of Oceanography (India)

    Jaisankar, S.; Sharma, R.

    . The software is the first of its kind in deep-sea applications and it also attempts to educate the user about deep-sea photography. The application software is developed by modifying established routines and by creating new routines to save the retrieved...

  3. Dynamics of a deep-sea cable system

    International Nuclear Information System (INIS)

    Gulyaev, V.I.; Koshkin, V.L.; Serpak, I.O.

    1995-01-01

    We consider the problem of the dynamics of a deep-sea cable system consisting of branches of constant and variable length, interacting with an undercurrent which is variable in depth and direction. We construct a mathematical model for the motion of the element of the cable system. The cables are modeled as inextensible, flexible filaments of variable length. For numerical realization of the problem, we suggest special regularizing transformations of the variables, making it possible (without additional simplifications) to take into account all the characteristic features of the motion of the filaments and to avoid difficulties in the integration of the equations of motion connected with the variability of the length of the branches of the cable system. The proposed mathematical model and the technique for its numerical analysis is applicable for the investigation of the dynamics of a complex for mining minerals from the ocean floor

  4. Potential Health Benefits of Deep Sea Water: A Review

    Directory of Open Access Journals (Sweden)

    Samihah Zura Mohd Nani

    2016-01-01

    Full Text Available Deep sea water (DSW commonly refers to a body of seawater that is pumped up from a depth of over 200 m. It is usually associated with the following characteristics: low temperature, high purity, and being rich with nutrients, namely, beneficial elements, which include magnesium, calcium, potassium, chromium, selenium, zinc, and vanadium. Less photosynthesis of plant planktons, consumption of nutrients, and organic decomposition have caused lots of nutrients to remain there. Due to this, DSW has potential to become a good source for health. Research has proven that DSW can help overcome health problems especially related to lifestyle-associated diseases such as cardiovascular disease, diabetes, obesity, cancer, and skin problems. This paper reviews the potential health benefits of DSW by referring to the findings from previous researches.

  5. Consolidation properties and stress history of some deep sea sediments

    International Nuclear Information System (INIS)

    Silva, A.J.; Jordan, S.A.

    1983-09-01

    This paper summarizes results of 180 consolidation tests on samples from 52 cores taken with a variety of samplers in deep sea regimes of the North Western Atlantic and North Central Pacific. Most of the samplers were of large cross sectional area (over 10-cm dia) and attention was given to improving field techniques and reducing structural disturbance to the sediments. Good quality samples have been recovered to depths in excess of 25 m in several locations. The sediments were primarily fine-grained clays and silty clays with the predominant clay mineral being illite; however, the presence of smectite and calcium carbonate in some samples had significant influence on the properties. 34 references, 11 figures, 2 tables

  6. Strategic environmental assessment (SEA) as a means to include environmental knowledge in decision making in the case of an aluminium reduction plant in Greenland

    DEFF Research Database (Denmark)

    Hansen, Anne Merrild

    2011-01-01

    The purpose and means of strategic environmental assessment (SEA) can vary depending on the case investigated and interests of actors involved. Based on the objective for the SEA of a proposed aluminium reduction plant (ARP) in Greenland, this paper evaluates the SEA’s effectiveness in securing...... environmental knowledge in a decision-making process. It is concluded that the SEA secured inclusion of environmental knowledge in three out of four key decision arenas, which determined the direction and outcome of the process. The results from the SEA did not oppose the recommendations based on the economic...... assessments. As there was no conflict between economic and environmental recommendations, and hence no visible proof of SEA’s influence on the outcome of the decision, it is discussed whether environmental knowledge, in this decision making process, equals influence. The investigation was carried out...

  7. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    KAUST Repository

    Yum, Lauren

    2017-07-19

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  8. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals.

    Science.gov (United States)

    Yum, Lauren K; Baumgarten, Sebastian; Röthig, Till; Roder, Cornelia; Roik, Anna; Michell, Craig; Voolstra, Christian R

    2017-07-25

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  9. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    KAUST Repository

    Yum, Lauren; Baumgarten, Sebastian; Rö thig, Till; Roder, Cornelia; Roik, Anna Krystyna; Michell, Craig; Voolstra, Christian R.

    2017-01-01

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  10. Nematode assemblages in the deep-sea benthos of the Norwegian Sea

    Science.gov (United States)

    Jensen, Preben

    1988-07-01

    The deep-sea benthos of the Norwegian Sea contains 20-204 nematodes per 10 cm 2 down to 3 cm depth at seven stations sampled between 970 and 3294 m water depth. The majority of nematodes occur in the uppermost cm. Biomass varies from 3 to 73 μg C per 10 cm 2. Individual adult weight of the most dominant species differs by a factor of almost 1000, i.e. from 3-4 ng C to 3400 ng C; however, the majority of the nematodes is small-sized. Species diversity and evenness are high at all stations and each station harbours its specific fauna with little overlap between stations. Analysis of trophic group composition suggests that microbial feeding types (deposit and epistrate feeders) prevail in the deep-sea benthos; predators and scavengers are scarce. It is concluded that the nematode assemblage at each station consists of a mosaic of many microhabitats. The small nematode body weight probably results from limited food supply and/or poor food quality.

  11. Chronicles of the deep : ageing deep-sea corals in New Zealand waters

    International Nuclear Information System (INIS)

    Tracey, D.; Neil, H.; Gordon, D.; O'Shea, S.

    2003-01-01

    How old is a coral? Finding the answer requires some rather complex steps. We need to understand: the source of carbonate; the effects of climatic events; how to interpret growth zones; the effect of 14 C and biological processes such as feeding and reproduction; and how to overcome the lack of deep-sea environmental data records. We also need to find out where on the coral we should be sampling to get the best estimates of age. At the moment we know little about how deep-sea corals deposit their calcite, but we will be exploring this further so that we can have greater confidence in our age estimates. To confirm and validate age and growth, it will be necessary to use a combination of some of the the possible methods for ageing coral. In addition to ageing the corals, this work should yield a high-resolution record of ocean temperature during the past 100 years by using stable-isotope signatures preserved in the corals' carbonate skeletons. (author). 4 figs

  12. Past sea-level data from Lakse Bugt, Disko Island, West Greenland from ground-penetrating radar data

    Science.gov (United States)

    Souza, Priscila E.; Nielsen, Lars; Kroon, Aart; Clemmensen, Lars B.

    2016-04-01

    Beach-ridge deposits have been used as sea-level indicators in numerous studies from temperate coastal regions. However, their present surface morphology in artic regions may not accurately correspond to past sea-level, because subsequent surface erosion, solifluction processes and/or later sediment deposition may have altered the surface significantly. The internal structure of these beach ridges, however, is often well-preserved and thus constitutes an important key to reconstruction of past sea levels as seen elsewhere. In the present study, high-resolution reflection GPR data and high-precision topographic data were collected at Lakse Bugt (Disko Island, West Greenland) using a shielded 250 MHz antennae system and a RTK-Trimble R8 DGPS, respectively. Three transects were collected across a sequence of fossil, raised beach ridge deposits, and two transects were obtained across modern beach deposits at the shoreline of the mesotidal regime. Along all radar profiles we observed downlap reflection points, which we interpret to represent the boundary between sediments deposited on the beachface and sediments deposited in the upper shoreface regime. Both the upper shoreface and the beachface deposits exhibit reflection patterns dipping in the seaward direction. The beachface deposits show the strongest dip. At or just below the downlap points strong diffractions are often observed indicating the presence of a layer containing stones. These stones are large enough to generate significant signal scattering. At the present day beach a sharp transition defined by the presence of large stones is observed near the low tide water level: cobbles characterize the seaside, while the land side is characterized by sand and gravel. Therefore, it seems reasonable to conclude that downlap points observed in the GPR data serve as indicators of past low-tide levels (at the time of deposition). The downlap points show a consistent offset with respect to present surface topography

  13. APO observations in Southern Greenland: evaluation of modelled air-sea O2 and CO2 fluxes

    Science.gov (United States)

    Bonne, Jean-Louis; Bopp, Laurent; Delmotte, Marc; Cadule, Patricia; Resplandy, Laure; Nevison, Cynthia; Manizza, Manfredi; Valentin Lavric, Jost; Manning, Andrew C.; Masson-Delmotte, Valérie

    2014-05-01

    Since September 2007, the atmospheric CO2 mole fraction and O2/N2 ratio (a proxy for O2 concentration) have been monitored continuously at the coastal site of Ivittuut, southern Greenland (61.21° N, 48.17° W). From 2007 to 2013, our measurements show multi-annual trends of +2.0 ppm/year and -20 per meg/year respectively for CO2 and O2/N2, with annual average peak-to-peak seasonal amplitudes of 14+/-1 ppm and 130+/-15 per meg. We investigate the implications of our data set in terms of APO (Atmospheric Potential Oxygen). This tracer, obtained by a linear combination of CO2 and O2/N2 data, is invariant to CO2 and O2 exchanges in the land biota, but sensitive to the oceanic component of the O2 cycle. It is used as a bridge to evaluate air-sea CO2 and O2 fluxes from atmospheric variations of CO2 and O2/N2. Global ocean biogeochemical models produce estimates of CO2 and O2 air-sea fluxes. Atmospheric APO variations can be simulated through transportation of these fluxes in the atmosphere by Eulerian transport models. Thus, model values of atmospheric APO can be extracted at the station location. This study is based on air-sea flux outputs from CMIP5 simulations. After atmospheric transportation, they give access to atmospheric APO climatologies which can be compared, in terms of seasonal cycles and inter-annual variability, to the in situ observations. A preliminary study is based on the CCSM ocean model air-sea fluxes transported in the atmosphere with the MATCH transport model, over the period 1979-2004. The amplitude of the APO seasonal cycle is correctly captured, but year to year variations on this seasonal cycle appears to be underestimated compared to observations. The LMDZ atmospheric transport model is also used to transport the ocean fluxes from five CMIP5 models, over the period 1979-2005, showing different amplitudes and timings of APO seasonal cycles. This methodology is a first step to evaluate the origin of observed APO variations at our site and then

  14. Deep silicon maxima in the stratified oligotrophic Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Y. Crombet

    2011-02-01

    Full Text Available The silicon biogeochemical cycle has been studied in the Mediterranean Sea during late summer/early autumn 1999 and summer 2008. The distribution of nutrients, particulate carbon and silicon, fucoxanthin (Fuco, and total chlorophyll-a (TChl-a were investigated along an eastward gradient of oligotrophy during two cruises (PROSOPE and BOUM encompassing the entire Mediterranean Sea during the stratified period. At both seasons, surface waters were depleted in nutrients and the nutriclines gradually deepened towards the East, the phosphacline being the deepest in the easternmost Levantine basin. Following the nutriclines, parallel deep maxima of biogenic silica (DSM, fucoxanthin (DFM and TChl-a (DCM were evidenced during both seasons with maximal concentrations of 0.45 μmol L−1 for BSi, 0.26 μg L−1 for Fuco, and 1.70 μg L−1 for TChl-a, all measured during summer. Contrary to the DCM which was a persistent feature in the Mediterranean Sea, the DSM and DFMs were observed in discrete areas of the Alboran Sea, the Algero-Provencal basin, the Ionian sea and the Levantine basin, indicating that diatoms were able to grow at depth and dominate the DCM under specific conditions. Diatom assemblages were dominated by Chaetoceros spp., Leptocylindrus spp., Pseudonitzschia spp. and the association between large centric diatoms (Hemiaulus hauckii and Rhizosolenia styliformis and the cyanobacterium Richelia intracellularis was observed at nearly all sites. The diatom's ability to grow at depth is commonly observed in other oligotrophic regions and could play a major role in ecosystem productivity and carbon export to depth. Contrary to the common view that Si and siliceous phytoplankton are not major components of the Mediterranean biogeochemistry, we suggest here that diatoms, by persisting at depth during the stratified period, could contribute to a

  15. Virtual Investigations of an Active Deep Sea Volcano

    Science.gov (United States)

    Sautter, L.; Taylor, M. M.; Fundis, A.; Kelley, D. S.; Elend, M.

    2013-12-01

    Axial Seamount, located on the Juan de Fuca spreading ridge 300 miles off the Oregon coast, is an active volcano whose summit caldera lies 1500 m beneath the sea surface. Ongoing construction of the Regional Scale Nodes (RSN) cabled observatory by the University of Washington (funded by the NSF Ocean Observatories Initiative) has allowed for exploration of recent lava flows and active hydrothermal vents using HD video mounted on the ROVs, ROPOS and JASON II. College level oceanography/marine geology online laboratory exercises referred to as Online Concept Modules (OCMs) have been created using video and video frame-captured mosaics to promote skill development for characterizing and quantifying deep sea environments. Students proceed at their own pace through a sequence of short movies with which they (a) gain background knowledge, (b) learn skills to identify and classify features or biota within a targeted environment, (c) practice these skills, and (d) use their knowledge and skills to make interpretations regarding the environment. Part (d) serves as the necessary assessment component of the laboratory exercise. Two Axial Seamount-focused OCMs will be presented: 1) Lava Flow Characterization: Identifying a Suitable Cable Route, and 2) Assessing Hydrothermal Vent Communities: Comparisons Among Multiple Sulfide Chimneys.

  16. ASSESSMENT OF THE DEEP SEA WRECK USS INDEPENDENCE

    Directory of Open Access Journals (Sweden)

    Lisa C. Symons

    2016-07-01

    Full Text Available As part of ongoing efforts to better understand the nature of shipwrecks in National Marine Sanctuaries which may pose some level of pollution risk, and in this case, to definitively locate what is likely the only shipwreck in a sanctuary involved in both nuclear testing and nuclear waste disposal, NOAA’s Office of National Marine Sanctuaries collaborated with NOAA’s Office of Ocean Exploration and The Boeing Company, which provided their autonomous underwater vehicle, Echo Ranger, to conduct the first deep-water archaeological survey of the scuttled aircraft carrier USS Independence in the waters of Monterey Bay National Marine Sanctuary (MBNMS in March 2015. The presence of the deep-sea scuttled radioactive aircraft carrier USS Independence off the California coast has been the source of consistent media speculation and public concern for decades. The survey confirmed that a sonar target charted at the location was Independence, and provided details on the condition of the wreck, and revealed no detectable levels of radioactivity. At the same time, new information from declassified government reports provided more detail on Independence’s use as a naval test craft for radiological decontamination as well as its use as a repository for radioactive materials at the time of its scuttling in 1951. While further surveys may reveal more, physical assessment and focused archival work has demonstrated that the level of concern and speculation of danger from either a radioactive or oil pollution threat posed may be exaggerated.

  17. Biogenic Properties of Deep Waters from the Black Sea Reduction (Hydrogen Sulphide) Zone for Marine Algae

    OpenAIRE

    Polikarpov, Gennady G.; Lazorenko, Galina Е.; Тereschenko, Natalya N.

    2015-01-01

    Abstract Generalized data of biogenic properties investigations of the Black Sea deep waters from its reduction zone for marine algae are presented. It is shown on board and in laboratory that after pre-oxidation of hydrogen sulphide by intensive aeration of the deep waters lifted to the surface of the sea, they are ready to be used for cultivation of the Black Sea unicellular, planktonic, and multicellular, benthic, algae instead of artificial medium. Naturally balanced micro- and macroeleme...

  18. Deep-sea environment and biodiversity of the West African Equatorial margin

    OpenAIRE

    Sibuet, Myriam; Vangriesheim, Annick

    2009-01-01

    The long-term BIOZAIRE multidisciplinary deep-sea environmental program on the West Equatorial African margin organized in partnership between Ifremer and TOTAL aimed at characterizing the benthic community structure in relation with physical and chemical processes in a region of oil and gas interest. The morphology of the deep Congo submarine channel and the sedimentological structures of the deep-sea fan were established during the geological ZAIANGO project and helped to select study sites...

  19. Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti

    OpenAIRE

    Tavormina, Patricia L.; Kellermann, Matthias Y.; Antony, Chakkiath Paul; Tocheva, Elitza I.; Dalleska, Nathan F.; Jensen, Ashley J.; Valentine, David L.; Hinrichs, Kai-Uwe; Jensen, Grant J.; Dubilier, Nicole; Orphan, Victoria J.

    2017-01-01

    In the deep ocean, the conversion of methane into derived carbon and energy drives the establishment of diverse faunal communities. Yet specific biological mechanisms underlying the introduction of methane-derived carbon into the food web remain poorly described, due to a lack of cultured representative deep-sea methanotrophic prokaryotes. Here, the response of the deep-sea aerobic methanotroph Methyloprofundus sedimenti to methane starvation and recovery was characterized. By combining lipid...

  20. Studies of the reproductive biology of deep sea megabenthos VIII. Biochemical and calorific content of the reproductive organs of deep sea holothurians

    International Nuclear Information System (INIS)

    Tyler, P.A.; Walker, M.

    1987-01-01

    The data for protein, lipid, carbohydrate and ash content of the ovary, testes, gut and body wall of a variety of deep sea holothurians are presented. The dominant biochemical is insoluble protein in all tissues followed by lipid in the ovary. The ash content was lowest in the gonads and highest in the body wall of most species. The mean calorific content of the species studied is 25.08Jmg -1 thus representing a significant energy store in the deep sea. The data suggest active metabolic pathways in these species which may pass radionuclides to the developing gametes and after spawning to dispersal in deep waters. (author)

  1. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from HUDSON in the North Atlantic Ocean, North Greenland Sea and Norwegian Sea from 1982-02-28 to 1982-04-04 (NODC Accession 0113889)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0113889 includes chemical, discrete sample, physical and profile data collected from HUDSON in the North Atlantic Ocean, North Greenland Sea and...

  2. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JOHAN HJORT in the North Atlantic Ocean, North Greenland Sea and Norwegian Sea from 1992-07-12 to 1992-07-28 (NODC Accession 0113558)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113558 includes chemical, discrete sample, physical and profile data collected from JOHAN HJORT in the North Atlantic Ocean, North Greenland Sea and...

  3. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the HAKON MOSBY in the North Atlantic Ocean, North Greenland Sea and Norwegian Sea from 2001-05-27 to 2001-06-19 (NODC Accession 0113754)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113754 includes chemical, discrete sample, physical and profile data collected from HAKON MOSBY in the North Atlantic Ocean, North Greenland Sea and...

  4. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the G.O. SARS in the North Atlantic Ocean, North Greenland Sea and Norwegian Sea from 2003-09-22 to 2003-10-13 (NODC Accession 0113752)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113752 includes chemical, discrete sample, physical and profile data collected from G.O. SARS in the North Atlantic Ocean, North Greenland Sea and...

  5. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JAN MAYEN in the Arctic Ocean, Barents Sea and North Greenland Sea from 2005-05-20 to 2005-06-02 (NODC Accession 0113564)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113564 includes chemical, discrete sample, physical and profile data collected from JAN MAYEN in the Arctic Ocean, Barents Sea and North Greenland...

  6. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JOHAN HJORT in the North Greenland Sea and Norwegian Sea from 1996-07-20 to 1996-08-05 (NODC Accession 0115688)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115688 includes biological, chemical, discrete sample, physical and profile data collected from JOHAN HJORT in the North Greenland Sea and Norwegian...

  7. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JOHAN HJORT in the North Atlantic Ocean, North Greenland Sea and Norwegian Sea from 1994-10-29 to 1994-11-23 (NODC Accession 0115681)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115681 includes chemical, discrete sample, physical and profile data collected from JOHAN HJORT in the North Atlantic Ocean, North Greenland Sea and...

  8. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JOHAN HJORT in the North Atlantic Ocean, North Greenland Sea and Norwegian Sea from 1994-07-23 to 1994-08-16 (NODC Accession 0113560)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113560 includes chemical, discrete sample, physical and profile data collected from JOHAN HJORT in the North Atlantic Ocean, North Greenland Sea and...

  9. A Modeling Study of Deep Water Renewal in the Red Sea

    Science.gov (United States)

    Yao, F.; Hoteit, I.

    2016-02-01

    Deep water renewal processes in the Red Sea are examined in this study using a 50-year numerical simulation from 1952-2001. The deep water in the Red Sea below the thermocline ( 200 m) exhibits a near-uniform vertical structure in temperature and salinity, but geochemical tracer distributions, such as 14C and 3He, and dissolved oxygen concentrations indicate that the deep water is renewed on time scales as short as 36 years. The renewal process is accomplished through a deep overturning cell that consists of a southward bottom current and a northward returning current at depths of 400-600 m. Three sources regions are proposed for the formation of the deep water, including two deep outflows from the Gulfs of Aqaba and Suez and winter deep convections in the northern Red Sea. The MITgcm (MIT general circulation model), which has been used to simulate the shallow overturning circulations in the Red Sea, is configured in this study with increased resolutions in the deep water. During the 50 years of simulation, artificial passive tracers added in the model indicate that the deep water in the Red Sea was only episodically renewed during some anomalously cold years; two significant episodes of deep water renewal are reproduced in the winters of 1983 and 1992, in accordance with reported historical hydrographic observations. During these renewal events, deep convections reaching the bottom of the basin occurred, which further facilitated deep sinking of the outflows from the Gulfs of Aqaba and Suez. Ensuing spreading of the newly formed deep water along the bottom caused upward displacements of thermocline, which may have profound effects on the water exchanges in the Strait of Bab el Mandeb between the Red Sea and the Gulf of Aden and the functioning of the ecosystem in the Red Sea by changing the vertical distributions of nutrients.

  10. Contrasting trends in North Atlantic deep-water formation in the Labrador Sea and Nordic Seas during the Holocene

    NARCIS (Netherlands)

    Renssen, H.; Goosse, H.; Fichefet, T.

    2005-01-01

    The Holocene North Atlantic deep-water formation is studied in a 9,000-year long simulation with a coupled climate model of intermediate complexity, forced by changes in orbital forcing and atmospheric trace gas concentrations. During the experiment, deep-water formation in the Nordic Seas is

  11. Deep-sea ciliates: Recorded diversity and experimental studies on pressure tolerance

    Science.gov (United States)

    Schoenle, Alexandra; Nitsche, Frank; Werner, Jennifer; Arndt, Hartmut

    2017-10-01

    Microbial eukaryotes play an important role in biogeochemical cycles not only in productive surface waters but also in the deep sea. Recent studies based on metagenomics report deep-sea protistan assemblages totally different from continental slopes and shelf waters. To give an overview about the ciliate fauna recorded from the deep sea we summarized the available information on ciliate occurrence in the deep sea. Our literature review revealed that representatives of the major phylogenetic groups of ciliates were recorded from the deep sea (> 1000 m depth): Karyorelictea, Heterotrichea, Spirotrichea (Protohypotrichia, Euplotia, Oligotrichia, Choreotrichia, Hypotrichia), Armophorea (Armophorida), Litostomatea (Haptoria), Conthreep (Phyllopharyngea incl. Cyrtophoria, Chonotrichia, Suctoria; Nassophorea incl. Microthoracida, Synhymeniida, Nassulida; Colpodea incl. Bursariomorphida, Cyrtolophosidida; Prostomatea; Plagiopylea incl. Plagiopylida, Odontostomatida; Oligohymenophorea incl. Peniculia, Scuticociliatia, Hymenostomatia, Apostomatia, Peritrichia, Astomatia). Species occurring in both habitats, deep sea and shallow water, are rarely found to our knowledge to date. This indicates a high deep-sea specific ciliate fauna. Our own studies of similar genotypes (SSU rDNA and cox1 gene) revealed that two small scuticociliate species (Pseudocohnilembus persalinus and Uronema sp.) could be isolated from surface as well as deep waters (2687 m, 5276 m, 5719 m) of the Pacific. The adaptation to deep-sea conditions was investigated by exposing the ciliate isolates directly or stepwise to different hydrostatic pressures ranging from 1 to 550 atm at temperatures of 2 °C and 13 °C. Although the results indicated no general barophilic behavior, all four isolated strains survived the highest established pressure. A better survival at 550 atm could be observed for the lower temperature. Among microbial eukaryotes, ciliates should be considered as a diverse and potentially

  12. 75 FR 7435 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic...

    Science.gov (United States)

    2010-02-19

    .... 100105009-0053-01] RIN 0648-AY51 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic Deep-Sea Red Crab Specifications AGENCY: National Marine Fisheries Service (NMFS... comments. SUMMARY: NMFS proposes 2010 specifications for the Atlantic deep-sea red crab fishery, including...

  13. Envisioning Greenland

    DEFF Research Database (Denmark)

    Ren, Carina Bregnholm

    2012-01-01

    Currently, the traditional ‘cool’ representation of Greenland as a frozen landscape devoid of people and human structures is being challenged by an emerging vision of Greenland as ‘hot’. This article presents and describes these two versions of Greenland, showing how demarcations of what is ‘nature...

  14. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from KNORR in the North Atlantic Ocean, North Greenland Sea and others from 1972-07-18 to 1973-04-01 (NCEI Accession 0143398)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143398 includes discrete sample and profile data collected from KNORR in the North Atlantic Ocean, North Greenland Sea, Norwegian Sea, South Atlantic...

  15. Summer distribution and ecological role of seabirds and marine mammals in the Norwegian and Greenland seas (June 1988)

    Science.gov (United States)

    Joiris, Claude R.

    1992-03-01

    During the ARK V /2 expedition of RV Polarstern in the Norwegian and Greenland seas in June 1988, 380 half hour counts for marine vertebrates (seabirds, pinnipeds and cetaceans) were carried out. Results are presented as total numbers encountered and then converted into density and food intake. Mean food intake was 2.2 kg fresh weight per km 2 per day for seabirds, with a higher value in Atlantic water (2.5) lower values in polar water and the pack ice (1.7 and 1.9), and an intermediate value at the ice edge. The main species were the alcids (1.5, primarily Little Auk, Alle alle and Brünnich's Guillemot, Urea Iomvia) ,the Fulmar, Fulmarus glacialis (0.5), and the Kittiwake, Rissa tridactyla (0.2). The ecological role of cetaceans was clearly lower, with a mean value of 0.2 and a maximum of 0.7 in Atlantic water (rough evaluation, due to the low number of contacts). The food intake by pinnipeds was 0.55 kg/km 2 day at the ice edge and 0.4 in the pack ice; they were mainly harp, Phoca groenlandica and hooded seals, Cystophora cristata, in one main concentration each and ringed seals, Phoca hispida, scattered on the pack. Data for July 1988 show a great similarity with these results, except for a lower density of alcids, which probably reflects that Little Auk, Brünnich's Guillemot and Common Guillemot, Uria aalge already had started to leave the region.

  16. Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons.

    Directory of Open Access Journals (Sweden)

    Magdalena Guardiola

    Full Text Available Marine sediments are home to one of the richest species pools on Earth, but logistics and a dearth of taxonomic work-force hinders the knowledge of their biodiversity. We characterized α- and β-diversity of deep-sea assemblages from submarine canyons in the western Mediterranean using an environmental DNA metabarcoding. We used a new primer set targeting a short eukaryotic 18S sequence (ca. 110 bp. We applied a protocol designed to obtain extractions enriched in extracellular DNA from replicated sediment corers. With this strategy we captured information from DNA (local or deposited from the water column that persists adsorbed to inorganic particles and buffered short-term spatial and temporal heterogeneity. We analysed replicated samples from 20 localities including 2 deep-sea canyons, 1 shallower canal, and two open slopes (depth range 100-2,250 m. We identified 1,629 MOTUs, among which the dominant groups were Metazoa (with representatives of 19 phyla, Alveolata, Stramenopiles, and Rhizaria. There was a marked small-scale heterogeneity as shown by differences in replicates within corers and within localities. The spatial variability between canyons was significant, as was the depth component in one of the canyons where it was tested. Likewise, the composition of the first layer (1 cm of sediment was significantly different from deeper layers. We found that qualitative (presence-absence and quantitative (relative number of reads data showed consistent trends of differentiation between samples and geographic areas. The subset of exclusively benthic MOTUs showed similar patterns of β-diversity and community structure as the whole dataset. Separate analyses of the main metazoan phyla (in number of MOTUs showed some differences in distribution attributable to different lifestyles. Our results highlight the differentiation that can be found even between geographically close assemblages, and sets the ground for future monitoring and conservation

  17. Restoration of deep-sea macrofauna after simulated benthic disturbance in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Pavithran, S.; Ansari, Z.A.

    feeding by holoyhurians in the deep sea: some observations and comments. Progress in Oceanography 50, 407-421. Glasby, G.P., 1977. Marine manganese deposits. Elsevier, Amsterdam, pp.523. Grassle, J.F. and Sanders, H.L., 1973. Life histories and role... gesamten Hydrobiologie 77, 331-339. Thiel, H., 2001. Use and protection of the deep sea - an introduction. Deep-Sea Research II 48, (17-18), 3427-3431. Trueblood, D., Ozturgut, E., Pilipchuk, M., Gloumov, I. 1997. The ecological impacts of the joint U...

  18. An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents.

    Science.gov (United States)

    Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire

    2015-12-01

    Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea vent microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea hydrothermal vents remains limited. Here we focus on the abyssal mobilome by reviewing accumulating data on viruses, plasmids and vesicles associated with thermophilic and hyperthermophilic Bacteria and Archaea present in deep-sea hydrothermal vents. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Food web transport of trace metals and radionuclides from the deep sea: a review

    International Nuclear Information System (INIS)

    Young, J.S.

    1979-06-01

    This report summarizes aspects of the potential distribution pathways of metals and radionuclides, particularly Co and Ni, through a biological trophic framework after their deposition at 4000 to 5000 meters in the North Atlantic or North Pacific. It discusses (a) the basic, deep-sea trophic structure of eutrophic and oligotrophic regions; (b) the transport pathways of biologically available energy to and from the deep sea, pathways that may act as accumulators and vectors of radionuclide distribution, and (c) distribution routes that have come into question as potential carriers of radionuclides from the deep-sea bed to man

  20. Influence of Late Paleozoic Gondwana glaciations on the depositional evolution of the northern Pangean shelf, North Greenland, Svalbard and the Barents Sea

    DEFF Research Database (Denmark)

    Stemmerik, Lars

    2008-01-01

    Outcrop and subsurface data from the central northern margin of the Pangean shelf in North Greenland, Svalbard, and the Norwegian Barents Sea record the depositional response of a Northern Hemisphere subtropical shelf to Late Carboniferous-Early Permian (Bashkirian-Sakmarian) Gondwana glaciations....... The dominant motif is that of meters to tens of meters of exposure-capped cycles of carbonates, mixed carbonates, and siliciclastics and, in older stratigraphic levels, siliciclastics and gypsum. Halitegypsum-carbonate cycles developed in deeper, isolated basins. Individual cycles of carbonate and mixed...

  1. Real-Time Visualization System for Deep-Sea Surveying

    Directory of Open Access Journals (Sweden)

    Yujie Li

    2014-01-01

    Full Text Available Remote robotic exploration holds vast potential for gaining knowledge about extreme environments, which is difficult to be accessed by humans. In the last two decades, various underwater devices were developed for detecting the mines and mine-like objects in the deep-sea environment. However, there are some problems in recent equipment, like poor accuracy of mineral objects detection, without real-time processing, and low resolution of underwater video frames. Consequently, the underwater objects recognition is a difficult task, because the physical properties of the medium, the captured video frames, are distorted seriously. In this paper, we are considering use of the modern image processing methods to determine the mineral location and to recognize the mineral actually within a little computation complex. We firstly analyze the recent underwater imaging models and propose a novel underwater optical imaging model, which is much closer to the light propagation model in the underwater environment. In our imaging system, we remove the electrical noise by dual-tree complex wavelet transform. And then we solve the nonuniform illumination of artificial lights by fast guided trilateral bilateral filter and recover the image color through automatic color equalization. Finally, a shape-based mineral recognition algorithm is proposed for underwater objects detection. These methods are designed for real-time execution on limited-memory platforms. This pipeline is suitable for detecting underwater objects in practice by our experiences. The initial results are presented and experiments demonstrate the effectiveness of the proposed real-time visualization system.

  2. Sungsanpin, a lasso peptide from a deep-sea streptomycete.

    Science.gov (United States)

    Um, Soohyun; Kim, Young-Joo; Kwon, Hyuknam; Wen, He; Kim, Seong-Hwan; Kwon, Hak Cheol; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan

    2013-05-24

    Sungsanpin (1), a new 15-amino-acid peptide, was discovered from a Streptomyces species isolated from deep-sea sediment collected off Jeju Island, Korea. The planar structure of 1 was determined by 1D and 2D NMR spectroscopy, mass spectrometry, and UV spectroscopy. The absolute configurations of the stereocenters in this compound were assigned by derivatizations of the hydrolysate of 1 with Marfey's reagents and 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl isothiocyanate, followed by LC-MS analysis. Careful analysis of the ROESY NMR spectrum and three-dimensional structure calculations revealed that sungsanpin possesses the features of a lasso peptide: eight amino acids (-Gly(1)-Phe-Gly-Ser-Lys-Pro-Ile-Asp(8)-) that form a cyclic peptide and seven amino acids (-Ser(9)-Phe-Gly-Leu-Ser-Trp-Leu(15)) that form a tail that loops through the ring. Sungsanpin is thus the first example of a lasso peptide isolated from a marine-derived microorganism. Sungsanpin displayed inhibitory activity in a cell invasion assay with the human lung cancer cell line A549.

  3. The permeability and consolidation of deep-sea sediments

    International Nuclear Information System (INIS)

    Schultheiss, P.J.; Gunn, D.E.

    1985-01-01

    This report presents permeability and consolidation data for a wide range of sediment types. Permeability is one of the two parameters which are needed to directly quantify pore water advection in deep sea sediments and which are being investigated in high-level radioactive waste study areas. While it is desirable that these parameters should be measured in situ it is argued that values of permeability can be measured sufficiently accurately in the laboratory from core samples. Consequently, an apparatus has been developed which enables sediment permeability to be measured at decreasing void ratios during a back-pressured consolidation test. Data presented in this report from over 60 samples have established the major differences in permeability between various sediment types and how permeability changes as a function of burial depth and void ratio. Samples from two study areas in the North Atlantic Ocean, King's Trough Flank (KTF) and Great Meteor East (GME), have been compared with samples of Red Clay (RC) obtained from the NW Pacific Ocean. Results are presented and discussed. (author)

  4. Hydration of high-silica glasses in the deep sea

    International Nuclear Information System (INIS)

    Federman, A.N.

    1986-01-01

    Natural analogs of nuclear waste glasses are important because they provide information of the one variable that is not controllable in the laboratory - long intervals of time in the actual environment of storage. Some natural glasses have persisted for millions of years in deep-sea sediments in the form of disseminated particles and distinct tephra layers, while other apparently similar specimens have been completely altered to clay assemblages relatively quickly. Geologists have reached no firm conclusions as to why these differences exist, and more research is certainly warranted. These glasses vary in age, composition, and in the in-situ conditions they have experienced. They may provide important information for two different aspects of nuclear waste glass research: First, the chemical composition and especially the water content of these glasses as a function of time may give an understanding of the mechanisms and rates of diffusion in glasses in the natural environment. Second, the apparent differing durability of these glasses in different environmental conditions may suggest the optimal characteristics of a nuclear waste glass depository

  5. Reactive Fe(II) layers in deep-sea sediments

    Science.gov (United States)

    König, Iris; Haeckel, Matthias; Drodt, Matthias; Suess, Erwin; Trautwein, Alfred X.

    1999-05-01

    The percentage of the structural Fe(II) in clay minerals that is readily oxidized to Fe(III) upon contact with atmospheric oxygen was determined across the downcore tan-green color change in Peru Basin sediments. This latent fraction of reactive Fe(II) was only found in the green strata, where it proved to be large enough to constitute a deep reaction layer with respect to the pore water O 2 and NO 3-. Large variations were detected in the proportion of the reactive Fe(II) concentration to the organic matter content along core profiles. Hence, the commonly observed tan-green color change in marine sediments marks the top of a reactive Fe(II) layer, which may represent the major barrier to the movement of oxidation fronts in pelagic subsurface sediments. This is also demonstrated by numerical model simulations. The findings imply that geochemical barriers to pore water oxidation fronts form diagenetically in the sea floor wherever the stage of iron reduction is reached, provided that the sediments contain a significant amount of structural iron in clay minerals.

  6. The fluid dynamics of deep-sea mining

    Science.gov (United States)

    Peacock, Thomas; Rzeznik, Andrew

    2017-11-01

    With vast mineral deposits on the ocean floor, deep-sea nodule mining operations are expected to commence in the next decade. Among several fundamental fluid dynamics problems, this could involve plans for dewatering plumes to be released into the water column by surface processing vessels. To study this scenario, we consider the effects of non-uniform, realistic stratifications on forced compressible plumes with finite initial size. The classical plume model is developed to take into account the influence of thermal conduction through the dewatering pipe and also compressibility effects, for which a dimensionless number is introduced to determine their importance compared to the background stratification. Among other things, our results show that small-scale features of a realistic stratification can have a large effect on plume dynamics compared to smoothed profiles and that for any given set of environmental parameters there is a discharge flow rate that minimizes the plume vertical extent. Our findings are put in the context of nodule mining plumes for which the rapid and efficient re-sedimentation of waste material has important environmental consequences.

  7. Deep-sea genetic resources: New frontiers for science and stewardship in areas beyond national jurisdiction

    Science.gov (United States)

    Harden-Davies, Harriet

    2017-03-01

    The deep-sea is a large source of marine genetic resources (MGR), which have many potential uses and are a growing area of research. Much of the deep-sea lies in areas beyond national jurisdiction (ABNJ), including 65% of the global ocean. MGR in ABNJ occupy a significant gap in the international legal framework. Access and benefit sharing of MGR is a key issue in the development of a new international legally-binding instrument under the United Nations Convention on the Law of the Sea (UNCLOS) for the conservation and sustainable use of marine biological diversity in ABNJ. This paper examines how this is relevant to deep-sea scientific research and identifies emerging challenges and opportunities. There is no internationally agreed definition of MGR, however, deep-sea genetic resources could incorporate any biological material including genes, proteins and natural products. Deep-sea scientific research is the key actor accessing MGR in ABNJ and sharing benefits such as data, samples and knowledge. UNCLOS provides the international legal framework for marine scientific research, international science cooperation, capacity building and marine technology transfer. Enhanced implementation could support access and benefit sharing of MGR in ABNJ. Deep-sea scientific researchers could play an important role in informing practical new governance solutions for access and benefit sharing of MGR that promote scientific research in ABNJ and support deep-sea stewardship. Advancing knowledge of deep-sea biodiversity in ABNJ, enhancing open-access to data and samples, standardisation and international marine science cooperation are significant potential opportunity areas.

  8. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Directory of Open Access Journals (Sweden)

    Christian Tamburini

    Full Text Available The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  9. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Science.gov (United States)

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Moscoso, Luciano; Motz, Holger; Neff, Max; Nezri, Emma Nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J M; Stolarczyk, Thierry; Taiuti, Mauro G F; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  10. Ship Sensor Observations for Deep Sea Medicines 2003 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly measurements made by selected ship sensors on the NOAA ship Ronald H. Brown during the "Deep Sea Medicines 2003: Exploration of the Gulf of Mexico" expedition...

  11. Knorr 147 Leg V Hydrographic Data Report: Labrador Sea Deep Convection Experiment

    National Research Council Canada - National Science Library

    Zimmerman, Sarah

    2000-01-01

    Between 2 February and 20 March 1997, the first phase of the Labrador Sea Deep Convection Experiment was carried out on R/V Knorr, during which 127 hydrographic stations were occupied throughout the Labrador basin...

  12. Penaeoid and sergestoid shrimps from the deep scattering layer (DSL) in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Karuppasamy, P.K.; Menon, N.G.

    Results of a preliminary study on the occurrence and distribution of seventeen species of Penaeoid and Sergestoid shrimps from the deep scattering layer (DSL) of the Indian EEZ of Arabian Sea are presented here based on the IKMT samples collected...

  13. Recovery of deep-sea meiofauna after artificial disturbance in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Goltekar, N.R.; Gonsalves, S.; Ansari, Z.A.

    -1 1 Recovery of Deep-sea Meiofauna after Artificial Disturbance in the Central Indian Basin INGOLE B.S*., R. GOLTEKAR, S. GONSALVES and Z. A. ANSARI Biological Oceanography Division, National Institute of Oceanography, Dona Paula, Goa; 403004...

  14. Bacterial Diversity in Deep-Sea Sediments from Afanasy Nikitin Seamount, Equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Meena, R.M.; Deobagkar, D.D.

    Deep-sea sediments can reveal much about the last 200 million years of Earth history, including the history of ocean life and climate. Microbial diversity in Afanasy Nikitin seamount located at Equatorial East Indian Ocean (EEIO) was investigated...

  15. AFSC/RACE/GAP/Rooper: Deep sea coral and sponge distribution

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — As part of a series of ongoing research projects, the AFSC has been mapping and modeling the distribution of deep-sea coral and sponge communities throughout Alaska....

  16. Ship Track for Deep Sea Medicines 2003 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ship track of the Ronald H. Brown during the "Deep Sea Medicines 2003: Exploring the Gulf of Mexico" expedition sponsored by the National Oceanic and Atmospheric...

  17. Deep-sea fungi as a source of alkaline and cold-tolerant proteases

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.R.; Raghukumar, C.; Muraleedharan, U.; Raghukumar, S.

    ,5]. Fungi and their enzymes from the deep-sea environment have received scant attention. Proteins and peptides constitute a substantial portion of the organic nutrients present in the deep-sea sediments as well as suspended particulate matter [6... alkaline protease using a qualitative plate assay on Czapek Dox agar (CDA) supplemented with 1% skimmed milk powder (Trade name Sagar, India). Clearance zone produced around the fungal colonies in plates indicated protease positive reaction [19...

  18. Environmental studies for mining of deep-sea polymetallic nodules - Accomplishments and future plans

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    on marine ecosystem, the project on ‘EIA studies for nodule mining in CIB’ was initiated in 1996, under the national programme on polymetallic nodules funded by the Dept. of Ocean Development. Mining of the deep-sea minerals [1] is expected to alter... for the future • Development of predictive ecosystem models • Creation of environmental database • Evaluating the biogeochemical coupling of biota with deep-sea ecosystem • Development of environment management plan for nodule mining References...

  19. Exponential Decline of Deep-Sea Ecosystem Functioning Linked to Benthic Biodiversity Loss

    OpenAIRE

    Danovaro, Roberto; Gambi, Cristina; Dell'Anno, Antonio; Corinaldesi, Cinzia; Fraschetti, Simonetta; Vanreusel, Ann; Vincx, Magda; Gooday, Andrew J.

    2008-01-01

    BackgroundRecent investigations suggest that biodiversity loss might impair the functioning and sustainability of ecosystems. Although deep-sea ecosystems are the most extensive on Earth, represent the largest reservoir of biomass, and host a large proportion of undiscovered biodiversity, the data needed to evaluate the consequences of biodiversity loss on the ocean floor are completely lacking.ResultsHere, we present a global-scale study based on 116 deep-sea sites that relates benthic biodi...

  20. De novo transcriptome assembly and positive selection analysis of an individual deep-sea fish.

    Science.gov (United States)

    Lan, Yi; Sun, Jin; Xu, Ting; Chen, Chong; Tian, Renmao; Qiu, Jian-Wen; Qian, Pei-Yuan

    2018-05-24

    High hydrostatic pressure and low temperatures make the deep sea a harsh environment for life forms. Actin organization and microtubules assembly, which are essential for intracellular transport and cell motility, can be disrupted by high hydrostatic pressure. High hydrostatic pressure can also damage DNA. Nucleic acids exposed to low temperatures can form secondary structures that hinder genetic information processing. To study how deep-sea creatures adapt to such a hostile environment, one of the most straightforward ways is to sequence and compare their genes with those of their shallow-water relatives. We captured an individual of the fish species Aldrovandia affinis, which is a typical deep-sea inhabitant, from the Okinawa Trough at a depth of 1550 m using a remotely operated vehicle (ROV). We sequenced its transcriptome and analyzed its molecular adaptation. We obtained 27,633 protein coding sequences using an Illumina platform and compared them with those of several shallow-water fish species. Analysis of 4918 single-copy orthologs identified 138 positively selected genes in A. affinis, including genes involved in microtubule regulation. Particularly, functional domains related to cold shock as well as DNA repair are exposed to positive selection pressure in both deep-sea fish and hadal amphipod. Overall, we have identified a set of positively selected genes related to cytoskeleton structures, DNA repair and genetic information processing, which shed light on molecular adaptation to the deep sea. These results suggest that amino acid substitutions of these positively selected genes may contribute crucially to the adaptation of deep-sea animals. Additionally, we provide a high-quality transcriptome of a deep-sea fish for future deep-sea studies.

  1. Genetic diversity of archaea in deep-sea hydrothermal vent environments.

    OpenAIRE

    Takai, K; Horikoshi, K

    1999-01-01

    Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the...

  2. A review on deep-sea fungi: Occurrence, diversity and adaptions

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Damare, S.R.; Singh, P.

    soil. In contrast to land, however, most studies on deep-sea sediments have focused exclusively on bacteria and have demonstrated their intense metabolic activities therein (Turley and Dixon 2002). The fungi and their role in the deep-sea sediments... polymerization and form brown-coloured products, constituting humus (Tisdall and Oades 1982). The humic material combines with soil particles to form microaggregates. Fungal hyphae further act as binding agents to form macroaggregates by trapping fine particles...

  3. An abyssal mobilome: Viruses, plasmids and vesicles from deep-sea hydrothermal vents

    OpenAIRE

    Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire

    2015-01-01

    Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea vent microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea hydrothermal vents remains limited. Here...

  4. The circulation of deep water in the Tasman and Coral seas

    International Nuclear Information System (INIS)

    Harries, J.R.

    1976-07-01

    The physical oceanography of the Tasman and Coral Seas is reviewed with an emphasis on the deep currents. There are many uncertainties in the deep circulation pattern. The available data are used to develop an idealised circulation to estimate the likely path taken by water flowing from a depth of 5000 m in the Tasman Sea. The model suggests that the water would finally reach the surface layers south of the Antarctic Convergence with a median delay of 600 years. (author)

  5. Fossil manganese nodules from Timor: geochemical and radiochemical evidence for deep-sea origin

    International Nuclear Information System (INIS)

    Margolis, S.V.; Fein, C.D.; Glasby, G.P.; Audley-Charles, M.G.

    1978-01-01

    Fossil Mn nodules of Cretaceous age from western Timor exhibit chemical, structural and radioisotope compositions consistent with their being of deep-sea origin. These nodules show characteristics similar to nodules now found at depths of 3,500-5,000 m in the Pacific and Indian Oceans. Slight differences in the fine structure and chemistry of these nodules and modern deep-sea nodules are attributed to diagenetic alteration after uplift of enclosing sediments

  6. GEOSTAR deep sea floor missions: magnetic data analysis and 1D geo electric structure underneath the Southern Tyrrhenian Sea

    International Nuclear Information System (INIS)

    Vitale, S.; De Santis, A.; Di Mauro, D.; Cafarella, L.; Palangio, P.; Beranzoli, L.; Favali, P.

    2009-01-01

    From 2000 to 2005 two geophysical exploration missions were undertaken in the Tyrrenian deep sea floor at depth between -2000 and -3000 m in the framework of the European-funded GEOSTAR Projects. The considered missions in this work are GEOSTAR-2 and ORION-GEOSTAR-3 with the main scientific objective of investigating the deep-sea floor by means of an automatic multiparameter benthic observatory station working continuously from around 5 to 12 months each time. During the two GEOSTAR deep sea floor missions, scalar and vector magnetometers acquired useful magnetic data both to improve global and regional geomagnetic reference models and to infer specific geo electric information about the two sites of magnetic measurements by means of a forward modelling.

  7. Species-energy relationship in the deep sea: A test using the Quaternary fossil record

    Science.gov (United States)

    Hunt, G.; Cronin, T. M.; Roy, K.

    2005-01-01

    Little is known about the processes regulating species richness in deep-sea communities. Here we take advantage of natural experiments involving climate change to test whether predictions of the species-energy hypothesis hold in the deep sea. In addition, we test for the relationship between temperature and species richness predicted by a recent model based on biochemical kinetics of metabolism. Using the deep-sea fossil record of benthic foraminifera and statistical meta-analyses of temperature-richness and productivity-richness relationships in 10 deep-sea cores, we show that temperature but not productivity is a significant predictor of species richness over the past c. 130 000 years. Our results not only show that the temperature-richness relationship in the deep-sea is remarkably similar to that found in terrestrial and shallow marine habitats, but also that species richness tracks temperature change over geological time, at least on scales of c. 100 000 years. Thus, predicting biotic response to global climate change in the deep sea would require better understanding of how temperature regulates the occurrences and geographical ranges of species. ??2005 Blackwell Publishing Ltd/CNRS.

  8. Potential Osteoporosis Recovery by Deep Sea Water through Bone Regeneration in SAMP8 Mice

    Directory of Open Access Journals (Sweden)

    Hen-Yu Liu

    2013-01-01

    Full Text Available The aim of this study is to examine the therapeutic potential of deep sea water (DSW on osteoporosis. Previously, we have established the ovariectomized senescence-accelerated mice (OVX-SAMP8 and demonstrated strong recovery of osteoporosis by stem cell and platelet-rich plasma (PRP. Deep sea water at hardness (HD 1000 showed significant increase in proliferation of osteoblastic cell (MC3T3 by MTT assay. For in vivo animal study, bone mineral density (BMD was strongly enhanced followed by the significantly increased trabecular numbers through micro-CT examination after a 4-month deep sea water treatment, and biochemistry analysis showed that serum alkaline phosphatase (ALP activity was decreased. For stage-specific osteogenesis, bone marrow-derived stromal cells (BMSCs were harvested and examined. Deep sea water-treated BMSCs showed stronger osteogenic differentiation such as BMP2, RUNX2, OPN, and OCN, and enhanced colony forming abilities, compared to the control group. Interestingly, most untreated OVX-SAMP8 mice died around 10 months; however, approximately 57% of DSW-treated groups lived up to 16.6 months, a life expectancy similar to the previously reported life expectancy for SAMR1 24 months. The results demonstrated the regenerative potentials of deep sea water on osteogenesis, showing that deep sea water could potentially be applied in osteoporosis therapy as a complementary and alternative medicine (CAM.

  9. Potential impact of global climate change on benthic deep-sea microbes.

    Science.gov (United States)

    Danovaro, Roberto; Corinaldesi, Cinzia; Dell'Anno, Antonio; Rastelli, Eugenio

    2017-12-15

    Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Decadal trends in deep ocean salinity and regional effects on steric sea level

    Science.gov (United States)

    Purkey, S. G.; Llovel, W.

    2017-12-01

    We present deep (below 2000 m) and abyssal (below 4000 m) global ocean salinity trends from the 1990s through the 2010s and assess the role of deep salinity in local and global sea level budgets. Deep salinity trends are assessed using all deep basins with available full-depth, high-quality hydrographic section data that have been occupied two or more times since the 1980s through either the World Ocean Circulation Experiment (WOCE) Hydrographic Program or the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). All salinity data is calibrated to standard seawater and any intercruise offsets applied. While the global mean deep halosteric contribution to sea level rise is close to zero (-0.017 +/- 0.023 mm/yr below 4000 m), there is a large regional variability with the southern deep basins becoming fresher and northern deep basins becoming more saline. This meridional gradient in the deep salinity trend reflects different mechanisms driving the deep salinity variability. The deep Southern Ocean is freshening owing to a recent increased flux of freshwater to the deep ocean. Outside of the Southern Ocean, the deep salinity and temperature changes are tied to isopycnal heave associated with a falling of deep isopycnals in recent decades. Therefore, regions of the ocean with a deep salinity minimum are experiencing both a halosteric contraction with a thermosteric expansion. While the thermosteric expansion is larger in most cases, in some regions the halosteric compensates for as much as 50% of the deep thermal expansion, making a significant contribution to local sea level rise budgets.

  11. The KM3NeT deep-sea neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Margiotta, Annarita

    2014-12-01

    KM3NeT is a deep-sea research infrastructure being constructed in the Mediterranean Sea. It will host the next generation Cherenkov neutrino telescope and nodes for a deep sea multidisciplinary observatory, providing oceanographers, marine biologists, and geophysicists with real time measurements. The neutrino telescope will complement IceCube in its field of view and exceed it substantially in sensitivity. Its main goal is the detection of high energy neutrinos of astrophysical origin. The detector will have a modular structure with six building blocks, each consisting of about 100 Detection Units (DUs). Each DU will be equipped with 18 multi-PMT digital optical modules. The first phase of construction has started and shore and deep-sea infrastructures hosting the future KM3NeT detector are being prepared in offshore Toulon, France and offshore Capo Passero on Sicily, Italy. The technological solutions for the neutrino detector of KM3NeT and the expected performance of the neutrino telescope are presented and discussed. - Highlights: • A deep-sea research infrastructure is being built in the Mediterranean Sea. • It will host a km{sup 3}-size neutrino telescope and a deep-sea multidisciplinary observatory. • The main goal of the neutrino telescope is the search for Galactic neutrino sources. • A major innovation is adopted in the design of the optical module. • 31 3 in. photomultiplier tubes (PMTs) will be hosted in the same glass sphere.

  12. Advances in deep-sea biology: biodiversity, ecosystem functioning and conservation. An introduction and overview

    Science.gov (United States)

    Cunha, Marina R.; Hilário, Ana; Santos, Ricardo S.

    2017-03-01

    Once considered as monotonous and devoid of life, the deep sea was revealed during the last century as an environment with a plethora of life forms and extremely high species richness (Rex and Etter, 2010). Underwater vehicle developments allowed direct observations of the deep, disclosing unique habitats and diverse seascapes, and other technological advances enabled manipulative experimentation and unprecedented prospects to pursue novel research topics (Levin and Sibuet, 2012; Danovaro et al., 2014). Alongside, the growing human population greatly increased the pressure on deep-sea ecosystems and the services they provide (Ramirez-Llodra et al., 2011; Thurber et al., 2014; Levin et al., 2016). Societal changes further intensified worldwide competition for natural resources, extending the present footprint of impacts over most of the global ocean (Halpern et al., 2008). In this socio-economic context, and in tandem with cutting edge technological advances and an unclear legal framework to regulate access to natural resources (Boyes and Elliott, 2014), the deep sea has emerged as a new opportunity for industrial exploitation and novel economic activities. The expanding use of the deep sea prompted a rapid reply from deep-sea scientists that recommended "a move from a frontier mentality of exploitation and single-sector management to a precautionary system that balances use of living marine resources, energy, and minerals from the deep ocean with maintenance of a productive and healthy marine environment, while improving knowledge and collaboration" and proposed "three directions to advance deep-ocean stewardship: i) protection and mitigation, ii) research, and iii) collaborative governance" (Mengerink et al., 2014). The European Marine Board position paper 22 (Rogers et al., 2015) further examined the key societal and environmental drivers confronting the deep sea and the role of deep-sea research to deliver future knowledge needs for science and society; a clear

  13. Monsoon control on trace metal fluxes in the deep Arabian Sea

    Indian Academy of Sciences (India)

    Monsoon control on trace metal fluxes in the deep Arabian Sea ... at marine boundaries and surface ocean processes: Forcings and feedbacks Volume 115 ... Annual Al fluxes at shallow and deep trap depths were 0.47 and 0.46 gm−2 in the ...

  14. Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface

    NARCIS (Netherlands)

    Tamburini, C.; Canals, M.; de Madron, X.D.; Houpert, L.; Lefevre, D.; Martini, V.; D'Ortenzio, F.; Robert, A.; Testor, P.; Aguilar, J.A.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A.C.A.; Astraatmadja, T.L.; Aubert, J.J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M.C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, P.; Dekeyser, I.; Deschamps, A.; Donzaud, C.; Dornic, D.; Dorosti, H.Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.L.; Galata, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gomez-Gonzalez, J.P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Herold, B.; Hossl, J.; Hsu, C.C.; De Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J.A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.N.; Palioselitis, D.; Pavalas, G.E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Riviere, C.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, V.G.; Salesa, F.; Sanchez-Losa, A.; Sapienza, P.; Schock, F.; Schuller, J.P.; Schussler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, T.; Taiuti, M.G.F.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J.D.; Zuniga, J.

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June

  15. Countermeasure Study on Deep-sea Oil Exploitation in the South China Sea——A Comparison between Deep-sea Oil Exploitation in the South China Sea and the Gulf of Mexico

    Science.gov (United States)

    Zhao, Hui; Qiu, Weiting; Qu, Weilu

    2018-02-01

    The unpromising situation of terrestrial oil resources makes the deep-sea oil industry become an important development strategy. The South China Sea has a vast sea area with a wide distribution of oil and gas resources, but there is a phenomenon that exploration and census rates and oil exploitation are low. In order to solve the above problems, this article analyzes the geology, oil and gas exploration and exploration equipment in the South China Sea and the Gulf of Mexico. Comparing the political environment of China and the United States energy industry and the economic environment of oil companies, this article points out China’s deep-sea oil exploration and mining problems that may exist. Finally, the feasibility of oil exploration and exploitation in the South China Sea is put forward, which will provide reference to improve the conditions of oil exploration in the South China Sea and promoting the stable development of China’s oil industry.

  16. A Dataset of Deep-Sea Fishes Surveyed by Research Vessels in the Waters around Taiwan

    Directory of Open Access Journals (Sweden)

    Kwang-Tsao Shao

    2014-12-01

    Full Text Available The study of deep-sea fish fauna is hampered by a lack of data due to the difficulty and high cost incurred in its surveys and collections. Taiwan is situated along the edge of the Eurasia fig, at the junction of three Large Marine Ecosystems or Ecoregions of the East China Sea, South China Sea and the Philippines. As nearly two-thirds of its surrounding marine ecosystems are deep-sea environments, Taiwan is expected to hold a rich diversity of deep-sea fish. However, in the past, no research vessels were employed to collect fish data on site. Only specimens, caught by bottom trawl fishing in the waters hundreds of meters deep and missing precise locality information, were collected from Dasi and Donggang fishing harbors. Began in 2001, with the support of National Science Council, research vessels were made available to take on the task of systematically collecting deep-sea fish specimens and occurrence records in the waters surrounding Taiwan. By the end of 2006, a total of 3,653 specimens, belonging to 26 orders, 88 families, 198 genera and 366 species, were collected in addition to data such as sampling site geographical coordinates and water depth, and fish body length and weight. The information, all accessible from the “Database of Taiwan’s Deep-Sea Fauna and Its Distribution (http://deepsea.biodiv.tw/” as part of the “Fish Database of Taiwan,” can benefit the study of temporal and spatial changes in distribution and abundance of fish fauna in the context of global deep-sea biodiversity.

  17. Man and the last great wilderness: human impact on the deep sea.

    Directory of Open Access Journals (Sweden)

    Eva Ramirez-Llodra

    Full Text Available The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life--SYNDEEP workshop (September 2008. A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past to exploitation (present. We predict that from now and into the future, increases in atmospheric CO(2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO(2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this

  18. Man and the Last Great Wilderness: Human Impact on the Deep Sea

    Science.gov (United States)

    Ramirez-Llodra, Eva; Tyler, Paul A.; Baker, Maria C.; Bergstad, Odd Aksel; Clark, Malcolm R.; Escobar, Elva; Levin, Lisa A.; Menot, Lenaick; Rowden, Ashley A.; Smith, Craig R.; Van Dover, Cindy L.

    2011-01-01

    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short

  19. Structure, functioning, and cumulative stressors of Mediterranean deep-sea ecosystems

    OpenAIRE

    Tecchio, S.; Coll, Marta; Sarda, F.

    2015-01-01

    Environmental stressors, such as climate fluctuations, and anthropogenic stressors, such as fishing, are of major concern for the management of deep-sea ecosystems. Deep-water habitats are limited by primary productivity and are mainly dependent on the vertical input of organic matter from the surface. Global change over the latest decades is imparting variations in primary productivity levels across oceans, and thus it has an impact on the amount of organic matter landing on the deep seafloo...

  20. Seawater Carbonate Chemistry of Deep-sea Coral Beds off the Northwestern Hawaiian Islands

    Science.gov (United States)

    Brooks, J.; Shamberger, K.; Roark, E. B.; Miller, K.; Baco-Taylor, A.

    2016-02-01

    Many species of deep-sea octocorals produce calcium carbonate (CaCO3) skeletons and form coral beds that support diverse ecosystems crucial to fisheries. The geochemistry of deep-sea coral skeletons can provide valuable paleoceanographic information on ocean circulation and nutrient cycling. Deep-sea corals in the older bottom waters of the Pacific are naturally exposed to higher carbon dioxide (CO2) concentrations and lower pH than in the Atlantic where much of the previous deep-sea coral work has occurred. Therefore, some Pacific deep-sea corals may live and calcify in waters that are corrosive to their skeletons, but there have been few current seawater carbonate chemistry measurements of the waters surrounding deep-sea coral beds to assess this. The input of anthropogenic atmospheric CO2 known as ocean acidification (OA) lowers ocean pH and causes an expansion of these corrosive waters. Seawater carbonate chemistry must be characterized before accurate predictions can be made for the effects of OA on these important ecosystems. Total Alkalinity (TA) and Dissolved Inorganic Carbon (DIC) samples were collected in the fall of 2014 and 2015 from the surface to 1450 m depth off the Northwestern Hawaiian Island chain where deep-sea octocorals are found. The partial pressure of CO2 increased and pH, calcite saturation state (Ωca) and aragonite saturation state (Ωar) decreased with increasing latitude and depth. Notably, waters were undersaturated with respect to calcite and aragonite (Ωca and Ωar less than 1) below 800 m and 500 m, respectively. Therefore, deep-sea corals below these depths must calcify in waters that are thermodynamically favorable for CaCO3 dissolution. How deep-sea octocorals cope with such adverse seawater chemistry is critical to understanding future effects of OA. It is not known whether OA is currently negatively impacting deep-sea octocorals, but their naturally acidified environments could make them particularly susceptible to OA.

  1. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim; Yang, J. K.; Lee, O. O.; Wang, Y.; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Qian, P. Y.

    2013-01-01

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  2. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim

    2013-03-29

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  3. Genetic diversity of archaea in deep-sea hydrothermal vent environments.

    Science.gov (United States)

    Takai, K; Horikoshi, K

    1999-08-01

    Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the phylogenetic analysis, a number of rDNA sequences obtained from deep-sea hydrothermal vents were placed in deep lineages of the crenarchaeotic phylum prior to the divergence of cultivated thermophilic members of the crenarchaeota or between thermophilic members of the euryarchaeota and members of the methanogen-halophile clade. Whole cell in situ hybridization analysis suggested that some microorganisms of novel phylotypes predicted by molecular phylogenetic analysis were likely present in deep-sea hydrothermal vent environments. These findings expand our view of the genetic diversity of archaea in deep-sea hydrothermal vent environments and of the phylogenetic organization of archaea.

  4. Reconciling the sea level record of the last deglaciation with the δ18O spectra from deep sea cores

    International Nuclear Information System (INIS)

    Bard, Edouard; Columbia Univ., Palisades, NY; Arnold, Maurice; Duplessy, J.-C.

    1991-01-01

    In this paper we use the oxygen isotope record as a transient tracer to study palaeoceanography during the last deglaciation. By using 14 C and 18 O data obtained on four deep sea sediment cores, we show the presence of a measurable lag between the deglacial δ 18 O signal observed in the deep Atlantic and the deep Indo-Pacific oceans. Our study confirms that the major meltwater discharge occurred via the North Atlantic and that the thermohaline circulation was operating during the deglacial transition. (Author)

  5. Estimating Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR

    NARCIS (Netherlands)

    Fettweis, X.; Franco, B.; Tedesco, M.; van Angelen, J.H.; Lenaerts, J.T.M.; van den Broeke, M.R.; Gallee, H

    2012-01-01

    We report future projections of Surface Mass Balance (SMB) over the Greenland ice sheet (GrIS) obtained with the regional climate model MAR, forced by the outputs of three CMIP5 General Circulation Models (GCMs) when considering two different warming scenarios (RCP 4.5 and RCP 8.5). The GCMs

  6. Stakeholder perspectives on the importance of rare-species research for deep-sea environmental management

    Science.gov (United States)

    Turner, Phillip J.; Campbell, Lisa M.; Van Dover, Cindy L.

    2017-07-01

    The apparent prevalence of rare species (rarity) in the deep sea is a concern for environmental management and conservation of biodiversity. Rare species are often considered at risk of extinction and, in terrestrial and shallow water environments, have been shown to play key roles within an ecosystem. In the deep-sea environment, current research focuses primarily on abundant species and deep-sea stakeholders are questioning the importance of rare species in ecosystem functioning. This study asks whether deep-sea stakeholders (primarily scientists) view rare-species research as a priority in guiding environmental management. Delphi methodology (i.e., an iterative survey approach) was used to understand views about whether or not 'deep-sea scientists should allocate more resources to research on rare species in the deep sea, even if this means less resources might be available for abundant-species research.' Results suggest little consensus regarding the prioritization of resources for rare-species research. From Survey 1 to Survey 3, the average participant response shifted toward a view that rare-species research is not a priority if it comes at a cost to research on abundant species. Participants pointed to the need for a balanced approach and highlighted knowledge gaps about even the most fundamental questions, including whether rare species are truly 'rare' or simply under-sampled. Participants emphasized the lack of basic biological knowledge for rare and abundant species, particularly abundant meio- and microscopic species, as well as uncertainty in the roles rare and abundant species play in ecosystem processes. Approaches that jointly consider the role of rare and abundant species in ecosystem functioning (e.g., biological trait analysis) may help to clarify the extent to which rare species need to be incorporated into deep-sea environment management in order to maintain ecosystem functioning.

  7. Bacterial diversity and biogeography in deep-sea sediments of the South Atlantic Ocean

    DEFF Research Database (Denmark)

    Schauer, Regina; Bienhold, Christina; Ramette, Alban

    2010-01-01

    in 1051 sequences. Phylotypes affiliated with Gammaproteobacteria, Deltaproteobacteria and Acidobacteria were present in all three basins. The distribution of these shared phylotypes seemed to be influenced neither by the Walvis Ridge nor by different deep water masses, suggesting a high dispersal......Microbial biogeographic patterns in the deep sea depend on the ability of microorganisms to disperse. One possible limitation to microbial dispersal may be the Walvis Ridge that separates the Antarctic Lower Circumpolar Deep Water from the North Atlantic Deep Water. We examined bacterial...... communities in three basins of the eastern South Atlantic Ocean to determine diversity and biogeography of bacterial communities in deep-sea surface sediments. The analysis of 16S ribosomal RNA (rRNA) gene clone libraries in each basin revealed a high diversity, representing 521 phylotypes with 98% identity...

  8. A Deep Hydrographic Section Across the Tasman Sea.

    Science.gov (United States)

    1985-09-01

    the same cruise, TC1, as that on which the magneto- telluric moorings (plus a RANRL recording current-meter) were deployed. A small number of deep...that of Wyrtki (1961) who described the different water masses of this area and the northward movement of deep waters from Antarctica. Boland and

  9. Sources of the deep water masses in the northern Red Sea

    OpenAIRE

    Said, M.A.

    1998-01-01

    The hydrographic structure of the northern Red Sea indicated that, the surface waters of temperature around 22°C, salinity of 40.1OO%o and dt = 28.1 might sink to depths between 400-500 m by convective overturn, contributing to the formation of the mid-deep Red Sea waters. Below the 500 db depth down to the bottom the water column is stable. The geostrophic circulation clearly indicated an inflow of water from the Red Sea towards NNW, along the main axis of the sea. Arriving at the nort...

  10. Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents.

    Science.gov (United States)

    Burgaud, Gaëtan; Hué, Nguyen Thi Minh; Arzur, Danielle; Coton, Monika; Perrier-Cornet, Jean-Marie; Jebbar, Mohamed; Barbier, Georges

    2015-11-01

    Hydrostatic pressure plays a significant role in the distribution of life in the biosphere. Knowledge of deep-sea piezotolerant and (hyper)piezophilic bacteria and archaea diversity has been well documented, along with their specific adaptations to cope with high hydrostatic pressure (HHP). Recent investigations of deep-sea microbial community compositions have shown unexpected micro-eukaryotic communities, mainly dominated by fungi. Molecular methods such as next-generation sequencing have been used for SSU rRNA gene sequencing to reveal fungal taxa. Currently, a difficult but fascinating challenge for marine mycologists is to create deep-sea marine fungus culture collections and assess their ability to cope with pressure. Indeed, although there is no universal genetic marker for piezoresistance, physiological analyses provide concrete relevant data for estimating their adaptations and understanding the role of fungal communities in the abyss. The present study investigated morphological and physiological responses of fungi to HHP using a collection of deep-sea yeasts as a model. The aim was to determine whether deep-sea yeasts were able to tolerate different HHP and if they were metabolically active. Here we report an unexpected taxonomic-based dichotomic response to pressure with piezosensitve ascomycetes and piezotolerant basidiomycetes, and distinct morphological switches triggered by pressure for certain strains. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. Cosmopolitanism and Biogeography of the Genus Manganonema (Nematoda: Monhysterida in the Deep Sea

    Directory of Open Access Journals (Sweden)

    Roberto Danovaro

    2011-09-01

    Full Text Available Spatial patterns of species diversity provide information about the mechanisms that regulate biodiversity and are important for setting conservation priorities. Present knowledge of the biogeography of meiofauna in the deep sea is scarce. This investigation focuses on the distribution of the deep-sea nematode genus Manganonema, which is typically extremely rare in deep-sea sediment samples. Forty-four specimens of eight different species of this genus were recorded from different Atlantic and Mediterranean regions. Four out of the eight species encountered are new to science. We report here that this genus is widespread both in the Atlantic and in the Mediterranean Sea. These new findings together with literature information indicate that Manganonema is a cosmopolitan genus, inhabiting a variety of deep-sea habitats and oceans. Manganonema shows the highest diversity at water depths >4,000 m. Our data, therefore, indicate that this is preferentially an abyssal genus that is able, at the same time, to colonize specific habitats at depths shallower than 1,000 m. The analysis of the distribution of the genus Manganonema indicates the presence of large differences in dispersal strategies among different species, ranging from locally endemic to cosmopolitan. Lacking meroplanktonic larvae and having limited dispersal ability due to their small size, it has been hypothesized that nematodes have limited dispersal potential. However, the investigated deep-sea nematodes were present across different oceans covering macro-scale distances. Among the possible explanations (hydrological conditions, geographical and geological pathways, long-term processes, specific historical events, their apparent preference of colonizing highly hydrodynamic systems, could suggest that these infaunal organisms are transported by means of deep-sea benthic storms and turbidity currents over long distances.

  12. Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei.

    Directory of Open Access Journals (Sweden)

    Itsumi Nakamura

    Full Text Available We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200-300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200-300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes, indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats.

  13. Impact of Deepwater Horizon Spill on food supply to deep-sea benthos communities

    Science.gov (United States)

    Prouty, Nancy G.; Swarzenski, Pamela; Mienis, Furu; Duineveld, Gerald; Demopoulos, Amanda W.J.; Ross, Steve W.; Brooke, Sandra

    2016-01-01

    Deep-sea ecosystems encompass unique and often fragile communities that are sensitive to a variety of anthropogenic and natural impacts. After the 2010 Deepwater Horizon (DWH) oil spill, sampling efforts documented the acute impact of the spill on some deep-sea coral colonies. To investigate the impact of the DWH spill on quality and quantity of biomass delivered to the deep-sea, a suite of geochemical tracers (e.g., stable and radio-isotopes, lipid biomarkers, and compound specific isotopes) was measured from monthly sediment trap samples deployed near a high-density deep-coral site in the Viosca Knoll area of the north-central Gulf of Mexico prior to (Oct-2008 to Sept-2009) and after the spill (Oct-10 to Sept-11). Marine (e.g., autochthonous) sources of organic matter dominated the sediment traps in both years, however after the spill, there was a pronounced reduction in marinesourced OM, including a reduction in marine-sourced sterols and n-alkanes and a concomitant decrease in sediment trap organic carbon and pigment flux. Results from this study indicate a reduction in primary production and carbon export to the deep-sea in 2010-2011, at least 6-18 months after the spill started. Whereas satellite observations indicate an initial increase in phytoplankton biomass, results from this sediment trap study define a reduction in primary production and carbon export to the deep-sea community. In addition, a dilution from a low-14C carbon source (e.g., petrocarbon) was detected in the sediment trap samples after the spill, in conjunction with a change in the petrogenic composition. The data presented here fills a critical gap in our knowledge of biogeochemical processes and sub-acute impacts to the deep-sea that ensued after the 2010 DWH spill.

  14. Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei.

    Science.gov (United States)

    Nakamura, Itsumi; Meyer, Carl G; Sato, Katsufumi

    2015-01-01

    We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei) in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200-300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200-300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes), indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath) or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats.

  15. Deep-sea environment and biodiversity of the West African Equatorial margin

    Science.gov (United States)

    Sibuet, Myriam; Vangriesheim, Annick

    2009-12-01

    The long-term BIOZAIRE multidisciplinary deep-sea environmental program on the West Equatorial African margin organized in partnership between Ifremer and TOTAL aimed at characterizing the benthic community structure in relation with physical and chemical processes in a region of oil and gas interest. The morphology of the deep Congo submarine channel and the sedimentological structures of the deep-sea fan were established during the geological ZAIANGO project and helped to select study sites ranging from 350 to 4800 m water depth inside or near the channel and away from its influence. Ifremer conducted eight deep-sea cruises on board research vessels between 2000 and 2005. Standardized methods of sampling together with new technologies such as the ROV Victor 6000 and its associated instrumentation were used to investigate this poorly known continental margin. In addition to the study of sedimentary environments more or less influenced by turbidity events, the discovery of one of the largest cold seeps near the Congo channel and deep coral reefs extends our knowledge of the different habitats of this margin. This paper presents the background, objectives and major results of the BIOZAIRE Program. It highlights the work achieved in the 16 papers in this special issue. This synthesis paper describes the knowledge acquired at a regional and local scale of the Equatorial East Atlantic margin, and tackles new interdisciplinary questions to be answered in the various domains of physics, chemistry, taxonomy and ecology to better understand the deep-sea environment in the Gulf of Guinea.

  16. Marginal thinning in Northwest Greenland during 2002-2011

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Kjær, K. H.; Wahr, J. M.

    2012-01-01

    Many glaciers along the southeast and northwest coast of Greenland have accelerated, increasing the Greenland ice sheet's (GrIS) contribution to global sea-level rise. Here, we map elevation changes in northwest Greenland during 2003-2009 using high-resolution Ice, Cloud and land Elevation Satell...

  17. The Age of Human-Robot Collaboration: Deep Sea Exploration

    KAUST Repository

    Khatib, Oussama

    2018-01-01

    The promise of oceanic discovery has intrigued scientists and explorers for centuries, whether to study underwater ecology and climate change, or to uncover natural resources and historic secrets buried deep at archaeological sites. Reaching

  18. Factors governing the deep ventilation of the Red Sea

    KAUST Repository

    Papadopoulos, Vassilis P.; Zhan, Peng; Sofianos, Sarantis S.; Raitsos, Dionysios E.; Qurban, Mohammed; Abualnaja, Yasser; Bower, Amy; Kontoyiannis, Harilaos; Pavlidou, Alexandra; Asharaf T.T., Mohamed; Zarokanellos, Nikolaos; Hoteit, Ibrahim

    2015-01-01

    A variety of data based on hydrographic measurements, satellite observations, reanalysis databases, and meteorological observations are used to explore the interannual variability and factors governing the deep water formation in the northern Red

  19. Storm-induced water dynamics and thermohaline structure at the tidewater Flade Isblink Glacier outlet to theWandel Sea (NE Greenland)

    DEFF Research Database (Denmark)

    Kirillov, Sergei; Dmitrenko, Igor; Rysgaard, Soren

    2017-01-01

    In April 2015, an ice-tethered conductivity-temperature-depth (CTD) profiler and a down-looking acoustic Doppler current profiler (ADCP) were deployed from the landfast ice near the tidewater glacier terminus of the Flade Isblink Glacier in the Wandel Sea, NE Greenland. The 3-week time series...... are likely attributable to subglacial water from the Flade Isblink Ice Cap. It was also found that the semidiurnal periodicities in the temperature and salinity time series were associated with the lunar semidiurnal tidal flow. The vertical structure of tidal currents corresponded to the first baroclinic...... mode of the internal tide with a velocity minimum at similar to 40 m. The tidal ellipses rotate in opposite directions above and below this depth and cause a divergence of tidal flow, which was observed to induce semidiurnal internal waves of about 3 m height at the front of the glacier terminus...

  20. Stationary spiraling eddies in presence of polar amplification of global warming as a governing factor of ecology of Greenland seals White Sea population: results of verification study

    Science.gov (United States)

    Melentyev, K.; Chernook, V.; Melentyev, V.

    2003-04-01

    Ice-associated forms of marine mammals are representatives of a high level of fodder chains in the ocean and taxation of population number for different group, as assessment of ecology and animal welfare are the important tasks for marine biology, ecology, fishery and other application uses. Many problems create a global warming and antropogenical impact on marine and coastal ecosystem. In order to investigate ice covered Arctic Ocean and charting the number of seals were performed annual inspections onboard research aircraft PINRO "Arktika". Multi-spectral airborne and satellite observations were fulfilled regularly from Barents and White Sea to the Bering and Okhotsk Sea (1996-2002). A contemporary status of different group of sea mammals was evaluated, where number of adults and pups were checked separately. In situ observations were provided with using helicopter and icebreaker for gathering a water samples and ice cores (with following biochemical and toxicological analysis). A prevailing part of life cycle of Greenland seals (harp seal) is strongly depended from winter hydrology (water masses, stable currents, meandering fronts, stationary eddies) and closely connected with type of ice (pack, fast ice) and other parameters of ice (age, origin, salinity, ice edge.). First-year ice floes which has a specific properties and distinctive features are used by harp seals for pupping, lactation, molting, pairing and resting. Ringed seals, inversely, use for corresponding purposes only fast-ice. Different aspects of ecology, and migration features of harp seals were analyzed in frame of verification study. It was revealed a scale of influence of winter severity and wind regime, but stationary eddies in the White Sea is most effective governing factor (novelty). Following relationship " eddies - ecology of Greenland seal White Sea population " will be discussed: A) regularities of eddies formation and their spatial arrangement, temporal (seasonal and annual

  1. An oceanographic model for the dispersion of wastes disposed of in the deep sea

    International Nuclear Information System (INIS)

    1983-06-01

    The report presents results of IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP joint group of experts on the scientific aspects of marine pollution (GESAMP) to provide advice on the most suitable oceanographic modelling techniques to be applied to the deep-sea dumping of both radioactive and non-radioactive substances. There are four main parts of the work: the present knowledge of oceanic processes that may transfer substances from a deep-sea dump site back to man or his food chain, methods and models presently available for estimating or calculating concentration distributions of contaminants arising from releases from deep-sea dump sites and recommendations as to the presently most appropriate models, the reliability of the concentration distributions obtained using these models and recommended areas for further improvements including research needs

  2. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.; Deng, Y.; Nostrand, J.D. Van; He, Z.; Voordeckers, J.; Zhou, A.; Lee, Y.-J.; Mason, O.U.; Dubinsky, E.; Chavarria, K.; Tom, L.; Fortney, J.; Lamendella, R.; Jansson, J.K.; D?haeseleer, P.; Hazen, T.C.; Zhou, J.

    2011-06-15

    The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in U.S. history and its impacts on marine ecosystems are largely unknown. Here, we showed that the microbial community functional composition and structure were dramatically altered in a deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the plume compared to outside the plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep-sea. Various other microbial functional genes relevant to carbon, nitrogen, phosphorus, sulfur and iron cycling, metal resistance, and bacteriophage replication were also enriched in the plume. Together, these results suggest that the indigenous marine microbial communities could play a significant role in biodegradation of oil spills in deep-sea environments.

  3. Molecular analyses reveal high levels of eukaryotic richness associated with enigmatic deep-sea protists (Komokiacea)

    DEFF Research Database (Denmark)

    Lecroq, Beatrice; Gooday, Andrew John; Cedhagen, Tomas

    2009-01-01

    Komokiaceans are testate agglutinated protists, extremely diverse and abundant in the deep sea. About 40 species are described and share the same main morpholog- ical feature: a test consisting of narrow branching tubules forming a complex system. In some species, the interstices between the tubu......Komokiaceans are testate agglutinated protists, extremely diverse and abundant in the deep sea. About 40 species are described and share the same main morpholog- ical feature: a test consisting of narrow branching tubules forming a complex system. In some species, the interstices between...... suggest strongly that komokiaceans, and probably many other large testate protists, provide a habitat structure for a large spectrum of eukaryotes, significantly contributing to maintaining the biodiversity of micro- and meiofaunal communities in the deep sea....

  4. Sedimentologic and volcanologic investigation of the deep tyrrhenian sea: preliminary result of cruise VST02

    Directory of Open Access Journals (Sweden)

    A. Bertagnini

    2006-06-01

    Full Text Available The VST02 cruise carried out in the summer of 2002 was focused at sedimentologic and volcanologic researches over selected areas of the deep portion of the Tyrrhenian sea. Chirp lines and seafloor samples were collected from the Calabrian slope surrounding Stromboli island, in the Marsili deep sea fan, in the Vavilov basin and in the Vavilov seamount. Submarine volcanic activity, both explosive and effusive, is occuring in the Stromboli edifice. Explosive submarine volcanism affects also the shallowest areas of the Vavilov seamount. Submarine carbonate lithification has been observed on the sediment-starved flanks of the Vavilov seamount. Acoustic transparent layers make up the recentmost infill of the Gortani basin, the easternmost portion of the Vavilov basin. Channels comprised of a variety of architectural elements and depositional lobes are the main elements of the Marsili deep-sea fan where, apparently, sedimentation occurs mainly through debris flow processes.

  5. Environmental radioactivity in Greenland in 1976

    International Nuclear Information System (INIS)

    Aarkrog, A.; Lippert, J.

    1977-07-01

    Measurements of fall-out radioactivity in Greenland in 1976 are reported. Strontium-90 (and Caesium-137 in most cases) was determined in samples of precipitation, sea water, vegetation, animals, and drinking water. Estimates are given of the mean contents of 90 Sr and 137 Cs in the human diet in Greenland in 1976. (author)

  6. Environmental radioactivity in Greenland in 1978

    International Nuclear Information System (INIS)

    Aarkrog, A.; Hansen, H.; Lippert, J.

    1979-07-01

    Measurements of fallout radioactivity in Greenland in 1978 are reported. Strontium-90 (and Cesium-137 in most cases) was determined in samples of precipitation, sea water, vegetation, animals, and drinking water. Tritium was determined in samples of drinking water. Estimates are given of the mean contents of 90 Sr and 137 Cs in the human diet in Greenland in 1978. (author)

  7. Environmental radioactivity in Greenland in 1975

    International Nuclear Information System (INIS)

    Aarkrog, A.; Lippert, J.

    1976-07-01

    Measuremtns of fall-out radioactivity in Greenland in 1975 are reported. Strontium-90 (and Caesium-137 in most cases) was determined in samples of precipitation, sea water, vegetation, animals, and drinking water. Estimates are given of the mean contents of 90 Sr and 137 Cs in the human diet in Greenland in 1975. (author)

  8. First Insights into the Viral Communities of the Deep-sea Anoxic Brines of the Red Sea.

    Science.gov (United States)

    Antunes, André; Alam, Intikhab; Simões, Marta Filipa; Daniels, Camille; Ferreira, Ari J S; Siam, Rania; El-Dorry, Hamza; Bajic, Vladimir B

    2015-10-01

    The deep-sea brines of the Red Sea include some of the most extreme and unique environments on Earth. They combine high salinities with increases in temperature, heavy metals, hydrostatic pressure, and anoxic conditions, creating unique settings for thriving populations of novel extremophiles. Despite a recent increase of studies focusing on these unusual biotopes, their viral communities remain unexplored. The current survey explores four metagenomic datasets obtained from different brine-seawater interface samples, focusing specifically on the diversity of their viral communities. Data analysis confirmed that the particle-attached viral communities present in the brine-seawater interfaces were diverse and generally dominated by Caudovirales, yet appearing distinct from sample to sample. With a level of caution, we report the unexpected finding of Phycodnaviridae, which infects algae and plants, and trace amounts of insect-infecting Iridoviridae. Results from Kebrit Deep revealed stratification in the viral communities present in the interface: the upper-interface was enriched with viruses associated with typical marine bacteria, while the lower-interface was enriched with haloviruses and halophages. These results provide first insights into the unexplored viral communities present in deep-sea brines of the Red Sea, representing one of the first steps for ongoing and future sampling efforts and studies. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  9. First Insights into the Viral Communities of the Deep-sea Anoxic Brines of the Red Sea

    KAUST Repository

    Antunes, Andre; Alam, Intikhab; Simoes, Marta; Daniels, Camille Arian; Ferreira, Ari J.S.; Siam, Rania; El-Dorry, Hamza; Bajic, Vladimir B.

    2015-01-01

    The deep-sea brines of the Red Sea include some of the most extreme and unique environments on Earth. They combine high salinities with increases in temperature, heavy metals, hydrostatic pressure, and anoxic conditions, creating unique settings for thriving populations of novel extremophiles. Despite a recent increase of studies focusing on these unusual biotopes, their viral communities remain unexplored. The current survey explores four metagenomic datasets obtained from different brine-seawater interface samples, focusing specifically on the diversity of their viral communities. Data analysis confirmed that the particle-attached viral communities present in the brine-seawater interfaces were diverse and generally dominated by Caudovirales, yet appearing distinct from sample to sample. With a level of caution, we report the unexpected finding of Phycodnaviridae, which infects algae and plants, and trace amounts of insect-infecting Iridoviridae. Results from Kebrit Deep revealed stratification in the viral communities present in the interface: the upper-interface was enriched with viruses associated with typical marine bacteria, while the lower-interface was enriched with haloviruses and halophages. These results provide first insights into the unexplored viral communities present in deep-sea brines of the Red Sea, representing one of the first steps for ongoing and future sampling efforts and studies.

  10. First Insights into the Viral Communities of the Deep-sea Anoxic Brines of the Red Sea

    KAUST Repository

    Antunes, Andre

    2015-10-31

    The deep-sea brines of the Red Sea include some of the most extreme and unique environments on Earth. They combine high salinities with increases in temperature, heavy metals, hydrostatic pressure, and anoxic conditions, creating unique settings for thriving populations of novel extremophiles. Despite a recent increase of studies focusing on these unusual biotopes, their viral communities remain unexplored. The current survey explores four metagenomic datasets obtained from different brine-seawater interface samples, focusing specifically on the diversity of their viral communities. Data analysis confirmed that the particle-attached viral communities present in the brine-seawater interfaces were diverse and generally dominated by Caudovirales, yet appearing distinct from sample to sample. With a level of caution, we report the unexpected finding of Phycodnaviridae, which infects algae and plants, and trace amounts of insect-infecting Iridoviridae. Results from Kebrit Deep revealed stratification in the viral communities present in the interface: the upper-interface was enriched with viruses associated with typical marine bacteria, while the lower-interface was enriched with haloviruses and halophages. These results provide first insights into the unexplored viral communities present in deep-sea brines of the Red Sea, representing one of the first steps for ongoing and future sampling efforts and studies.

  11. Invertebrate population genetics across Earth's largest habitat: The deep-sea floor.

    Science.gov (United States)

    Taylor, M L; Roterman, C N

    2017-10-01

    Despite the deep sea being the largest habitat on Earth, there are just 77 population genetic studies of invertebrates (115 species) inhabiting non-chemosynthetic ecosystems on the deep-sea floor (below 200 m depth). We review and synthesize the results of these papers. Studies reveal levels of genetic diversity comparable to shallow-water species. Generally, populations at similar depths were well connected over 100s-1,000s km, but studies that sampled across depth ranges reveal population structure at much smaller scales (100s-1,000s m) consistent with isolation by adaptation across environmental gradients, or the existence of physical barriers to connectivity with depth. Few studies were ocean-wide (under 4%), and 48% were Atlantic-focused. There is strong emphasis on megafauna and commercial species with research into meiofauna, "ecosystem engineers" and other ecologically important species lacking. Only nine papers account for ~50% of the planet's surface (depths below 3,500 m). Just two species were studied below 5,000 m, a quarter of Earth's seafloor. Most studies used single-locus mitochondrial genes revealing a common pattern of non-neutrality, consistent with demographic instability or selective sweeps; similar to deep-sea hydrothermal vent fauna. The absence of a clear difference between vent and non-vent could signify that demographic instability is common in the deep sea, or that selective sweeps render single-locus mitochondrial studies demographically uninformative. The number of population genetics studies to date is miniscule in relation to the size of the deep sea. The paucity of studies constrains meta-analyses where broad inferences about deep-sea ecology could be made. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  12. Application of Low cost Spirulina growth medium using Deep sea water

    Science.gov (United States)

    Lim, Dae-hack; Kim, Bong-ju; Lee, Sung-jae; Choi, Nag-chul; Park, Cheon-young

    2017-04-01

    Deep-sea water has a relatively constant temperature, abundant nutrients such as calcium, magnesium, nitrates, and phosphates, etc., and stable water quality, even though there might be some variations of their compositions according to collection places. Thus, deep-sea water would be a good substrate for algal growth and biomass production since it contains various nutrients, including a fluorescent red pigment, and β-carotene, etc. The aim of this study was to investigate the economics of a culture condition through comparative analysis to Spirulina platensis growth characteristic under various medium conditions for cost-effective production of Spirulina sp.. Growth experiments were performed with S. platensis under various culture medium conditions (deep sea water + SP medium). Growth tests for culture medium demonstrated that the deep sea water to SP medium ratio of 50:50(W/W) was effective in S. platensis with the maximum biomass (1.35g/L) and minimum medium making cost per production mass (133.28 KRW/g). Parameter estimation of bio-kinetics (maximum growth rate and yield) for low cost medium results showed that the maximum growth rate and yield of N, P, K were obtained under deep sea water to SP medium ratio of 50:50(W/W) of 0.057 1/day and 0.151, 0.076, 0.123, respectively. Acknowledgment : "This research was a part of the project titled 'Development of microalgae culture technique for cosmetic materials based on ocean deep sea water(20160297)', funded by the Ministry of Oceans and Fisheries, Korea."

  13. Predicted deep-sea coral habitat suitability for the U.S. West coast.

    Directory of Open Access Journals (Sweden)

    John M Guinotte

    Full Text Available Regional scale habitat suitability models provide finer scale resolution and more focused predictions of where organisms may occur. Previous modelling approaches have focused primarily on local and/or global scales, while regional scale models have been relatively few. In this study, regional scale predictive habitat models are presented for deep-sea corals for the U.S. West Coast (California, Oregon and Washington. Model results are intended to aid in future research or mapping efforts and to assess potential coral habitat suitability both within and outside existing bottom trawl closures (i.e. Essential Fish Habitat (EFH and identify suitable habitat within U.S. National Marine Sanctuaries (NMS. Deep-sea coral habitat suitability was modelled at 500 m×500 m spatial resolution using a range of physical, chemical and environmental variables known or thought to influence the distribution of deep-sea corals. Using a spatial partitioning cross-validation approach, maximum entropy models identified slope, temperature, salinity and depth as important predictors for most deep-sea coral taxa. Large areas of highly suitable deep-sea coral habitat were predicted both within and outside of existing bottom trawl closures and NMS boundaries. Predicted habitat suitability over regional scales are not currently able to identify coral areas with pin point accuracy and probably overpredict actual coral distribution due to model limitations and unincorporated variables (i.e. data on distribution of hard substrate that are known to limit their distribution. Predicted habitat results should be used in conjunction with multibeam bathymetry, geological mapping and other tools to guide future research efforts to areas with the highest probability of harboring deep-sea corals. Field validation of predicted habitat is needed to quantify model accuracy, particularly in areas that have not been sampled.

  14. Structure, functioning, and cumulative stressors of Mediterranean deep-sea ecosystems

    Science.gov (United States)

    Tecchio, Samuele; Coll, Marta; Sardà, Francisco

    2015-06-01

    Environmental stressors, such as climate fluctuations, and anthropogenic stressors, such as fishing, are of major concern for the management of deep-sea ecosystems. Deep-water habitats are limited by primary productivity and are mainly dependent on the vertical input of organic matter from the surface. Global change over the latest decades is imparting variations in primary productivity levels across oceans, and thus it has an impact on the amount of organic matter landing on the deep seafloor. In addition, anthropogenic impacts are now reaching the deep ocean. The Mediterranean Sea, the largest enclosed basin on the planet, is not an exception. However, ecosystem-level studies of response to varying food input and anthropogenic stressors on deep-sea ecosystems are still scant. We present here a comparative ecological network analysis of three food webs of the deep Mediterranean Sea, with contrasting trophic structure. After modelling the flows of these food webs with the Ecopath with Ecosim approach, we compared indicators of network structure and functioning. We then developed temporal dynamic simulations varying the organic matter input to evaluate its potential effect. Results show that, following the west-to-east gradient in the Mediterranean Sea of marine snow input, organic matter recycling increases, net production decreases to negative values and trophic organisation is overall reduced. The levels of food-web activity followed the gradient of organic matter availability at the seafloor, confirming that deep-water ecosystems directly depend on marine snow and are therefore influenced by variations of energy input, such as climate-driven changes. In addition, simulations of varying marine snow arrival at the seafloor, combined with the hypothesis of a possible fishery expansion on the lower continental slope in the western basin, evidence that the trawling fishery may pose an impact which could be an order of magnitude stronger than a climate

  15. The National Deep-Sea Coral and Sponge Database: A Comprehensive Resource for United States Deep-Sea Coral and Sponge Records

    Science.gov (United States)

    Dornback, M.; Hourigan, T.; Etnoyer, P.; McGuinn, R.; Cross, S. L.

    2014-12-01

    Research on deep-sea corals has expanded rapidly over the last two decades, as scientists began to realize their value as long-lived structural components of high biodiversity habitats and archives of environmental information. The NOAA Deep Sea Coral Research and Technology Program's National Database for Deep-Sea Corals and Sponges is a comprehensive resource for georeferenced data on these organisms in U.S. waters. The National Database currently includes more than 220,000 deep-sea coral records representing approximately 880 unique species. Database records from museum archives, commercial and scientific bycatch, and from journal publications provide baseline information with relatively coarse spatial resolution dating back as far as 1842. These data are complemented by modern, in-situ submersible observations with high spatial resolution, from surveys conducted by NOAA and NOAA partners. Management of high volumes of modern high-resolution observational data can be challenging. NOAA is working with our data partners to incorporate this occurrence data into the National Database, along with images and associated information related to geoposition, time, biology, taxonomy, environment, provenance, and accuracy. NOAA is also working to link associated datasets collected by our program's research, to properly archive them to the NOAA National Data Centers, to build a robust metadata record, and to establish a standard protocol to simplify the process. Access to the National Database is provided through an online mapping portal. The map displays point based records from the database. Records can be refined by taxon, region, time, and depth. The queries and extent used to view the map can also be used to download subsets of the database. The database, map, and website is already in use by NOAA, regional fishery management councils, and regional ocean planning bodies, but we envision it as a model that can expand to accommodate data on a global scale.

  16. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from unknown platforms in the North Greenland Sea from 2014-03-17 to 2014-03-19 (NCEI Accession 0160541)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160541 includes chemical, discrete sample, physical and profile data collected from unknown platforms in the North Greenland Sea from 2014-03-17 to...

  17. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the HAKON MOSBY in the North Greenland Sea from 1996-11-21 to 1996-11-30 (NODC Accession 0113544)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113544 includes chemical, discrete sample, physical and profile data collected from HAKON MOSBY in the North Greenland Sea from 1996-11-21 to...

  18. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the ARANDA in the North Atlantic Ocean and North Greenland Sea from 1997-08-05 to 1997-09-25 (NODC Accession 0115602)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115602 includes chemical, discrete sample, physical and profile data collected from ARANDA in the North Atlantic Ocean and North Greenland Sea from...

  19. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the HAKON MOSBY in the North Greenland Sea from 1994-02-03 to 1994-02-23 (NODC Accession 0117371)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117371 includes chemical, discrete sample, physical and profile data collected from HAKON MOSBY in the North Greenland Sea from 1994-02-03 to...

  20. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the POLARSTERN in the Arctic Ocean and North Greenland Sea from 1987-07-04 to 1987-09-02 (NODC Accession 0113916)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113916 includes chemical, discrete sample, physical and profile data collected from POLARSTERN in the Arctic Ocean and North Greenland Sea from...

  1. Physiological effects of hypercapnia in the deep-sea bivalve Acesta excavata (Fabricius, 1779) (Bivalvia; Limidae)

    DEFF Research Database (Denmark)

    Hammer, Karen M.; Kristiansen, Erlend; Zachariassen, Karl Erik

    2011-01-01

    The option of storing CO(2) in subsea rock formations to mitigate future increases in atmospheric CO(2) may induce problems for animals in the deep sea. In the present study the deep-sea bivalve Acesta excavata was subjected to environmental hypercapnia (pHSW 6.35, P(CO2), =33,000 mu atm...... extracellular pH remained significantly lower during recovery. Intracellular non-bicarbonate buffering capacity of the posterior adductor muscle of hypercapnic animals was significantly lower than control values, but this was not the case for the remaining tissues analyzed. Oxygen consumption initially dropped...

  2. Monitoring the sedimentary carbon in an artificially disturbed deep-sea sedimentary environment

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Khadge, N.H.; Nabar, S.; Raghukumar, C.; Ingole, B.S.; Valsangkar, A.B.; Sharma, R.; Srinivas, K.

    1 Author version: Environ. Monit. Assess., vol.184; 2012; 2829-2844 Monitoring the sedimentary carbon in an artificially disturbed deep-sea sedimentary environment B. Nagender Nath * , N.H. Khadge, Sapana Nabar, C. Raghu Kumar, B.S. Ingole... community two years after an artificial rapid deposition event. Publication of Seto Marine Biological Laboratory, 39(1), 17-27. Gage, J.D. (1978). Animals in deep-sea sediments. Proceedings of Royal Society of Edinburgh, 768, 77-93. Gage, J.D., & Tyler...

  3. Uptake and distribution of organo-iodine in deep-sea corals.

    Science.gov (United States)

    Prouty, Nancy G; Roark, E Brendan; Mohon, Leslye M; Chang, Ching-Chih

    2018-07-01

    Understanding iodine concentration, transport, and bioavailability is essential in evaluating iodine's impact to the environment and its effectiveness as an environmental biogeotracer. While iodine and its radionuclides have proven to be important tracers in geologic and biologic studies, little is known about transport of this element to the deep sea and subsequent uptake in deep-sea coral habitats. Results presented here on deep-sea black coral iodine speciation and iodine isotope variability provides key information on iodine behavior in natural and anthropogenic environments, and its geochemical pathway in the Gulf of Mexico. Organo-iodine is the dominant iodine species in the black corals, demonstrating that binding of iodine to organic matter plays an important role in the transport and transfer of iodine to the deep-sea corals. The identification of growth bands captured in high-resolution scanning electron images (SEM) with synchronous peaks in iodine variability suggest that riverine delivery of terrestrial-derived organo-iodine is the most plausible explanation to account for annual periodicity in the deep-sea coral geochemistry. Whereas previous studies have suggested the presence of annual growth rings in deep-sea corals, this present study provides a mechanism to explain the formation of annual growth bands. Furthermore, deep-sea coral ages based on iodine peak counts agree well with those ages derived from radiocarbon ( 14 C) measurements. These results hold promise for developing chronologies independent of 14 C dating, which is an essential component in constraining reservoir ages and using radiocarbon as a tracer of ocean circulation. Furthermore, the presence of enriched 129 I/ 127 I ratios during the most recent period of skeleton growth is linked to nuclear weapons testing during the 1960s. The sensitivity of the coral skeleton to record changes in surface water 129 I composition provides further evidence that iodine composition and isotope

  4. Uptake and distribution of organo-iodine in deep-sea corals

    Science.gov (United States)

    Prouty, Nancy G.; Roark, E. Brendan; Mohon, Leslye M.; Chang, Ching-Chih

    2018-01-01

    Understanding iodine concentration, transport, and bioavailability is essential in evaluating iodine's impact to the environment and its effectiveness as an environmental biogeotracer. While iodine and its radionuclides have proven to be important tracers in geologic and biologic studies, little is known about transport of this element to the deep sea and subsequent uptake in deep-sea coral habitats. Results presented here on deep-sea black coral iodine speciation and iodine isotope variability provides key information on iodine behavior in natural and anthropogenic environments, and its geochemical pathway in the Gulf of Mexico. Organo-iodine is the dominant iodine species in the black corals, demonstrating that binding of iodine to organic matter plays an important role in the transport and transfer of iodine to the deep-sea corals. The identification of growth bands captured in high-resolution scanning electron images (SEM) with synchronous peaks in iodine variability suggest that riverine delivery of terrestrial-derived organo-iodine is the most plausible explanation to account for annual periodicity in the deep-sea coral geochemistry. Whereas previous studies have suggested the presence of annual growth rings in deep-sea corals, this present study provides a mechanism to explain the formation of annual growth bands. Furthermore, deep-sea coral ages based on iodine peak counts agree well with those ages derived from radiocarbon (14C) measurements. These results hold promise for developing chronologies independent of 14C dating, which is an essential component in constraining reservoir ages and using radiocarbon as a tracer of ocean circulation. Furthermore, the presence of enriched 129I/127I ratios during the most recent period of skeleton growth is linked to nuclear weapons testing during the 1960s. The sensitivity of the coral skeleton to record changes in surface water 129I composition provides further evidence that iodine composition and isotope

  5. Biscogniauxone, a New Isopyrrolonaphthoquinone Compound from the Fungus Biscogniauxia mediterranea Isolated from Deep-Sea Sediments

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2016-11-01

    Full Text Available The properties and the production of new metabolites from the fungal strain LF657 isolated from the Herodotes Deep (2800 m depth in the Mediterranean Sea are reported in this study. The new isolate was identified as Biscogniauxia mediterranea based on ITS1-5.8S-ITS2 and 28S rRNA gene sequences. A new isopyrrolonaphthoquinone with inhibitory activity against glycogen synthase kinase (GSK-3β was isolated from this fungus. This is the first report of this class of compounds from a fungus isolated from a deep-sea sediment, as well as from a Biscogniauxia species.

  6. Deep-Sea Mining With No Net Loss of Biodiversity—An Impossible Aim

    Directory of Open Access Journals (Sweden)

    Holly J. Niner

    2018-03-01

    Full Text Available Deep-sea mining is likely to result in biodiversity loss, and the significance of this to ecosystem function is not known. “Out of kind” biodiversity offsets substituting one ecosystem type (e.g., coral reefs for another (e.g., abyssal nodule fields have been proposed to compensate for such loss. Here we consider a goal of no net loss (NNL of biodiversity and explore the challenges of applying this aim to deep seabed mining, based on the associated mitigation hierarchy (avoid, minimize, remediate. We conclude that the industry cannot at present deliver an outcome of NNL. This results from the vulnerable nature of deep-sea environments to mining impacts, currently limited technological capacity to minimize harm, significant gaps in ecological knowledge, and uncertainties of recovery potential of deep-sea ecosystems. Avoidance and minimization of impacts are therefore the only presently viable means of reducing biodiversity losses from seabed mining. Because of these constraints, when and if deep-sea mining proceeds, it must be approached in a precautionary and step-wise manner to integrate new and developing knowledge. Each step should be subject to explicit environmental management goals, monitoring protocols, and binding standards to avoid serious environmental harm and minimize loss of biodiversity. “Out of kind” measures, an option for compensation currently proposed, cannot replicate biodiversity and ecosystem services lost through mining of the deep seabed and thus cannot be considered true offsets. The ecosystem functions provided by deep-sea biodiversity contribute to a wide range of provisioning services (e.g., the exploitation of fish, energy, pharmaceuticals, and cosmetics, play an essential role in regulatory services (e.g., carbon sequestration and are important culturally. The level of “acceptable” biodiversity loss in the deep sea requires public, transparent, and well-informed consideration, as well as wide agreement

  7. Velocity and Attenuation Profiles in the Monterey Deep-Sea Fan

    Science.gov (United States)

    1987-12-01

    a. 11 o n i n and depth. Sol ’^ a 11 e i"i u a 11 o >) a i::> 1 n Ci sediment for each of the f i...i. n c t ion o f f r e q u e n c; y...estimate of sea floor depth was obtained from an oceano - graphic map of the Monterey fan (’Oceanographic Data of the Monterey Deep Sea Fan’, 1st

  8. Deep-Diving California Sea Lions: Are They Pushing Their Physiological Limit

    Science.gov (United States)

    2015-09-30

    highly variable. Venous oxygen content can actually increase during short duration dives. This suggests very little muscle blood flow and evven the use...the sea lion, the emperor penguin (Aptenodytes forsteri), another animal that dives on inspiration with a large respiratory O2 store, also can...in deep-diving emperor penguins (Wright et al. 2014), and in deep-diving bottlenose dolphins (Tursiops truncatus), which also dive on inspiration

  9. Syllidae (Annelida: Phyllodocida) from the deep Mediterranean Sea, with the description of three new species.

    Science.gov (United States)

    Langeneck, Joachim; Musco, Luigi; Busoni, Giulio; Conese, Ilaria; Aliani, Stefano; Castelli, Alberto

    2018-01-03

    Despite almost two centuries of research, the diversity of Mediterranean deep-sea environments remain still largely unexplored. This is particularly true for the polychaete family Syllidae. We report herein 14 species; among them, we describe Erinaceusyllis barbarae n. sp., Exogone sophiae n. sp. and Prosphaerosyllis danovaroi n. sp. and report Parexogone wolfi San Martín, 1991, Exogone lopezi San Martín, Ceberio Aguirrezabalaga, 1996 and Anguillosyllis Day, 1963 for the first time from the Western Mediterranean, the latter based on a single individual likely belonging to an undescribed species. Moreover, we re-establish Syllis profunda Cognetti, 1955 based on type and new material. Present data, along with a critical analysis of available literature, show that Syllidae are highly diverse in deep Mediterranean environments, even though they are rarely reported, probably due to the scarce number of studies devoted to the size-fraction of benthos including deep-sea syllids. Most deep-sea Syllidae have wide distributions, which do not include shallow-waters. 100 m depth apparently represents the boundary between the assemblages dominated by generalist shallow water syllids like Exogone naidina Ørsted, 1843 and Syllis parapari San Martín López, 2000, and those deep-water assemblages characterised by strictly deep-water species like Parexogone campoyi San Martín, Ceberio Aguirrezabalaga, 1996, Parexogone wolfi San Martín, 1991 and Syllis sp. 1 (= Langerhansia caeca Katzmann, 1973).

  10. Uranium in Pacific Deep-Sea Sediments and Manganese Nodules

    DEFF Research Database (Denmark)

    Kunzendorf, Helmar; Pluger, W. L.; Friedrich, G. H.

    1983-01-01

    A total of 1344 manganese nodules and 187 pelagic sediments from 9 areas in the North and the South Pacific were analyzed for U by the delayed-neutron counting technique. A strong positive correlation between U and Fe in nodules and sediments suggests a co-precipitative removal from sea water int...

  11. Deep-sea mining: Current status and future considerations

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    in the international waters has necessitated its regulation under the UN Convention on the Law of the Sea through the establishment of International Seabed Authority. A sudden spurt in the number of ‘Contractors’ interested in claiming large tracts of seafloor...

  12. Matching Deep Tow Camera study and Sea Floor geochemical characterization of gas migration at the Tainan Ridge, South China Sea

    Science.gov (United States)

    Fan, L. F.; Lien, K. L.; Hsieh, I. C.; Lin, S.

    2017-12-01

    Methane seep in deep sea environment could lead to build up of chemosynthesis communities, and a number of geological and biological anomalies as compare to the surrounding area. In order to examine the linkage between seep anomalies and those at the vicinity background area, and to detail mapping those spatial variations, we used a deep towed camera system (TowCam) to survey seafloor on the Tainan Ridge, Northeastern South China Sea (SCS). The underwater sea floor pictures could provide better spatial variations to demonstrate impact of methane seep on the sea floor. Water column variations of salinity, temperature, dissolved oxygen were applied to delineate fine scale variations at the study area. In addition, sediment cores were collected for chemical analyses to confirm the existence of local spatial variations. Our results show large spatial variations existed as a result of differences in methane flux. In fact, methane is the driving force for the observed biogeochemical variations in the water column, on the sea floor, and in the sediment. Of the area we have surveyed, there are approximately 7% of total towcam survey data showing abnormal water properties. Corresponding to the water column anomalies, underwater sea floor pictures taken from those places showed that chemosynthetic clams and muscles could be identified, together with authigenic carbonate buildups, and bacterial mats. Moreover, sediment cores with chemical anomalies also matched those in the water column and on the sea floor. These anomalies, however, represent only a small portion of the area surveyed and could not be identified with typical (random) coring method. Methane seep, therefore, require tedious and multiple types of surveys to better understand the scale and magnitude of seep and biogeochemical anomalies those were driven by gas migrations.

  13. Deep-sea sponge grounds: Reservoirs of biodiversity

    NARCIS (Netherlands)

    Hogg, M.M.; Tendal, O.S.; Conway, K.W.; Pomponi, S.A.; van Soest, R.W.M.; Gutt, J.; Krautter, M.; Roberts, J.M.

    2010-01-01

    This report draws together scientific understanding of deep-water sponge grounds alongside the threats they face and ways in which they can be conserved. Beginning with a summary of research approaches, sponge biology and biodiversity, the report also gives up-to-date case studies of particular

  14. Systems analysis for disposal of radioactive wastes in deep sea bottom

    International Nuclear Information System (INIS)

    Karpf, A.D.

    1988-12-01

    Part I of the report outlines substantial fundamentals and results that impart sufficient knowledge to understand the resepctive calculations, the influence of essential parameters and to allow unambiguous conclusions as regards the potential riks of a repository in the deep sea bottom. In addition, significant features of the developed programme are described and an overview of international cooperation in this field is given. The more detailed parts II and III deal with the actual repository in the sea sediment layer and its sea biosphere, respectively. (orig./DG) [de

  15. Sensitivity of the deep-sea amphipod Eurythenes gryllus to chemically dispersed oil.

    Science.gov (United States)

    Olsen, Gro Harlaug; Coquillé, Nathalie; Le Floch, Stephane; Geraudie, Perrine; Dussauze, Matthieu; Lemaire, Philippe; Camus, Lionel

    2016-04-01

    In the context of an oil spill accident and the following oil spill response, much attention is given to the use of dispersants. Dispersants are used to disperse an oil slick from the sea surface into the water column generating a cloud of dispersed oil droplets. The main consequence is an increasing of the sea water-oil interface which induces an increase of the oil biodegradation. Hence, the use of dispersants can be effective in preventing oiling of sensitive coastal environments. Also, in case of an oil blowout from the seabed, subsea injection of dispersants may offer some benefits compared to containment and recovery of the oil or in situ burning operation at the sea surface. However, biological effects of dispersed oil are poorly understood for deep-sea species. Most effects studies on dispersed oil and also other oil-related compounds have been focusing on more shallow water species. This is the first approach to assess the sensitivity of a macro-benthic deep-sea organism to dispersed oil. This paper describes a toxicity test which was performed on the macro-benthic deep-sea amphipod (Eurythenes gryllus) to determine the concentration causing lethality to 50% of test individuals (LC50) after an exposure to dispersed Brut Arabian Light (BAL) oil. The LC50 (24 h) was 101 and 24 mg L(-1) after 72 h and 12 mg L(-1) at 96 h. Based on EPA scale of toxicity categories to aquatic organisms, an LC50 (96 h) of 12 mg L(-1) indicates that the dispersed oil was slightly to moderately toxic to E. gryllus. As an attempt to compare our results to others, a literature study was performed. Due to limited amount of data available for dispersed oil and amphipods, information on other crustacean species and other oil-related compounds was also collected. Only one study on dispersed oil and amphipods was found, the LC50 value in this study was similar to the LC50 value of E. gryllus in our study. Since toxicity data are important input to risk assessment and net environmental

  16. Rose George: Deep Sea and Foreign Going: Inside Shipping, the Invisible Industry that Brings you 90% of Everything

    DEFF Research Database (Denmark)

    Taudal Poulsen, René

    2014-01-01

    Book review of: Rose George: Deep Sea and Foreign Going: Inside Shipping, the Invisible Industry that Brings you 90% of Everything. London :Portobello Books, 2013. 320 pp. ISBN 9781846272639......Book review of: Rose George: Deep Sea and Foreign Going: Inside Shipping, the Invisible Industry that Brings you 90% of Everything. London :Portobello Books, 2013. 320 pp. ISBN 9781846272639...

  17. Exploring fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing

    Science.gov (United States)

    Zhang, Xiao-Yong; Wang, Guang-Hua; Xu, Xin-Ya; Nong, Xu-Hua; Wang, Jie; Amin, Muhammad; Qi, Shu-Hua

    2016-10-01

    The present study investigated the fungal diversity in four different deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing of the nuclear ribosomal internal transcribed spacer-1 (ITS1). A total of 40,297 fungal ITS1 sequences clustered into 420 operational taxonomic units (OTUs) with 97% sequence similarity and 170 taxa were recovered from these sediments. Most ITS1 sequences (78%) belonged to the phylum Ascomycota, followed by Basidiomycota (17.3%), Zygomycota (1.5%) and Chytridiomycota (0.8%), and a small proportion (2.4%) belonged to unassigned fungal phyla. Compared with previous studies on fungal diversity of sediments from deep-sea environments by culture-dependent approach and clone library analysis, the present result suggested that Illumina sequencing had been dramatically accelerating the discovery of fungal community of deep-sea sediments. Furthermore, our results revealed that Sordariomycetes was the most diverse and abundant fungal class in this study, challenging the traditional view that the diversity of Sordariomycetes phylotypes was low in the deep-sea environments. In addition, more than 12 taxa accounted for 21.5% sequences were found to be rarely reported as deep-sea fungi, suggesting the deep-sea sediments from Okinawa Trough harbored a plethora of different fungal communities compared with other deep-sea environments. To our knowledge, this study is the first exploration of the fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing.

  18. 76 FR 36511 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab; Amendment 3

    Science.gov (United States)

    2011-06-22

    ...-BA22 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab; Amendment 3 AGENCY... the Atlantic Deep-Sea Red Crab Fishery Management Plan (FMP) (Amendment 3), incorporating a draft... current trap limit regulations state that red crab may not be harvested from gear other than a marked red...

  19. 76 FR 60379 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab; Amendment 3

    Science.gov (United States)

    2011-09-29

    .... 100903433-1531-02] RIN 0648-BA22 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab... approved in Amendment 3 to the Atlantic Deep-Sea Red Crab Fishery Management Plan (FMP). The New England... ABC control rule.'' The NS1 guidelines further state that ``ABC may not exceed OFL,'' and that ``the...

  20. Deep-sea disposal: Scientific bases to control pollution

    International Nuclear Information System (INIS)

    Hagen, A.

    1986-01-01

    The IAEA's responsibilities are to define high-level radioactive waste that is prohibited from being dumped and make recommendations for the dumping of other radioactive waste. The IAEA had set up a series of scientific meetings and also had requested the scientific group GESAMP to advise it on suitable models for calculating concentrations of radionuclides above which sea-dumping would be prohibited. The NEA/OECD had established in 1981 a Coordinated Research and Environmental Surveillance Programme CRESP relevant to sea disposal for an initial period of 4 years. This article presents improving the scientific basis, summary of major issues and CRESP review covering five subject areas: model development, physical oceanography, geochemistry, biology, and radiological surveillance

  1. Tracer element studies on deep water formation and circulation in the European Artic Sea

    International Nuclear Information System (INIS)

    Boenisch, G.

    1991-01-01

    Tracer element investigations (tritium, helium 3, carbon 14, argon 39, krypton 85 and fluorohydrocarbons) were carried out in the European Arctic Sea. The findings are discussed with a view to their validity in the case of deep water formation and circulation. The data cover the period of 1972 through 1989. (BBR) [de

  2. Deep-sea mining: Economic, technical, technological, and environmental considerations for sustainable development

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    investment of $1.95 billion as capital expenditure and $9 billion as operating expenditure for a single deep-sea mining venture. In view of high investment, technological challenges and economic considerations, private-public cooperation could be an effective...

  3. Clay as indicator of sediment plume movement in deep-sea environment

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.

    artificially disturbed and resuspended 5 m above the seabed in 1997 during the Indian Deep-Sea Experiment. Initial studies have shown that the clay content during monitoring-1 phase significantly increased compared to post-disturbance, by 15 and 24...

  4. Technological and profitable analysis of airlifting in deep sea mining systems

    NARCIS (Netherlands)

    Ma, W.; van Rhee, C.; Schott, D.L.

    2017-01-01

    Airlifting technology utilized in deep-sea mining (DSM) industry was proposed in the 70s of last century, which was triggered by the discovery of vast amounts of mineral resources on the seabed. The objective of this paper is to assess the technological feasibility and profitability analyses in

  5. Similar rapid response to phytodetritus deposition in shallow and deep-sea sediments

    NARCIS (Netherlands)

    Moodley, L.; Middelburg, J.J.; Soetaert, K.E.R.; Boschker, H.T.S.; Herman, P.M.J.; Heip, C.H.R.

    2005-01-01

    The short-term benthic response to an input of fresh organic matter was examined in vastly contrasting benthic environments (estuarine intertidal to deep-sea) using 13C-labeled diatoms as a tracer of labile carbon. Benthic processing was assessed in major compartments through 13C-enrichment in CO2,

  6. Modeling food web interactions in benthic deep-sea ecosystems. A practical guide

    NARCIS (Netherlands)

    Soetaert, K.E.R.; Van Oevelen, D.J.

    2009-01-01

    Deep-sea benthic systems are notoriously difficult to sample. Even more than for other benthic systems, many flows among biological groups cannot be directly measured, and data sets remain incomplete and uncertain. In such cases, mathematical models are often used to quantify unmeasured biological

  7. Chemosynthesis in deep-sea red-clay: Linking concepts to probable martian life

    Digital Repository Service at National Institute of Oceanography (India)

    Das, A.; Mourya, B.S.; Mamatha, S.S.; Khadge, N.H.; LokaBharathi, P.A.

    of microbial biogeochemistry are used in the pres- ent deep-sea analogue studies and would be imple- mented for actual Martian soil samples in future: Microbial abundance in terms of total counts » Diversity of culture dependent and independent Chemos... soils done earlier by Viking I robots [5, Bianciardi et. al, 2012

  8. An approach for in situ studies of deep-sea amphipods and their microbial gut flora

    Science.gov (United States)

    Jannasch, H. W.; Cuhel, R. L.; Wirsen, C. O.; Taylor, C. D.

    1980-10-01

    A technique has been developed and field-tested for the trapping, feeding, and timed incubation of amphipods on the deep-sea floor. Data obtained from experiments using radiolabeled foodstuffs indicate that shifts within the labeled fractions of the major biological polymers make it possible to distinguish between the metabolism of the amphipods and that of their intestinal microflora.

  9. Ciliatamides A-C, bioactive lipopeptides from the deep-sea sponge Aaptos ciliata

    NARCIS (Netherlands)

    Nakao, Y.; Kawatsu, S.; Okamoto, C.; Okamoto, M.; Matsumoto, Y.; Matsunaga, S.; van Soest, R.W.M.; Fusetani, N.

    2008-01-01

    Three lipopeptides, ciliatamides A−C, were isolated from the deep-sea sponge Aaptos ciliata, and their structures were elucidated on the basis of spectroscopic and chemical methods. Ciliatamides A and B were found to be antileishmanial, while B also exhibited marginal cytotoxicity to HeLa cells.

  10. Ciliatamides A-C, bioactive lipopeptides from the deep-sea sponge Aaptos ciliata.

    Science.gov (United States)

    Nakao, Yoichi; Kawatsu, Shizuka; Okamoto, Chikane; Okamoto, Masaaki; Matsumoto, Yoshitsugu; Matsunaga, Shigeki; van Soest, Rob W M; Fusetani, Nobuhiro

    2008-03-01

    Three lipopeptides, ciliatamides A-C ( 1- 3), were isolated from the deep-sea sponge Aaptos ciliata, and their structures were elucidated on the basis of spectroscopic and chemical methods. Ciliatamides A ( 1) and B ( 2) were found to be antileishmanial, while 2 also exhibited marginal cytotoxicity to HeLa cells.

  11. Correlation of the Eemian (interglacial) Stage and the deep-sea oxygen-isotope stratigraphy

    International Nuclear Information System (INIS)

    Mangerud, J.; Soenstegaard, E.; Sejrup, H.-P.

    1979-01-01

    A complete interglacial sequence in coastal marine sediments in western Norway is here correlated with the Eemian Stage by means of pollen stratigraphy, and with deep-sea cores by means of marine fossils. The Eemian is correlated with isotope stage 5e. (author)

  12. Biological responses to disturbance from simulated deep-sea polymetallic nodulemining

    NARCIS (Netherlands)

    Jones, D.O.B.; Kaiser, S.; Sweetman, A.K.; Smith, C.R.; Menot, L.; Vink, A.; Trueblood, D.; Greinert, J.; Billett, D.S.M.; Martinez Arbizu, P.; Radziejewska, T.; Singh, R.; Ingole, B.; Stratmann, T.; Simon-Lledó, E.; Durden, J.M.; Clack, M.R.

    2017-01-01

    Commercial-scale mining for polymetallic nodules could have a major impact on the deepseaenvironment, but the effects of these mining activities on deep-sea ecosystems are verypoorly known. The first commercial test mining for polymetallic nodules was carried out in1970. Since then a number of

  13. Limitations of microbial hydrocarbon degradation at the Amon mud volcano (Nile deep-sea fan)

    NARCIS (Netherlands)

    Felden, J.; Lichtschlag, A.; Wenzhöfer, F.; de Beer, D.; Feseker, T.; Pop Ristova, P.; de Lange, G.; Boetius, A.

    2013-01-01

    The Amon mud volcano (MV), located at 1250m water depth on the Nile deep-sea fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the

  14. From deep-sea volcanoes to human pathogens: a conserved quorum-sensing signal in Epsilonproteobacteria.

    Science.gov (United States)

    Pérez-Rodríguez, Ileana; Bolognini, Marie; Ricci, Jessica; Bini, Elisabetta; Vetriani, Costantino

    2015-05-01

    Chemosynthetic Epsilonproteobacteria from deep-sea hydrothermal vents colonize substrates exposed to steep thermal and redox gradients. In many bacteria, substrate attachment, biofilm formation, expression of virulence genes and host colonization are partly controlled via a cell density-dependent mechanism involving signal molecules, known as quorum sensing. Within the Epsilonproteobacteria, quorum sensing has been investigated only in human pathogens that use the luxS/autoinducer-2 (AI-2) mechanism to control the expression of some of these functions. In this study we showed that luxS is conserved in Epsilonproteobacteria and that pathogenic and mesophilic members of this class inherited this gene from a thermophilic ancestor. Furthermore, we provide evidence that the luxS gene is expressed--and a quorum-sensing signal is produced--during growth of Sulfurovum lithotrophicum and Caminibacter mediatlanticus, two Epsilonproteobacteria from deep-sea hydrothermal vents. Finally, we detected luxS transcripts in Epsilonproteobacteria-dominated biofilm communities collected from deep-sea hydrothermal vents. Taken together, our findings indicate that the epsiloproteobacterial lineage of the LuxS enzyme originated in high-temperature geothermal environments and that, in vent Epsilonproteobacteria, luxS expression is linked to the production of AI-2 signals, which are likely produced in situ at deep-sea vents. We conclude that the luxS gene is part of the ancestral epsilonproteobacterial genome and represents an evolutionary link that connects thermophiles to human pathogens.

  15. Diurnal and semi-diurnal tidal currents in the deep mid-Arabian sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Gouveia, A.D.; Shetye, S.R.

    Current meter records from two depths, approximately 1000 m, at three mooring in the deep mid-Arabian Sea were used to study tidal components. Tidal ellipses for the semi-diurnal (M2, S2 and K2) and the diurnal (K1 and P1) tidal constituents have...

  16. State of the deep-sea shrimp stock of Angola | Djama | Journal of the ...

    African Journals Online (AJOL)

    Journal of the Cameroon Academy of Sciences. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 1, No 3 (2001) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. State of the deep-sea shrimp stock of Angola.

  17. Biogeography of Persephonella in deep-sea hydrothermal vents of the Western Pacific.

    Directory of Open Access Journals (Sweden)

    Sayaka eMino

    2013-04-01

    Full Text Available Deep-sea hydrothermal vent fields are areas on the seafloor with high biological productivity fueled by microbial chemosynthesis. Members of the Aquificales genus Persephonella are obligately chemosynthetic bacteria, and appear to be key players in carbon, sulfur, and nitrogen cycles in high temperature habitats at deep-sea vents. Although this group of bacteria has cosmopolitan distribution in deep-sea hydrothermal ecosystem around the world, little is known about their population structure such as intraspecific genomic diversity, distribution pattern, and phenotypic diversity. We developed the multi-locus sequence analysis (MLSA scheme for their genomic characterization. Sequence variation was determined in five housekeeping genes and one functional gene of 36 P. hydrogeniphila strains originated from the Okinawa Trough and the South Mariana Trough. Although the strains share > 98.7% similarities in 16S rRNA gene sequences, MLSA revealed 35 different sequence types, indicating their extensive genomic diversity. A phylogenetic tree inferred from all concatenated gene sequences revealed the clustering of isolates according to the geographic origin. In addition, the phenotypic clustering pattern inferred from whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS analysis can be correlated to their MLSA clustering pattern. This study represents the first MLSA combined with phenotypic analysis indicative of allopatric speciation of deep-sea hydrothermal vent bacteria.

  18. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea

    KAUST Repository

    Takahashi, Masateru; Takahashi, Etsuko; Joudeh, Luay I.; Marini, Monica; Das, Gobind; Elshenawy, Mohamed; Akal, Anastassja; Sakashita, Kosuke; Alam, Intikhab; Tehseen, Muhammad; Sobhy, Mohamed Abdelmaboud; Stingl, Ulrich; Merzaban, Jasmeen; Di Fabrizio, Enzo M.; Hamdan, Samir

    2018-01-01

    The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein’s surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of KOD DNA polymerase.—Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

  19. Captive rearing of the deep-sea coral Eguchipsammia fistula from the Red Sea demonstrates remarkable physiological plasticity

    KAUST Repository

    Roik, Anna Krystyna; Rö thig, Till; Roder, Cornelia; Muller, Paul Joachim; Voolstra, Christian R.

    2015-01-01

    The presence of the cosmopolitan deep-sea coral Eguchipsammia fistula has recently been documented in the Red Sea, occurring in warm (>20 °C), oxygen- and nutrient-limited habitats. We collected colonies of this species from the central Red Sea that successfully resided in aquaria for more than one year. During this period the corals were exposed to increased oxygen levels and nutrition ad libitum unlike in their natural habitat. Specimens of long-term reared E. fistula colonies were incubated for 24 h and calcification (G) as well as respiration rates (R) were measured. In comparison to on-board measurements of G and R rates on freshly collected specimens, we found that G was increased while R was decreased. E. fistula shows extensive tissue growth and polyp proliferation in aquaculture and can be kept at conditions that notably differ from its natural habitat. Its ability to cope with rapid and prolonged changes in regard to prevailing environmental conditions indicates a wide physiological plasticity. This may explain in part the cosmopolitan distribution of this species and emphasizes its value as a deep-sea coral model to study mechanisms of acclimation and adaptation.

  20. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

    Science.gov (United States)

    Takahashi, Masateru; Takahashi, Etsuko; Joudeh, Luay I; Marini, Monica; Das, Gobind; Elshenawy, Mohamed M; Akal, Anastassja; Sakashita, Kosuke; Alam, Intikhab; Tehseen, Muhammad; Sobhy, Mohamed A; Stingl, Ulrich; Merzaban, Jasmeen S; Di Fabrizio, Enzo; Hamdan, Samir M

    2018-01-24

    The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein's surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of KOD DNA polymerase.-Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

  1. Captive rearing of the deep-sea coral Eguchipsammia fistula from the Red Sea demonstrates remarkable physiological plasticity.

    Science.gov (United States)

    Roik, Anna; Röthig, Till; Roder, Cornelia; Müller, Paul J; Voolstra, Christian R

    2015-01-01

    The presence of the cosmopolitan deep-sea coral Eguchipsammia fistula has recently been documented in the Red Sea, occurring in warm (>20 °C), oxygen- and nutrient-limited habitats. We collected colonies of this species from the central Red Sea that successfully resided in aquaria for more than one year. During this period the corals were exposed to increased oxygen levels and nutrition ad libitum unlike in their natural habitat. Specimens of long-term reared E. fistula colonies were incubated for 24 h and calcification (G) as well as respiration rates (R) were measured. In comparison to on-board measurements of G and R rates on freshly collected specimens, we found that G was increased while R was decreased. E. fistula shows extensive tissue growth and polyp proliferation in aquaculture and can be kept at conditions that notably differ from its natural habitat. Its ability to cope with rapid and prolonged changes in regard to prevailing environmental conditions indicates a wide physiological plasticity. This may explain in part the cosmopolitan distribution of this species and emphasizes its value as a deep-sea coral model to study mechanisms of acclimation and adaptation.

  2. Captive rearing of the deep-sea coral Eguchipsammia fistula from the Red Sea demonstrates remarkable physiological plasticity

    KAUST Repository

    Roik, Anna Krystyna

    2015-01-20

    The presence of the cosmopolitan deep-sea coral Eguchipsammia fistula has recently been documented in the Red Sea, occurring in warm (>20 °C), oxygen- and nutrient-limited habitats. We collected colonies of this species from the central Red Sea that successfully resided in aquaria for more than one year. During this period the corals were exposed to increased oxygen levels and nutrition ad libitum unlike in their natural habitat. Specimens of long-term reared E. fistula colonies were incubated for 24 h and calcification (G) as well as respiration rates (R) were measured. In comparison to on-board measurements of G and R rates on freshly collected specimens, we found that G was increased while R was decreased. E. fistula shows extensive tissue growth and polyp proliferation in aquaculture and can be kept at conditions that notably differ from its natural habitat. Its ability to cope with rapid and prolonged changes in regard to prevailing environmental conditions indicates a wide physiological plasticity. This may explain in part the cosmopolitan distribution of this species and emphasizes its value as a deep-sea coral model to study mechanisms of acclimation and adaptation.

  3. Captive rearing of the deep-sea coral Eguchipsammia fistula from the Red Sea demonstrates remarkable physiological plasticity

    Directory of Open Access Journals (Sweden)

    Anna Roik

    2015-01-01

    Full Text Available The presence of the cosmopolitan deep-sea coral Eguchipsammia fistula has recently been documented in the Red Sea, occurring in warm (>20 °C, oxygen- and nutrient-limited habitats. We collected colonies of this species from the central Red Sea that successfully resided in aquaria for more than one year. During this period the corals were exposed to increased oxygen levels and nutrition ad libitum unlike in their natural habitat. Specimens of long-term reared E. fistula colonies were incubated for 24 h and calcification (G as well as respiration rates (R were measured. In comparison to on-board measurements of G and R rates on freshly collected specimens, we found that G was increased while R was decreased. E. fistula shows extensive tissue growth and polyp proliferation in aquaculture and can be kept at conditions that notably differ from its natural habitat. Its ability to cope with rapid and prolonged changes in regard to prevailing environmental conditions indicates a wide physiological plasticity. This may explain in part the cosmopolitan distribution of this species and emphasizes its value as a deep-sea coral model to study mechanisms of acclimation and adaptation.

  4. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea

    KAUST Repository

    Takahashi, Masateru

    2018-01-24

    The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein’s surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of KOD DNA polymerase.—Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

  5. Testing deep-sea biodiversity paradigms on abyssal nematode genera and Acantholaimus species

    Science.gov (United States)

    Lins, Lidia; da Silva, Maria Cristina; Neres, Patrícia; Esteves, André Morgado; Vanreusel, Ann

    2018-02-01

    Biodiversity patterns in the deep sea have been extensively studied in the last decades. In this study, we investigated whether reputable concepts in deep-sea ecology also explain diversity and distribution patterns of nematode genera and species in the abyss. Among them, three paradigms were tackled: (1) the deep sea is a highly diverse environment at a local scale, while on a regional and even larger geographical scale, species and genus turnover is limited; (2) the biodiversity of deep-sea nematode communities changes with the nature and amount of organic matter input from the surface; and (3) patch-mosaic dynamics of the deep-sea environment drive local diversity. To test these hypotheses, diversity and density of nematode assemblages and of species of the genus Acantholaimus were studied along two abyssal E-W transects. These two transects were situated in the Southern Ocean ( 50°S) and the North Atlantic ( 10°N). Four different hierarchical scales were used to compare biodiversity: at the scale of cores, between stations from the same region, and between regions. Results revealed that the deep sea harbours a high diversity at a local scale (alpha diversity), but that turnover can be shaped by different environmental drivers. Therefore, these results question the second part of the paradigm about limited species turnover in the deep sea. Higher surface primary productivity was correlated with greater nematode densities, whereas diversity responses to the augmentation of surface productivity showed no trend. Areas subjected to a constant and low food input revealed similar nematode communities to other oligotrophic abyssal areas, while stations under high productivity were characterized by different dominant genera and Acantholaimus species, and by a generally low local diversity. Our results corroborate the species-energy hypothesis, where productivity can set a limit to the richness of an ecosystem. Finally, we observed no correlation between sediment

  6. Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR

    Directory of Open Access Journals (Sweden)

    X. Fettweis

    2013-03-01

    Full Text Available To estimate the sea level rise (SLR originating from changes in surface mass balance (SMB of the Greenland ice sheet (GrIS, we present 21st century climate projections obtained with the regional climate model MAR (Modèle Atmosphérique Régional, forced by output of three CMIP5 (Coupled Model Intercomparison Project Phase 5 general circulation models (GCMs. Our results indicate that in a warmer climate, mass gain from increased winter snowfall over the GrIS does not compensate mass loss through increased meltwater run-off in summer. Despite the large spread in the projected near-surface warming, all the MAR projections show similar non-linear increase of GrIS surface melt volume because no change is projected in the general atmospheric circulation over Greenland. By coarsely estimating the GrIS SMB changes from GCM output, we show that the uncertainty from the GCM-based forcing represents about half of the projected SMB changes. In 2100, the CMIP5 ensemble mean projects a GrIS SMB decrease equivalent to a mean SLR of +4 ± 2 cm and +9 ± 4 cm for the RCP (Representative Concentration Pathways 4.5 and RCP 8.5 scenarios respectively. These estimates do not consider the positive melt–elevation feedback, although sensitivity experiments using perturbed ice sheet topographies consistent with the projected SMB changes demonstrate that this is a significant feedback, and highlight the importance of coupling regional climate models to an ice sheet model. Such a coupling will allow the assessment of future response of both surface processes and ice-dynamic changes to rising temperatures, as well as their mutual feedbacks.

  7. Effect of specific pathways to 1.5°C global warming on the contribution of Greenland to sea level rise

    Science.gov (United States)

    Humbert, A.; Rückamp, M.; Falk, U.; Frieler, K.

    2017-12-01

    Sea level rise associated with changing climate is expected to pose a major challenge for societies. Here, we estimate the future contribution of the Greenland ice sheet (GrIS) to sea level change in terms of different emission scenarios. We investigate the effect of different pathways of global warming on the dynamics and mass balance of the GrIS with a focus on scenarios in line with limiting global warming to 2.0° or even 1.5° by the end of 2100 (Paris Agreement). We particularly address the issue of peak and decline scenarios temporarily exceeding a given temperature limit. This kind of overshooting might have strong effects on the evolution of the GrIS. Furthermore, we investigate the long-term effects of different levels of climate change to estimate the threshold for stabilizing the GrIS. For modeling the flow dynamics and future evolution of the GrIS, we apply the thermo-mechanical coupled Ice Sheet System Model (ISSM). The model is forced with anomalies for temperature and surface mass balance derived from different GCM data from the CMIP5 RCP2.6 scenario provided from the ISIMIP2b project. In order to obtain these anomalies from the GCM data, a surface energy balance model is applied.

  8. Deserts on the sea floor: Edward Forbes and his azoic hypothesis for a lifeless deep ocean.

    Science.gov (United States)

    Anderson, Thomas R; Rice, Tony

    2006-12-01

    While dredging in the Aegean Sea during the mid-19th century, Manxman Edward Forbes noticed that plants and animals became progressively more impoverished the greater the depth they were from the surface of the water. By extrapolation Forbes proposed his now infamous azoic hypothesis, namely that life would be extinguished altogether in the murky depths of the deep ocean. The whole idea seemed so entirely logical given the enormous pressure, cold and eternal darkness of this apparently uninhabitable environment. Yet we now know that the sea floor is teeming with life. Curiously, it took 25 years for the azoic hypothesis to fall from grace. This was despite the presence of ample contrary evidence, including starfishes, worms and other organisms that seemingly originated from the deep seabed. This is a tale of scientists ignoring observations that ran counter to their deep-seated, yet entirely erroneous, beliefs.

  9. From Exploration to Exploitation? Opportunities and Imperatives in the Deep Sea

    KAUST Repository

    Van Dover, Cindy Lee

    2017-01-16

    We may think of the depths of the ocean as unseen, unfathomable, but there have been breakthroughs in technology that allow scientists access to the deep sea and that bring the deep sea directly to the public through live video feeds and data links. We can now map the seafloor to resolve features the size of a football and smaller using sound waves, while at the same time, sensors report to us the chemical nature of the surrounding environment. We will look at examples of robots and other assets that we use to explore the seafloor and at some of the discoveries that arise from our expanding capabilities. We will look at some of the blank places on the map and wonder what might be located there. And finally, we will explore the growing interest in mining the seabed and the potential for a Blue Economy in the deep ocean.

  10. Model output for deep-sea coral habitat suitability in the U.S. North and Mid-Atlantic from 2013 (NCEI Accession 0145923)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset was created for potential use as an environmental predictor in spatial predictive models of deep-sea coral habitat suitability. Deep-sea corals are of...

  11. Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau

    Science.gov (United States)

    Nagano, Yuriko; Miura, Toshiko; Nishi, Shinro; Lima, Andre O.; Nakayama, Cristina; Pellizari, Vivian H.; Fujikura, Katsunori

    2017-12-01

    We investigated the fungal diversity in a total of 20 deep-sea sediment samples (of which 14 samples were associated with natural asphalt seeps and 6 samples were not associated) collected from two different sites at the Sao Paulo Plateau off Brazil by Ion Torrent PGM targeting ITS region of ribosomal RNA. Our results suggest that diverse fungi (113 operational taxonomic units (OTUs) based on clustering at 97% sequence similarity assigned into 9 classes and 31 genus) are present in deep-sea sediment samples collected at the Sao Paulo Plateau, dominated by Ascomycota (74.3%), followed by Basidiomycota (11.5%), unidentified fungi (7.1%), and sequences with no affiliation to any organisms in the public database (7.1%). However, it was revealed that only three species, namely Penicillium sp., Cadophora malorum and Rhodosporidium diobovatum, were dominant, with the majority of OTUs remaining a minor community. Unexpectedly, there was no significant difference in major fungal community structure between the asphalt seep and non-asphalt seep sites, despite the presence of mass hydrocarbon deposits and the high amount of macro organisms surrounding the asphalt seeps. However, there were some differences in the minor fungal communities, with possible asphalt degrading fungi present specifically in the asphalt seep sites. In contrast, some differences were found between the two different sampling sites. Classification of OTUs revealed that only 47 (41.6%) fungal OTUs exhibited >97% sequence similarity, in comparison with pre-existing ITS sequences in public databases, indicating that a majority of deep-sea inhabiting fungal taxa still remain undescribed. Although our knowledge on fungi and their role in deep-sea environments is still limited and scarce, this study increases our understanding of fungal diversity and community structure in deep-sea environments.

  12. Surface oceanographic fronts influencing deep-sea biological activity: Using fish stable isotopes as ecological tracers

    Science.gov (United States)

    Louzao, Maite; Navarro, Joan; Delgado-Huertas, Antonio; de Sola, Luis Gil; Forero, Manuela G.

    2017-06-01

    Ecotones can be described as transition zones between neighbouring ecological systems that can be shaped by environmental gradients over a range of space and time scales. In the marine environment, the detection of ecotones is complex given the highly dynamic nature of marine systems and the paucity of empirical data over ocean-basin scales. One approach to overcome these limitations is to use stable isotopes from animal tissues since they can track spatial oceanographic variability across marine systems and, in turn, can be used as ecological tracers. Here, we analysed stable isotopes of deep-sea fishes to assess the presence of ecological discontinuities across the western Mediterranean. We were specifically interested in exploring the connection between deep-sea biological activity and particular oceanographic features (i.e., surface fronts) occurring in the pelagic domain. We collected samples for three different abundant deep-sea species in May 2004 from an experimental oceanographic trawling cruise (MEDITS): the Mictophydae jewel lanternfish Lampanyctus crocodilus and two species of the Gadidae family, the silvery pout Gadiculus argenteus and the blue whiting Micromesistius poutassou. The experimental survey occurred along the Iberian continental shelf and the upper and middle slopes, from the Strait of Gibraltar in the SW to the Cape Creus in the NE. The three deep-sea species were highly abundant throughout the study area and they showed geographic variation in their isotopic values, with decreasing values from north to south disrupted by an important change point around the Vera Gulf. Isotopic latitudinal gradients were explained by pelagic oceanographic conditions along the study area and confirm the existence of an ecotone at the Vera Gulf. This area could be considered as an oceanographic boundary where waters of Atlantic origin meet Mediterranean surface waters forming important frontal structures such as the Almeria-Oran front. In fact, our results

  13. Larval transport modeling of deep-sea invertebrates can aid the search for undiscovered populations.

    Directory of Open Access Journals (Sweden)

    Jon M Yearsley

    Full Text Available BACKGROUND: Many deep-sea benthic animals occur in patchy distributions separated by thousands of kilometres, yet because deep-sea habitats are remote, little is known about their larval dispersal. Our novel method simulates dispersal by combining data from the Argo array of autonomous oceanographic probes, deep-sea ecological surveys, and comparative invertebrate physiology. The predicted particle tracks allow quantitative, testable predictions about the dispersal of benthic invertebrate larvae in the south-west Pacific. PRINCIPAL FINDINGS: In a test case presented here, using non-feeding, non-swimming (lecithotrophic trochophore larvae of polyplacophoran molluscs (chitons, we show that the likely dispersal pathways in a single generation are significantly shorter than the distances between the three known population centres in our study region. The large-scale density of chiton populations throughout our study region is potentially much greater than present survey data suggest, with intermediate 'stepping stone' populations yet to be discovered. CONCLUSIONS/SIGNIFICANCE: We present a new method that is broadly applicable to studies of the dispersal of deep-sea organisms. This test case demonstrates the power and potential applications of our new method, in generating quantitative, testable hypotheses at multiple levels to solve the mismatch between observed and expected distributions: probabilistic predictions of locations of intermediate populations, potential alternative dispersal mechanisms, and expected population genetic structure. The global Argo data have never previously been used to address benthic biology, and our method can be applied to any non-swimming larvae of the deep-sea, giving information upon dispersal corridors and population densities in habitats that remain intrinsically difficult to assess.

  14. Periodic fluctuations in deep water formation due to sea ice

    Science.gov (United States)

    Saha, R.

    2012-12-01

    During the last ice age, several abrupt warming events took place, known as Dansgaard-Oeschger (D-O) events. Their effects were felt globally, although the North Atlantic experienced the largest temperature increase. The leading hypothesis to explain their occurrence postulates that the warming was caused by abrupt disruptions of the North Atlantic Current due to meltwater discharge from destabilized ice sheets (Heinrich events). However, the number of warming events outnumber the those of ice-sheet collapse. Thus, the majority of D-O events are not attributed to surface freshwater anomalies, and the underlying mechanism behind their occurrence remain unexplained. Using a simple dynamical model of sea ice and an overturning circulation, I show the existence of self-sustained relaxation oscillations in the overturning circulation. The insulating effect of sea ice is shown to paradoxically lead to a net loss of heat from the top layer of the polar ocean when sea ice retreats. Repeated heat loss results in a denser top layer and a destabilized water column, which triggers convection. The convective state pulls the system out of its preferred mode of circulation, setting up relaxation oscillations. The period of oscillations in this case is linked to the geometry of the ocean basin, if solar forcing is assumed to remain constant. If appropriate glacial freshwater forcing is applied to the model, a pattern of oscillation is produced that bears remarkable similarity to the observed fluctuations in North Atlantic climate between 50,000 and 30,000 years before present.; Comparison of NGRIP δ 18-O (proxy for near surface air temperature) between 50,000 and 30,000 years before present, showing Bond cycles (left) with the model output when forced with appropriate glacial freshwater forcing (right).

  15. Deep-Sea Trench Microbiology Down to 10.9 Kilometers Below the Surface

    Science.gov (United States)

    Bartlett, D. H.

    2012-12-01

    Deep-sea trenches, extending to more than 10.9 km below the sea surface, are among the most remote and infrequently sampled habitats. As a result a global perspective of microbial diversity and adaptation is lacking in these extreme settings. I will present the results of studies of deep-sea trench microbes collected in the Puerto Rico Trench (PRT), Tonga Trench, New Britain Trench and Mariana Trench. The samples collected include sediment, seawater and animals in baited traps. The analyses to be described include microbial community activity and viability measurements as a function of hydrostatic pressure, microbial culturing at high pressure under various physiological conditions, phylogenetics and metagenome and single-cell genome characterizations. Most of the results to date stem from samples recovered from the PRT. The deep-sea PRT Trench microbes have more in common at the species level with other deep-sea microbial communities previously characterized in the Pacific Ocean and the Mediterranean Sea than with the microbial populations above them in shallow waters. They also harbor larger genomes with more genes assigned to signal transduction, transcription, replication, recombination and repair and inorganic ion transport. The overrepresented transporters in the PRT metagenome include di- and tri-carboxylate transporters that correspond to the prevailing catabolic processes such as butanoate, glyoxylate and dicarboxylate metabolism. A surprisingly high abundance of sulfatases for the degradation of sulfated polysaccharides were also present in the PRT. But, perhaps the most dramatic adaptational feature of the PRT microbes is heavy metal resistance, as reflected in the high numbers of metal efflux systems present. Single-cell genomics approaches have proven particularly useful for placing PRT metagenomic data into context.

  16. Trophic ecology of deep-sea Asteroidea (Echinodermata) from eastern Canada

    Science.gov (United States)

    Gale, Katie S. P.; Hamel, Jean-François; Mercier, Annie

    2013-10-01

    Asteroids (sea stars) can be important predators in benthic communities and are often present in ecologically important and vulnerable deep-sea coral and sponge habitats. However, explicit studies on the trophic ecology of deep-sea asteroids are rare. We investigated the diets of seven species of deep-sea asteroid from the bathyal zone of Newfoundland and Labrador, eastern Canada. A multifaceted approach including live animal observations, stomach content analysis, and stable isotope analysis revealed the asteroids to be either top predators of megafauna or secondary consumers (mud ingesters, infaunal predators, and suspension feeders). The stable isotope signatures of Ceramaster granularis, Hippasteria phrygiana, and Mediaster bairdi are characteristic of high-level predators, having δ15N values 4.4‰ (more than one trophic level) above Ctenodiscus crispatus, Leptychaster arcticus, Novodinia americana, and Zoroaster fulgens. We present strong evidence that corals and sponges are common food items for two of the predatory species, C. granularis and H. phrygiana. During laboratory feeding trials, live H. phrygiana fed on several species of soft coral and C. granularis fed on sponges. Stomach content analysis of wild-caught individuals revealed sclerites from sea pens (e.g. Pennatula sp.) in the stomachs of both asteroid species; H. phrygiana also contained sclerites from at least two other species of octocoral and siliceous sponge spicules were present in the stomachs of C. granularis. The stomach contents of the secondary consumers contained a range of invertebrate material. Leptychaster arcticus and Ctenodiscus crispatus feed infaunally on bulk sediment and molluscs, Zoroaster fulgens is a generalist infaunal predator, and the brisingid Novodinia americana is a specialist suspension feeder on benthopelagic crustaceans. This study provides a foundation for understanding the ecological roles of bathyal asteroids, and suggests that some species may have the

  17. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    International Nuclear Information System (INIS)

    Sant, T; Buhagiar, D; Farrugia, R N

    2014-01-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units

  18. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    Science.gov (United States)

    Sant, T.; Buhagiar, D.; Farrugia, R. N.

    2014-06-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.

  19. Uranium in Pacific deep-sea sediments and manganese nodules

    International Nuclear Information System (INIS)

    Kunzendorf, H.; Plueger, W.L.; Friedrich, G.H.

    1983-01-01

    A total of 1344 manganese nodules and 187 pelagic sediments from 9 areas in the North and the South Pacific were analyzed for U by the delayed-neutron counting technique. A strong positive correlation between U and Fe in nodules and sediments suggests a co-precipitative removal from sea water into the Fe-rich (ferromanganese mineral phase MnO 2 . Enrichment of U and Fe in nodules from the northwestern slopes of two submarine hills (U between 6 and 9 ppm) in the equatorial nodule belt is thought to be caused by directional bottom water flow creating elevated oxygenized conditions in areas opposed to the flow. Economically important nodule deposits from the nodule belt and the Peru Basin have generally low U contents, between 3 and 5 ppm. Insignificant resources of U of about 4 x 10 5 in the Pacific manganese nodules are estimated. (orig.)

  20. Radiological aspects of sea bed dumping in the deep oceans

    International Nuclear Information System (INIS)

    Templeton, W.L.

    1979-01-01

    In order to control coastal discharges or ocean dumping of any kind of material, it is necessary to determine a release rate. This can only come from a knowledge of the composition and chemical form of the source materials, the distribution and bioavailability of these materials in the ocean ecosystem, the degree and rates of bioaccumulation and the actual or potential use of the ocean resources. With this information release rates within acceptable limits for man and the ecosystem can then be determined. Today, probably the only situations which apply this approach are the controlled disposal of radioactive wastes. In this paper a recent radiological assessment of the dumping of packaged radioactive wastes on the seabed is discussed and some environmental aspects of the United States Department of Energy program are described examining the feasibility of the emplacement of contained radioactive wastes within the deep ocean sediments

  1. Studies of deep water formation and circulation in the Weddell Sea using natural and anthropogenic tracers

    International Nuclear Information System (INIS)

    Schlosser, Peter; Bayer, Reinhold

    1991-01-01

    The application of natural and anthropogenic trace substances in oceanographic studies of the Weddell Sea is reviewed. The potential of some steady-state and transient tracers (tritium, CFC-11 and CFC-12, 18 O, and helium isotopes) for studies of deep water formation and circulation is discussed on the basis of data sets collected mainly on cruises of R/V 'Polastern' to the Weddell Sea during the 1980s. CFC/ tritium ratio dating of young water masses is applied to estimate mean age and transit times of water involved in Weddell Sea Bottom Water formation. The history of the CFC-11/tritium ratio through time is derived for Weddell Sea shelf waters. (author). 36 refs.; 18 figs

  2. Storm-induced water dynamics and thermohaline structure at the tidewater Flade Isblink Glacier outlet to the Wandel Sea (NE Greenland)

    Science.gov (United States)

    Kirillov, Sergei; Dmitrenko, Igor; Rysgaard, Søren; Babb, David; Toudal Pedersen, Leif; Ehn, Jens; Bendtsen, Jørgen; Barber, David

    2017-11-01

    In April 2015, an ice-tethered conductivity-temperature-depth (CTD) profiler and a down-looking acoustic Doppler current profiler (ADCP) were deployed from the landfast ice near the tidewater glacier terminus of the Flade Isblink Glacier in the Wandel Sea, NE Greenland. The 3-week time series showed that water dynamics and the thermohaline structure were modified considerably during a storm event on 22-24 April, when northerly winds exceeded 15 m s-1. The storm initiated downwelling-like water dynamics characterized by on-shore water transport in the surface (0-40 m) layer and compensating offshore flow at intermediate depths. After the storm, currents reversed in both layers, and the relaxation phase of downwelling lasted ˜ 4 days. Although current velocities did not exceed 5 cm s-1, the enhanced circulation during the storm caused cold turbid intrusions at 75-95 m depth, which are likely attributable to subglacial water from the Flade Isblink Ice Cap. It was also found that the semidiurnal periodicities in the temperature and salinity time series were associated with the lunar semidiurnal tidal flow. The vertical structure of tidal currents corresponded to the first baroclinic mode of the internal tide with a velocity minimum at ˜ 40 m. The tidal ellipses rotate in opposite directions above and below this depth and cause a divergence of tidal flow, which was observed to induce semidiurnal internal waves of about 3 m height at the front of the glacier terminus. Our findings provide evidence that shelf-basin interaction and tidal forcing can potentially modify coastal Wandel Sea waters even though they are isolated from the atmosphere by landfast sea ice almost year-round. The northerly storms over the continental slope cause an enhanced circulation facilitating a release of cold and turbid subglacial water to the shelf. The tidal flow may contribute to the removal of such water from the glacial terminus.

  3. High Acidification Rate of Norwegian Sea Revealed by Boron Isotopes in the Deep-Sea Coral Madrepora Oculata

    Science.gov (United States)

    Gonzalez, C.; Douville, E.; Hall-Spencer, J.; Montagna, P.; Louvat, P.; Gaillardet, J.; Frank, N.; Bordier, L.; Juillet-Leclerc, A.

    2012-12-01

    Ocean acidification and global warming due to the increase of anthropogenic CO2 are major threats for marine calcifying organisms, such as deep-sea corals, particularly in high-latitude regions. In order to evaluate the current anthropogenic perturbation and to properly assess the impacts and responses of calcifiers to previous changes in pH it is critical to investigate past changes of the seawater carbonate system. Unfortunately, current instrumental records of oceanic pH are limited, covering only a few decades. Scleractinian coral skeletons record chemical parameters of the seawater in which they grow. However, pH variability over multidecadal timescales remains largely unknown in intermediate and deep seawater masses. Here we present a study that highlights the potential of deep-sea-corals to overcome the lack of long-term pH records and that emphasizes a rapid acidification of high latitude subsurface waters of Norwegian Sea during the past decades. We have reconstructed seawater pH and temperature from a well dated deep-sea coral specimen Madrepora oculata collected alive from Røst reef in Norwegian Sea (67°N, 9°E, 340 m depth). This large branching framework forming coral species grew its skeleton over more than four decades determined using AMS 14C and 210Pb dating (Sabatier et al. 2012). B-isotopes and Li/Mg ratios yield an acidification rate of about -0.0030±0.0008 pH-unit.year-1 and a warming of 0.3°C during the past four decades (1967-2007). Overall our reconstruction technique agrees well with previous pH calculations (Hönisch et al., 2007 vs. Trotter et al., 2011 and McCulloch et al., 2012, i.e. the iterative method), but additional corrections are here applied using stable isotope correlations (O, C, B) to properly address kinetic fractionation of boron isotopes used for pH reconstruction. The resulting pH curve strongly anti-correlates with the annual NAO index, which further strengthens our evidence for the ocean acidification rate

  4. Exchanges between the shelf and the deep Black Sea: an integrated analysis of physical mechanisms

    Science.gov (United States)

    Shapiro, Georgy; Wobus, Fred; Zatsepin, Andrei; Akivis, Tatiana; Zhou, Feng

    2017-04-01

    This study provides an integrated analysis of exchanges of water, salt and heat between the north-western Black Sea shelf and the deep basin. Three contributing physical mechanisms are quantified, namely: Ekman drift, transport by mesoscale eddies at the edge of the NW Black Sea shelf and non-local cascading assisted by the rim current and mesoscale eddies. The semi-enclosed nature of the Black Sea together with its unique combination of an extensive shelf area in the North West and the deep central part make it sensitive to natural variations of fluxes, including the fluxes between the biologically productive shelf and predominantly anoxic deep sea. Exchanges between the shelf and deep sea play an important role in forming the balance of waters, nutrients and pollution within the coastal areas, and hence the level of human-induced eutrophication of coastal waters (MSFD Descriptor 5). In this study we analyse physical mechanisms and quantify shelf-deep sea exchange processes in the Black Sea sector using the NEMO ocean circulation model. The model is configured and optimized taking into account specific features of the Black Sea, and validated against in-situ and satellite observations. The study uses NEMO-BLS24 numerical model which is based on the NEMO codebase v3.2.1 with amendments introduced by the UK Met Office. The model has a horizontal resolution of 1/24×1/24° and a hybrid s-on-top-of-z vertical coordinate system with a total of 33 layers. The horizontal viscosity/diffusivity operator is rotated to reduce the contamination of vertical diffusion/viscosity by large values of their horizontal counterparts. The bathymetry is processed from ETOPO5 and capped to 1550m. Atmospheric forcing for the period 1989-2012 is given by the Drakkar Forcing Set v5.2. For comparison, the NCEP atmospheric forcing also used for 2005. The climatological runoff from 8 major rivers is included. We run the model individually for 24 calendar years without data assimilation. For

  5. Harpacticoid copepod diversity at two physically reworked sites in the deep sea

    Science.gov (United States)

    Thistle, David

    1998-01-01

    Grassle's and Jumars' theories of diversity maintenance in the quiescent deep sea view millimeter-to-meter-scale patchiness (mostly of biological origin) as crucial. In other deep-sea regions, episodes of strong near-bottom flow put the surficial sediment layers into motion, obliterating the biologically produced, millimeter-to-meter-scale patchiness. Under these theories, sites eroded so frequently that such patchiness is eliminated almost as soon as it is created should have lower diversities than sites where the time between erosive events is sufficient for this type of patchiness to be produced and exploited. I tested this prediction by comparing the diversities of harpacticoid copepods at two sites on Fieberling Guyot to determine whether Grassle's and Jumars' theories can be extended to the portion of the deep sea that experiences episodic erosive flows. At White Sand Swale (=WSS) (32°27.581'N, 127°47.839'W), strong near-bottom flows erode the surficial sediment daily. At Sea Pen Rim (=SPR) (32°27.631'N, 127°49.489'W), strong near-bottom flows erode the surficial sediment a few times annually. Contrary to expectation, the diversity of harpacticoid copepods was significantly greater at WSS than at SPR. However, the erosion regime at WSS may create small-scale patchiness that promotes harpacticoid diversity.

  6. Feeding in deep-sea demosponges: Influence of abiotic and biotic factors

    Science.gov (United States)

    Robertson, Leah M.; Hamel, Jean-François; Mercier, Annie

    2017-09-01

    In shallow benthic communities, sponges are widely recognized for their ability to contribute to food webs by cycling nutrients and mediating carbon fluxes through filter feeding. In comparison, little is known about filter feeding in deep-sea species and how it may be modulated by environmental conditions. Here, a rare opportunity to maintain live healthy deep-sea sponges for an extended period led to a preliminary experimental study of their feeding metrics. This work focused on demosponges collected from the continental slope of eastern Canada at 1000 m depth. Filtration rates (as clearance of phytoplankton cells) at holding temperature (6 °C) were positively correlated with food particle concentration, ranging on average from 18.8 to 160.6 cells ml-1 h-1 at nominal concentrations of 10,000-40,000 cells ml-1. Cell clearance was not significantly affected by decreasing seawater temperature, from 6 °C to 3 °C or 0 °C, although two of the sponges showed decreased filtration rates. Low pH ( 7.5) and the presence of a predatory sea star markedly depressed or inhibited feeding activity in all sponges tested. While performed under laboratory conditions on a limited number of specimens, this work highlights the possible sensitivity of deep-sea demosponges to various types and levels of biotic and abiotic factors, inferring a consequent vulnerability to natural and anthropogenic disturbances.

  7. Gulf of Mexico Deep-Sea Coral Ecosystem Studies, 2008-2011

    Science.gov (United States)

    Kellogg, Christina A.

    2009-01-01

    Most people are familiar with tropical coral reefs, located in warm, well-illuminated, shallow waters. However, corals also exist hundreds and even thousands of meters below the ocean surface, where it is cold and completely dark. These deep-sea corals, also known as cold-water corals, have become a topic of interest due to conservation concerns over the impacts of trawling, exploration for oil and gas, and climate change. Although the existence of these corals has been known since the 1800s, our understanding of their distribution, ecology, and biology is limited due to the technical difficulties of conducting deep-sea research. DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) is a new U.S. Geological Survey (USGS) program focused on deep-water coral ecosystems in the Gulf of Mexico. This integrated, multidisciplinary, international effort investigates a variety of topics related to unique and fragile deep-sea coral ecosystems from the microscopic level to the ecosystem level, including components of microbiology, population genetics, paleoecology, food webs, taxonomy, community ecology, physical oceanography, and mapping.

  8. Genetic homogeneity in the deep-sea grenadier Macrourus berglax across the North Atlantic Ocean

    Science.gov (United States)

    Coscia, Ilaria; Castilho, Rita; Massa-Gallucci, Alexia; Sacchi, Carlotta; Cunha, Regina L.; Stefanni, Sergio; Helyar, Sarah J.; Knutsen, Halvor; Mariani, Stefano

    2018-02-01

    Paucity of data on population structure and connectivity in deep sea species remains a major obstacle to their sustainable management and conservation in the face of ever increasing fisheries pressure and other forms of impacts on deep sea ecosystems. The roughhead grenadier Macrourus berglax presents all the classical characteristics of a deep sea species, such as slow growth and low fecundity, which make them particularly vulnerable to anthropogenic impact, due to their low resilience to change. In this study, the population structure of the roughhead grenadier is investigated throughout its geographic distribution using two sets of molecular markers: a partial sequence of the Control Region of mitochondrial DNA and species-specific microsatellites. No evidence of significant structure was found throughout the North Atlantic, with both sets of molecular markers yielding the same results of overall homogeneity. We posit two non-mutually exclusive scenarios that can explain such outcome: i) substantial high gene flow among locations, possibly maintained by larval stages, ii) very large effective size of post-glacially expanded populations. The results can inform management strategies in this by-caught species, and contribute to the broader issue of biological connectivity in the deep ocean.

  9. The secret to successful deep-sea invasion: does low temperature hold the key?

    Directory of Open Access Journals (Sweden)

    Kathryn E Smith

    Full Text Available There is a general consensus that today's deep-sea biodiversity has largely resulted from recurrent invasions and speciations occurring through homogenous waters during periods of the Phanerozoic eon. Migrations likely continue today, primarily via isothermal water columns, such as those typical of Polar Regions, but the necessary ecological and physiological adaptations behind them are poorly understood. In an evolutionary context, understanding the adaptations, which allow for colonisation to high-pressure environments, may enable us to predict future events. In this investigation, we examine pressure tolerance during development, in the shallow-water neogastropod Buccinum undatum using thermally acclimated egg masses from temperate and sub-polar regions across the species range. Fossil records indicate neogastropods to have a deep-water origin, suggesting shallow-water species may be likely candidates for re-emergence into the deep sea. Our results show population level differences in physiological thresholds, which indicate low temperature acclimation to increase pressure tolerance. These findings imply this species is capable of deep-sea penetration through isothermal water columns prevailing at high latitudes. This study gives new insight into the fundamentals behind past and future colonisation events. Such knowledge is instrumental to understand better how changes in climate envelopes affect the distribution and radiation of species along latitudinal as well as bathymetric temperature gradients.

  10. Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti.

    Science.gov (United States)

    Tavormina, Patricia L; Kellermann, Matthias Y; Antony, Chakkiath Paul; Tocheva, Elitza I; Dalleska, Nathan F; Jensen, Ashley J; Valentine, David L; Hinrichs, Kai-Uwe; Jensen, Grant J; Dubilier, Nicole; Orphan, Victoria J

    2017-01-01

    In the deep ocean, the conversion of methane into derived carbon and energy drives the establishment of diverse faunal communities. Yet specific biological mechanisms underlying the introduction of methane-derived carbon into the food web remain poorly described, due to a lack of cultured representative deep-sea methanotrophic prokaryotes. Here, the response of the deep-sea aerobic methanotroph Methyloprofundus sedimenti to methane starvation and recovery was characterized. By combining lipid analysis, RNA analysis, and electron cryotomography, it was shown that M. sedimenti undergoes discrete cellular shifts in response to methane starvation, including changes in headgroup-specific fatty acid saturation levels, and reductions in cytoplasmic storage granules. Methane starvation is associated with a significant increase in the abundance of gene transcripts pertinent to methane oxidation. Methane reintroduction to starved cells stimulates a rapid, transient extracellular accumulation of methanol, revealing a way in which methane-derived carbon may be routed to community members. This study provides new understanding of methanotrophic responses to methane starvation and recovery, and lays the initial groundwork to develop Methyloprofundus as a model chemosynthesizing bacterium from the deep sea. © 2016 John Wiley & Sons Ltd.

  11. Difference of nitrogen-cycling microbes between shallow bay and deep-sea sediments in the South China Sea.

    Science.gov (United States)

    Yu, Tiantian; Li, Meng; Niu, Mingyang; Fan, Xibei; Liang, Wenyue; Wang, Fengping

    2018-01-01

    In marine sediments, microorganisms are known to play important roles in nitrogen cycling; however, the composition and quantity of microbes taking part in each process of nitrogen cycling are currently unclear. In this study, two different types of marine sediment samples (shallow bay and deep-sea sediments) in the South China Sea (SCS) were selected to investigate the microbial community involved in nitrogen cycling. The abundance and composition of prokaryotes and seven key functional genes involved in five processes of the nitrogen cycle [nitrogen fixation, nitrification, denitrification, dissimilatory nitrate reduction to ammonium (DNRA), and anaerobic ammonia oxidation (anammox)] were presented. The results showed that a higher abundance of denitrifiers was detected in shallow bay sediments, while a higher abundance of microbes involved in ammonia oxidation, anammox, and DNRA was found in the deep-sea sediments. Moreover, phylogenetic differentiation of bacterial amoA, nirS, nosZ, and nrfA sequences between the two types of sediments was also presented, suggesting environmental selection of microbes with the same geochemical functions but varying physiological properties.

  12. New species of the giant deep-sea isopod genus Bathynomus (Crustacea, Isopoda, Cirolanidae) from Hainan Island, South China Sea.

    Science.gov (United States)

    Kou, Qi; Chen, Jun; Li, Xinzheng; He, Lisheng; Wang, Yong

    2017-07-01

    Several specimens of the giant deep-sea isopod genus Bathynomus were collected by a deep-sea lander at a depth of 898 m near Hainan Island in the northern South China Sea. After careful examination, this material and the specimens collected from the Gulf of Aden, north-western Indian Ocean, previously reported as Bathynomus sp., were identified to be the same as a new species to the genus. Bathynomus jamesi sp. nov. can be distinguished from the congeners by: the distal margin of pleotelson with 11 or 13 short straight spines and central spine not bifid; uropodal endopod and exopod with distolateral corner slightly pronounced; clypeus with lateral margins concave; and antennal flagellum extending when extended posteriorly reaches the pereonite 3. In addition, Bathynomus jamesi sp. nov. is also supported by molecular analyses based on mitochondrial COI and 16S rRNA gene sequences. The distribution range of the new species includes the western Pacific and north-western Indian Ocean. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  13. Planktonic foraminifera from a quaternary deep sea core from the southern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.; Rao, P.S.; Pattan, J.N.

    An investigation on planktonic foraminifera and calcium carbonate content of a box core collected at a depth of 2556 m from the southern part of the Arabian sea indicates faunal changes depicting Quaternary climatic fluctuations. Based on the study...

  14. The Deep-Sea Microbial Community from the Amazonian Basin Associated with Oil Degradation.

    Science.gov (United States)

    Campeão, Mariana E; Reis, Luciana; Leomil, Luciana; de Oliveira, Louisi; Otsuki, Koko; Gardinali, Piero; Pelz, Oliver; Valle, Rogerio; Thompson, Fabiano L; Thompson, Cristiane C

    2017-01-01

    One consequence of oil production is the possibility of unplanned accidental oil spills; therefore, it is important to evaluate the potential of indigenous microorganisms (both prokaryotes and eukaryotes) from different oceanic basins to degrade oil. The aim of this study was to characterize the microbial response during the biodegradation process of Brazilian crude oil, both with and without the addition of the dispersant Corexit 9500, using deep-sea water samples from the Amazon equatorial margin basins, Foz do Amazonas and Barreirinhas, in the dark and at low temperatures (4°C). We collected deep-sea samples in the field (about 2570 m below the sea surface), transported the samples back to the laboratory under controlled environmental conditions (5°C in the dark) and subsequently performed two laboratory biodegradation experiments that used metagenomics supported by classical microbiological methods and chemical analysis to elucidate both taxonomic and functional microbial diversity. We also analyzed several physical-chemical and biological parameters related to oil biodegradation. The concomitant depletion of dissolved oxygen levels, oil droplet density characteristic to oil biodegradation, and BTEX concentration with an increase in microbial counts revealed that oil can be degraded by the autochthonous deep-sea microbial communities. Indigenous bacteria (e.g., Alteromonadaceae, Colwelliaceae , and Alcanivoracaceae ), archaea (e.g., Halobacteriaceae, Desulfurococcaceae , and Methanobacteriaceae ), and eukaryotic microbes (e.g., Microsporidia, Ascomycota, and Basidiomycota) from the Amazonian margin deep-sea water were involved in biodegradation of Brazilian crude oil within less than 48-days in both treatments, with and without dispersant, possibly transforming oil into microbial biomass that may fuel the marine food web.

  15. The Deep-Sea Microbial Community from the Amazonian Basin Associated with Oil Degradation

    Directory of Open Access Journals (Sweden)

    Mariana E. Campeão

    2017-06-01

    Full Text Available One consequence of oil production is the possibility of unplanned accidental oil spills; therefore, it is important to evaluate the potential of indigenous microorganisms (both prokaryotes and eukaryotes from different oceanic basins to degrade oil. The aim of this study was to characterize the microbial response during the biodegradation process of Brazilian crude oil, both with and without the addition of the dispersant Corexit 9500, using deep-sea water samples from the Amazon equatorial margin basins, Foz do Amazonas and Barreirinhas, in the dark and at low temperatures (4°C. We collected deep-sea samples in the field (about 2570 m below the sea surface, transported the samples back to the laboratory under controlled environmental conditions (5°C in the dark and subsequently performed two laboratory biodegradation experiments that used metagenomics supported by classical microbiological methods and chemical analysis to elucidate both taxonomic and functional microbial diversity. We also analyzed several physical–chemical and biological parameters related to oil biodegradation. The concomitant depletion of dissolved oxygen levels, oil droplet density characteristic to oil biodegradation, and BTEX concentration with an increase in microbial counts revealed that oil can be degraded by the autochthonous deep-sea microbial communities. Indigenous bacteria (e.g., Alteromonadaceae, Colwelliaceae, and Alcanivoracaceae, archaea (e.g., Halobacteriaceae, Desulfurococcaceae, and Methanobacteriaceae, and eukaryotic microbes (e.g., Microsporidia, Ascomycota, and Basidiomycota from the Amazonian margin deep-sea water were involved in biodegradation of Brazilian crude oil within less than 48-days in both treatments, with and without dispersant, possibly transforming oil into microbial biomass that may fuel the marine food web.

  16. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields.

    Science.gov (United States)

    Cerqueira, Teresa; Barroso, Cristina; Froufe, Hugo; Egas, Conceição; Bettencourt, Raul

    2018-01-21

    The organisms inhabiting the deep-seafloor are known to play a crucial role in global biogeochemical cycles. Chemolithoautotrophic prokaryotes, which produce biomass from single carbon molecules, constitute the primary source of nutrition for the higher organisms, being critical for the sustainability of food webs and overall life in the deep-sea hydrothermal ecosystems. The present study investigates the metabolic profiles of chemolithoautotrophs inhabiting the sediments of Menez Gwen and Rainbow deep-sea vent fields, in the Mid-Atlantic Ridge. Differences in the microbial community structure might be reflecting the distinct depth, geology, and distance from vent of the studied sediments. A metagenomic sequencing approach was conducted to characterize the microbiome of the deep-sea hydrothermal sediments and the relevant metabolic pathways used by microbes. Both Menez Gwen and Rainbow metagenomes contained a significant number of genes involved in carbon fixation, revealing the largely autotrophic communities thriving in both sites. Carbon fixation at Menez Gwen site was predicted to occur mainly via the reductive tricarboxylic acid cycle, likely reflecting the dominance of sulfur-oxidizing Epsilonproteobacteria at this site, while different autotrophic pathways were identified at Rainbow site, in particular the Calvin-Benson-Bassham cycle. Chemolithotrophy appeared to be primarily driven by the oxidation of reduced sulfur compounds, whether through the SOX-dependent pathway at Menez Gwen site or through reverse sulfate reduction at Rainbow site. Other energy-yielding processes, such as methane, nitrite, or ammonia oxidation, were also detected but presumably contributing less to chemolithoautotrophy. This work furthers our knowledge of the microbial ecology of deep-sea hydrothermal sediments and represents an important repository of novel genes with potential biotechnological interest.

  17. How can we identify and communicate the ecological value of deep-sea ecosystem services?

    Directory of Open Access Journals (Sweden)

    Niels Jobstvogt

    Full Text Available Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders.

  18. How can we identify and communicate the ecological value of deep-sea ecosystem services?

    Science.gov (United States)

    Jobstvogt, Niels; Townsend, Michael; Witte, Ursula; Hanley, Nick

    2014-01-01

    Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders.

  19. Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment

    KAUST Repository

    Rö thig, Till; Yum, Lauren; Kremb, Stephan Georg; Roik, Anna Krystyna; Voolstra, Christian R.

    2017-01-01

    Microbes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed

  20. A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians suggests similar behavioural responses.

    Science.gov (United States)

    Brown, Alastair; Wright, Roseanna; Mevenkamp, Lisa; Hauton, Chris

    2017-10-01

    Exploration of deep-sea mineral resources is burgeoning, raising concerns regarding ecotoxicological impacts on deep-sea fauna. Assessing toxicity in deep-sea species is technologically challenging, which promotes interest in establishing shallow-water ecotoxicological proxy species. However, the effects of temperature and hydrostatic pressure on toxicity, and how adaptation to deep-sea environmental conditions might moderate these effects, are unknown. To address these uncertainties we assessed behavioural and physiological (antioxidant enzyme activity) responses to exposure to copper-spiked artificial sediments in a laboratory experiment using a shallow-water holothurian (Holothuria forskali), and in an in situ experiment using a deep-sea holothurian (Amperima sp.). Both species demonstrated sustained avoidance behaviour, evading contact with contaminated artificial sediment. However, A. sp. demonstrated sustained avoidance of 5mgl -1 copper-contaminated artificial sediment whereas H. forskali demonstrated only temporary avoidance of 5mgl -1 copper-contaminated artificial sediment, suggesting that H. forskali may be more tolerant of metal exposure over 96h. Nonetheless, the acute behavioural response appears consistent between the shallow-water species and the deep-sea species, suggesting that H. forskali may be a suitable ecotoxicological proxy for A. sp. in acute (≤24h) exposures, which may be representative of deep-sea mining impacts. No antioxidant response was observed in either species, which was interpreted to be the consequence of avoiding copper exposure. Although these data suggest that shallow-water taxa may be suitable ecotoxicological proxies for deep-sea taxa, differences in methodological and analytical approaches, and in sex and reproductive stage of experimental subjects, require caution in assessing the suitability of H. forskali as an ecotoxicological proxy for A. sp. Nonetheless, avoidance behaviour may have bioenergetic consequences that

  1. Proliferation and demise of deep-sea corals in the Mediterranean during the Younger Dryas

    International Nuclear Information System (INIS)

    McCulloch, Malcolm; Taviani, Marco; Lopez Correa, Matthias; Remia, Alessandro; Montagna, Paolo; Mortimer, Graham

    2010-01-01

    Uranium-series and radiocarbon ages are reported for deep-sea corals Madrepora oculata, Desmophyllum dianthus, Lophelia pertusa and Caryophyllia smithii from the Mediterranean Sea. U-series dating indicates that deep-sea corals have persisted in the Mediterranean for over 480, 000 years, especially during cool inter-stadial periods. The most prolific period of growth however appears to have occurred within the Younger Dryas (YD) period from 12, 900 to 11, 700 years BP followed by a short (∼ 330 years) phase of post-YD coral growth from 11, 230 to 10, 900 years BP. This indicates that deep-sea corals were prolific in the Mediterranean not only during the return to the more glacial-like conditions of the YD, but also following the rapid deglaciation and transition to warmer conditions that followed the end of the YD. Surprisingly, there is a paucity Last Glacial Maximum (LGM) coral ages, implying they were largely absent during this period when cold-water conditions were more prevalent. Radiocarbon ages show that the intermediate depth waters of the Mediterranean generally had Δ 14 C compositions similar to surface waters, indicating that these waters were extremely well ventilated. The only exception is a narrow period in the YD (12, 500 ± 100 years BP) when several samples of Lophelia pertusa from the Ionian Sea had Δ 14 C values falling significantly below the marine curve. Using a refined approach, isolation ages (T isol ) of 300 years to 500 years are estimated for these intermediate (800-1000 m) depth waters relative to surface marine waters, indicating a reduction or absence of deep-water formation in the Ionian and adjacent Adriatic Seas during the YD. Contrary to previous findings, we find no evidence for widespread intrusion of low Δ 14 C Atlantic waters into the Mediterranean. Prolific growth of deep-sea corals in the Mediterranean ended abruptly at ∼ 10, 900 years BP, with many of the coral-bearing mounds on the continental slopes being draped in

  2. Proliferation and demise of deep-sea corals in the Mediterranean during the Younger Dryas

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, Malcolm [ARC Centre of Excellence for Coral Reef Studies, School of Earth and Environment, The University of Western Australian, Crawley, 6009, Western Australia (Australia); Research School of Earth Sciences, Australian National University, Canberra, 0200 (Australia); Taviani, Marco; Lopez Correa, Matthias; Remia, Alessandro [ISMAR-CNR, via Gobetti 101, I-40129 Bologna (Italy); Montagna, Paolo [LSCE, Av. de la Terrasse, 91198 Gif-sur-Yvette, France, ISMAR-CNR, via Gobetti 101, I-40129 Bologna (Italy); Mortimer, Graham [Research School of Earth Sciences, Australian National University, Canberra, 0200 (Australia)

    2010-07-01

    Uranium-series and radiocarbon ages are reported for deep-sea corals Madrepora oculata, Desmophyllum dianthus, Lophelia pertusa and Caryophyllia smithii from the Mediterranean Sea. U-series dating indicates that deep-sea corals have persisted in the Mediterranean for over 480, 000 years, especially during cool inter-stadial periods. The most prolific period of growth however appears to have occurred within the Younger Dryas (YD) period from 12, 900 to 11, 700 years BP followed by a short ({approx} 330 years) phase of post-YD coral growth from 11, 230 to 10, 900 years BP. This indicates that deep-sea corals were prolific in the Mediterranean not only during the return to the more glacial-like conditions of the YD, but also following the rapid deglaciation and transition to warmer conditions that followed the end of the YD. Surprisingly, there is a paucity Last Glacial Maximum (LGM) coral ages, implying they were largely absent during this period when cold-water conditions were more prevalent. Radiocarbon ages show that the intermediate depth waters of the Mediterranean generally had {Delta}{sup 14}C compositions similar to surface waters, indicating that these waters were extremely well ventilated. The only exception is a narrow period in the YD (12, 500 {+-} 100 years BP) when several samples of Lophelia pertusa from the Ionian Sea had {Delta}{sup 14}C values falling significantly below the marine curve. Using a refined approach, isolation ages (T{sub isol}) of 300 years to 500 years are estimated for these intermediate (800-1000 m) depth waters relative to surface marine waters, indicating a reduction or absence of deep-water formation in the Ionian and adjacent Adriatic Seas during the YD. Contrary to previous findings, we find no evidence for widespread intrusion of low {Delta}{sup 14}C Atlantic waters into the Mediterranean. Prolific growth of deep-sea corals in the Mediterranean ended abruptly at {approx} 10, 900 years BP, with many of the coral-bearing mounds

  3. Global latitudinal species diversity gradient in deep-sea benthic foraminifera

    Science.gov (United States)

    Culver, Stephen J.; Buzas, Martin A.

    2000-02-01

    Global scale patterns of species diversity for modern deep-sea benthic foraminifera, an important component of the bathyal and abyssal meiofauna, are examined using comparable data from five studies in the Atlantic, ranging over 138° of latitude from the Norwegian Sea to the Weddell Sea. We show that a pattern of decreasing diversity with increasing latitude characterises both the North and South Atlantic. This pattern is confirmed for the northern hemisphere by independent data from the west-central North Atlantic and the Arctic basin. Species diversity in the North Atlantic northwards from the equator is variable until a sharp fall in the Norwegian Sea (ca. 65°N). In the South Atlantic species diversity drops from a maximum in latitudes less than 30°S and then decreases slightly from 40 to 70°S. For any given latitude, North Atlantic diversity is generally lower than in the South Atlantic. Both ecological and historical factors related to food supply are invoked to explain the formation and maintenance of the latitudinal gradient of deep-sea benthic foraminiferal species diversity. The gradient formed some 36 million years ago when global climatic cooling led to seasonally fluctuating food supply in higher latitudes.

  4. Southern Ocean Circulation: a High Resolution Examination of the Last Deglaciation from Deep-Sea Corals

    Science.gov (United States)

    Robinson, L. F.; Li, T.; Chen, T.; Burke, A.; Pegrum Haram, A.; Stewart, J.; Rae, J. W. B.; van de Flierdt, T.; Struve, T.; Wilson, D. J.

    2017-12-01

    Two decades ago it was first noted that the skeletal remains of deep-sea corals had the potential to provide absolutely dated archives of past ocean conditions. In the intervening twenty years this field has developed to the point where strategic collections and high throughput dating techniques now allow high resolution, well dated records of past deep sea behaviour to be produced. Likewise, efforts to improve understanding of biomineralisation and growth rates are leading to refinements in proxy tools useful for examining circulation, nutrient and carbon cycling, temperature and weathering processes. Deep-sea corals are particularly valuable archives in high latitude regions where radiocarbon-based age models are susceptible to large changes in surface reservoir ages. In this presentation we show new high resolution multiproxy records of the Southern Ocean (Drake Passage) made on U-Th dated corals spanning the last glacial cycle. With more than seventeen hundred reconnaissance ages, and around 200 precise isotope dilution U-Th ages, subtle changes in ocean behaviour can be identified during times of abrupt climate change. The geochemical signature of corals from the deepest sites, closest to modern day Lower Circumpolar Deep Waters, typically show a gradual shift from glacial to Holocene values during deglaciation, likely related to ventilation of the deep ocean. By contrast for the samples collected shallower in the water column (within sites currently bathed by Upper Circumpolar Deep Waters and Antarctic Intermediate and Mode Waters) the evidence points to a more complicated picture. Vertical zonation in the geochemical data suggests that periods of stratification are interspersed with mixing events within the upper 1500m of the water column. At the same time comparison to U-Th dated records from the low latitude Pacific and Atlantic points to an important role for the Southern Ocean in feeding the intermediate waters of both ocean basins throughout the

  5. Filling regulatory gaps in high seas fisheries: discrete high seas fish stocks, deep-sea fisheries and vulnerable marine ecosystems

    NARCIS (Netherlands)

    Takei, Y.

    2008-01-01

    The present study examines the legal regime of high seas fisheries with a view to identifying regulatory gaps. The main research questions are as follows: 1. What general principles are applicable to high seas fisheries?; 2. What implications do these general principles have for new challenges in

  6. Pineal organs of deep-sea fish: photopigments and structure.

    Science.gov (United States)

    Bowmaker, James K; Wagner, Hans-Joachim

    2004-06-01

    We have examined the morphology and photopigments of the pineal organs from a number of mesopelagic fish, including representatives of the hatchet fish (Sternoptychidae), scaly dragon-fish (Chauliodontidae) and bristlemouths (Gonostomidae). Although these fish were caught at depths of between 500 and 1000 m, the morphological organisation of their pineal organs is remarkably similar to that of surface-dwelling fish. Photoreceptor inner and outer segments protrude into the lumen of the pineal vesicle, and the outer segment is composed of a stack of up to 20 curved disks that form a cap-like cover over the inner segment. In all species, the pineal photopigment was spectrally distinct from the retinal rod pigment, with lambdamax displaced to longer wavelengths, between approximately 485 and 503 nm. We also investigated the pineal organ of the deep demersal eel, Synaphobranchus kaupi, caught at depths below 2000 m, which possesses a rod visual pigment with lambdamax at 478 nm, but the pineal pigment has lambdamax at approximately 515 nm. In one species of hatchet fish, Argyropelecus affinis, two spectral classes of pinealocyte were identified, both spectrally distinct from the retinal rod photopigment.

  7. Norse Greenland

    DEFF Research Database (Denmark)

    Arneborg, Jette

    2015-01-01

    human agency, landscape changes, climate changes, resilience, sustainability and adaptation are key words and research has moved from local to more global perspectives. New results from research projects in recent years have diversified the discussion claiming that the Norse Greenlanders created...

  8. Possible Greenland

    DEFF Research Database (Denmark)

    2012-01-01

    at Greenland's structure, and ask some threshold questions. Which aspects of society are rooted in our human hardware? And, if we had the rare opportunity to build a new nation, what would we choose for ourselves? We hope this will inspire an open, imaginative and thoroughly human discussion about how...

  9. Draft genome of bagasse-degrading bacteria Bacillus aryabhattai GZ03 from deep sea water.

    Science.gov (United States)

    Wen, Jian; Ren, Chong; Huang, Nan; Liu, Yang; Zeng, Runying

    2015-02-01

    Bacillus aryabhattai GZ03 was isolated from deep sea water of the South China Sea, which can produce glucose and fructose by degrading bagasse at 25 °C. Here we report the draft genome sequence of Bacillus aryabhattai GZ03. The data obtained revealed 37 contigs with genome size of 5,105,129 bp and G+C content of 38.09%. The draft genome of B. aryabhattai GZ03 may provide insights into the mechanism of microbial carbohydrate and lignocellulosic material degradation. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Distribution of artificial radionuclides in deep sediments of the Mediterranean Sea

    International Nuclear Information System (INIS)

    Garcia-Orellana, J.; Pates, J.M.; Masque, P.; Bruach, J.M.; Sanchez-Cabeza, J.A.

    2009-01-01

    Artificial radionuclides enter the Mediterranean Sea mainly through atmospheric deposition following nuclear weapons tests and the Chernobyl accident, but also through the river discharge of nuclear facility effluents. Previous studies of artificial radionuclides impact of the Mediterranean Sea have focussed on shallow, coastal sediments. However, deep sea sediments have the potential to store and accumulate pollutants, including artificial radionuclides. Deep sea marine sediment cores were collected from Mediterranean Sea abyssal plains (depth > 2000 m) and analysed for 239,240 Pu and 137 Cs to elucidate the concentrations, inventories and sources of these radionuclides in the deepest areas of the Mediterranean. The activity - depth profiles of 210 Pb, together with 14 C dating, indicate that sediment mixing redistributes the artificial radionuclides within the first 2.5 cm of the sedimentary column. The excess 210 Pb inventory was used to normalize 239,240 Pu and 137 Cs inventories for variable sediment fluxes. The 239,240 Pu/ 210 Pb xs ratio was uniform across the entire sea, with a mean value of 1.24 x 10 -3 , indicating homogeneous fallout of 239,240 Pu. The 137 Cs/ 210 Pb xs ratio showed differences between the eastern (0.049) and western basins (0.030), clearly significant impact of deep sea sediments from the Chernobyl accident. The inventory ratios of 239,240 Pu/ 137 Cs were 0.041 and 0.025 in the western and eastern basins respectively, greater than the fallout ratio, 0.021, showing more efficient scavenging of 239,240 Pu in the water column and major sedimentation of 137 Cs in the eastern basin. Although areas with water depths of > 2000 m constitute around 40% of the entire Mediterranean basin, the sediments in these regions only contained 2.7% of the 239,240 Pu and 0.95% of the 137 Cs deposited across the Sea in 2000. These data show that the accumulation of artificial radionuclides in deep Mediterranean environments is much lower than predicted by

  11. Iron oxide reduction in methane-rich deep Baltic Sea sediments

    DEFF Research Database (Denmark)

    Egger, Matthias; Hagens, Mathilde; Sapart, Celia J.

    2017-01-01

    /L transition. Our results reveal a complex interplay between production, oxidation and transport of methane showing that besides organoclastic Fe reduction, oxidation of downward migrating methane with Fe oxides may also explain the elevated concentrations of dissolved ferrous Fe in deep Baltic Sea sediments...... profiles and numerical modeling, we propose that a potential coupling between Fe oxide reduction and methane oxidation likely affects deep Fe cycling and related biogeochemical processes, such as burial of phosphorus, in systems subject to changes in organic matter loading or bottom water salinity....

  12. Bacterial Sulfate Reduction Above 100-Degrees-C in Deep-Sea Hydrothermal Vent Sediments

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; ISAKSEN, MF; JANNASCH, HW

    1992-01-01

    -reducing bacteria was done in hot deep-sea sediments at the hydrothermal vents of the Guaymas Basin tectonic spreading center in the Gulf of California. Radiotracer studies revealed that sulfate reduction can occur at temperatures up to 110-degrees-C, with an optimum rate at 103-degrees to 106-degrees......-C. This observation expands the upper temperature limit of this process in deep-ocean sediments by 20-degrees-C and indicates the existence of an unknown groUp of hyperthermophilic bacteria with a potential importance for the biogeochemistry of sulfur above 100-degrees-C....

  13. Postcolonial partnerships: deep sea research, media coverage and (inter)national narratives on the Galathea Deep Sea Expedition from 1950 to 1952.

    Science.gov (United States)

    Nielsen, Kristian Hvidtfelt

    2010-03-01

    The Danish Galathea Deep Sea Expedition between 1950 and 1952 combined scientific and official objectives with the production of national and international narratives distributed through the daily press and other media. Dispatched by the Danish government on a newly acquired naval ship, the expedition undertook groundbreaking deep sea research while also devoting efforts to showing the flag, public communication of science, and international cooperation. The expedition was conceived after the war as a way in which to rehabilitate Denmark's reputation internationally and to rebuild national pride. To this end, the expedition included an onboard press section reporting the expedition to the Danish public and to an international audience. The press section mediated the favourable, post-war and postcolonial image of Denmark as an internationalist, scientific, modernizing and civilizing nation for which the expedition planners and many others were hoping. The expedition, therefore, was highly relevant to, indeed fed on, the emerging internationalist agenda in Denmark's foreign policy. Bringing out these aspects of the historical context of the expedition, this paper adds important perspectives to our knowledge about the expedition in particular and, more generally, about scientific exploration in the immediate post-war and postcolonial period.

  14. Studies of the reproductive biology of deep-sea megabenthos III. The deep-sea commensal species Epizoanthus paguriphilus (zoanthidea, anthozoa) and Parapagurus pilosimanus (paguroidea, crustacea)

    International Nuclear Information System (INIS)

    Muirhead, A.; Tyler, P.A.

    1984-01-01

    This report is the third in a series concerned with the biological processes of deep-sea megainvertebrates. The research programme aims to aid long term planning of nuclear waste disposal by providing information on the nature and rates of reproductive activities of deep sea invertebrates from several different phylogenetic groups. This information serves three functions:- Firstly, baseline information is provided concerning processes at or around the sediment/water interface. Secondly, knowledge of the actual mode of reproduction indicates the extent to which the biota could be involved in recycling leaked radioactive heavy metals to different areas of the environment via their reproductive processes. The third function fulfilled by this programme is to provide information on the rates at which these processes occur. Evaluation of these aspects of the life cycles of the megainvertebrates of a specific site will indicate the potential role of a large proportion of the biota inhabiting that site following leakage of dumped material. This report is concerned with the growth and modes of reproduction of a hermit crab, Parapagurus pilosimanus and the zoanthids Epizoanthus paguriphilus and E. abyssorum with which it lives at different depths of the N. Atlantic. (U.K.)

  15. Deep Sea Memory of High Atmospheric CO2 Concentration

    Science.gov (United States)

    Mathesius, Sabine; Hofmann, Matthias; Caldeira, Ken; Schellnhuber, Hans Joachim

    2015-04-01

    massive CDR interventions eventually bring down the global mean pH value to the RCP2.6 level, yet cannot restore a similarly homogenous distribution - while the pH of the upper ocean returns to the preindustrial value or even exceed it (in the 180 ppm scenario), the deep ocean remains acidified. The deep ocean is out of contact with the atmosphere and therefore unreachable by atmospheric CDR. Our results suggest that the proposition that the marine consequences of early emissions reductions are comparable to those of delayed reductions plus CDR is delusive and that a policy that allows for emitting CO2 today in the hopes of removing it tomorrow is bound to generate substantial regrets.

  16. Dioxin compounds in the deep-sea rose shrimp Aristeus antennatus (Risso, 1816) throughout the Mediterranean Sea

    Science.gov (United States)

    Rotllant, Guiomar; Abad, Esteban; Sardà, Francisco; Ábalos, Manuela; Company, Joan B.; Rivera, Josep

    2006-12-01

    Polychlorodibenzo- p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) are among the more toxic anthropogenic contaminants. They are fat-soluble and accumulate in animal tissues. Exposure to PCDD/Fs can cause several endocrine, reproductive and developmental problems in animals, including human beings. Several studies have demonstrated that fish and invertebrates living in association with sediments are exposed to and accumulate contaminants, but to date there have been no studies of PCDD/Fs contamination in deep-sea regions. Specimens of Aristeus antennatus (Risso, 1816) were collected from depths of 600-2500 m at different points in the Mediterranean Sea, from the western basin off the coast of Barcelona to the central basin off the Peloponnesian Peninsula, with otter trawl gear. Amounts of PCDD/Fs were measured in different animal tissues by high resolution gas chromatography coupled to high resolution mass spectrometry (HRGC-HRMS). This is the first study to report the presence of PCDD/Fs in deep-sea organisms dwelling at depths below 600 m. A. antennatus presented levels of PCDD/Fs of the same order of magnitude, or slightly higher, as those found in shallow-water species ( Melicertus kerathurus) with respect to land-generated contamination. This highlights the widespread distribution of these pollutants and the potential threat posed to the biodiversity of fragile and vulnerable ecosystems such as the deep-sea. PCDD/F levels detected in the edible parts (muscle) of the commercial shrimp A. antennatus were clearly below the toxic limit value established by European legislation. Levels followed the trend muscle

  17. Oceanic Transport of Surface Meltwater from the Southern Greenland Ice Sheet

    Science.gov (United States)

    Luo, Hao; Castelao, Renato M.; Rennermalm, Asa K.; Tedesco, Marco; Bracco, Annalisa; Yager, Patricia L.; Mote, Thomas L.

    2016-01-01

    The Greenland ice sheet has undergone accelerating mass losses during recent decades. Freshwater runoff from ice melt can influence fjord circulation and dynamic1 and the delivery of bioavailable micronutrients to the ocean. It can also have climate implications, because stratification in the adjacent Labrador Sea may influence deep convection and the strength of the Atlantic meridional overturning circulation. Yet, the fate of the meltwater in the ocean remains unclear. Here, we use a high-resolution ocean model to show that only 1-15% of the surface meltwater runoff originating from southwest Greenland is transported westwards. In contrast, up to 50-60% of the meltwater runoff originating from southeast Greenland is transported westwards into the northern Labrador Sea, leading to significant salinity and stratification anomalies far from the coast. Doubling meltwater runoff, as predicted in future climate scenarios, results in a more-than-double increase in anomalies offshore that persists further into the winter. Interannual variability in offshore export of meltwater is tightly related to variability in wind forcing. The new insight that meltwaters originating from the west and east coasts have different fates indicates that future changes in mass loss rates and surface runoff will probably impact the ocean differently, depending on their Greenland origins.

  18. Major impacts of climate change on deep-sea benthic ecosystems

    Directory of Open Access Journals (Sweden)

    Andrew K. Sweetman

    2017-02-01

    Full Text Available The deep sea encompasses the largest ecosystems on Earth. Although poorly known, deep seafloor ecosystems provide services that are vitally important to the entire ocean and biosphere. Rising atmospheric greenhouse gases are bringing about significant changes in the environmental properties of the ocean realm in terms of water column oxygenation, temperature, pH and food supply, with concomitant impacts on deep-sea ecosystems. Projections suggest that abyssal (3000–6000 m ocean temperatures could increase by 1°C over the next 84 years, while abyssal seafloor habitats under areas of deep-water formation may experience reductions in water column oxygen concentrations by as much as 0.03 mL L–1 by 2100. Bathyal depths (200–3000 m worldwide will undergo the most significant reductions in pH in all oceans by the year 2100 (0.29 to 0.37 pH units. O2 concentrations will also decline in the bathyal NE Pacific and Southern Oceans, with losses up to 3.7% or more, especially at intermediate depths. Another important environmental parameter, the flux of particulate organic matter to the seafloor, is likely to decline significantly in most oceans, most notably in the abyssal and bathyal Indian Ocean where it is predicted to decrease by 40–55% by the end of the century. Unfortunately, how these major changes will affect deep-seafloor ecosystems is, in some cases, very poorly understood. In this paper, we provide a detailed overview of the impacts of these changing environmental parameters on deep-seafloor ecosystems that will most likely be seen by 2100 in continental margin, abyssal and polar settings. We also consider how these changes may combine with other anthropogenic stressors (e.g., fishing, mineral mining, oil and gas extraction to further impact deep-seafloor ecosystems and discuss the possible societal implications.

  19. Spontaneous and Widespread Electricity Generation in Natural Deep-Sea Hydrothermal Fields.

    Science.gov (United States)

    Yamamoto, Masahiro; Nakamura, Ryuhei; Kasaya, Takafumi; Kumagai, Hidenori; Suzuki, Katsuhiko; Takai, Ken

    2017-05-15

    Deep-sea hydrothermal vents discharge abundant reductive energy into oxidative seawater. Herein, we demonstrated that in situ measurements of redox potentials on the surfaces of active hydrothermal mineral deposits were more negative than the surrounding seawater potential, driving electrical current generation. We also demonstrated that negative potentials in the surface of minerals were widespread in the hydrothermal fields, regardless of the proximity to hydrothermal fluid discharges. Lab experiments verified that the negative potential of the mineral surface was induced by a distant electron transfer from the hydrothermal fluid through the metallic and catalytic properties of minerals. These results indicate that electric current is spontaneously and widely generated in natural mineral deposits in deep-sea hydrothermal fields. Our discovery provides important insights into the microbial communities that are supported by extracellular electron transfer and the prebiotic chemical and metabolic evolution of the ocean hydrothermal systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The complete mitochondrial genome of the deep-sea sponge Poecillastra laminaris (Astrophorida, Vulcanellidae).

    Science.gov (United States)

    Zeng, Cong; Thomas, Leighton J; Kelly, Michelle; Gardner, Jonathan P A

    2016-05-01

    The complete mitochondrial genome of a New Zealand specimen of the deep-sea sponge Poecillastra laminaris (Sollas, 1886) (Astrophorida, Vulcanellidae), from the Colville Ridge, New Zealand, was sequenced using the 454 Life Science pyrosequencing system. To identify homologous mitochondrial sequences, the 454 reads were mapped to the complete mitochondrial genome sequence of Geodia neptuni (GeneBank No. NC_006990). The P. laminaris genome is 18,413 bp in length and includes 14 protein-coding genes, 24 transfer RNA genes and 2 ribosomal RNA genes. Gene order resembled that of other demosponges. The base composition of the genome is A (29.1%), T (35.2%), C (14.0%) and G (21.7%). This is the second published mitogenome for a sponge of the order Astrophorida and will be useful in future phylogenetic analysis of deep-sea sponges.

  1. Predicting drivers and distributions of deep-sea ecosystems: A cold-water coral case study

    DEFF Research Database (Denmark)

    Mohn, Christian; Rengstorf, Anna; Brown, Colin

    2015-01-01

    pertusa as a case study (Rengstorf et al., 2014). The study shows that predictive models incorporating hydrodynamic variables perform significantly better than models based on terrain parameters only. They are a potentially powerful tool to improve our understanding of deep-sea ecosystem functioning......, facilitating species distribution modelling with high spatial detail. In this study, we used high resolution data (250 m grid size) from a newly developed hydrodynamic model to explore linkages between key physical drivers and occurrences of the cold-water coral Lophelia pertusa in selected areas of the NE...... and to provide decision support for marine spatial planning and conservation in the deep sea. Mohn et al., 2014.Linking benthic hydrodynamics and cold water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic. Progress in Oceanography 122, 92-104. Rengstorf et...

  2. Paleocorrosion studies in deep sea sediments and the geological disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Fehrenbach, L.; Maurette, M.; Guichard, F.; Havette, A.; Monaco, A.

    1984-01-01

    Uncertainties still surround assessment of the safety of disposal of nuclear wastes incorporated into 'radwaste' matrices. This is mostly due to the long time required for radioactive decay of 237 Np. The present work explores the usefulness of an experimental approach in 'paleocorrosion', which should help in minimizing such uncertainties. In this approach, polished sections of sediments containing high concentrations of natural analogues of radwaste matrices are subjected to element micromapping. Thus it is possible to characterize the long-term interactions of such analogues in their geological repositories, and to identify which generate reaction aureoles and protective and/or unprotective coatings. These analogues include grains incorporated in deep sea sediments (uraninite and quartz from the Oklo uranium ore deposit; volcanic ash particles; magnetic cosmic spherules). The present results indicate that uraninite should be a much more durable radwaste matrix than any type of glass in deep sea sediments. (orig./TWO)

  3. Geochemical records of salt-water inflows into the deep basins of the Baltic Sea

    DEFF Research Database (Denmark)

    Neumann, T.; Christiansen, C.; Clasen, S.

    1997-01-01

    The estuarine circulation system of the Baltic Sea promotes stable stratification and bottom water anoxia in sedimentary basins of the Baltic proper. Ingressions of saline, oxygen-rich waters from the North Sea replace the oxygen depleted deep water. Timing and extent of the ingressions vary...... on time-scales of years to decades, and are largely determined by wind-strength and storm frequency over the North Atlantic Ocean and Europe. Mn/Fe-ratios in sediments from a dated sediment core of the Gotland Deep (250 m water depth) record variations in redox conditions that can be linked to historical......-pressure areas over the North Atlantic in more recent times. The last three events have also been observed by hydrographic measurements. During the long time stagnation periods, Fe and Mn will be segregated into a particulate phase (iron sulfide) which accumulates at the seafloor and a dissolved phase (Mn2...

  4. Estimation of the iron loss in deep-sea permanent magnet motors considering seawater compressive stress.

    Science.gov (United States)

    Xu, Yongxiang; Wei, Yanyu; Zou, Jibin; Li, Jianjun; Qi, Wenjuan; Li, Yong

    2014-01-01

    Deep-sea permanent magnet motor equipped with fluid compensated pressure-tolerant system is compressed by the high pressure fluid both outside and inside. The induced stress distribution in stator core is significantly different from that in land type motor. Its effect on the magnetic properties of stator core is important for deep-sea motor designers but seldom reported. In this paper, the stress distribution in stator core, regarding the seawater compressive stress, is calculated by 2D finite element method (FEM). The effect of compressive stress on magnetic properties of electrical steel sheet, that is, permeability, BH curves, and BW curves, is also measured. Then, based on the measured magnetic properties and calculated stress distribution, the stator iron loss is estimated by stress-electromagnetics-coupling FEM. At last the estimation is verified by experiment. Both the calculated and measured results show that stator iron loss increases obviously with the seawater compressive stress.

  5. Estimation of the Iron Loss in Deep-Sea Permanent Magnet Motors considering Seawater Compressive Stress

    Directory of Open Access Journals (Sweden)

    Yongxiang Xu

    2014-01-01

    Full Text Available Deep-sea permanent magnet motor equipped with fluid compensated pressure-tolerant system is compressed by the high pressure fluid both outside and inside. The induced stress distribution in stator core is significantly different from that in land type motor. Its effect on the magnetic properties of stator core is important for deep-sea motor designers but seldom reported. In this paper, the stress distribution in stator core, regarding the seawater compressive stress, is calculated by 2D finite element method (FEM. The effect of compressive stress on magnetic properties of electrical steel sheet, that is, permeability, BH curves, and BW curves, is also measured. Then, based on the measured magnetic properties and calculated stress distribution, the stator iron loss is estimated by stress-electromagnetics-coupling FEM. At last the estimation is verified by experiment. Both the calculated and measured results show that stator iron loss increases obviously with the seawater compressive stress.

  6. Scientific Encounters of the Mysterious Sea. Reading Activities That Explore the Mysterious Creatures of the Deep Blue Sea. Grades 4-7.

    Science.gov (United States)

    Embry, Lynn

    This activity book presents reading activities for grades 4-7 exploring the mysterious creatures of the deep sea. The creatures include: angel sharks; argonauts; barberfish; comb jelly; croakers; electric rays; flying fish; giganturid; lantern fish; narwhals; northern basket starfish; ocean sunfish; Portuguese man-of-war; sea cucumbers; sea…

  7. Conquered from the deep sea? A new deep-sea isopod species from the Antarctic shelf shows pattern of recent colonization.

    Directory of Open Access Journals (Sweden)

    Torben Riehl

    Full Text Available The Amundsen Sea, Antarctica, is amongst the most rapidly changing environments of the world. Its benthic inhabitants are barely known and the BIOPEARL 2 project was one of the first to biologically explore this region. Collected during this expedition, Macrostylis roaldi sp. nov. is described as the first isopod discovered on the Amundsen-Sea shelf. Amongst many characteristic features, the most obvious characters unique for M. roaldi are the rather short pleotelson and short operculum as well as the trapezoid shape of the pleotelson in adult males. We used DNA barcodes (COI and additional mitochondrial markers (12S, 16S to reciprocally illuminate morphological results and nucleotide variability. In contrast to many other deep-sea isopods, this species is common and shows a wide distribution. Its range spreads from Pine Island Bay at inner shelf right to the shelf break and across 1,000 m bathymetrically. Its gene pool is homogenized across space and depth. This is indicative for a genetic bottleneck or a recent colonization history. Our results suggest further that migratory or dispersal capabilities of some species of brooding macrobenthos have been underestimated. This might be relevant for the species' potential to cope with effects of climate change. To determine where this species could have survived the last glacial period, alternative refuge possibilities are discussed.

  8. The contribution of deep-sea macrohabitat heterogeneity to global nematode diversity

    Digital Repository Service at National Institute of Oceanography (India)

    Vanreusel, A.; Fonseca, G.; Danovaro, R.; DaSilva, M.C.; Esteves, A.M.; Ferrero, T.; Gad, G.; Galtsova, V.; Gambi, C.; Genevois, V.F.; Ingels, J.; Ingole, B.S.; Lampadariou, N.; Merckx, B.; Miljutina, M.; Muthumbi, A.; Netto, S.; Portnova, D.; Radziejewska, T.; Raes, M.; Tchesunov, A.; Vanaverbeke, J.; Van Gaever, S.; Venekey, V.; Bezerra, T.N.; Flint, H; Copley, J.; Pape, E; Zeppilli, D.; Martinez, P.A.; Galeron, J.

    An edited version of this paper was published by Blackwell Verlag GmbH. Copyright [2010] Abstract : The great variety of geological and hydrological settings in the deep-sea generates many different habitats, some of them only recently explored whereas... were assumed to be the main driving factors for differences in benthic standing stock, biodiversity and community composition of the benthos (Grassle, 1989; Gage and Tyler, 1991). However, through increasing exploration by means of bathymetric...

  9. Alterations in geochemical associations in artificially disturbed deep-sea sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Parthiban, G.; Banaulikar, S.; Sarkar, S.

    Alterations in Geochemical Associations in Artificially Disturbed Deep-Sea Sediments B. NAGENDER NATH, G. PARTHIBAN, AND S. BANAULIKAR National Institute of Oceanography, Dona Paula, Goa, India SUBHADEEP SARKAR Department of Geology and Geophysics, Indian... the lithogenic component by transporting it from other locations within the Basin during commercial mining operations. Keywords manganese nodule mining, artificial benthic disturbance experiment, environmental impact assessment, metals Trace metals in marine...

  10. The Current State of Global Activities Related to Deep-sea Mineral Exploration and Mining

    OpenAIRE

    Petersen, Sven; Krätschell, Anna; Hannington, Mark D.

    2016-01-01

    Deep-sea mining is seen as a potential way to provide future secure metal supply to global markets. The current rush to the seafloor in areas beyond national jurisdiction indicates that sound knowledge of the geological characteritics of the various commodities, a realistic resource assessment, and a social and political discussion about the cons and pros of their exploitation that is based on facts, not myths, is required. This contribution provides the most recent information on...

  11. Distribution of deep-sea benthos in the proposed mining area of Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.

    . 1997. Imediate response of benthic meio and megafauna to disturbancecaused by polymetallic nodule miner simulator. Proceedings,International Symposiumon Environmental Studies for Deep-Sea Mining, Tokyo,Japan,November 20–21. Pp.223–235.Reghukumar... in the western Pacific in rela-tion to environmental factors. Oceanologia Acta7:113–121. Shirayama,Y.,and T. Fukushima. 1997. Response of a meiobenthic community to rapidresedimentation. In:Proceedings,International Symposium on Environmental Studies for...

  12. Structure elucidation of the new citharoxazole from the Mediterranean deep-sea sponge Latrunculia (Biannulata) citharistae.

    Science.gov (United States)

    Genta-Jouve, Grégory; Francezon, Nellie; Puissant, Alexandre; Auberger, Patrick; Vacelet, Jean; Pérez, Thierry; Fontana, Angelo; Mourabit, Ali Al; Thomas, Olivier P

    2011-08-01

    Citharoxazole (1), a new batzelline derivative featuring a benzoxazole moiety, was isolated from the Mediterranean deep-sea sponge Latrunculia (Biannulata) citharistae Vacelet, 1969, together with the known batzelline C (2). This is the first chemical study of a Mediterranean Latrunculia species and the benzoxazole moiety is unprecedented for this family of marine natural products. The structure was mainly elucidated by the interpretation of NMR spectra and especially HMBC correlations. Copyright © 2011 John Wiley & Sons, Ltd.

  13. Life on wood - the carnivorous deep-sea mussel Idas argenteus (Bathymodiolinae, Mytilidae, Bivalvia

    DEFF Research Database (Denmark)

    Ockelmann, Kurt W.; Dinesen, Grete E.

    2011-01-01

    to an ephemeral habitat in the deep sea of both species are described herein. Although larviphagi is known to occur in some filter-feeding bivalves, Idas argenteus is the first mytilid known to be specifically adapted to a carnivorous life. Further, it is argued that the modifications of I. argenteus with regard...... to its shell development, alimentary system, gill anatomy and life habits provide important clues to the evolution of the Bathymodiolinae....

  14. High levels of natural radionuclides in a deep-sea infaunal xenophyophore

    Energy Technology Data Exchange (ETDEWEB)

    Swinbanks, D D; Shirayama, Y

    1986-03-27

    The paper concerns the high levels of natural radionuclides in a deep-sea infaunal xenophyophore from the Izu-Ogasawara Trench. Measured /sup 210/Po activities and barium contents of various parts of Occultammina profunda and the surrounding sediment are given, together with their estimated /sup 210/Pb and /sup 226/Ra activities. The data suggest that xenophyphores are probably subject to unusually high levels of natural radiation.

  15. Shelf erosion and submarine river canyons: implications for deep-sea oxygenation and ocean productivity during glaciation

    Directory of Open Access Journals (Sweden)

    I. Tsandev

    2010-06-01

    Full Text Available The areal exposure of continental shelves during glacial sea level lowering enhanced the transfer of erodible reactive organic matter to the open ocean. Sea level fall also activated submarine canyons thereby allowing large rivers to deposit their particulate load, via gravity flows, directly in the deep-sea. Here, we analyze the effects of shelf erosion and particulate matter re-routing to the open ocean during interglacial to glacial transitions, using a coupled model of the marine phosphorus, organic carbon and oxygen cycles. The results indicate that shelf erosion and submarine canyon formation may significantly lower deep-sea oxygen levels, by up to 25%, during sea level low stands, mainly due to the supply of new material from the shelves, and to a lesser extent due to particulate organic matter bypassing the coastal zone. Our simulations imply that deep-sea oxygen levels can drop significantly if eroded shelf material is deposited to the seafloor. Thus the glacial ocean's oxygen content could have been significantly lower than during interglacial stages. Primary production, organic carbon burial and dissolved phosphorus inventories are all affected by the erosion and rerouting mechanisms. However, re-routing of the continental and eroded shelf material to the deep-sea has the effect of decoupling deep-sea oxygen demand from primary productivity in the open ocean. P burial is also not affected showing a disconnection between the biogeochemical cycles in the water column and the P burial record.

  16. Ecosystem Services: a Framework for Environmental Management of the Deep Sea

    Science.gov (United States)

    Le, J. T.; Levin, L. A.; Carson, R. T.

    2016-02-01

    As demand for deep-sea resources rapidly expands in the food, energy, mineral, and pharmaceutical sectors, it has become increasingly clear that a regulatory structure for extracting these resources is not yet in place. There are jurisdictional gaps and a lack of regulatory consistency regarding what aspects of the deep sea need protection and what requirements might help guarantee that protection. Given the mining sector's intent to exploit seafloor massive sulphides, Mn nodules, cobalt crusts, and phosphorites in the coming years, there is an urgent need for deep-ocean environmental management. Here, we propose an ecosystem services-based framework to inform decisions and best practices regarding resource exploitation, and to guide baseline studies, preventative actions, monitoring, and remediation. With policy in early stages of development, an ecosystem services approach has the potential to serve as an overarching framework that takes protection of natural capital provided by the environment into account during the decision-making process. We show how an ecosystem services approach combined with economic tools, such as benefit transfer techniques, should help illuminate issues where there are direct conflicts among different industries, and between industry and conservation. We argue for baseline and monitoring measurements and metrics that inform about deep-sea ecosystem services that would be impaired by mining, and discuss ways to incorporate the value of those losses into decision making, mitigation measures, and ultimately product costs. This proposal is considered relative to current International Seabed Authority recommendations and contractor practices, and new actions are proposed. An ecosystem services-based understanding of how these systems work and their value to society can improve sustainability and stewardship of the deep ocean.

  17. First biological measurements of deep-sea corals from the Red Sea.

    KAUST Repository

    Roder, Cornelia; Berumen, Michael L.; Bouwmeester, J; Papathanassiou, E; Al-Suwailem, Abdulaziz M.; Voolstra, Christian R.

    2013-01-01

    from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key

  18. The past, present and future distribution of a deep-sea shrimp in the Southern Ocean

    Directory of Open Access Journals (Sweden)

    Zeenatul Basher

    2016-02-01

    Full Text Available Shrimps have a widespread distribution across the shelf, slope and seamount regions of the Southern Ocean. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity and adaptability in response to environmental change. We use species distribution models to predict changes in the geographic range of the deep-sea Antarctic shrimp Nematocarcinus lanceopes under changing climatic conditions from the Last Glacial Maximum to the present and to the year 2100. The present distribution range indicates a pole-ward shift of the shrimp population since the last glaciation. This occurred by colonization of slopes from nearby refugia located around the northern part of Scotia Arc, southern tip of South America, South Georgia, Bouvet Island, southern tip of the Campbell plateau and Kerguelen plateau. By 2100, the shrimp are likely to expand their distribution in east Antarctica but have a continued pole-ward contraction in west Antarctica. The range extension and contraction process followed by the deep-sea shrimp provide a geographic context of how other deep-sea Antarctic species may have survived during the last glaciation and may endure with projected changing climatic conditions in the future.

  19. Diversity of Micromonospora strains from the deep Mediterranean Sea and their potential to produce bioactive compounds

    Directory of Open Access Journals (Sweden)

    Andrea Gärtner

    2016-06-01

    Full Text Available During studies on bacteria from the Eastern Mediterranean deep-sea, incubation under in situ conditions (salinity, temperature and pressure and heat treatment were used to selectively enrich representatives of Micromonospora. From sediments of the Ierapetra Basin (4400 m depth and the Herodotos Plain (2800 m depth, 21 isolates were identified as members of the genus Micromonospora. According to phylogenetic analysis of 16S rRNA gene sequences, the Micromonospora isolates could be assigned to 14 different phylotypes with an exclusion limit of ≥ 99.5% sequence similarity. They formed 7 phylogenetic clusters. Two of these clusters, which contain isolates obtained after enrichment under pressure incubation and phylogenetically are distinct from representative reference organism, could represent bacteria specifically adapted to the conditions in situ and to life in these deep-sea sediments. The majority of the Micromonospora isolates (90% contained at least one gene cluster for biosynthesis of secondary metabolites for non-ribosomal polypeptides and polyketides (polyketide synthases type I and type II. The determination of biological activities of culture extracts revealed that almost half of the strains produced substances inhibitory to the growth of Gram-positive bacteria. Chemical analyses of culture extracts demonstrated the presence of different metabolite profiles also in closely related strains. Therefore, deep-sea Micromonospora isolates are considered to have a large potential for the production of new antibiotic compounds.

  20. The detection of magnetotactic bacteria in deep sea sediments from the east Pacific Manganese Nodule Province.

    Science.gov (United States)

    Dong, Yi; Li, Jinhua; Zhang, Wuchang; Zhang, Wenyan; Zhao, Yuan; Xiao, Tian; Wu, Long-Fei; Pan, Hongmiao

    2016-04-01

    Magnetotactic bacteria (MTB) are distributed ubiquitously in sediments from coastal environments to the deep sea. The Pacific Manganese Nodule Province contains numerous polymetallic nodules mainly composed of manganese, iron, cobalt, copper and nickel. In the present study we used Illumina MiSeq sequencing technology to assess the communities of putative MTB in deep sea surface sediments at nine stations in the east Pacific Manganese Nodule Province. A total of 402 sequence reads from MTB were classified into six operational taxonomic units (OTUs). Among these, OTU113 and OTU759 were affiliated with the genus Magnetospira, OTU2224 and OTU2794 were affiliated with the genus Magnetococcus and Magnetovibrio, respectively, OTU3017 had no known genus affiliation, and OTU2556 was most similar to Candidatus Magnetananas. Interestingly, OTU759 was widely distributed, occurring at all study sites. Magnetism measurements revealed that all sediments were dominated by low coercivity, non-interacting single domain magnetic minerals. Transmission electron microscopy confirmed that the magnetic minerals were magnetosomes. Our data suggest that diverse putative MTB are widely distributed in deep sea surface sediments from the east Pacific Manganese Nodule Province. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents.

    Science.gov (United States)

    Miroshnichenko, Margarita L; Bonch-Osmolovskaya, Elizaveta A

    2006-04-01

    The diversity of thermophilic prokaryotes inhabiting deep-sea hot vents was actively studied over the last two decades. The ever growing interest is reflected in the exponentially increasing number of novel thermophilic genera described. The goal of this paper is to survey the progress in this field made in the years 2000-2005. In this period, representatives of several new taxa of hyperthermophilic archaea were obtained from deep-sea environments. Two of these isolates had phenotypic features new for this group of organisms: the presence of an outer cell membrane (the genus Ignicoccus) and the ability to grow anaerobically with acetate and ferric iron (the genus Geoglobus). Also, our knowledge on the diversity of thermophilic bacteria from deep-sea thermal environments extended significantly. The new bacterial isolates represented diverse bacterial divisions: the phylum Aquificae, the subclass Epsilonproteobacteria, the order Thermotogales, the families Thermodesulfobacteriaceae, Deferribacteraceae, and Thermaceae, and a novel bacterial phylum represented by the genus Caldithrix. Most of these isolates are obligate or facultative lithotrophs, oxidizing molecular hydrogen in the course of different types of anaerobic respiration or microaerobic growth. The existence and significant ecological role of some of new bacterial thermophilic isolates was initially established by molecular methods.

  2. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus

    Directory of Open Access Journals (Sweden)

    Christina A. Kellogg

    2016-09-01

    Full Text Available Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.

  3. Predictive modeling of deep-sea fish distribution in the Azores

    Science.gov (United States)

    Parra, Hugo E.; Pham, Christopher K.; Menezes, Gui M.; Rosa, Alexandra; Tempera, Fernando; Morato, Telmo

    2017-11-01

    Understanding the link between fish and their habitat is essential for an ecosystem approach to fisheries management. However, determining such relationship is challenging, especially for deep-sea species. In this study, we applied generalized additive models (GAMs) to relate presence-absence and relative abundance data of eight economically-important fish species to environmental variables (depth, slope, aspect, substrate type, bottom temperature, salinity and oxygen saturation). We combined 13 years of catch data collected from systematic longline surveys performed across the region. Overall, presence-absence GAMs performed better than abundance models and predictions made for the observed data successfully predicted the occurrence of the eight deep-sea fish species. Depth was the most influential predictor of all fish species occurrence and abundance distributions, whereas other factors were found to be significant for some species but did not show such a clear influence. Our results predicted that despite the extensive Azores EEZ, the habitats available for the studied deep-sea fish species are highly limited and patchy, restricted to seamounts slopes and summits, offshore banks and island slopes. Despite some identified limitations, our GAMs provide an improved knowledge of the spatial distribution of these commercially important fish species in the region.

  4. DeepPIV: Particle image velocimetry measurements using deep-sea, remotely operated vehicles

    Science.gov (United States)

    Katija, Kakani; Sherman, Alana; Graves, Dale; Klimov, Denis; Kecy, Chad; Robison, Bruce

    2015-11-01

    The midwater region of the ocean (below the euphotic zone and above the benthos) is one of the largest ecosystems on our planet, yet remains one of the least explored. Little-known marine organisms that inhabit midwater have developed life strategies that contribute to their evolutionary success, and may inspire engineering solutions for societally relevant challenges. Although significant advances in underwater vehicle technologies have improved access to midwater, small-scale, in situ fluid mechanics measurement methods that seek to quantify the interactions that midwater organisms have with their physical environment are lacking. Here we present DeepPIV, an instrumentation package affixed to remotely operated vehicles that quantifies fluid motions from the surface of the ocean down to 4000 m depths. Utilizing ambient suspended particulate, fluid-structure interactions are evaluated on a range of marine organisms in midwater. Initial science targets include larvaceans, biological equivalents of flapping flexible foils, that create mucus houses to filter food. Little is known about the structure of these mucus houses and the function they play in selectively filtering particles, and these dynamics can serve as particle-mucus models for human health. Using DeepPIV, we reveal the complex structures and flows generated within larvacean mucus houses, and elucidate how these structures function. Funding is gratefully acknowledged from the Packard Foundation.

  5. Cathodic protection of mild steel and copper in deep waters of the Arabian Sea and Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Venkat, K.; Wagh, A.B.

    Performance of cathodic protection system to mild steel and copper in deep (> 1000 m) oceanic waters of the Arabian Sea and Bay of Bengal has been assessed using aluminium and mild steel sacrificial anodes. The corrosion rates of unprotected metals...

  6. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi. PMID:24463735

  7. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi [corrected]. indicated by metagenomics.

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-27

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi [corrected] . at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi [corrected]. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi [corrected].

  8. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Lamellomorpha sp. indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Lamellomorpha sp. at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Lamellomorpha sp.. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Lamellomorpha sp..

  9. The design of an acoustic data link for a deep-sea probe

    International Nuclear Information System (INIS)

    Coates, R.; Mathams, R.F.; Owens, A.R.

    1986-01-01

    The report describes a digital computer simulation of the performance of possible acoustic digital data link designs for use with a deep ocean penetrometer. It concludes with a description of the acoustic and electronic parts of a prototype system. The digital computer was developed with the assumption that the transmitter would need to be able to pass a low error rate data signal vertically upwards through some tens of metres of sea-bed sediment as well as some thousands of metres of sea water. The model allowed for variability in sediment attenuation, sea-state, transmitter power and modulation technique. It was concluded that, at acceptable transmitter powers, a useable signal should be recoverable under all expected environmental conditions. The prototype system was built and tested in laboratory conditions. The tests indicated that satisfactory performance should be achievable with a field equipment derived from this prototype. (author)

  10. The Biological Deep Sea Hydrothermal Vent as a Model to Study Carbon Dioxide Capturing Enzymes

    Directory of Open Access Journals (Sweden)

    Premila D. Thongbam

    2011-04-01

    Full Text Available Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO2 from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO2 fixation and assimilation might be very useful. This review describes some current research concerning CO2 fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture.

  11. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea)

    KAUST Repository

    Wang, Yong; Li, Jiang Tao; He, Li Sheng; Yang, Bo; Gao, Zhao Ming; Cao, Hui Luo; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Qian, Pei-Yuan

    2015-01-01

    In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin.

  12. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea)

    KAUST Repository

    Wang, Yong

    2015-10-20

    In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin.

  13. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea.

    Directory of Open Access Journals (Sweden)

    Yong Wang

    Full Text Available In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin.

  14. Climate variability in West Greenland during the past 1500 years

    DEFF Research Database (Denmark)

    dos Santos Ribeiro, Sofia Isabel; Moros, Matthias; Ellegaard, Marianne

    2012-01-01

    -surface temperatures in Disko Bay are out-of-phase with Greenland ice-core reconstructed temperatures and marine proxy data from South and East Greenland. This is probably governed by an NAO-type pattern, which results in warmer sea-surface conditions with less extensive sea ice in the area for the later part....... Sea ice cover and primary productivity were identified as the two main factors driving dinoflagellate cyst community changes through time. Our data provide evidence for an opposite climate trend in West Greenland relative to the NE Atlantic region from c. AD 500 to 1050. For the same period, sea...

  15. Deepwater Program: Lophelia II, continuing ecological research on deep-sea corals and deep-reef habitats in the Gulf of Mexico

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Ross, Steve W.; Kellogg, Christina A.; Morrison, Cheryl L.; Nizinski, Martha S.; Prouty, Nancy G.; Bourque, Jill R.; Galkiewicz, Julie P.; Gray, Michael A.; Springmann, Marcus J.; Coykendall, D. Katharine; Miller, Andrew; Rhode, Mike; Quattrini, Andrea; Ames, Cheryl L.; Brooke, Sandra D.; McClain Counts, Jennifer; Roark, E. Brendan; Buster, Noreen A.; Phillips, Ryan M.; Frometa, Janessy

    2017-12-11

    The deep sea is a rich environment composed of diverse habitat types. While deep-sea coral habitats have been discovered within each ocean basin, knowledge about the ecology of these habitats and associated inhabitants continues to grow. This report presents information and results from the Lophelia II project that examined deep-sea coral habitats in the Gulf of Mexico. The Lophelia II project focused on Lophelia pertusa habitats along the continental slope, at depths ranging from 300 to 1,000 meters. The chapters are authored by several scientists from the U.S. Geological Survey, National Oceanic and Atmospheric Administration, University of North Carolina Wilmington, and Florida State University who examined the community ecology (from microbes to fishes), deep-sea coral age, growth, and reproduction, and population connectivity of deep-sea corals and inhabitants. Data from these studies are presented in the chapters and appendixes of the report as well as in journal publications. This study was conducted by the Ecosystems Mission Area of the U.S. Geological Survey to meet information needs identified by the Bureau of Ocean Energy Management.

  16. Draft Genome Sequence of Deep-Sea Alteromonas sp. Strain V450 Isolated from the Marine Sponge Leiodermatium sp.

    Science.gov (United States)

    Wang, Guojun; Barrett, Nolan H; McCarthy, Peter J

    2017-02-02

    The proteobacterium Alteromonas sp. strain V450 was isolated from the Atlantic deep-sea sponge Leiodermatium sp. Here, we report the draft genome sequence of this strain, with a genome size of approx. 4.39 Mb and a G+C content of 44.01%. The results will aid deep-sea microbial ecology, evolution, and sponge-microbe association studies. Copyright © 2017 Wang et al.

  17. Seasonal migration, vertical activity and winter temperature experience of Greenland halibut Reinhardtius hippoglossoides (Walbaum) in West Greenland waters

    DEFF Research Database (Denmark)

    Boje, Jesper; Neuenfeldt, Stefan; Sparrevohn, Claus Reedtz

    2014-01-01

    resident in Disko Bay (mean range 2.6°C) than when resident in the ice fjord (mean range 1.4°C). Using the tagged halibut as a 'live tool,' we show that parts of the ice fjord are hundreds of meters deeper than previously thought. We also document the first seawater temperature measurements made beneath......The deep-water flatfish Greenland halibut Reinhardtius hippoglossoides (Walbaum) is common along the West Greenland coast. In the northwestern fjords, Greenland halibut is an important socio-economic resource for the Greenland community, but due to the deep and partly ice-covered environment, very...

  18. Distinct Bacterial Microbiomes Associate with the Deep-Sea Coral Eguchipsammia fistula from the Red Sea and from Aquaria Settings

    KAUST Repository

    Röthig, Till

    2017-08-10

    Microbial communities associated with deep-sea corals are beginning to be studied in earnest and the contribution of the microbiome to host organismal function remains to be investigated. In this regard, the ability of the microbiome to adjust to prevailing environmental conditions might provide clues to its functional importance. In this study, we characterized bacterial community composition associated with the deep-sea coral Eguchipsammia fistula under natural (in situ) and aquaria (ex situ) settings using 16S rRNA gene amplicon sequencing. We compared freshly collected Red Sea coral specimens with those reared for >1 year at conditions that partially differed from the natural environment, in particular regarding increased oxygen and food availability under ex situ conditions. We found substantial differences between the microbiomes associated with corals under both environmental settings. The core microbiome comprised only six bacterial taxa consistently present in all corals, whereas the majority of bacteria were exclusively associated either with freshly collected corals or corals under long-term reared aquaria settings. Putative functional profiling of microbial communities showed that corals in their natural habitat were enriched for processes indicative of a carbon- and nitrogen-limited environment, which might be reflective of differences in diet under in situ and ex situ conditions. The ability of E. fistula to harbor distinct microbiomes under different environmental settings might contribute to the flexibility and phenotypic plasticity of this cosmopolitan coral. Future efforts should further assess the role of these different bacteria in holobiont function, in particular since E. fistula is naturally present in markedly different environments.

  19. Distinct Bacterial Microbiomes Associate with the Deep-Sea Coral Eguchipsammia fistula from the Red Sea and from Aquaria Settings

    KAUST Repository

    Rö thig, Till; Roik, Anna Krystyna; Yum, Lauren; Voolstra, Christian R.

    2017-01-01

    Microbial communities associated with deep-sea corals are beginning to be studied in earnest and the contribution of the microbiome to host organismal function remains to be investigated. In this regard, the ability of the microbiome to adjust to prevailing environmental conditions might provide clues to its functional importance. In this study, we characterized bacterial community composition associated with the deep-sea coral Eguchipsammia fistula under natural (in situ) and aquaria (ex situ) settings using 16S rRNA gene amplicon sequencing. We compared freshly collected Red Sea coral specimens with those reared for >1 year at conditions that partially differed from the natural environment, in particular regarding increased oxygen and food availability under ex situ conditions. We found substantial differences between the microbiomes associated with corals under both environmental settings. The core microbiome comprised only six bacterial taxa consistently present in all corals, whereas the majority of bacteria were exclusively associated either with freshly collected corals or corals under long-term reared aquaria settings. Putative functional profiling of microbial communities showed that corals in their natural habitat were enriched for processes indicative of a carbon- and nitrogen-limited environment, which might be reflective of differences in diet under in situ and ex situ conditions. The ability of E. fistula to harbor distinct microbiomes under different environmental settings might contribute to the flexibility and phenotypic plasticity of this cosmopolitan coral. Future efforts should further assess the role of these different bacteria in holobiont function, in particular since E. fistula is naturally present in markedly different environments.

  20. The Effects of Temperature and Hydrostatic Pressure on Metal Toxicity: Insights into Toxicity in the Deep Sea.

    Science.gov (United States)

    Brown, Alastair; Thatje, Sven; Hauton, Chris

    2017-09-05

    Mineral prospecting in the deep sea is increasing, promoting concern regarding potential ecotoxicological impacts on deep-sea fauna. Technological difficulties in assessing toxicity in deep-sea species has promoted interest in developing shallow-water ecotoxicological proxy species. However, it is unclear how the low temperature and high hydrostatic pressure prevalent in the deep sea affect toxicity, and whether adaptation to deep-sea environmental conditions moderates any effects of these factors. To address these uncertainties we assessed the effects of temperature and hydrostatic pressure on lethal and sublethal (respiration rate, antioxidant enzyme activity) toxicity in acute (96 h) copper and cadmium exposures, using the shallow-water ecophysiological model organism Palaemon varians. Low temperature reduced toxicity in both metals, but reduced cadmium toxicity significantly more. In contrast, elevated hydrostatic pressure increased copper toxicity, but did not affect cadmium toxicity. The synergistic interaction between copper and cadmium was not affected by low temperature, but high hydrostatic pressure significantly enhanced the synergism. Differential environmental effects on toxicity suggest different mechanisms of action for copper and cadmium, and highlight that mechanistic understanding of toxicity is fundamental to predicting environmental effects on toxicity. Although results infer that sensitivity to toxicants differs across biogeographic ranges, shallow-water species may be suitable ecotoxicological proxies for deep-sea species, dependent on adaptation to habitats with similar environmental variability.